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University, Spain Ulrike von Luxburg, University of Hamburg, Germany Shie Mannor, Technion,
Israel Robert E. McCulloch, University of Chicago, USA Chris Meek, Microsoft Research, USA
Marina Meila, University of Washington, USA Nicolai Meinshausen, University of Oxford, UK
Vahab Mirrokni, Google Research, USA Mehryar Mohri, New York University, USA Sebastian
Nowozin, Microsoft Research, Cambridge, UK Manfred Opper, Technical University of Berlin,
Germany Una-May O’Reilly, Massachusetts Institute of Technology, USA Laurent Orseau, UMR
AgroParisTech, France Ronald Parr, Duke University, USA Martin Pelikan, Google Inc, USA Jie
Peng, University of California, Davis, USA Jan Peters, Technische Universität Darmstadt, Germany



Avi Pfeffer, Charles River Analytis, USA Joelle Pineau, McGill University, Canada Massimiliano
Pontil, University College London, UK Yuan (Alan) Qi, Purdue University, USA Luc de Raedt,
Katholieke Universiteit Leuven, Belgium Alexander Rakhlin, University of Pennsylvania, USA
Ben Recht, University of California, Berkeley, USA Saharon Rosset, Tel Aviv University, Israel
Ruslan Salakhutdinov, University of Toronto, Canada Marc Schoenauer, INRIA Saclay, France
Matthias Seeger, Amazon, Germany John Shawe-Taylor, University College London, UK Xiao-
tong Shen, University of Minnesota, USA Yoram Singer, Google Research, USA Peter Spirtes,
Carnegie Mellon University, USA Nathan Srebro, Toyota Technical Institute at Chicago, USA Ingo
Steinwart, University of Stuttgart, Germany Amos Storkey, University of Edinburgh, UK Csaba
Szepesvari, University of Alberta, Canada Yee Whye Teh, University of Oxford, UK Olivier
Teytaud, INRIA Saclay, France Ivan Titov, University of Amsterdam, Netherlands Koji Tsuda,
National Institute of Advanced Industrial Science and Technology, Japan Zhuowen Tu, University
of California San Diego, USA Nicolas Vayatis, Ecole Normale Supérieure de Cachan, France S V
N Vishwanathan, Purdue University, USA Manfred Warmuth, University of California at Santa
Cruz, USA Stefan Wrobel, Fraunhofer IAIS and University of Bonn, Germany Eric Xing, Carnegie
Mellon University, USA Bin Yu, University of California at Berkeley, USA Tong Zhang, Rutgers
University, USA Zhihua Zhang, Shanghai Jiao Tong University, China Hui Zou, University of
Minnesota, USA

JMLR-MLOSS Editors
Geoffrey Holmes, University of Waikato, New Zealand Antti Honkela, University of Helsinki,
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Emile Richard, Stéphane Gaı̈ffas, Nicolas Vayatis

595 Adaptivity of Averaged Stochastic Gradient Descent to Local Strong Con-
vexity for Logistic Regression
Francis Bach

629 Random Intersection Trees
Rajen Dinesh Shah, Nicolai Meinshausen

655 Reinforcement Learning for Closed-Loop Propofol Anesthesia: A Study
in Human Volunteers
Brett L Moore, Larry D Pyeatt, Vivekanand Kulkarni, Periklis Panousis, Kevin
Padrez, Anthony G Doufas

697 Clustering Hidden Markov Models with Variational HEM
Emanuele Coviello, Antoni B. Chan, Gert R.G. Lanckriet

749 A Novel M-Estimator for Robust PCA
Teng Zhang, Gilad Lerman

809 Policy Evaluation with Temporal Differences: A Survey and Comparison
Christoph Dann, Gerhard Neumann, Jan Peters

885 Active Learning Using Smooth Relative Regret Approximations with Ap-
plications
Nir Ailon, Ron Begleiter, Esther Ezra

921 An Extension of Slow Feature Analysis for Nonlinear Blind Source Sep-
aration
Henning Sprekeler, Tiziano Zito, Laurenz Wiskott

949 Natural Evolution Strategies
Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, Jürgen
Schmidhuber

981 Conditional Random Field with High-order Dependencies for Sequence
Labeling and Segmentation
Nguyen Viet Cuong, Nan Ye, Wee Sun Lee, Hai Leong Chieu

1011 Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy
Separability
Tomohiko Mizutani



1041 Improving Prediction from Dirichlet Process Mixtures via Enrichment
Sara Wade, David B. Dunson, Sonia Petrone, Lorenzo Trippa

1073 Gibbs Max-margin Topic Models with Data Augmentation
Jun Zhu, Ning Chen, Hugh Perkins, Bo Zhang

1111 A Reliable Effective Terascale Linear Learning System
Alekh Agarwal, Oliveier Chapelle, Miroslav Dudı́k, John Langford

1135 New Learning Methods for Supervised and Unsupervised Preference Ag-
gregation
Maksims N. Volkovs, Richard S. Zemel

1177 Prediction and Clustering in Signed Networks: A Local to Global Per-
spective
Kai-Yang Chiang, Cho-Jui Hsieh, Nagarajan Natarajan, Inderjit S. Dhillon,
Ambuj Tewari

1215 Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders
Francisco J. R. Ruiz, Isabel Valera, Carlos Blanco, Fernando Perez-Cruz

1249 Robust Near-Separable Nonnegative Matrix Factorization Using Linear
Optimization
Nicolas Gillis, Robert Luce

1281 Follow the Leader If You Can, Hedge If You Must
Steven de Rooij, Tim van Erven, Peter D. Grünwald, Wouter M. Koolen

1317 Structured Prediction via Output Space Search
Janardhan Rao Doppa, Alan Fern, Prasad Tadepalli

1351 Fully Simplified Multivariate Normal Updates in Non-Conjugate Varia-
tional Message Passing
Matt P. Wand

1371 Towards Ultrahigh Dimensional Feature Selection for Big Data
Mingkui Tan, Ivor W. Tsang, Li Wang

1431 Adaptive Sampling for Large Scale Boosting
Charles Dubout, Francois Fleuret

1455 Manopt, a Matlab Toolbox for Optimization on Manifolds
Nicolas Boumal, Bamdev Mishra, P.-A. Absil, Rodolphe Sepulchre

1461 Training Highly Multiclass Classifiers
Maya R. Gupta, Samy Bengio, Jason Weston

1493 Locally Adaptive Factor Processes for Multivariate Time Series
Daniele Durante, Bruno Scarpa, David B. Dunson

1523 Iteration Complexity of Feasible Descent Methods for Convex Optimiza-
tion
Po-Wei Wang, Chih-Jen Lin



1549 High-Dimensional Covariance Decomposition into Sparse Markov and
Independence Models
Majid Janzamin, Animashree Anandkumar

1593 The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamilto-
nian Monte Carlo
Matthew D. Hoffman, Andrew Gelman

1625 Confidence Intervals for Random Forests: The Jackknife and the In-
finitesimal Jackknife
Stefan Wager, Trevor Hastie, Bradley Efron

1653 Surrogate Regret Bounds for Bipartite Ranking via Strongly Proper Losses
Shivani Agarwal

1675 Adaptive Minimax Regression Estimation over Sparse ℓq-Hulls
Zhan Wang, Sandra Paterlini, Fuchang Gao, Yuhong Yang

1713 Graph Estimation From Multi-Attribute Data
Mladen Kolar, Han Liu, Eric P. Xing

1751 Hitting and Commute Times in Large Random Neighborhood Graphs
Ulrike von Luxburg, Agnes Radl, Matthias Hein

1799 Bayesian Inference with Posterior Regularization and Applications to In-
finite Latent SVMs
Jun Zhu, Ning Chen, Eric P. Xing

1849 Expectation Propagation for Neural Networks with Sparsity-Promoting
Priors
Pasi Jylänki, Aapo Nummenmaa, Aki Vehtari

1903 Pattern Alternating Maximization Algorithm for Missing Data in High-
Dimensional Problems
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3483 The Gesture Recognition Toolkit
Nicholas Gillian, Joseph A. Paradiso

3489 Convolutional Nets and Watershed Cuts for Real-Time Semantic Label-
ing of RGBD Videos
Camille Couprie, Clément Farabet, Laurent Najman, Yann LeCun

3513 On the Bayes-Optimality of F-Measure Maximizers
Willem Waegeman, Krzysztof Dembczynski, Arkadiusz Jachnik, Weiwei Cheng,
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Abstract

In this paper, we present a new adaptive feature scaling scheme for ultrahigh-dimensional
feature selection on Big Data, and then reformulate it as a convex semi-infinite programming
(SIP) problem. To address the SIP, we propose an efficient feature generating paradigm.
Different from traditional gradient-based approaches that conduct optimization on all in-
put features, the proposed paradigm iteratively activates a group of features, and solves a
sequence of multiple kernel learning (MKL) subproblems. To further speed up the training,
we propose to solve the MKL subproblems in their primal forms through a modified accel-
erated proximal gradient approach. Due to such optimization scheme, some efficient cache
techniques are also developed. The feature generating paradigm is guaranteed to converge
globally under mild conditions, and can achieve lower feature selection bias. Moreover,
the proposed method can tackle two challenging tasks in feature selection: 1) group-based
feature selection with complex structures, and 2) nonlinear feature selection with explicit
feature mappings. Comprehensive experiments on a wide range of synthetic and real-world
data sets of tens of million data points with O(1014) features demonstrate the competi-
tive performance of the proposed method over state-of-the-art feature selection methods in
terms of generalization performance and training efficiency.

Keywords: big data, ultrahigh dimensionality, feature selection, nonlinear feature selec-
tion, multiple kernel learning, feature generation

1. Introduction

With the rapid development of the Internet, big data of large volume and ultrahigh di-
mensionality have emerged in various machine learning applications, such as text mining
and information retrieval (Deng et al., 2011; Li et al., 2011, 2012). For instance, Wein-
berger et al. (2009) have studied a collaborative email-spam filtering task with 16 trillion
(1013) unique features. The ultrahigh dimensionality not only incurs unbearable memory
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requirements and high computational cost in training, but also deteriorates the general-
ization ability because of the “curse of dimensionality” issue (Duda et al., 2000.; Guyon
and Elisseeff, 2003; Zhang and Lee, 2006; Dasgupta et al., 2007; Blum et al., 2007). For-
tunately, for many data sets with ultrahigh dimensions, most of the features are irrelevant
to the output. Accordingly, dropping the irrelevant features and selecting the most rele-
vant features can vastly improve the generalization performance (Ng, 1998). Moreover, in
many applications such as bioinformatics (Guyon and Elisseeff, 2003), a small number of
features (genes) are required to interpret the results for further biological analysis. Finally,
for ultrahigh-dimensional problems, a sparse classifier is important for faster predictions.

Ultrahigh dimensional data also widely appear in many nonlinear machine learning
tasks. For example, to tackle the intrinsic nonlinearity of data, researchers proposed to
achieve fast training and prediction through linear techniques using explicit feature map-
pings (Chang et al., 2010; Maji and Berg, 2009). However, most of the explicit feature
mappings will dramatically expand the data dimensionality. For instance, the commonly
used 2-degree polynomial kernel feature mapping has a dimensionality of O(m2), where m
denotes the number of input features (Chang et al., 2010). Even with a medium m, the
dimensionality of the induced feature space is very huge. Other typical feature mappings
include the spectrum-based feature mapping for string kernel (Sonnenburg et al., 2007;
Sculley et al., 2006), histogram intersection kernel feature expansion (Wu, 2012), and so on.

Numerous feature selection methods have been proposed for classification tasks in the
last decades (Guyon et al., 2002; Chapelle and Keerthi, 2008). In general, existing feature
selection methods can be classified into two categories, namely filter methods and wrapper
methods (Kohavi and John, 1997; Ng, 1998; Guyon et al., 2002). Filter methods, such as
the signal-to-noise ratio method (Golub et al., 1999) and the spectral feature filtering (Zhao
and Liu, 2007), own the advantages of low computational cost, but they are incapable of
finding an optimal feature subset w.r.t. a predictive model of interest. On the contrary,
by incorporating the inductive learning rules, wrapper methods can select more relevant
features (Xu et al., 2009a; Guyon and Elisseeff, 2003). However, in general, the wrapper
methods are more computationally expensive than the filter methods. Accordingly, how
to scale the wrapper methods to big data is an urgent and challenging issue, and is also a
major focus of this paper.

One of the most famous wrapper methods is the support vector machine (SVM) based
recursive feature elimination (SVM-RFE), which has shown promising performance in the
Microarray data analysis, such as gene selection task (Guyon et al., 2002). Specifically,
SVM-RFE applys a recursive feature elimination scheme, and obtains nested subsets of fea-
tures based on the weights of SVM classifiers. Unfortunately, the nested feature selection
strategy is “monotonic” and suboptimal in identifying the most informative feature sub-
set (Xu et al., 2009a; Tan et al., 2010). To address this drawback, non-monotonic feature
selection methods have gained great attention (Xu et al., 2009a; Chan et al., 2007). Basi-
cally, the non-monotonic feature selection requires the convexity of the objective in order
to easily find a global solution. To this end, Chan et al. (2007) proposed two convex relax-
ations to an `0-norm sparse SVM, namely QSSVM and SDP-SSVM. The resultant models
are convex, and can be solved by the convex quadratically constrained quadratic program-
ming (QCQP) and the semi-definite programming (SDP), respectively. These two methods
belong to the non-monotonic feature selection methods. However, they are very expen-
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sive especially for high dimensional problems. Xu et al. proposed another non-monotonic
feature selection method, namely NMMKL (Xu et al., 2009a). Unfortunately, NMMKL is
computationally infeasible for high dimensional problems since it involves a QCQP problem
with many quadratic constraints.

Focusing on the logistic loss, recently, some researchers proposed to select features using
greedy strategies (Tewari et al., 2011; Lozano et al., 2011), which iteratively include one
feature into a feature subset. For example, Lozano et al. (2011) proposed a group orthogonal
matching pursuit. Tewari et al. (2011) further introduced a general greedy scheme to solve
more general sparsity constrained problems. Although promising performance has been
observed, the greedy methods have several drawbacks. For example, since only one feature
is involved in each iteration, these greedy methods are very expensive when there are a
large number of features to be selected. More critically, due to the absence of appropriate
regularizer in the objective function, the over-fitting problem may happen, which may
deteriorate the generalization performance (Lozano et al., 2011; Tewari et al., 2011).

Given a set of labeled patterns {xi, yi}ni=1, where xi ∈ Rm is an instance with m features,
and yi ∈ {±1} is the output label. To avoid the over-fitting problem or induce sparsity,
people usually introduce some regularizers to the loss function. For instance, to select
features that contribute the most to the margin, we can learn a sparse decision function
d(x) = w′x by solving:

min
w
‖w‖0 + C

n∑
i=1

l(−yiw′xi),

where l(·) is a convex loss function, w ∈ Rm is the weight vector, ‖w‖0 denotes the `0-norm
that counts the number of non-zeros in w, and C > 0 is a regularization parameter. Unfortu-
nately, this problem is NP-hard due to the `0-norm regularizer. Therefore, many researchers
resort to learning a sparse decision rule through an `1-convex relaxation instead (Bradley
and Mangasarian, 1998; Zhu et al., 2003; Fung and Mangasarian, 2004):

min
w
‖w‖1 + C

n∑
i=1

l(−yiw′xi), (1)

where ‖w‖1 =
∑m

j=1 |wj | is the `1-norm on w. The `1-regularized problem can be efficiently
solved, and many optimization methods have been proposed to solve this problem, including
Newton methods (Fung and Mangasarian, 2004), proximal gradient methods (Yuan et al.,
2011), coordinate descent methods (Yuan et al., 2010, 2011), and so on. Interested readers
can find more details of these methods in (Yuan et al., 2010, 2011) and references therein.
Beside these methods, recently, to address the big data challenge, great attention has been
paid on online learning methods and stochastic gradient descent (SGD) methods for dealing
with big data challenges (Xiao, 2009; Duchi and Singer, 2009; Langford et al., 2009; Shalev-
Shwartz and Zhang, 2013).

However, there are several deficiencies regarding these `1-norm regularized model and
existing `1-norm methods. Firstly, since the `1-norm regularization shrinks the regressors,
the feature selection bias inevitably exists in the `1-norm methods (Zhang and Huang,
2008; Zhang, 2010b; Lin et al., 2010; Zhang, 2010a). To demonstrate this, let L(w) =
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∑n
i=1 l(−yiw′xi) be the empirical loss on the training data, then w∗ is an optimal solution

to (1) if and only if it satisfies the following optimality conditions (Yuan et al., 2010):
∇jL(w∗) = −1/C if w∗j > 0,

∇jL(w∗) = 1/C if w∗j < 0,

−1/C ≤ ∇jL(w∗) ≤ 1/C if w∗j = 0.

(2)

According to the above conditions, one can achieve different levels of sparsity by changing
the regularization parameter C. On one hand, using a small C, minimizing ‖w‖1 in (1)
would favor selecting only a few features. The sparser the solution is, the larger the predic-
tive risk (or empirical loss) will be (Lin et al., 2010). In other words, the solution bias will
happen (Figueiredo et al., 2007). In an extreme case, where C is chosen to be tiny or even
close to zero, none of the features will be selected according to the condition (2), which will
lead to a very poor prediction model. On the other hand, using a large C, one can learn
an more fitted prediction model to to reduce the empirical loss. However, according to (2),
more features will be included. In summary, the sparsity and the unbiased solutions cannot
be achieved simultaneously via solving (1) by changing the tradeoff parameter C. A possible
solution is to do de-biasing with the selected features using re-training. For example, we
can use a large C to train an unbiased model with the selected features (Figueiredo et al.,
2007; Zhang, 2010b). However, such de-biasing methods are not efficient.

Secondly, when tackling big data of ultrahigh dimensions, the `1-regularization would
be inefficient or infeasible for most of the existing methods. For example, when the di-
mensionality is around 1012, one needs about 1 TB memory to store the weight vector w,
which is intractable for existing `1-methods, including online learning methods and SGD
methods (Langford et al., 2009; Shalev-Shwartz and Zhang, 2013). Thirdly, due to the
scale variation of w, it is also non-trivial to control the number of features to be selected
meanwhile to regulate the decision function.

In the conference version of this paper, an `0-norm sparse SVM model is introduced (Tan
et al., 2010). Its nice optimization scheme has brought significant benefits to several appli-
cations, such as image retrieval (Rastegari et al., 2011), multi-label prediction (Gu et al.,
2011a), feature selection for multivariate performance measures (Mao and Tsang, 2013), fea-
ture selection for logistic regression (Tan et al., 2013), and graph-based feature selection (Gu
et al., 2011b). However, several issues remain to be solved. First of all, the tightness of the
convex relation remains unclear. Secondly, the adopted optimization strategy is incapable
of dealing with very large-scale problems with many training instances. Thirdly, the pre-
sented feature selection strategy was limited to linear features, but in many applications,
one indeed needs to tackle nonlinear features that are with complex structures.

Regarding the above issues, in this paper, we propose an adaptive feature scaling (AFS)
for feature selection by introducing a continuous feature scaling vector d ∈ [0, 1]m. To en-
force the sparsity, we impose an explicit `1-constraint ||d||1 ≤ B, where the scalar B repre-
sents the least number of features to be selected. The solution to the resultant optimization
problem is non-trivial due to the additional constraint. Fortunately, by transforming it as
a convex semi-infinite programming (SIP) problem, an efficient optimization scheme can be
developed. In summary, this paper makes the following extensions and improvements.

• A feature generating machine (FGM) is proposed to efficiently address the ultrahigh-
dimensional feature selection task through solving the proposed SIP problem. Instead
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of performing the optimization on all input features, FGM iteratively infers the most
informative features, and then solves a reduced multiple kernel learning (MKL) sub-
problem, where each base kernel is defined on a set of features.1

• The proposed optimization scheme mimics the re-training strategy to reduce the fea-
ture selection bias with little effort. Specifically, the feature selection bias can be
effectively alleviated by separately controlling the complexity and sparsity of the de-
cision function, which is one of the major advantages of the proposed scheme.

• To speed up the training on big data, we propose to solve the primal form of the
MKL subproblem by a modified accelerated proximal gradient method. As a result,
the memory requirement and computational cost can be significantly reduced. The
convergence rate of the modified APG is also provided. Moreover, several cache
techniques are proposed to further enhance the efficiency.

• The feature generating paradigm is also extended to group feature selection with com-
plex group structures and nonlinear feature selection using explicit feature mappings.

The remainder of this paper is organized as follows. In Section 2, we start by presenting
the adaptive feature scalings (AFS) for linear feature selection and group feature selection,
and then present the convex SIP reformulations of the resultant optimization problems. Af-
ter that, to solve the SIP problems, in Section 3, we propose the feature generating machine
(FGM) which includes two core steps, namely the worst-case analysis step and the subprob-
lem optimization step. In Section 4, we illustrate the worst-case analysis for a number of
learning tasks, including the group feature selection with complex group structures and the
nonlinear feature selection with explicit feature mappings. We introduce the subproblem
optimization in Section 5 and extend FGM for multiple kernel learning w.r.t. many addi-
tive kernels in Section 6. Related studies are presented in Section 7. We conduct empirical
studies in Section 8, and conclude this work in Section 9.

2. Feature Selection Through Adaptive Feature Scaling

Throughout the paper, we denote the transpose of vector/matrix by the superscript ′, a
vector with all entries equal to one as 1 ∈ Rn, and the zero vector as 0 ∈ Rn. In addition,
we denote a data set by X = [x1, ...,xn]′ = [f1, ..., fm], where xi ∈ Rm represents the ith
instance and f j ∈ Rn denotes the jth feature vector. We use |G| to denote cardinality of an
index set G and |v| to denote the absolute value of a real number v. For simplicity, we denote
v � α if vi ≥ αi,∀i and v � α if vi ≤ αi,∀i. We also denote ‖v‖p as the `p-norm of a vector
and ‖v‖ as the `2-norm of a vector. Given a vector v = [v′1, ...,v

′
p]
′, where vi denotes a

sub-vector of v, we denote ‖v‖2,1 =
∑p

i=1 ‖vi‖ as the mixed `1/`2 norm (Bach et al., 2011)
and ‖v‖22,1 = (

∑p
i=1 ‖vi‖)2. Accordingly, we call ‖v‖22,1 as an `22,1 regularizer. Following

Rakotomamonjy et al. (2008), we define xi
0 = 0 if xi = 0 and ∞ otherwise. Finally, A�B

represents the element-wise product between two matrices A and B.

1. The C++ and MATLAB source codes of the proposed methods are publicly available at http://www.
tanmingkui.com/fgm.html.
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2.1 A New AFS Scheme for Feature Selection

In the standard support vector machines (SVM), one learns a linear decision function d(x) =
w′x− b by solving the following `2-norm regularized problem:

min
w

1

2
‖w‖2 + C

n∑
i=1

l(−yi(w′xi − b)), (3)

where w = [w1, . . . , wm]′ ∈ Rm denotes the weight of the decision hyperplane, b denotes
the shift from the origin, C > 0 represents the regularization parameter and l(·) denotes a
convex loss function. In this paper, we concentrate on two kinds of loss functions, namely
the squared hinge loss

l(−yi(w′xi − b)) =
1

2
max(1− yi(w′xi − b), 0)2

and the logistic loss

l(−yi(w′xi − b)) = log(1 + exp(−yi(w′xi − b))).

For simplicity, herein we concentrate the squared hinge loss only.
In (3), the `2-regularizer ||w||2 is used to avoid the over-fitting problem (Hsieh et al.,

2008), which, however, cannot induce sparse solutions. To address this issue, we introduce a
feature scaling vector d ∈ [0, 1]m such that we can scale the importance of features. Specifi-
cally, given an instance xi, we impose

√
d = [

√
d1, . . . ,

√
dm]′ on its features (Vishwanathan

et al., 2010), resulting in a re-scaled instance

x̂i = (xi �
√

d). (4)

In this scaling scheme, the jth feature is selected if and only if dj > 0.
Note that, in many real-world applications, one may intend to select a desired number of

features with acceptable generalization performance. For example, in the Microarray data
analysis, due to expensive bio-diagnosis and limited resources, biologists prefer to select
less than 100 genes from hundreds of thousands of genes (Guyon et al., 2002; Golub et al.,
1999). To incorporate such prior knowledge, we explicitly impose an `1-norm constraint on
d to induce the sparsity:

m∑
j=1

dj = ||d||1 ≤ B, dj ∈ [0, 1], j = 1, · · · ,m,

where the integer B represents the least number of features to be selected. Similar feature
scaling scheme has been used by many works (e.g., Weston et al., 2000; Chapelle et al., 2002;
Grandvalet and Canu, 2002; Rakotomamonjy, 2003; Varma and Babu, 2009; Vishwanathan
et al., 2010). However, different from the proposed scaling scheme, in these scaling schemes,
d is not bounded in [0, 1]m.

Let D =
{
d ∈ Rm

∣∣∑m
j=1 dj ≤ B, dj ∈ [0, 1], j = 1, · · · ,m

}
be the domain of d, the

proposed AFS can be formulated as the following problem:

min
d∈D

min
w,ξ,b

1

2
‖w‖22 +

C

2

n∑
i=1

ξ2
i (5)

s.t. yi

(
w′(xi �

√
d)− b

)
≥ 1− ξi, i = 1, · · · , n,
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where C is a regularization parameter that trades off between the model complexity and
the fitness of the decision function, and b/‖w‖ determines the offset of the hyperplane
from the origin along the normal vector w. This problem is non-convex w.r.t. w and d
simultaneously, and the compact domain D contains infinite number of elements. However,
for a fixed d, the inner minimization problem w.r.t. w and ξ is a standard SVM problem:

min
w,ξ,b

1

2
‖w‖22 +

C

2

n∑
i=1

ξ2
i (6)

s.t. yi

(
w′(xi �

√
d)− b

)
≥ 1− ξi, i = 1, · · · , n,

which can be solved in its dual form. By introducing the Lagrangian multiplier αi ≥ 0 to

each constraint yi

(
w′(xi �

√
d)− b

)
≥ 1− ξi, the Lagrangian function is:

L(w, ξ, b,α) =
1

2
‖w‖22 +

C

2

n∑
i=1

ξ2
i −

n∑
i=1

αi

(
yi

(
w′(xi �

√
d)− b

)
− 1 + ξi

)
. (7)

By setting the derivatives of L(w, ξ, b,α) w.r.t. w, ξ and b to 0, respectively, we get

w =
n∑
i=1

αiyi(xi �
√

d),α = Cξ, and
n∑
i=1

αiyi = 0. (8)

Substitute these results into (7), and we arrive at the dual form of problem (6) as:

max
α∈A

− 1

2

∥∥∥∥ n∑
i=1

αiyi(xi �
√

d)

∥∥∥∥2

− 1

2C
α′α+α′1,

where A = {α|
∑n

i=1 αiyi = 0,α � 0} is the domain of α. For convenience, let c(α) =∑n
i=1 αiyixi ∈ Rm, we have

∥∥∥∥∑n
i=1 αiyi(xi �

√
d)

∥∥∥∥2

=
∑m

j=1 dj [cj(α)]2, where the jth

coordinate of c(α), namely cj(α), is a function of α. For simplicity, let

f(α,d) =
1

2

m∑
j=1

dj [cj(α)]2 +
1

2C
α′α−α′1.

Apparently, f(α,d) is linear in d and concave in α, and bothA and D are compact domains.
Problem (5) can be equivalently reformulated as the following problem:

min
d∈D

max
α∈A

− f(α,d), (9)

However, this problem is still difficult to be addressed. Recall that both A and D are convex
compact sets, according to the minimax saddle-point theorem (Sion, 1958), we immediately
have the following relation.

Theorem 1 According to the minimax saddle-point theorem (Sion, 1958), the following
equality holds by interchanging the order of mind∈D and maxα∈A in (9),

min
d∈D

max
α∈A

− f(α,d) = max
α∈A

min
d∈D

− f(α,d).
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Based on the above equivalence, rather than solving the original problem in (9), hereafter
we address the following minimax problem instead:

min
α∈A

max
d∈D

f(α,d). (10)

2.2 AFS for Group Feature Selection

The above AFS scheme for linear feature selection can be extended for group feature se-
lections, where the features are organized into groups defined by G = {G1, ...,Gp}, where
∪pj=1Gj = {1, ...,m}, p = |G| denotes the number of groups, and Gj ⊂ {1, ...,m}, j = 1, ..., p
denotes the index set of feature supports belonging to the jth group. In the group feature
selection, a feature in one group is selected if and only if this group is selected (Yuan and
Lin, 2006; Meier et al., 2008). Let wGj ∈ R|Gj | and xGj ∈ R|Gj | be the components of w and
x related to Gj , respectively. The group feature selection can be achieved by solving the
following non-smooth group lasso problem (Yuan and Lin, 2006; Meier et al., 2008):

min
w

λ

p∑
j=1

||wGj ||2 +

n∑
i=1

l(−yi
p∑
j=1

w′GjxiGj ), (11)

where λ is a trade-off parameter. Many efficient algorithms have been proposed to solve
this problem, such as the accelerated proximal gradient descent methods (Liu and Ye, 2010;
Jenatton et al., 2011b; Bach et al., 2011), block coordinate descent methods (Qin et al.,
2010; Jenatton et al., 2011b) and active set methods (Bach, 2009; Roth and Fischer, 2008).
However, the issues of the `1-regularization, namely the scalability issue for big data and
the feature selection bias, will also happen when solving (11). More critically, when dealing
with feature groups with complex structures, the number of groups can be exponential in
the number of features m. As a result, solving (11) could be very expensive.

To extend AFS to group feature selection, we introduce a group scaling vector d̂ =
[d̂1, . . . , d̂p]

′ ∈ D̂ to scale the groups, where D̂ =
{
d̂ ∈ Rp

∣∣∑p
j=1 d̂j ≤ B, d̂j ∈ [0, 1], j =

1, · · · , p
}

. Here, without loss of generality, we first assume that there is no overlapping ele-
ment among groups, namely, Gi∩Gj = ∅, ∀i 6= j. Accordingly, we have w = [w′G1 , ...,w

′
Gp ]
′ ∈

Rm. By taking the shift term b into consideration, the decision function is expressed as:

d(x) =

p∑
j=1

√
d̂jw

′
GjxGj − b,

By applying the squared hinge loss, the AFS based group feature selection task can be
formulated as the following optimization problem:

min
d̂∈D̂

min
w,ξ,b

1

2
‖w‖22 +

C

2

n∑
i=1

ξ2
i

s.t. yi

 p∑
j=1

√
d̂jw

′
GjxiGj − b

 ≥ 1− ξi, ξi ≥ 0, i = 1, · · · , n.
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With similar deductions in Section 2.1, this problem can be transformed into the following
minimax problem:

min
d̂∈D̂

max
α∈A

−1

2

p∑
j=1

d̂j

∥∥∥∥ n∑
i=1

αiyixiGj

∥∥∥∥2

− 1

2C
α′α+α′1.

This problem is reduced to the linear feature selection case if |Gj | = 1,∀j = 1, ..., p. For con-

venience, hereafter we drop the hat from d̂ and D̂. Let cGj (α) =
∑n

i=1 αiyixiGj . Moreover,
we define

f(α,d) =
1

2

p∑
j=1

dj
∥∥cGj (α)

∥∥2
+

1

2C
α′α−α′1.

Finally, we arrive at a unified minimax problem for both linear and group feature selections:

min
α∈A

max
d∈D

f(α,d), (12)

where D =
{
d ∈ Rp

∣∣∑p
j=1 dj ≤ B, dj ∈ [0, 1], j = 1, · · · , p

}
. When |Gj | = 1,∀j = 1, ..., p,

we have p = m, and problem (12) is reduced to problem (10).

2.3 Group Feature Selection with Complex Structures

Now we extend the above group AFS scheme to feature groups with overlapping features
or even more complex structures. When dealing with groups with overlapping features, a
heuristic way is to explicitly augment X = [f1, ..., fm] to make the overlapping groups non-
overlapping by repeating the overlapping features. For example, suppose X = [f1, f2, f3]
with groups G = {G1,G2}, where G1 = {1, 2} and G2 = {2, 3}, and f2 is an overlapping
feature. To avoid the overlapping feature issue, we can repeat f2 to construct an augmented
data set Xau = [f1, f2, f2, f3], where the group index sets become G1 = {1, 2} and G2 =
{3, 4}. This feature augmentation strategy can be extended to groups with even more
complex structures, such as tree structures or graph structures (Bach, 2009). For simplicity,
in this paper, we only study the tree-structured groups.

Definition 1 Tree-structured set of groups (Jenatton et al., 2011b; Kim and Xing, 2010,
2012). A super set of groups G , {Gh}Gh∈G with |G| = p is said to be tree-structured in
{1, ...,m}, if ∪Gh = {1, ...,m} and if for all Gg,Gh ∈ G, (Gg∩Gh 6= ∅)⇒ (Gg ⊆ Gh or Gh ⊆
Gg). For such a set of groups, there exists a (non-unique) total order relation � such that:

Gg � Gh ⇒ {Gg ⊆ Gh or Gg ∩ Gh = ∅}.

Similar to the overlapping case, we augment the overlapping elements of all groups along
the tree structures, resulting in the augmented data set Xau = [XG1 , ...,XGp ], where XGi
represents the data columns indexed by Gi and p denotes the number of all possible groups.
However, this simple idea may bring great challenges for optimization, particularly when
there are huge number of overlapping groups (For instance, in graph-based group structures,
the number of groups p can be exponential in m (Bach, 2009)).
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3. Feature Generating Machine

Under the proposed AFS scheme, both linear feature selection and group feature selection
can be cast as the minimax problem in (12). By bringing in an additional variable θ ∈ R, this
problem can be further formulated as a semi-infinite programming (SIP) problem (Kelley,
1960; Pee and Royset, 2010):

min
α∈A,θ∈R

θ, s.t. θ ≥ f(α,d), ∀ d ∈ D. (13)

In (13), each nonzero d ∈ D defines a quadratic constraint w.r.t. α. Since there are infinite
d’s in D, problem (13) involves infinite number of constraints, thus it is very difficult to be
solved.

3.1 Optimization Strategies by Feature Generation

Before solving (13), we first discuss its optimality condition. Specifically, let µh ≥ 0 be
the dual variable for each constraint θ ≥ f(α,d), the Lagrangian function of (13) can be
written as:

L(θ,α,µ) = θ −
∑
dh∈D

µh (θ − f(α,dh)) .

By setting its derivative w.r.t. θ to zero, we have
∑
µh = 1. Let M = {µ|

∑
µh = 1, µh ≥

0, h = 1, ..., |D|} be the domain of µ and define

fm(α) = max
dh∈D

f(α,dh).

The KKT conditions of (13) can be written as:∑
dh∈D

µh∇αf(α,dh) = 0, and
∑
dh∈D

µh = 1. (14)

µh(f(α,dh)− fm(α)) = 0, µh ≥ 0, h = 1, ..., |D|. (15)

In general, there are many constraints in problem (14). However, most of them are
nonactive at the optimality if the data contain only a small number of relevant features
w.r.t. the output y. Specifically, according to condition (15), we have µh = 0 if f(α,dh) <
fm(α), which will induce the sparsity among µh’s. Motivated by this observation, we
design an efficient optimization scheme which iteratively “finds” the active constraints, and
then solves a subproblem with the selected constraints only. By applying this scheme, the
computational burden brought by the infinite number of constraints can be avoided. The
details of the above procedure is presented in Algorithm 1, which is also known as the
cutting plane algorithm (Kelley, 1960; Mutapcic and Boyd, 2009).

Algorithm 1 involves two major steps: the feature inference step (also known as the
worst-case analysis) and the subproblem optimization step. Specifically, the worst-case
analysis is to infer the most-violated dt based on αt−1, and add it into the active constraint
set Ct. Once an active dt is identified, we update αt by solving the following subproblem
with the constraints defined in Ct:

min
α∈A,θ∈R

θ, s.t. f(α,dh)− θ ≤ 0, ∀ dh ∈ Ct. (16)
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Algorithm 1 Cutting Plane Algorithm for Solving (13).

1: Initialize α0 = C1 and C0 = ∅. Set iteration index t = 1.
2: Feature Inference:

Do worst-case analysis to infer the most violated dt based on αt−1.
Set Ct = Ct−1

⋃
{dt}.

3: Subproblem Optimization:
Solve subproblem (16), obtaining the optimal solution αt and µt.

4: Let t = t+ 1. Repeat step 2-3 until convergence.

For feature selection tasks, the optimization complexity of (13) can be greatly reduced,
since there are only a small number of active constraints involved in problem (16).

The whole procedure iterates until some stopping conditions are achieved. As will be
shown later, in general, each active dt ∈ Ct involves at most B new features. In this
sense, we refer Algorithm 1 to as the feature generating machine (FGM). Recall that, at
the beginning, there is no feature being selected, thus we have the empirical loss ξ = 1.
According to (8), we can initialize α0 = C1. Finally, once the optimal solution d∗ to (16) is
obtained, the selected features (or feature groups) are associated with the nonzero entries in
d∗. Note that, each d ∈ Ct involves at most B features/groups, thus the number of selected
features/groups is no more than tB after t iterations, namely ||d∗||0 ≤ tB.

3.2 Convergence Analysis

Before the introduction of the worst-case analysis and the solution to the subproblem, we
first conduct the convergence analysis of Algorithm 1.

Without loss of generality, let A×D be the domain for problem (13). In the (t+ 1)th
iteration, we find a new constraint dt+1 based on αt and add it into Ct, i.e., f(αt,dt+1) =
maxd∈D f(αt,d). Apparently, we have Ct ⊆ Ct+1. For convenience, we define

βt = max
1≤i≤t

f(αt,di) = min
α∈A

max
1≤i≤t

f(α,di).

and

ϕt = min
1≤j≤t

f(αj ,dj+1) = min
1≤j≤t

(max
d∈D

f(αj ,d)),

First of all, we have the following lemma.

Lemma 1 Let (α∗, θ∗) be a globally optimal solution of (13), {θt} and {ϕt} as defined
above, then: θt ≤ θ∗ ≤ ϕt. With the number of iteration t increasing, {θt} is monotonically
increasing and the sequence {ϕt} is monotonically decreasing (Chen and Ye, 2008).

Proof According to the definition, we have θt = βt. Moreover, θ∗=minα∈Amaxd∈D f(α,d).
For a fixed feasible α, we have maxd∈Ct f(α,d) ≤ maxd∈D f(α,d), then

min
α∈A

max
d∈Ct

f(α,d) ≤ min
α∈A

max
d∈D

f(α,d),
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that is, θt ≤ θ∗. On the other hand, for ∀j = 1, · · · , k, f(αj ,dj+1) = maxd∈D f(αj ,d), thus
(αj , f(αj ,dj+1)) is a feasible solution of (13). Then θ∗ ≤ f(αj ,dj+1) for j = 1, · · · , t, and
hence we have

θ∗ ≤ ϕt = min
1≤j≤t

f(αj ,dj+1).

With increasing iteration t, the subset Ct is monotonically increasing, so {θt} is monotoni-
cally increasing while {ϕt} is monotonically decreasing. The proof is completed.

The following theorem shows that FGM converges to a global solution of (13).

Theorem 2 Assume that in Algorithm 1, the subproblem (16) and the worst-case analysis
in step 2 can be solved. Let {(αt, θt)} be the sequence generated by Algorithm 1. If Algo-
rithm 1 terminates at iteration (t+ 1), then {(αt, θt)} is the global optimal solution of (13);
otherwise, (αt, θt) converges to a global optimal solution (α∗, θ∗) of (13).

Proof We can measure the convergence of FGM by the gap difference of series {θt} and
{ϕt}. Assume in tth iteration, there is no update of Ct, i.e. dt+1 = arg maxd∈D f(αt,d) ∈
Ct, then Ct = Ct+1. In this case, (αt, θt) is the globally optimal solution of (13). Actually,
since Ct = Ct+1, in Algorithm 1, there will be no update of α, i.e. αt+1 = αt. Then we have

f(αt,dt+1) = max
d∈D

f(αt,d) = max
d∈Ct

f(αt,d) = max
1≤i≤t

f(αt,di) = θt

ϕt = min
1≤j≤t

f(αj ,dj+1) ≤ θt.

According to Lemma 1, we have θt ≤ θ∗ ≤ ϕt, thus we have θt = θ∗ = ϕt, and (αt, θt)
is the global optimum of (13).

Suppose the algorithm does not terminate in finite steps. Let X = A× [θ1, θ
∗], a limit

point (ᾱ, θ̄) exists for (αt, θt), since X is compact. And we also have θ̄ ≤ θ∗. For each t, let
Xt be the feasible region of tth subproblem, which have Xt ⊆ X , and (ᾱ, θ̄) ∈ ∩∞t=1Xt ⊆ X .
Then we have f(ᾱ,dt)− θ̄ ≤ 0, dt ∈ Ct for each given t = 1, · · · .

To show (ᾱ, θ̄) is global optimal of problem (13), we only need to show (ᾱ, θ̄) is a feasible
point of problem (13), i.e., θ̄ ≥ f(ᾱ,d) for all d ∈ D, so θ̄ ≥ θ∗ and we must have θ̄ = θ∗.
Let v(α, θ) = mind∈D(θ−f(α,d)) = θ−maxd∈D f(α,d). Then v(α, θ) is continuous w.r.t.
(α, θ). By applying the continuity property of v(α, θ), we have

v(ᾱ, θ̄) = v(αt, θt) + (v(ᾱ, θ̄)− v(αt, θt))

= (θt − f(αt,dt+1)) + (v(ᾱ, θ̄)− v(αt, θt))

≥ (θt − f(αt,dt+1))− (θ̄ − f(ᾱ,dt)) + (v(ᾱ, θ̄)− v(αt, θt))→ 0 (when t→∞),

where we use the continuity of v(α, θ). The proof is completed.

4. Efficient Worst-Case Analysis

According to Theorem 2, the exact solution to the worst-case analysis is necessary for the
global convergence of FGM. Fortunately, for a number of feature selection tasks, the exact
worst-case analysis does exist. For simplicity, hereafter we drop the superscript t from αt.
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4.1 Worst-Case Analysis for Linear Feature Selection

The worst-case analysis for the linear feature selection is to solve the following maximization
problem:

max
d

1

2

∥∥∥∥∥
n∑
i=1

αiyi(xi �
√

d)

∥∥∥∥∥
2

, s.t.

m∑
j=1

dj ≤ B,0 � d � 1. (17)

This problem in general is very hard to be solved. Recall that c(α) =
∑n

i=1 αiyixi ∈ Rm,
and we have ‖

∑n
i=1 αiyi(xi �

√
d)‖2 = ‖

∑n
i=1(αiyixi)�

√
d‖2 =

∑m
j=1 cj(α)2dj . Based on

this relation, we define a feature score sj to measure the importance of features as

sj = [cj(α)]2.

Accordingly, problem (17) can be further formulated as a linear programming problem:

max
d

1

2

m∑
j=1

sjdj , s.t.
m∑
j=1

di ≤ B, 0 � d � 1. (18)

The optimal solution to this problem can be obtained without any numeric optimization
solver. Specifically, we can construct a feasible solution by first finding the B features with
the largest feature score sj , and then setting the corresponding dj to 1 and the rests to 0.
It is easy to verify that such a d is also an optimal solution to (18). Note that, as long as
there are more than B features with sj > 0, we have ||d||0 = B. In other words, in general,
d will include B features into the optimization after each worst-case analysis.

4.2 Worst-Case Analysis for Group Feature Selection

The worst-case analysis for linear feature selection can be easily extended to group feature
selection. Suppose that the features are organized into groups by G = {G1, ...,Gp}, and
there is no overlapping features among groups, namely Gi ∩ Gj = ∅, ∀i 6= j. To find the
most-active groups, we just need to solve the following optimization problem:

max
d∈D

p∑
j=1

dj

∥∥∥∥ n∑
i=1

αiyixiGj

∥∥∥∥2

= max
d∈D

p∑
j=1

djc
′
GjcGj , (19)

where cGj =
∑n

i=1 αiyixiGj for group Gj . Let sj = c′GjcGj be the score for group Gj . The

optimal solution to (19) can be obtained by first finding the B groups with the largest sj ’s,
and then setting their dj ’s to 1 and the rests to 0. If |Gj | = 1, ∀j ∈ {1, ...,m}, problem (19)
is reduced to problem (18), where G = {{1}, ..., {p}} and sj = [cj(α)]2 for j ∈ G. In this
sense, we unify the worst-case analysis of the two feature selection tasks in Algorithm 2.

4.3 Worst-Case Analysis for Groups with Complex Structures

Algorithm 2 can be also extended to feature groups with overlapping features or with tree-
structures. Recall that p = |G|, the worst-case analysis in Algorithm 2 takes O(mn +
p log(B)) cost, where the O(mn) cost is for computing c, and the O(p log(B)) cost is for
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Algorithm 2 Algorithm for Worst-Case Analysis.

Given α, B, the training set {xi, yi}ni=1 and the group index set G = {G1, ...,Gp}.
1: Calculate c =

∑n
i=1 αiyixi.

2: Calculate the feature score s, where sj = c′GjcGj .
3: Find the B largest sj ’s.
4: Set dj corresponding to the B largest sj ’s to 1 and the rests to 0.
5: Return d.

sorting sj ’s. The second term is negligible if p = O(m). However, if p is extremely large,
namely p � m, the computational cost for computing and sorting sj will be unbearable.
For instance, if the feature groups are organized into a graph or a tree structure, p can
become very huge, namely p� m (Jenatton et al., 2011b).

Since we just need to find the B groups with the largest sj ’s, we can address the above
computational difficulty by implementing Algorithm 2 in an incremental way. Specifically,
we can maintain a cache cB to store the indices and scores of the B feature groups with the
largest scores among those traversed groups, and then calculate the feature score sj for each
group one by one. After computing sj for a new group Gj , we update cB if sj > sminB , where
sminB denotes the smallest score in cB. By applying this technique, the whole computational
cost of the worst-case analysis can be greatly reduced to O(n log(m)+B log(p)) if the groups
follow the tree-structure defined in Definition 1.

Remark 2 Given a set of groups G = {G1, ...,Gp} that is organized as a tree structure in
Definition 1, suppose Gh ⊆ Gg, then sh < sg. Furthermore, Gg and all its decedent Gh ⊆ Gg
will not be selected if sg < sminB . Therefore, the computational cost of the worst-case analysis
can be reduced to O(n log(m) +B log(p)) for a balanced tree structure.

5. Efficient Subproblem Optimization

After updating Ct, now we tend to solve the subproblem (16). Recall that, any dh ∈ Ct
indexes a set of features. For convenience, we define Xh , [x1

h, ...,x
n
h]′ ∈ Rn×B, where xih

denotes the ith instance with the features indexed by dh.

5.1 Subproblem Optimization via MKL

Regarding problem (16), let µh ≥ 0 be the dual variable for each constraint defined by dh,
the Lagrangian function can be written as:

L(θ,α,µ) = θ −
∑

dh∈Ct

µt (θ − f(α,dh)) .

By setting its derivative w.r.t. θ to zero, we have
∑
µt = 1. Let µ be the vector of all

µt’s, and M = {µ|
∑
µh = 1, µh ≥ 0} be the domain of µ. By applying the minimax

saddle-point theorem (Sion, 1958), L(θ,α,µ) can be rewritten as:

max
α∈A

min
µ∈M

−
∑

dh∈Ct

µhf(α,dh) = min
µ∈M

max
α∈A

− 1

2
(α� y)′

( ∑
dh∈Ct

µhXhX
′

h +
1

C
I
)
(α� y), (20)
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where the equality holds since the objective function is concave in α and convex in µ. Prob-
lem (20) is a multiple kernel learning (MKL) problem (Lanckriet et al., 2004; Rakotoma-
monjy et al., 2008) with |Ct| base kernel matrices XhX

′
h. Several existing MKL approaches

can be adopted to solve this problem, such as SimpleMKL (Rakotomamonjy et al., 2008).
Specifically, SimpleMKL solves the non-smooth optimization problem by applying a sub-
gradient method (Rakotomamonjy et al., 2008; Nedic and Ozdaglar, 2009). Unfortunately,
it is expensive to calculate the sub-gradient w.r.t. α for large-scale problems. Moreover, the
convergence speed of sub-gradient methods is limited. The minimax subproblem (20) can
be also solved by the proximal gradient methods (Nemirovski, 2005; Tseng, 2008) or SQP
methods (Pee and Royset, 2010) with faster convergence rates. However, these methods
involve expensive subproblems, and they are very inefficient when n is large.

Based on the definition of Xh, we have
∑

dh∈Ct µhXhX
′
h =

∑
dh∈Ct µhXdiag(dh)X

′
=

Xdiag(
∑

dh∈Ct µhdh)X
′

w.r.t. the linear feature selection task. Accordingly, we have

d∗ =
∑

dh∈Ct

µ∗hdh, (21)

where µ∗ = [µ∗1, ..., µ
∗
h]′ denotes the optimal solution to (20). It is easy to check that, the

relation in (21) also holds for the group feature selection tasks. Since
∑|Ct|

h=1 µ
∗
h = 1, we

have d∗ ∈ D =
{
d
∣∣∑m

j=1 dj ≤ B, dj ∈ [0, 1], j = 1, · · · ,m
}

, where the nonzero entries are
associated with selected features/groups.

5.2 Subproblem Optimization in the Primal

Solving the MKL problem in (20) is very expensive when n is very large. In other words, the
dimension of the optimization variable α in (20) is very large. Recall that, after t iterations,
Ct includes at most tB features, where tB � n. Motivated by this observation, we propose
to solve it in the primal form w.r.t. w. Apparently, the dimension of the optimization
variable w is much smaller than α, namely ||w||0 ≤ tB � n.

Without loss of generality, we assume that t = |Ct| after tth iterations. Let Xh ∈ Rn×B
denote the data with features indexed by dh ∈ Ct, ωh ∈ RB denote the weight vector w.r.t.
Xh, ω = [ω′1, ...,ω

′
t]
′ ∈ RtB be a supervector concatenating all ωh’s, where tB � n. For

convenience, we define

P (ω, b) =
C

2

n∑
i=1

ξ2
i

w.r.t. the squared hinge loss, where ξi = max(1− yi(
∑

hω
′
hxih − b), 0), and

P (ω, b) = C
n∑
i=1

log(1 + exp(ξi)),

w.r.t. the logistic loss, where ξi = −yi(
∑t

h=1ω
′
hxih − b).

Theorem 3 Let xih denote the ith instance of Xh, the MKL subproblem (20) can be equiv-
alently addressed by solving an `22,1-regularized problem:

min
ω

1

2

(
t∑

h=1

‖ωh‖

)2

+ P (ω, b). (22)
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Furthermore, the dual optimal solution α∗ can be recovered from the optimal solution ξ∗.

To be more specific, α∗i = Cξ∗i holds for the square-hinge loss and αi =
C exp(ξ∗i )
1+exp(ξ∗i ) holds for

the logistic loss.

The proof can be found in Appendix A.
According to Theorem 3, rather than directly solving (20), we can address its primal

form (22) instead, which brings great advantages for the efficient optimization. Moreover,

we can recover α∗ by α∗i = Cξ∗i and αi =
C exp(ξ∗i )
1+exp(ξ∗i ) w.r.t. the squared hinge loss and logistic

loss, respectively.2 For convenience, we define

F (ω, b) = Ω(ω) + P (ω, b),

where Ω(ω) = 1
2(
∑t

h=1 ‖ωh‖)2. F (ω, b) is a non-smooth function w.r.t ω, and P (ω, b) has
block coordinate Lipschitz gradient w.r.t ω and b, where ω is deemed as a block variable.
Correspondingly, let ∇P (v) = ∂vP (v, vb) and ∇bP (v, vb) = ∂bP (v, vb). It is known that
F (ω, b) is at least Lipschitz continuous for both logistic loss and squared hinge loss (Yuan
et al., 2011):

P (ω, b) ≤ P (v, vb) + 〈∇P (v),ω − v〉+ 〈∇bP (vb), b− vb〉+
L

2
‖ω − v||2 +

Lb
2
‖b− vb||2,

where L and Lb denote the Lipschitz constants regarding ω and b, respectively.
Since F (ω, b) is separable w.r.t ω and b, we can minimize it regarding ω and b in a block

coordinate descent manner (Tseng, 2001). For each block variable, we update it through
an accelerated proximal gradient (APG) method (Beck and Teboulle, 2009; Toh and Yun,
2009), which iteratively minimizes a quadratic approximation to F (ω, b). Specifically, given
a point [v′, vb]

′, the quadratic approximation to F (ω, b) at this point w.r.t. ω is:

Qτ (ω,v, vb) = P (v, vb) + 〈∇P (v),ω − v〉+ Ω(ω) +
τ

2
‖ω − v||2

=
τ

2
‖ω − u‖2 + Ω(ω) + P (v, vb)−

1

2τ
‖∇P (v)‖2, (23)

where τ is a positive constant and u = v − 1
τ∇P (v). To minimize Qτ (ω,v, vb) w.r.t. ω, it

is reduced to solve the following Moreau projection problem (Martins et al., 2010):

min
ω

τ

2
‖ω − u‖2 + Ω(ω). (24)

For convenience, let uh be the corresponding component to ωh, namely u = [u′1, ...,u
′
t]
′.

Martins et al. (2010) has shown that, problem (24) has a unique closed-form solution, which
is summarized in the following proposition.

Proposition 1 Let Sτ (u,v) be the optimal solution to problem (24) at point v, then
Sτ (u,v) is unique and can be calculated as follows:

[Sτ (u,v)]h =

{ oh
‖uh‖uh, if oh > 0,

0, otherwise,
(25)

2. Here the optimal dual variable α∗ is required in the worst-case analysis.
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where [Sτ (u,v)]h ∈ RB denote the corresponding component w.r.t. uh and o ∈ Rt be an
intermediate variable. Let ô = [‖u1‖, ..., ‖ut‖]′ ∈ Rt, the intermediate vector o can be

calculated via a soft-threshold operator: oh = [soft(ô, ς)]h =

{
ôh − ς, if ôh > ς,
0, Otherwise.

. Here

the threshold value ς can be calculated in Step 4 of Algorithm 3.

Proof The proof can be adapted from the results in Appendix F in (Martins et al., 2010).

Algorithm 3 Moreau Projection Sτ (u,v).

Given an point v, s = 1
τ and the number of kernels t.

1: Calculate ôh = ‖gh‖ for all h = 1, ..., t.
2: Sort ô to obtain ō such that ō(1) ≥ ... ≥ ō(t).

3: Find ρ = max
{
t
∣∣∣ōh − s

1+hs

h∑
i=1

ōi > 0, h = 1, ..., t
}

.

4: Calculate the threshold value ς = s
1+ρs

ρ∑
i=1

ōi.

5: Compute o = soft(ô, ς).
6: Compute and output Sτ (u,v) via equation (25).

Remark 3 For the Moreau projection in Algorithm 3, the sorting takes O(t) cost. In FGM
setting, t in general is very small, thus the Moreau projection can be efficiently computed.

Now we tend to minimize F (ω, b) regarding b. Since there is no regularizer on b, it is
equivalent to minimize P (ω, vb) w.r.t. b. The updating can be done by b = vb− 1

τb
∇bP (v, vb),

which is essentially the steepest descent update. We can use the Armijo line search (Nocedal
and Wright, 2006) to find a step size 1

τb
such that,

P (ω, b) ≤ P (ω, vb)−
1

2τb
|∇bP (v, vb)|2,

where ω is the minimizer to Qτ (ω,v, vb). This line search can be efficiently performed since
it is conducted on a single variable only.

With the calculation of Sτ (g) in Algorithm 3 and the updating rule of b above, we
propose to solve (22) through a modified APG method in a block coordinate manner in
Algorithm 4. In Algorithm 4, Lt and Lbt denote the Lipschitz constants of P (ω, b) w.r.t.
ω and b at the t iteration of Algorithm 1, respectively. In practice, we estimate L0 by
L0 = 0.01nC, which will be further adjusted by the line search. When t > 0, Lt is estimated
by Lt = ηLt−1. Finally, a sublinear convergence rate of Algorithm 4 is guaranteed.3

Theorem 4 Let Lt and Lbt be the Lipschitz constant of P (ω, b) w.r.t. ω and b respectively.

Let {(ωk ′, bk)′} be the sequences generated by Algorithm 4 and L = max(Lbt, Lt), for any
k ≥ 1, we have:

F (ωk, bk)− F (ω∗, b∗) ≤ 2Lt||ω0 − ω∗||2

η(k + 1)2
+

2Lbt(b
0 − b∗)2

η(k + 1)2
≤ 2L||ω0 − ω∗||2

η(k + 1)2
+

2L(b0 − b∗)2

η(k + 1)2
.

3. Regarding Algorithm 4, a linear convergence rate can be attained w.r.t. the logistic loss under mild
conditions. The details can be found in Appendix C.
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The proof can be found in Appendix B. The internal variables Lk and Lkb in Algorithm 3
are useful in the proof of the convergence rate.

According to Theorem 4, if Lbt is very different from Lt, the block coordinate updating
scheme in Algorithm 4 can achieve an improved convergence speed over the batch updating
w.r.t. (ω′, b)′. Moreover, the warm-start for initialization of ω and b in Algorithm 4 is
useful to accelerate the convergence speed.

Algorithm 4 Accelerated Proximal Gradient for Solving Problem (22) (Inner Iterations).

Initialization: Initialize the Lipschitz constant Lt = Lt−1, set ω0 = v1 = [ω′t−1,0
′]′ and

b0 = v1
b = bt−1 by warm start, τ0 = Lt, η ∈ (0, 1), parameter %1 = 1 and k = 1.

1: Set τ = ητk−1.
For j = 0, 1, ...,

Set u = vk − 1
τ∇p(v

k), compute Sτ (u,vk).
If F (Sτ (u,vk), vkb ) ≤ Q(Sτ (u,vk),vk, vkb ),

Set τk = τ , stop;
Else

τ = min{η−1τ, Lt}.
End

End
2: Set ωk = Sτk(u,vk) and Lk = τk.
3: Set τb = ητk.

For j = 0, 1, ...
Set b = vkb −

1
τb
∇bP (v, vkb ).

If P (ωk, b) ≤ P (ωk, vkb )− 1
2τb
|∇bP (v, vkb )|2,

Stop;
Else

τb = min{η−1τb, Lt}.
End

End
4: Set bk = b and Lkb = τb. Go to Step 8 if the stopping condition achieves.

5: Set %k+1 =
1+
√

1+4(%k)2

2 .

6: Set vk+1 = ωk + %k−1
%k+1 (ωk − ωk−1) and vk+1

b = bk + %k−1
%k+1 (bk − bk−1).

7: Let k = k + 1 and go to step 1.
8: Return and output ωt = ωk, bt = bk and Lt = ητk.

Warm Start: From Theorem 4, the number of iterations needed by APG to achieve

an ε-solution is O( ||ω
0−ω∗||√
ε

). Since FGM incrementally includes a set of features into the

subproblem optimization, an warm start of ω0 can be very useful to improve its efficiency.
To be more specific, when a new active constraint is added, we can use the optimal solution
of the last iteration (denoted by [ω∗1

′, ...,ω∗t−1
′]) as an initial guess to the next iteration.

In other words, at the tth iteration, we use ω−1 = ω0 = [ω∗1
′, ...,ω∗t−1

′,0′]′ as the starting
point.
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5.3 De-biasing of FGM

Based on Algorithm 4, we show that FGM resembles the re-training process and can
achieve de-biased solutions. For convenience, we first revisit the de-biasing process in the
`1-minimization (Figueiredo et al., 2007).

De-biasing for `1-methods. To reduce the solution bias, a de-biasing process is often
adopted in `1-methods. For example, in the sparse recovery problem (Figueiredo et al.,
2007), after solving the `1-regularized problem, a least-square problem (which drops the
`1-regularizer) is solved with the detected features (or supports). To reduce the feature
selection bias, one can also apply this de-biasing technique to the `1-SVM for classification
tasks. However, it is worth mentioning that, when dealing with classification tasks, due
to the label noises, such as the rounding errors of labels, a regularizer is necessary and
important to avoid the over-fitting issue. Alternatively, we can apply the standard SVM on
the selected features to do the de-biasing using a relative large C, which is also referred to
as the re-training. When C goes to infinity, it is equivalent to minimize the empirical loss
without any regularizer, which, however, may cause the over-fitting problem.

De-biasing effect of FGM. Recall that, in FGM, the parameters B and the trade-
off parameter C are adjusted separately. In the worst-case analysis, FGM includes B
features/groups that violate the optimality condition the most. When B is sufficiently
small, the selected B features/groups can be regarded as the most relevant features. After
that, FGM addresses the `22,1-regularized problem (22) w.r.t. the selected features only,
which mimics the above re-training strategy for de-biasing. Specifically, we can use a
relatively large C to penalize the empirical loss to reduce the solution bias. Accordingly,
with a suitable C, each outer iteration of FGM can be deemed as the de-biasing process, and
the de-biased solution will in turn help the worst-case analysis to select more discriminative
features.

5.4 Stopping Conditions

Suitable stopping conditions of FGM are important to reduce the risk of over-fitting and
improve the training efficiency. The stopping criteria of FGM include 1) the stopping
conditions for the outer cutting plane iterations in Algorithm 1; 2) the stopping conditions
for the inner APG iterations in Algorithm 4.

5.4.1 Stopping Conditions for Outer iterations

We first introduce the stopping conditions w.r.t. the outer iterations in Algorithm 1. Re-
call that the optimality condition for the SIP problem is

∑
dt∈D µt∇αf(α,dt) = 0 and

µt(f(α,dt)− fm(α)) = 0,∀dt ∈ D. A direct stopping condition can be written as:

f(α,d) ≤ fm(α) + ε, ∀d ∈ D, (26)

where fm(α) = maxdh∈Ct f(α,dh) and ε is a small tolerance value. To check this condition,
we just need to find a new dt+1 via the worst-case analysis. If f(α,dt+1) ≤ fm(α) +
ε, the stopping condition in (26) is achieved. In practice, due to the scale variation of
fm(α) for different problems, it is non-trivial to set the tolerance ε. Since we perform
the subproblem optimization in the primal, and the objective value F (ωt) monotonically
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decreases. Therefore, in this paper, we propose to use the relative function value difference
as the stopping condition instead:

F (ωt−1, b)− F (ωt, b)

F (ω0, b)
≤ εc, (27)

where εc is a small tolerance value. In some applications, one may need to select a desired
number of features. In such cases, we can terminate Algorithm 1 after a maximum number
of T iterations with at most TB features being selected.

5.4.2 Stopping Conditions for Inner iterations

Exact and Inexact FGM: In each iteration of Algorithm 1, one needs to do the inner
master problem minimization in (22). The optimality condition of (22) is ∇ωF (ω) = 0.
In practice, to achieve a solution with high precision to meet this condition is expensive.
Therefore, we usually achieve an ε-accurate solution instead.

Nevertheless, an inaccurate solution may affect the convergence. To demonstrate this,
let ω̂ and ξ̂ be the exact solution to (22). According to Theorem 3, the exact solution of
α̂ to (20) can be obtained by α̂ = ξ̂. Now suppose ω is an ε-accurate solution to (22) and
ξ be the corresponding loss, then we have αi = α̂i + εi, where εi is the gap between α̂ and
α. When performing the worst-case analysis in Algorithm 2, we need to calculate

c =
n∑
i=1

αiyixi =
n∑
i=1

(α̂i + εi)yixi = ĉ +
n∑
i=1

εiyixi = ĉ + ∆ĉ,

where ĉ denotes the exact feature score w.r.t. α̂, and ∆ĉ denotes the error of c brought by
the inexact solution. Apparently, we have

|ĉj − cj | = |∆ĉj | = O(ε), ∀j = 1, ...,m.

Since we only need to find those significant features with the largest |cj |′s, a sufficiently small
ε is enough such that we can find the most-active constraint. Therefore, the convergence
of FGM will not be affected if ε is sufficiently small, but overall convergence speed of FGM
can be greatly improved. Let {ωk} be the inner iteration sequence, in this paper, we set
the stopping condition of the inner problem as

F (ωk−1)− F (ωk)

F (ωk−1)
≤ εin, (28)

where εin is a small tolerance value. In practice, we set εin = 0.001, which works well for
the problems that will be studied in this paper.

5.5 Cache for Efficient Implementations

The optimization scheme of FGM allows to use some cache techniques to improve the
optimization efficiency.

Cache for features. Different from the cache used in kernel SVM which caches kernel
entries (Fan et al., 2005), we directly cache the features in FGM. In gradient-based methods,
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one needs to calculate w′xi for each instance to compute the gradient of the loss function,
which takes O(mn) cost in general. Unlike these methods, the gradient computation in the
modified APG algorithm of FGM is w.r.t. the selected features only. Therefore, we can use
a column-based database to store the data, and cache these features in the main memory
to accelerate the feature retrieval. To cache these features, we needs O(tBn) additional
memory. However, the operation complexity for feature retrieval can be significantly re-
duced from O(nm) to O(tBn), where tB � m for high dimensional problems. It is worth
mentioning that, the cache for features is particularly important for the nonlinear feature
selection with explicit feature mappings, where the data with expanded features can be too
large to be loaded into the main memory.

Cache for inner products. The cache technique can be also used to accelerate the
Algorithm 4. To make a sufficient decrease of the objective value, in Algorithm 4, a line
search is performed to find a suitable step size. When doing the line search, one may need
to calculate the loss function P (ω) many times, where ω = Sτ (g) = [ω′1, ...,ω

′
t]
′. The

computational cost will be very high if n is very large. However, according to equation
(25), we have

ω = Sτ (gh) =
oh
||gh||

gh =
oh
||gh||

(vh −
1

τ
∇P (vh)),

where only oh is affected by the step size. Then the calculation of
∑n

i=1ω
′xi follows

n∑
i=1

ω′xi =
n∑
i=1

(
t∑

h=1

ω′hxih

)
=

n∑
i=1

(
t∑

h=1

oh
||gh||

(
v′hxih −

1

τ
∇P (vh)′xih

))
.

According to the above calculation rule, we can make a fast computation of
∑n

i=1ω
′xi

by caching v′hxih and ∇P (vh)′xih for the hth group of each instance xi. Accordingly, the
complexity of computing

∑n
i=1ω

′xi can be reduced from O(ntB) to O(nt). That is to say,
no matter how many line search steps will be conducted, we only need to scan the selected
features once, which can greatly reduce the computational cost.

6. Nonlinear Feature Selection Through Kernels

By applying the kernel tricks, we can extend FGM to do nonlinear feature selections. Let
φ(x) be a nonlinear feature mapping that maps the input features with nonlinear relations
into a high-dimensional linear feature space. To select the features, we can also introduce a
scaling vector d ∈ D and obtain a new feature mapping φ(x�

√
d). By replacing (x�

√
d)

in (5) with φ(x �
√

d), the kernel version of FGM can be formulated as the following
semi-infinite kernel (SIK) learning problem:

min
α∈A,θ

θ : θ ≥ fK(α,d), ∀ d ∈ D,

where fK(α,d) = 1
2(α�y)′(Kd+ 1

C I)(α�y) and Kij
d is calculated as φ(xi�

√
d)′φ(xj�

√
d).

This problem can be solved by Algorithm 1. However, we need to solve the following
optimization problem in the worst-case analysis:

max
d∈D

1

2

∥∥∥ n∑
i=1

αiyiφ(xi �
√

d)
∥∥∥2

= max
d∈D

1

2
(α� y)′Kd(α� y), (29)
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6.1 Worst Case Analysis for Additive Kernels

In general, solving problem (29) for general kernels (e.g., Gaussian kernels) is very challeng-
ing. However, for additive kernels, this problem can be exactly solved. A kernel Kd is an
additive kernel if it can be linearly represented by a set of base kernels {Kj}pj=1 (Maji and
Berg, 2009). If each base kernel Kj is constructed by one feature or a subset of features,
we can select the optimal subset features by choosing a small subset of kernels.

Proposition 2 The worst-case analysis w.r.t. additive kernels can be exactly solved.

Proof Suppose that each base kernel Kj in an additive kernel is constructed by one feature
or a subset of features. Let G = {G1, ...,Gp} be the index set of features that produce the
base kernel set {Kj}pj=1 and φj(xiGj ) be the corresponding feature map to Gj . Similar to
the group feature selection, we introduce a feature scaling vector d ∈ D ⊂ Rp to scale
φj(xiGj ). The resultant model becomes:

min
d∈D̂

min
w,ξ,b

1

2
‖w‖22 +

C

2

n∑
i=1

ξ2
i

s.t. yi

 p∑
j=1

√
djw

′
Gjφj(xiGj )− b

 ≥ 1− ξi, ξi ≥ 0, i = 1, · · · , n,

where wGj has the same dimensionality with φj(xiGj ). By transforming this problem to the
SIP problem in (13), we can solve the kernel learning (selection) problem via FGM. The
corresponding worst-case analysis is reduced to solve the following problem:

max
d∈D

p∑
j=1

dj(α� y)′Kj(α� y) = max
d∈D

p∑
j=1

djsj ,

where sj = (α� y)′Kj(α� y) and Ki,k
j = φj(xiGj )

′φj(xkGj ). This problem can be exactly
solved by choosing the B kernels with the largest sj ’s.

In the past decades, many additive kernels have been proposed based on specific application
contexts, such as the general intersection kernel in computer vision (Maji and Berg, 2009),
string kernel in text mining and ANOVA kernels (Bach, 2009). Taking the general inter-
section kernel for example, it is defined as: k(x, z, a) =

∑p
j=1 min{|xj |a, |zj |a}, where a > 0

is a kernel parameter. When a = 1, it reduces to the well-known Histogram Intersection
Kernel (HIK), which has been widely used in computer vision and text classifications (Maji
and Berg, 2009; Wu, 2012).

It is worth mentioning that, even though we can exactly solve the worst-case analysis
for additive kernels, the subproblem optimization is still very challenging for large-scale
problems because of two reasons. Firstly, storing the kernel matrices takes O(n2) space
complexity, which is unbearable when n is very large. Secondly, solving the MKL problem
with many training points is still computationally expensive. To address these issues, we
propose to a group of approximated features, such as the random features (Vedaldi and
Zisserman, 2010) and the HIK expanded features (Wu, 2012), to approximate a base kernel.
As a result, the MKL problem is reduced to the group feature selection problem. There-
fore, it is scalable to big data by avoiding the storage the base kernel matrices. Moreover,
the subproblem optimization can be more efficiently solved in the primal form.
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6.2 Worst-Case Analysis for Ultrahigh Dimensional Big Data

Ultrahigh dimensional big data widely exist in many application contexts. Particularly, in
the nonlinear classification tasks with explicit nonlinear feature mappings, the dimension-
ality of the feature space can be ultrahigh. If the explicit feature mapping is available, the
nontrivial nonlinear feature selection task can be cast as a linear feature selection problem
in the high-dimensional feature space.

Taking the polynomial kernel k(xi,xj) = (γx′ixj +r)υ for example, the dimension of the
feature mapping exponentially increases with υ (Chang et al., 2010), where υ is referred to
as the degree. When υ = 2, the 2-degree explicit feature mapping can be expressed as

φ(x) = [r,
√

2γrx1, ...,
√

2γrxm, γx
2
1, ..., γx

2
m,
√

2γx1x2, ...,
√

2γxm−1xm].

The second-order feature mapping can capture the feature pair dependencies, thus it has
been widely applied in many applications such as text mining and natural language pro-
cessing (Chang et al., 2010). Unfortunately, the dimensionality of the feature space is
(m + 2)(m + 1)/2 and can be ultrahigh for a median m. For example, if m = 106, the di-
mensionality of the feature space is O(1012), and around 1 TB memory is required to store
the weight vector w. As a result, most of the existing methods are not applicable (Chang
et al., 2010). Fortunately, this computational bottleneck can be effectively avoided by FGM
since only tB features are required to be stored in the main memory. For convenience, we
store the indices and scores of the selected tB features in a structured array cB.

Algorithm 5 Incremental Implementation of Algorithm 2 for Ultrahigh Dimensional Data.

Given α, B, number of data groups k, feature mapping φ(x) and a structured array cB.
1: Split X into k subgroups X = [X1, ...,Xk].
2: For j = 1, ..., k.

Calculate the feature score s w.r.t. Xj according to φ(xi).
Sort s and update cB.
For i = j + 1, ..., k. (Optional)

Calculate the cross feature score s w.r.t. Xj and Xi.
Sort s and update cB.

End
End

3: Return cB.

For ultrahigh dimensional big data, it can be too huge to be loaded into the main
memory, thus the worst-case analysis is still very challenging to be addressed. Motivated
by the incremental worst-case analysis for complex group feature selection in Section 4.3,
we propose to address the big data challenge in an incremental manner. The general scheme
for the incremental implementation is presented in Algorithm 5. Particularly, we partition
X into k small data subset of lower dimensionality as X = [X1, ...,Xk]. For each small
data subset, we can load it into memory and calculate the feature scores of the features. In
Algorithm 5, the inner loop w.r.t. the iteration index i is only used for the second-order
feature selection, where the calculation of feature score for the cross-features is required.
For instance, in the nonlinear feature selection using the 2-degree polynomial mapping, we
need to calculate the feature score of xixj .
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7. Connections to Related Studies

In this section, we discuss the connections of proposed methods with related studies, such as
the `1-regularization (Jenatton et al., 2011a), active set methods (Roth and Fischer, 2008;
Bach, 2009), SimpleMKL (Rakotomamonjy et al., 2008), `q-MKL (Kloft et al., 2009, 2011;
Kloft and Blanchard, 2012), infinite kernel learning (IKL) (Gehler and Nowozin, 2008),
SMO-MKL (Vishwanathan et al., 2010), and so on.

7.1 Relation to `1-regularization

Recall that the `1-norm of a vector w can be expressed as a variational form (Jenatton
et al., 2011a):

‖w‖1 =

m∑
j=1

|wj | =
1

2
min
d�0

m∑
j=1

w2
j

dj
+ dj . (30)

It is not difficult to verify that, d∗j = |wj | holds at the optimum, which indicates that the
scale of d∗j is proportional to |wj |. Therefore, it is meaningless to impose an additional
`1-constraint ||d||1 ≤ B or ||w||1 ≤ B in (30) since both d and w are scale-sensitive. As
a result, it is not so easy for the `1-norm methods to control the number of features to be
selected as FGM does. On the contrary, in AFS, we bound d ∈ [0, 1]m.

To demonstrate the connections of AFS to the `1-norm regularization, we need to make
some transformations. Let ŵj = wj

√
dj and ŵ = [ŵ1, ..., ŵm]′, the variational form of the

problem (5) can be equivalently written as

min
d∈D

min
ŵ,ξ,b

1

2

m∑
j=1

ŵ2
j

dj
+
C

2

n∑
i=1

ξ2
i

s.t. yi(ŵ
′xi − b) ≥ 1− ξi, i = 1, · · · , n.

For simplicity, hereby we drop the hat from ŵ and define a new regularizer ‖w‖2B as

‖w‖2B = min
d�0

m∑
j=1

w2
j

dj
, s.t. ||d||1 ≤ B, d ∈ [0, 1]m. (31)

This new regularizer has the following properties.

Proposition 3 Given a vector w ∈ Rm with ‖w‖0 = κ > 0, where κ denotes the number
of nonzero entries in w. Let d∗ be the minimizer of (31), we have: (I) d∗j = 0 if |wj | = 0.

(II) If κ ≤ B, then d∗j = 1 for |wj | > 0; else if ‖w‖1
max{|wj |} ≥ B and κ > B, then we have

|wj |
d∗j

= ‖w‖1
B for all |wj | > 0. (III) If κ ≤ B, then ‖w‖B = ‖w‖2; else if ‖w‖1

max{|wj |} ≥ B and

κ > B, ‖w‖B = ‖w‖1√
B

.

The proof can be found in Appendix D.

According to Proposition 3, if B < κ, ‖w‖B is equivalent to the `1-norm regularizer.
However, no matter how large the magnitude of |wj | is, dj in ‖w‖2B is always upper bounded
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by 1, which lead to two advantages of ‖w‖2B over the `1-norm regularizer. Firstly, by using
‖w‖2B, the sparsity and the over-fitting problem can be controlled separately by FGM.
Specifically, one can choose a proper C to reduce the feature selection bias, and a proper
stopping tolerance εc in (27) or a proper parameter B to adjust the number of features
to be selected. Conversely, in the `1-norm regularized problems, the number of features
is determined by the regularization parameter C, but the solution bias may happen if we
intend to select a small number of features with a small C. Secondly, by transforming the
resultant optimization problem into an SIP problem, a feature generating paradigm has been
developed. By iteratively infer the most informative features, this scheme is particularly
suitable for dealing with ultrahigh dimensional big data that are infeasible for the existing
`1-norm methods, as shown in Section 6.2.

Proposition 3 can be easily extended to the group feature selection cases and multiple
kernel learning cases. For instance, given a w ∈ Rm with p groups {G1, ...,Gp}, we have∑p

j=1 ||wGj ||2 = ‖v‖1, where v = [||wG1 ||, ..., ||wGp ||]′ ∈ Rp. Therefore, the above two
advantages are also applicable to FGM for group feature selection and multiple kernel
learning.

7.2 Connection to Existing AFS Schemes

The proposed AFS scheme is very different from the existing AFS schemes (e.g., Weston et
al., 2000; Chapelle et al., 2002; Grandvalet and Canu, 2002; Rakotomamonjy, 2003; Varma
and Babu, 2009; Vishwanathan et al., 2010). In existing works, the scaling vector d � 0 d
is not upper bounded. For instance, in the SMO-MKL method (Vishwanathan et al., 2010),
the AFS problem is reformulated as the following problem:

min
d�0

max
α∈A

1′α− 1

2

p∑
j=1

dj(α� y)′Kj(α� y) +
λ

2
(
∑
j

dqj)
2
q ,

where A = {α|0 � α � C1,y′α = 0} and Kj denote a sub-kernel. When 0 ≤ q ≤ 1, it
induces sparse solutions, but results in non-convex optimization problems. Moreover, the
sparsity of the solution is still determined by the regularization parameter λ. Consequently,
the solution bias inevitably exists in the SMO-MKL formulation.

A more related work is the `1-MKL (Bach et al., 2004; Sonnenburg et al., 2006) or the
SimpleMKL problem (Rakotomamonjy et al., 2008), which tries to learn a linear combina-
tion of kernels. The variational regularizer of SimpleMKL can be written as:

min
d�0

p∑
j=1

||wj ||2

dj
, s.t. ||d||1 ≤ 1,

where p denotes the number of kernels and wj represents the parameter vector of the
jth kernel in the context of MKL (Kloft et al., 2009, 2011; Kloft and Blanchard, 2012).
Correspondingly, the regularizer ||w||2B regarding kernels can be expressed as:

min
d�0

p∑
j=1

||wj ||2

dj
, s.t. ||d||1 ≤ B, d ∈ [0, 1]p. (32)
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To illustrate the difference between (32) and the `1-MKL, we divide the two constraints in
(32) by B, and obtain

p∑
j=1

dj
B
≤ 1, 0 ≤ dj

B
≤ 1

B
,∀j ∈ {1, ..., p}.

Clearly, the box constraint
dj
B ≤

1
B makes (32) different from the variational regularizer in `1-

MKL. Actually, the `1-norm MKL is only a special case of ||w||2B when B = 1. Moreover, by
extending Proposition 3, we can obtain that if B > κ, we have ||w||2B =

∑p
j=1 ||wj ||2, which

becomes a non-sparse regularizer. Another similar work is the `q-MKL, which generalizes
the `1-MKL to `q-norm (q > 1) (Kloft et al., 2009, 2011; Kloft and Blanchard, 2012).
Specifically, the variational regularizer of `q-MKL can be written as

min
d�0

p∑
j=1

||wj ||2

dj
, s.t. ||d||2q ≤ 1.

We can see that, the box constraint 0 ≤ dj
B ≤

1
B ,∀j ∈ {1, ..., p} is missing in the `q-MKL.

However, when q > 1, the `q-MKL cannot induce sparse solutions, and thus cannot discard
non-important kernels or features. Therefore, the underlying assumption for `q-MKL is that,
most of the kernels are relevant for the classification tasks. Finally, it is worth mentioning
that, when doing multiple kernel learning, both `1-MKL and `q-MKL require to compute
and involve all the base kernels. Consequently the computational cost is unbearable for
large-scale problems with many kernels.

An infinite kernel learning method is introduced to deal with infinite number of ker-
nels (p = ∞) (Gehler and Nowozin, 2008). Specifically, IKL adopts the `1-MKL formu-
lation (Bach et al., 2004; Sonnenburg et al., 2006), thus it can be considered as a special
case of FGM when setting B = 1. Due to the infinite number of possible constraints, IKL
also adopts the cutting plane algorithm to address the resultant problem. However, it can
only include one kernel per iteration; while FGM can include B kernels per iteration. In
this sense, IKL is also analogous to the active set methods (Roth and Fischer, 2008; Bach,
2009). For both methods, the worst-case analysis for large-scale problems usually domi-
nates the overall training complexity. For FGM, since it is able to include B kernels per
iteration, it obviously reduces the number of worst-case analysis steps, and thus has great
computational advantages over IKL. Finally, it is worth mentioning that, based on the IKL
formulation, it is non-trivial for IKL to include B kernels per iteration.

7.3 Connection to Multiple Kernel Learning

In FGM, each subproblem is formulated as a SimpleMKL problem (Rakotomamonjy et al.,
2008), and any SimpleMKL solver can be used to solve it. For instance, an approximate solu-
tion can be also efficiently obtained by a sequential minimization optimization (SMO) (Bach
et al., 2004; Vishwanathan et al., 2010). Sonnenburg et al. (2006) proposed a semi-infinite
linear programming formulation for MKL which allows MKL to be iteratively solved with
SVM solver and linear programming. Xu et al. (2009b) proposed an extended level method
to improve the convergence of MKL. More recently, an online ultra-fast MKL algorithm,
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called as the UFO-MKL, was proposed by Orabona and Jie (2011). However, its O(1/ε)
convergence rate is only guaranteed when a strongly convex regularizer Ω(w) is added to
the objective. Without the strongly convex regularizer, its convergence is unclear.

In summary, FGM is different from MKL in several aspects. At first, FGM iteratively
includes B new kernels through the worst-case analysis. Particularly, these B kernels will
be formed as a base kernel for the MKL subproblem of FGM. From the kernel learning
view, FGM provides a new way to construct base kernels. Secondly, since FGM tends to
select a subset of kernels, it is especially suitable for MKL with many kernels. Thirdly, to
scale MKL to big data, we propose to use the approximated features (or explicit feature
mappings) for kernels. As a result, the MKL problem is reduced to a group feature selection
problem, and we can solve the subproblem in its primal form.

7.4 Connection to Active Set Methods

Active set methods have been widely applied to address the challenges of large number of
features or kernels (Roth and Fischer, 2008; Bach, 2009). Basically, active set methods
iteratively include a variable that violates the optimality condition of the sparsity-induced
problems. In this sense, active methods can be considered as a special case of FGM with
B = 1. However, FGM is different from active set methods. Firstly, their motivations
are different: active set methods start from the Lagrangian duality of the sparsity-induced
problems; while FGM starts from the proposed AFS scheme, solves an SIP problem. Sec-
ondly, active set methods only include one active feature/group/kernel at each iteration.
Regarding this algorithm, when the desired number of kernels or groups becomes relatively
large, active set methods will be very computationally expensive. On the contrary, FGM
allows to add B new features/groups/kernels per iteration, which can greatly improve the
training efficiency by reducing the number of worst-case analysis. Thirdly, a sequence of
`22,1-regularized non-smooth problems are solved in FGM, which is very different from the
active set methods. Finally, the de-biasing of solutions is not investigated in the active set
methods (Bach, 2009; Roth and Fischer, 2008).

8. Experiments

We compare the performance of FGM with several state-of-the-art baseline methods on
three learning tasks, namely the linear feature selection, the ultrahigh dimensional nonlinear
feature selection and the group feature selection.4

The experiments are organized as follows. Firstly, in Section 8.1, we present the general
experimental settings. After that in Section 8.2, we conduct synthetic experiments to study
the performance of FGM on the linear feature selection. Moreover, in Section 8.3, we study

4. In the experiments, some aforementioned methods, such as NMMKL, QCQP-SSVM and SVM-RFE, are
not included for comparison due to the high computational cost for the optimization or sub-optimality
for the feature selection. Interested readers can refer to (Tan et al., 2010) for the detailed comparisons.
We also do not include the `q-MKL (Kloft et al., 2009, 2011; Kloft and Blanchard, 2012) for comparison
since it cannot induce sparse solutions. Instead, we include an `q-variant, i.e., UFO-MKL (Orabona
and Jie, 2011), for comparison. Finally, since IKL is a special case of FGM with B = 1, we study its
performance through FGM with B = 1 instead. Since it is analogous to the active set methods, its
performance can be also observed from the results of active set method.
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the performance of FGM with the shift of hyperplane. In Section 8.4, we conduct real-world
experiments on linear feature selection. In Section 8.5, we conduct ultrahigh dimensional
nonlinear feature selection experiments with polynomial feature mappings. Finally, we
demonstrate the efficacy of FGM on the group feature selection in Section 8.6.

8.1 Data Sets and General Experimental Settings

Several large-scale and high dimensional real-world data sets are used to verify the per-
formance of different methods. General information of these data sets, such as the aver-
age nonzero features per instance, is listed in Table 1.5 Among them, epsilon, Arxiv
astro-ph, rcv1.binary and kddb data sets have been split into training set and testing
set. For real-sim, aut-avn and news20.binary, we randomly split them into training
and testing sets, as shown in Table 1.

Data set m ntrain ntest
# nonzeros Parameter Range
per instance l1-SVM (C) l1-LR(C) SGD-SLR(λ1)

epsilon 2,000 400,000 100,000 2,000 [5e-4, 1e-2] [2e-3, 1e-1] [1e-4, 8e-3]

aut-avn 20,707 40,000 22,581 50 – – –

real-sim 20,958 32,309 40,000 52 [5e-3, 3e-1] [5e-3, 6e-2] [1e-4, 8e-3]

rcv1 47,236 677,399 20,242 74 [1e-4, 4e-3] [5e-5, 2e-3] [1e-4, 8e-3]

astro-ph 99,757 62,369 32,487 77 [5e-3, 6e-2] [2e-2, 3e-1] [1e-4, 8e-3]

news20 1,355,191 9,996 10,000 359 [5e-3, 3e-1] [5e-2, 2e1] [1e-4, 8e-3]

kddb 29,890,095 19,264,097 748,401 29 [5e-6, 3e-4] [3e-6, 1e-4] [1e-4, 8e-3]

Table 1: Statistics of the data sets used in the experiments. Parameter Range lists the
ranges of the parameters for various `1-methods to select different number of fea-
tures. The data sets rcv1 and aut-avn will be used in group feature selection
tasks.

On the linear feature selection task, comparisons are conducted between FGM and
the `1-regularized methods, including `1-SVM and `1-LR. For FGM, we study FGM with
SimpleMKL solver (denoted by MKL-FGM)6 (Tan et al., 2010), FGM with APG method
for the squared hinge loss (denoted by PROX-FGM) and the logistic loss (denoted by
PROX-SLR), respectively.

Many efficient batch training algorithms have been developed to solve `1-SVM and `1-
LR, such as the interior point method, fast iterative shrinkage-threshold algorithm (FISTA),
block coordinate descent (BCD), Lassplore method (Liu and Ye, 2010), generalized linear
model with elastic net (GLMNET) and so on (Yuan et al., 2010, 2011). Among them, LIB-
Linear, which adopts the coordinate descent to solve the non-smooth optimization problem,
has demonstrated state-of-the-art performance in terms of training efficiency (Yuan et al.,

5. Among these data sets, epsilon, real-sim, rcv1.binary, news20.binary and kddb can be
downloaded at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/, aut-avn can
be downloaded at http://vikas.sindhwani.org/svmlin.html and Arxiv astro-ph is from
Joachims (2006).

6. For the fair comparison, we adopt the LIBLinear (e.g., CD-SVM) as the SVM solver in SimpleMKL
when performing linear feature selections. The source codes of MKL-FGM are available at http:
//www.tanmingkui.com/fgm.html.
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2010). In LIBLinear, by taking the advantages of data sparsity, it achieves very fast con-
vergence speed for sparse data sets (Yuan et al., 2010, 2011). In this sense, we include the
LIBLinear solver for comparison7. Besides, we take the standard SVM and LR classifier of
LIBLinear with all features as the baselines, denoted by CD-SVM and CD-LR, respectively.
We use the default stopping criteria of LIBLinear for `1-SVM, `1-LR, CD-SVM and CD-LR.

SGD methods have gained great attention for solving large-scale problems (Langford
et al., 2009; Shalev-Shwartz and Zhang, 2013). In this experiment, we include the proxi-
mal stochastic dual coordinate ascent with logistic loss for comparison (which is denoted
by SGD-SLR). SGD-SLR has shown the state-of-the-art performance among various SGD
methods (Shalev-Shwartz and Zhang, 2013).8 In SGD-SLR, there are three important pa-
rameters, namely λ1 to penalize ||w||1, λ2 to penalize ||w||22, and the stopping criterion
min.dgap. Suggested by the package, in the following experiment, we fix λ2 = 1e-4 and
min.dgap=1e-5, and change λ1 to obtain different levels of sparsity. All the methods are
implemented in C++.

On group feature selection tasks, we compare FGM with four recently developed group
lasso solvers: FISTA (Liu and Ye, 2010; Jenatton et al., 2011b; Bach et al., 2011), block
coordinate descent method (denoted by BCD) (Qin et al., 2010), active set method (denoted
by ACTIVE) (Bach, 2009; Roth and Fischer, 2008) and UFO-MKL (Orabona and Jie, 2011).
Among them, FISTA has been thoroughly studied by several researchers (Liu and Ye, 2010;
Jenatton et al., 2011b; Bach et al., 2011), and we adopt the implementation of SLEP
package9, where an improved line search is used (Liu and Ye, 2010). We implement the
block coordinate descent method proposed by Qin et al. (2010), where each subproblem is
formulated as a trust-region problem and solved by a Newton’s root-finding method (Qin
et al., 2010). For UFO-MKL, it is an online optimization method,10 and we stop the training
after 20 epochs. Finally, we implement ACTIVE method based on the SLEP solver. All
the methods for group feature selection are implemented in MATLAB for fair comparison.

All the comparisons are performed on a 2.27GHZ Intel(R)Core(TM) 4 DUO CPU run-
ning windows sever 2003 with 24.0GB main memory.

8.2 Synthetic Experiments on Linear Feature Selection

In this section, we compare the performance of different methods on two toy data sets of
different scales, namely X ∈ R4,096×4,096 and X ∈ R8,192×65,536. Here each X is a Gaussian
random matrix with each entry sampled from the i.i.d. Gaussian distribution N (0, 1). To
produce the output y, we first generate a sparse vector w with 300 nonzero entries, with
each nonzero entry sampled from the i.i.d. Uniform distribution U(0, 1). After that, we
produce the output by y = sign(Xw). Since only the nonzero wi contributes to the output
y, we consider the corresponding feature as a relevant feature regarding y. Similarly, we
generate the testing data set Xtest with output labels ytest = sign(Xtestw). The number of
testing points for both cases is set to 4,096.

7. Sources are available at http://www.csie.ntu.edu.tw/˜cjlin/liblinear/.
8. Sources are available at http://stat.rutgers.edu/home/tzhang/software.html.
9. Sources are available at http://www.public.asu.edu/˜jye02/Software/SLEP/index.htm.

10. Sources are available at http://dogma.sourceforge.net/.
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Figure 1: Convergence of Inexact FGM and Exact FGM on the synthetic data set.

8.2.1 Convergence Comparison of Exact and Inexact FGM

In this experiment, we study the convergence of the Exact and Inexact FGM on the small
scale data set. To study the Exact FGM, for simplicity, we set the stopping tolerance
εin = 1.0 × 10−6 in equation (28) for APG algorithm; while for Inexact FGM, we set
εin = 1.0×10−3. We set C = 10 and test different B’s from {10, 30, 50}. In this experiment,
only the squared hinge loss is studied. In Figure 1(a), we report the relative objective
values w.r.t. all the APG iterations for both methods; In Figure 1(b), we report the
relative objective values w.r.t. the outer iterations. We have the following observations
from Figures 1(a) and 1(b).

Firstly, from Figure 1(a), for each comparison method, the function value sharply de-
creases at some iterations, where an active constraint is added. For the Exact FGM, it
requires more APG iterations under the tolerance εin = 1.0× 10−6, but the function value
does not show significant decrease after several APG iterations. On the contrary, from
Figure 1(a), the Inexact FGM, which uses a relatively larger tolerance εin = 1.0 × 10−3,
requires much fewer APG iterations to achieve the similar objective values to Exact FGM
under the same parameter B. Particularly, from Figure 1(b), the Inexact FGM achieves
the similar objective values to Exact FGM after each outer iteration. According to these
observations, on one hand, εin should be small enough such that the subproblem can be
sufficiently optimized. On the other hand, a relatively large tolerance (e.g. εin = 1.0×10−3)
can greatly accelerate the convergence speed without degrading the performance.

Moreover, according to Figure 1(b), PROX-FGM with a large B in general converges
faster than that with a small B. Generally speaking, by using a large B, less number of
outer iterations and worst-case analysis are required, which is critical when dealing with
big data. However, if B is too large, some non-informative features may be mistakenly
included, and the solution may not be exactly sparse.

8.2.2 Experiments on Small-Scale Synthetic Dataset

In this experiment, we evaluate the performance of different methods in terms of testing ac-
curacies w.r.t. different number of selected features. Specifically, to obtain sparse solutions
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of different sparsities, we vary C ∈ [0.001, 0.007] for l1-SVM, C ∈ [5e-3, 4e-2] for l1-LR and
λ1 ∈ [7.2e-4, 2.5e-3] for SGD-SLR.11 On contrary to these methods, we fix C = 10 and
choose even numbers in {2, 4, ..., 60} for B to obtain different number of features. It can
be seen that, it is much easier for FGM to control the number of features to be selected.
Specifically, the testing accuracies and the number of recovered ground-truth features w.r.t.
the number of selected features are reported in Figure 2(a) and Figure 2(b), respectively.
The training time of different methods is listed in Figure 2(d).
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Figure 2: Experimental results on the small data set, where CD-SVM and CD-LR denote
the results of standard SVM and LR with all features, respectively. The training
time of MKL-FGM is about 1,500 seconds, which is up to 1,000 times slower than
APG solver. We did not report it in the figures due to presentation issues.

For convenience of presentation, let ms and mg be the number of selected features and
the number of ground-truth features, respectively. From Figure 2(a) and Figure 2(b), FGM

11. Here, we carefully choose C or λ1 for these three `1-methods such that the numbers of selected features
uniformly spread over the range [0, 600]. Since the values of C and λ1 change a lot for different problems,
hereafter we only give their ranges. Under this experimental setting, the results of `1-methods cannot
be further improved through parameter tunings.
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based methods demonstrate better testing accuracy than all `1-methods when ms > 100.
Correspondingly, from Figure 2(b), under the same number of selected features, FGM based
methods include more ground-truth features than `1-methods whenms≥100. For SGD-SLR,
it shows the worst testing accuracy among the comparison methods, and also recovers the
least number of ground-truth features.

One of the possible reasons for the inferior performance of the `1-methods, as men-
tioned in the Introduction section, is the solution bias brought by the `1-regularization.
To demonstrate this, we do re-training to reduce the bias using CD-SVM with C = 20
with the selected features, and then do the prediction using the de-biased models. The re-
sults are reported in Figure 2(c), where l1-SVM-debias and PROX-FGM-debias denote the
de-biased counterparts for l1-SVM and PROX-FGM, respectively. In general, if there was
no feature selection bias, both FGM and l1-SVM should have the similar testing accuracy
to their de-biased counterparts. However, from Figure 2(c), l1-SVM-debias in general has
much better testing accuracy than l1-SVM; while PROX-FGM has similar or even better
testing accuracy than PROX-FGM-debias and l1-SVM-debias. These observations indicate
that: 1) the solution bias indeed exists in the `1-methods and affects the feature selection
performance; 2) FGM can reduce the feature selection bias.

From Figure 2(d), on this small-scale data set, PROX-FGM and PROX-SLR achieve
comparable efficiency with the LIBlinear solver. On the contrary, SGD-SLR, which is a
typical stochastic gradient method, spends the longest training time. This observation
indicates that SGD-SLR method may not be suitable for small-scale problems. Finally, as
reported in the caption of Figure 2(d), PROX-FGM and PROX-SLR are up to 1,000 times
faster than MKL-FGM using SimpleMKl solver. The reason is that, SimpleMKl uses the
subgradient methods to address the non-smooth optimization problem with n variables;
While in PROX-FGM and PROX-SLR, the subproblem is solved in the primal problem
w.r.t. a small number of selected variables.

Finally, from Figure 2, if the number of selected features is small (ms < 100), the testing
accuracy is worse than CD-SVM and CD-LR with all features. However, if sufficient number
(ms > 200) of features are selected, the testing accuracy is much better than CD-SVM and
CD-LR with all features, which verifies the importance of the feature selection.

8.2.3 Experiments on Large-scale Synthetic Dataset

To demonstrate the scalability of FGM, we conduct an experiment on a large-scale synthetic
data set, namely X ∈ R8,192×65,536. Here, we do not include the comparisons with MKL-
FGM due to its high computational cost. For PROX-FGM and PROX-SLR, we follow
their experimental settings above. For l1-SVM and l1-LR, we vary C ∈ [0.001, 0.004] and
C ∈ [0.005, 0.015] to determine the number of features to be selected, respectively. The
testing accuracy, the number of recovered ground-truth features, the de-biased results and
the training time of the compared methods are reported in Figure 3(a), 3(b), 3(c) and 3(d),
respectively.

From Figure 3(a) and 3(b) and 3(c), both PROX-FGM and PROX-SLR outperform
l1-SVM, l1-LR and SGD-SLR in terms of both testing accuracy and the number of recov-
ered ground-truth features. From Figure 3(d), PROX-FGM and PROX-SLR show better
training efficiency than the coordinate based methods (namely, LIBlinear) and the SGD
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Figure 3: Performance comparison on the large-scale synthetic data set.

based method (namely SGD-SLR). Basically, FGM solves a sequence of small optimization
problems of O(ntB) cost, and spends only a small number of iterations to do the worst-case
analysis of O(mn) cost. On the contrary, the `1-methods may take many iterations to con-
verge, and each iteration takes O(mn) cost. On this large-scale data set, SGD-SLR shows
faster training speed than LIBlinear, but it has much inferior testing accuracy over other
methods.

In LIBlinear, the efficiency has been improved by taking the advantage of the data
sparsity. Considering this, we investigate the sensitivity of the referred methods to the data
density. To this end, we generate data sets of different data densities by sampling the entries
from X8,192×65,656 with different data densities in {0.08, 0.1, 0.3, 0.5, 0.8, 1}, and study the
influence of the data density on different learning algorithms. For FGM, only the logistic
loss is studied (e.g. PROX-SLR). We use the default experimental settings for PROX-SLR,
and watchfully vary C ∈ [0.008, 5] for l1-LR and λ1 ∈ [9.0e-4, 3e-3] for SGD-SLR. For the
sake of brevity, we only report the best accuracy obtained over all parameters, and the
corresponding training time of l1-LR, SGD-SLR and PROX-SLR in Figure 4.

From Figure 4(a), under different data densities, PROX-SLR always outperforms l1-
SVM and SGD-SLR in terms of the best accuracy. From Figure 4(b), l1-SVM shows
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Figure 4: Performance comparison on the synthetic data set (n = 8, 192, m = 65, 536) with
different data densities in {0.08, 0.1, 0.3, 0.5, 0.8, 1}.
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Figure 5: Relative objective values regarding each APG iteration, where b = 4 in the caption
of Figure 5(a) denotes the ground-truth shift of the hyperplane from the origin.

comparable efficiency with PROX-SLR on data sets of low data density. However, on
relative denser data sets, PROX-SLR is much more efficient than l1-SVM, which indicates
that FGM has a better scalability than l1-SVM on dense data.
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Figure 6: Testing accuracy of different methods on the three data data sets.
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8.3 Feature Selection with Shift of Hyperplane

In this section, we study the effectiveness of the shift version of FGM (denoted by FGM-
SHIFT) on a synthetic data set and two real-world data sets, namely real-sim and
astro-ph. We follow the data generation in Section 7.1 to generate the synthetic data
set except that we include a shift term b for the hyperplane when generating the output
y. Specifically, we produce y by y = sign(Xw − b1), where b = 4. The shift version of
`1-SVM by LIBlinear (denoted by l1-SVM-SHIFT) is adopted as the baseline. In Figure 5,
we report the relative objective values of FGM and FGM-SHIFT w.r.t. the APG iterations
on three data sets. In Figure 6, we report the testing accuracy versus different number of
selected features.

From Figure 5, FGM-SHIFT indeed achieves much lower objective values than FGM
on the synthetic data set and astro-ph data set, which demonstrates the effectiveness of
FGM-SHIFT. On the real-sim data set, FGM and FGM-SHIFT achieve similar objective
values, which indicates that the shift term on real-sim is not significant. As a result,
FGM-SHIFT may not significantly improve the testing accuracy.

From Figure 6, on the synthetic data set and astro-ph data set, FGM-SHIFT shows
significant better testing accuracy than the baseline methods, which coincides with the
better objective values of FGM-SHIFT in Figure 5. l1-SVM-SHIFT also shows better
testing accuracy than l1-SVM, which verifies the importance of shift consideration for l1-
SVM. However, on the real-sim data set, the methods with shift show similar or even
inferior performances over the methods without shift consideration, which indicates that
the shift of the hyperplane from the origin is not significant on the real-sim data set.
Finally, FGM and FGM-SHIFT are always better than the counterparts of l1-SVM.

8.4 Performance Comparison on Real-World Data Sets

In this section, we conduct three experiments to compare the performance of FGM with
the referred baseline methods on real-world data sets. In Section 8.4.1, we compare the
performance of different methods on six real-world data sets. In Section 8.4.2, we study
the feature selection bias issue. Finally, in Section 8.4.3, we conduct the sensitivity study
of parameters for FGM.

8.4.1 Experimental Results on Real-World Data Sets

On real-world data sets, the number of ground-truth features is unknown. We only report
the testing accuracy versus different number of selected features. For FGM, we fix C = 10,
and vary B ∈ {2, 4, ..., 60} to select different number of features. For the `1-methods, we
watchfully vary the regularization parameter to select different number of features. The
ranges of C and λ1 for `1-methods are listed in Table 1.

The testing accuracy and training time of different methods against the number of
selected features are reported in Figure 7 and Figure 8, respectively. From Figure 7, on all
data sets, FGM (including PROX-FGM, PROX-SLR and MKL-FGM) obtains comparable
or better performance than the `1-methods in terms of testing accuracy within 300 features.
Particularly, FGM shows much better testing accuracy than `1-methods on five of the
studied data sets, namely epsilon, real-sim, rcv1.binary, Arxiv astro-ph and
news20.
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Figure 7: Testing accuracy on various data sets.

From Figure 8, PROX-FGM and PROX-SLR show competitive training efficiency with
the `1-methods. Particularly, on the large-scale dense epsilon data set, PROX-FGM and
PROX-SLR are much efficient than the LIBlinear `1-solvers. For SGD-SLR, although it
demonstrates comparable training efficiency with PROX-FGM and PROX-SLR, it attains
much worse testing accuracy. In summary, FGM based methods in general obtain better
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Figure 8: Training time on various data sets.
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Figure 9: De-biased results on real-world data sets.

feature subsets with competitive training efficiency with the considered baselines on real-
world data sets.

8.4.2 De-biasing Effect of FGM

In this experiment, we demonstrate the de-biasing effect of FGM on three real-world data
sets, namely epsilon, real-sim and rcv1. Here, only the squared hinge loss (namely
PFOX-FGM) is studied. The de-biased results are reported in Figure 9, where PROX-
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FGM-debias and l1-SVM-debias denote the de-biased results of PROX-FGM and l1-SVM,
respectively.

From Figure 9, l1-SVM-debias shows much better results than l1-SVM, indicating that
the feature selection bias issue exists in l1-SVM on these real-world data sets. On the
contrary, PROX-FGM achieves close or even better results compared with its de-biased
counterparts, which verifies that PROX-FGM itself can reduce the feature selection bias.
Moreover, on these data sets, FGM shows better testing accuracy than the de-biased l1-
SVM, namely l1-SVM-debias, which indicates that the features selected by FGM are more
relevant than those obtained by l1-SVM due to the reduction of feature selection bias.

8.4.3 Sensitivity Study of Parameters

In this section, we conduct the sensitivity study of parameters for PROX-FGM. There are
two parameters in FGM, namely the sparsity parameter B and the regularization parameter
C. In this experiments, we study the sensitivity of these two parameters on real-sim and
astro-ph data sets. l1-SVM is adopted as the baseline.

In the first experiment, we study the sensitivity of C. FGM with suitable C can reduce
the feature selection bias. However, C is too large, the over-fitting problem may happen.
To demonstrate this, we test C ∈ {0.5, 5, 50, 500}. The testing accuracy of FGM under
different C’s is reported in Figure 10. From Figure 10, the testing accuracy with small a C
in general is worse than that with a large C. The reason is that, when C is small, feature
selection bias may happen due to the under-fitting problem. However, when C is sufficient
large, increasing C may not necessarily improve the performance. More critically, if C is
too large, the over-fitting problem may happen. For example, on the astro-ph data set,
FGM with C = 500 in general performs much worse than FGM with C = 5 and C = 50.
Another important observation is that, on both data sets, FGM with different C’s generally
performs better than the l1-SVM.
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Figure 10: Sensitivity of the parameter C for FGM on real-sim and astro-ph data
sets.

Recall that, a large C may lead to slower convergence speed due to the increasing
of the Lipschitz constant of F (ω, b). In practice, we suggest choosing C in the range of
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[1, 100]. In Section 8.4, we have set C = 10 for all data sets. Under this setting, FGM has
demonstrated superb performance over the competing methods. On the contrary, choosing
the regularization parameter for `1-methods is more difficult. In other words, FGM is more
convenient to do model selections.
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Figure 11: Sensitivity of the parameter B for FGM on astro-ph data set, where FGM is
stopped once (F (ωt−1, b)− F (ωt, b))/F (ω0, b) ≤ εc.

In the second experiment, we study the sensitivity of parameter B for FGM under two
stopping conditions: (1) the condition (F (ωt−1, b)−F (ωt, b))/F (ω0, b) ≤ εc is achieved; (2)
a maximum T iterations is achieved, where T = 10. Here, we test two values of εc, namely
εc = 0.005 and εc = 0.001. The number of selected features, the testing accuracy and the
training time versus different B are reported in Figure 11(a), 11(b) and 11(c), respectively.

In Figure 11(a), given the number of selected feature # features, the number of required
iterations is about d# features

B e under the first stopping criterion. In this sense, FGM with
εc = 0.001 takes more than 10 iterations to terminate, thus will choose more features. As a
result, it needs more time for the optimization with the same B, as shown in Figure 11(c).
On the contrary, FGM with εc = 0.005 requires fewer number of iterations (smaller than 10
when B > 20). Surprisingly, as shown in Figure 11(b), FGM with fewer iterations (where
εc = 0.005 or T = 10) obtain similar testing accuracy with FGM using εc = 0.001, but has
much better training efficiency. This observation indicates that, we can set a small number
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outer iterations (for example 5 ≤ T ≤ 20) to trade-off the training efficiency and the feature
selection performance.
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Figure 12: Sensitivity of the parameter B for FGM on astro-ph data set. Given a pa-
rameter B, we stop FGM once 400 features are selected.

In the third experiment, we study the influence of the parameter B on the performance
of FGM on the astro-ph data set. For convenience of comparison, we stop FGM once
400 features are selected w.r.t. different B’s.

The training time and testing accuracy w.r.t. different B’s are shown in Figure 12(a)
and 12(b), respectively. From Figure 12(a), choosing a large B in general leads to better
training efficiency. Particularly, FGM with B = 40 is about 200 times faster than FGM
with B = 2. Recall that, active set methods can be considered as special cases of FGM
with B = 1 (Roth and Fischer, 2008; Bach, 2009). Accordingly, we can conclude that, FGM
with a properly selected B can be much faster than active set methods. However, it should
be pointed that, if B is too large, the performance may degrade. For instance, if we choose
B = 400, the testing accuracy dramatically degrades, which indicates that the selected 400
features are not the optimal ones. In summary, choosing a suitable B (e.g. B ≤ 100) can
much improve the efficiency while maintaining promising generalization performance.

8.5 Ultrahigh Dimensional Feature Selection via Nonlinear Feature Mapping

In this experiment, we compare the efficiency of FGM and `1-SVM on nonlinear feature
selections using polynomial feature mappings on two medium dimensional data sets and
a high dimensional data set. The comparison methods are denoted by PROX-PFGM,
PROX-PSLR and l1-PSVM, respectively.12 The details of the studied data sets are shown
in Table 2, where mPoly denotes the dimension of the polynomial mappings and γ is the
polynomial kernel parameter used in this experiment. The mnist38 data set consists of
the digital images of 3 and 8 from the mnist data set.13 For the kddb data set, we only use
the first 106 instances. Finally, we change the parameter C for l1-PSVM to obtain different
number of features.

12. The codes of l1-PSVM are available at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
#fast_training_testing_for_degree_2_polynomial_mappings_of_data.

13. The data set is available from http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.
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Data set m mPoly ntrain ntest γ
mnist38 784 O(105) 40,000 22,581 4.0
real-sim 20,958 O(108) 32,309 40,000 8.0

kddb 4,590,807 O(1014) 1000, 000 748,401 4.0

Table 2: Details of data sets using polynomial feature mappings.
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Figure 13: Training time of different methods on nonlinear feature selection using polyno-
mial mappings.

The training time and testing accuracy on different data sets are reported in Figure 13
and 14, respectively. Both PROX-PFGM and l1-PSVM can address the two medium di-
mensional problems. However, PROX-PFGM shows much better efficiency than l1-PSVM.
Moreover, l1-PSVM is infeasible on the kddb data set due to the ultrahigh dimensionality.
Particularly, in l1-PSVM, it needs more than 1TB memory to store a dense w, which is
infeasible for a common PC. Conversely, this difficulty can be effectively addressed by FGM.
Specifically, PROX-PFGM completes the training within 1000 seconds.
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Figure 14: Testing accuracy of different methods on nonlinear feature selection using poly-
nomial mappings.

From the figures, the testing accuracy on mnist38 data set with polynomial mapping is
much better than that of linear methods, which demonstrate the usefulness of the nonlinear
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feature expansions. On the real-sim and kddb data sets, however, the performance with
polynomial mapping does not show significant improvements. A possible reason is that
these two data sets are linearly separable.

8.6 Experiments for Group Feature Selection

In this section, we study the performance of FGM for group feature selection on a synthetic
data set and two real-world data sets. Here only the logistic loss is studied since it has been
widely used for group feature selections on classification tasks (Roth and Fischer, 2008; Liu
and Ye, 2010). To demonstrate the sensitivity of the parameter C to FGM, we vary C to
select different number of groups under the stopping tolerance εc = 0.001. For each C,
we test B ∈ {2, 5, 8, 10}. The tradeoff parameter λ in SLEP is chosen from [0, 1], where a
larger lambda leads to more sparse solutions (Liu and Ye, 2010). Specifically, we set λ in
[0.002, 0.700] for FISTA and ACTIVE, and set λ in [0.003, 0.1] for BCD.

8.6.1 Synthetic Experiments on Group Feature Selection

In the synthetic experiment, we generate a random matrix X ∈ R4,096×400,000 with each
entry sampled from the i.i.d. Gaussian distribution N (0, 1). After that, we directly group
the 400,000 features into 40,000 groups of equal size (Jenatton et al., 2011b), namely each
feature group contains 10 features. We randomly choose 100 groups of them as the ground-
truth informative groups. To this end, we generate a sparse vector w, where only the entries
of the selected groups are nonzero values sampled from the i.i.d. Gaussian distribution
N (0, 1). Finally, we produce the output labels by y = sign(Xw). We generate 2,000 testing
points in the same manner.
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Figure 15: Results of group feature selection on the synthetic data set.

The testing accuracy, training time and number of recovered ground-truth groups are
reported in Figure 15(a), 15(b) and 15(c), respectively. Here only the results within 150
groups are included since we only have 100 informative ground-truth groups. From Fig-
ure 15(a), FGM achieves better testing accuracy than FISTA, BCD and UFO-MKL. The
reason is that, FGM can reduce the group feature selection bias. From Figure 15(c), in
general, FGM is much more efficient than FISTA and BCD. Interestingly, the active set
method (denoted by ACTIVE) also shows good testing accuracy compared with FISTA
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and BCD, but from Figure 15(c), its efficiency is limited since it only includes one element
per iteration. Accordingly, when selecting a large number of groups on big data, its com-
putational cost becomes unbearable. For UFO-MKL, although its training speed is fast,
its testing accuracy is generally worse than others. Finally, with a fixed B for FGM, the
number of selected groups will increase when C becomes large. This is because, with a
larger C, one imposes more importance on the training errors, more groups are required to
achieve lower empirical errors.

Data set m ntrain
Size of training set (GB)

ntest
Size of testing set(GB)

Linear ADD HIK Linear ADD HIK

aut 20,707 40, 000 0.027 0.320 0.408 22,581 0.016 0.191 0.269
rcv1 47,236 677,399 0.727 8.29 9.700 20,242 0.022 0.256 0.455

Table 3: Details of data sets used for HIK kernel feature expansion and Additive kernel
feature expansion. For HIK kernel feature expansion, each original feature is
represented by a group of 100 features; while for Additive kernel feature expansion,
each original feature is represented by a group of 11 features.

8.6.2 Experiments on Real-World Data Sets

In this section, we study the effectiveness of FGM for group feature selection on two real-
world data sets, namely aut-avn and rcv1. In real-world applications, the group prior
of features comes in different ways. In this paper, we produce the feature groups using
the explicit kernel feature expansions (Wu, 2012; Vedaldi and Zisserman, 2010), where each
original feature is represented by a group of approximated features. Such expansion can
vastly improve the training efficiency of kernel methods while keeping good approximation
performance in many applications, such as in computer vision (Wu, 2012). For simplicity,
we only study the HIK kernel expansion (Wu, 2012) and the additive Gaussian kernel
expansion (Vedaldi and Zisserman, 2010). In the experiments, for fair comparisons, we
pre-generate the explicit features for two data sets. The details of the original data sets
and the expanded data sets are listed in Table 3. We can observe that, after the feature
expansion, the storage requirements dramatically increase.

Figure 16 and 17 report the testing accuracy and training time of different methods,
respectively. From Figure 16, FGM and the active set method achieve superior performance
over FISTA, BCD and UFO-MKL in terms of testing accuracy. Moreover, from Figure 17,
FGM gains much better efficiency than the active set method. It is worth mentioning that,
due to the unbearable storage requirement, the feature expansion cannot be explicitly stored
when dealing with ultrahigh dimensional big data. Accordingly, FISTA and BCD, which
require the explicit presentation of data, cannot work in such cases. On the contrary, the
proposed feature generating paradigm can effectively address this computational issue since
it only involves a sequence of small-scale optimization problems.
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Figure 16: Testing accuracy on group feature selection tasks. The groups are generated
by HIK or additive feature mappings. The results of BCD on aut-HIK is not
reported due to the heavy computational cost.

9. Conclusions

In this paper, an adaptive feature scaling (AFS) scheme has been proposed to conduct
feature selection tasks. Specifically, to explicitly control the number features to be selected,
we first introduce a vector d ∈ [0, 1]m to scale the input features, and then impose an `1-
norm constraint ||d||1 ≤ B, where B represents the least number of features to be selected.
Although the resultant problem is non-convex, we can transform it into an equivalent convex
SIP problem. After that, a feature generating machine (FGM) is proposed to solve the
SIP problem, which essentially includes B informative features per iteration and solves a
sequence of much reduced MKL subproblems. The global convergence of FGM has been
verified. Moreover, to make FGM scalable to big data, we propose to solve the primal form of
the MKL subproblem through a modified APG method. Some efficient cache techniques are
also developed to further improve the training efficiency. Finally, FGM has been extended
to perform group feature selection and multiple kernel learning w.r.t. additive kernels.

FGM has two major advantages over the `1-norm methods and other existing feature
selection methods. Firstly, with a separate control of the model complexity and sparsity,
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Figure 17: Training time on group feature selections.

FGM can effectively handle the feature selection bias issue. Secondly, since only a small sub-
set of features or kernels are involved in the subproblem optimization, FGM is particularly
suitable for the ultrahigh dimensional feature selection task on big data, for which most of
the existing methods are infeasible. It is worth mentioning that, unlike most of the existing
methods, FGM avoids the storing of all base kernels or the full explicit feature mappings.
Therefore, it can vastly reduce the unbearable memory demands of MKL with many base
kernels or the nonlinear feature selection with ultrahigh-dimensional feature mappings.

Comprehensive experiments have been conducted to study the performance of the pro-
posed methods on both linear feature selection and group feature selection tasks. Extensive
experiments on synthetic data sets and real-world data sets have demonstrated the superior
performance of FGM over the baseline methods in terms of both training efficiency and
testing accuracy.

In this paper, the proposed methods have tackled big data problems with million training
examples (O(107)) and 100 trillion features (O(1014)). Recall that the subproblems of FGM
can be possibly addressed through SGD methods, we will explore SGD methods in the future
to further improve the training efficiency over bigger data with ultra-large sample size.
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Appendix A. Proof of Theorem 3

Proof The proof parallels the results of Bach et al. (2004), and is based on the conic
duality theory. Let Ω(ω) = 1

2 (‖ωh‖)2 and define the cone QB = {(u, v) ∈ RB+1, ‖u‖2 ≤ v}.
Furthermore, let zh = ‖ωh‖, we have Ω(ω) = 1

2

(∑t
h=1 ‖ωt‖

)2
= 1

2z
2 with z =

∑t
h=1 zh.

Apparently, we have zh ≥ 0 and z ≥ 0. Finally, problem (22) can be transformed to the
following problem:

min
z,ω

1

2
z2 + P (ω, b), s.t.

t∑
h=1

zh ≤ z, (ωt, zh) ∈ QB, (33)

where ω = [ω′1, ...,ω
′
t]
′. The Lagrangian function of (33) regarding the squared hinge loss

can be written as:

L(z,ω, ξ, b,α, γ, ζ,$)

=
1

2
z2 +

C

2

n∑
i=1

ξ2i −
n∑
i=1

αi

(
yi(
∑

ω′hxih − b)− 1 + ξi

)
+ γ(

t∑
h=1

zh − z)−
t∑

h=1

(ζ′hωh +$hzh),

where α, γ, ζt and $t are the Lagrangian dual variables to the corresponding constraints.
The KKT condition can be expressed as

∇zL = z − γ = 0 ⇒ z = γ;
∇zhL = γ −$h = 0 ⇒ $h = γ;
∇ωh

L = −
∑n

i=1 αiyixih − ζh = 0 ⇒ ζh = −
∑n

i=1 αiyixih;
∇ξiL = Cξi − αi = 0 ⇒ ξi = αi

C ;
‖ζh‖ ≤ $h ⇒ ‖ζh‖ ≤ γ;
∇bL = 0 ⇒

∑n
i=1 αiyi = 0.

By substituting the above equations into the Lagrangian function, we have

L(z,ω,α, γ, ζ,$) = −1

2
γ2 − 1

2C
α′α+ 1′α.
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Hence the dual problem of the `22,1-regularized problem regarding squared hinge loss can be
written as:

max
γ,α

−1

2
γ2 − 1

2C
α′α+ 1′α

s.t
∥∥∥ n∑
i=1

αiyixih

∥∥∥ ≤ γ, h = 1, · · · , t,

n∑
i=1

αiyi = 0, αi ≥ 0, i = 1, · · · , n.

Let θ = 1
2γ

2 + 1
2Cα

′α − α′1, ωh =
∑n

i=1 αiyixih and f(α,dh) = 1
2‖ωh‖

2 + 1
2Cα

′α − α′1,
we have

max
θ,α

−θ,

s.t f(α,dh) ≤ θ, h = 1, · · · , t,
n∑
i=1

αiyi = 0, αi ≥ 0, i = 1, · · · , n.

which indeed is in the form of problem (16) by letting A be the domain of α. This completes
the proof and brings the connection between the primal and dual formulation.

By defining 0 log(0) = 0, with the similar derivation above, we can obtain the dual form
of (33) regarding the logistic loss. Specifically, the Lagrangian function of (33) w.r.t. the
logistic loss is:

L(z,ω, ξ, b,α, γ, ζ,$)

=
1

2
z2 + C

n∑
i=1

log(1 + exp(ξi))−
n∑
i=1

αi

(
yi(
∑

ω′hxih − b) + ξi

)
+ γ(

t∑
h=1

zh − z)−
t∑

h=1

(ζ′hωh +$hzh),

where α, γ, ζt and $t are the Lagrangian dual variables to the corresponding constraints.
The KKT condition can be expressed as

∇zL = z − γ = 0 ⇒ z = γ;
∇zhL = γ −$h = 0 ⇒ $h = γ;
∇ωh

L = −
∑n

i=1 αiyixih − ζh = 0 ⇒ ζh = −
∑n

i=1 αiyixih;

∇ξiL = C exp(ξi)
1+exp(ξi)

− αi = 0 ⇒ exp(ξi) = αi
C−αi ;

‖ζh‖ ≤ $h ⇒ ‖ζh‖ ≤ γ;
∇bL = 0 ⇒

∑n
i=1 αiyi = 0.

By substituting all the above results into the Lagrangian function, we have

L(z,ω,α, γ, ζ,$) = −1

2
γ2 −

n∑
i=1

(C − αi) log(C − αi)−
n∑
i=1

αi log(αi).
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The dual form of the `22,1-regularized problem regarding logistic loss can be written as:

max
γ,α

−1

2
γ2 −

n∑
i=1

(C − αi) log(C − αi)−
n∑
i=1

αi log(αi)

s.t.
∥∥∥ n∑
i=1

αiyixih

∥∥∥ ≤ γ, h = 1, · · · , t,

n∑
i=1

αiyi = 0, αi ≥ 0, i = 1, · · · , n.

Let θ = 1
2γ

2 +
∑n

i=1(C −αi) log(C − αi) +
∑n

i=1 αi log(αi), ωh =
∑n

i=1 αiyixih, f(α,dh) =
1
2‖ωh‖

2 +
∑n

i=1(C − αi) log(C − αi) +
∑n

i=1 αi log(αi), then we have

max
θ,α

−θ,

s.t. f(α,dh) ≤ θ, h = 1, · · · , t,
n∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, · · · , n.

Finally, according to the KKT condition, we can easily recover the dual variable α by
αi = C exp(ξi)

1+exp(ξi)
. This completes the proof.

Appendix B. Proof of Theorem 4

The proof parallels the results of Beck and Teboulle (2009), and includes several lemmas.
First of all, we define a one variable function Qτb(v, b, vb) w.r.t. b as

Qτb(v, b, vb) = P (v, vb) + 〈∇bP (v, vb), b− vb〉+
τb
2
‖b− vb‖2, (34)

where we abuse the operators 〈·, ·〉 and ‖ · ‖ for convenience.

Lemma 4 Sτ (u,v) = arg minω Qτ (ω,v, vb) is the minimizer of problem (23) at point v,
if and only if there exists g(Sτ (u,v)) ∈ ∂Ω(Sτ (u,v)), the subgradient of Ω(ω) at Sτ (u,v),
such that

g(Sτ (u,v)) + τ(Sτ (u,v)− v) +∇P (v) = 0.

Proof The proof can be completed by the optimality condition of Qτ (ω,v, vb) w.r.t. ω.

Lemma 5 Let Sτ (u,v) = arg minω Qτ (ω,v, vb) be the minimizer of problem (23) at point
v, and Sτb(b) = arg minbQτb(v, b, vb) be the minimizer of problem (34) at point vb. Due to
the line search in Algorithm 4, we have

F (Sτ (u,v), vb) ≤ Qτ (Sτ (u,v),v, vb).

P (v, Sτb(vb)) ≤ Qτb(v, Sτb(vb), vb).
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and

F (Sτ (u,v), Sτb(b)) ≤ Qτ (Sτ (u,v),v, vb) + 〈∇bP (v, vb), Sτb(b)− vb〉+
τb
2
‖Sτb(b)− vb||

2.(35)

Furthermore, for any (ω′, b)′ we have

F (ω, b)− F (Sτ (u,v), Sτb(b)) ≥ τb〈Sτb(b)− vb, vb − b〉+
τb
2
‖Sτb(b)− vb||

2

+τ〈Sτ (u,v)− v,v − ω〉+
τ

2
‖Sτ (u,v)− v||2. (36)

Proof We only prove the inequality (35) and (36). First of all, recall that in Algorithm 4,
we update ω and b separately. It follows that

F (Sτ (u,v), Sτb(b))

= Ω(Sτ (u,v)) + P (Sτ (u,v), Sτb(vb))

≤ Ω(Sτ (u,v)) +Qτb(Sτ (u,v), Sτb(b), vb)

= Ω(Sτ (u,v)) + P (Sτ (u,v), vb) + 〈∇bP (v, vb), Sτb(b)− vb〉+
τb
2
‖Sτb(b)− vb||

2

= F (Sτ (u,v), vb) + 〈∇bP (v, vb), Sτb(b)− vb〉+
τb
2
‖Sτb(b)− vb||

2

≤ Qτ (Sτ (u,v),v, vb) + 〈∇bP (v, vb), Sτb(b)− vb〉+
τb
2
‖Sτb(b)− vb||

2.

This proves the inequality in (35).
Now we prove the inequality (36). First of all, since both P (ω, b) and Ω(ω) are convex

functions, we have

P (ω, b) ≥ P (v, vb) + 〈∇P (v),ω − v〉+ 〈∇bP (v, vb), b− vb〉,
Ω(ω) ≥ Ω(Sτ (u,v)) + 〈ω − Sτ (u,v), g(Sτ (g,v))〉,

where g(Sτ (u,v)) be the subgradient of Ω(ω) at point Sτ (u,v). Summing up the above
inequalities, we obtain

F (ω, b)

≥ P (v, vb) + 〈∇P (v),ω − v〉+ 〈∇bP (v, vb), b− vb〉+ Ω(Sτ (u,v)) + 〈ω − Sτ (u,v), g(Sτ (g,v))〉,

In addition, we have

F (ω, b)−
(
Qτ (Sτ (u,v),v, vb) + 〈∇bP (v, vb), Sτb (b)− vb〉+

τb

2
‖Sτb (b)− vb||2

)
= P (v, vb) + 〈∇P (v),ω − v〉+ 〈∇bP (v, vb), b− vb〉+ Ω(Sτ (u,v)) + 〈ω − Sτ (u,v), g(Sτ (g,v))〉,

−
(
Qτ (Sτ (u,v),v, vb) + 〈∇bP (v, vb), Sτb (b)− vb〉+

τb

2
‖Sτb (b)− vb||2

)
= P (v, vb) + 〈∇P (v),ω − v〉+ 〈∇bP (v, vb), b− vb〉+ Ω(Sτ (u,v)) + 〈ω − Sτ (u,v), g(Sτ (g,v))〉,

−
(
P (v, vb) + 〈∇P (v), Sτ (u,v)− v〉+ Ω(Sτ (u,v)) +

τ

2
‖Sτ (u,v)− v||2 + 〈∇bP (v, vb), Sτb (b)− vb〉

+
τb

2
‖Sτb (b)− vb||2

)
= 〈∇P (v) + g(Sτ (g,v)),ω − Sτ (u,v)〉 −

τ

2
‖Sτ (u,v)− v||2

+〈∇bP (v, vb), b− Sτb (b)〉 −
τb

2
‖Sτb (b)− vb||2.
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With the relation Sτb(b) = b− ∇bP (v,vb)
τb

and Lemma 4, we obtain

F (ω, b)− F (Sτ (u,v), Sτb(b))

≥ F (ω, b)−
(
Qτ (Sτ (u,v),v, vb) + 〈∇bP (v, vb), Sτb(b)− vb〉+

τb
2
‖Sτb(b)− vb||

2
)
.

≥ 〈∇P (v) + g(Sτ (g,v)),ω − Sτ (u,v)〉 − τ

2
‖Sτ (u,v)− v||2

+〈∇bP (v, vb), b− Sτb(b)〉 −
τb
2
‖Sτb(b)− vb||

2.

= τ〈v − Sτ (u,v),ω − Sτ (u,v)〉 − τ

2
‖Sτ (u,v)− v||2

+τb〈vb − Sτb(b), b− Sτb(b)〉 −
τb
2
‖Sτb(b)− vb||

2.

= τ〈Sτ (u,v)− v,v − ω〉+
τ

2
‖Sτ (u,v)− v||2

+τb〈Sτb(b)− vb, vb − b〉+
τb
2
‖Sτb(b)− vb||

2.

This completes the proof.

Lemma 6 Let Lbt = σLt, where σ > 0. Furthermore, let us define

µk = F (ωk, bk)− F (ω∗, b∗),

νk = ρkωk − (ρk − 1)ωk−1 − ω∗,
υk = ρkbk − (ρk − 1)bk−1 − b∗,

and then the following relation holds:

2(ρk)2µk

Lk
− (ρk+1)2µk+1

Lk+1
≥
(
||νk+1||2 − ||νk||2

)
+ σ

(
(υk+1)2 − (υk)2

)
.

Proof Note that we have ωk+1 = Sτ (u,vk+1) and bk+1 = Sτb(v
k+1
b ). By applying Lemma 5,

let ω = ωk, v = vk+1, τ = Lk+1, b = bk, vb = vk+1
b , τb = Lk+1

b , we have

2(µk − µk+1) ≥ Lk+1
(
||ωk+1 − vk+1||2 + 2〈ωk+1 − vk+1,vk+1 − ωk〉

)
+Lk+1

b

(
||bk+1 − vk+1

b ||2 + 2〈bk+1 − vk+1
b , vk+1

b − bk〉
)
.

Multiplying both sides by (ρk+1 − 1), we obtain

2(ρk+1 − 1)(µk − µk+1) ≥ Lk+1(ρk+1 − 1)
(
||ωk+1 − vk+1||2 + 2〈ωk+1 − vk+1,vk+1 − ωk〉

)
+Lk+1

b (ρk+1 − 1)
(
||bk+1 − vk+1

b ||2 + 2〈bk+1 − vk+1
b , vk+1

b − bk〉
)
.

Also, let ω = ω∗, v = vk+1, τ = Lk+1, b = bk, vb = vk+1
b , and τb = Lk+1

b , we have

−2µk+1 ≥ Lk+1
(
||ωk+1 − vk+1||2 + 2〈ωk+1 − vk+1,vk+1 − ω∗〉

)
+Lk+1

b

(
||bk+1 − vk+1

b ||2 + 2〈bk+1 − vk+1
b , vk+1

b − b∗〉
)
.

Summing up the above two inequalities, we get

2
(
(ρk+1 − 1)µk − ρk+1µk+1

)
≥ Lk+1

(
ρk+1||ωk+1 − vk+1||2 + 2〈ωk+1 − vk+1, ρk+1vk+1 − (ρk+1 − 1)ωk − ω∗〉

)
+Lk+1

b

(
ρk+1||bk+1 − vk+1

b ||2 + 2〈bk+1 − vk+1
b , ρk+1vk+1

b − (ρk+1 − 1)bk − b∗〉
)
.
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Multiplying both sides by ρk+1, we obtain

2
(
ρk+1(ρk+1 − 1)µk − (ρk+1)2µk+1

)
≥ Lk+1

(
(ρk+1)2||ωk+1 − vk+1||2 + 2ρk+1〈ωk+1 − vk+1, ρk+1vk+1 − (ρk+1 − 1)ωk − ω∗〉

)
+Lk+1

b

(
(ρk+1)2||bk+1 − vk+1

b ||2 + 2ρk+1〈bk+1 − vk+1
b , ρk+1vk+1

b − (ρk+1 − 1)bk − b∗〉
)
.

Since (ρk)2 = (ρk+1)2 − ρk+1, it follows that

2
(
(ρk)2µk − (ρk+1)2µk+1

)
≥ Lk+1

(
(ρk+1)2||ωk+1 − vk+1||2 + 2ρk+1〈ωk+1 − vk+1, ρk+1vk+1 − (ρk+1 − 1)ωk − ω∗〉

)
+Lk+1

b

(
(ρk+1)2||bk+1 − vk+1

b ||2 + 2ρk+1〈bk+1 − vk+1
b , ρk+1vk+1

b − (ρk+1 − 1)bk − b∗〉
)
.

By applying the equality ||u− v||2 + 2〈u− v,v −w〉 = ||u−w||2 − ||v −w||2, we have

2
(
(ρk)2µk − (ρk+1)2µk+1

)
≥ Lk+1

(
||ρk+1ωk+1 − (ρk+1 − 1)ωk − ω∗||2 − ||ρk+1vk+1 − (ρk+1 − 1)ωk − ω∗||2

)
+Lk+1

b

(
||ρk+1bk+1 − (ρk+1 − 1)bk − b∗||2 − ||ρk+1vk+1

b − (ρk+1 − 1)bk − b∗||2
)
.

With ρk+1vk+1 = ρk+1ωk + (ρk − 1)(ωk −ωk−1), ρk+1vk+1
b = ρk+1bk + (ρk − 1)(bk − bk−1)

and the definition of νk, it follows that

2
(
(ρk)2µk − (ρk+1)2µk+1

)
≥ Lk+1

(
||νk+1||2 − ||νk||2

)
+ Lk+1

b

(
(υk+1)2 − (υk)2

)
.

Assuming that there exists a σ > 0 such that Lk+1
b = σLk+1, we get

2
(
(ρk)2µk − (ρk+1)2µk+1

)
Lk+1

≥
(
||νk+1||2 − ||νk||2

)
+ σ

(
(υk+1)2 − (υk)2

)
.

Since Lk+1 ≥ Lk and Lk+1
b ≥ Lkb , we have

2(ρk)2µk

Lk
− (ρk+1)2µk+1

Lk+1
≥
(
||νk+1||2 − ||νk||2

)
+ σ

(
(υk+1)2 − (υk)2

)
.

This completes the proof.

Finally, with Lemma 6, following the proof of Theorem 4.4 in (Beck and Teboulle, 2009),
we have

F (ωk, bk)− F (ω∗, b∗) ≤ 2Lk||ω0 − ω∗||2

(k + 1)2
+

2σLk(b0 − b∗)2

(k + 1)2
≤ 2Lt||ω0 − ω∗||2

η(k + 1)2
+

2Lbt(b
0 − b∗)2

η(k + 1)2
.

This completes the proof.

Appendix C: Linear Convergence of Algorithm 4 for the Logistic Loss

In Algorithm 4, by fixing %k = 1, it is reduced to the proximal gradient method (Nesterov,
2007), and it attains a linear convergence rate for the logistic loss, if X satisfies the following
Restricted Eigenvalue Condition (Zhang, 2010b):
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Definition 2 (Zhang, 2010b) Given an integer κ > 0, a design matrix X is said to satisfy
the Restricted Eigenvalue Condition at sparsity level κ, if there exists positive constants
γ−(X, κ) and γ+(X, κ) such that

γ−(X, κ) = inf

{
ω>X>Xω

ω>ω
,ω 6= 0, ||ω||0 ≤ κ

}
,

γ+(X, κ) = sup

{
ω>X>Xω

ω>ω
,ω 6= 0, ||ω||0 ≤ κ

}
.

Remark 7 For the logistic loss, if γ−(X, tB) ≥ τ > 0, Algorithm 4 with %k = 1 attains a
linear convergence rate.

Proof Let ξi = −yi(
∑t

h=1ω
′
hxih − b), the Hessian matrix for the logistic loss can be

calculated by (Yuan et al., 2011):

∇2P (ω) = CX′∆X,

where ∆ is a diagonal matrix with diagonal element ∆i,i = 1
1+exp(ξi)

(1 − 1
1+exp(ξi)

) > 0.

Apparently, ∇2P (ω, b) is upper bounded on a compact set due to the existence of γ+(X, κ).
Let
√

∆ be the square root of ∆. Then if γ−(X, tB) ≥ τ > 0, we have γ−(
√

∆X, tB) > 0
due to ∆i,i > 0. In other words, the logistic loss is strongly convex if γ−(X, tB) > 0.
Accordingly, the linear convergence rate can be achieved (Nesterov, 2007).

Appendix D: Proof of Proposition 3

Proof Proof of argument (I): We prove it by contradiction. Firstly, suppose d∗ is a
minimizer and there exists an l ∈ {1 . . .m}, such that wl = 0 but d∗l > 0. Let 0 < ε < d∗l ,

and choose one j ∈ {1 . . .m} where j 6= l, such that |wj | > 0. Define new solution d̂ in the
following way:

d̂j = d∗j + d∗l − ε, d̂l = ε, and,

d̂k = d∗k, ∀k ∈ {1 . . .m}\{j, l}.

Then it is easy to check that
m∑
j=1

d̂j =
m∑
j=1

d∗j ≤ B.

In other words, d̂ is also a feasible point. However, since d̂j = d∗j + d∗l − ε ≥ d∗j , it follows
that

w2
j

d̂j
<
w2
j

d∗j
.

Therefore, we have
m∑
j=1

w2
j

d̂j
<

m∑
j=1

w2
j

d∗j
,

which contradict the assumption that d∗ is the minimizer.
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On the other hand, if |wj | > 0 and d∗j = 0, by the definition,
x2j
0 =∞. As we expect to

get the finite minimum, so if |wj | > 0, we have d∗j > 0.
(II): First of all, the argument holds trivially when ‖w‖0 = κ ≤ B.
If ‖w‖0 = κ > B, without loss of generality, we assume |wj | > 0 for the first κ elements.

From the argument (I), we have 1 ≥ dj > 0 for j ∈ {1 . . . κ} and
∑κ

j=1 dj ≤ B. Note that∑κ
j=1

w2
j

dj
is convex regarding d. The minimization problem can be written as:

min
d

κ∑
j=1

w2
j

dj
, s.t.

κ∑
j=1

dj ≤ B, dj > 0, 1− dj ≥ 0. (37)

The KKT condition of this problem can be written as:

−w2
j/d

2
j + γ − ζj + νj = 0,

ζjdj = 0,

νj(1− dj) = 0, (38)

γ(B −
κ∑
j=1

dj) = 0, (39)

γ ≥ 0, ζj ≥ 0, νj ≥ 0,∀ j ∈ {1 . . . κ},

where γ, ζj and νj are the dual variables for the constraints
∑κ

j=1 dj ≤ B, dj > 0 and
1− dj ≥ 0 respectively. For those dj > 0, we have ζj = 0 for ∀j ∈ {1 . . . κ} due to the KKT
condition. Accordingly, by the first equality in KKT condition, we must have

dj = |wj |/
√
γ + νj , ∀j ∈ {1 . . . κ}.

Moreover, since
∑κ

j=1 dj ≤ B < κ, there must exist some dj < 1 with νj = 0 (otherwise∑κ
j=1 dj will be greater than B). Here νj = 0 because of the condition (38). This observation

implies that γ 6= 0 since each dj is bounded. Since dj ≤ 1, the condition
√
γ + νj ≥

max{|wj |} must hold for ∀j ∈ {1 . . . κ}. Furthermore, by the complementary condition
(39), we must have

κ∑
j=1

dj = B.

By substituting dj = |wj |/
√
γ + νj back to the objective function of (37), it becomes

κ∑
j=1

|wj |
√
γ + νj .

To get the minimum of the above function, we are required to set the nonnegative νj as
small as possible.

Now we complete the proof with the assumption ‖w‖1/max{|wj |} ≥ B. When setting

νj = 0, we get dj =
|wj |√
γ and

∑κ
j=1

|wj |√
γ = B. It is easy to check that

√
γ = ‖w‖1/B ≥

max{|wj |} and dj = B|wj |/‖w‖1 ≤ 1, which satisfy the KKT condition. Therefore, the
above d is an optimal solution. This completes the proof of the argument (II).
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(III): With the results of (II), if κ ≤ B, we have
∑m

j=1

w2
j

dj
=
∑κ

j=1w
2
j . Accordingly, we

have ‖w‖B = ‖w‖2. And if κ > B and ‖w‖1/max{wj} ≥ B, we have

∑ w2
j

dj
=
∑ |wj |

dj
|wj | =

‖w‖1
B

∑
|wj | =

(‖w‖1)2

B
.

Hence we have ‖w‖B =

√∑ w2
j

dj
= ‖w‖1√

B
. This completes the proof.
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Abstract

Classical boosting algorithms, such as AdaBoost, build a strong classifier without concern
for the computational cost. Some applications, in particular in computer vision, may involve
millions of training examples and very large feature spaces. In such contexts, the training
time of off-the-shelf boosting algorithms may become prohibitive. Several methods exist to
accelerate training, typically either by sampling the features or the examples used to train
the weak learners. Even if some of these methods provide a guaranteed speed improvement,
they offer no insurance of being more efficient than any other, given the same amount of
time.

The contributions of this paper are twofold: (1) a strategy to better deal with the
increasingly common case where features come from multiple sources (for example, color,
shape, texture, etc., in the case of images) and therefore can be partitioned into meaningful
subsets; (2) new algorithms which balance at every boosting iteration the number of weak
learners and the number of training examples to look at in order to maximize the expected
loss reduction. Experiments in image classification and object recognition on four standard
computer vision data sets show that the adaptive methods we propose outperform basic
sampling and state-of-the-art bandit methods.

Keywords: boosting, large scale learning, feature selection

1. Introduction

Boosting is a simple and efficient machine learning algorithm which provides state-of-the-art
performance on many tasks. It consists of building a strong classifier as a linear combination
of weak learners, by adding them one after another in a greedy manner.

It has been repeatedly demonstrated that combining multiple kind of features addressing
different aspects of the signal is an extremely efficient strategy to improve performance
(Opelt et al., 2006; Gehler and Nowozin, 2009; Fleuret et al., 2011; Dubout and Fleuret,
2011a,b). As shown by our experimental results, vanilla boosting of stumps over multiple
image features such as HOG, LBP, color histograms, etc., usually reaches close to state-of-
the-art performance. However, such techniques entails a considerable computational cost,
which increases with the number of features considered during training.

The critical operations contributing to the computational cost of a boosting iteration
are the computations of the features and the selection of the weak learner. Both depend
on the number of features and the number of training examples taken into account. While

c©2014 Charles Dubout and François Fleuret.



Dubout and Fleuret

textbook AdaBoost repeatedly selects each weak learner using all the features and all the
training examples for a predetermined number of rounds, one is not obligated to do so and
can instead choose to look only at a subset of both.

Since performance increases with both, one needs to balance the two to keep the compu-
tational cost under control. As boosting progresses, the performance of the candidate weak
learners degrades, and they start to behave more and more similarly. While a small number
of training examples is initially sufficient to characterize the good ones, as the learning
problems become more and more difficult, optimal values for a fixed computational cost
tend to move towards smaller number of features and larger number of examples.

In this paper, we present three new families of algorithms to explicitly address these
issues: (1) Tasting (see Section 4 on page 1434) uses a small number of features sampled
prior to learning to adaptively bias the sampling towards promising subsets at every step;
(2) Maximum Adaptive Sampling (see Section 5.3 on page 1439) models the distribution
of the weak learners’ performance and the noise in order to determine the optimal trade-
off between the number of weak learners and the number of examples to look at; and (3)
Laminating (see Section 5.4 on page 1440) iteratively refines the learner selection using
more and more examples.

2. Related Works

AdaBoost and similar boosting algorithms estimate for each candidate weak learner a score
dubbed “edge”, which requires to loop through every training example and take into ac-
count its weight, which reflects its current importance in the loss reduction. Reducing this
computational cost is crucial to cope with high-dimensional feature spaces or very large
training sets. This can be achieved through two main strategies: sampling the training
examples, or the feature space, since there is a direct relation between features and weak
learners.

Sampling the training set was introduced historically to deal with weak learners which
cannot be trained with weighted examples (Freund and Schapire, 1996). This procedure
consists of sampling examples from the training set according to their boosting weights,
and of approximating a weighted average over the full set by a non-weighted average over
the sampled subset. It is related to Bootstrapping as similarly the training algorithm will
sample harder and harder examples based on the performance of the previous weak learners.
See Section 3 for formal details. Such a procedure has been re-introduced recently for
computational reasons (Bradley and Schapire, 2007; Duffield et al., 2007; Kalal et al., 2008;
Fleuret and Geman, 2008), since the number of sampled examples controls the trade-off
between statistical accuracy and computational cost.

Sampling the feature space is the central idea behind LazyBoost (Escudero et al., 2000),
and simply consists of replacing the brute-force exhaustive search over the full feature set
by an optimization over a subset produced by sampling uniformly a predefined number of
features. The natural redundancy of most type of features makes such a procedure generally
efficient. However, if a subset of important features is too small, it may be overlooked during
training.

Recently developed algorithms rely on multi-arms bandit methods to balance properly
the exploitation of features known to be informative, and the exploration of new features
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(Busa-Fekete and Kegl, 2009, 2010). The idea behind those methods is to associate a bandit
arm to every feature, and to see the loss reduction as a reward. Maximizing the overall
reduction is achieved with a standard bandit strategy such as UCB (Auer et al., 2002), or
Exp3.P (Auer et al., 2003).

These techniques suffer from two important drawbacks. First they make the assumption
that the quality of a feature — the expected loss reduction of a weak learner using it — is
stationary. This goes against the underpinning of boosting, which is that at any iteration
the performance of the weak learners is relative to the boosting weights, which evolve over
the training (Exp3.P does not make such an assumption explicitly, but still rely exclusively
on the history of past rewards). Second, without additional knowledge about the feature
space, the only structure they can exploit is the stationarity of individual features. Hence,
improvement over random selection can only be achieved by sampling again the exact same
features already seen in the past. In our experiments, we therefore only use those methods
in a context where features can be partitioned into subsets of different types. This allows
us to model the quality, and thus to bias the sampling, at a higher level than individual
features.

All those approaches exploit information about features to bias the sampling, hence
making it more efficient, and reducing the number of weak learners required to achieve the
same loss reduction. However, they do not explicitly aim at controlling the computational
cost. In particular, there is no notion of varying the number of examples used for the
estimation of the loss reduction.

3. Preliminaries

We first present in this section some analytical results to approximate a standard round
of AdaBoost — or other similar boosting algorithms — by sampling both the training
examples and the features used to build the weak learners. We then precise more formally
what we mean by subset of features or weak learners.

3.1 Standard Boosting

Given a binary training set

(xn, yn) ∈ X × {−1, 1}, n = 1, . . . , N,

where X is the space of the “visible” signal, and a set H of weak learners of the form
h : X → {−1, 1}, the standard boosting procedure consists of building a strong classifier

f(x) =

T∑
t=1

αtht(x),

by choosing the terms αt ∈ R and ht ∈ H in a greedy manner so as to minimize a loss (for
example the empirical exponential loss in the case of AdaBoost) estimated over the training
examples. At every iteration, choosing the optimal weak learner boils down to finding the
one with the largest edge ε, which is the derivative of the loss reduction w.r.t. the weak
learner weight α. The higher this value, the more the loss can be reduced locally, and thus
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the better the weak learner. The edge is a linear function of the responses of the weak
learner over the training examples

ε(h) =
N∑
n=1

ωnynh(xn),

where the weights ωn’s depend on the loss function (usually either the exponential or logistic
loss) and on the current responses of f over the xn’s. We consider without loss of generality
that they have been normalized such that

∑
n ωn = 1. We can therefore consider the weights

ωn’s as a distribution over the training examples and rewrite the edge as an expectation
over them,

ε(h) = EN∼ωn [yNh(xN )] , (1)

where N ∼ ωn stands for P(N = n) = ωn. The idea of weighting-by-sampling (Fleuret and
Geman, 2008) consists of replacing the expectation in Equation (1) with an approximation
obtained by sampling. Let N1, . . . , NS , be i.i.d. random variables distributed according to
the discrete probability density distribution defined by the ω’s, we define the approximated
edge as

ε̂(h) =
1

S

S∑
s=1

yNsh(xNs), (2)

which follows a binomial distribution centered on the true edge, with a variance decreasing
with the number of sampled examples S. It is accurately modeled by the Gaussian

ε̂(h) ≈ N
(
ε(h),

1

S

)
, (3)

as the approximation holds asymptotically and the magnitude of the weak learners’ edges
is typically small, such that (1 + ε(h))(1− ε(h)) ≈ 1.

3.2 Feature Subsets

It frequently happens that the features making up the signal space X can be divided into
meaningful disjoint subsets Fk such that X = ∪Kk=1Fk. This division can for example be the
result of the features coming from different sources or some natural clustering of the feature
space. In such a case it makes sense to use this information during training, as features
coming from the same subset Fk can typically be expected to be more homogeneous than
features coming from different subsets.

4. Tasting

We describe here our approach called Tasting (Dubout and Fleuret, 2011a) which biases
the sampling toward promising subsets of features. Tasting in its current form is limited to
deal with weak learners looking at a single feature, such as decision stumps. Extending it
to deal efficiently with weak learners looking at multiple features is outside of the scope of
this work.
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4.1 Main Algorithm

The core idea of Tasting is to sample a small number R of features from every subset before
starting the training per se and, at every boosting step, in using these few features together
with the current boosting weights to get an estimate of the best subset(s) Fk(s) to use.

We cannot stress enough that these R features are not the ones used to build the
classifier, they are only used to figure out what is/are the best subset(s) at any time during
training. As those sampled features are independent and identically distributed samples of
the feature response vectors, we can compute the empirical mean of any functional of the
said response vectors, in particular the expected loss reduction.

At any boosting step, Tasting requires, for any feature subset, an estimate of the ex-
pectation of the edge of the best weak learner we would obtain by sampling uniformly Q
features from this subset and picking the best weak learner using one of them,

EF1,...,FQ∼U(Fk)

[
Q

max
q=1

max
h∈HFq

ε(h)

]
, (4)

where Fk are the indices of the features belonging to the k-th subset and HF is the space
of weak learners looking solely at feature F . Hence maxh∈HFq ε(h) is the best weak learner

looking solely at feature Fq, and maxQq=1 maxh∈HFq ε(h) is the best weak learner looking
solely at one of the Q features F1, . . . , FQ.

We can build an approximation of this quantity using the R features we have stored.
Let ε1, . . . , εR be the edges of the best R weak learners built from these features. We
make the assumption without loss of generality that ε1 ≤ ε2 ≤ · · · ≤ εR. Let R1, . . . , RQ
be independent and identically distributed, uniform over {1, . . . , R}. We approximate the
quantity in Equation (4) with

E

[
Q

max
q=1

εRq

]
=

R∑
r=1

P

(
Q

max
q=1

Rq = r

)
εr

=

R∑
r=1

[
P

(
Q

max
q=1

Rq ≤ r
)
− P

(
Q

max
q=1

Rq ≤ r − 1

)]
εr

=
1

RQ

R∑
r=1

[
rQ − (r − 1)Q

]
εr. (5)

4.2 Tasting Variants

We propose two versions of the Tasting procedure, which differ in the number of feature
subsets they visit at every iteration. Either one for Tasting 1.Q or up to Q for Tasting Q.1.

In Tasting 1.Q (Algorithm 1), the selection of the optimal subset k∗ from which to sample
the Q features is accomplished by estimating for every subset the expected maximum edge,
which is directly related to the expected loss reduction, if we were sampling from that subset
only. The computation is done over the R features saved before starting training, which
serve as a representation of the full set Fk.

In Tasting Q.1 (see Algorithm 2), it is not one but several feature subsets which can
be selected, as the algorithm picks the best subset k∗q for every one of the Q features to

1435



Dubout and Fleuret

Algorithm 1 The Tasting 1.Q algorithm first samples uniformly R features from every
feature subset Fk. It uses these features at every boosting step to find the optimal feature
subset k∗ from which to sample. After the selection of the Q features, the algorithm
continues like AdaBoost.

Input: F , Q,R, T
Initialize: ∀k ∈ {1, . . . ,K},∀r ∈ {1, . . . , R}, fkr ← sample(U(Fk))

for t = 1, . . . , T do

∀k ∈ {1, . . . ,K}, ∀r ∈ {1, . . . , R}, εkr ← max
h∈H

fkr

ε(h)

k∗ ← argmax
k

E

[
Q

max
q=1

εkRq

]
# Computed using equation (5)

∀q ∈ {1, . . . , Q}, Fq ← sample(U(Fk∗))

ht ← argmax
h∈∪qHFq

ε(h)

. . .

end for

Algorithm 2 The Tasting Q.1 algorithm first samples uniformly R features from every
feature subset Fk. It uses them to find the optimal subset k∗q for every one of the Q features
to sample at every boosting step. After the selection of the Q features, the algorithm
continues like AdaBoost.

Input: F , Q,R, T
Initialize: ∀k ∈ {1, . . . ,K},∀r ∈ {1, . . . , R}, fkr ← sample(U(Fk))

for t = 1, . . . , T do

∀k ∈ {1, . . . ,K}, ∀r ∈ {1, . . . , R}, εkr ← max
h∈H

fkr

ε(h)

ε∗ ← 0

for q = 1, . . . , Q do

k∗q ← argmax
k

E
[
max

(
ε∗, εk

)]
Fq ← sample

(
U
(
Fk∗q

))
ε∗ ← max

(
ε∗, max

h∈HFq
ε(h)

)
end for

ht ← argmax
h∈∪qHFq

ε(h)

. . .

end for
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sample, given the best edge ε∗ achieved so far. Again the computation is done only over
the R features saved before starting training.

4.3 Relation with Bandit Methods

The main strength of boosting is its ability to spot and combine complementary features.
If the loss has already been reduced in a certain “functional direction”, the scores of weak
learners in the same direction will be low, and they will be rejected. For instance, the firsts
learners for a face detector may use color-based features to exploit the skin color. After a
few boosting steps using this modality, color would be exhausted as a source of information,
and only examples with a non-standard face color would have large weights. Other features,
for instance edge-based, would become more informative, and be picked.

Uniform sampling of features accounts poorly for such behavior since it simply discards
the boosting weights, and hence has no information whatsoever about the directions which
have “already been exploited” and which should be avoided. In practice, this means that
the rejection of bad feature can only be done at the level of the boosting itself, which may
end up with a majority of useless features.

Bandit methods (described in Section 6.4) are slightly more adequate, as they model
the performance of every feature from previous iterations. However, this modeling takes
into account the boosting weights very indirectly, as they make the assumption that the
distributions of loss reduction are stationary, while they are precisely not. Coming back to
our face-detector example, bandit methods would go on believing that color is informative
since it was in the previous iterations, even if the boosting weights have specifically accumu-
lated on faces where color is now totally useless. While the estimate of loss reduction may
asymptotically converge to an adequate model, it is a severe weakness while the boosting
weights are still evolving.

Tasting addresses this weakness by keeping the ability to properly estimate the per-
formance of every feature subset, given the current boosting weights, hence the ability to
discard feature subsets redundant with features already picked. In some sense, Tasting can
be seen as boosting done at a the subset level.

5. Maximum Adaptive Sampling and Laminating

The algorithms in this section sample both the weak learners and the training examples at
every iteration in order to maximize the expectation of the loss reduction, under a strict
computational cost constraint.

5.1 Edge estimation

At every iteration they model the expectation of the edge of the selected weak learner.
Let ε1, . . . , εQ stand for the true edges of Q independently sampled weak learners. Let
∆1, . . . ,∆Q be a series of independent random variables standing for the noise in the es-
timation of the edges due to the sampling of only S training examples. Finally ∀q, let
ε̂q = εq + ∆q be the approximated edge. With these definitions, argmaxq ε̂q is the selected
weak learner. We define ε∗ as the true edge of the selected weak learner, that is the one
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with the highest approximated edge

ε∗ = εargmaxq ε̂q . (6)

This quantity is random due to both the sampling of the weak learners, and the sampling
of the training examples. The quantity we want to optimize is E[ε∗], the expectation of the
true edge of the selected learner over all weak learners and over all training examples, which
increases with both Q and S. A higher Q increases the number of terms in the maximization
of Equation (6), while a higher S reduces the variance of the ∆’s, ensuring that ε∗ is closer
to maxq εq. In practice, if the variance of the ∆’s is of the order of, or higher than, the
variance of the ε’s, the maximization is close to a random selection, and looking at many
weak learners is useless. Assuming that the ε̂q’s are all different we have,

E[ε∗] = E
[
εargmaxq ε̂q

]
=

Q∑
q=1

E

εq∏
i 6=q

1{ε̂i<ε̂q}


=

Q∑
q=1

E

E

εq∏
i 6=q

1{ε̂i<ε̂q}

∣∣∣∣∣∣ ε̂q


=

Q∑
q=1

E

E[εq | ε̂q]
∏
i 6=q

E
[
1{ε̂i<ε̂q}

∣∣ ε̂q]
 ,

where the last equality follows from the independence of the weak learners.

5.2 Modeling the True Edge

If the distributions of the εq’s and the ∆q’s are Gaussians or mixtures of Gaussians, we can
derive analytical expressions for both E[εq | ε̂q] and E

[
1{ε̂i<ε̂q}

∣∣ ε̂q], and compute the value of
E[ε∗] efficiently. In the case where weak learners can be partitioned into meaningful subsets,
it makes sense to model the distributions of the edges separately for each subset.

As an illustrative example, we consider here the case where the εq’s, the ∆q’s, and hence
also the ε̂q’s all follow Gaussian distributions. We take εq ∼ N (0, 1) and ∆q ∼ N (0, σ2) and
obtain,

E[ε∗] = Q E

E[ε1 | ε̂1]
∏
i 6=1

E
[
1{ε̂i<ε̂1}

∣∣ ε̂1]


= Q E

[
ε̂1

σ2 + 1
Φ

(
ε̂1√
σ2 + 1

)Q−1
]

=
Q√
σ2 + 1

E
[
ε1Φ(ε1)Q−1

]
=

1√
σ2 + 1

E

[
max

1≤q≤Q
εq

]
,
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Figure 1: Simulation of the expectation of ε∗ in the case where both the εq’s and the ∆q’s
follow Gaussian distributions. Top: εq ∼ N (0, 10−2). Bottom: εq ∼ N (0, 10−4).
In both simulations ∆q ∼ N (0, 1

S ). Left: expectation of ε∗ vs. the number of
sampled weak learners Q and the number of examples S. Right: same value as
a function of Q alone, for different fixed costs (product of Q and S). As these
graphs illustrate, the optimal value for Q is greater for larger variances of the
εq’s. In such a case the εq’s are more spread out, and identifying the largest one
can be done despite a large noise in the estimations, hence with a limited number
of training examples.

where Φ stands for the cumulative distribution function of the unit Gaussian, and σ2 is of
order 1

S . See Figure 1 for an illustration of the behavior of E[ε∗] for two different variances
of the εq’s and a cost proportional to QS, the total number of features computed.

There is no reason to expect the distribution of the εq’s to be Gaussian, contrary to the
∆q’s, as shown in Equation (3), but this is not a problem as it can usually be approximated
by a mixture, for which we can still derive analytical expressions, even if the εq’s or the
∆q’s have different distributions for different q’s.

5.3 M.A.S. Variants

We created three algorithms modeling the distribution of the εq’s with a Gaussian mixture
model, and ∆q = ε̂q − εq as a Gaussian. The first one, M.A.S. naive, is described in
Algorithm 3, and fits the model to the edges estimated at the previous iteration.
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Algorithm 3 The M.A.S. naive algorithm models the current edge distribution with a
Gaussian mixture model fitted on the edges estimated at the previous iteration. It uses this
density model to compute the pair (Q∗, S∗) maximizing the expectation of the true edge of
the selected learner E[ε∗], and then samples the corresponding number of weak learners and
training examples, before keeping the weak learner with the highest approximated edge.
After the selection of the Q features, the algorithm continues like AdaBoost.

Input: gmm,Cost

for t = 1, . . . , T do

(Q∗, S∗)← argmax
cost(Q,S)≤Cost

Egmm[ε∗]

∀q ∈ {1, . . . , Q∗}, Hq ← sample(U(H))

∀s ∈ {1, . . . , S∗}, Ns ← sample(U({1, . . . , N}))

∀q ∈ {1, . . . , Q∗}, ε̂q ←
1

S∗

S∗∑
s=1

yNsHq(xNs) # Similar to equation (2)

ht ← Hargmaxq ε̂q

gmm← fit(ε̂1, . . . , ε̂Q∗)

. . .

end for

The second one, M.A.S. 1.Q, takes into account the decomposition of the weak learners
into K subsets, associated to different kind of features. It models the distributions of the
εq’s separately for each subset, estimating the distribution of each on a small number of
weak learners and examples sampled at the beginning of each boosting iteration, chosen so
as to account for 10% of the total computational cost. From these models, it optimizes Q,
S, and the index k of the subset to sample from. Unlike M.A.S. naive, it has to draw a small
number of weak learners and examples in order to fit the model since the edges estimated
at the previous iterations came from a unique subset.

Finally M.A.S. Q.1 similarly models the distributions of the εq’s, but it optimizes Q1, . . . ,
QK greedily, starting from Q1 = 0, . . . , QK = 0, and iteratively incrementing one of the Qk
so as to maximize E[ε∗]. This greedy procedure is repeated for different values of S and
ultimately the Q1, . . . , QK , S leading to the maximum expectation are selected.

5.4 Laminating

The last algorithm we have developed tries to reduce the requirement for a density model
of the εq’s. At every boosting iteration it iteratively reduces the number of considered weak
learners, and increases the number of examples taken into account.

Given fixed Q and S, at every boosting iteration, the Laminating algorithm first samples
Q weak learners and S training examples. Then, it computes the approximated edges and
keeps the Q

2 best learners. If more than one remains, it samples 2S examples, and re-iterates.
The whole process is described in Algorithm 4. The number of iterations is bounded by
dlog2(Q)e.
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Algorithm 4 The Laminating algorithm starts by sampling Q weak learners and S exam-
ples at the beginning of every boosting iteration, and refine those by successively halving
the number of learners and doubling the number of examples until only one learner remains.
After the selection of the Q features, the algorithm continues like AdaBoost.

Input: Q,S

for t = 1, . . . , T do

∀q ∈ {1, . . . , Q}, hq ← sample(U(H))

while Q > 1 do

∀s ∈ {1, . . . , S}, Ns ← sample(U({1, . . . , N}))

∀q ∈ {1, . . . , Q}, ε̂q ←
1

S

S∑
s=1

yNsHq(xNs) # Similar to equation (2)

sort(h1, . . . , hQ) s.t. ε̂1 ≥ · · · ≥ ε̂Q # Order the weak learners s.t.

Q← Q
2 # the best half comes first

S ← 2S

end while

. . .

end for

We have the following results on the accuracy of this Laminating procedure (the proof
is given in Appendix A):

Lemma 1 Let q? = argmaxq εq and δ > 0. The probability for an iteration of the Laminating
algorithm to retain only weak learners with edges below or equal to εq? − δ is

P

(∣∣∣∣{q : εq ≤ εq? − δ, ε̂q ≥ max
r:εr≥εq?−δ

ε̂r

}∣∣∣∣ ≥ Q

2

)
≤ 4 exp

(
−δ

2S

2

)
.

This holds regardless of the independence of the εq’s and/or the ∆q’s.

Since at each iteration the number of examples S doubles the lemma implies the following
theorem:

Theorem 1 The probability for the full Laminating procedure starting with Q weak learners
and S examples to end up with a learner with an edge below or equal to εq∗ − δ (the edge
of the optimal weak learner at the start of the procedure minus δ) is upper bounded by (the
proof is given in Appendix B)

4

1− exp
(
− δ2S

69

) − 4.

The theorem shows that as the number of samples grows, the probability to retain a
bad weak learner eventually goes down exponentially with the number of training examples,

as in this case the bound can be approximated by 4 exp
(
− δ2S

69

)
. This confirms the usual

relation between the number of examples and the complexity of the space of predictors in
learning theory.
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Figure 2: Difference between the maximum edge and the best edge found by 3 different
sampling strategies on the MNIST data set using the original features. The
algorithm used is AdaBoost.MH using T = 100 decision stumps as weak learners,
and the results were averaged over 10 randomized runs. The first strategy samples
uniformly a small number of features Q and determines the best one using all
S = 60, 000 training examples. The second strategy samples all Q = 784 features
and determines the best one using a small number of training examples S. The
third strategy is Laminating, starting from all the features and a suitable number
of training examples chosen so as to have the same cost as the first two strategies.
The cost is the product of Q and S and is set to QS = 180, 000 for the left figure
and QS = 600, 000 for the right one.

In practice the difference between the maximum edge εq? and the edge of the final weak
learner selected by Laminating is typically smaller than the difference with the edge of
a learner selected by a strategy looking at a fixed number of weak learners and training
examples, as can be observed in Figure 2.

6. Experiments

We demonstrate the effectiveness of our approaches on four standard image classification
and object detection data sets, using 19 kinds of features (33 on Caltech 101) divided in
as many subsets. We used the AdaBoost.MH algorithm (Schapire and Singer, 1999) with
decision stumps as weak learners to be able to use all methods in the same conditions.

6.1 Features

The features used in our experiments with all but the Caltech 101 data set can be divided
into three categories. (1) Image transforms: identity, grayscale conversion, Fourier and Haar
transforms, gradient image, local binary patterns (ILBP/LBP). (2) Intensity histograms:
sums of the intensities in random image patches, grayscale and color histograms of the entire
image. (3) Gradient histograms: histograms of (oriented and non oriented) gradients, Haar-
like features.
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The features from the first category typically have a large dimensionality, usually pro-
portional to the number of pixels in the image. Some of them do not pre-process the images
(identity, grayscale conversion, LBP, etc.) while some pre-transform them to another space,
prior to accessing any feature (typically the Fourier and Haar transforms).

Features from the second and third categories being histograms, they are usually much
smaller (containing typically of the order of a few hundreds to a few thousands coefficients),
but require some pre-processing to build the histograms.

For the Caltech 101 data set we used the same features as (Gehler and Nowozin, 2009)
in their experiments. They used five type of features: PHOG shape descriptors, appearance
(SIFT) descriptors, region covariance, local binary patterns, and V1S+, which are normal-
ized Gabor filters. More details can be found in the referenced paper. Those features are
computed in a spatial pyramid, where each scale of the pyramid is considered as being
part of a different subset, leading to a total of 33 features. The number of features used
in our experiments (33) differ from (Gehler and Nowozin, 2009) as they also compute a
‘subwindow-kernel’ of SIFT features which we did not use.

6.2 Data sets

Figure 3: Example images from the four data sets used for the experimental validation.
Top left: first image of every digit taken from the MNIST database. Top right:
images from the INRIA Person data set. Bottom left: random images from the
Caltech 101 data set. Bottom right: some of the first images of the CIFAR-10
data set.

The first data set that we used is the MNIST handwritten digits database (LeCun et al.,
1998). It is composed of 10 classes and its training and testing sets consist respectively of
60,000 and 10,000 grayscale images of resolution 28×28 pixels (see the upper left part of
Figure 3 for some examples). The total number of features on this data set is 16,775.

The second data set that we used is the INRIA Person data set (Dalal and Triggs, 2005).
It is composed of a training and a testing set respectively of 2,418 and 1,126 color images of
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pedestrians of dimensions 64×128 pixels cropped from real-world photographs, along with
1,219 and 453 “background” images not containing any people (see the upper right part
of Figure 3 for some examples). We extracted 10 negative samples from each one of the
background image, following the setup of (Dalal and Triggs, 2005). The total number of
features on this data set is 230,503.

The third data set that we used is Caltech 101 (Fei-Fei et al., 2004) due to its wide usage
and the availability of already computed features (Gehler and Nowozin, 2009). It consists
of color images of various dimensions organized in 101 object classes (see the bottom left
part of Figure 3 for some examples). We sampled 15 training examples and 20 distinct test
examples from every class, as advised on the data set website. The total number of features
on this data set is 360,630.

The fourth and last data set that we used is CIFAR-10 (Krizhevsky, 2009). It is a
labeled subset of the 80 tiny million images data set. It is composed of 10 classes and
its training and testing sets consist respectively of 50,000 and 10,000 color images of size
32×32 pixels (see the bottom left part of Figure 3 for some examples). The total number
of features on this data set is 29,879.

6.3 Uniform Sampling Baselines

A naive sampling strategy would pick the Q features uniformly in ∪kFk. However, this does
not distribute the sampling properly among the Fk’s. In the extreme case, if one of the
Fk had a far greater cardinality than the others, all features would come from it. And in
most contexts, mixing features from the different Fk’s in an equilibrate manner is critical
to benefit from their complementarity. We propose the four following baselines to pick a
good feature at every boosting step:

• Best subset picks Q features at random in a fixed subset, the one with the smallest
final boosting loss.

• Uniform Naive picks Q features at random, uniformly in ∪kFq.

• Uniform 1.Q picks one of the feature subsets at random, and then samples the Q
features from that single subset.

• Uniform Q.1 picks at random, uniformly, Q subsets of features (with replacement if
Q > K), and then picks one feature uniformly in each subset.

The cost of running Best subset is K times higher than running the other three strategies
since the subset leading to the smallest final boosting loss is not known a priori and requires
to redo the training K times. Also, since it makes use of one subset only we can expect its
final performance to be lower than the others. It was included for comparison only.

6.4 Bandit Sampling Baselines

The strategies of the previous section are purely random and do not exploit any kind
of information to bias their sampling. Smarter strategies to deal with the problem of
exploration-exploitation trade-off were first introduced in (Busa-Fekete and Kegl, 2009),
and extended in (Busa-Fekete and Kegl, 2010). The driving idea of these papers is to
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entrust a multi-armed bandits (MAB) algorithm (respectively UCB in Auer et al. (2002)
and Exp3.P in Auer et al. (2003)) with the mission to sample useful features.

The multi-armed bandits problem is defined as follows: there are M gambling machines
(the “arms” of the bandits), and at every time-step t the gambler chooses an arm jt, pulls it,
and receives a reward rtjt ∈ [0, 1]. The goal of the algorithm is to minimize the weak-regret,
that is the difference between the reward obtained by the gambler and the best fixed arm,
retrospectively.

The first weakness of these algorithms in the context of accelerating boosting, that we
have identified in Section 2, is the assumption of stationarity of the loss reduction, which
cannot be easily dealt with. Even though the Exp3.P algorithm does not make such an
assumption explicitly, it still ignores the boosting weights, and thus can only rely on the
history of past rewards.

The second weakness, the application context, can be addressed in our setting by learn-
ing the usefulness of the subsets instead of individual features.

A third weakness is that in boosting one aims at minimizing the loss (which translates
into maximizing the sum of the rewards for the bandit algorithm), and not at minimizing
the weak-regret.

Finally, another issue arises when trying to use those algorithms in practice. As they
use some kind of confidence intervals, the scale of the rewards matters greatly. For example,
if all the rewards obtained are very small (∀t, rt ≤ ε � 1), the algorithms will not learn
anything, as they expect rewards to make full use of the range [0, 1].

For this reason we set the bandit baselines’ meta-parameters to the ones leading to the
lowest loss a posteriori, as explained in Section 6.5, and use a third multi-armed bandit
algorithm in our experiments, ε-greedy (Auer et al., 2002), which does not suffer from this
problem.

Hence, we use in our experiments the three following baselines, using the same reward
as in (Busa-Fekete and Kegl, 2010):

• UCB picks Q features from the subset that maximizes r̄j +
√

(2 log n)/nj , where r̄j is

the current average reward of subset j, nj is the number of times subset j was chosen
so far, and n is the current boosting round.

• Epx3.P maintains a distribution of weights over the feature subsets, and at every
round picks one subset accordingly, obtains a reward, and updates the distribution.
For the precise definition of the algorithm, see (Auer et al., 2003; Busa-Fekete and
Kegl, 2010).

• ε-greedy picks Q features from the subset with the highest current average reward
with probability 1− εn, or from a random subset with probability εn, where εn = cK

d2n
,

and c and d are parameters of the algorithm.

6.5 Results

We tested all the proposed methods of Sections 4, 5.3, and 5.4 against the baselines described
in Sections 6.3 and 6.4 on the four benchmark data sets described above in Section 6.2 using
the standard train/test cuts and all the features of Section 6.1. We report the results of doing
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MNIST

Methods

T (# boosting steps)

10 100 1,000 10,000

loss
test
error

loss
test

error
loss

test

error
loss

test

error

Best family? -0.43 36.48 -0.95 5.77 -1.84 1.47 -4.84 0.92

Uniform Naive -0.38 45.3 -0.85 7.79 -1.74 1.64 -5.37 0.93

Uniform 1.Q -0.36 49.4 -0.75 10.8 -1.51 2.18 -3.90 1.08

Uniform Q.1 -0.38 43.0 -0.86 7.40 -1.72 1.71 -5.06 0.97

UCB? -0.40 41.9 -0.79 9.67 -1.64 1.86 -5.54 0.94

Exp3.P? -0.36 47.9 -0.77 10.3 -1.66 1.79 -5.42 0.92

ε-greedy? -0.37 45.9 -0.88 7.04 -1.78 1.57 -5.45 0.88

Tasting 1.Q -0.43 36.1 -0.96 5.38 -1.91 1.41 -5.90 0.92

Tasting Q.1 -0.44 34.8 -0.97 5.31 -1.91 1.36 -5.91 0.94

M.A.S. Naive -0.51 26.3 -1.01 4.78 -1.80 1.54 -5.06 0.96

M.A.S. 1.Q -0.48 29.9 -0.98 5.21 -1.74 1.63 -4.15 1.04

M.A.S. Q.1 -0.43 35.7 -0.98 5.21 -1.78 1.68 -4.51 1.01

Laminating -0.55 21.9 -1.10 3.85 -2.00 1.35 -5.87 0.96

Table 1: Mean boosting loss (log10) and test error (%) after various number of boosting
steps on the MNIST data set with all families of features. Methods highlighted
with a ? require the tuning of meta-parameters, which have been optimized by
training fully multiple times.
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INRIA

Methods

T (# boosting steps)

10 100 1,000 10,000

loss
test
error

loss
test

error
loss

test

error
loss

test

error

Best family? -0.34 12.2 -0.93 3.29 -3.72 1.20 -26.9 1.00

Uniform Naive -0.31 13.4 -0.86 4.87 -3.92 1.27 -31.9 0.53

Uniform 1.Q -0.30 14.2 -0.95 3.99 -4.26 0.89 -34.3 0.37

Uniform Q.1 -0.30 14.0 -1.01 3.92 -4.86 0.69 -40.0 0.33

UCB? -0.35 12.1 -1.08 3.17 -5.47 0.61 -49.3 0.30

Exp3.P? -0.31 13.6 -0.91 4.09 -4.53 0.79 -44.7 0.32

ε-greedy? -0.34 12.9 -1.11 2.89 -5.92 0.54 -49.3 0.34

Tasting 1.Q -0.39 10.9 -1.30 2.14 -6.44 0.49 -54.1 0.30

Tasting Q.1 -0.40 11.2 -1.30 2.33 -6.54 0.57 -55.1 0.32

M.A.S. Naive -0.46 8.80 -1.50 1.66 -7.23 0.44 -60.4 0.27

M.A.S. 1.Q -0.41 10.1 -1.45 1.82 -6.87 0.50 -55.9 0.28

M.A.S. Q.1 -0.44 9.43 -1.51 1.65 -6.97 0.42 -57.1 0.27

Laminating -0.56 6.85 -2.05 1.12 -11.2 0.39 -99.8 0.30

Table 2: Mean boosting loss (log10) and test error (%) after various number of boosting
steps on the INRIA data set with all families of features. Methods highlighted
with a ? require the tuning of meta-parameters, which have been optimized by
training fully multiple times.
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Caltech 101

Methods

T (# boosting steps)

10 100 1,000 10,000

loss
test
error

loss
test

error
loss

test

error
loss

test

error

Best family? -0.80 95.2 -1.44 79.4 -7.17 56.7 -65.5 41.9

Uniform Naive -0.79 95.8 -1.40 80.3 -6.81 55.6 -61.8 38.8

Uniform 1.Q -0.79 95.9 -1.36 79.0 -5.84 54.2 -49.6 40.8

Uniform Q.1 -0.81 94.2 -1.44 76.5 -6.74 51.8 -59.2 37.6

UCB? -0.81 94.2 -1.40 78.6 -6.46 52.6 -61.6 37.0

Exp3.P? -0.79 95.8 -1.34 80.3 -5.89 54.7 -54.4 40.6

ε-greedy? -0.81 94.8 -1.42 76.7 -7.26 50.6 -67.1 37.4

Tasting 1.Q -0.82 93.8 -1.50 74.2 -7.47 50.7 -68.1 35.3

Tasting Q.1 -0.82 93.9 -1.50 74.5 -7.46 50.5 -68.1 35.5

M.A.S. Naive -0.80 94.3 -1.43 76.2 -6.70 51.8 -59.1 37.9

M.A.S. 1.Q -0.78 96.4 -1.01 90.5 -2.04 85.9 -29.5 53.6

M.A.S. Q.1 -0.79 95.8 -1.21 85.6 -5.01 58.7 -42.7 44.5

Laminating -0.81 94.3 -1.43 77.0 -6.33 53.0 -54.4 38.4

Table 3: Mean boosting loss (log10) and test error (%) after various number of boosting
steps on the Caltech 101 data set with all families of features. Methods highlighted
with a ? require the tuning of meta-parameters, which have been optimized by
training fully multiple times.
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CIFAR-10

Methods

T (# boosting steps)

10 100 1,000 10,000

loss
test
error

loss
test

error
loss

test

error
loss

test

error

Best family -0.27 73.6 -0.33 57.4 -0.43 44.8 -0.67 40.2

Uniform Naive -0.26 74.9 -0.34 55.9 -0.48 38.9 -0.93 32.2

Uniform 1.Q -0.26 76.6 -0.33 57.5 -0.47 39.9 -0.84 31.3

Uniform Q.1 -0.27 74.3 -0.34 53.8 -0.49 37.6 -0.91 30.9

UCB? -0.27 73.3 -0.34 56.2 -0.49 37.7 -0.90 30.6

Exp3.P? -0.26 77.2 -0.33 58.0 -0.47 38.9 -0.86 30.3

ε-greedy? -0.26 75.8 -0.35 53.4 -0.49 37.09 -0.88 30.0

Tasting 1.Q -0.28 72.6 -0.36 50.9 -0.50 36.2 -0.95 31.7

Tasting Q.1 -0.28 71.8 -0.36 50.9 -0.50 36.3 -0.95 31.5

M.A.S. Naive -0.28 71.9 -0.35 52.5 -0.49 37.5 -0.91 31.0

M.A.S. 1.Q -0.28 70.7 -0.35 53.3 -0.45 40.5 -0.63 33.8

M.A.S. Q.1 -0.28 71.4 -0.35 52.7 -0.45 40.4 -0.62 34.1

Laminating -0.29 67.8 -0.37 49.1 -0.50 36.8 -0.88 31.5

Table 4: Mean boosting loss (log10) and test error (%) after various number of boosting
steps on the CIFAR-10 data set with all families of features. Methods highlighted
with a ? require the tuning of meta-parameters, which have been optimized by
training fully multiple times.
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up to 10,000 boosting rounds averaged through ten randomized runs in Tables 1—4. We
used as cost for all the algorithms the number of evaluated features, that is for each boosting
iteration QS, the number of sampled features times the number of sampled examples. For
the Laminating algorithm we multiplied this cost by the number of iterations dlog2(Q)e.
We set the maximum cost of all the algorithms to 10N , setting Q = 10 and S = N for the
baselines, as this configuration leads to the best results after 10,000 boosting rounds.

The parameters of the baselines—namely the scale of the rewards for UCB and Exp3.P,
and the c/d2 ratio of ε-greedy—were optimized by trying all values of the form 2n, n =
{0, 1, ..., 11}, and keeping the one leading to the smallest final boosting loss on the training
set, which is unfair to the uniform baselines as well as our methods. We set the values of
the parameters of Exp3.P to η = 0.3 and λ = 0.15 as recommended in (Busa-Fekete and
Kegl, 2010).

These results illustrate the efficiency of the proposed methods. Up to 1,000 boosting
rounds, the Laminating algorithms is the clear winner on three out of the four data sets.
Then come the M.A.S. and the Tasting procedures, still performing far better than the
baselines. On the Caltech 101 data set the situation is different. Since it contains a much
smaller number of training examples compared to the other data sets (1515 versus several
tens of thousands), there is no advantage in sampling examples. It even proves detrimental
as the M.A.S. and Laminating methods are beaten by the baselines after 1,000 iterations.

The performance of all the methods tends to get similar for 10,000 stumps, which is
unusually large. The Tasting algorithm appears to fare the best, sampling examples offering
no speed gain for such a large number of boosting steps, except on the INRIA data set.
On this data set the Laminating algorithm still dominates, although its advantage in loss
reduction does not translate into a lower test error anymore.

7. Conclusion

We have improved boosting by modeling the statistical behavior of the weak learners’ edges.
This allowed us to maximize the loss reduction under strict control of the computational
cost. Experiments demonstrate that the algorithms perform well on real-world pattern
recognition tasks.

Extensions of the proposed methods could be investigated along two axes. The first
one is to merge the best two methods by adding a Tasting component to the Laminating
procedure, in order to bias the sampling towards promising feature subsets. The second is
to add a bandit-like component to the methods by adding a variance term related to the
lack of samples, and their obsolescence in the boosting process. This would account for the
degrading density estimation when subsets have not been sampled for a while, and induce
an exploratory sampling which may be missing in the current algorithms.
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Appendix A

Proof of Lemma 1:

Since

max
r:εr≥εq?−δ

ε̂r ≥ ε̂q? (7)

Defining Bq = 1{∆q−∆q?≥δ}, we have

P

(∣∣∣∣{q : εq ≤ εq? − δ, ε̂q ≥ max
r:εr≥εq?−δ

ε̂r

}∣∣∣∣ ≥ Q

2

)
≤P

(
|{q : εq ≤ εq? − δ, ε̂q ≥ ε̂q?}| ≥

Q

2

)
(8)

≤P

(
|{q : εq ≤ εq? − δ,∆q −∆q? ≥ δ}| ≥

Q

2

)
(9)

≤P

 ∑
q, εq≤εq?−δ

Bq ≥
Q

2

 (10)

≤P

(∑
q

Bq ≥
Q

2

)
(11)

≤P

(
2
∑

q Bq

Q
≥ 1

)
(12)

≤
2 E
[∑

q Bq

]
Q

(13)

≤2 E[Bq] (14)

≤2 E
[
1{(∆q≥ δ2 )∪(∆q?≤− δ2 )}

]
(15)

≤4 exp

(
−δ

2S

2

)
. (16)

Equation (7) is true since q? is among the {r : εr ≥ εq? − δ} and δ is positive. Equations
(8) to (12) are true since we relax conditions on the event. Equation (13) is true since
P(X ≥ 1) ≤ E(X) for X ≥ 0. Equations (14) and (15) are true analytically, and equation
(16) follows from Hœffding’s inequality.
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Appendix B

Proof of Theorem 1:

Defining δk =
1

C
δ

√
k

2k−1
where C =

dlog2(Q)e∑
k=1

√
k

2k−1
is a normalization constant such that

the δk’s sum to the original δ, i.e.

dlog2(Q)e∑
k=1

δk = δ.

We apply Lemma 1 with constant δk for each of the k Laminating iterations, 1 ≤ k ≤
dlog2(Q)e. Since each iteration samples twice as many training examples as the previous
one, and the δk’s sum to the original δ, the probability to end up with a weak learner with
an edge below or equal to εq∗ − δ is upper bounded by

4

dlog2(Q)e∑
k=1

exp

(
−
δ2
k S 2k−1

2

)

≤4
∞∑
k=1

exp

(
−δ

2Sk

2C2

)
(17)

≤4

 1

1− exp
(
− δ2S

2C2

) − 1

 (18)

≤4

 1

1− exp
(
− δ2S

69

) − 1

 . (19)

Equation (17) is true analytically, Equation (18) follows from the formula for geometric
series, and Equation (19) is true due to the fact that the constant C is upper bounded by
√

2 times the polylogarithm Li− 1
2

(
1√
2

)
=

∞∑
k=1

√
k

2k
≈ 4.15.
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Abstract

Optimization on manifolds is a rapidly developing branch of nonlinear optimization.
Its focus is on problems where the smooth geometry of the search space can be leveraged
to design efficient numerical algorithms. In particular, optimization on manifolds is well-
suited to deal with rank and orthogonality constraints. Such structured constraints appear
pervasively in machine learning applications, including low-rank matrix completion, sensor
network localization, camera network registration, independent component analysis, metric
learning, dimensionality reduction and so on.

The Manopt toolbox, available at www.manopt.org, is a user-friendly, documented
piece of software dedicated to simplify experimenting with state of the art Riemannian
optimization algorithms. By dealing internally with most of the differential geometry, the
package aims particularly at lowering the entrance barrier.

Keywords: Riemannian optimization, nonlinear programming, non convex, orthogonality
constraints, rank constraints, optimization with symmetries, rotation matrices

1. Introduction

Optimization on manifolds, or Riemannian optimization, is a fast growing research topic in
the field of nonlinear optimization. Its purpose is to provide efficient numerical algorithms
to find (at least local) optimizers for problems of the form

min
x∈M

f(x), (1)

where the search spaceM is a smooth space: a differentiable manifold which can be endowed
with a Riemannian structure. In a nutshell, this meansM can be linearized locally at each
point x as a tangent space TxM and an inner product 〈·, ·〉x which smoothly depends on x is
available on TxM. For example, whenM is a submanifold of Rn×m, a typical inner product
is 〈H1, H2〉X = trace(H>1H2). Many smooth search spaces arise often in applications.

©2014 Nicolas Boumal, Bamdev Mishra, P.-A. Absil and Rodolphe Sepulchre.
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For example, the oblique manifoldM = {X ∈ Rn×m : diag(X>X) = 1m} is a product
of spheres. That is, X ∈M if each column of X has unit 2-norm in Rn. Absil and Gallivan
(2006) show how independent component analysis can be cast on this manifold as non-
orthogonal joint diagonalization.

When furthermore it is only the product Y = X>X which matters, matrices of the
form QX are equivalent for all orthogonal Q. This suggests a quotient geometry for the
fixed-rank elliptope M = {Y ∈ Rm×m : Y = Y > � 0, rank(Y ) = n,diag(Y ) = 1m}.
Grubǐsić and Pietersz (2007) optimize over this set to produce low-rank approximations of
covariance matrices.

The (compact) Stiefel manifold is the Riemannian submanifold of orthonormal matri-
ces, M = {X ∈ Rn×m : X>X = Im}. Theis et al. (2009) formulate independent component
analysis with dimensionality reduction as optimization over the Stiefel manifold. Journée
et al. (2010b) frame sparse principal component analysis over this manifold as well.

The Grassmann manifoldM = {col(X) : X ∈ Rn×m
∗ }, where X is a full-rank matrix

and col(X) denotes the subspace spanned by its columns, is the set of subspaces of Rn of
dimension m. Among other things, optimization over the Grassmann manifold is useful
in low-rank matrix completion, where it is observed that if one knows the column space
spanned by the sought matrix, then completing the matrix according to a least-squares
criterion is easy (Boumal and Absil, 2011; Keshavan et al., 2010).

The special orthogonal groupM = {X ∈ Rn×n : X>X = In and det(X) = 1} is the
group of rotations, typically considered as a Riemannian submanifold of Rn×n. Optimization
problems involving rotation matrices occur in robotics and computer vision, when estimating
the attitude of vehicles or the pose of cameras (Boumal et al., 2013).

The set of fixed-rank matrices M = {X ∈ Rn×m : rank(X) = k} admits a number
of different Riemannian structures. Vandereycken (2013) proposes an embedded geometry
for M and exploits Riemannian optimization on that manifold to address the low-rank
matrix completion problem. Shalit et al. (2012) use the same geometry to address similarity
learning. Mishra et al. (2012) further cover a number of quotient geometries.

The set of symmetric, positive semidefinite, fixed-rank matrices is also a man-
ifold, M = {X ∈ Rn×n : X = X> � 0, rank(X) = k}. Meyer et al. (2011) exploit this to
propose low-rank algorithms for metric learning. This space is tightly related to the space
of Euclidean distance matrices X such that Xij is the squared distance between two
fixed points xi, xj ∈ Rk. Mishra et al. (2011) leverage this geometry to formulate efficient
low-rank algorithms for Euclidean distance matrix completion.

The rich geometry of Riemannian manifolds makes it possible to define gradients and
Hessians of cost functions f , as well as systematic procedures (called retractions) to move
on the manifold starting at a point x, along a specified tangent direction at x. Those
are sufficient ingredients to generalize standard nonlinear optimization methods such as
gradient descent, conjugate gradients, quasi-Newton, trust-regions, etc.

Building upon many earlier results not reviewed here, the recent monograph by Absil
et al. (2008) sets an algorithmic framework to analyze problems of the form (1) when f
is a smooth function, with a strong emphasis on building a theory that leads to efficient
numerical algorithms on special manifolds. In particular, it describes the necessary ingredi-
ents to design first- and second-order algorithms on Riemannian submanifolds and quotient
manifolds of linear spaces. These algorithms come with numerical costs and convergence
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guarantees essentially matching those of the Euclidean counterparts they generalize. For
example, the Riemannian trust-region method converges globally toward critical points and
converges locally quadratically when the Hessian of f is available.

The maturity of the theory of smooth Riemannian optimization, its widespread appli-
cability and its excellent track record performance-wise prompted us to build the Manopt
toolbox: a user-friendly piece of software to help researchers and practitioners experiment
with these tools. Code and documentation are available at www.manopt.org.

2. Architecture and features of Manopt

The toolbox architecture is based on a separation of the manifolds, the solvers and the prob-
lem descriptions. For basic use, one only needs to pick a manifold from the library, describe
the cost function (and possible derivatives) on this manifold and pass it on to a solver.
Accompanying tools help the user in common tasks such as numerically checking whether
the cost function agrees with its derivatives up to the appropriate order, approximating the
Hessian based on the gradient of the cost, etc.

Manifolds in Manopt are represented as structures and are obtained by calling a factory.
The manifold descriptions include projections on tangent spaces, retractions, helpers to
convert Euclidean derivatives (gradient and Hessian) to Riemannian derivatives, etc. All
the manifolds mentioned in the introduction work out of the box, and more can be added.
Cartesian products of known manifolds are supported too.

Solvers in Manopt are functions that implement generic Riemannian minimization al-
gorithms. Solvers log standard information at each iteration and comply with standard
stopping criteria. Users may provide callbacks to log extra information or check custom
stopping criteria. Currently available solvers include Riemannian trust-regions—based on
work by Absil et al. (2007)—and conjugate gradients (both with preconditioning), as well
as steepest descent and a couple of derivative-free schemes. More solvers can be added.

An optimization problem in Manopt is represented as a problem structure. The latter
includes a field which contains a manifold, as obtained from a factory. Additionally, the
problem structure hosts function handles for the cost function f and (possibly) its deriva-
tives. An abstraction layer at the interface between the solvers and the problem description
offers great flexibility in the cost function description. As the needs grow during the life-
cycle of the toolbox and new ways of describing f become necessary (subdifferentials, partial
gradients, etc.), it will be sufficient to update this interface.

Computing f(x) typically produces intermediate results which can be reused in order
to compute the derivatives of f at x. To prevent redundant computations, Manopt in-
corporates an (optional) caching system, which becomes useful when transitioning from a
proof-of-concept draft of the algorithm to a convincing implementation.

3. Example: the maximum cut problem

Given an undirected graph with n nodes and weights wij ≥ 0 on the edges such that
W ∈ Rn×n is the weighted adjacency matrix and D ∈ Rn×n is the diagonal degree matrix
with Dii =

∑
j wij , the graph Laplacian is the positive semidefinite matrix L = D −W .

The max-cut problem consists in building a partition s ∈ {+1,−1}n of the nodes in two
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classes such that 1
4s
>Ls =

∑
i<j wij

(si−sj)2
4 , that is, the sum of the weights of the edges

connecting the two classes, is maximum. Let X = ss>. Then, max-cut is equivalent to:

max
X∈Rn×n

trace(LX)/4

s.t. X = X>� 0,diag(X) = 1n and rank(X) = 1.

Goemans and Williamson (1995) proposed and analyzed the famous relaxation of this prob-
lem which consists in dropping the rank constraint, yielding a semidefinite program. Al-
ternatively relaxing the rank constraint to be rank(X) ≤ r for some 1 < r < n yields a
tighter but nonconvex relaxation. Journée et al. (2010a) observe that fixing the rank with
the constraint rank(X) = r turns the search space into a smooth manifold, the fixed-rank
elliptope, which can be optimized over using Riemannian optimization. In Manopt, simple
code for this reads (with Y ∈ Rn×r such that X = Y Y >):

% The problem structure hosts a manifold structure as well as function handles
% to define the cost function and its derivatives (here provided as Euclidean
% derivatives, which will be converted to their Riemannian equivalent).
problem.M = elliptopefactory(n, r);
problem.cost = @(Y) −trace(Y'*L*Y)/4;
problem.egrad = @(Y) −(L*Y)/2;
problem.ehess = @(Y, U) −(L*U)/2; % optional

% These diagnostics tools help make sure the gradient and Hessian are correct.
checkgradient(problem); pause;
checkhessian(problem); pause;

% Minimize with trust−regions, a random initial guess and default options.
Y = trustregions(problem);

Randomly projecting Y yields a cut: s = sign(Y*randn(r, 1)). The Manopt distribu-
tion includes advanced code for this example, where the caching functionalities are used
to avoid redundant computations of the product LY in the cost and the gradient, and the
rank r is increased gradually to obtain a global solution of the max-cut SDP (and hence a
formal upperbound), following a procedure described by Journée et al. (2010a).
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Abstract

Classification problems with thousands or more classes often have a large range of class-
confusabilities, and we show that the more-confusable classes add more noise to the em-
pirical loss that is minimized during training. We propose an online solution that reduces
the effect of highly confusable classes in training the classifier parameters, and focuses the
training on pairs of classes that are easier to differentiate at any given time in the training.
We also show that the adagrad method, recently proposed for automatically decreasing
step sizes for convex stochastic gradient descent, can also be profitably applied to the non-
convex joint training of supervised dimensionality reduction and linear classifiers as done
in Wsabie. Experiments on ImageNet benchmark data sets and proprietary image recogni-
tion problems with 15,000 to 97,000 classes show substantial gains in classification accuracy
compared to one-vs-all linear SVMs and Wsabie.

Keywords: large-scale, classification, multiclass, online learning, stochastic gradient

1. Introduction

Problems with many classes abound: from classifying a description of a flower as one of the
over 300,000 known flowering plants (Paton et al., 2008), to classifying a whistled tune as
one of the over 30 million recorded songs (Eck, 2013). Many practical multiclass problems
are labelling images, for example face recognition, or tagging locations in vacation photos.
In practice, the more classes considered, the greater the chance that some classes will be
easy to separate, but that some classes will be highly confusable.

When training a discriminative multi-class classifier, the true goal is to minimize ex-
pected error on future samples, but in practice we minimize empirical error on samples we
already have. In this paper, we show that classes that are more confusable add more noise
to the empirical loss. To address this, we propose approximating the expected error with
a different empirical loss we term the empirical class-confusion loss. For the large-scale
online training, we show that an online empirical class-confusion loss can be implemented
for stochastic gradient descent by simply ignoring stochastic gradients corresponding to a
repeated confusion between classes. This proposed strategy also automatically implements
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a form of curriculum learning, that is, of learning to distinguish easy classes before focusing
on learning to distinguish hard classes (Bengio et al., 2009).

In this paper, we focus on classifiers that use a linear discriminant or a single prototypical
feature vector to represent each class. Linear classifiers are a popular approach to highly
multiclass problems because they are efficient in terms of memory and inference and can
provide good performance (Perronnin et al., 2012; Lin et al., 2011; Sanchez and Perronnin,
2011). Class prototypes offer similar memory/efficiency advantages. The last layer of a
deep belief network classifier is often linear or soft-max discriminant functions (Bengio,
2009), and the proposed ideas for adapting online loss functions should be applicable in
that context as well.

We apply the proposed loss function adaptation to the multiclass linear classifier called
Wsabie (Weston et al., 2011). We also simplify Wsabie’s weighting of stochastic gradients,
and employ a recent advance in automatic step-size adaptation called adagrad (Duchi et al.,
2011). The resulting proposed Wsabie++ classifier almost doubles the classification accuracy
on benchmark Imagenet data sets compared to Wsabie, and shows substantial gains over
one-vs-all SVMs.

The rest of the article is as follows. After establishing notation in Section 2, we explain
in Section 3 how different class confusabilities can distort the standard empirical loss. We
then review loss functions for jointly training multiclass linear classifiers in Section 4, and
stochastic gradient descent variants for large-scale learning in Section 5. In Section 6, we
propose a practical online solution to adapt the empirical loss to account for the variance of
class confusability. We describe our adagrad implementation in Section 7. Experiments are
reported on benchmark and proprietary image classification data sets with 15,000-97,000
classes in Section 8 and 9. We conclude with some notes about the key issues and unresolved
questions.

2. Notation And Assumptions

We take as given a set of training data {(xt,Yt)} for t = 1, . . . , n, where xt ∈ Rd is a feature
vector and Yt ⊂ {1, 2, . . . , G} is the subset of the G class labels that are known to be correct
labels for xt. For example, an image might be represented by set of features xt and have
known labels Yt = {dolphin, ocean, Half Moon Bay}. We assume a discriminant function
f(x;βg) has been chosen with class-specific parameters βg for each class with g = 1, . . . , G.
The class discriminant functions are used to classify a test sample x as the class label that
solves

arg max
g
f(x;βg). (1)

Most of this paper applies equally well to “learning to rank,” in which case the output might
be a top-ranked or ranked-and-thresholded list of classes for a test sample x. For simplicity,
we restrict our discussion and metrics to the classification paradigm given by (1).

Many of the ideas in this paper can be applied to any choice of discriminant function
f(x, βg), but in this paper we focus on efficiency in terms of test-time and memory, and
so we focus on class discriminants that are parameterized by a d-dimensional vector per
class. Two such functions are: the inner product f(x;βg) = βTg x, and the squared `2
norm f(x;βg) = −(βg − x)T (βg − x). We also refer to these as linear discriminants and
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Euclidean distance discriminants, respectively. For example, one-vs-all linear SVMs use a
linear discriminant, where the βg are each trained to maximize the margin between samples
from the gth class and all samples from all other classes. The nearest means classifier
(Hastie et al., 2001) uses an Euclidean distance discriminant where each class prototype βg
is set to be the mean of all the training samples labelled with class g. Both the linear and
nearest-prototype functions produce linear decision boundaries between classes. And with
either the linear or Euclidean discriminants, the classifier has a total of G× d parameters,
and testing as per (1) scales as O(Gd).

To reduce memory and test time, and also as a regularizer, it may be useful for the clas-
sifier to include a dimensionality reduction matrix (sometimes called an embedding matrix)
W ∈ Rm×d, and then use linear or Euclidean discriminants in the reduced dimensionality
space, for example f(x;W,βg) = βTg Wx or f(x;W,βg) = −(βg − x)TW (βg − x).

3. The Problem with a Large Variance in Class Confusability

The underlying goal when discriminatively training a classifier is to minimize expected
classification error, but this goal is often approximated by the empirical classification errors
on a given data set. In this section, we show that the expected error does not count
errors between confusable classes (like dolphin and porpoise) the same as errors between
separable classes (like cat and dolphin), whereas the empirical error counts all errors
equally. Consequently, more confusable classes add more noise to the standard empirical
error approximation of the expected error, and this confusable-class noise can adversely
affect training.

Then in Section 6, we propose addressing this issue by changing the way we measure
empirical loss to reduce the impact of errors between more-confusable classes.

3.1 Expected Classification Error Depends on Class Confusability

Define a classifier c as a map from an input feature vector x to a class such that c : Rd →
1, 2, . . . , G. Let I be the indicator function, and assume there exists a joint probability
distribution PX,Y on the random feature vector X ∈ Rd and class Y ∈ {1, 2, . . . , G}. Then
the expected classification error of classifier c is:

EX,Y [IY 6=c(X)] = EX
[
EY |X [IY 6=c(X)]

]
(2)

= EX
[
PY |X(Y 6= c(X))

]
because I is a Bernoulli random variable (3)

≈ 1

n

n∑
t=1

PY |xt(Y 6= c(xt)), law of large numbers approximation (4)

≈ 1

n

n∑
t=1

Iyt 6=c(xt), (5)

where the approximation in (4) replaces the expectation with an average over n samples,
an approximation that is asymptotically correct as n → ∞ by the law of large numbers
(LLN). The final approximation given in (5) produces the standard empirical error.
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Equations (3) and (4) show that the expected error depends on the probability that
a given feature vector xt has corresponding random class label Yt equal to the classifier’s
decision c(xt). For example, suppose that sample xt is equally likely to be class 1 or class
2, but no other class. If the classifier labels xt as c(xt) = 1, one should add PY |xt(Y 6=
(c(xt) = 1)) = 1/2 to the approximate error given by (4). On the other hand, suppose that
for another sample xj , the probability of class 1 is .99 and the probability of class 3 is .01.
Then if the classifier calls c(xj) = 1 we should add PY |xt(Y 6= (c(xt) = 1)) = .01 to the
loss, whereas if the classifier calls c(xj) = 3 we should add PY |xt(Y 6= (c(xt) = 1)) = .99
to the loss. This relative weighting based on class confusions is in contrast to the standard
empirical loss given in (5) that simply counts all errors equally.

One can interpret the standard empirical loss given in (5) as the maximum likeli-
hood approximation to (2) that estimates PY |xt given the training sample pair (xt, yt) as

P̂Y |xt(yt) = 1 and P̂Y |xt(g) = 0 for all other classes g. This maximum likelihood estimate
converges asymptotically to (4), but for a finite number of training samples may produce a
poor approximation. For binary classifiers, the approximation (5) may be quite good. We
argue that (5) is generally a worse approximation as the number of classes increases. The
key issue is that while the one-or-zero error approximation in (5) asymptotically converges to
PY |xt , it converges more slowly when classes are more confusable, and thus more-confusable
classes add more “noise” to the approximation than less-confusable classes, biasing the
empirical loss to overfit the noise of the more confusable class confusions.

Let us characterize this difference in noise. For any feature vector x and classifier c the
true class label Y is a random variable, and thus the indicator IY 6=c(xt) in (5) is a random
indicator with a binomial distribution with parameter p = PY |xt(Y 6= c(xt)). The variance
of the random indicator IY 6=c(xt) is p(1− p), and thus the more confusable the classes, the
more variance there will be in the corresponding samples’ contribution to the empirical loss.

Beyond noting the variance of the empirical errors is quadratic in p, it is not straightfor-
ward to formally characterize the distribution of the empirical loss for binomials with differ-
ent p for finite n (see for example Brown et al., 2001). However we can emphasize this point
with a histogram of simulated empirical errors in Figure 1. The figure shows histograms of
1000 different simulations of the empirical error, calculated by averaging either 10 random
samples (top) or 100 random samples (bottom) that either have p = PY |xt(Y 6= c(xt)) = 0.5
(left) or p = PY |xt(Y 6= c(xt)) = 0.01 (right).

The left-hand side of Figure 1 corresponds to samples x that are equally likely to be
one of two classes, and so even the Bayes classifier is wrong half the time, such that p =
PY |xt(Y 6= c(xt)) = 0.5. The empirical error of such samples will eventually converge to
the true error 0.5, but we see (top left) that the empirical error of ten such samples varies
greatly! Even one hundred such samples (bottom left) are often a full .1 away from their
converged value. This is in contrast to the right-hand examples corresponding to samples
xt that are easily classified such that p = PY |xt(Y 6= c(xt)) = 0.01. Their empirical error is
generally much closer to the correct .01. Thus the more-confusable classes add more noise
to the standard empirical loss approximation (5).

in the special case that the Bayes error is zero and the classifier c is the Bayes classifier
the standard empirical loss approximation (5) is exact. For practical classification problems
with many classes, we argue that at least some classes will be very confusable, and thus the
Bayes error will not be zero, and (5) can be a dangerous approximation to use for training.

1464



Training Highly Multiclass Classifiers

P (classification error) = .5 P (classification error) = .01

10 Samples 10 Samples

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

Fr
eq

ue
nc

y

Empirical Error
0 0.2 0.4 0.6 0.8 1

0

200

400

600

800

1000

Fr
eq

ue
nc

y

Empirical Error

100 Samples 100 Samples

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

Fr
eq

ue
nc

y

Empirical Error
0 0.2 0.4 0.6 0.8 1

0

50

100

150

200

250

300

350

400

Fr
eq

ue
nc

y

Empirical Error

Figure 1: Histograms of the empirical error of 10 random samples (top) or 100 random
samples (bottom). As the number of samples averaged grows, the empirical error
will converge to the true probability of an error, either .5 (left) or .01 (right). But
given a finite sample, the empirical error may be quite noisy, and when the true
error is high (left) the empirical error can be much noisier than when the true
error is low (right).
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Empirical errors: 10 Empirical errors: 9

Figure 2: Two classifiers and the same draw of random training samples from four classes.
Dotted lines correspond to the Bayes decision boundaries, and indicate that class
1 and class 2 are indistinguishable (same Bayes decision regions). Solid lines cor-
respond to the classifier decision boundaries, determined by which class prototype
β1, β2, β3, or β4 is closest. The two figures differ in the placement of β1, which
produces different classifier decision boundaries. In this case, because of the ran-
domness of the given training samples, the empirical error is higher for the left
classifier than the right classifier, but the left classifier is closer to the optimal
Bayes classifier.

Figure 2 shows an example of empirical error being overfit to noise between confusable
classes. The figure compares two classifiers. Each classifier uses a Euclidean discriminant
function, that is, the gth class is represented by a prototype vector {βg}, and a feature
vector is classified as the nearest prototype with respect to Euclidean distance. Thus the
decision boundaries are formed by the Voronoi diagram denoted with the thick lines, and
the decision boundary between any two classes is linear.

The two classifiers in Figure 2 differ only in the placement of β1. One sees that decision
boundaries produced are not independent of each other: the right classifier has moved β1
up to reduce empirical errors between class 1 and class 2, but this also changes the decision
boundary between classes 1 and 3, and incurs a new empirical error of a class 3 sample.
The left classifier in Figure 2 is actually closer to the Bayes decision boundaries (shown by
the dotted lines), and would have lower error on a test set (on average).

If the feature dimension is high enough, then as the number of classes G grows, the
number of decision boundaries between classes can grow at a worst-case rate of G2, and yet
the ability of these efficient classifiers to describe decision boundaries is fixed at Gd degrees
of freedom. And with high-dimensional feature spaces, many classes are next to each other.
This interdependence of the pairwise class decision boundaries is why simply minimizing
the total empirical error is a bad strategy: it is too sensitive to the empirical error noise of
the more-confusable classes.
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3.2 Two Factors We Mostly Ignore In This Discussion

Throughout this paper we ignore the dependence of PY |x(Y 6= c(x)) on the particular feature
vector x, and focus instead on how confusable a particular class y = c(X) is averaged over
X. For example, pictures of porpoises may on average be confused with pictures of dolphins,
even though a particular image of a porpoise may be more or less confusable.

Also, we have thus far ignored the fact that discriminative training usually makes a
further approximation of (5) by replacing the indicator by a convex approximation like the
hinge loss. Such convex relaxations do not avoid the issues described in the previous section,
though they may help. For example, the hinge loss increases the weight of an error that
is made farther from the decision boundary. To the extent that classes are less confusable
farther away from the decision boundary, the hinge loss may be a better approximation
than the indicator to the probabilistic weighting of (4). However, if the features are high-
dimensional, the distribution of distances from the decision boundary may be less variable
than one would expect from two-dimensional intuition (see for example Hall and Marron,
2005).

3.3 A Different Approximation for the Empirical Loss

We argued above that when computing the empirical test error, approximating PY |xt(Y 6=
c(xt)) by 1 if yt = c(xt) and by 0 otherwise adds preferentially more label noise from more
confusable classes.

Here we propose a different approximation for PY |xt(Y 6= c(xt)). As usual, if c(xt) = yt,
we approximate PY |xt(Y 6= c(xt)) by 0. But if c(xt) 6= yt, then we use the empirical
probability that a training sample that has label yt is not classified as c(xt):

PY |xt(Y 6= c(xt)) ≈ EX|Y=yt [P (c(X) 6= c(xt)] (6)

≈


n∑
τ=1

Iyτ=ytIc(xτ )6=c(xt)∑n
τ=1 Iyτ=yt

 Iyt 6=c(xt). (7)

This approximation depends on how consistently feature vectors with training label yt
are classified as class c(xt), and counts common class-confusions less. For example, consider
the right-hand classifier c(x) in Figure 2. There is just one training sample labeled 3 that
is incorrectly classified as class 1. The cost of that error according to (7) is 10/11, because
there are eleven class 3 examples, and ten of those are classified as class 3. On the other
hand, the cost of incorrectly labeling a sample of class 1 as a sample of class 2 would be
only 7/11, because seven of the eleven class 1 samples are not labeled as class 2.

Thus this approximation generally has the desired effect of counting confusions between
confusable classes relatively less than confusions between easy-to-separate classes. This
approximation is more exact for “good” classifiers c(x) that are more similar to the Bayes
classifier, and more exact if the feature vectors X are equally predictive for each class label
so that averaging over X in (6) is a good approximation for most realizations xt.

One could implement this approximation in a sequential process: first train a classifier,
then compute the empirical class-confusion probability matrix, and then re-train a classifier
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using the approximation (7) for the empirical loss. Shamir and Dekel (2010) proposed a
related but more extreme two-step approach for highly multi-class problems: first train a
classifier on all classes, and then delete classes that are poorly estimated by the classifier.

To be more practical, we propose continuously evolving the classifier to ignore the cur-
rently highly-confusable classes by implementing (6) in an online fashion with SGD. This
simple variant can be interpreted as implementing curriculum learning (Bengio et al., 2009),
a topic we discuss further in Section 6.2.1. But before detailing the proposed simple on-
line strategy in Section 6, we need to review related work in loss functions for multi-class
classifiers.

4. Related Work in Loss Functions for Multiclass Classifiers

In this section, we review loss functions for multiclass classifiers, and discuss recent work
adapting such loss functions to the online setting for large-scale learning.

One of the most popular classifiers for highly multiclass learning is one-vs-all linear
SVMs, which have only O(Gd) parameters to learn and store, and O(Gd) time needed
for testing. A clear advantage of one-vs-all is that the G class discriminant functions
{fg(x)} can be trained independently. An alternate parallelizable approach is to train all
G2 one-vs-one SVMs, and let them vote for the best class (also known as round-robin and
all-vs-all). Binary classifiers can also be combined using error-correcting code approaches
(Dietterich and Bakiri, 1995; Allwein et al., 2000; Crammer and Singer, 2002). A well-
regarded experimental study of multiclass classification approaches by Rifkin and Klatau
(2004) showed that one-vs-all SVMs performed “just as well” on a set of ten benchmark
data sets with 4-49 classes as one-vs-one or error-correcting code approaches.

A number of researchers have independently extended the two-class SVM optimization
problem to a joint multiclass optimization problem that maximizes pairwise margins subject
to the training samples being correctly classified, with respect to pairwise slack variables
(Vapnik, 1998; Weston and Watkins, 1998, 1999; Bredensteiner and Bennet, 1999).1 These
extensions have been shown to be essentially equivalent quadratic programming problems
(Guermeur, 2002). The minimized empirical loss can be stated as the sum of the pairwise
errors:

Lpairwise({βg}) =
n∑
t=1

1

|Yt|
∑
y+∈Yt

1

|YCt |
∑

y−∈YCt

|b− f(xt;βy+) + f(xt;βy−)|+, (8)

where | · |+ is short-hand for max(0, ·), b is a margin parameter, YCt is the complement set
of Yt, and we added normalizers to account for the case that a given xt may have more than
one positive label such that |Yt| > 1.

Crammer and Singer (2001) instead suggested taking the maximum hinge loss over all
the negative classes:

Lmax loss({βg}) =

n∑
t=1

1

|Yt|
∑
y+∈Yt

max
y−∈YCt

|b− f(xt;βy+) + f(xt;βy−)|+. (9)

1. See also the work of Herbrich et al. (2000) for a related pairwise loss function for ranking rather than
classification.
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This maximum hinge-loss is sometimes called multiclass SVM, and can be derived from a
margin-bound (Mohri et al., 2012). Daniely et al. (2012) theoretically compared multiclass
SVM with one-vs-all, one-vs-one, tree-based linear classifiers and error-correcting output
code linear classifiers. They showed that the hypothesis class of multiclass SVM contains
that of one-vs-all and tree-classifiers, which strictly contain the hypothesis class of one-vs-
one classifiers. Thus the potential performance with multiclass SVM is larger. However
they also showed that the approximation error of one-vs-one is smallest, with multiclass
SVM next smallest.

Statnikov et al. (2005) compared eight multiclass classifiers including that of Weston
and Watkins (1999) and Crammer and Singer (2001) on nine cancer classification problems
with 3 to 26 classes and less than 400 samples per problem. On these small-scale data sets,
they found the Crammer and Singer (2001) classifier was best (or tied) on 2/3 of the data
sets, and the pairwise loss given in (8) performed almost as well.

Lee et al. (2004) prove in their Lemma 2 that previous approaches to multiclass SVMs
are not guaranteed to be asymptotically consistent. For more on consistency of multiclass
classification loss functions, see Rifkin and Klatau (2004), Tewari and Bartlett (2007), Zhang
(2004), and Mroueh et al. (2012). Lee et al. (2004) proposed a multiclass loss function that
is consistent. They force the class discriminants to sum to zero such that

∑
g f(x;βg) = 0

for all x, and define the loss:

Ltotal loss({βg}) =

n∑
t=1

∑
y−∈YCt

|f(xt;βy−)− 1

G− 1
|+. (10)

This loss function jointly trains the class discriminants so that the total sum of wrong class
discriminants for each training sample is small. Minimizing this loss can be expressed as a
constrained quadratic program. The experiments of Lee et al. (2004) on a few small data
sets did not show much difference between the performance of (10) and (8).

5. Online Loss Functions for Training Large-scale Multiclass Classifiers

If there are a large number of training samples n, then computing the loss for each candidate
set of classifier parameters becomes computationally prohibitive. The usual solution is to
minimize the loss in an online fashion with stochastic gradient descent, but exactly how
to sample the stochastic gradients becomes a key issue. Next, we review two stochastic
gradient approaches that correspond to different loss functions: AUC sampling (Grangier
and Bengio, 2008) and the WARP sampling used in the Wsabie classifier (Weston et al.,
2011).

5.1 AUC Sampling

For a large number of training samples n, Grangier and Bengio (2008) proposed optimizing
(8) by sequentially uniformly sampling from each of the three sums in (8):

1. draw one training sample xt,

2. draw one correct class y+ from Yt,
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3. draw one incorrect class y− from YCt ,

4. compute the corresponding stochastic gradient of the loss in (8),

5. update the classifier parameters.

This sampling strategy, referred to as area under the curve (AUC) sampling, is inefficient
because most randomly drawn incorrect class samples will have zero hinge loss and thus
not produce an update to the classifier.

5.2 WARP Sampling

The weighted approximately ranked pairwise (WARP) sampling was introduced by Weston
et al. (2011) to make the stochastic gradient sampling more efficient than AUC sampling,
and was evolved from the weighted pairwise classification loss of Usunier et al. (2009).
Unlike AUC sampling, WARP sampling focuses on sampling from negative classes that
produce non-zero stochastic gradients for a given training example.

To explain WARP sampling, we first define the WARP loss:

LWARP({βg}) =

n∑
t=1

1

|Yt|
∑
y+∈Yt

1

|Vt,y+ |
∑

yv∈Vt,y+

w(y+) |b− f(xt;βy+) + f(xt;βyv)|+,

(11)

where w(y+) is a weight on the correct label, and Vt,y+ is the set of violating classes defined:

Vt,y+ = {yv s.t. |b− f(xt;βy+) + f(xt;βyv)|+ > 0}. (12)

As in Usunier et al. (2009), Weston et al. (2011) suggest using a weight function w(y+)
that is an increasing function of the number of violating classes. Because the number
of violating classes defines the rank of the correct class y+, they denote the number of
violating classes for a training sample with training class y+ as r(y+). They suggest using
the truncated harmonic series for the weight function,

w(y+) =

r(y+)∑
j=1

1

j
. (13)

Weston et al. (2011) proposed WARP sampling which sequentially uniformly samples
from each of the three sums in (11):

1. draw one training sample xt,

2. draw one correct class y+ from Yt,

3. draw one violating class yv from Vt,y+ if one exists,

4. compute the corresponding stochastic gradient of the loss in (11),

5. update the classifier parameters.
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To sample a violating class from Vt,y+ , the negative classes in YCt are uniformly randomly
sampled until a class that satisfies the violation constraint (12) is found, or the number of
allowed such trials (generally set to be G) is exhausted. The rank r(y+) needed to calculate
the weight in (13) is estimated to be (G − 1) divided by the number of negative classes
y− ∈ Yt that had to be tried before finding a violating class yv from Vt,y+ .

5.3 Some Notes Comparing AUC and WARP Loss

We note that WARP sampling is more likely than AUC sampling to update the parameters
of a training sample’s positive class y+ if y+ has few violating classes, that is if (xt, yt)
is already highly-ranked by (1). Specifically, suppose a training pair (xt, yt) is randomly
sampled, and suppose H > 0 of the G classes are violators such that their hinge-loss is
non-zero with respect to (x, y+). WARP sampling will draw random classes until it finds
a violator and makes an update, but AUC will only make an update if the one random
class it draws happens to be a violator, so only H/(G − 1) of the time. By definition, the
higher-ranked the correct class yt is for xt, the smaller the number of violating classes H,
and the less likely AUC sampling will update the classifier to learn from (xt, yt).

In this sense, WARP sampling is more focused on fixing class parameters that are almost
right already, whereas AUC sampling is more focused on improving class parameters that
are very wrong. At test time, classifiers choose only the highest-ranked class discriminant
as a class label, and thus the fact that AUC sampling updates more often on lower-ranked
classes is likely the key reason that WARP sampling performs so much better in practice
(see the experiments of Weston et al. (2011) and the experiments in this paper). Even in
ranking, it is usually only the top ranked classes that are of interest. However, the WARP
weight w(y+) given in (13) partly counteracts this difference by assigning greater weights
(equivalently a larger step-size to the stochastic gradient) if the correct class has many
violators, as then its rank is lower. In this paper, one of the proposals we make is to use
constant weights w(y+) = 1, so the training is even more focused on improving classes that
are already highly-ranked.

AUC sampling is also inefficient because so many of the random samples result in a zero
gradient. In fact, we note that the probability that AUC sampling will update the classifier
decreases if there are more classes. Specifically, suppose for a given training sample pair
(xt, yt) there are H classes that violate it, and that there are G classes in total. Then the
probability that AUC sampling updates the classifier for (xt, yt) is H/(G−1), which linearly
decreases as the number of classes G is increased.

5.4 Online Versions of Other Multiclass Losses

WARP sampling implements an online version of the pairwise loss given in (8) (Weston
et al., 2011). One can also interpret the WARP loss sampling as an online approximation of
the maximum hinge loss given in (9), where the maximum violating class is approximated
by the sampled violating class. This interpretation does not call for a rank-based weighting
w(y+), and in fact we found that setting w(y+) = 1 improved accuracy by roughly 20% on a
large-scale image annotation task (see Table 6). A better approximation of (9) would require
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sampling multiple violating classes and then taking the class with the worst discriminant,
we did not try this due to the expected time needed to find multiple violating classes.
Further, we hypothesize that choosing the class with the largest violation as the violating
class could actually perform poorly for practical highly multiclass problems like Imagenet
because the worst discriminant may belong to a class that is a missing correct label, rather
than an incorrect label.

An online version of the loss proposed by Lee et al. (2004) and given in (10) would
be more challenging to implement because the G class discriminants are required to be
normalized; we do not know of any such experiments.

5.5 The Wsabie Classifier

Weston et al. (2011) combined the WARP sampling with online learning of a supervised
linear dimensionality reduction. They learn an embedding matrix W ∈ Rm×d that maps a
given d-dimensional feature vector x to an m-dimensional “embedded” vector Wx ∈ Rm,
where m ≤ d, and then the G class-specific discriminants of dimension m are trained to
separate classes in the embedding space. Weston et al. (2011) referred to this combination
as the Wsabie classifier. This changes the WARP loss given in (11) to the non-convex
Wsabie loss, defined:

LWsabie(W, {βg}) =
n∑
t=1

∑
y+∈Yt

∑
yv∈Vt,y+

w(y+) |b− f(Wxt;βy+) + f(Wxt;βyv)|+.

Adding the embedding matrix W changes the number of parameters from Gd to Gm+
md. For a large number of classes G and a small embedding dimension m (the case of
interest here) this reduces the overall parameters, and so the addition of the embedding
matrix W acts as a regularizer, reduces memory, and reduces testing time.

6. Online Adaptation of the Empirical Loss to Reduce Impact of Highly
Confusable Classes

In this section, we present a simple and memory-efficient online implementation of the
empirical class-confusion loss we proposed in Section 3.3 that reduces the impact of highly
confusable classes on the standard empirical loss. First, we describe the batch variant of
this proposal and quantify its effect. Then in Section 6.2 we describe a sampling version.
In Section 6.3, we propose a simple extension that experimentally increases the accuracy
of the resulting classifier, without using additional memory. We show the proposed online
strategy works well in practice in Section 9.

6.1 Reducing the Effect of Highly Confusable Classes By Ignoring Last
Violators

We introduce the key idea of a last violator class with a simple example before a formal
definition. Suppose during online training the hundredth training sample x100 has label
y100 = tiger, and that the last training sample we saw labelled tiger was x5. And
suppose lion was a violating class for that training sample pair (x5, tiger), that is |1 −
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f(x5; θtiger) + f(x5; θlion)|+ > 0. Then for sample (x100, tiger) we call the class lion the
last violator class.

Formally, we call class vt,y+ a last violator for the training sample pair (xt, y
+) if xτ

was the last training sample for which y+ was the sampled positive class and vt,y+ was a
violator for (xτ , y

+), that is, vt,y+ ∈ Vτ,y+ . The set of violators Vτ,y+ becomes the set of

last violators of (xt, y
+), which we denote Ṽt,y+ .

In order to decrease the effect of highly confusable classes on training the classifier,
we propose to ignore losses for any violator class that was also a last violator class. The
reasoning is that if the last violator class and a current violator class are the same, it
indicates that the class yt and that violator class are consistently confused (for example
tiger and lion). And if two classes are consistently confused, we would like to reduce
their impact on the empirical loss, as discussed in Section 3.

For example, say sequential training samples that were labelled cat had the following
violating classes:

dog and pig, dog and pig, none, dog, dog, none, dog, pig.

The proposed approach ignores any violator that was also a last violator:

dog and pig, ��dog and ��pig, none, dog, ��dog, none, dog, pig.

Mathematically, to ignore last violators we simply add an indicator function I to the
loss function. For example, ignoring last violators with the WARP loss from (11) can be
written:

Lproposed({θg}) =

n∑
t=1

∑
y+∈Yt

∑
yv∈Vt,y+

w(y+) |b− f(xt; θy+) + f(xt; θyv)|+ Iyv 6∈Ṽt,y+ .

(14)

That is, instead of forming one estimate of the correct empirical loss as we proposed in
Section 3.3, here we approximate the correct empirical loss as the average of the series of
Bernoulli random variables represented by the extra indicator in (14). In fact, the proposal
to ignore last violators implements the proposed approximation (7): the probability that an
error is not-counted is the probability that the violating class is confused with the training
class:

Proposition 1: Suppose there are n samples labelled class g, and each such sample has
probability p of being classified as class h. Then the expected number of losses summed in
(11) is np, but the expected number of losses summed in (14) is (n− 1)p(1− p) + p.

This reduction of the empirical error from np to np(1− p) is the same as in the earlier
proposal (6), where in Proposition 1 the probability 1− p is the same as the expectation in
(6).
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6.2 Ignoring Sampled Last Violators for Online Learning

Building on the WARP sampling proposed by Weston et al. (2011) and reviewed in Section
5.2, we propose an online sampling implementation of (14), where for each class y+ we store
one sampled last violator and only update the classifier if the current violator is not the
same as the last violator. Specifically,

1. draw one training sample xt,

2. draw one correct class y+ from Yt,

3. if there is no last violator vt,y+ or if vt,y+ exists but is not a violator for (xt, y
+), then

draw and store one violating class yv from Vy+ and

(a) compute the corresponding stochastic gradient of the loss in (8)

(b) update the parameters.

Table 1 re-visits the same example as earlier, and illustrates for eight sequential training
examples whose training label was cat what the last violator class is, whether the last
violator is a current violator (in which case the current error is ignored), or if not ignored,
which of the current violators is randomly sampled for the classifier update.

Throughout the training, the state of the sampled last violator for any class y+ can be
viewed as a Markov chain. We illustrate this for the class y+ and two possible violating
classes g and h in Figure 3.

In the experiments to follow, we couple the proposed online empirical class-confusion
loss sampling strategy with an embedding matrix as in the Wsabie algorithm for efficiency
and regularization, and refer to this as Wsabie++. A complete description of Wsabie++ is
given in Table 3, including the adagrad stepsize updates described in the next section. The
memory needed to implement this discounting is O(G) because only one last violator class
is stored for each of the G classes.

Set of Cat Violators Cat’s LV Cat’s LV Violates? New Violator Sampled?

1: dog and pig none - dog

2: dog and pig dog yes ignored
3: dog dog yes ignored
4: dog and pig dog yes ignored
5: pig dog no pig

6: no violators pig no none
7: dog none - dog

8: dog dog yes ignored

Table 1: Example of ignoring sampled last violators for eight sequential samples (one per
row) whose training label is cat.
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Figure 3: In the proposed sampling strategy for the online empirical class-confusion loss,
the state of the last violator (LV) for a class y+ can be interpreted as a Markov
chain where a transition occurs for each training sample. The figure illustrates the
case where there are just two possible violating classes, class g and class h, which
violate samples of class y+ with probability pg and ph respectively. Then the last
violator for class y+ is always in one of three possible states: no last violator,
class h is the last violator, or class g is the last violator. Solid lines indicate a
violation that is counted; dotted lines indicate a violation that is ignored. The
three states have stationary distribution:

P (No LV) =
1

Z
,

P (LV = g) =
1

Z

pg(2 + ph − pgph)

2(pg − 1)(pgph − 1)
,

P (LV = h) =
1

Z

ph(2 + pg − pgph)

2(ph − 1)(pgph − 1)
,

where Z is the normalizer that makes the stationary distribution sum to 1.
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True Class Last Violator Class

tiger → lion

lion → cat

cat → kitten

kitten → panther

panther → cat

Table 2: Example chain of five classes and their sampled last violator.

6.2.1 Curriculum Learning

We have primarily motivated ignoring last violators as a better approximation for the ex-
pected classification error. However, because this approach is online, it has a second practi-
cal effect of changing the distribution of classifier updates as the classifier improves during
training. Consider the classifier at some fixed point during training. At that point, classes
that are better separated from all other classes are less likely to have a last violator stored,
and thus more likely to be trained on. This increases the chance that the classifier first
learns to separate easy-to-separate classes. At each point in time, the classifier is less likely
to be updated to separate classes it finds most confusable. Bengio et al. (2009) have argued
that this kind of easy-to-hard learning is natural and useful, particularly when optimizing
non-convex loss functions as is the case when one jointly learns an embedding matrix W
for efficiency and regularization.

6.3 Extending the Discounting Loss to Multiple Last Violators

Table 2 shows an example of five classes and what their last violator class might be at
some point in the online training. For example, Table 2 suggests that tiger and lion are
highly confusable, and that lion and cat are highly confusable, and thus we suspect that
tiger and cat may also be highly confusable. To further reduce the impact of these sets
of highly confusable classes, we extend the above approach to ignoring a training sample if
it is currently violated by its last violator class’s last violator class, and so on. The longer
the chain of last violators we choose to ignore, the more training samples are ignored, and
the ignored training samples are preferentially those belonging to clusters of classes that
are highly-confusable with each other.

Formally, let v2t,y+ denote the last violator of the last violator of y+, that is v2t,y+ =

vt,vt,y+ . For the example given in Table 2, if y+ is tiger, then its last violator is vt,y+ =

lion, and v2t,y+ = cat. More generally, let vQ
t,y+

be the Qth-order last violator, for example

v3t,tiger = kitten.

Let ṼQ
t,y+

be the set of last violators up through order Q for positive class y+ and the

tth sample. We extend (14) to ignore this larger set of likely highly-confusable classes:

Lproposed-Q({θg}) =

n∑
t=1

∑
y+∈Yt

∑
yv∈Vt,y+

|b− f(xt; y
+) + f(xt; y

v)|+ I
yv 6∈ṼQ

t,y+
. (15)

1476



Training Highly Multiclass Classifiers

To use (15) in an online setting, each time a training sample and its positive class are
drawn, we check if any q-th order last violator vq

t,y+
for any q ≤ Q is a current violator, and

if so, we ignore that training sample and move directly to the next training sample without
updating the classifier parameters.

Table 3 gives the complete proposed sampling and updating algorithm for Euclidean
discriminant functions, including the adaptive adagrad step-size explained in Section 7
which follows. For Euclidean discriminant functions we did not find (experimentally) that
we needed any constraints or additional regularizers on W or {βg}, though if desired a
regularization step can be added.

7. Adagrad For Learning Rate

Convergence speed of stochastic gradient methods is sensitive to the choice of stepsizes.
Recently, Duchi et al. (2011) proposed a parameter-dependent learning rate for stochastic
gradient methods. They proved that their approach has strong theoretical regret guarantees
for convex objective functions, and experimentally it produced better results than compa-
rable methods such as regularized dual averaging (Xiao, 2010) and the passive-aggressive
method (Crammer et al., 2006). In our experiments, we applied adagrad both to the convex
training of the one-vs-all SVMs and AUC sampling, as well as to the non-convex Wsabie++

training. Inspired by our preliminary results using adagrad for non-convex optimization,
Dean et al. (2012) also tried adagrad for non-convex training of a deep belief network, and
also found it produced substantial improvements in practice.

The main idea behind adagrad is that each parameter gets its own stepsize, and each
time a parameter is updated its stepsize is decreased to be proportional to the running sum
of the magnitude of all previous updates. For simplicity, we limit our description to the case
where the parameters being optimized are unconstrained, which is how we implemented it.
For memory and computational efficiency, Duchi et al. (2011) applying adagrad separately
for each parameter (as opposed to modeling correlations between parameters).

We applied adagrad to adapt the stepsize for the G classifier discriminants {βg} and
the m × d embedding matrix W . We found that we could save memory without affecting
experimental performance by averaging the adagrad learning rate over the embedding di-
mensions such that we keep track of one scalar adagrad weight per class. That is, let ∆g,τ

denote the stochastic gradient for βg at time τ , then we update βg as follows:

βg,t+1 = βg,t − η

(
t∑

τ=0

(
∆T
τ,g∆τ,g

d

))−1/2
∆g,τ . (16)

Analogously, we found it experimentally effective and more memory efficient to keep track
of one averaged scalar adagrad weight for each of the m rows of the embedding matrix W .

There are two main effects to using adagrad. First, suppose there are two classes that are
updated equally often, then the class with larger stochastic gradients {∆τ} will experience
a faster-decaying learning rate. Second, and we believe the more relevant issue for our
use, is that some classes are updated frequently, and some classes rarely. Suppose that
all stochastic gradients {∆τ} have the same magnitude, then the classes that are updated
more rarely experience relatively larger updates. In our experiments the second effect was
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Model:
Training Data Pairs: (xt,Yt) for t = 1, 2, . . . , n
Embedded Euclidean Discriminant: f(Wx;βg) = −(βg −Wx)T (βg −Wx)

Hyperparameters:
Embedding Dimension: m
Stepsize: λ ∈ R+

Margin: b ∈ R+

Depth of last violator chain: Q ∈ N

Initialize:
Wj,r set randomly to −1 or 1 for j = 1, 2, . . . ,m, r = 1, 2, . . . , d
βg = 0 for all g = 1, 2, . . . , G
αg = 0 for all g = 1, 2, . . . , G
αWj = 0 for all j = 1, 2, . . . ,m
vy+ = empty set for all y+

While Not Converged:
Sample xt uniformly from {x1, . . . , xn}.
Sample y+ uniformly from Yt.
If |b− f(Wxt;βy+) + f(Wxt;βvq

y+
)|+ > 0 for any q = 1, 2, . . . , Q, continue.

Set foundViolator = false.
For count = 1 to G:

Sample y− uniformly from YCt .
If |b− f(Wxt;βy+) + f(Wxt;βy−)|+ > 0,

set foundViolator = true and break.
If foundViolator = false, set vy+ to the empty set and continue.
Set vy+ = y−.
Compute the stochastic gradients:

∆y+ = 2(βy+ −Wxt)
∆y− = −2(βy− −Wxt)
∆W = (βy− − βy+)(Wxt)

T .
Update the adagrad parameters:

αy+ = αy+ + 1
d∆T

y+∆y+

αy− = αy− + 1
d∆T

y−∆y−

αWj = αWj + 1
d∆T

Wj
∆Wj for j = 1, 2, . . . ,m.

Update the classifier parameters:

βy+ = βy+ − λ√
αy+

∆y+

βy− = βy− − λ√
αy−

∆y−

Wj = Wj − λ√
αWj

∆Wj for j = 1, 2, . . . ,m.

Table 3: Wsabie++ training (for Euclidean discriminants).
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predominant, which we tested by setting the learning rate for each parameter proportional
to the inverse square root of the number of times that parameter has been updated. This
“counting adagrad” produced results that were not statistically different using (16). (The
experimental results in this paper are reported using adagrad proper as per (16).)

We use α to refer to the running sum of gradient magnitudes in the complete Wsabie++

algorithm description given in Table 3.

8. Experiments

We first detail the data sets used. Then in Section 8.2 we describe the features. In Section 8.3
we describe the different classifiers compared and how the parameters and hyperparameters
were set.

8.1 Data Sets

Experiments were run with four data sets, as summarized in Table 4 and detailed below.

16k ImageNet 22k ImageNet 21k Web Data 97k Web Data

Number of Classes 15,589 21,841 21,171 96,812
Number of Samples 9 million 14 million 9 million 40 million
Number of Features 1024 479 1024 1024

Table 4: Data sets.

8.1.1 ImageNet Data Sets

ImageNet (Deng et al., 2009) is a large image data set organized according to WordNet
(Fellbaum, 1998). Concepts in WordNet, described by multiple words or word phrases, are
hierarchically organized. ImageNet is a growing image data set that attaches one of these
concepts to each image using a quality-controlled human-verified labeling process.

We used the spring 2010 and fall 2011 releases of the Imagenet data set. The spring 2010
version has around 9M images and 15,589 classes (16k ImageNet). The fall 2011 version
has about 14M images and 21,841 classes (22k ImageNet). For both data sets, we separated
out 10% of the examples for validation, 10% for test, and the remaining 80% was used for
training.

8.1.2 Web Data Sets

We also had access to a large proprietary set of images taken from the web, together with
a noisy annotation based on anonymized users’ click information. We created two data
sets from this corpus that we refer to as 21k Web Data and 97k Web Data. The 21k Web
Data contains about 9M images, divided into 20% for validation, 20% for test, and 60% for
train, and the images are labelled with 21,171 distinct classes. The 97k Web Data contains
about 40M images, divided into 10% for validation, 10% for test, and 80% for train, and
the images are labelled with 96,812 distinct classes.

There are five main differences between the Web Data and ImageNet. First, the types
of labels found in Imagenet are more academic, following the strict structure of WordNet.
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In contrast, the Web Data labels are taken from a set of popular queries that were the
input to a general-purpose image search engine, so it includes people, brands, products,
and abstract concepts. Second, the number of images per label in Imagenet is artificially
forced to be somewhat uniform, while the Web Data distribution of number of images per
label is generated by popularity with users, and is thus more exponentially distributed.
Third, because of the popular origins of the Web data sets, classes may be translations of
each other, plural vs. singular concepts, or synonyms (for examples, see Table 7). Thus
we expect more highly-confusable classes for the Web Data than ImageNet. A fourth key
difference is Imagenet disambiguates polysemous labels whereas Web Data does not, for
example, an image labeled palm might look like the palm of a hand or like a palm tree.
The fifth difference is that there may be multiple given positive labels for some of the Web
samples, for example, the same image might be labelled mountain, mountains, Himalaya,
and India.

Lastly, classes may be at different and overlapping precision levels, for example the class
cake and the class wedding cake.

8.2 Features

We do not focus on feature extraction in this work, although features certainly can have a
big impact on performance. For example, Sanchez and Perronnin (2011) recently achieved
a 160% gain in accuracy on the 10k ImageNet datatset by changing the features but not
the classification method.

In this paper we use features, similar to those used in Weston et al. (2011). We first
combined multiple spatial (Grauman and Darrell, 2007) and multiscale color and texton
histograms (Leung and Malik, 1999) for a total of about 5×105 dimensions. The descriptors
are somewhat sparse, with about 50000 non-zero weights per image. Some of the constituent
histograms are normalized and some are not. We then perform kernel PCA (Schoelkopf
et al., 1999) on the combined feature representation using the intersection kernel (Barla
et al., 2003) to produce a 1024-dimensional or 479-dimensional input vector per image (see
Tab. 4), which is then used as the feature vectors for the classifiers.

8.3 Classifiers Compared and Hyperparameters

We experimentally compared the following linear classifiers: nearest means, one-vs-all
SVMs, AUC, Wsabie, and the proposed Wsabie++ classifiers. Table 5 compares these
methods as they were implemented for the experiments.

The nearest means classifier is the most efficient to train of the compared methods as it
only passes over the training samples once and computes the mean of the training feature
vectors for each class (and there are no hyperparameters).

Like the nearest means classifier, we implemented Wsabie++ with Euclidean discrim-
inants (as detailed in Table 3) and as such it can be considered a discriminative nearest
means classifier. Testing with Euclidean discriminants can easily be made faster by ap-
plying exact or approximate fast k-NN methods, where the class prototypes {βg} play the
role of the neighbors. Further, Euclidean discriminants lend themselves more naturally to
visualization than the inner product, as each class is represented by a prototype.
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One-vs-all linear SVMs are the most popular choice for large-scale classifiers due to stud-
ies showing their good performance, their parallelizable training, relatively small memory,
and fast test-time (Rifkin and Klatau, 2004; Deng et al., 2010; Sanchez and Perronnin, 2011;
Perronnin et al., 2012; Lin et al., 2011). Perronnin et al. (2012) highlights the importance
of getting the right balance of negative to positive examples used to train the one-vs-all
linear SVMs. As in their paper, we cross-validate the expected number of negative ex-
amples per positive example; the allowable choices were powers of 2. In contrast, earlier
published results by Weston et al. (2011) that compared Wsabie to one-vs-all SVMs used
one negative example per positive example, analogous to the AUC classifier. We included
this comparison, which we labelled One-vs-all SVMs 1+:1- in the tables.

Both Wsabie and Wsabie++ jointly train an embedding matrixW as described in Section
3.5. The embedding dimension d was chosen on the validation set from the choices d =
{32, 64, 96, 128, 192, 256, 384, 512, 768, 1024} embedding dimensions. In addition, we created
ensemble Wsabie and Wsabie++ classifiers by concatenating bmd c such d-dimensional models
to produce a classifier with a total of m parameters to compare classifiers that require the
same memory and test-time.

All hyperparameters were chosen based on the accuracy on a held-out validation set.
Step-size, margin, and regularization constant hyperparameters were varied by powers of
ten. The order Q of the last violators was varied by powers of 2. Chosen hyperparameters
are recorded in Table 9. Both the pairwise loss and Wsabie classifier are implemented
with standard `2 constraints on the class discriminants (and for Wsabie, on the rows of the
embedding matrix). We did not use any regularization constraints for Wsabie++.

We initialized the Wsabie parameters and SVM parameters uniformly randomly within
the constraint set. We initialize the proposed training by setting all βg to the origin, and all
components of the embedding matrix are equally likely to be −1 or 1. Experiments with dif-
ferent initialization schemes for these different classifiers showed that different (reasonable)
initializations gave very similar results.

With the exception of nearest means, all classifiers were trained online with stochastic
gradients. We also used adagrad for the convex optimizations of both one-vs-all SVMs and
the AUC sampling, which increased the speed of convergence.

Recently, Perronnin et al. (2012) showed good results with one-vs-all SVM classifiers
and the WARP loss where they also cross-validated an early-stopping criterion. Adagrad
reduces step sizes over time, and this removed the need to worry about early stopping. In
fact, we did not see any obvious overfitting with any of the classifier training (validation
set and test set errors were statistically similar). Each algorithm was allowed to train on
up to 100 loops through the entire training set or until the validation set performance had
not changed in 24 hours. Even those runs that ran the entire 100 loops appeared to have
essentially converged. Implemented in C++ without parallelization, all algorithms (except
nearest means) took around one week to train the 16k Imagenet data set, around two weeks
to train the 21k and 22k data sets, and around one month to train the 97k data set. Also
in all cases roughly 80% of the validation accuracy was achieved in roughly the first 20% of
the training time.

Because stochastic gradient descent uses random sampling of the training samples, mul-
tiple runs will produce slightly different results. To address this randomness, we ran five
runs of each classifier for each set of candidate parameters, and reported the test accuracy
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and parameters for the run that had the best accuracy on the validation set. For one-vs-all
SVMs with its convex objective, the five runs usually differed by .1% (absolute), whereas
optimizing the nonconvex objectives of Wsabie and Wsabie++ produced much greater ran-
domness within five runs, as much as .5% (absolute). Cross-validating substantially more
runs of the training would probably produce classifiers with slightly better accuracy, but
cross-validating between too many runs could just lead to overfitting. We did not explore
this issue carefully.

8.4 Metrics

Each classifier outputs the class it considers the one best prediction for a given test sample.
We measure the accuracy of these predictions averaged over all the samples in the test
set. For some data sets, such as the Web data sets, samples may have more than one
correct class, and are counted as correct if the classifier picks any one of the correct classes.
Note that some results published for Imagenet use a slightly different metric: classification
accuracy averaged over the G classes (Deng et al., 2010).

9. Results

We first give some illustrative results showing the effect of the three proposed differences
between Wsabie++ and Wsabie. Then we compare Wsabie++ to four different efficient
classifiers on four large-scale data sets.

9.1 Comparison of Different Aspects of Wsabie++

Wsabie++ as detailed in Table 2 differs from the Wsabie classifier (Weston et al., 2011) in
the following respects:

1. ignores last violators

2. weights all stochastic gradients equally, that is, w(r(y+)) = 1 in (11),

3. uses adagrad to adapt the learning rates,

4. uses Euclidean discriminants and no parameter regularization, rather than linear dis-
criminants and `2 parameter regularization as done in Wsabie.

Table 6 shows how each of these first three differences increases the classification accu-
racy on the 21k Web data set. For the results in this table, the embedding dimension was
fixed at d = 100, but all other classifier parameters were chosen to maximize accuracy on
the validation set.

In addition, for simplicity we used Euclidean discriminants rather than linear discrim-
inants: with Euclidean discriminants we found we did not need any additional parameter
regularization, and it is simpler to apply adagrad when the parameters are unconstrained.

The results show that either adagrad or 10 last violators alone improves accuracy by
35%. Weighting all updates equally (w(r(y+)) = 1) alone also improves accuracy by 10%.
In combination, these changes complement each other, almost doubling the accuracy from
3.7% to 7.1%.
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Classifier Test Accuracy

Wsabie (Weston et al., 2011) 3.7%
Wsabie + 10 last violators 5.0%
Wsabie + adagrad 5.0%
Wsabie + w(r(y+)) = 1 in (11) 4.1%
Wsabie + adagrad + 10 last violators 5.9%
Wsabie + adagrad + w(r(y+)) = 1 in (11) 6.0%
Wsabie + adagrad + w(r(y+)) = 1 in (11) + 1 last violator 6.3%
Wsabie + adagrad + w(r(y+)) = 1 in (11) + 10 last violators 7.1%
Wsabie + adagrad + w(r(y+)) = 1 in (11) + 100 last violators 6.8%

Table 6: Effect of the proposed differences compared to Wsabie for a d = 100 dimensional
embedding space on 21k Web Data.

Table 7 gives examples of the classes corresponding to neighboring {βg} in the embedded
feature space after the Wsabie++ training.

Class 1-NN 2-NN 3-NN 4-NN 5-NN

poodle caniche pudel labrador puppies cocker

spaniel

dolphin dauphin delfin dolfinjnen delfiner dolphins

San Diego Puerto Sydney Vancouver Kanada Tripoli

Madero

mountain mountains montagne Everest Alaska Himalaya

router modem switch server lan network

calligraphy fonts Islamic borders quotes network

calligraphy

Table 7: For each of the classes on the left, the table shows the five nearest (in terms of
Euclidean distance) class prototypes {βg} in the proposed discriminatively trained
embedded feature space for 21k Web Data set. Because these classes originated as
web queries, some class names are translations of each other, for example dolphin

and dauphin (French for dolphin). While these may seem like exact synonyms, in
fact different language communities often have slightly different visual notions of
the same concept. Similarly, the classes Obama and President Obama are expected
to be largely overlapping, but their class distributions differ in the formality and
context of the images.

Lastly, we illustrate how the Wsabie++ test accuracy depends on the number of embed-
ding dimensions. These results are for the 21k Web Data set, with the step-size and margin
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parameters chosen using the validation set, and 10 last violators:

Number of Embedding Dimensions: 128 192 256 384 512 768 1024

Wsabie++ Test Accuracy: 7.4% 7.7% 8.3% 7.9% 7.1% 6.7% 6.5%

9.2 Comparison of Different Classifiers

Table 8 compares the accuracy of the different classifiers, where all hyperparameters were
cross-validated. The validated parameter choices are reported in Table 9.2

Wsabie++ was consistently most accurate, followed by the one-vs-all SVMs with the
average number of negative samples per positive sample chosen by validation. The row
labelled Wsabie++ was 2 − 26% more accurate and 2 − 4× more efficient (2 − 4× smaller
model size) than the one-vs-all SVMs because the validated embedding dimension was 192
or 256 dimensions, down from the original 479 or 1024 features.

Like Perronnin et al. (2012), our experiments showed that choosing the hyperparameter
of how many negative samples per positive sample for the one-vs-all SVMs made an im-
pressive difference to its performance. The one-vs-all SVMs 1+:1-, which used a fixed ratio
of one negative sample per positive sample was 2− 4 times worse!

The row labelled Wsabie++ Ensemble is a concatenation of 2-4 Wsabie++ classifiers
trained on different random samplings so that the total number of parameters is roughly
the same as the SVM (the embedding matrices W add slightly to the total storage and
efficiency calculations). With efficiency thus roughly controlled, the accuracy gain increased
slightly to 3− 28%.

The least improvement was seen on the 21k Web Data set. Our best hypothesis as to
why that is that the classifiers are already close to the best performance possible with linear
separators, and so there is little headroom for improvement. Some support for this hypoth-
esis is the tiny gain the ensemble of multiple Wsabie++ classifiers versus the Wsabie++.

One surprise was that Wsabie++ performed almost as well on the 97k Web Data as on
the 21k Web Data set even though there were four times as many classes. We have two
main hypotheses of why this happened. First, there were more training samples in the 97k
Web Data for the classes that were already present in the 21k Web Data. Second, the added
classes had fewer samples but were often quite specific, and the samples from a specific class
can be easier to distinguish than samples from a more generic class. For example, samples
from the more specific class of diamond earrings are easier to distinguish than samples
from the more generic class jewelry. Likewise, samples from the class beer foam are easier
to correctly classify than samples from the class beer.

10. Discussion, Hypotheses and Key Issues

This paper focused on how highly confusable classes can distort the empirical loss used in
discriminative training of multi-class classifiers. We proposed a lightweight online approach
to reduce the effect of highly-confusable classes on the empirical loss, and showed that it can

2. Parameters for step-size and margin were not independent, with larger margins working better with
larger step-sizes. We hypothesize that one of these parameters could be fixed and only the other cross-
validated. We did not see any overfitting: scores on the validation set were statistically similar to scores
on the test sets for all the compared methods.
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16k ImageNet 22k ImageNet 21k Web Data 97k Web Data

Nearest Means 4.4% 2.7% 2.6% 2.3%
One-vs-all SVMs 1+:1- 4.1% 3.5% 2.1% 1.6%
One-vs-all SVMs 9.4% 8.2% 8.3% 6.8%
AUC Sampling 4.7% 5.1% 2.8% 3.1%
Wsabie 6.5% 6.6% 4.5% 2.8%
Wsabie Ensemble 8.1% 7.0% 6.0% 3.4%
Wsabie++ 11.2% 10.3% 8.5% 8.2%
Wsabie++ Ensemble 11.9% 10.5% 8.6% 8.3%

Table 8: Image classification test accuracy

substantially increase performance in practice. Experimentally, we also showed that using
adagrad to evolve the learning rates in the stochastic gradient descent is effective despite
the nonconvexity of the loss (due to the joint learning of the linear dimensionality reduction
and linear classifiers).

We argued that when there are many classes it is suboptimal to measure performance by
simply counting errors, because this overemphasizes the noise of highly-confusable classes.
Yet our test error is measured in the standard way: by counting how many samples were
classified incorrectly. A better approach to measuring test error would be subjective judge-
ments of error. In fact, we have verified that for the image classification problems consid-
ered in the experiments, subjects are less critical about confusions of classes they consider
more confusable (for example confusing dolphin and porpoise), but very critical of confu-
sions between classes they do not consider confusable (for example dolphin and Statue of

Liberty). Thus, suppose you had two candidate classifiers, each of which made 100 errors,
but one made all 100 errors between dolphin and porpoise and the other made 100 more
random errors. Standard test error of summing the errors would consider these classifiers
equal, but users would generally prefer the first classifier. Weston et al. (2011) provide one
approach to addressing this issue with a sibling precision measure.

A related issue is that it is known that the experimental data sets used are not tagged
with the complete set of correct class labels for each image. For example, in the 21k Web
Data, an image of a red heart might be labelled love and red, but not happen to be labelled
heart, even though that would be considered a correct label in a subjective evaluation. We
hypothesize that the proposed approach of probabilistically ignoring samples with consistent
confusions helps reduce the impact of such missing positive labels.

We built on WARP, which finds a violating class per each training sample if one ex-
ists. This strategy works much better in practice than the AUC sampling that samples
one positive class and one negative class per training sample. We believe this is because
WARP sampling focuses on improving the parameters of classes that are already quite
good, rather than focusing on parameters for classes that are very confused. Analogously,
and in agreement with results by Perronnin et al. (2012) on very different features, we saw
that sampling one negative sample per positive sample for one-vs-all SVMs performed very
poorly compared to sampling a validated number of negatives per positive. Inspired by these
performance differences due to the choice of negative:positive ratios, we also considered val-
idating a hyperparameter for Wsabie++ that would determine how many negative classes
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Stepsize Margin Embedding Balance # LVs
dimension β

One-vs-all SVM 1+:1-
16k ImageNet .01 .1
21k ImageNet .01 .1
21k Web Data .1 1
97k Web Data .01 .1

One-vs-all SVM
16k ImageNet .01 .1 64
21k ImageNet .01 .1 64
21k Web Data .1 1 64
97k Web Data .01 .1 128

AUC Sampling
16k ImageNet .01 .1
21k ImageNet .01 .1
21k Web Data .001 .01
97k Web Data .001 .01

Wsabie
16k ImageNet .01 .1 128
21k ImageNet .001 .1 128
21k Web Data .001 .1 256
97k Web Data .0001 .1 256

Wsabie++:
16k ImageNet 10 10,000 192 8
21k ImageNet 10 10,000 192 8
21k Web Data 10 10,000 256 8
97k Web Data 10 10,000 256 32

Table 9: Classifier parameters chosen using validation set

to consider for each positive class, rather than the WARP sampling which draws negative
classes until it finds a violator. Preliminary results showed that the validation set chose the
largest parameter choice which was almost the same as the number of classes. Thus that
approach required another hyperparameter but seemed to be doing exactly what WARP
sampling does and appeared to offer no accuracy improvement over WARP sampling.

This research focused on accurate and efficient classification, and not on the issue of
training time. With the exception of nearest means, the methods compared were imple-
mented with stochastic gradient descent for efficient online training to deal with the large
number of training samples n. As implemented, the methods took roughly equally long to
train. However, parallel training of the G one-vs-all SVMs would have been roughly G times
as fast. While not as naturally parallelizable, we have had some success in parallelizing the
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WARP sampling strategy across multiple cores and multiple machines, but the details are
outside the scope of this work.

Our experiments were some of the largest image labeling experiments ever performed,
and were carefully implemented and executed. But our experiments were narrow and lim-
ited in the sense that only image labeling problems were considered, and that the feature
derivations were similar and all dense. The presented theory and motivation was not lim-
ited however, and we hypothesize that similar results would hold up for other applications,
different features, and sparser features.

We focused in this paper only on classifiers that use linear (or Euclidean) discriminant
functions because they are popular for large-scale highly multiclass problems due to their
efficiency and reasonably good performance. However, for a given feature set, the best
performance on large data sets such as ImageNet may well be achieved with exact k-NN
(Deng et al., 2010; Weston et al., 2013b) or a more sophisticated lazy classifier (Garcia
et al., 2010), or with a deep network (Krizhevsky et al., 2012; Dean et al., 2012). However,
for many real-life large-scale problems these methods may require infeasible memory and
test-time, and so linear methods are of interest at least for their efficiency, and may be used
to filter candidates to a smaller set for secondary evaluation by a more flexible classifier.
In addition, the last layer of a neural network is often a linear or other high-model-bias
classifier, and the proposed approaches may thus be useful in training a deep network as
well.

Label trees and label partitioning can be even more efficient at inference (Bengio et al.,
2010; Deng et al., 2011; Weston et al., 2013a). We did not take advantage or impose a
hierarchical structure on the classes, which can be a fruitful approach to efficiently imple-
menting highly multiclass classification. Other research in large-scale classification takes
advantage of the natural hierarchy of classes in real-world classification problems such as
labeling images (Deng et al., 2010; Griffin and Perona, 2008; Nister and Stewenius, 2006).
For example, in Web Data one class is wedding cake, which could fit into the broader class
of cake, and the even broader class of food. One problem with leveraging such hierarchies
may be that they are not strict trees; wedding cake also falls under the broader class of
wedding, or there may be no natural hierarchy. Some of the theory and strategy of this
paper should be complementary to such hierarchical approaches.
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Appendix: Proof of Proposition 1

Let Zt be a Bernoulli random variable with parameter p that models the event that the tth
sample of class y+ is classified as class h. Then for n trials the expected number of times
a class y+ sample is classified as class h is E[

∑
t Zt] =

∑
tE[Zt] = nE[Zt] = np the Zt are

independent and identically distributed.

Let Ot be another Bernoulli random variable such that Ot = 1 if the tth sample of class
y+ is counted in the loss given by (14), and Ot = 0 otherwise. Note that O1 = Z1, and for

1488



Training Highly Multiclass Classifiers

t > 1, Ot = 1 iff Zt = 1 and Zt−1 = 0. Thus,

E[Ot] = E[Zt = 1 and Zt−1 = 0] = P (Zt = 1, Zt−1 = 0) = P (Zt = 1)P (Zt = 0) = p(1− p)

by the independence of the Bernoulli random variables Zt and Zt−1. Then the expected
number of confusions counted by (14) is E[

∑
tOt] =

∑
tE[Ot] by linearity, which can be

expanded: E[O1] +
∑n

t=2E[Ot] = p+ (n− 1)p(1− p).
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Abstract

In modeling multivariate time series, it is important to allow time-varying smoothness in the
mean and covariance process. In particular, there may be certain time intervals exhibiting
rapid changes and others in which changes are slow. If such time-varying smoothness is not
accounted for, one can obtain misleading inferences and predictions, with over-smoothing
across erratic time intervals and under-smoothing across times exhibiting slow variation.
This can lead to mis-calibration of predictive intervals, which can be substantially too
narrow or wide depending on the time. We propose a locally adaptive factor process for
characterizing multivariate mean-covariance changes in continuous time, allowing locally
varying smoothness in both the mean and covariance matrix. This process is constructed
utilizing latent dictionary functions evolving in time through nested Gaussian processes and
linearly related to the observed data with a sparse mapping. Using a di↵erential equation
representation, we bypass usual computational bottlenecks in obtaining MCMC and online
algorithms for approximate Bayesian inference. The performance is assessed in simulations
and illustrated in a financial application.

Keywords: Bayesian nonparametrics, locally varying smoothness, multivariate time se-
ries, nested Gaussian process, stochastic volatility

1. Introduction

In analyzing multivariate time series data, collected in financial applications, monitoring of
influenza outbreaks and other fields, it is often of key importance to accurately characterize
dynamic changes over time in not only the mean of the di↵erent elements (e.g., assets,
influenza levels at di↵erent locations) but also the covariance. As shown in Figure 1, it
is typical in many domains to cycle irregularly between periods of rapid and slow change;
most statistical models are insu�ciently flexible to capture such locally varying smoothness
in assuming a single bandwidth parameter. Inappropriately restricting the smoothness to
be constant can have a major impact on the quality of inferences and predictions, with over-
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DAX30: Squared log returns

Figure 1: Squared log returns of DAX30. Weekly data from 19/07/2004 to 25/06/2012.

smoothing during times of rapid change. This leads to an under-estimation of uncertainty
during such volatile times and an inability to accurately predict risk of extremal events.

Let yt = (y
1t, . . . , ypt)T denote a random vector at time t, with µ(t) = E(yt) and

⌃(t) = cov(yt). Our focus is on Bayesian modeling and inference for the multivariate mean-
covariance stochastic process, � = {µ(t),⌃(t), t 2 T } with T ⇢ <+. Of particular interest
is allowing locally varying smoothness, meaning that the rate of change in the {µ(t),⌃(t)}
process is varying over time. To our knowledge, there is no previous proposed stochastic
process for a coupled mean-covariance process, which allows locally varying smoothness. A
key to our construction is the use of latent processes, which have time-varying smoothness.
This results in a locally adaptive factor (LAF) process. We review the relevant literature
below and then describe our LAF formulation.

1.1 Relevant Literature

There is a rich literature on modeling a p⇥ 1 time-varying mean vector µ(t), covering mul-
tivariate generalizations of autoregressive models (VAR) (see, e.g., Tsay, 2005), Kalman
filtering (Kalman, 1960), nonparametric mean regression via Gaussian processes (GP) (Ras-
mussen and Williams, 2006), polynomial spline (Huang et al., 2002), smoothing spline
(Hastie and Tibshirani, 1990) and kernel smoothing methods (Silverman, 1984). Such ap-
proaches perform well for slowly-changing trajectories with constant bandwidth parame-
ters regulating implicitly or explicitly global smoothness; however, our interest is allowing
smoothness to vary locally in continuous time. Possible extensions for local adaptivity in-
clude free knot splines (MARS) (Friedman, 1991), which perform well in simulations but
the di↵erent strategies proposed to select the number and the locations of knots via step-
wise knot selection (Friedman, 1991), Bayesian knot selection (Smith and Kohn, 1996) or
MCMC methods (George and McCulloch, 1993), prove to be computationally intractable
for moderately large p. Other flexible approaches include wavelet shrinkage (Donoho and
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Johnstone, 1995), local polynomial fitting via variable bandwidth (Fan and Gijbels, 1995)
and linear combination of kernels with variable bandwidths (Wolpert et al., 2011).

There is a separate literature on estimating a time-varying covariance matrix ⌃(t).
This is particularly of interest in applications where volatilities and co-volatilities evolve
through non constant paths. One popular approach estimates ⌃(t) via an exponentially
weighted moving average (EWMA); see, e.g., Tsay (2005). This approach uses a single
time-constant smoothing parameter 0 < � < 1, with extensions to accommodate locally
varying smoothness not straightforward due to the need to maintain positive semidefinite
⌃(t) at every time. To allow for higher flexibility in the dynamics of the covariances,
generalizations of EWMA have been proposed including the diagonal vector ARCH model
(DVEC), (Bollerslev et al., 1988) and its variant, the BEKK model (Engle and Kroner,
1995). These models are computationally demanding and are not designed for moderate to
large p. DCC-GARCH (Engle, 2002) improves the computational tractability of the previous
approaches through a two-step formulation. However, the univariate GARCH assumed for
the conditional variances of each time series and the higher level GARCH models with
the same parameters regulating the evolution of the time-varying conditional correlations,
restrict the evolution of the variance and covariance matrices. PC-GARCH (Ding, 1994;
Burns, 2005) and O-GARCH (Alexander, 2001) perform dimensionality reduction through
a latent factor formulation; see also van der Weide (2002). However, time-constant factor
loadings and uncorrelated latent factors constrain the evolution of ⌃(t).

Such models fall far short of our goal of allowing ⌃(t) to be fully flexible with the
dependence between ⌃(t) and ⌃(t+�) varying with not just the time-lag � but also with
time. In addition, these models do not handle missing data easily and tend to require long
series for accurate estimation (Burns, 2005). Accommodating changes in continuous time
is important in many applications, and avoids having the model be critically dependent on
the time scale, with inconsistent models obtained as time units are varied.

Wilson and Ghahramani (2010) join machine learning and econometrics e↵orts by propos-
ing a model for both mean and covariance regression in multivariate time series, improving
previous work of Bru (1991) on Wishart processes in terms of computational tractability and
scalability, allowing a more complex structure of dependence between ⌃(t) and ⌃(t + �).
Specifically, they propose a continuous time generalised Wishart process (GWP), which
defines a collection of positive semi-definite random matrices ⌃(t) with Wishart marginals.
Nonparametric mean regression for µ(t) is also considered via GP priors; however, the tra-
jectories of means and covariances inherit the smooth behavior of the underlying Gaussian
processes, limiting the flexibility of the approach across times exhibiting sharp changes.

Even for iid observations from a multivariate normal model with a single time stationary
covariance matrix, there are well known problems with Wishart priors motivating a rich lit-
erature on dimensionality reduction techniques based on factor and graphical models. There
has been abundant recent interest in applying such approaches to dynamic settings. Refer
to Lopes and Carvalho (2007), Nakajima and West (2013) and the references cited therein
for recent literature on Bayesian dynamic factor models for multivariate stochastic volatility.
The Markov switching assumption for the levels of the common factor volatilities in Lopes
and Carvalho (2007) improves flexibility, but may be restrictive in some applied fields and
requires the additional choice of the number of possible regimes. Nakajima and West (2013)
allow the factor loadings to evolve dynamically over time, while including sparsity through
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a latent thresholding approach, leading to apparently improved performance in portfolio al-
location. They assume a time-varying discrete-time autoregressive model, which allows the
dependence in the covariance matrices ⌃(t) and ⌃(t+�) to vary as a function of both t and
�. However, the result is a richly parameterized and computationally challenging model,
with selection of the number of factors proceeding by cross validation. Our emphasis is
instead on developing continuous time stochastic processes for ⌃(t) and µ(t), which accom-
modate locally varying smoothness and provide relatively e�cient MCMC computations
based on a Gibbs sampler.

Fox and Dunson (2011) propose an alternative Bayesian covariance regression (BCR)
model, which defines the covariance matrix as a regularized quadratic function of time-
varying loadings in a latent factor model, characterizing the latter as a sparse combination
of a collection of unknown Gaussian process dictionary functions. Although their approach
provides a continuous time and highly flexible model that accommodates missing data and
scales to moderately large p, there are two limitations motivating this article. Firstly, their
proposed covariance stochastic process assumes a stationary dependence structure, and
hence tends to under-smooth during periods of stability and over-smooth during periods of
sharp changes. Secondly, the well known computational problems with usual GP regression
are inherited, leading to di�culties in scaling to long series and issues in mixing of MCMC
algorithms for posterior computation.

1.2 Contribution and Outline

Our proposed LAF process instead includes dictionary functions that are generated from
nested Gaussian processes (nGP) (Zhu and Dunson, 2013), representing recently proposed
priors which exploit stochastic di↵erential equations (SDEs) to enforce GP priors for the
function’s mth order derivatives and favor local adaptivity by centering the latter on an
higher level GP instantaneous mean. Such nGP reduces the GP computational burden
involving matrix inversions from O(T 3) to O(T ), with T denoting the length of the time
series, while also allowing flexible locally varying smoothness. Marginalizing out the latent
factors, we obtain a stochastic process that inherits these advantages. We also develop a
di↵erent and more computationally e�cient approach under this new model and propose an
online implementation, which can accommodate streaming data. In Section 2, we describe
the LAF structure with particular attention to prior specification. Section 3 explores the
main features of the Gibbs sampler for posterior computation and outlines the steps for a fast
online updating approach. In Section 4 we compare our model to BCR and to some of the
most widely used models for multivariate stochastic volatility, through simulation studies.
Finally in Section 5 an application to National Stock Market Indices across countries is
examined.

2. Locally Adaptive Factor Processes

Our focus is on defining a novel locally adaptive factor process for � = {µ(t),⌃(t), t 2 T }.
In particular, taking a Bayesian approach, we define a prior � ⇠ P , where P is a probability
measure over the space P of p-variate mean-covariance processes on T . In particular, each
element of P corresponds to a realization of the stochastic process �, and the measure P
assigns probabilities to a �-algebra of subsets of P.
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Although the proposed class of LAF processes can be used much more broadly, in
conducting inferences in this article, we focus on the simple case in which data consist
of vectors yi = (y

1i, . . . , ypi)T collected at times ti, for i = 1, . . . , T . These times can be
unequally-spaced, or collected under an equally-spaced design with missing observations.
An advantage of using a continuous-time process is that it is trivial to allow unequal spacing,
missing data, and even observation times across which only a subset of the elements of yi
are observed. We additionally make the simplifying assumption that

yi ⇠ Np(µ(ti),⌃(ti)).

It is straightforward to modify the methodology to accommodate substantially di↵erent
observation models.

2.1 LAF Specification

A common strategy in modeling of large p matrices is to rely on a lower-dimensional fac-
torization, with factor analysis providing one possible direction. Sparse Bayesian factor
models have been particularly successful in challenging cases, while having advantages over
frequentist competitors in incorporating a probabilistic characterization of uncertainty in
the number of factors as well as the parameters in the loadings and residual covariance. For
recent articles on Bayesian sparse factor analysis for a single large covariance matrix, refer
to Bhattacharya and Dunson (2011), Pati et al. (2012) and the references cited therein.

In our setting, we are instead interested in letting the mean vector and the covariance
matrix vary flexibly over time. Extending the usual factor analysis framework to this setting,
we say that � = {µ(t),⌃(t), t 2 T } ⇠ LAFL,K(⇥,⌃

0

,⌃⇠,⌃A,⌃ ,⌃B) if

µ(t) = ⇥⇠(t) (t), (1a)

⌃(t) = ⇥⇠(t)⇠(t)T⇥T + ⌃
0

, (1b)

where ⇥ is a p⇥L matrix of constant coe�cients, ⌃
0

= diag(�2
1

, . . . ,�2p), while ⇠(t)L⇥K and
 (t)K⇥1

are matrices comprising continuous dictionary functions evolving in time via nGP,
⇠lk(t) ⇠ nGP([⌃⇠]lk = �2⇠lk , [⌃A]lk = �2Alk

) and  k(t) ⇠ nGP([⌃ ]k = �2 k
, [⌃B]k = �2Bk

).
Restricting our attention on the generic element ⇠lk(t) : T ! < of the matrix ⇠(t)L⇥K

(the same holds for  k(t) : T ! <), the nGP provides a highly flexible stochastic process on
the dictionary functions whose smoothness, explicitly modeled by their mth order deriva-
tives Dm⇠lk(t) via stochastic di↵erential equations, is expected to be centered on a local
instantaneous mean function Alk(t), which represents a higher-level Gaussian process, that
induces adaptivity to locally varying smoothing. Specifically, we let

Dm⇠lk(t) = Alk(t) + �⇠lkW⇠lk(t), m 2 N, m � 2, (2a)

DnAlk(t) = �AlkWAlk(t), n 2 N, n � 1, (2b)

where �⇠lk 2 <+, �Alk 2 <+, W⇠lk(t) : T ! < and WAlk(t) : T ! < are independent
Gaussian white noise processes with mean E[W⇠lk(t)] = E[WAlk(t)] = 0, for all t 2 T , and
covariance function E[W⇠lk(t)W⇠lk(t

⇤)] = E[WAlk(t)WAlk(t
⇤)] = 1 if t = t⇤, 0 otherwise.

This formulation naturally induces a stochastic process for ⇠lk(t) with varying smoothness,
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where E[Dm⇠lk(t)|Alk(t)] = Alk(t), and initialization at t
1

based on the assumption

[⇠lk(t1), D
1⇠lk(t1), . . . , D

m�1⇠lk(t1)]
T ⇠ Nm(0,�2µlk

Im),

[Alk(t1), D
1Alk(t1), . . . , D

n�1Alk(t1)]
T ⇠ Nn(0,�

2

↵lk
In).

The Markovian property implied by SDEs in (2a) and (2b) represents a key advantage
in terms of computational tractability as it allows a simple state space formulation. In
particular, referring to Zhu and Dunson (2013) for m = 2 and n = 1 (this can be easily
extended for higher m and n), and for �i = ti+1

� ti su�ciently small, the process for ⇠lk(t)
along with its first order derivative ⇠0lk(t) and the local instantaneous mean Alk(t) follow
the approximated state equation

"
⇠lk(ti+1

)
⇠0lk(ti+1

)
Alk(ti+1

)

#
=

"
1 �i 0
0 1 �i
0 0 1

#"
⇠lk(ti)
⇠0lk(ti)
Alk(ti)

#
+

"
0 0
1 0
0 1

# h
!i,⇠lk
!i,Alk

i
, (3)

where [!i,⇠lk ,!i,Alk ]
T ⇠ N

2

(0, Vi,lk), with Vi,lk = diag(�2⇠lk�i,�
2

Alk
�i).

Similarly to the nGP specification for the elements in ⇠(t), we can represent the nested
Gaussian process for  k(t) with the following state equation:

"
 k(ti+1

)
 0
k(ti+1

)
Bk(ti+1

)

#
=

"
1 �i 0
0 1 �i
0 0 1

#"
 k(ti)
 0
k(ti)

Bk(ti)

#
+

"
0 0
1 0
0 1

# h
!i, k
!i,Bk

i
, (4)

for k = 1, . . . ,K, where [!i, k
,!i,Bk ]

T ⇠ N
2

(0, Si,k), with Si,k = diag(�2 k
�i,�2Bk

�i). Simi-
larly to ⇠lk(t), we let

[ k(t1), D
1 k(t1), . . . , D

m�1 k(t1)]
T ⇠ Nm(0,�2µk

Im),

[Bk(t1), D
1Bk(t1), . . . , D

n�1Bk(t1)]
T ⇠ Nn(0,�

2

↵k
In).

There are two crucial aspects to highlight. Firstly, this formulation is defined at every
point over a subset of the real line and allows an irregular grid of observations over t by
relating the latent states at i + 1 to those at i through the distance between ti+1

and ti
where i represents a discrete order index and ti 2 T the time value related to the ith
observation. Secondly, compared to Zhu and Dunson (2013) our approach represents an
important generalization in: (i) extending the analysis to the multivariate case (i.e. yi is a
p-dimensional vector instead of a scalar) and (ii) accommodating locally adaptive smoothing
not only on the mean but also on the time-varying covariance functions.

2.2 LAF Interpretation

Model (1a)–(1b) can be induced by marginalizing out the K-dimensional latent factors
vector ⌘i, in the model

yi = ⇤(ti)⌘i + ✏i, ✏i ⇠ Np(0,⌃0

), (5)

where ⌘i =  (ti) + ⌫i with ⌫i ⇠ NK(0, IK) and elements  k(t) ⇠ nGP(�2 k
,�2Bk

) for k =
1, . . . ,K. In LAF formulation we assume moreover that the time-varying factor loadings
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matrix ⇤(t) is a sparse linear combination, with respect to the weights of the p⇥ L matrix
⇥, of a much smaller set of continuous nested Gaussian processes ⇠lk(t) ⇠ nGP(�2⇠lk ,�

2

Alk
)

comprising the L⇥K, with L << p, matrix ⇠(t). As a result

⇤(ti) = ⇥⇠(ti). (6)

Such a decomposition plays a crucial role in further reducing the number of nested
Gaussian processes to be modeled from p⇥K to L⇥K leading to a more computationally
tractable formulation in which the induced � = {µ(t),⌃(t), t 2 T } follows a locally adaptive
factor LAFL,K(⇥,⌃

0

,⌃⇠,⌃A,⌃ ,⌃B) process where

µ(ti) = E(yi | t = ti) = ⇥⇠(ti) (ti), (7a)

⌃(ti) = cov(yi | t = ti) = ⇥⇠(ti)⇠(ti)
T⇥T + ⌃

0

. (7b)

There is a literature on using Bayesian factor analysis with time-varying loadings, but
essentially all the literature assumes discrete-time dynamics on the loadings while our focus
is instead on allowing the loadings, and hence the induced � = {µ(t),⌃(t), t 2 T } processes,
to evolve flexibly in continuous time. Hence, we are most closely related to the literature
on Gaussian process latent factor models for spatial and temporal data; refer, for example,
to Lopes et al. (2008) and Lopes et al. (2011). In these models, the factor loadings matrix
characterizes spatial dependence, with time-varying factors accounting for dynamic changes.

Fox and Dunson (2011) instead allow the loadings matrix to vary through a continuous
time stochastic process built from latent GP(0, c) dictionary functions independently for all
l = 1, . . . , L and k = 1, . . . ,K, with c the squared exponential correlation function having
c(t, t⇤) = exp(�||t � t⇤||2

2

). In our work we follow the lead of Fox and Dunson (2011) in
using a nonparametric latent factor model as in (5)–(6), but induce fundamentally di↵erent
behavior on � = {µ(t),⌃(t), t 2 T } by carefully modifying the stochastic processes for the
dictionary functions.

Note that the above decomposition of � = {µ(t),⌃(t), t 2 T } is not unique. Potentially
we could constrain the loadings matrix to enforce identifiability (Geweke and Zhou, 1996),
but this approach induces an undesirable order dependence among the responses (Aguilar
and West, 2000; West, 2003; Lopes and West, 2004; Carvalho et al., 2008). Given our
focus on estimation of � we follow Ghosh and Dunson (2009) in avoiding identifiability
constraints, as such constraints are not necessary to ensure identifiability of the induced
mean µ(t) and covariance ⌃(t). The characterization of the class of time-varying covariance
matrices ⌃(t) is proved by Lemma 2.1 of Fox and Dunson (2011) which states that for K
and L su�ciently large, any covariance regression can be decomposed as in (1b). Similar
results are obtained for the mean process.

2.3 Prior Specification

We adopt a hierarchical prior specification approach to induce a prior P on � = {µ(t),⌃(t), t 2
T } with the goal of maintaining simple computation and allowing both covariances and
means to evolve flexibly over continuous time. Specifically

• �|⇥,⌃
0

,⌃⇠,⌃A,⌃ ,⌃B ⇠ LAFL,K(⇥,⌃
0

,⌃⇠,⌃A,⌃ ,⌃B).
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• Recalling the assumption ⇠lk(t) ⇠ nGP(�2⇠lk ,�
2

Alk
) within LAF representation, we

assume for each each element [⌃⇠]lk and [⌃A]lk of the L ⇥ K matrices ⌃⇠ and ⌃A

respectively, the following priors

�2⇠lk ⇠ InvGa(a⇠, b⇠),

�2Alk
⇠ InvGa(aA, bA),

independently for each (l, k); where InvGa(a, b) denotes the Inverse Gamma distribu-
tion with shape a and scale b.

• Similarly, the variances [⌃ ]k = �2 k
and [⌃B]k = �2Bk

in the state equation represen-

tation of the nGP for each  k(t) ⇠ nGP(�2 k
,�2Bk

) are assumed

�2 k
⇠ InvGa(a , b ),

�2Bk
⇠ InvGa(aB, bB),

independently for each k.

• To address the issue related to the selection of the number of dictionary elements a
shrinkage prior is proposed for ⇥. In particular, following Bhattacharya and Dunson
(2011) we assume

✓jl|�jl, ⌧l ⇠ N(0,��1

jl ⌧
�1

l ), �jl ⇠ Ga(3/2, 3/2),

#
1

⇠ Ga(a
1

, 1), #h ⇠ Ga(a
2

, 1), h � 2, ⌧l =
lY

h=1

#h. (8)

Note that if a
2

> 1 the expected value for #h is greater than 1. As a result, as l
goes to infinity, ⌧l tends to infinity, shrinking ✓jl towards zero. This leads to a flexible
prior for ✓jl with a local shrinkage parameter �jl and a global column-wise shrinkage
factor ⌧l which allows many elements of ⇥ being close to zero as L increases. Our
formulation can be easily generalized to allow shrinkage over K; see Fox and Dunson
(2011). However we found reasonable to fix K to relatively small values and learn L
with the shrinkage approach, to avoid higher computational complexity in sampling
the K-variate vector  (ti), i = 1, . . . , T .

• Finally for the variances of the error terms in vector ✏i, we assume the usual inverse
gamma prior distribution. Specifically

��2

j ⇠ Ga(a�, b�)

independently for each j = 1, . . . , p.

3. Posterior Computation

For a fixed truncation level L⇤ and a latent factor dimension K⇤, the algorithm for posterior
computation alternates between a simple and e�cient simulation smoother step (Durbin
and Koopman, 2002) to update the state space formulation of the nGP in LAF prior, and
standard Gibbs sampling steps for updating the parametric component parameters from
their full conditional distributions. See Bhattacharya and Dunson (2011) for a method
adaptively choosing the truncation levels.
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3.1 Gibbs Sampling

We outline here the main features of the algorithm for posterior computation based on
observations (yi, ti) for i = 1, . . . , T , while the complete algorithm is provided in Appendix
A. Note that, since data are in practice observed at a finite number of times, the continuous
time model is approximated in conducting inferences. This issue arises in analyzing data
with any continuous time model.

A. Given ⇥ and {⌘i}Ti=1

, a multivariate version of the MCMC algorithm proposed by Zhu
and Dunson (2013) draws posterior samples from each dictionary element’s function
{⇠lk(ti)}Ti=1

, its first order derivative {⇠0lk(ti)}Ti=1

, the corresponding instantaneous
mean {Alk(ti)}Ti=1

, the variances in the state equations �2⇠lk , �
2

Alk
and the variances of

the error terms in the observation equation �2j with j = 1, . . . , p.

B. Given⇥, {��2

j }pj=1

, {yi}Ti=1

and {⇠(ti)}Ti=1

we implement a block sampling of { k(ti)}Ti=1

,

{ 0
k(ti)}Ti=1

, {Bk(ti)}Ti=1

, �2 k
, �2Bk

and ⌫i following a similar approach as in step A.

C. Conditioned on {yi}Ti=1

, {⌘i}Ti=1

, {��2

j }pj=1

and {⇠(ti)}Ti=1

, and recalling the shrinkage
prior for the elements of ⇥ in (8), we update ⇥, each local shrinkage hyperparameter
�jl and the global shrinkage hyperparameters ⌧l following the standard conjugate
analysis.

D. Given the posterior samples from ⇥, ⌃
0

, {⇠(ti)}Ti=1

and { (ti)}Ti=1

the realization of
LAF process for {µ(ti),⌃(ti), ti 2 T } conditioned on the data {yi}Ti=1

is

µ(ti) = ⇥⇠(ti) (ti),

⌃(ti) = ⇥⇠(ti)⇠(ti)
T⇥T + ⌃

0

.

3.2 Hyperparameters Interpretation

We now focus our attention on the priors hyperparameters for �2⇠lk , �
2

Alk
, �2 k

and �2Bk
. These

quantities play an important role in facilitating local adaptivity and carefully tuning such
values may improve mixing and convergence speed of our MCMC algorithm. Simulation
studies have shown that the higher the variances in the latent state equations, the better
our formulation accommodates locally adaptivity for sudden changes in �. A theoretical
support for this data-driven consideration can be identified in the connection between the
nGP and the nested smoothing splines. It has been shown by Zhu and Dunson (2013) that
the posterior mean of the trajectory U with reference to the problem of nonparametric mean
regression under the nGP prior can be related to the minimizer of the equation

1

T

TX

i=1

(yi � U(ti))
2 + �U

Z

T
(DmU(t)� C(t))2dt+ �C

Z

T
(DnC(t))2dt,

where C is the locally instantaneous function and �U 2 <+ and �C 2 <+ regulate the
smoothness of the unknown functions U and C respectively, leading to less smoothed pat-
terns when fixed at low values. The resulting inverse relationship between these smoothing
parameters and the variances in the state equation, together with the results in the simula-
tion studies, suggest to fix the hyperparameters in the Inverse Gamma prior for �2⇠lk , �

2

Alk
,
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�2 k
and �2Bk

so as to allow high variances in the case in which the time series analyzed are
expected to have strong changes in their covariance (or mean) dynamic. A further confir-
mation of the previous discussion is provided by the structure of the simulation smoother
required to update the dictionary functions in our Gibbs sampling for posterior computa-
tion. More specifically, the larger the variances of {!i,⇠lk}Ti=1

, {!i,Alk}Ti=1

and {!i, k
}Ti=1

,
{!i,Bk}Ti=1

in the state equations, with respect to those of the vector of observations {yi}Ti=1

,
the higher is the weight associated to innovations in the filtering and smoothing techniques,
allowing for less smoothed patterns both in the covariance and mean structures (see Durbin
and Koopman, 2002).

In practical applications, it may be useful to obtain a first estimate of �̃ = {µ̃(t), ⌃̃(t)}
to set the hyperparameters. More specifically, µ̃j(ti) can be the output of a standard moving
average on each time series yj = (yj1, . . . , yjT )T , while ⌃̃(ti) can be obtained by a simple
estimator, such as the EWMA procedure. With these choices, the recursive equation

⌃̃(ti) = (1� �){[yi�1

� µ̃(ti�1

)][yi�1

� µ̃(ti�1

)]T }+ �⌃̃(ti�1

),

become easy to implement.

3.3 Online Updating

The problem of online updating represents a key point in multivariate time series with high
frequency data. Referring to our formulation, we are interested in updating an approximated
posterior for �T+H = {µ(tT+h),⌃(tT+h), h = 1, . . . , H} once a new vector of observations
{yi}T+H

i=T+1

is available, instead of rerunning posterior computation for the whole time series.
Using the posterior estimates of the Gibbs sampler based on observations available up

to time T , it is easy to implement (see Appendix B) a highly computationally tractable
online updating algorithm which alternates between steps A, B and D outlined in the
previous section for the new set of observations, and that can be initialized at T + 1 using
the one step ahead predictive distribution for the latent state vectors in the state space
formulation. Such initialization procedure for latent state vectors in the algorithm depends
on the sample moments of the posterior distribution for the latent states at T . As is
known for Kalman smoothers (see, e.g., Durbin and Koopman, 2001), this could lead to
computational problems in the online updating due to the larger conditional variances of
the latent states at the end of the sample (i.e., at T ). To overcome this problem, we replace
the previous assumptions for the initial values with a data-driven initialization scheme. In
particular, instead of using only the new observations for the online updating, we run the
algorithm for {yi}T+H

i=T�k, with k small. As a result the distribution of the smoothed states
at T is not anymore a↵ected by the problem of large conditional variances leading to better
online updating performance.

It is important to notice that the algorithm is not fully online in updating only the
time-varying dictionary functions, while fixing the time-constant model parameters at their
posterior mean. An alternative for properly propagating uncertainties while maintaining
computational tractability may be to add a further step in the online updating procedure
sampling the time-constant quantities conditionally on the updated dictionary functions
and the quantities stored during the initial sampling. Such an approach may be reasonable
if the initial time window considered is not enough large to ensure a consistent estimate
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of the time-constant parameters and if the number of time series analyzed p is tractable.
Since we search for a relatively fast procedure, and provided that for moderately large T the
posterior for the time-stationary parameters rapidly becomes concentrated, we preferred our
initially proposed algorithm in order to avoid the p draws from an L⇤ dimensional Gaussian
in the sampling of ⇥, which may slow down the online updating procedure for large p.

4. Simulation Studies

The aim of the following simulation studies is to compare the performance of our pro-
posed LAF with respect to BCR, and to the models for multivariate stochastic volatility
most widely used in practice, specifically: EWMA, PC-GARCH, GO-GARCH and DCC-
GARCH. In order to assess whether and to what extent LAF can accommodate, in practice,
even sharp changes in the time-varying means and covariances and to evaluate the costs of
our flexible approach in settings where the mean and covariance functions do not require
locally adaptive estimation techniques, we focus on two di↵erent sets of simulated data.
The first is based on an underlying structure characterized by locally varying smoothness
processes, while the second has means and covariances evolving in time through smooth
processes. In the last subsection we also analyze the performance of the proposed online
updating algorithm.

4.1 Simulated Data

A. Locally varying smoothness processes: We generate a set of 5-dimensional observations
yi for each ti in the discrete set To = {1, 2, . . . , 100}, from the latent factor model
in (5) with ⇤(ti) = ⇥⇠(ti). To allow sharp changes of means and covariances in
the generating mechanism, we consider a 2 ⇥ 2 (i.e. L = K = 2) matrix {⇠(ti)}100i=1

of time-varying functions adapted from Donoho and Johnstone (1994) with locally
varying smoothness (more specifically we choose ‘bumps’ functions). The latent mean
dictionary elements in { (ti)}100i=1

are simulated from a Gaussian process GP(0, c) with
length scale  = 10, while the elements in matrix ⇥ can be obtained from the shrinkage
prior in (8) with a

1

= a
2

= 10. Finally the elements of the diagonal matrix ⌃�1

0

are
sampled independently from Ga(1, 0.1).

B. Smooth processes: We consider the same data set of 10-dimensional observations yi
with ti 2 To = {1, 2, . . . , 100} investigated in Fox and Dunson (2011, Section 4.1).
The settings are similar to the previous with exception of {⇠(ti)}100i=1

which are 5 ⇥ 4
matrices of smooth GP dictionary functions with length scale  = 10.

4.2 Estimation Performance

A. Locally varying smoothness processes:
Posterior computation for LAF is performed by using truncation levels L⇤ = K⇤ = 2
(at higher level settings we found that the shrinkage prior on ⇥ results in posterior
samples of the elements in the additional columns concentrated around 0). We place a
Ga(1, 0.1) prior on the precision parameters ��2

j and choose a
1

= a
2

= 2. As regards
the nGP prior for each dictionary element ⇠lk(t) with l = 1, . . . , L⇤ and k = 1, . . . ,K⇤,
we choose di↵use but proper priors for the initial values by setting �2µlk

= �2↵lk
= 100
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and place an InvGa(2, 108) prior on each �2⇠lk and �2Alk
in order to allow less smooth

behavior according to a previous graphical analysis of ⌃̃(ti) estimated via EWMA.
Similarly we set �2µk

= �2↵k
= 100 in the prior for the initial values of the latent state

equations resulting from the nGP prior for  k(t), and consider a = aB = b = bB =
0.005 to balance the rough behavior induced on the nonparametric mean functions by
the settings of the nGP prior on ⇠lk(t), as suggested from previous graphical analysis.
Note also that for posterior computation, we first scale the predictor space to (0, 1],
leading to �i = 1/100, for i = 1, . . . , 100.

For inference in BCR we consider the same previous hyperparameters setting for ⇥
and ⌃

0

priors as well as the same truncation levels K⇤ and L⇤, while the length scale
 in GP prior for ⇠lk(t) and  k(t) has been set to 10 using the data-driven heuristic
outlined in Fox and Dunson (2011). In both cases we run 50,000 Gibbs iterations
discarding the first 20,000 as burn-in and thinning the chain every 5 samples.

As regards the other approaches, EWMA has been implemented by choosing the
smoothing parameter � that minimizes the mean squared error (MSE) between the
estimated covariances and the true values. PC-GARCH algorithm follows the steps
provided by Burns (2005) with GARCH(1,1) assumed for the conditional volatilities
of each single time series and the principal components. GO-GARCH and DCC-
GARCH recall the formulations provided by van der Weide (2002) and Engle (2002)
respectively, assuming a GARCH(1,1) for the conditional variances of the processes
analyzed, which proves to be a correct choice in many financial applications and also in
our setting. Note that, di↵erently from LAF and BCR, the previous approaches do not
model explicitly the mean process {µ(ti)}100i=1

but work directly on the innovations {yi�
µ(ti)}100i=1

. Therefore in these cases we first model the conditional mean via smoothing
spline and in a second step we estimate the models working on the innovations. The
smoothing parameter for spline estimation has been set to 0.7, which was found to be
appropriate to best reproduce the true dynamic of {µ(ti)}100i=1

.

B. Smooth processes:
We mainly keep the same setting of the previous simulation study with few di↵erences.
Specifically, L⇤ and K⇤ has been fixed to 5 and 4 respectively (also in this case the
choice of the truncation levels proves to be appropriate, reproducing the same results
provided in the simulation study of Fox and Dunson (2011) where L⇤ = 10 and
K⇤ = 10). Moreover the scale parameters in the Inverse Gamma prior on each �2⇠lk
and �2Alk

has been set to 104 in order to allow a smoother behavior according to a

previous graphical analysis of ⌃̃(ti) estimated via EWMA, but without forcing the
nGP prior to be the same as a GP prior. Following Fox and Dunson (2011) we
run 10,000 Gibbs iterations which proved to be enough to reach convergence, and
discarded the first 5,000 as burn-in.

In the first set of simulated data, we analyzed mixing by the Gelman-Rubin procedure (see,
e.g., Gelman and Rubin, 1992), based on potential scale reduction factors computed for
each chain by splitting the sampled quantities in 6 pieces of same length. The analysis
shows slower mixing for BCR compared with LAF. Specifically, in LAF 95% of the chains
have a potential reduction factor lower than 1.35, with a median equal to 1.11, while in

1504



Locally Adaptive Factor Processes for Multivariate Time Series

Time

0 20 40 60 80 100

0
50

10
0

15
0

Time

0 20 40 60 80 100

-3
00

-2
50

-2
00

-1
50

-1
00

-5
0

0

Time

0 20 40 60 80 100

-6
-4

-2
0

2
4

0 20 40 60 80 100

1
2

3
4

5

0 20 40 60 80 100

-0
.5

0.
0

0.
5

1.
0

1.
5

0 20 40 60 80 100

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

⌃2,2(ti)

⌃1,3(ti) µ5(ti)

⌃9,9(ti) ⌃10,3(ti) µ5(ti)

Figure 2: For locally varying smoothness simulation (top) and smooth simulation (bottom),
plots of truth (black) and posterior mean respectively of LAF (solid red line) and
BCR (solid green line) for selected components of the variance (left), covariance
(middle), mean (right). For both approaches the dotted lines represent the 95%
highest posterior density intervals.

BCR the 95% quantile is 1.44 and the median equals 1.18. Less problematic is the mixing
for the second set of simulated data, with potential scale reduction factors having median
equal to 1.05 for both approaches and 95% quantiles equal to 1.15 and 1.31 for LAF and
BCR, respectively.

Figure 2 compares, in both simulated samples, true and posterior mean of the process
� = {µ(ti),⌃(ti), i = 1, . . . , 100} over the predictor space To together with the point-wise
95% highest posterior density (hpd) intervals for LAF and BCR. From the upper plots we
can clearly note that our approach is able to capture conditional heteroscedasticity as well as
mean patterns, also in correspondence of sharp changes in the time-varying true functions.
The major di↵erences compared to the true values can be found at the beginning and at
the end of the series and are likely to be related to the structure of the simulation smoother
which also causes a widening of the credibility bands at the very end of the series; for
references regarding this issue see Durbin and Koopman (2001). However, even in the most
problematic cases, the true values are within the bands of the 95% hpd intervals. Much
more problematic is the behavior of the posterior distributions for BCR which over-smooth
both covariance and mean functions leading also to many 95% hpd intervals not containing
the true values. Bottom plots in Figure 2 show that the performance of our approach is
very close to that of BCR, when data are simulated from a model where the covariances
and means evolve smoothly across time and local adaptivity is not required. This happens
even if the hyperparameters in LAF are set in order to maintain separation between nGP
and GP prior, suggesting large support property for the proposed approach.
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Mean 90% Quantile 95% Quantile Max
Covariance {⌃(ti)}

EWMA 1.37 2.28 5.49 85.86
PC-GARCH 1.75 2.49 6.48 229.50
GO-GARCH 2.40 3.66 10.32 173.41
DCC-GARCH 1.75 2.21 6.95 226.47
BCR 1.80 2.25 7.32 142.26
LAF 0.90 1.99 4.52 36.95

Mean {µ(ti)}
SPLINE 0.064 0.128 0.186 2.595
BCR 0.087 0.185 0.379 2.845
LAF 0.062 0.123 0.224 2.529

Table 1: LOCALLY VARYING SMOOTHNESS PROCESSES: Summaries of the standard-
ized squared errors between true values {µ(ti)}100i=1

and {⌃(ti)}100i=1

and estimated
quantities {⌃̂(ti)}100i=1

and {µ̂(ti)}100i=1

computed with di↵erent approaches.

Mean 90% Quantile 95% Quantile Max
Covariance {⌃(ti)}

EWMA 0.030 0.081 0.133 1.119
PC-GARCH 0.018 0.048 0.076 0.652
GO-GARCH 0.043 0.104 0.202 1.192
DCC-GARCH 0.022 0.057 0.110 0.466
BCR 0.009 0.019 0.039 0.311
LAF 0.009 0.022 0.044 0.474

Mean {µ(ti)}
SPLINE 0.007 0.019 0.027 0.077
BCR 0.005 0.015 0.024 0.038
LAF 0.005 0.017 0.026 0.050

Table 2: SMOOTH PROCESSES: Summaries of the standardized squared errors between
true values {µ(ti)}100i=1

and {⌃(ti)}100i=1

and estimated quantities {⌃̂(ti)}100i=1

and
{µ̂(ti)}100i=1

computed with di↵erent approaches.

The comparison of the summaries of the squared errors between true process � =
{µ(ti),⌃(ti), i = 1, . . . , 100} and the estimated quantities �̂ = {µ̂(ti), ⌃̂(ti), i = 1, . . . , 100}
standardized with the range of the true processes rµ = maxi,j{µj(ti)}�mini,j{µj(ti)} and
r
⌃

= maxi,j,k{⌃j,k(ti)}�mini,j,k{⌃j,k(ti)} respectively, once again confirms the overall bet-
ter performance of our approach relative to all the considered competitors. Table 1 shows
that, when local adaptivity is required, LAF provides a superior performance having stan-
dardized residuals lower than those of the other approaches. EWMA seems to provide quite
accurate estimates, but it is important to underline that we choose the optimal smoothing
parameter � in order to minimize the MSE between estimated and true parameters, which
are clearly not known in practical applications. Di↵erent values of � reduces significantly
the performance of EWMA, which shows also lack of robustness. The closeness of the sum-
maries of LAF and BCR in Table 2 confirms the flexibility of LAF even in settings where
local adaptivity is not required and highlights the better performance of the two approaches
with respect to the other competitors also when smooth processes are investigated.

To better understand the improvement of our approach in allowing locally varying
smoothness and to evaluate the consequences of the over-smoothing induced by BCR on the
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Figure 3: For 4 selected simulated series: time-varying mean µj(ti) and 2.5% and 97.5%
quantiles of the marginal distribution of yji with true mean and variance (black),
mean and variance from posterior mean of LAF (red), mean and variance from
posterior mean of BCR (green). Black points represent the simulated data.

distribution of yi with i = 1, . . . , 100 consider Figure 3 which shows, for some selected series
{yji}100i=1

in the first simulated data set, the time-varying mean together with the point-wise
2.5% and 97.5% quantiles of the marginal distribution of yji induced respectively by the
true mean and true variance, the posterior mean of µj(ti) and ⌃jj(ti) from our proposed
approach and the posterior mean of the same quantities from BCR. We can clearly see
that the marginal distribution of yji induced by BCR is over-concentrated near the mean,
leading to incorrect inferences. Note that our proposal is also able to accommodate heavy
tails, a typical characteristic in financial series.

4.3 Online Updating Performance

To analyze the performance of the online updating algorithm in LAF model, we simulate
50 new observations {yi}150i=101

with ti 2 T ⇤
o = {101, . . . , 150}, considering the same ⇥ and

⌃
0

used in the generating mechanism for the first simulated data set and taking the 50
subsequent observations of the bumps functions for the dictionary elements {⇠(ti)}150i=101

;
finally the additional latent mean dictionary elements { (ti)}150i=101

are simulated as before
maintaining the continuity with the previously simulated functions { (ti)}100i=1

. According to
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Figure 4: Plots of truth (black) and posterior mean of the online updating procedure (solid
red line) for selected components of the covariance (top), variance (middle), mean
(bottom). The dotted lines represent the 95% highest posterior density intervals.

the algorithm described in Subsection 3.3, we fix ⇥, ⌃
0

, ⌃⇠, ⌃A,⌃ and ⌃B at their posterior
mean from the previous Gibbs sampler and consider the last three observations y

98

, y
99

and
y
100

(i.e. k = 3) to initialize the simulation smoother in i = 101 through the proposed data-
driven initialization approach. Posterior computation shows good performance in terms of
mixing, and convergence is assessed after 5,000 Gibbs iterations with a small burn-in of 500.

Figure 4 compares true mean and covariance to posterior mean of a selected set of
components of �⇤ = {µ(ti),⌃(ti), i = 101, . . . , 150} including also the 95% hpd intervals.
The results clearly show that the online updating is characterized by a good performance
which allows to capture the behavior of new observations conditioning on the previous
estimates. Note that the posterior distribution of the approximated mean and covariance
functions tends to slightly over-estimate the patterns of the functions at sharp changes,
however also in these cases the true values are within the bands of the credibility intervals.
Finally note that the data-driven initialization ensures a good behavior at the beginning of
the series, while the results at the end have wider uncertainty bands as expected.

5. Application Study

Spurred by the recent growth of interest in the dynamic dependence structure between
financial markets in di↵erent countries, and in its features during the crises that have
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followed in recent years, we applied our LAF to the multivariate time series of the main
National Stock Market Indices.

5.1 National Stock Market Indices, Introduction and Motivation

National Stock Market Indices represent technical tools that allow, through the synthesis
of numerous data on the evolution of the various stocks, to detect underlying trends in the
financial market, with reference to a specific basis of currency and time. More specifically,
each Market Index can be defined as a weighted sum of the values of a set of national stocks,
whose weighting factors is equal to the ratio of its market capitalization in a specific date
and overall of the whole set on the same date.

In this application we focus our attention on the multivariate weekly time series of the
main 33 (i.e. p = 33) National Stock Market Indices from 12/07/2004 to 25/06/2012.
Figure 5 shows the main features in terms of stationarity, mean patterns and volatility
of two selected National Stock Market Indices downloaded from http://finance.yahoo.

com/. The non-stationary behavior, together with the di↵erent bases of currency and time,
motivate the use of logarithmic returns yji = log(Iji/Iji�1

), where Iji is the value of the
Stock Market Index j at time ti. Beside this, the marginal distribution of log returns
shows heavy tails and irregular cyclical trends in the nonparametric estimation of the mean,
while EWMA estimates highlight rapid changes of volatility during the financial crises
observed in the recent years. All these results, together with large p settings and high
frequency data typical in financial fields, motivate the use of our approach to obtain a
better characterization of the time-varying dependence structure among financial markets.

5.2 LAF for National Stock Market Indices

We consider the heteroscedastic model yi ⇠ N
33

(µ(ti),⌃(ti)) for i = 1, . . . , 415 and ti in the
discrete set To = {1, 2, . . . , 415}, where the elements of � = {µ(ti),⌃(ti), i = 1, . . . , 415},
defined by (7a)-(7b), are induced by the dynamic latent factor model outlined in (5)-(6).

Posterior computation is performed by first rescaling the predictor space To to (0, 1] and
using the same setting of the first simulation study, with the exception of the truncation
levels fixed at K⇤ = 4 and L⇤ = 5 (which we found to be su�ciently large from the fact
that the last few columns of the posterior samples for ⇥ assumed values close to 0) and
the hyperparameters of the nGP prior for each ⇠lk(t) and  k(t) with l = 1, . . . , L⇤ and k =
1, . . . ,K⇤, set to a⇠ = aA = a = aB = 2 and b⇠ = bA = b = bB = 5⇥ 107 to capture also
rapid changes in the mean functions according to Figure 5. Missing values in our data set
do not represent a limitation since the Bayesian approach allows us to update our posterior
considering solely the observed data. We run 10,000 Gibbs iterations with a burn-in of 2,500.
Examination of trace plots of the posterior samples for � = {µ(ti),⌃(ti), i = 1, . . . , 415}
showed no evidence against convergence.

Posterior distributions for the variances in Figure 6 demonstrate that we are clearly
able to capture the rapid changes in the dynamics of volatility that occur during the world
financial crisis of 2008, in early 2010 with the Greek debt crisis and in the summer of 2011
with the financial speculation in government bonds of European countries together with the
rejection of the U.S. budget and the downgrading of the United States rating. Moreover,
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Figure 5: Plots of the main features of USA NASDAQ (left) and ITALY FTSE MIB (right).
Specifically: observed time series (top), log returns series with nonparametric
mean estimation via 12 week Equally Weighted Moving Average (red) in the
middle, EWMA volatility estimates (bottom).

the resulting marginal distribution of the log returns induced by the posterior mean of µj(t)
and ⌃jj(t), shows that we are also able to accommodate heavy tails as well as mean patterns
cycling irregularly between slow and more rapid changes.

Important information about the ability of our model to capture the evolution of world
geo-economic structure during di↵erent finance scenarios is provided in Figures 7 and 8.
From the correlations between NASDAQ and the other National Stock Market Indices
(based on the posterior mean {⌃̂(ti)}415i=1

of the covariances function) in Figure 7, we can
immediately notice the presence of a clear geo-economic structure in world financial markets
(more evident in LAF than in BCR), where the dependence between the U.S. and European
countries is systematically higher than that of South East Asian Nations (Economic Tigers),
showing also di↵erent reactions to crises. Plots at the top of the Figure 8 confirms the above
considerations showing how Western countries exhibit more connection with countries closer
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Figure 6: Top: Plot for 2 National Stock Market Indices, respectively USA NASDAQ (left)
and ITALY FTSE MIB (right), of the log returns (black) and the time-varying
estimated mean {µ̂j(ti)}415i=1

together with the time-varying 2.5% and 97.5% quan-
tiles (red) of the marginal distribution of yji from LAF. Bottom: posterior mean
(black) and 95% hpd (dotted red) for the variances {⌃jj(ti)}415i=1

.

in terms of geographical, political and economic structure; the same holds for Eastern
countries where we observe a reversal of the colored curves. As expected, Russia is placed
in a middle path between the two blocks. A further element that our model captures about
the structure of the markets is shown in the plots at the bottom of Figure 8. The time-
varying regression coe�cients obtained from the standard formulas of the conditional normal
distribution based on the posterior mean of � = {µ(ti),⌃(ti), i = 1, . . . , 415} highlight
clearly the increasing dependence of European countries with higher crisis in sovereign debt
and Germany, which plays a central role in Eurozone as expected.

The flexibility of the proposed approach and the possibility of accommodating varying
smoothness in the trajectories over time, allow us to obtain a good characterization of the
dynamic dependence structure according with the major theories on financial crisis. The top
plot in Figure 7 shows how the change of regime in correlations occurs exactly in correspon-
dence to the burst of the U.S. housing bubble (A), in the second half of 2006. Moreover we
can immediately notice that the correlations among financial markets increase significantly
during the crises, showing a clear international financial contagion e↵ect in agreement with
other theories on financial crisis (see, e.g., Baig and Goldfajn, 1999; Claessens and Forbes,
2001). As expected the persistence of high levels of correlation is evident during the global
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Figure 7: Black line: For USA NASDAQ median of correlations with the other 32 National
Stock Market Indices based on posterior mean of {⌃(ti)}415i=1

. Red lines: 25%,
75% (dotted lines) and 50% (solid line) quantiles of correlations between USA
NASDAQ and European countries (without considering Greece and Russia which
present a specific pattern). Green lines: 25%, 75% (dotted lines) and 50% (solid
line) quantiles of correlations between USA NASDAQ and the countries of South-
east Asia (Asian Tigers and India). Timeline: (A) burst of U.S. housing bubble;
(B) risk of failure of the first U.S. credit agencies (Bear Stearns, Fannie Mae and
Freddie Mac); (C) world financial crisis after the Lehman Brothers’ bankruptcy;
(D) Greek debt crisis; (E) financial reform launched by Barack Obama and E.U.
e↵orts to save Greece (the two peaks represent respectively Irish debt crisis and
Portugal debt crisis); (F) worsening of European sovereign-debt crisis and the
rejection of the U.S. budget; (G) crisis of credit institutions in Spain and the
growing financial instability of the Eurozone.

financial crisis between late-2008 and end-2009 (C), at the beginning of which our approach
also captures a sharp variation in the correlations between the U.S. and Economic Tigers,
which lead to levels close to those of Europe. Further rapid changes are identified in cor-
respondence of Greek crisis (D), the worsening of European sovereign-debt crisis and the
rejection of the U.S. budget (F) and the recent crisis of credit institutions in Spain to-
gether with the growing financial instability Eurozone (G). Finally, even in the period of
U.S. financial reform launched by Barack Obama and E.U. e↵orts to save Greece (E), we
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Figure 8: Top: For 3 selected National Stock Market Indices, plot of the median of the
correlation based on posterior mean of {⌃(ti)}415i=1

with the other 32 world stock
indices (black), the European countries without considering Greece and Russia
(red) and the Asian Tigers including India (green). Bottom: For 3 of the Eu-
ropean countries more subject to sovereign debt crisis, plot of 25%, 50% and
75% quantiles of the time-varying regression parameters based on posterior mean
{⌃̂(ti)}415i=1

with the other countries (black) and Germany (red).

can notice two peaks representing respectively Irish debt crisis and Portugal debt crisis.
Note also that BCR, as expected, tends to over-smooth the dynamic dependence structure
during the financial crisis, proving to be not able to model the sharp change in the corre-
lations between USA NASDAQ and Economic Tigers during late-2008, and the two peaks
representing respectively Irish and Portugal debt crisis at the beginning of 2011.

5.3 National Stock Market Indices, Updating and Predicting

The possibility to quickly update the estimates and the predictions as soon as new data
arrive, represents a crucial aspect to obtain quantitative informations about the future
scenarios of the crisis in financial markets. To answer this goal, we apply the online updating
algorithm presented in Subsection 3.3, to the new set of weekly observations {yi}422i=416

from
02/07/2012 to 13/08/2012 conditioning on posterior estimates of the Gibbs sampler based
on observations {yi}415i=1

available up to 25/06/2012. We initialized the simulation smoother
algorithm with the last 8 observations of the previous sample.

1513



Durante, Scarpa and Dunson

Time

-0
.05

0.0
0

0.0
5

2012-07-02 2012-07-16 2012-07-30 2012-08-13

Time

-0
.05

0.0
0

0.0
5

0.1
0

2012-07-02 2012-07-16 2012-07-30 2012-08-13

Time

-0
.05

0.0
0

0.0
5

0.1
0

2012-07-02 2012-07-16 2012-07-30 2012-08-13

(a)

-0
.08

-0
.04

0.0
0
0.0
2
0.0
4
0.0
6

2012-07-02 2012-07-16 2012-07-30 2012-08-13

(b)

-0
.08

-0
.04

0.0
0
0.0
2
0.0
4
0.0
6

2012-07-02 2012-07-16 2012-07-30 2012-08-13

(c)

-0
.08

-0
.04

0.0
0
0.0
2
0.0
4
0.0
6

2012-07-02 2012-07-16 2012-07-30 2012-08-13

USA NASDAQ INDIA BSE30 FRANCE CAC40

Figure 9: Top: For 3 selected National Stock Market Indices, respectively USA NASDAQ
(left), INDIA BSE30 (middle) and FRANCE CAC40 (right), plot of the ob-
served log returns (black) together with the mean and the 2.5% and 97.5% quan-
tiles of the marginal distribution (red) and conditional distribution given the
other 32 National Stock Market Indices (green) based on the posterior mean of
�⇤ = {µ(ti),⌃(ti), i = 416, . . . , 422} from the online updating procedure for the
new observations from 02/07/2012 to 13/08/2012. Bottom: boxplots of the one
step ahead prediction errors for the 33 National Stock Market Indices, where
the predicted values are respectively: (a) unconditional mean {ỹi+1

}421i=415

= 0,
(b) marginal mean of the one step ahead predictive distribution, (c) conditional
mean given the log returns of the other 32 NSI at i + 1 of the one step ahead
predictive distribution. Predictions for (b) and (c) are induced by the posterior
mean of {µ(ti+1|i),⌃(ti+1|i), i = 415, . . . , 421} of LAF.

Plots at the top of Figure 9 show, for 3 selected National Stock Market Indices, the new
observed log returns {yji}422i=416

(black) together with the mean and the 2.5% and 97.5%

quantiles of the marginal distribution (red) and conditional distribution (green) of yji|y�j
i

with y�j
i = {yqi, q 6= j}. We use standard formulas of the multivariate normal distribution

based on the posterior mean of the updated �⇤ = {µ(ti),⌃(ti), i = 416, . . . , 422} after 5,000
Gibbs iterations with a burn in of 500. This is su�cient for convergence based on examining
trace plots of the time-varying mean and covariance matrices. From these results, we can
clearly notice the good performance of our proposed online updating algorithm in obtaining
a characterization for the distribution of new observations. Also note that the multivariate
approach together with a flexible model for the mean and covariance, allow for significant
improvements when the conditional distribution of an index given the others is analyzed.
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To obtain further informations about the predictive performance of our LAF, we can
easily use our online updating algorithm to obtain h step-ahead predictions for �T+H|T =
{µ(tT+h|T ),⌃(tT+h|T ), h = 1, . . . , H}. In particular, referring to Durbin and Koopman

(2001), we can generate posterior samples of �T+H|T merely by treating {yi}T+H
i=T+1

as missing
values in the proposed online updating algorithm. Here, we consider the one step ahead
prediction (i.e. H = 1) problem for the new observations. More specifically, for each i from
415 to 421, we update the mean and covariance functions conditioning on informations up
to ti through the online algorithm and then obtain the predicted posterior distribution for
⌃(ti+1|i) and µ(ti+1|i) by adding to the sample considered for the online updating a last
column yi+1

of missing values.

Plots at the bottom of Figure 9, show the boxplots of the one step ahead prediction errors
for the 33 National Stock Market Indices obtained as the di↵erence between the predicted
value ỹj,i+1

and, once available, the observed log return yj,i+1

with i + 1 = 416, . . . , 422
corresponding to weeks from 02/07/2012 to 13/08/2012. In (a) we forecast the future
log returns with the unconditional mean {ỹi+1

}421i=415

= 0, which is what is often done
in practice under the general assumption of zero mean, stationary log returns. In (b) we
consider ỹi+1

= µ̂(ti+1|i), the posterior mean of the one step ahead predictive distribution of
µ(ti+1|i), obtained from the previous proposed approach after 5,000 Gibbs iteration with a
burn in of 500. Finally in (c) we suppose that the log returns of all National Stock Market
Indices except that of country j (i.e., yj,i+1

) become available at ti+1

and, considering
yi+1|i ⇠ Np(µ̂(ti+1|i), ⌃̂(ti+1|i)) with µ̂(ti+1|i) and ⌃̂(ti+1|i) posterior mean of the one step
ahead predictive distribution respectively for µ(ti+1|i) and ⌃(ti+1|i), we forecast yj,i+1

with
the conditional mean of yj,i+1|i given the other log returns at time ti+1

. Comparing boxplots
in (a) with those in (b) we can see that our model allows to obtain improvements also in
terms of prediction. Furthermore, by analyzing the boxplots in (c) we can notice how our
ability to obtain a good characterization of the time-varying covariance structure can play
a crucial role also in improving forecasting, since it enters into the standard formula for
calculating the conditional mean in the normal distribution.

6. Discussion

In this paper, we have presented a continuous time multivariate stochastic process for
time series to obtain a better characterization for mean and covariance temporal dynamics.
Maintaining simple conjugate posterior updates and tractable computations in moderately
large p settings, our model increases significantly the flexibility of previous approaches as it
captures sharp changes both in mean and covariance dynamics while accommodating heavy
tails. Beside these key advantages, the state space formulation enables development of a
fast online updating algorithm particularly useful for high frequency data.

The simulation studies highlight the flexibility and the overall better performance of
LAF with respect to the models for multivariate stochastic volatility most widely used
in practice, both when adaptive estimation techniques are required, and also when the
underlying mean and covariance structures do not show sharp changes in their dynamic.

The application to the problem of capturing temporal and geo-economic structure be-
tween the main financial markets demonstrates the utility of our approach and the im-
provements that can be obtained in the analysis of multivariate financial time series with
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reference to (i) heavy tails, (ii) locally adaptive mean regression, (iii) sharp changes in co-
variance functions, (iii) high dimensional data set, (iv) online updating with high frequency
data (v) missing values and (vi) predictions. Potentially further improvements are possible
using a stochastic di↵erential equation model that explicitly incorporates prior information
on dynamics.
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Appendix A. Posterior Computation

For a fixed truncation level L⇤ and a latent factor dimension K⇤ the detailed steps of the
Gibbs sampler for posterior computations are:

1. Define the vector of the latent states and the error terms in the state space equation
resulting from nGP prior for dictionary elements as

⌅i = [⇠
11

(ti), ⇠21(ti), . . . , ⇠L⇤K⇤(ti), ⇠
0
11

(ti), . . . , ⇠
0
L⇤K⇤(ti), A11

(ti), . . . , AL⇤K⇤(ti)]
T ,

⌦i,⇠ = [!i,⇠11 ,!i,⇠21 , . . . ,!i,⇠L⇤K⇤ ,!i,A11 ,!i,A21 , . . . ,!i,AL⇤K⇤ ]
T .

Given ⇥, {⌘i}Ti=1

, {yi}Ti=1

, ⌃
0

and the variances in latent state equations {�2⇠lk},
{�2Alk

}, with l = 1, . . . , L⇤ and k = 1, . . . ,K⇤; update {⌅i}Ti=1

by using the simulation
smoother in the following state space model

yi = [⌘Ti ⌦⇥, 0p⇥(2⇥K⇤⇥L⇤
)

]⌅i + ✏i, (9)

⌅i+1

= Ti⌅i +Ri⌦i,⇠, (10)

where the observation equation in (9) results by applying the vec operator in the latent
factor model yi = ⇥⇠(ti)⌘i + ✏i. More specifically recalling the property vec(ABC) =
(CT ⌦A)vec(B) we obtain

yi = vec(yi) = vec{⇥⇠(ti)⌘i + ✏i}
= vec{⇥⇠(ti)⌘i}+ vec(✏i)

= (⌘Ti ⌦⇥)vec{⇠(ti)}+ ✏i.

The state equation in (10) is a joint representation of the equations resulting from the
nGP prior on each ⇠lk(t) defined in (3). As a result, the (3⇥L⇤⇥K⇤)⇥(3⇥L⇤⇥K⇤) ma-
trix Ti together with the (3⇥L⇤⇥K⇤)⇥(2⇥L⇤⇥K⇤) matrix Ri reproduce, for each dic-
tionary element the state equation in (3) by fixing to 0 the coe�cients relating latent
states with di↵erent (l, k) (from the independence between the dictionary elements).
Finally, recalling the assumptions on !i,⇠lk and !i,Alk , ⌦i,⇠ is normally distributed with
E[⌦i,⇠] = 0 and E[⌦i,⇠⌦T

i,⇠] = diag(�2⇠11�i, . . . ,�
2

⇠L⇤K⇤ �i,�
2

A11
�i, . . . ,�2AL⇤K⇤ �i).
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2. Given {⌅i}Ti=1

sample each �2⇠lk and �2Alk
respectively from

�2⇠lk |{⌅i} ⇠ InvGa

 
a⇠ +

T

2
, b⇠ +

1

2

T�1X

i=1

(⇠0lk(ti+1

)� ⇠0lk(ti)�Alk(ti)�i)2

�i

!
,

�2Alk
|{⌅i} ⇠ InvGa

 
aA +

T

2
, bA +

1

2

T�1X

i=1

(Alk(ti+1

)�Alk(ti))2

�i

!
.

3. Similarly to ⌅i and ⌦i,⇠ let

 i = [ 
1

(ti), 2

(ti), . . . , K⇤(ti), 
0
1

(ti), . . . , 
0
K⇤(ti), B1

(ti), . . . , BK⇤(ti)]
T ,

⌦i, = [!i, 1 ,!i, 2 , . . . ,!i, K⇤ ,!i,B1 ,!i,B2 , . . . ,!i,BK⇤ ]
T ,

be the vectors of the latent states and error terms in the state space equation resulting
from nGP prior for  (t). Conditional on ⇥, {⇠(ti)}Ti=1

, {yi}Ti=1

, ⌃
0

, and the variances
in latent state equations {�2 k

}, {�2Bk
}, with k = 1, . . . ,K⇤; sample { i}Ti=1

from the
simulation smoother in the following state space model

yi = [⇥⇠(ti), 0p⇥(2⇥K⇤
)

] i +$i, (11)

 i+1

= Gi i + Fi⌦i, , (12)

$i ⇠ N(0,⇥⇠(ti)⇠(ti)T⇥T+⌃
0

). The observation equation in (11) results by marginal-
izing out ⌫i in the latent factor model with nonparametric mean regression yi =
⇥⇠(ti) (ti) + ⇥⇠(ti)⌫i + ✏i. Analogously to ⌅i, the state equation in (12) is a joint
representation of the state equation induced by the nGP prior on each  k(t) defined in
(4); where the (3⇥K⇤)⇥(3⇥K⇤) matrix Gi and the (3⇥K⇤)⇥(2⇥K⇤) matrix Fi are
constructed with the same goal of the matrices Ti and Ri in the state space model for
⌅i. Finally, ⌦i, ⇠ N

2⇥K⇤(0, diag(�2 1
�i,�2 2

�i, . . . ,�2 K⇤ �i,�
2

B1
�i,�2B2

�i, . . . ,�2BK⇤ �i)).

4. Given { i}Ti=1

update each �2 k
and �2Bk

respectively from

�2 k
|{ i} ⇠ InvGa

 
a +

T

2
, b +

1

2

T�1X

i=1

( 0
k(ti+1

)�  0
k(ti)�Bk(ti)�i)2

�i

!
,

�2Bk
|{ i} ⇠ InvGa

 
aB +

T

2
, bB +

1

2

T�1X

i=1

(Bk(ti+1

)�Bk(ti))2

�i

!
.

5. Conditioned on ⇥, ⌃
0

, yi, ⇠(ti) and  (ti), and recalling ⌫i ⇠ NK⇤(0, IK⇤); the standard
conjugate posterior distribution ⌫i|⇥,⌃0

, ỹi, ⇠(ti), (ti) is

NK⇤
�
(I + ⇠(ti)

T⇥T⌃�1

0

⇥⇠(ti))
�1⇠(ti)

T⇥T⌃�1

0

ỹi, (I + ⇠(ti)
T⇥T⌃�1

0

⇥⇠(ti))
�1

�
,

with ỹi = yi �⇥⇠(ti) (ti).
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6. Conditioned on ⇥, {⌘i}Ti=1

, {yi}Ti=1

, and {⇠(ti)}Ti=1

(obtained from ⌅i), the standard
conjugate posterior from which to update ��2

j is

��2

j |⇥, {⌘i}, {yi}, {⇠(ti)} ⇠ Ga

 
a� +

T

2
, b� +

1

2

TX

i=1

(yji � ✓j·⇠(ti)⌘i)
2

!
.

Where ✓j· = [✓j1, . . . , ✓jL⇤ ]

7. Given {⌘i}Ti=1

, {yi}Ti=1

, {⇠(ti)}Ti=1

and the hyperparameters � and ⌧ the shrinkage prior
on ⇥ combined with the likelihood for the latent factor model lead to the Gaussian
posterior

✓j·|{⌘i}, {yi}, {⇠(ti)},�, ⌧ ⇠ NL⇤

 
⌃̃✓⌘̃

T��2

j

" yj1
.
.
.

yjT

#
, ⌃̃✓

!
,

where ⌘̃T = [⇠(t
1

)⌘
1

, ⇠(t
2

)⌘
2

, . . . , ⇠(tT )⌘T ] and

⌃̃�1

✓ = ��2

j ⌘̃T ⌘̃ + diag(�j1⌧1, . . . ,�jL⇤⌧L⇤).

8. The Gamma prior on the local shrinkage hyperparameter �jl implies the standard
conjugate posterior given ✓jl and ⌧l

�jl|✓jl, ⌧l ⇠ Ga

 
2,

3 + ⌧l✓2jl
2

.

!

9. Conditioned on ⇥ and ⌧ , sample the global shrinkage hyperparameters from

#
1

|⇥, ⌧ (�1) ⇠ Ga

0

@a
1

+
pL⇤

2
, 1 +

1

2

L⇤X

l=1

⌧ (�1)

l

pX

j=1

�jl✓
2

jl

1

A ,

#h|⇥, ⌧ (�h) ⇠ Ga

0

@a
2

+
p(L⇤ � h+ 1)

2
, 1 +

1

2

L⇤X

l=h

⌧ (�h)
l

pX

j=1

�jl✓
2

jl

1

A ,

where ⌧ (�h)
l =

Ql
t=1,t 6=h #t for h = 1, . . . , L⇤.

10. Given the posterior samples from ⇥, ⌃
0

, {⇠(ti)}Ti=1

and { (ti)}Ti=1

the realization of
the LAF process for {µ(ti),⌃(ti), ti 2 T } conditioned on the data {yi}Ti=1

is

µ(ti) = ⇥⇠(ti) (ti),

⌃(ti) = ⇥⇠(ti)⇠(ti)
T⇥T + ⌃

0

.
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Appendix B. Online Updating Algorithm

Consider ⇥, ⌃
0

, {�2⇠lk}, {�
2

Alk
}, {�2 k

} and {�2Bk
} fixed at their posterior mean ⇥̂, ⌃̂

0

, {�̂2⇠lk},
{�̂2Alk

}, {�̂2 k
}, {�̂2Bk

} respectively, and let ⌅̂T , ⌃̂⌅T and  ̂T , ⌃̂ T be the sample mean and
covariance matrix of the posterior distribution respectively for ⌅T and  T obtained from
the posterior estimates of the Gibbs sampler conditioned on {yi}Ti=1

.

1. Given ⇥̂, ⌃̂
0

, {�̂2⇠lk}, {�̂
2

Alk
}, {⌘i}T+H

i=T+1

and {yi}T+H
i=T+1

update {⌅i}T+H
i=T+1

by using the
simulation smoother in the following state space model

yi = [⌘Ti ⌦ ⇥̂, 0p⇥(2⇥K⇤⇥L⇤
)

]⌅i + ✏i,

⌅i+1

= Ti⌅i +Ri⌦i,⇠,

where ⌅T+1

can be initialized from the standard one step ahead predictive distribution
for the state space model ⌅T+1

⇠ N(TT ⌅̂T , TT ⌃̂⌅T T
T
T +RTE[⌦T,⇠⌦T

T,⇠]R
T
T ).

2. Conditioned on ⇥̂, ⌃̂
0

, {�̂2 k
}, {�̂2Bk

}, {⇠(ti)}T+H
i=T+1

and {yi}T+H
i=T+1

sample { i}T+H
i=T+1

through the simulation smoother in the state space model

yi = [⇥̂⇠(ti), 0p⇥(2⇥K⇤
)

] i +$i,

 i+1

= Gi i + Fi⌦i, .

Similarly to ⌅T+1

,  T+1

⇠ N(GT  ̂T , GT ⌃̂ TG
T
T + FTE[⌦T, ⌦T

T, ]F
T
T ).

3. Given ⇥̂, ⌃̂
0

, {yi}, ⇠(ti) and  (ti), for i = T + 1, . . . , T + H, sample ⌫i from the
standard conjugate posterior distribution for ⌫i|⇥̂, ⌃̂0

, ỹi, ⇠(ti), (ti):

NK⇤

⇣
(I + ⇠(ti)

T ⇥̂T ⌃̂�1

0

⇥̂⇠(ti))
�1⇠(ti)

T ⇥̂T ⌃̂�1

0

ỹi, (I + ⇠(ti)
T ⇥̂T ⌃̂�1

0

⇥̂⇠(ti))
�1

⌘
,

with ỹi = yi � ⇥̂⇠(ti) (ti).

4. Compute the updated covariance {⌃(ti)}T+H
i=T+1

and mean {µ(ti)}T+H
i=T+1

from the usual
equations

⌃(ti) = ⇥̂⇠(ti)⇠(ti)
T ⇥̂T + ⌃̂

0

,

µ(ti) = ⇥̂⇠(ti) (ti).
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Abstract

In many machine learning problems such as the dual form of SVM, the objective function
to be minimized is convex but not strongly convex. This fact causes difficulties in obtaining
the complexity of some commonly used optimization algorithms. In this paper, we proved
the global linear convergence on a wide range of algorithms when they are applied to
some non-strongly convex problems. In particular, we are the first to prove O(log(1/ε))
time complexity of cyclic coordinate descent methods on dual problems of support vector
classification and regression.

Keywords: convergence rate, convex optimization, iteration complexity, feasible descent
methods

1. Introduction

We consider the following convex optimization problem

min
x∈X

f(x), where f(x) ≡ g(Ex) + b>x, (1)

where g(t) is a strongly convex function with Lipschitz continuous gradient, E is a constant
matrix, and X is a polyhedral set. Many popular machine learning problems are of this
type. For example, given training label-instance pairs (yi, zi), i = 1, . . . , l, the dual form of
L1-loss linear SVM (Boser et al., 1992) is1

min
α

1

2
w>w − 1Tα

subject to w = Eα, 0 ≤ αi ≤ C, i = 1, . . . , l,
(2)

where E =
[
y1z1, . . . , ylzl

]
, 1 is the vector of ones, and C is a given upper bound. Although

w>w/2 is strongly convex in w, the objective function of (2) may not be strongly convex
in α. Common optimization approaches for these machine learning problems include cyclic
coordinate descent and others. Unfortunately, most existing results prove only local linear

1. Note that we omit the bias term in the SVM formulation.
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convergence, so the number of total iterations cannot be calculated. One of the main diffi-
culties is that f(x) may not be strongly convex. In this work, we establish the global linear
convergence for a wide range of algorithms for problem (1). In particular, we are the first
to prove that the popularly used cyclic coordinate descent methods for dual SVM problems
converge linearly since the beginning. Many researchers have stated the importance of such
convergence-rate analysis. For example, Nesterov (2012) said that it is “almost impossible
to estimate the rate of convergence” for general cases. Saha and Tewari (2013) also agreed
that “little is known about the non-asymptotic convergence” for cyclic coordinate descent
methods and they felt “this gap in the literature needs to be filled urgently.”

Luo and Tseng (1992a) are among the first to establish the asymptotic linear convergence
to a non-strongly convex problem related to (1). If X is a box (possibly unbounded)
and a cyclic coordinate descent method is applied, they proved ε-optimality in O(r0 +
log(1/ε)) time, where r0 is an unknown number. Subsequently, Luo and Tseng (1993)
considered a class of feasible descent methods that broadly covers coordinate descent and
gradient projection methods. For problems including (1), they proved the asymptotic linear
convergence. The key concept in their analysis is a local error bound, which states how close
the current solution is to the solution set compared with the norm of projected gradient
∇+f(x).

min
x∗∈X ∗

‖xr − x∗‖ ≤ κ‖∇+f(xr)‖, ∀r ≥ r0, (3)

where r0 is the above-mentioned unknown iteration index, X ∗ is the solution set of problem
(1), κ is a positive constant, and xr is the solution produced after the r-th iteration. Because
r0 is unknown, we call (3) a local error bound, which only holds near the solution set. Local
error bounds have been used in other works for convergence analysis such as Luo and Tseng
(1992b). If r0 = 0, we call (3) a global error bound from the beginning, and it may help
to obtain a global convergence rate. If f(x) is strongly convex and X is a polyhedral set,
a global error bound has been established by Pang (1987, Theorem 3.1). One of the main
contributions of our work is to prove a global error bound of the possibly non-strongly convex
problem (1). Then we are able to establish the global linear convergence and O(log(1/ε))
time complexity for the feasible descent methods.

We briefly discuss some related works, which differ from ours in certain aspects. Chang
et al. (2008) applied an (inexact) cyclic coordinate descent method for the primal problem
of L2-loss SVM. Because the objective function is strongly convex, they are able to prove
the linear convergence since the first iteration. Further, Beck and Tetruashvili (2013) estab-
lished global linear convergence for block coordinate gradient descent methods on general
smooth and strongly convex objective functions. Tseng and Yun (2009) applied a greedy
version of block coordinate descent methods on the non-smooth separable problems cov-
ering the dual form of SVM. However, they proved only asymptotic linear convergence
and O(1/ε) complexity. Moreover, for large-scale linear SVM (i.e., kernels are not used),
cyclic rather than greedy coordinate descent methods are more commonly used in practice.2

Wright (2012) considered the same non-smooth separable problems in Tseng and Yun (2009)
and introduced a reduced-Newton acceleration that has asymptotic quadratic convergence.

2. It is now well known that greedy coordinate descent methods such as SMO (Platt, 1998) are less suitable
for linear SVM; see some detailed discussion in Hsieh et al. (2008, Section 4.1).
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For L1-regularized problems, Saha and Tewari (2013) proved O(1/ε) complexity for cyclic
coordinate descent methods under a restrictive isotonic assumption.

Although this work focuses on deterministic algorithms, we briefly review past studies
on stochastic (randomized) methods. An interesting fact is that there are more studies
on the complexity of randomized rather than deterministic coordinate descent methods.
Shalev-Shwartz and Tewari (2009) considered L1-regularized problems, and their stochastic
coordinate descent method converges in O(1/ε) iterations in expectation. Nesterov (2012)
extended the settings to general convex objective functions and improved the iteration
bound to O(1/

√
ε) by proposing an accelerated method. For strongly convex function, he

proved that the randomized coordinate descent method converges linearly in expectation.
Shalev-Shwartz and Zhang (2013a) provided a sub-linear convergence rate for a stochastic
coordinate ascent method, but they focused on the duality gap. Their work is interesting
because it bounds the primal objective values. Shalev-Shwartz and Zhang (2013b) refined
the sub-linear convergence to be O(min(1/ε, 1/

√
ε)). Richtárik and Takáč (2011) studied

randomized block coordinate descent methods for non-smooth convex problems and had sub-
linear convergence on non-strongly convex functions. If the objective function is strongly
convex and separable, they obtained linear convergence. Tappenden et al. (2013) extended
the methods to inexact settings and had similar convergence rates to those in Richtárik and
Takáč (2011).

Our main contribution is a global error bound for the non-strongly convex problem
(1), which ensures the global linear convergence of feasible descent methods. The main
theorems are presented in Section 2, followed by examples in Section 3. The global error
bound is discussed in Section 4, and the proof of global linear convergence of feasible descent
methods is given in Section 5. We conclude in Section 6 while leaving properties of projected
gradients in Appendix A.

2. Main Results

Consider the general convex optimization problem

min
x∈X

f(x), (4)

where f(x) is proper convex and X is nonempty, closed, and convex. We will prove global
linear convergence for a class of optimization algorithms if problem (4) satisfies one of the
following assumptions.

Assumption 1 f(x) is σ strongly convex and its gradient is ρ Lipschitz continuous. That
is, there are constants σ > 0 and ρ such that

σ‖x1 − x2‖2 ≤ (∇f(x1)−∇f(x2))
>(x1 − x2), ∀x1,x2 ∈ X

and
‖∇f(x1)−∇f(x2)‖ ≤ ρ‖x1 − x2‖, ∀x1,x2 ∈ X .

Assumption 2 X = {x | Ax ≤ d} is a polyhedral set, the optimal solution set X ∗ is
non-empty, and

f(x) = g(Ex) + b>x, (5)
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where g(t) is σg strongly convex and ∇f(x) is ρ Lipschitz continuous. This assumption
corresponds to problem (1) that motivates this work.

The optimal set X ∗ under Assumption 1 is non-empty following Weierstrass extreme value
theorem.3 Subsequently, we make several definitions before presenting the main theorem.

Definition 3 (Convex Projection Operator)

[x]+X ≡ arg min
y∈X
‖x− y‖.

From Weierstrass extreme value theorem and the strong convexity of ‖x − y‖2 to y, the
unique [x]+X exists for any X that is closed, convex, and non-empty.

Definition 4 (Nearest Optimal Solution)

x̄ ≡ [x]+X ∗ .

With this definition, minx∗∈X ∗ ‖x− x∗‖ could be simplified to ‖x− x̄‖.

Definition 5 (Projected Gradient)

∇+f(x) ≡ x− [x−∇f(x)]+X .

As shown in Lemma 24, the projected gradient is zero if and only if x is an optimal solution.
Therefore, it can be used to check the optimality. Further, we can employ the projected
gradient to define an error bound, which measures the distance between x and the optimal
set; see the following definition.

Definition 6 An optimization problem admits a global error bound if there is a constant
κ such that

‖x− x̄‖ ≤ κ‖∇+f(x)‖, ∀x ∈ X . (6)

A relaxed condition called global error bound from the beginning if the above inequality
holds only for x satisfying

x ∈ X and f(x)− f(x̄) ≤M,

where M is a constant. Usually, we have

M ≡ f(x0)− f∗,

where x0 is the start point of an optimization algorithm and f∗ is the optimal function
value. Therefore, we called this as a bound “from the beginning.”

3. The strong convexity in Assumption 1 implies that the sublevel set is bounded (Vial, 1983). Then
Weierstrass extreme value theorem can be applied.

1526



Iteration Complexity of Feasible Descent Methods

The global error bound is a property of the optimization problem and is independent from
the algorithms. If a bound holds,4 then using Lemmas 23, 24, and (6) we can obtain

1

2 + ρ
‖∇+f(x)‖ ≤ ‖x− x̄‖ ≤ κ‖∇+f(x)‖, ∀x ∈ X .

This property indicates that ‖∇+f(x)‖ is useful to estimate the distance to the optimum.
We will show that a global error bound enables the proof of global linear convergence of some
optimization algorithms. The bound under Assumption 1, which requires strong convexity,
was already proved in Pang (1987) with

κ =
1 + ρ

σ
.

However, for problems under Assumption 2 such as the dual form of L1-loss SVM, the
objective function is not strongly convex, so a new error bound is required. We prove the
bound in Section 4 with

κ = θ2(1 + ρ)(
1 + 2‖∇g(t∗)‖2

σg
+ 4M) + 2θ‖∇f(x̄)‖, (7)

where t∗ is a constant vector that equals Ex∗, ∀x∗ ∈ X ∗ and θ is the constant from
Hoffman’s bound (Hoffman, 1952; Li, 1994).

θ ≡ sup
u,v


∥∥∥∥uv
∥∥∥∥
∣∣∣∣∣∣∣
‖A>u+

(
E
b>
)>
v‖ = 1, u ≥ 0.

The corresponding rows of A, E to u, v’s

non-zero elements are linearly independent.

 .

Specially, when b = 0 or X = Rl, the constant could be simplified to

κ = θ2
1 + ρ

σg
. (8)

Now we define a class of optimization algorithms called the feasible descent methods for
solving (4).

Definition 7 (Feasible Descent Methods) A sequence {xr} is generated by a feasible
descent method if for every iteration index r, {xr} satisfies

xr+1 = [xr − ωr∇f(xr) + er]+X , (9)

‖er‖ ≤ β‖xr − xr+1‖ , (10)

f(xr)− f(xr+1) ≥ γ‖xr − xr+1‖2, (11)

where infr ωr > 0, β > 0, and γ > 0.

4. Note that not all problems have a global error bound. An example is minx∈R x4.
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The framework of feasible descent methods broadly covers many algorithms that use the
first-order information. For example, the projected gradient descent, the cyclic coordinate
descent, the proximal point minimization, the extragradient descent, and matrix splitting
algorithms are all feasible descent methods (Luo and Tseng, 1993). With the global error
bound under Assumption 1 or Assumption 2, in the following theorem we prove the global
linear convergence for all algorithms that fit into the feasible descent methods.

Theorem 8 (Global Linear Convergence) If an optimization problem satisfies Assump-
tion 1 or 2, then any feasible descent method on it has global linear convergence. To be
specific, the method converges Q-linearly with

f(xr+1)− f∗ ≤ φ

φ+ γ
(f(xr)− f∗), ∀r ≥ 0,

where κ is the error bound constant in (6),

φ = (ρ+
1 + β

ω
)(1 + κ

1 + β

ω
), and ω ≡ min(1, inf

r
ωr).

This theorem enables global linear convergence in many machine learning problems. The
proof is given in Section 5. In Section 3, we discuss examples on cyclic coordinate descent
methods.

3. Examples: Cyclic Coordinate Descent Methods

Cyclic coordinate descent methods are now widely used for machine learning problems
because of its efficiency and simplicity (solving a one-variable sub-problem at a time). Luo
and Tseng (1992a) proved the asymptotic linear convergence if sub-problems are solved
exactly, and here we further show the global linear convergence.

3.1 Exact Cyclic Coordinate Descent Methods for Dual SVM Problems

In the following algorithm, each one-variable sub-problem is exactly solved.

Definition 9 A cyclic coordinate descent method on a box X = X1 × · · · × Xl is defined by
the update rule

xr+1
i = arg min

xi∈Xi

f(xr+1
1 , . . . , xr+1

i−1 , xi, x
r
i+1, . . . , x

r
l ), for i = 1, . . . , l, (12)

where Xi is the region under box constraints for coordinate i.

The following lemma shows that coordinate descent methods are special cases of the feasible
descent methods.

Lemma 10 The cyclic coordinate descent method is a feasible descent method with

ωr = 1, ∀r, β = 1 + ρ
√
l,

and

γ =

{
σ
2 if Assumption 1 holds,
1
2 mini ‖Ei‖2 if Assumption 2 holds with ‖Ei‖ > 0, ∀i,

where Ei is the ith column of E.
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Proof This lemma can be directly obtained using Proposition 3.4 of Luo and Tseng (1993).
Our assumptions correspond to cases (a) and (c) in Theorem 2.1 of Luo and Tseng (1993),
which fulfill conditions needed by their Proposition 3.4.

For faster convergence, we may randomly permute all variables before each cycle of updating
them (e.g., Hsieh et al., 2008). This setting does not affect the proof of Lemma 10.

Theorem 8 and Lemma 10 immediately imply the following corollary.

Corollary 11 The cyclic coordinate descent methods have global linear convergence if As-
sumption 1 is satisfied or Assumption 2 is satisfied with ‖Ei‖ > 0, ∀i.

Next, we analyze the cyclic coordinate descent method to solve dual SVM problems. The
method can be traced back to Hildreth (1957) for quadratic programming problems and
has recently been widely used following the work by Hsieh et al. (2008). For L1-loss SVM,
we have shown in (2) that the objective function can be written in the form of (1) by a
strongly convex function g(w) = w>w/2 and Ei = yizi for all label-instance pair (yi, zi).
Hsieh et al. (2008) pointed out that ‖Ei‖ = 0 implies the optimal α∗i is C, which can be
obtained at the first iteration and is never changed. Therefore, we need not consider such
variables at all. With all conditions satisfied, Corollary 11 implies that cyclic coordinate
descent method for dual L1-loss SVM has global linear convergence. For dual L2-loss SVM,
the objective function is

1

2
α>Qα− 1>α+

1

2C
α>α, (13)

where Qt,j = ytyjz
>
t zj ,∀1 ≤ t, j ≤ l and 1 is the vector of ones. Eq. (13) is strongly convex

and its gradient is Lipschitz continuous, so Assumption 1 and Corollary 11 imply the global
linear convergence.

We move on to check the dual problems of support vector regression (SVR). Given value-
instance pairs (yi, zi), i = 1, . . . , l, the dual form of L1-loss m-insensitive SVR (Vapnik,
1995) is

min
α

1

2
α>
[
Q −Q
−Q Q

]
α+

[
m1− y
m1 + y

]>
α (14)

subject to 0 ≤ αi ≤ C, i = 1, . . . , 2l,

where Qt,j = z>t zj , ∀1 ≤ t, j ≤ l, and m and C are given parameters. Similar to the case
of classification, we can also perform cyclic coordinate descent methods; see Ho and Lin
(2012, Section 3.2). Note that Assumption 2 must be used here because for any Q, the
Hessian in (14) is only positive semi-definite rather than positive definite. In contrast, for
classification, if Q is positive definite, the objective function in (2) is strongly convex and
Assumption 1 can be applied. To represent (14) in the form of (1), let

Ei = zi, i = 1, . . . , l and Ei = −zi, i = l + 1, . . . , 2l.

Then g(w) = w>w/2 with w = Eα is a strongly convex function to w. Similar to the
situation in classification, if ‖Ei‖ = 0, then the optimal α∗i is bounded and can be obtained
at the first iteration. Without considering these variables, Corollary 11 implies the global
linear convergence.
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3.2 Inexact Cyclic Coordinate Descent Methods for Primal SVM Problems

In some situations the sub-problems (12) of cyclic coordinate descent methods cannot be
easily solved. For example, in Chang et al. (2008) to solve the primal form of L2-loss SVM,

min
w

f(w), where f(w) ≡ 1

2
w>w + C

l∑
i=1

max(1− yiw>zi, 0)2, (15)

each sub-problem does not have a closed-form solution, and they approximately solve the
sub-problem until a sufficient decrease condition is satisfied. They have established the
global linear convergence, but we further show that their method can be included in our
framework.

To see that Chang et al. (2008)’s method is a feasible descent method, it is sufficient
to prove that (9)-(11) hold. First, we notice that their sufficient decrease condition for
updating each variable can be accumulated. Thus, for one cycle of updating all variables,
we have

f(wr)− f(wr+1) ≥ γ‖wr −wr+1‖2,

where γ > 0 is a constant. Next, because (15) is unconstrained, if zi ∈ Rn,∀i, we can make

X = Rn and er = wr+1 −wr +∇f(wr)

such that

wr+1 = [wr −∇f(wr) + er]+X .

Finally, from Appendix A.3 of Chang et al. (2008),

‖er‖ ≤ ‖wr −wr+1‖+ ‖∇f(wr)‖ ≤ β‖wr −wr+1‖,

where β > 0 is a constant. Therefore, all conditions (9)-(11) hold. Note that (15) is strongly
convex because of the w>w term and ∇f(w) is Lipschitz continuous from (Lin et al., 2008,
Section 6.1), so Assumption 1 is satisfied. With Theorem 8, the method by Chang et al.
(2008) has global linear convergence.

3.3 Gauss-Seidel Methods for Solving Linear Systems

Gauss-Seidel (Seidel, 1874) is a classic iterative method to solve a linear system

Qα = b. (16)

Gauss-Seidel iterations take the following form.

αr+1
i =

bi −
∑i−1

j=1Qijα
r+1
j −

∑l
j=i+1Qijα

r
j

Qii
. (17)

If Q is symmetric positive semi-definite and (16) has at least one solution, then the following
optimization problem

min
α∈Rl

1

2
α>Qα− b>α (18)
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has the same solution set as (16). Further, αr+1
i in (17) is the solution of minimizing

(18) over αi while fixing αr+1
1 , . . . , αr+1

i−1 , α
r
i+1, . . . , α

r
l . Therefore, Gauss-Seidel method is a

special case of coordinate descent methods.
Clearly, we need Qii > 0,∀i so that (17) is well defined. This condition also implies that

Q = E>E, where E has no zero column. (19)

Otherwise, ‖Ei‖ = 0 leads to Qii = 0 so the Qii > 0 assumption is violated. Note that
the E>E factorization exists because Q is symmetric positive semi-definite. Using (19) and
Lemma 10, Gauss-Seidel method is a feasible descent method. By Assumption 2 and our
main Theorem 8, we have the following convergence result.

Corollary 12 If

1. Q is symmetric positive semi-definite and Qii > 0, ∀i, and

2. The linear system (16) has at least a solution,

then the Gauss-Seidel method has global linear convergence.

This corollary covers some well-known results of the Gauss-Seidel method, which were
previously proved by other ways. For example, in most numerical linear algebra textbooks
(e.g., Golub and Van Loan, 1996), it is proved that if Q is strictly diagonally dominant
(i.e., Qii >

∑
j 6=i |Qij |, ∀i), then the Gauss-Seidel method converges linearly. We show in

Lemma 28 that a strictly diagonally dominant matrix is positive definite, so Corollary 12
immediately implies global linear convergence.

3.4 Quantity of the Convergence Rate

To demonstrate the relationship between problem parameters (e.g., number of instances
and features) and the convergence rate constants, we analyze the constants κ and φ for
two problems. The first example is the exact cyclic coordinate descent method for the dual
problem (2) of L1-loss SVM. For simplicity, we assume ‖Ei‖ = 1, ∀i, where Ei denotes the
ith column of E. We have

σg = 1 (20)

by g(t) = t>t/2. Observe the following primal formulation of L1-loss SVM.

min
w

P (w), where P (w) ≡ 1

2
w>w + C

l∑
i=1

max(1− yiw>zi, 0).

Let w∗ and α∗ be any optimal solution of the primal and the dual problems, respectively.
By KKT optimality condition, we have w∗ = Eα∗. Consider α0 = 0 as the initial feasible
solution. With the duality and the strictly decreasing property of {f(αr)},

f(αr)− f(α∗) ≤ f(0)− f(α∗) = f(0) + P (w∗) ≤ f(0) + P (0) ≤ 0 + Cl ≡M. (21)

Besides,

1

2
w∗>w∗ ≤ P (w∗) ≤ P (0) ≤ Cl implies ‖w∗‖ = ‖Eα∗‖ ≤

√
2Cl. (22)
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From (22),

‖∇f(ᾱ)‖ ≤ ‖E‖‖Eα∗‖+ ‖1‖ ≤
√

Σi‖Ei‖2‖Eα∗‖+ ‖1‖ ≤
√

2Cl +
√
l. (23)

To conclude, by (7), (20), (21), (22), (23), and ∇g(w∗) = w∗,

κ = θ2(1 + ρ)(
1 + 2‖∇g(w∗)‖2

σg
+ 4M) + 2θ‖∇f(ᾱ)‖

≤ θ2(1 + ρ)((1 + 4Cl) + 4Cl) + 2θ(
√

2Cl +
√
l)

= O(ρθ2Cl).

Now we examine the rate φ for linear convergence. From Theorem 8, we have

φ = (ρ+
1 + β

ω
)(1 + κ

1 + β

ω
)

= (ρ+ 2 + ρ
√
l)(1 + κ(2 + ρ

√
l))

= O(ρ3θ2Cl2),

where

ω = 1, β = 1 + ρ
√
l, γ =

1

2
(24)

are from Lemma 10 and the assumption that ‖Ei‖ = 1, ∀i. To conclude, we have κ =
O(ρθ2Cl) and φ = O(ρ3θ2Cl2) for the exact cyclic coordinate descent method for the dual
problem of L1-loss SVM.

Next we consider the Gauss-Seidel method for solving linear systems in Section 3.3 by
assuming ‖Q‖ = 1 and Qii > 0, ∀i, where ‖Q‖ denotes the spectral norm of Q. Similar to
(20), we have σg = 1 by g(t) = t>t/2. Further, ρ = 1 from

‖∇f(α1)−∇f(α2)‖ ≤ ‖Q‖‖α1 −α2‖ = ‖α1 −α2‖.

Because the optimization problem is unconstrained, by (8) we have

κ = θ2
1 + ρ

σg
= 2θ2, (25)

where θ is defined as

θ ≡ sup
v

‖v‖
∣∣∣∣∣∣∣
‖E>v‖ = 1.

The corresponding rows of E to v’s

non-zero elements are linearly independent.

 , (26)

and E is from the factorization of Q in (19). Let ν be the normalized eigen-vector of Q
with the smallest non-zero eigen-value σmin -nnz. We can observe that

The solution v in (26) is
ν

√
σmin -nnz

and θ2 =
1

σmin -nnz
. (27)
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From Lemma 10, ω, β, and γ of the Gauss-Seidel method are the same as (24). Thus,
Theorem 8, (24), (25), and (27) give the convergence rate constant

φ = (3 +
√
l)(1 + κ(2 +

√
l)) = (3 +

√
l)(1 +

4 + 2
√
l

σmin -nnz
). (28)

With (24), (28), and Theorem 8, the Gauss-Seidel method on solving linear systems has
linear convergence with

f(αr+1)− f∗ ≤ (1− σmin -nnz

4(6 + 5
√
l + l) + (7 + 2

√
l)σmin -nnz)

)(f(αr)− f∗), ∀r ≥ 0.

We discuss some related results. A similar rate of linear convergence appears in Beck and
Tetruashvili (2013). They assumed f is σmin strongly convex and the optimization problem
is unconstrained. By considering a block coordinate descent method with a conservative
rule of selecting the step size, they showed

f(αr+1)− f∗ ≤ (1− σmin

2(1 + l)
)(f(αr)− f∗), ∀r ≥ 0.

Our obtained rate is comparable, but is more general to cover singular Q.

4. Proofs of Global Error Bounds

In this section, we prove the global error bound (6) under Assumptions 1 or 2. The following
theorem proves the global error bound under Assumption 1.

Theorem 13 (Pang 1987, Theorem 3.1) Under Assumption 1,

‖x− x̄‖ ≤ κ‖∇+f(x)‖, ∀x ∈ X ,

where κ = (1 + ρ)/σ.

Proof Because f(x) is strongly convex, X ∗ has only one element x̄. From Lemmas 22 and
24, the result holds immediately.

The rest of this section focuses on proving a global error bound under Assumption 2.
We start by sketching the proof. First, observe that the optimal set is a polyhedron by
Lemma 14. Then ‖x − x̄‖ is identical to the distance of x to the polyhedron. A known
technique to bound the distance between x and a polyhedron is Hoffman’s bound (Hoffman,
1952). Because the original work uses L1-norm, we provide in Lemma 15 a special version
of Li (1994) that uses L2-norm. With the feasibility of x, there is

‖x− x̄‖ ≤ θ
(
A,
(
E
b>
)) ∥∥∥∥E(x− x̄)

b>(x− x̄)

∥∥∥∥ ,
where θ

(
A,
(
E
b>
))

is a constant related to A, E, and b. Subsequently, we bound ‖E(x−x̄)‖2

and (b>(x − x̄))2 in Lemmas 16 and 17 by values consisting of ‖∇+f(x)‖ and ‖x − x̄‖.
Such bounds are obtained using properties of the optimization problem such as the strong
convexity of g(·). Finally, we obtain a quadratic inequality involving ‖∇+f(x)‖ and ‖x−x̄‖,
which eventually leads to a global error bound under Assumption 2.

We begin the formal proof by expressing the optimal set as a polyhedron.
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Lemma 14 (Optimal Condition) Under Assumption 2, there are unique t∗ and s∗ such
that ∀x∗ ∈ X ∗,

Ex∗ = t∗, b>x∗ = s∗, and Ax∗ ≤ d. (29)

Note that A and d are the constants for generating the feasible set X = {x | Ax ≤ d}.
Further,

x∗ satisfies (29)⇔ x∗ ∈ X ∗. (30)

Specially, when b = 0 or X = Rl,5

Ex∗ = t∗, Ax∗ ≤ d⇔ x∗ ∈ X ∗. (31)

Proof First, we prove (29). The proof is similar to Lemma 3.1 in Luo and Tseng (1992a).
For any x∗1,x

∗
2 ∈ X ∗, from the convexity of f(x),

f((x∗1 + x∗2)/2) = (f(x∗1) + f(x∗2))/2.

By the definition of f(x) in Assumption 2, we have

g((Ex∗1 + Ex∗2)/2) + b>(x∗1 + x∗2)/2 = (g(Ex∗1) + g(Ex∗2) + b>(x∗1 + x∗2))/2.

Cancel b>(x∗1+x∗2)/2 from both sides. By the strong convexity of g(t), we have Ex∗1 = Ex∗2.
Thus, t∗ ≡ Ex∗ is unique. Similarly, because f(x∗1) = f(x∗2),

g(t∗) + b>x∗1 = g(t∗) + b>x∗2.

Therefore, s∗ ≡ b>x∗ is unique, and Ax∗ ≤ d, ∀x∗ ∈ X ∗ holds naturally by X ∗ ⊆ X .
Further,

f(x∗) = g(t∗) + s∗, ∀x∗ ∈ X ∗. (32)

The result in (29) immediately implies the (⇐) direction of (30). For the (⇒) direction,
for any x∗ satisfying

Ex∗ = t∗, b>x∗ = s∗, Ax∗ ≤ d,

we have f(x∗) = g(t∗) + s∗. From (32), x∗ is an optimal solution.

Now we examine the special cases. If b = 0, we have b>x = 0, ∀x ∈ X . Therefore, (30)
is reduced to (31). On the other hand, if X = Rl, the optimization problem is unconstrained.
Thus,

x∗ is optimal⇔ ∇f(x∗) = 0 = E>∇g(t∗) + b.

As a result, Ex∗ = t∗ is a necessary and sufficient optimality condition.

Because the optimal set is a polyhedron, we will apply the following Hoffman’s bound
in Lemma 18 to upper-bound the distance to the optimal set by the violation of the poly-
hedron’s linear inequalities.

5. When X = Rl, we can take zero A and d for a trivial linear inequality.
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Lemma 15 (Hoffman’s Bound) Let P be the non-negative orthant and consider a non-
empty polyhedron

{x∗ | Ax∗ ≤ d, Ex∗ = t}.

For any x, there is a feasible point x∗ such that

‖x− x∗‖ ≤ θ(A,E)

∥∥∥∥[Ax− d]+P
Ex− t

∥∥∥∥ , (33)

where

θ(A,E) ≡ sup
u,v


∥∥∥∥uv
∥∥∥∥
∣∣∣∣∣∣∣
‖A>u+ E>v‖ = 1, u ≥ 0.

The corresponding rows of A, E to u, v’s

non-zero elements are linearly independent.

 . (34)

Note that θ(A,E) is independent of x.

The proof of the lemma is given in Appendix B. Before applying Hoffman’s bound, we need
some technical lemmas to bound ‖Ex − t∗‖2 and (b>x − s∗)2, which will appear on the
right-hand side of Hoffman’s bound for the polyhedron of the optimal set.

Lemma 16 Under Assumption 2, we have constants ρ and σg such that

‖Ex− t∗‖2 ≤ 1 + ρ

σg
‖∇+f(x)‖‖x− x̄‖, ∀x ∈ X .

Proof By Ex̄ = t∗ from Lemma 14, the strong convexity of g(t), and the definition of
f(x) in (5), there exists σg such that

σg‖Ex− t∗‖2 ≤ (∇g(Ex)−∇g(Ex̄))>(Ex− Ex̄) = (∇f(x)−∇f(x̄))>(x− x̄).

By Lemma 21, the above inequality becomes

σg‖Ex− t∗‖2 ≤ (1 + ρ)‖∇+f(x)−∇+f(x̄)‖‖x− x̄‖,

where ρ is the constant for the Lipschitz continuity of ∇f . Because x̄ is an optimal solution,
∇+f(x̄) = 0 by Lemma 24. Thus, the result holds.

Next we bound (b>x− s∗)2.

Lemma 17 Under Assumption 2 and the condition

f(x)− f(x̄) ≤M, (35)

there exists a constant ρ > 0 such that

(b>x− s∗)2

≤ 4(1 + ρ)M‖∇+f(x)‖‖x− x̄‖+ 4‖∇f(x̄)‖2‖∇+f(x)‖2 + 2‖∇g(t∗)‖2‖Ex− t∗‖2.
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Proof By b>x̄ = s∗ and Ex̄ = t∗ from Lemma 14 and the definition of f(x), we have

b>x− s∗ = ∇f(x̄)>(x− x̄)−∇g(t∗)>(Ex− t∗).

Square both sides of the equality. Then by (a− b)2 ≤ 2a2 + 2b2,

(b>x− s∗)2 ≤ 2(∇f(x̄)>(x− x̄))2 + 2(∇g(t∗)>(Ex− t∗))2. (36)

Consider the right-hand side in (36). The second term can be bounded by 2‖∇g(t∗)‖2‖Ex−
t∗‖2, and the first term is bounded using the inequalities

∇f(x̄)>(x− x̄) ≤ ∇f(x)>(x− x̄)

≤ ∇+f(x)>(x− x̄+∇f(x)−∇+f(x))

≤ ∇+f(x)>(x− x̄+∇f(x)−∇f(x̄) +∇f(x̄))

≤ (1 + ρ)‖∇+f(x)‖‖x− x̄‖+∇+f(x)>∇f(x̄). (37)

The first inequality is by convexity, the second is by Lemma 19,6 the third is by ‖∇+f(x)‖2 ≥
0, and the last is by the Lipschitz continuity of ∇f . By the optimality of x̄,

∇f(x̄)>([x−∇f(x)]+X − x+ x− x̄) ≥ 0. (38)

Thus, (38), the convexity of f(·), and (35) imply that

∇f(x̄)>∇+f(x) ≤ ∇f(x̄)>(x− x̄) ≤ f(x)− f(x̄) ≤M. (39)

Let

a ≡ ∇f(x̄)>(x− x̄), u ≡ (1 + ρ)‖∇+f(x)‖‖x− x̄‖, v ≡ ∇f(x̄)>∇+f(x).

Then we have

a ≤ u+ v from (37), a ≥ v ≥ 0 from (39), and u ≥ 0.

Therefore, a2 ≤ au+ av ≤ au+ v(u+ v) ≤ 2au+ 2v2, and

(∇f(x̄)>(x− x̄))2

≤ 2(∇f(x̄)>(x− x̄))(1 + ρ)‖∇+f(x)‖‖x− x̄‖+ 2(∇f(x̄)>∇+f(x))2

≤ 2(1 + ρ)M‖∇+f(x)‖‖x− x̄‖+ 2‖∇f(x̄)‖2‖∇+f(x)‖2.

The last inequality is from (39) and Cauchy’s inequality. Together with (36) the result
immediately holds.

Combining the previous two lemmas, we are now ready to prove the global error bound.

Theorem 18 (Error Bound) Under Assumption 2 and any M > 0, we have

‖x− x̄‖ ≤ κ‖∇+f(x)‖, ∀x with x ∈ X and f(x)− f∗ ≤M ,

6. Note that we use ([x − ∇f(x)]+X − x + ∇f(x))>([x − ∇f(x)]+X − x + x − x̄) ≤ 0 and ∇+f(x) =
x− [x−∇f(x)]+X .
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where

κ = θ2(1 + ρ)(
1 + 2‖∇g(t∗)‖2

σg
+ 4M) + 2θ‖∇f(x̄)‖,

and θ ≡ θ
(
A,
(
E
b>
))

is defined in Lemma 15. Specially, when b = 0 or X = Rl,

κ = θ(A,E)2
1 + ρ

σg
.

Proof Consider the following polyhedron of the optimal solutions,

X ∗ = {x∗ | Ex∗ = t∗, b>x∗ = s∗, Ax∗ ≤ d},

where t∗ and s∗ are values described in Lemma 14. We can then apply Lemma 15 to have
for any x, there exists x∗ ∈ X ∗ such that

‖x− x∗‖ ≤ θ
(
A,
(
E
b>
)) ∥∥∥∥∥∥

[Ax− d]+P
Ex− t∗
b>x− s∗

∥∥∥∥∥∥ , (40)

where θ
(
A,
(
E
b>
))

, independent of x, is defined in Lemma 15. Denote θ
(
A,
(
E
b>
))

as θ for
simplicity. By considering only feasible x and using the definition of x̄, (40) implies

‖x− x̄‖2 ≤ ‖x− x∗‖2 ≤ θ2(‖Ex− t∗‖2 + (b>x− s∗)2), ∀x ∈ X .

With Lemmas 16 and 17, if f(x)− f∗ ≤M , we can bound ‖Ex− t∗‖2 and (b>x− s∗)2 to
obtain

‖x− x̄‖2

≤ θ2(1 + ρ)(
1 + 2‖∇g(t∗)‖2

σg
+ 4M)‖∇+f(x)‖‖x− x̄‖+ 4θ2‖∇f(x̄)‖2‖∇+f(x)‖2.

(41)

Let
a ≡ ‖x− x̄‖, c ≡ 2θ‖∇f(x̄)‖‖∇+f(x)‖, and

b ≡ θ2(1 + ρ)(
1 + 2‖∇g(t∗)‖2

σg
+ 4M)‖∇+f(x)‖.

(42)

Then we can rewrite (41) as

a2 ≤ ba+ c2 with a ≥ 0, b ≥ 0, c ≥ 0. (43)

We claim that

a ≤ b+ c. (44)

Otherwise, a > b+ c implies that

a2 > a(b+ c) > ba+ c2,

a violation to (43). By (42) and (44), the proof is complete.
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Now we examine the special case of b = 0 or X = Rl. From (31) in Lemma 14, we can
apply Lemma 15 to have the existence of θ(A,E) such that ∀x ∈ X , there is x∗ ∈ X ∗ so
that

‖x− x̄‖ ≤ ‖x− x∗‖ ≤ θ(A,E)‖Ex− t∗‖.
With Lemma 16, we have

‖x− x̄‖2 ≤ θ(A,E)2
1 + ρ

σg
‖∇+f(x)‖‖x− x̄‖.

After canceling ‖x− x̄‖ from both sides, the proof is complete.

5. Proof of Theorem 8

The proof is modified from Theorem 3.1 of Luo and Tseng (1993). They applied a local
error bound to obtain asymptotic local linear convergence, while ours applies a global error
bound to have linear convergence from the first iteration.

By (9) and Lemma 20, we have

‖xr − [xr − ωr∇f(xr)]+X ‖
≤ ‖xr − xr+1‖+ ‖xr+1 − [xr − ωr∇f(xr)]+X ‖
= ‖xr − xr+1‖+ ‖[xr − ωr∇f(xr) + er]+X − [xr − ωr∇f(xr)]+X ‖
≤ ‖xr − xr+1‖+ ‖er‖. (45)

By Lemma 26, the left-hand side of above inequality could be bounded below by

ω‖xr − [xr −∇f(xr)]+X ‖ ≤ ‖x
r − [xr − ωr∇f(xr)]+X ‖,

where ω = min(1, infr ωr). With Theorems 13 or 18, (45), and (10), we have

‖xr − x̄r‖ ≤ κ‖∇+f(xr)‖ ≤ κ
‖xr − [xr − ωr∇f(xr)]+X ‖

ω
≤ κ1 + β

ω
‖xr − xr+1‖, (46)

where x̄r is the projection of xr to the optimal set.

x̄r ≡ [xr]+X ∗ .

Next, we bound f(xr+1)− f(x̄r). Lemma 19 and the definition of xr+1 imply that(
xr − xr+1 + er

)> (
xr+1 − x̄r

)
≥ ωr∇f(xr)>(xr+1 − x̄r). (47)

From the convexity of f(x),

f(xr+1)− f(x̄r) ≤ ∇f(xr+1)>(xr+1 − x̄r)
= (∇f(xr+1)−∇f(xr))>(xr+1 − x̄r) +∇f(xr)>(xr+1 − x̄r)

≤ ‖∇f(xr+1)−∇f(xr)‖‖xr+1 − x̄r‖+
1

ωr
(xr − xr+1 + er)>(xr+1 − x̄r) (48)

≤
(
ρ‖xr+1 − xr‖+

1

α
‖xr − xr+1‖+

1

α
‖er‖

)
‖xr+1 − x̄r‖. (49)
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Inequality (48) is from (47), and (49) follows from the Lipschitz continuity of ∇f(x). In
addition,

‖xr+1 − x̄r‖ ≤ ‖xr+1 − xr‖+ ‖xr − x̄r‖. (50)

From (46), (10), and (50), each term in (49) is bounded by ‖xr − xr+1‖. Therefore,

f(xr+1)− f(x̄r) ≤ φ‖xr − xr+1‖2, where φ = (ρ+
1 + β

ω
)(1 + κ

1 + β

ω
).

From (11) and the above inequality,

f(xr+1)− f(x̄r) ≤ φ

φ+ γ
(f(xr)− f(x̄r)) , ∀r.

Because f(x) is convex, f(x̄r), ∀r correspond to the same unique optimal function value.
Thus the global linear convergence is established.

6. Discussions and Conclusions

For future research, we plan to extend the analysis to other types of algorithms and problems
(e.g., L1-regularized problems). Further, the global error bound will be useful in analyzing
stopping criteria and the effect of parameter changes on the running time of machine learning
problems (for example, the change of parameter C in SVM).

In conclusion, by focusing on a convex but non-strongly convex problem (1), we estab-
lished a global error bound. We then proved the global linear convergence on a wide range
of deterministic algorithms, including cyclic coordinate descent methods for dual SVM and
SVR. Consequently, the time complexity of these algorithms is O(log(1/ε)).
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Appendix A. Properties of Projected Gradient

We present some properties of projected gradient used in the proofs. Most of them are
known in the literature, but we list them here for completeness. Throughout this section,
we assume X is a non-empty, closed, and convex set.

First, we present a fundamental result used in the paper: the projection theorem to a
non-empty closed convex set X . The convex projection in Definition 3 is equivalent to the
following inequality on the right-hand side of (51). That is, if the inequality holds for any
z, this z will be the result of the convex projection and vise versa.

Lemma 19 (Projection Theorem)

z = [x]+X ⇔ (z − x)>(z − y) ≤ 0, ∀y ∈ X . (51)
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Proof The proof is modified from Hiriart-Urruty and Lemaréchal (2001, Theorem 3.1.1).
From the convexity of X ,

αy + (1− α)z ∈ X , ∀y ∈ X , ∀α ∈ [0, 1].

By Definition 3,

‖x− z‖2 ≤ ‖x− (αy + (1− α)z)‖2, ∀y ∈ X , ∀α ∈ [0, 1].

The inequality can be written as

0 ≤ α(z − x)>(y − z) +
1

2
α2‖y − z‖2.

Divide α from both sides, and let α ↓ 0. Then we have (⇒).
For (⇐), if z = x, then 0 = ‖z − x‖ ≤ ‖y − x‖ holds for all y ∈ X . Thus, z = [x]+X . If

z 6= x, then for any y ∈ X ,

0 ≥ (z − x)>(z − y) = ‖x− z‖2 + (y − x)>(x− z)

≥ ‖x− z‖2 − ‖x− y‖‖x− z‖.

Divide ‖x− z‖ > 0 from both sides. Because the inequality is valid for all y, (⇐) holds.

The following lemma shows that the projection operator is Lipschitz continuous.

Lemma 20 (Lipschitz Continuity of Convex Projection)

‖[x]+X − [y]+X ‖ ≤ ‖x− y‖, ∀x,y.

Proof The proof is modified from Hiriart-Urruty and Lemaréchal (2001) Proposition 3.1.3.
Let u = [x]+X and v = [y]+X . If u = v, then the result holds immediately. If not, with

Lemma 19 we have

(u− x)>(u− v) ≤ 0, (52)

(v − y)>(v − u) ≤ 0. (53)

Summing (52) and (53), we have

(u− v)>(u− x− v + y) ≤ 0.

We could rewrite it as

‖u− v‖2 ≤ (u− v)>(x− y) ≤ ‖u− v‖‖x− y‖.

Cancel ‖u− v‖ > 0 at both sides. Then the result holds.

Lemma 21 Assume ∇f(x) is ρ Lipschitz continuous. Then ∀x,y ∈ X ,

(∇f(x)−∇f(y))>(x− y) ≤ (1 + ρ)‖∇+f(x)−∇+f(y)‖‖x− y‖.
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Proof For simplification, we will use ∇x ≡ ∇f(x) and ∇+
x ≡ ∇+f(x) in this proof.

From Lemma 19,

([x−∇x]+X − x+∇x)>([x−∇x]+X − [y −∇y]+X ) ≤ 0.

With the definition of ∇+f(x), this inequality can be rewritten as

(∇x −∇+
x )>(x−∇+

x − y +∇+
y ) ≤ 0.

Further, we have

∇x>(x− y) ≤ ∇+
x
>

(x− y) +∇x>(∇+
x −∇+

y )−∇+
x
>

(∇+
x −∇+

y ). (54)

Similarly,

∇y>(y − x) ≤ ∇+
y
>

(y − x) +∇y>(∇+
y −∇+

x )−∇+
y
>

(∇+
y −∇+

x ). (55)

Summing (54) and (55) leads to

(∇x −∇y)>(x− y)

≤ (∇+
x −∇+

y )>(x− y) + (∇x −∇y)>(∇+
x −∇+

y )− ‖∇+
x −∇+

y ‖2

≤ (∇+
x −∇+

y )>(x− y) + (∇x −∇y)>(∇+
x −∇+

y ).

With ∇f(x) being ρ Lipschitz continuous, we have

(∇x −∇y)>(x− y)≤ ‖∇+
x −∇+

y ‖(‖x− y‖+ ‖∇x −∇y‖)
≤ (1 + ρ)‖∇+

x −∇+
y ‖‖x− y‖.

The next two lemmas correspond to the strong convexity and Lipschitz continuity of pro-
jected gradient.

Lemma 22 If f(x) is σ strongly convex and ∇f(x) is ρ Lipschitz continuous,

σ

1 + ρ
‖x− y‖ ≤ ‖∇+f(x)−∇+f(y)‖, ∀x,y ∈ X .

Proof With the strong convexity and Lemma 21,

σ‖x− y‖2 ≤ (∇x −∇y)>(x− y) ≤ (1 + ρ)‖∇+
x −∇+

y ‖‖x− y‖.

If x 6= y, we have the result after canceling ‖x − y‖ from both sides. For the situation of
x = y, the result obviously holds.

Lemma 23 (Lipschitz Continuity of Projected Gradient) If ∇f(x) is ρ Lipschitz con-
tinuous, then

‖∇+f(x)−∇+f(y)‖ ≤ (2 + ρ)‖x− y‖, ∀x,y ∈ X .
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Proof By the definition of projected gradient and Lemma 20,

‖∇+f(x)−∇+f(y)‖≤ ‖x− y‖+ ‖[x−∇f(x)]+X − [y −∇f(y)]+X ‖
≤ ‖x− y‖+ ‖x− y‖+ ‖∇f(x)−∇f(y)‖
≤ (2 + ρ)‖x− y‖.

The last inequality follows from the ρ Lipschitz continuity of ∇f(x).

A useful property of projected gradient is to test whether a solution is optimal; see the
following lemma.

Lemma 24 For any x ∈ X ,

x is optimal for problem (4)⇔ ∇+f(x) = 0.

Proof From Lemma 19 and the definition of ∇+f(x),

∇+f(x) = 0⇔ x = [x−∇f(x)]+X

⇔ (x− (x−∇f(x)))>(x− y) ≤ 0, ∀y ∈ X
⇔ ∇f(x)>(y − x) ≥ 0, ∀y ∈ X
⇔ x is optimal.

The last relation follows from the optimality condition of convex programming problems.

The next two lemmas discuss properties of projected gradient defined with different scalars
on the negative gradient direction.

Lemma 25 ∀x ∈ X ,

‖x− [x− α∇f(x)]+X ‖ is monotonically increasing for all α > 0.7

Proof Let

u = x− α1∇f(x), (56)

v = x− α2∇f(x), (57)

where 0 < α1 < α2. By Lemma 19, we have

([u]+X − u)>([u]+X − [v]+X ) ≤ 0, (58)

([v]+X − v)>([v]+X − [u]+X ) ≤ 0. (59)

Let z = [u]+X − [v]+X . Expanding the definition of u and v leads to

α1∇f(x)>z ≤ (x− [u]+X )>z ≤ (x− [v]+X )>z ≤ α2∇f(x)>z, (60)

7. The proof is modified from http://math.stackexchange.com/questions/201168/

projection-onto-closed-convex-set .
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where the first and the last inequalities are from (58) and (59), respectively, and the second
inequality is from ([u]+X−[v]+X )>z = z>z ≥ 0. With 0 < α1 < α2, (60) implies∇f(x)>z ≥ 0
and

(x− [u]+X )>z ≥ 0.

Using this inequality,

‖x− [v]+X ‖
2 = ‖x− [u]+X + z‖2 = ‖x− [u]+X ‖

2 + 2(x− [u]+X )>z + ‖z‖2 ≥ ‖x− [u]+X ‖
2.

Therefore, from (56)-(57),

‖x− [x− α2∇f(x)]+X ‖ ≥ ‖x− [x− α1∇f(x)]+X ‖.

With 0 < α1 < α2, the proof is complete.

Lemma 26 ∀x ∈ X and α > 0, if

u = x− [x−∇f(x)]+X ,

v = x− [x− α∇f(x)]+X ,

then
min(1, α)‖u‖ ≤ ‖v‖ ≤ max(1, α)‖u‖.

Proof From Lemma 1 in Gafni and Bertsekas (1984), ‖x − [x − α∇f(x)]+X ‖/α is mono-
tonically decreasing for all α > 0. Thus,

α‖x− [x−∇f(x)]+X ‖ ≤ ‖x− [x− α∇f(x)]+X ‖, ∀α ≤ 1.

From Lemma 25, we have

‖x− [x−∇f(x)]+X ‖ ≤ ‖x− [x− α∇f(x)]+X ‖, ∀α ≥ 1.

Therefore, min(1, α)‖u‖ ≤ ‖v‖. A similar proof applies to ‖v‖ ≤ max(1, α)‖u‖.

Appendix B. Proof of Hoffman’s Bound (Lemma 15)

The following proof is a special case of Mangasarian and Shiau (1987) and Li (1994), which
bounds the distance of a point to the polyhedron by the violation of inequalities. We begin
with an elementary theorem in convex analysis.

Lemma 27 (Carathèodory’s Theorem) For a non-empty polyhedron

A>u+ E>v = y, u ≥ 0, (61)

there is a feasible point (u,v) such that

The corresponding rows of A, E to u, v’s non-zero elements are linearly independent.
(62)

1543



Wang and Lin

Proof Let (u,v) be a point in the polyhedron, and therefore E>v = y − A>u. If the
corresponding rows of E to non-zero elements of v are not linearly independent, we can
modify v so that E>v remains the same and E’s rows corresponding to v’s non-zero elements
are linearly independent. Thus, without loss of generality, we assume that E is full row-
rank. Denote a>i as the ith row of A and e>j as the jth row of E. If the corresponding rows
of A,E to non-zero elements of u,v are not linearly independent, there exists (λ, ξ) such
that

1. (λ, ξ) 6= 0.

2. (λ, ξ)’s non-zero elements correspond to the non-zero elements of (u,v). That is,
λi = 0 if ui = 0, ∀i, and ξj = 0 if vj = 0, ∀j.

3. (λ, ξ) satisfies ∑
i: ui>0, λi 6=0

λiai +
∑

j: vj 6=0, ξj 6=0

ξjej = 0.

Besides, the set {i | ui > 0, λi 6= 0} is not empty because the rows of E are linearly
independent. Otherwise, a contradiction occurs from λ = 0, ξ 6= 0, and∑

j: vj 6=0, ξj 6=0

ξiej = 0.

By choosing

s = min
i: ui>0, λi 6=0

ui
λi
> 0,

we have

A>(u− sλ) + E>(v − sξ) = A>u+ E>v = y and u− sλ ≥ 0.

This means that (u− sλ,v− sξ) is also a member of the polyhedron (61) and has less non-
zero elements than (u,v). The process could be repeatedly applied until there is a point
satisfying the linearly independent condition (62). Thus, if the polyhedron is not empty, we
can always find a (u,v) such that its non-zero elements correspond to linearly independent
rows in (A,E).

Now we prove Hoffman’s bound (Lemma 15) by Carathèodory’s theorem and the KKT
optimality condition of a convex projection problem.

Proof If x is in the polyhedron, we can take x∗ = x and the inequality (33) holds naturally
for every positive θ. Now if x does not belong to the polyhedron, consider the following
convex projection problem

min
p
‖p− x‖, subject to Ap ≤ d, Ep = t. (63)

The polyhedron is assumed to be non-empty, so a unique optimal solution x∗ of this problem
exists. Because x is not in the polyhedron, we have x∗ 6= x. Then by the KKT optimality
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condition, a unique optimal x∗ for (63) happens only if there are u∗ and v∗ such that

x∗ − x
‖x∗ − x‖

= −A>u∗ − E>v∗, u∗ ≥ 0,

Ax∗ ≤ d, Ex∗ = t, u∗i (Ax
∗ − d)i = 0, ∀i = 1, . . . , l.

Denote

I = {i | (Ax∗ − d)i = 0}.

Because u∗i = 0,∀i /∈ I, (u∗I ,v
∗) is a feasible point of the following polyhedron.

−A>I uI − E>v =
x∗ − x
‖x∗ − x‖

, uI ≥ 0, (64)

where AI is a sub-matrix of A’s rows corresponding to I. Then the polyhedron in (64) is
non-empty. From Lemma 27, there exists a feasible (ûI , v̂) such that

The corresponding rows of AI , E to non-zero ûI , v̂ are linearly independent. (65)

Expand ûI to a vector û so that

ûi = 0, ∀i /∈ I. (66)

Then (65) becomes

The corresponding rows of A,E to non-zero û, v̂ are linearly independent. (67)

By multiplying (x∗ − x)> on the first equation of (64), we have

‖x∗ − x‖ = û>A(x− x∗) + v̂>E(x− x∗) = û>(Ax− d) + v̂>(Ex− t). (68)

The last equality is from Ex∗ = t and (66). Further, by the non-negativity of û,

û>(Ax− d) ≤ û>[Ax− d]+P . (69)

From (68) and (69),

‖x∗ − x‖ ≤ û>[Ax− d]+P + v̂>(Ex− t) ≤
∥∥∥∥ûv̂
∥∥∥∥∥∥∥∥[Ax− d]+P

Ex− t

∥∥∥∥ . (70)

Next we bound
∥∥ û
v̂

∥∥. With (64) and (67), we have

‖A>û+ E>v̂‖ = 1 and
∥∥ û
v̂

∥∥ ≤ θ(A,E),

where θ(A,E) is defined in (34). Together with (70), the proof is complete.

Note that this version of Hoffman’s bound is not the sharpest one. For a more complex
but tighter bound, please refer to Li (1994).
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Appendix C. Strictly Diagonally Dominance and Positive Definiteness

Lemma 28 If a symmetric matrix Q is strictly diagonally dominant

Qii >
∑
j 6=i
|Qij |, ∀i, (71)

then it is positive definite. The reverse is not true.

Proof The result is modified from Rennie (2005). Because Q is symmetric,

Q = RDR>, (72)

where R is an orthogonal matrix containing Q’s eigen-vectors as its columns and D is a
real-valued diagonal matrix containing Q’s eigen-values. Let u be any eigen-vector of Q.
We have u 6= 0; otherwise, from (72), the corresponding Qii = 0 and (71) is violated. Let λ
be the eigen-value such that λu = Qu. Choose i = arg maxj |uj |. Because u 6= 0, we have
either ui > 0 or ui < 0. If ui > 0,

Qijuj ≥ −|Qij |ui, ∀j and λui =
∑
j

Qijuj ≥ (Qii −
∑
j 6=i
|Qij |)ui. (73)

If ui < 0,

Qijuj ≤ −|Qij |ui, ∀j and λui =
∑
j

Qijuj ≤ (Qii −
∑
j 6=i
|Qij |)ui. (74)

By (73) and (74), we have λ ≥ Qii −
∑

j 6=i |Qij | > 0. Therefore, Q is positive definite.
On the other hand, the following matrix

Q =

(
2 3
3 10

)
is positive definite but not diagonally dominant. Thus, the reverse is not true.
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Abstract

Fitting high-dimensional data involves a delicate tradeoff between faithful representation
and the use of sparse models. Too often, sparsity assumptions on the fitted model are
too restrictive to provide a faithful representation of the observed data. In this paper,
we present a novel framework incorporating sparsity in different domains. We decompose
the observed covariance matrix into a sparse Gaussian Markov model (with a sparse pre-
cision matrix) and a sparse independence model (with a sparse covariance matrix). Our
framework incorporates sparse covariance and sparse precision estimation as special cases
and thus introduces a richer class of high-dimensional models. We characterize sufficient
conditions for identifiability of the two models, viz., Markov and independence models.
We propose an efficient decomposition method based on a modification of the popular
`1-penalized maximum-likelihood estimator (`1-MLE). We establish that our estimator is
consistent in both the domains, i.e., it successfully recovers the supports of both Markov
and independence models, when the number of samples n scales as n = Ω(d2 log p), where
p is the number of variables and d is the maximum node degree in the Markov model.
Our experiments validate these results and also demonstrate that our models have better
inference accuracy under simple algorithms such as loopy belief propagation.

Keywords: high-dimensional covariance estimation, sparse graphical model selection,
sparse covariance models, sparsistency, convex optimization

1. Introduction

Covariance estimation is a classical problem in multi-variate statistics. The idea that second-
order statistics capture important and relevant relationships between a given set of variables
is natural. Finding the sample covariance matrix based on observed data is straightforward
and widely used (Anderson, 1984). However, the sample covariance matrix is ill-behaved
in high-dimensions, where the number of dimensions p is typically much larger than the
number of available samples n (p � n). Here, the problem of covariance estimation is
ill-posed since the number of unknown parameters is larger than the number of available
samples, and the sample covariance matrix becomes singular in this regime.

Various solutions have been proposed for high-dimensional covariance estimation. Intu-
itively, by restricting the class of covariance models to those with a limited number of free
parameters, we can successfully estimate the models in high dimensions. A natural mech-
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anism to achieve this is to impose a sparsity constraint on the covariance matrix. In other
words, it is presumed that there are only a few (off-diagonal) non-zero entries in the co-
variance matrix, which implies that the variables under consideration approximately satisfy
marginal independence, corresponding to the zero pattern of the covariance matrix (Kauer-
mann, 1996) (and we refer to such models as independence models). Many works have
studied this setting and have provided guarantees for high-dimensional estimation through
simple thresholding of the sample covariance matrix and other related schemes. See Sec-
tion 1.2. In many settings, however, marginal independence is too restrictive and does not
hold. For instance, consider the dependence between the monthly stock returns of various
companies listed on the S&P 100 index. It is quite possible that a wide range of complex
(and unobserved) factors such as the economic climate, interest rates etc., affect the returns
of all the companies. Thus, it is not realistic to model the stock returns of various companies
through a sparse covariance model.

A popular alternative sparse model, based on conditional independence relationships,
has gained widespread acceptance in recent years (Lauritzen, 1996). In this case, sparsity
is imposed not on the covariance matrix, but on the inverse covariance or the precision
matrix. It can be shown that the zero pattern of the precision matrix corresponds to a set
of conditional-independence relationships and such models are referred to as graphical or
Markov models. Going back to the stock market example, a first-order approximation is
to model the companies in different divisions1 as conditionally independent given the S&P
100 index variable, which captures the overall trends of the stock returns, and thus removes
much of the dependence between the companies in different divisions. High-dimensional
estimation in models with sparse precision matrices has been widely studied, and guarantees
for estimation have been provided under a set of sufficient conditions. See Section 1.2 for
related works. However, sparse Markov models may not be always sufficient to capture all
the statistical relationships among variables. Going back to the stock market example, the
approximation of using the S&P index node to capture the dependence between companies
of different divisions may not be enough. For instance, there can still be a large residual
dependence between the companies in manufacturing and mining divisions, which cannot
be accounted by the S&P index node.

In this paper, we consider decomposition of the observed data into two domains, viz.,
Markov and independence domains. We posit that the observed data results in a sparse
graphical model under structured perturbations in the form of an independence model, see
Figure 1. This framework encapsulates Markov and independence models, and incorporates
a richer class of models which can faithfully capture complex relationships, such as in the
stock market example above, and yet retain parsimonious representation. The idea that
a combination of Markov and independence models can provide good model-fitting is not
by itself new and perhaps the work which is closest to ours is the work by Choi et al.
(2010), where multi-resolution models with a known hierarchy of variables is considered.
Their model consists of a combination of a sparse precision matrix, which captures the
conditional independence across scales, and a sparse covariance matrix, which captures the
residual in-scale correlations. Heuristics for learning and inference are provided in Choi
et al. (2010). However, the approach in Choi et al. (2010) has several deficiencies, including

1. See http://www.osha.gov/pls/imis/sic_manual.html for classifications of the companies.
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Figure 1: Representation of the covariance decomposition problem, where perturbing the observed
covariance matrix with a structured noise model results in a sparse graphical model. The
case where the noise model has sparse marginal dependencies is considered.

oretical guarantees, assumption of a known sparsity support for the Markov model, use of
expectation maximization (EM) which has no guarantees of reaching the global optimum,
non-identifiability due to the presence of both latent variables and residual correlations,
and so on. In contrast, we develop efficient convex optimization methods for decomposi-
tion, which are easily implementable and also provide theoretical guarantees for successful
recovery. In summary, in this paper, we provide an in-depth study of efficient methods and
guarantees for joint estimation of a combination of Markov and independence models.

Our model reduces to sparse covariance and sparse inverse covariance estimation for
certain choices of tuning parameter. Therefore, we incorporate a range of models from
sparse covariance to sparse inverse covariance.

1.1 Summary of Contributions

We consider joint estimation of Markov and independence models, given observed data in
a high dimensional setting. Our contributions in this paper are three fold. First, we derive
a set of sufficient restrictions, under which there is a unique decomposition into the two
domains, viz., the Markov and the independence domains, thereby leading to an identifiable
model. Second, we propose novel and efficient estimators for obtaining the decomposition,
under both exact and sample statistics. Third, we provide strong theoretical guarantees
for high-dimensional learning, both in terms of norm guarantees and sparsistency in each
domain, viz., the Markov and the independence domain.

Our learning method is based on convex optimization. We adapt the popular !1-
penalized maximum likelihood estimator (MLE), proposed originally for sparse Markov
model selection and has efficient implementation in the form of graphical lasso (Friedman et al.,
2007). This method involves an !1 penalty on the precision matrix, which is a convex re-
laxation of the !0 penalty, in order to encourage sparsity in the precision matrix. The
Lagrangian dual of this program is a maximum entropy solution which approximately fits
the given sample covariance matrix. We modify this program to our setting as follows: we
incorporate an additional !1 penalty term involving the residual covariance matrix (cor-
responding to the independence model) in the max-entropy program. This term can be
viewed as encouraging sparsity in the independence domain, while fitting a maximum en-
tropy Markov model to the rest of the sample correlations. We characterize the optimal

3

Figure 1: Representation of the covariance decomposition problem, where perturbing the observed
covariance matrix with a structured noise model results in a sparse graphical model. The
case where the noise model has sparse marginal dependencies is considered.

lack of theoretical guarantees, assumption of a known sparsity support for the Markov
model, use of expectation maximization (EM) which has no guarantees of reaching the
global optimum, non-identifiability due to the presence of both latent variables and residual
correlations, and so on. In contrast, we develop efficient convex optimization methods for
decomposition, which are easily implementable and also provide theoretical guarantees for
successful recovery. In summary, in this paper, we provide an in-depth study of efficient
methods and guarantees for joint estimation of a combination of Markov and independence
models.

Our model reduces to sparse covariance and sparse inverse covariance estimation for
certain choices of tuning parameter. Therefore, we incorporate a range of models from
sparse covariance to sparse inverse covariance.

1.1 Summary of Contributions

We consider joint estimation of Markov and independence models, given observed data in
a high dimensional setting. Our contributions in this paper are three fold. First, we derive
a set of sufficient restrictions, under which there is a unique decomposition into the two
domains, viz., the Markov and the independence domains, thereby leading to an identifiable
model. Second, we propose novel and efficient estimators for obtaining the decomposition,
under both exact and sample statistics. Third, we provide strong theoretical guarantees
for high-dimensional learning, both in terms of norm guarantees and sparsistency in each
domain, viz., the Markov and the independence domain.

Our learning method is based on convex optimization. We adapt the popular `1-
penalized maximum likelihood estimator (MLE), proposed originally for sparse Markov
model selection and has efficient implementation in the form of graphical lasso (Friedman
et al., 2007). This method involves an `1 penalty on the precision matrix, which is a convex
relaxation of the `0 penalty, in order to encourage sparsity in the precision matrix. The
Lagrangian dual of this program is a maximum entropy solution which approximately fits
the given sample covariance matrix. We modify this program to our setting as follows: we
incorporate an additional `1 penalty term involving the residual covariance matrix (cor-
responding to the independence model) in the max-entropy program. This term can be
viewed as encouraging sparsity in the independence domain, while fitting a maximum en-
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tropy Markov model to the rest of the sample correlations. We characterize the optimal
solution of the above program, and also provide intuitions on the class of Markov and in-
dependence model combinations which can be incorporated under this framework. As a
byproduct of this analysis, we obtain a set of conditions for identifiability of the two model
components.

We provide strong theoretical guarantees for our proposed method under a set of suffi-
cient conditions. We establish that it is possible to obtain sparsistency and norm guarantees
in both the Markov and the independence domains. We establish that the number of sam-
ples n is required to scale as n = Ω(d2 log p) for consistency, where p is the number of
variables, and d is the maximum degree in the Markov graph. The set of sufficient condi-
tions for successful recovery are based on the so-called notion of mutual incoherence, which
controls the dependence between different sets of variables (Ravikumar et al., 2011). In
Section 7, the synthetic experiments are run on a model which does not necessarily satisfy
sufficient mutual incoherence conditions; But we observe that our method has good nu-
merical estimation performance even when the above incoherence conditions are not fully
satisfied.

We establish that our estimation reduces to sparse covariance and sparse inverse co-
variance estimation for certain choices of tuning parameter. On one end, it reduces to the
`1 penalized MLE for sparse precision estimation (Ravikumar et al., 2011). On the other
extreme, it reduces to (soft) threshold estimator for sparse covariance estimator, on lines
of Bickel and Levina (2008). Moreover, our conditions for successful recovery are similar
to those previously characterized for consistent estimation of sparse covariance/precision
matrix.

Our experiments validate our theoretical results on the sample complexity and demon-
strate that our method is able to learn a richer class of models, compared to sparse graphical
model selection, while requiring similar number of samples. In particular, our method is
able to provide better estimates for the overall precision matrix, which is dense in general,
while the performance of `1-based optimization is worse since it attempts to approximate
the dense matrix via a sparse estimate. Additionally, we demonstrate that our estimated
models have better accuracy under simple distributed inference algorithms such as loopy
belief propagation (LBP). This is because the Markov components of the estimated models
tend to be more walk summable (Malioutov et al., 2006), since some of the correlations
can be “transferred” to the residual matrix. Thus, in addition to learning a richer model
class, incorporating sparsity in both covariance and precision domains, we also learn mod-
els amenable to efficient inference. We also apply our method to real data sets. We see
the resulting models are fairly interpretable for the real data sets. For instance, for stock
returns data set, we observe in both Markov and residual graphs that there exist edges
among companies in the same division or industry, e.g., in the residual graph, nodes “HD”,
“WMT”, “TGT” and “MCD”, all belonging to division Retail Trade form a partition. Also
for foreign exchange rate data set, we observe that the statistical dependencies of foreign
exchange rates are correlated with the geographical locations of countries, e.g., it is observed
in the learned model that the exchange rates of Asian countries are more correlated.
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1.2 Related Works

There have been numerous works on high-dimensional covariance selection and estimation,
and we describe them below. In all the settings below based on sparsity of the covariance
matrix in some basis, the notion of consistent estimation of the sparse support is known as
sparsistency.

Sparse Graphical Models: Estimation of covariance matrices by exploiting the sparsity
pattern in the inverse covariance or the precision matrix has a long history. The sparsity
pattern of the precision matrix corresponds to a Markov graph of a graphical model which
characterizes the set of conditional independence relationships between the variables. Chow
and Liu established that the maximum likelihood estimate (MLE) for tree graphical models
reduces to a maximum weighted spanning tree algorithm where the edge weights correspond
to empirical mutual information. The seminal work by Dempster (1972) on covariance
selection over chordal graphs analyzed the convex program corresponding to the Gaussian
MLE and its dual, when the graph structure is known.

In the high-dimensional regime, penalized likelihood methods have been used in a
number of works to achieve parsimony in covariance selection. Penalized MLE based
on `1 penalty has been used in Huang et al. (2006); Meinshausen and Bühlmann (2006);
d’Aspremont et al. (2008); Banerjee et al. (2008); Rothman et al. (2008); Ravikumar et al.
(2011), among numerous other works, where sparsistency and norm guarantees for recovery
in high dimensions are provided. Graphical lasso (Friedman et al., 2007) is an efficient and
popular implementation for the `1-MLE. There have also been recent extensions to group
sparsity structures(Yuan and Lin, 2006; Zhao et al., 2009), scenarios with missing sam-
ples (Loh and Wainwright, 2011) , semi-parametric settings based on non-paranormals (Liu
et al., 2009), and to the non-parametric setting (Kolar et al., 2010). In addition to the
convex methods, there have also been a number of non-convex methods for Gaussian graph-
ical model selection (Spirtes and Meek, 1995; Kalisch and Bühlmann, 2007; Zhang, 2009;
Anandkumar et al., 2011; Zhang, 2008). While we base much of our consistency analysis
on Ravikumar et al. (2011), we also need to develop novel techniques to handle the delicate
issue of errors in the two domains, viz., Markov and independence domains.

Sparse Covariance Matrices: In contrast to the above formulation, alternatively we
can impose sparsity on the covariance matrix. Note that the zero pattern in the covari-
ance matrix corresponds to marginal independence relationships (Cox and Wermuth, 1993;
Kauermann, 1996; Banerjee and Richardson, 2003). High-dimensional estimation of sparse
covariance models has been extensively studied in El Karoui (2008); Bickel and Levina
(2008); Cai et al. (2010), among others. Wagaman and Levina (2009) consider block-
diagonal and banded covariance matrices and propose an Isomap method for discovering
meaningful orderings of variables. The work in Lam and Fan (2009) provides unified results
for sparsistency under different sparsity assumptions, viz., sparsity in precision matrices,
covariance matrices and models with sparse Cholesky decomposition.

The above works provide strong guarantees for covariance selection and estimation under
various sparsity assumptions. However, they cannot handle matrices which are combinations
of different sparse representations, but are otherwise dense when restricted to any single
representation.
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Decomposable Regularizers: Recent works have considered model decomposition based
on observed samples into desired parts through convex relaxation approaches. Typically,
each part is represented as an algebraic variety, which are based on semi-algebraic sets, and
conditions for recovery of each component are characterized. For instance, decomposition
of the inverse covariance matrix into sparse and low-rank varieties is considered in Chan-
drasekaran et al. (2009, 2010a); Candès et al. (2009) and is relevant for latent Gaussian
graphical model. The work in Silva et al. (2011) considers finding a sparse-approximation
using a small number of positive semi-definite (PSD) matrices, where the “basis” or the
set of PSD matrices is specified a priori. In Negahban et al. (2010), a unified framework
is provided for high-dimensional analysis of the so-called M -estimators, which optimize the
sum of a convex loss function with decomposable regularizers. A general framework for de-
composition into a specified set of algebraic varieties was studied in Chandrasekaran et al.
(2010b).

The above formulations, however, cannot incorporate our scenario, which consists of
a combination of sparse Markov and independence graphs. This is because, although the
constraints on the inverse covariance matrix (Markov graph) and the covariance matrix
(independence graph) can each be specified in a straightforward manner, their combined
constraints on the resulting covariance matrix is not easy to incorporate into a learning
method. In particular, we do not have a decomposable regularizer for this setting.

Multi-Resolution Models: Perhaps the work which is closest to ours is the work by Choi
et al. (2010), where multi-resolution models with a known hierarchy of variables is consid-
ered. The model consists of a combination of a sparse precision matrix, which captures the
conditional independence across scales, and a sparse covariance matrix, which captures the
residual in-scale correlations. Heuristics for learning and inference are provided. However,
the work has three main deficiencies: the sparsity support is assumed to be known, the
proposed heuristics have no theoretical guarantees for success and the models considered
are in general not identifiable, due to the presence of both latent variables and residual
correlations.

2. Preliminaries and Problem Statement

Notation: For any vector v ∈ Rp and a real number a ∈ [1,∞), the notation ‖v‖a refers

to the `a norm of vector v given by ‖v‖a :=
(∑p

i=1 |vi|a
) 1

a . For any matrix U ∈ Rp×p,
the induced or the operator norm is given by |||U |||a,b := max‖z‖a=1 ‖Uz‖b for parameters
a, b ∈ [1,∞). Specifically, we use the `∞ operator norm which is equivalent to |||U |||∞ =
maxi=1,...,p

∑p
j=1 |Uij |. We also have |||U |||1 = |||UT |||∞. Another induced norm is the spectral

norm |||U |||2 (or |||U |||) which is equivalent to the maximum singular value of U . We also use the
`∞ element-wise norm notation ‖U‖∞ to refer to the maximum absolute value of the entries
of U . Note that it is not a matrix norm but a norm on the vectorized form of the matrix.
The trace inner product of two matrices is denoted by 〈U, V 〉 := Tr(UTV ) =

∑
i,j UijVij .

Finally, we use the usual notation for asymptotics: f(n) = Ω(g(n)) if f(n) ≥ cg(n) for some
constant c > 0 and f(n) = O(g(n)) if f(n) ≤ c′g(n) for some constant c′ <∞.
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2.1 Gaussian Graphical Models

A Gaussian graphical model is a family of jointly Gaussian distributions which factor in
accordance to a given graph. Given a graph G = (V,E), with V = {1, . . . , p}, consider
a vector of Gaussian random variables X = [X1, X2, . . . , Xp], where each node i ∈ V is
associated with a scalar Gaussian random variable Xi. A Gaussian graphical model Markov
on G has a probability density function (pdf) that may be parameterized as

fX(x) ∝ exp

[
−1

2
xTJx + hTx

]
, (1)

where J is a positive-definite symmetric matrix whose sparsity pattern corresponds to that
of the graph G. More precisely,

J(i, j) = 0 ⇐⇒ (i, j) /∈ G.

The matrix J is known as the potential or concentration matrix, the non-zero entries J(i, j)
as the edge potentials, and the vector h as the potential vector. The form of parameteriza-
tion in (1) is known as the information form and is related to the standard mean-covariance
parameterization of the Gaussian distribution as

µ = J−1h, Σ = J−1,

where µ := E[X] is the mean vector and Σ := E[(X−µ)(X−µ)T ] is the covariance matrix.
We say that a jointly Gaussian random vector X with joint pdf f(x) satisfies local

Markov property with respect to a graph G if

f(xi|xN (i)) = f(xi|xV \i)

holds for all nodes i ∈ V , where N (i) denotes the set of neighbors of node i ∈ V and, V \ i
denotes the set of all nodes excluding i. More generally, we say that X satisfies the global
Markov property, if for all disjoint sets A,B ⊂ V , we have

f(xA,xB|xS) = f(xA|xS)f(xB|xS).

where set S is a separator2 of A and B. The local and global Markov properties are
equivalent for non-degenerate Gaussian distributions (Lauritzen, 1996).

On lines of the above description of graphical models, consider the class of Gaussian
models3 N (µ,ΣGc), where the covariance matrix is supported on a graph Gc (henceforth
referred to as the conjugate graph), i.e.,

ΣGc(i, j) = 0 ≡ (i, j) /∈ Gc.

Recall that uncorrelated Gaussian variables are independent, and thus,

Xi ⊥⊥ Xj ≡ (i, j) /∈ Gc.

2. A set S ⊂ V is a separator for sets A and B if the removal of nodes in S partitions A and B into distinct
components.

3. In the sequel, we denote the Markov graph, corresponding the support of the information matrix, as G
and the conjugate graph, corresponding to the support of the covariance matrix, as Gc.
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Equivalence between pairwise independence and global Markov properties were studied
in Cox and Wermuth (1993); Kauermann (1996); Banerjee and Richardson (2003).

In this paper, we posit that the observed model results in a sparse graphical model
under structure perturbations in the form of an independence model:

Σ∗ + Σ∗R = J∗M
−1, Supp(J∗M ) = GM ,Supp(Σ∗R) = GR, (2)

where Supp(·) denotes the set of non-zero (off-diagonal) entries, GM denotes the Markov
graph and GR, the independence graph.

2.2 Problem Statement

We now give a detailed description of our problem statement, which consists of the co-
variance decomposition problem (given exact statistics) and covariance estimation problem
(given a set of samples).

2.2.1 Covariance Decomposition Problem

A fundamental question to be addressed is the identifiability of the model parameters.

Definition 1 (Identifiability) A parametric model {Pθ : θ ∈ Θ} is identifiable with re-
spect to a measure µ if there do not exist two distinct parameters θ1 6= θ2 such that Pθ1 = Pθ2
almost everywhere with respect to µ.

Thus, if a model is not identifiable, there is no hope of estimating the model parameters
from observed data. A Gaussian graphical model (with no hidden variables) belongs to the
family of standard exponential distributions (Wainwright and Jordan, 2008, Ch. 3). Under
non-degeneracy conditions, it is also in the minimal form, and as such is identifiable (Brown,
1986). In our setting in (2), however, identifiability is not straightforward to address, and
forms an important component of the covariance decomposition problem, described below.

Decomposition Problem: Given the covariance matrix Σ∗ = J∗M
−1−Σ∗R as in (2), where

J∗M is an unknown concentration matrix and Σ∗R is an unknown residual covariance matrix,
how and under what conditions can we uniquely recover J∗M and Σ∗R from Σ∗?

In other words, we want to address whether the matrices J∗M and Σ∗R are identifiable,
given Σ∗, and if so, how can we design efficient methods to recover them. If we do not
impose any additional restrictions, there exists an equivalence class of models which form
solutions to the decomposition problem. For instance, we can model Σ∗ entirely through
an independence model (Σ∗ = Σ∗R), or through a Markov model (Σ∗ = J∗M

−1). However,
in most scenarios, these extreme cases are not desirable, since they result in dense models,
while we are interested in sparse representations with a parsimonious use of edges in both
the graphs, viz., the Markov and the independence graphs. In Section 3.1, we provide
a sufficient set of structural and parametric conditions to guarantee identifiability of the
Markov and the independence components, and in Section 3.2, we propose an optimization
program to obtain them.

1556



High-Dimensional Covariance Decomposition

2.2.2 Covariance Estimation Problem

In the above decomposition problem, we assume that the exact covariance matrix Σ∗ is
known. However, in practice, we only have access to samples, and we describe this setting
below.

Denote Σ̂n as the sample covariance matrix4

Σ̂n :=
1

n

n∑

k=1

x(k)x
T
(k), (3)

where x(k), k = 1, ..., n are n i.i.d. observations of a zero mean Gaussian random vector
X ∼ N (0,Σ∗), where X := (X1, ..., Xp). Now the estimation problem is described below.

Estimation Problem: Assume that there exists a unique decomposition Σ∗ = J∗M
−1−Σ∗R

where J∗M is an unknown concentration matrix with bounded entries and Σ∗R is an unknown
sparse residual covariance matrix given a set of constraints. Given the sample covariance
matrix Σ̂n, our goal is to find estimates of J∗M and Σ∗R with provable guarantees.

In the sequel, we relate the exact and the sample versions of the decomposition problem.
In Section 4, we propose a modified optimization program to obtain efficient estimates of
the Markov and independence components. Under a set of sufficient conditions, we provide
guarantees in terms of sparsistency, sign consistency, and norm guarantees, defined below.

Definition 2 (Estimation Guarantees) We say that an estimate (ĴM , Σ̂R) to the de-
composition problem in (2), given a sample covariance matrix Σ̂n, is sparsistent or model
consistent, if the supports of ĴM and Σ̂R coincide with the supports of J∗M and Σ∗R respec-
tively. It is said to be sign consistent, if additionally, the respective signs coincide. The
norm guarantees on the estimates is in terms of bounds on ‖ĴM − J∗M‖ and ‖Σ̂R−Σ∗R‖,
under some norm ‖·‖.

3. Analysis under Exact Statistics

In this section, we provide the results under exact statistics.

3.1 Conditions for Unique Decomposition

We first provide a set of sufficient conditions under which we can guarantee that the de-
composition of Σ∗ in (2) into concentration matrix J∗M and residual matrix Σ∗R is unique.5

We impose the following set of constraints on the two matrices:

(A.0) Σ∗ and J∗M are positive definite matrices, i.e., Σ∗ � 0, J∗M � 0.

(A.1) Off-diagonal entries of J∗M are bounded from above, i.e., ‖J∗M‖∞,off ≤ λ∗, for some
λ∗ > 0.

4. Without loss of generality, we limit our analysis to zero-mean Gaussian models. The results can be easily gener-
alized to models with non-zero means.

5. We drop the positive definite constraint on the residual matrix Σ∗R thereby allowing for a richer class
of covariance decomposition. In Section 5.3, we modify the conditions and the learning method to
incorporate positive definite residual matrices Σ∗R.

1557



Janzamin and Anandkumar

(A.2) Diagonal entries of Σ∗R are zero:
(
Σ∗R
)
ii

= 0, and the support of its off-diagonal entries
satisfies

(
Σ∗R
)
ij
6= 0 ⇐⇒ |

(
J∗M
)
ij
| = λ∗, ∀ i 6= j.

(A.3) For any i, j, we have sign
((

Σ∗R
)
ij

)
. sign

((
J∗M
)
ij

)
≥ 0, i.e, the signs are the same.

Indeed, the above constraints restrict the class of models for which we can provide
guarantees. However, in many scenarios, the above assumptions may be reasonable, and
we now provide some justifications. (A.0) is a natural assumption to impose since we
are interested in valid Σ∗ and J∗M matrices. Condition (A.1) corresponds to bounded off-
diagonal entries of J∗M . Intuitively, this limits the extent of “dependence” between the
variables in the Markov model, and can lead to models where inference can be performed
with good accuracy using simple algorithms such as belief propagation. Condition (A.2)
limits the support of the residual matrix Σ∗R: the residual covariances are captured at those
locations (edges) where the concentration entries (J∗M )i,j are “clipped” (i.e., the bound λ∗

is achieved). Intuitively, the Markov matrix J∗M is unable to capture all the correlations
between the node pairs due to clipping, and the residual matrix Σ∗R captures the remaining
correlations at the clipped locations. Condition (A.3) additionally characterizes the signs
of the entries of Σ∗R. For the special case, when the Markov model is attractive, i.e.,
(J∗M )i,j ≤ 0 for i 6= j, the residual entries (Σ∗R)i,j are also all negative. This implies that the
model corresponding to Σ∗ is also attractive, since it only consists of positive correlations.
By default, we set the diagonal entries of the residual matrix to zero in (A.2) and thus,
assume that the Markov matrix captures all the variances in the model. In Section 4.2.1,
we provide a simple example of a Markov chain and a residual covariance model satisfying
the above conditions.

It is also worth mentioning that the number of model parameters satisfying above con-
ditions is equivalent to the number of parameters in the special case of sparse inverse
covariance estimation when λ→∞ (Ravikumar et al., 2011). It is assumed in assumption
(A.2) that the residual matrix Σ∗R takes nonzero value when the corresponding entry in the
Markov matrix J∗M takes its maximum absolute value λ∗. This assumption in conjunction
with the sign assumption in (A.3), exactly determines the Markov entry

(
JM
)
ij

when the

corresponding residual entry
(
ΣR

)
ij
6= 0. So, for each (i, j) pair, only one of the entries(

JM
)
ij

and
(
ΣR

)
ij

are unknown which results that the proposed model in this paper does
not introduce additional parameters comparing to the sparse inverse covariance estimation,
which is interesting.

According to the above discussion, we observe that the overall covariance and inverse
covariance matrices Σ∗ and J∗ = Σ∗−1 are dense, but represented with small number of
parameters. It is interesting that we are able to represent models with dense patterns, but
it is important to notice that the sparse representation leads to some restrictions on the
model.

In the sequel, we propose an efficient method to recover the respective matrices J∗M and
Σ∗R under conditions (A.0)-(A.3) and then establish the uniqueness of the decomposition.
Finally, note that we do not impose any sparsity constraints on the concentration matrix
J∗M , and in fact, our method and guarantees allow for dense matrices J∗M , when the exact
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covariance matrix Σ∗ is available. However, when only samples are available, we limit
ourselves to sparse J∗M and provide learning guarantees in the high-dimensional regime,
where the number of samples can be much smaller than the number of variables.

3.2 Formulation of the Optimization Program

We now propose a method based on convex optimization for obtaining (J∗M ,Σ
∗
R) given the

covariance matrix Σ∗ in (2). Consider the following program

(
Σ̂M , Σ̂R

)
:= arg max

ΣM�0,ΣR

log det ΣM − λ‖ΣR‖1,off (4)

s. t. ΣM − ΣR = Σ∗, (ΣR)d = 0,

where ‖·‖1,off denotes the `1 norm of the off-diagonal entries, which is the sum of the absolute
values of the off-diagonal entries, and (·)d denotes the diagonal entries. Intuitively, the
parameter λ imposes a penalty on large residual covariances, and under favorable conditions,
can encourage sparsity in the residual matrix. The program in (4) can be recast

(
Σ̂M , Σ̂R

)
:= arg max

ΣM�0,ΣR

log det ΣM (5)

s. t. ΣM − ΣR = Σ∗, (ΣR)d = 0, ‖ΣR‖1,off ≤ C(λ),

for some constant C(λ) depending on λ. The objective function in the above program
corresponds to the entropy of the Markov model (modulo a scaling and a shift factor) (Cover
and Thomas, 2006), and thus, intuitively, the above program looks for the optimal Markov
model with maximum entropy subject to an `1 constraint on the residual matrix.

We declare the optimal solution Σ̂R in (4) as the estimate of the residual matrix Σ∗R,

and ĴM := Σ̂
−1

M as the estimate of the Markov concentration matrix J∗M . The justification
behind these estimates is based on the fact that the Lagrangian dual of the program in (4)
is (see Appendix A)

ĴM := arg min
JM�0

〈Σ∗, JM 〉 − log det JM (6)

s. t. ‖JM‖∞,off ≤ λ,

where ‖·‖∞,off denotes the `∞ element-wise norm of the off-diagonal entries, which is the
maximum absolute value of the off-diagonal entries. Further, we show in Appendix A that
the following relations exist between the optimal primal6 solution ĴM and the optimal dual

solution
(
Σ̂M , Σ̂R

)
: ĴM = Σ̂

−1

M , and thus, Ĵ−1
M − Σ̂R = Σ∗ is a valid decomposition of the

covariance matrix Σ∗.

Remark 3 Notice that when the `∞ constraint is removed in the primal program in (6),
which is equivalent to letting λ → ∞, the program corresponds to the maximum likelihood
estimate, and the optimal solution in this case is ĴM = Σ∗−1. Similarly, in the dual program
in (4), when λ → ∞, the optimal solution corresponds to Σ̂M = Σ∗ and Σ̂R = 0. At the

6. Henceforth, we refer to the program in (6) as the primal program and the program in (4) as the dual
program.

1559



Janzamin and Anandkumar

other extreme, when λ → 0, ĴM is a diagonal matrix, and the residual matrix Σ̂R is in
general, a full matrix (except for the diagonal entries). Thus, the parameter λ allows us to
carefully tune the contributions of the Markov and residual components, and we notice in
our experiments in Section 7 that λ plays a crucial role in obtaining efficient decomposition
into Markov and residual components.

3.3 Guarantees and Main Results

We now establish that the optimal solutions of the proposed optimization programs in (4)
and (6) lead to a unique decomposition of the given covariance matrix Σ∗ under conditions
(A.0)–(A.3) given in Section 3.1.

Theorem 4 (Uniqueness of Decomposition) Under (A.0)–(A.3), given a covariance
matrix Σ∗, if we set the parameter λ = ‖J∗M‖∞,off in the optimization program in (4),
then the optimal solutions of primal-dual optimization programs (6) and (4) are given by(
ĴM , Σ̂R

)
=
(
J∗M ,Σ

∗
R

)
, and the decomposition is unique.

See the proof in Appendix C.

Thus, we establish that the proposed optimization programs in (4) and (6) uniquely
recover the Markov concentration matrix J∗M and the residual covariance matrix Σ∗R given
Σ∗ under conditions (A.0)–(A.3).

4. Sample Analysis of the Algorithm

In this section, we provide the results under sample statistics where some i.i.d. samples of
random variables are only available.

4.1 Optimization Program

We have so far provided guarantees on unique decomposition given the exact covariance
matrix Σ∗. We now consider the case, when n i.i.d. samples are available from N (0,Σ∗),
which allows us to estimate the sample covariance matrix Σ̂n, as in (3).

We now modify the dual program in (4), considered in the previous section, to incorpo-
rate the sample covariance matrix Σ̂n as follows

(
Σ̂M , Σ̂R

)
:= arg max

ΣM ,ΣR

log det ΣM − λ‖ΣR‖1,off (7)

s. t. ‖Σ̂n − ΣM + ΣR‖∞,off ≤ γ,(
ΣM

)
d

=
(
Σ̂n
)
d
,
(
ΣR

)
d

= 0,

ΣM � 0,ΣM − ΣR � 0.

Note that, in addition to substituting Σ∗ by Σ̂n, there are two more modifications in the
above program comparing to the exact case in (4). First, the positive-definiteness constraint
on the overall covariance matrix Σ = ΣM − ΣR is added to make sure that the overall
covariance matrix estimation is valid. This constraint is not required in the exact case
since we have the constraint Σ = Σ∗ in that case which ensures the positive-definiteness of
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overall covariance matrix according to assumption (A.0) that Σ∗ � 0. Second, the equality
constraint ΣM − ΣR = Σ∗ is relaxed on the off-diagonal entries by introducing the new
parameter γ which allows some deviation. More discussion including the Lagrangian primal
form of the above optimization program and the effect of new parameter γ is provided in
section 6.

4.2 Assumptions under Sample Statistics

We now provide conditions under which we can provide guarantees for estimating the
Markov model J∗M and the residual model Σ∗R, given the sample covariance Σ̂n in high
dimensions. These are conditions in addition to conditions (A.0)–(A.3) in Section 3.1.

The additional assumptions for successful recovery in high dimensions are based on the
Hessian of the objective function in the optimization program in (19), with respect to the
variable JM , evaluated at the true Markov model J∗M . The Hessian of this function is given
by Boyd and Vandenberghe (2004)

Γ∗ = J∗M
−1 ⊗ J∗M−1 = Σ∗M ⊗ Σ∗M , (8)

where ⊗ denotes the Kronecker matrix product (Horn and Johnson, 1985). Thus Γ∗ is a p2×
p2 matrix indexed by the node pairs. Based on the results for exponential families (Brown,
1986), Γ∗(i,j),(k,l) = Cov{XiXj , XkXl}, and hence it can be interpreted as an edge-based
alternative to the usual covariance matrix Σ∗M . Define KM as the `∞ operator norm of the
covariance matrix of the Markov model

KM := |||Σ∗M |||∞.

We now denote the supports of the Markov and residual models. Denote EM := {(i, j) ∈
V × V |i 6= j,

(
J∗M
)
ij
6= 0} as the edge set of Markov matrix J∗M . Define

SM := EM ∪ {(i, i)|i = 1, ..., p}, (9)

SR := {(i, j) ∈ V × V |
(
Σ∗R
)
ij
6= 0}. (10)

Thus, the set SM includes diagonal entries and also all edges of Markov graph corresponding
to J∗M . Also, recall from (A.2) in Section 3.1 that the diagonal entries of Σ∗R are set to zero,
and that the support set SR is contained in SM , i.e., SR ⊂ SM . Let ScM and ScR denote the
respective complement sets. Define

S := SM ∩ ScR, (11)

so that {SR, S, ScM} forms a partition of {(1, ..., p) × (1, ..., p)}. This partitioning plays a
crucial role in being able to provide learning guarantees. Define the maximum node degree
for Markov model J∗M as

d := max
j=1,...,p

|{i : (i, j) ∈ SM}|.

Finally, for any two subsets T and T ′ of V × V , Γ∗TT ′ denotes the submatrix of Γ∗ indexed
by T as rows and T ′ as columns. We now impose various constraints on the submatrices of
the Hessian in (8), limited to each of the sets {SR, S, ScM}.
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(A.4) Mutual Incoherence: These conditions impose mutual incoherence among three
partitions of Γ∗ indexed by SR, ScM and S. For some α ∈ (0, 1], we have

max{|||Γ∗Sc
MS

(
Γ∗SS

)−1
Γ∗SSR

− Γ∗Sc
MSR
|||∞, |||Γ∗Sc

MS

(
Γ∗SS

)−1|||∞} ≤ (1− α), (12)

KSSR
:= |||

(
Γ∗SS

)−1
Γ∗SSR

|||∞ <
1

4
. (13)

(A.5) Covariance Control: For the same α specified above, we have the bound:

KSS := |||
(
Γ∗SS

)−1|||∞ ≤
(m− 4)α

4(m− (m− 1)α)
for some m > 4. (14)

(A.6) Eigenvalue Control: The minimum eigenvalue of overall covariance matrix Σ∗ sat-
isfies the lower bound

λmin(Σ∗) ≥ C6d

√
log(4pτ )

n
+ C7d

2 log(4pτ )

n
for some C6, C7 > 0 and τ > 2.

In (A.4), the condition in (12) bounds the effect of the non-edges of the Markov model,
indexed by ScM , to its edges, indexed by SR and S. Note that we distinguish between the
common edges of the Markov model with the residual model (SR) and the remaining edges
of the Markov model (S). The second condition in (13) controls the influence of the edge-
based terms which are shared with the residual matrix, indexed by SR, to other edges of
the Markov model, indexed by S = SM ∩ ScR. Condition (A.5) imposes `∞ bounds on the
rows of (Γ∗SS)−1. Note that for sufficiently large m, the bound in (14) tends to α

4(1−α) . Also

note that the conditions (A.4) and (A.5) are only imposed on the Markov model J∗M and
there are no additional constraints on the residual matrix Σ∗R (other than the conditions
previously introduced in Section 3.1). In condition (A.6), it is assumed that the minimum
eigenvalue of overall covariance matrix Σ∗ is sufficiently far from zero to make sure that its
estimation Σ̂ is positive definite and therefore a valid covariance matrix.

4.2.1 Example of a Markov Chain + Residual Covariance Model

In this section, we propose a simple model satisfying assumptions (A.0)–(A.5). Consider
a Markov chain with concentration matrix J∗M over 4 nodes, as shown in Figure 2. The
diagonal entries in the corresponding covariance matrix Σ∗M = J∗M

−1 are set to unity, and
the correlations between the neighbors in J∗M are set uniformly to some value ρ ∈ (−1, 1),
i.e.,

(
Σ∗M

)
ij

= ρ for (i, j) ∈ EM . Due to the Markov property, the correlations between

other node pairs are given by
(
Σ∗M

)
13

=
(
Σ∗M

)
24

= ρ2 and
(
Σ∗M

)
14

= ρ3. For the residual
covariance matrix Σ∗R, we consider one edge between nodes 1 and 2, i.e., SR = {(1, 2), (2, 1)}.
It is easy to see that conditions (A.0)–(A.2) are satisfied. Recall that ScM = {(i, j) :
(i, j) /∈ EM} and the remaining node pairs belongs to set S := SM \ SR. Through some
straightforward calculations, we can show that for any |ρ| < 0.07, the mutual incoherence
conditions in (A.4) and (A.5) are satisfied for α = 0.855 and m ≥ 83. Note that the value
of nonzero entries of Σ∗R are not involved or restricted by these assumptions. However,
they do need to satisfy the sign condition in (A.3). Thus, we have non-trivial models
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1 2 3 4

Figure 2: Example of a Markov chain and a residual covariance matrix, where a residual edge is
present between nodes 1 and 2.

satisfying the set of sufficient conditions for successful high-dimensional estimation.7 In
Section 7, the synthetic experiments are run on a model which does not necessarily satisfy
mutual incoherence conditions (A.4) and (A.5); But we observe that our method has good
numerical estimation performance even when the above incoherence conditions are not fully
satisfied.

4.3 Guarantees and Main Results

We are now ready to provide the main result of this paper.

Theorem 5 Consider a Gaussian distribution with covariance matrix Σ∗ = J∗
M

−1 − Σ∗
R

satisfying conditions (A.0)-(A.6). Given a sample covariance matrix Σ̂n using n i.i.d. sam-
ples from the Gaussian model, let

(
ĴM , Σ̂R

)
denote the optimal solutions of the primal-dual

pair (19) and (7), with parameters γ = C1

√
log p/n and λ = λ∗ + C2

√
log p/n for some

constants C1, C2 > 0, where λ∗ := ‖J∗
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)
min

= Ω
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log p/n
)

and the sample size n is lower bounded as

n = Ω
(
d2 log p

)
, (15)

then with probability greater than 1 − 1/pc → 1 (for some c > 0), we have:

a) The estimates ĴM $ 0 and Σ̂R satisfy #∞ bounds

‖ĴM − J∗
M‖∞ = O

(√
log p
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)
,
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log p
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c) If in addition,
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(
J∗
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min
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log p/n
)
,

then the estimate ĴM is sparsistent and sign consistent with J∗
M .

7. Similarly, for the case when the correlations corresponding to Markov edges are distinct as
(
Σ∗
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)
12

=

ρ1,
(
Σ∗

M

)
23

= ρ2, and
(
Σ∗

M

)
34

= ρ3, we can argue the same conditions. For compatibility with Figure 2,
assume that ρ1 is the maximum among these three parameters, and therefore, the residual edge is between
nodes 1 and 2. This is because the maximum of off-diagonal entries of J∗

M also happens in entry (1, 2).
Then, the same condition |ρ1| < 0.07 is sufficient for satisfying conditions (A.0)–(A.5).
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numerical estimation performance even when the above incoherence conditions are not fully
satisfied.

4.3 Guarantees and Main Results

We are now ready to provide the main result of this paper.

Theorem 5 Consider a Gaussian distribution with covariance matrix Σ∗ = J∗M
−1 − Σ∗R

satisfying conditions (A.0)-(A.6). Given a sample covariance matrix Σ̂n using n i.i.d. sam-
ples from the Gaussian model, let

(
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a) The estimates ĴM � 0 and Σ̂R satisfy `∞ bounds
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c) If in addition,
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then the estimate ĴM is sparsistent and sign consistent with J∗M .

7. Similarly, for the case when the correlations corresponding to Markov edges are distinct as
(
Σ∗M

)
12

=

ρ1,
(
Σ∗M

)
23

= ρ2, and
(
Σ∗M

)
34

= ρ3, we can argue the same conditions. For compatibility with Figure 2,
assume that ρ1 is the maximum among these three parameters, and therefore, the residual edge is between
nodes 1 and 2. This is because the maximum of off-diagonal entries of J∗M also happens in entry (1, 2).
Then, the same condition |ρ1| < 0.07 is sufficient for satisfying conditions (A.0)–(A.5).
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Proof See Appendix D.

Remark 6 Here, we provide a few more observations and extensions as follows.

1. Non-asymptotic sample complexity and error bounds: In the above theorem,
we establish that the number of samples is required to scale as n = Ω(d2 log p). In fact,
our results are non-asymptotic, and the exact constants are provided in inequality (31).
The non-asymptotic form of error bounds are also provided in (34) and (40).

2. Extension to sub-Gaussian and other distributions: In the above theorem, we
considered Gaussian distribution. Similar to high dimensional covariance estimation
in Ravikumar et al. (2011), the result in the theorem can be easily extended to sub-
Gaussian and other distributions with known tail conditions.

3. Comparison between direct estimation of Σ∗ and the above decomposition:
The overall matrix Σ∗ (and J∗) is a full matrix in general. Thus, if we want to
estimate it directly, we need n = Ω

(
p2 log p

)
samples since the maximum node degree

is Θ(p). Therefore, we can not estimate it directly in high dimensional regime and it
demonstrates the importance of such sparse covariance + inverse covariance models
for estimation.

We discussed Remark 3 that the parameter λ allows us to carefully tune the contributions
of the Markov and residual components. When λ → ∞, the program corresponds to `1-
penalized maximum likelihood estimator which is well-studied in Ravikumar et al. (2011);
Rothman et al. (2008). In this case, Σ̂R = 0 and all the dependencies among random
variables are captured by the sparse graphical model represented by ĴM . On the other
extreme, when λ∗ = 0 and thus λ = C2

√
log p/n → 0, with increasing the number of

samples n, the off-diagonal entries in ĴM are bounded too tight by λ (refer to the primal
program in (19)) and therefore the residual covariance matrix Σ̂R captures most of the
dependencies among random variables. In this case, we have the covariance estimation
Σ̂ = Σ̂M − Σ̂R, where the diagonal entries are included in Σ̂M and the off-diagonal entries
are mostly included in −Σ̂R. In order to explain the results for these cases in a more concrete
way, we explicitly mention the results for both sparse inverse covariance estimation (λ→∞)
and sparse covariance estimation (λ ≈ 0) methods in the following subsections. Note that
both of these are special cases of the general result expressed in Theorem 5. Thus, in
Theorem 5, we generalize these extreme cases to models with a linear combination of sparse
covariance and sparse inverse covariance matrices.

5. Discussions and Extension

In this section, we first provide a detailed discussion of special cases sparse covariance and
sparse inverse covariance estimation. Then, the extension of results to the structured noise
model is mentioned.
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5.1 Sparse Inverse Covariance Estimation

In this section, we mention the result for sparse inverse covariance estimation in high di-
mensional regime. This result is provided by Ravikumar et al. (2011) and is a special case
of Theorem 5 when the parameter λ goes to infinity. Before proposing the explicit result in
Corollary 7, we state how the required conditions in Theorem 5 reduces to the conditions
in Ravikumar et al. (2011).
Since the support of residual matrix Σ∗R is a zero matrix in this special case, the mutual
incoherence conditions in (A.4) reduce exactly to the same mutual incoherence condition in
Ravikumar et al. (2011) as

|||Γ∗ScS

(
Γ∗SS

)−1|||∞ ≤ (1− α) for some α ∈ (0, 1], (16)

where S = SM is the support of Markov matrix J∗ = J∗M as defined in (9). Also note that
the covariance control condition (A.5) is not required any more.
Furthermore, the sample complexity and convergence rate of J∗M estimation in Theorem 5
exactly reduce to the results in Ravikumar et al. (2011) as (for q = 8, l = 3)

n > nf

(
pτ ; 1/max

{
v∗,2ld

(
1 +

q

α

)
KSSKM max

{
1,

2

l − 1

(
1 +

q

α

)
KSSK

2
M

}})
, (17)

‖Ĵ − J∗‖∞ ≤ 2KSS

(
1 +

q

α

)
δf (pτ ;n), (18)

where the result is valid for any q ≥ 8 and l > 1.

Corollary 7 (Sparse Inverse Covariance Estimation (Ravikumar et al., 2011))
Consider a Gaussian distribution with covariance matrix Σ∗ = J∗−1 satisfying mutual in-
coherence condition (16). Given a sample covariance matrix Σ̂n using n i.i.d. samples
from the Gaussian model, let Ĵ denote the optimal solution of the primal-dual pair (19) and
(7), with parameters γ = C1

√
log p/n and λ → ∞ (removing `∞ constraints in the primal

program (19)) for some constant C1 > 0. Suppose that the sample size n is lower bounded
as

n = Ω
(
d2 log p

)
,

then with probability greater than 1− 1/pc → 1 (for some c > 0), we have:

a) The estimate Ĵ � 0 satisfies `∞ bound

‖Ĵ − J∗‖∞ = O

(√
log p

n

)
.

b) If in addition
(
J∗
)

min
:= min(i,j)∈SM

|
(
J∗
)
ij
| scales as

(
J∗
)

min
= Ω

(√
log p/n

)
, the

estimate Ĵ is sparsistent and sign consistent with J∗.

Remark 8 (Comparison of general result in Theorem 5 and sparse inverse co-
variance estimation in Corollary 7) Considering the results in Theorem 5, sample com-
plexity and convergence rate of estimated models are exactly the same as results in Raviku-
mar et al. (2011) with only some minor differences in coefficients. Compare (31) with (17)
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for sample complexity and (34) with (18) for convergence rate of estimated Markov matrix
ĴM . But regarding the mutual incoherence conditions, we observe that the conditions for
the special case sparse inverse covariance estimation in (16) are less restrictive than the
conditions for the general case in (12)-(13). Since the sparse inverse covariance estimation
(Ravikumar et al., 2011) is a special case of the general model in this paper, this additional
limitation on models is inevitable, i.e., it is natural that we need some more incoherence
conditions in order to be able to recover both the Markov and residual models in the general
case.

5.2 Sparse Covariance Estimation

High-dimensional estimation of sparse covariance models has been studied in Bickel and
Levina (2008). They propose an estimation of a class of sparse covariance matrices by “hard
thresholding”. They also prove spectral norm guarantees on the error between the estimated
and exact covariance matrices. We also recover similar results in the other extreme case of
proposed program (7) when λ ≈ 0. The program reduces to the sparse covariance estimator
as discussed earlier. In order to see that again, let us investigate the dual program restated
as follows

(
Σ̂M , Σ̂R

)
:= arg max

ΣM ,ΣR

log det ΣM − λ‖ΣR‖1,off

s. t. ‖Σ̂n − ΣM + ΣR‖∞,off ≤ γ,(
ΣM

)
d

=
(
Σ̂n
)
d
,
(
ΣR

)
d

= 0,

ΣM � 0,ΣM − ΣR � 0.

When the parameter λ ≈ 0, the variable ΣR is very slightly penalized in the objective
function. Therefore, most of the statistical dependencies are captured by ΣR and thus,
off-diagonal entries of ΣM take very small values. Furthermore, according to the property
of optimization program that the support of ΣR is contained within the support of JM ,
sparsity on ΣR is encouraged by the effect of parameter γ.
It is also observed that we are approximately performing “soft thresholding” in program (7)
(when λ ≈ 0) comparing to “hard thresholding” in Bickel and Levina (2008). Consider the
case λ = 0, where the Markov part ΣM is a diagonal matrix. Therefore, the ‖Σ̂n − ΣM +
ΣR‖∞,off ≤ γ constraint in the dual program (7) reduces to ‖Σ̂n + ΣR‖∞,off ≤ γ where

it is seen that the negative soft thresholding is performed on matrix Σ̂n with threshold
parameter γ, given by

Sγ(x) = sign(−x)(|x| − γ)+.

Notice that we need to have λ ≈ 0 for recovering the sparse covariance matrix given empirical
covariances and in this case, we can view the estimator as approximately performing soft
thresholding.

Finally, we propose the corollary for this special case. Before that, we need some addi-
tional definitions for a general covariance matrix Σ∗. Similar to definition (10), the support
of a covariance matrix Σ∗ is defined as

SΣ := {(i, j) ∈ V × V |Σ∗ij 6= 0}.
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The maximum node degree for a covariance matrix Σ∗ is also defined as

dΣ := max
j=1,...,p

|{i : (i, j) ∈ SΣ}|.

Corollary 9 (Sparse Covariance Estimation) Consider a Gaussian distribution with
covariance matrix Σ∗ satisfying eigenvalue control condition (A.6). Given a sample covari-
ance matrix Σ̂n using n i.i.d. samples from the Gaussian model, let

(
Σ̂M , Σ̂R

)
denote the

optimal solutions of the primal-dual pair (19) and (7), with parameters γ = C1

√
log p/n

and λ = C2

√
log p/n for some constants C1, C2 > 0. The estimated covariance matrix Σ̂ is

defined as Σ̂off := −Σ̂R and Σ̂d :=
(
Σ̂M

)
d
. Suppose that

(
Σ∗off

)
min

:= min(i,j)∈SΣ,i 6=j |
(
Σ∗
)
ij
|

scales as
(
Σ∗off

)
min

= Ω
(√

log p/n
)

and the sample size n is lower bounded as

n = Ω
(
d2

Σ log p
)
,

then with probability greater than 1− 1/pc → 1 (for some c > 0), we have:

a) The estimate Σ̂ satisfies `∞ bound

‖Σ̂− Σ∗‖∞,off = O

(√
log p

n

)
.

b) The estimate Σ̂off is sparsistent and sign consistent with Σ∗off .

Proof See Appendix F.

5.3 Structured Noise Model

In the discussion up to now, we considered general residual matrices Σ∗R, not necessarily
positive definite, thereby allowing for a rich class of covariance decomposition models. In
this section, we modify the conditions and the learning method to incorporate positive-
definite residual matrices Σ∗R.

We regularize the diagonal entries in an appropriate way to ensure that both J∗M and
Σ∗R are positive definite. Thus, the identifiability assumptions (A.0)-(A.3) are modified as
follows:

(A.0’) Σ∗, Σ∗R and J∗M are positive definite matrices, i.e., Σ∗ � 0,Σ∗R � 0, J∗M � 0.

(A.1’) J∗M is normalized such that
(
J∗M
)
d

= λ∗1 for some λ∗1 > 0 and off-diagonal entries of
J∗M are bounded from above, i.e., ‖J∗M‖∞,off ≤ λ∗2, for some λ∗2 > 0.

(A.2’) The off-diagonal entries of Σ∗R satisfy

(
Σ∗R
)
ij
6= 0 ⇐⇒ |

(
J∗M
)
ij
| = λ∗2, ∀ i 6= j.

(A.3’) For any i, j, we have sign
((

Σ∗R
)
ij

)
. sign

((
J∗M
)
ij

)
≥ 0, i.e, the signs are the same.
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It is seen in (A.1’) that we put additional restrictions on diagonal entries of the Markov
matrix J∗M in order to have nonzero diagonal entries for the residual matrix Σ∗R.
Similar to the general form of dual program introduced in (23), we propose the following
optimization program to estimate the Markov and residual components in the structured
noise model:

(
Σ̂M , Σ̂R

)
:= arg max

ΣM ,ΣR�0
log det ΣM − λ1‖ΣR‖1,on − λ2‖ΣR‖1,off

s. t. ‖Σ̂n + ΣR − ΣM‖∞,off ≤ γ,(
Σ̂n
)
d

+
(
ΣR

)
d

=
(
ΣM

)
d
.

The decomposition result under exact statistics can be similarly proven by setting parameter
γ = 0 when the identifiability assumptions (A.0’)-(A.3’) are satisfied. Furthermore, under
additional estimation assumptions (A.4)-(A.6), the sample statistics guarantees in Theorem
5 can be also extended to the solutions of above program.

6. Proof Outline

In this section, the Lagrangian primal form for the proposed dual program (7) is provided
first and then the proof outlne is presented. For now, we drop the positive-definiteness
constraint ΣM − ΣR � 0 in the proposed dual program (7). We finally show that this
constraint is satisfied for the proposed estimation under specified conditions and thus this
constraint can be dropped. In the subsequent discussion, we drop this constraint. It is
shown in Appendix A that the primal form for this reduced dual program is

ĴM := arg min
JM�0

〈Σ̂n, JM 〉 − log detJM + γ‖JM‖1,off (19)

s. t. ‖JM‖∞,off ≤ λ,

We further establish that Σ̂M = Ĵ−1
M is valid between the dual variable ΣM and primal

variable JM and thus,
‖Σ̂n − Ĵ−1

M + Σ̂R‖∞,off ≤ γ. (20)

Comparing the above with the exact decomposition Σ∗ = J∗M
−1 − Σ∗R in (2), we note that

for the sample version, we do not exactly fit the Markov and the residual models with the
sample covariance matrix Σ̂n, but allow for some divergence, depending on γ. Similarly,
the primal program (19) has an additional `1 penalty term on ĴM , which is absent in (6).
Having a non-zero γ in the primal program enables us to impose a sparsity constraint on
ĴM , which in turn, enables us to estimate the matrices in the high dimensional regime
(p� n), under a set of conditions of sufficient conditions given in section 4.2.

We now provide a high-level description of the proof for Theorem 5. The detailed proof
is given in Appendix D. The proof is based on the primal-dual witness method, which has
been previously employed in Ravikumar et al. (2011) and other works. However, we require
significant modifications of this approach in order to handle the more complex setting of
covariance decomposition.

In the primal-dual witness method, we define a modified version of the original opti-
mization program (19). Note that the key idea in constructing the modified version is to be
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Figure 3: The sets SR, S and Sc
M form a partition of {(1, ..., p) × (1, ..., p)}, where p is the number

of nodes, SR is the support of the residual covariance matrix Σ∗
R and SM is the support

of the precision matrix J∗
M of the Markov model and Sc

M is its complement.

able to analyze it and prove guarantees for it in a less complicated way comparing to the
original version. Let us denote the solutions of the modified program by

(
J̃M , Σ̃R

)
pair. In

general, the optimal solutions of the two programs, original and modified one, are different.
However, under conditions (A.0)–(A.5), we establish that their optimal solutions coincide.
See Appendix D for details. Through this equivalence, we thus establish that the optimal
solution

(
ĴM , Σ̂R

)
of the original program in (19) inherits all the properties of the optimal

solution
(
J̃M , Σ̃R

)
of the modified program, i.e., the solutions of the modified program act

as witness for the original program. In the following, we define the modified optimization
program and its properties. The primal-dual witness method steps which guarantee the
equivalence between solutions of the original and the modified program are mentioned in
Appendix D.

We modify the sample version of our optimization program in (19) as follows:

J̃M := arg min
JM!0

〈Σ̂n, JM 〉 − log detJM + γ‖JM‖1,off (21)

s. t.
(
JM

)
Sc

M
= 0,

(
JM

)
SR

= λ sign
((

J∗
M

)
SR

)
.

Note that since we do not a priori know the supports of the original matrices J∗
M and Σ∗

R,
the above program cannot be implemented in practice, but is only a device useful for proving
consistency results. We observe that the objective function in the modified program above
is the same as the original program in (19), and only the constraints on the precision matrix
are different in the two programs. In the above program in (21), constraints on the entries
of the precision matrix when limited to sets SR and Sc

M are more restrictive, while those
in set S := SM \ SR are more relaxed (i.e., the #∞ constraints present in (19) are removed
above), compared to the original program in (19). Recall that SM denotes the support of
the Markov model, while SR ⊆ SM denotes the support of the residual or the independence
model. See Figure 3.

We now discuss the properties of the optimal solution
(
J̃M , Σ̃R

)
of the modified program

in (21). Since the precision matrix entries on Sc
M are set to zero in (21), we have that

Supp(J̃M ) ⊆ Supp(J∗
M ). Denoting Σ̃R as the residual covariance matrix corresponding to

the modified program (21), we can similarly characterize it in the following form derived
from duality:

(
Σ̃R

)
ij

=

{
0 for (i, j) ∈ S

β̃ij for (i, j) ∈ SR, Sc
M ,

(22)

21

Figure 3: The sets SR, S and ScM form a partition of {(1, ..., p)× (1, ..., p)}, where p is the number
of nodes, SR is the support of the residual covariance matrix Σ∗R and SM is the support
of the precision matrix J∗M of the Markov model and ScM is its complement.

able to analyze it and prove guarantees for it in a less complicated way comparing to the
original version. Let us denote the solutions of the modified program by

(
J̃M , Σ̃R

)
pair. In

general, the optimal solutions of the two programs, original and modified one, are different.
However, under conditions (A.0)–(A.5), we establish that their optimal solutions coincide.
See Appendix D for details. Through this equivalence, we thus establish that the optimal
solution

(
ĴM , Σ̂R

)
of the original program in (19) inherits all the properties of the optimal

solution
(
J̃M , Σ̃R

)
of the modified program, i.e., the solutions of the modified program act

as witness for the original program. In the following, we define the modified optimization
program and its properties. The primal-dual witness method steps which guarantee the
equivalence between solutions of the original and the modified program are mentioned in
Appendix D.

We modify the sample version of our optimization program in (19) as follows:

J̃M := arg min
JM�0

〈Σ̂n, JM 〉 − log detJM + γ‖JM‖1,off (21)

s. t.
(
JM
)
Sc
M

= 0,
(
JM
)
SR

= λ sign
((
J∗M
)
SR

)
.

Note that since we do not a priori know the supports of the original matrices J∗M and Σ∗R,
the above program cannot be implemented in practice, but is only a device useful for proving
consistency results. We observe that the objective function in the modified program above
is the same as the original program in (19), and only the constraints on the precision matrix
are different in the two programs. In the above program in (21), constraints on the entries
of the precision matrix when limited to sets SR and ScM are more restrictive, while those
in set S := SM \ SR are more relaxed (i.e., the `∞ constraints present in (19) are removed
above), compared to the original program in (19). Recall that SM denotes the support of
the Markov model, while SR ⊆ SM denotes the support of the residual or the independence
model. See Figure 3.

We now discuss the properties of the optimal solution
(
J̃M , Σ̃R

)
of the modified program

in (21). Since the precision matrix entries on ScM are set to zero in (21), we have that

Supp(J̃M ) ⊆ Supp(J∗M ). Denoting Σ̃R as the residual covariance matrix corresponding to
the modified program (21), we can similarly characterize it in the following form derived
from duality:

(
Σ̃R

)
ij

=

{
0 for (i, j) ∈ S
β̃ij for (i, j) ∈ SR, ScM ,

(22)
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where β̃ij are the Lagrangian multipliers corresponding to the equality constraints in the
modified program (21).

Define estimation errors ∆̃J := J̃M−J∗M and ∆̃R := Σ̃R−Σ∗R for the modified program in

(21). It is easy to see that
(
∆̃J

)
SR

= λδ,
(
∆̃J

)
Sc
M

= 0,
(
∆̃R

)
S

= 0, where λδ := λ− λ∗ > 0.

This implies that in any of the three sets S, SR or ScM , only one of the two estimation errors

∆̃J or ∆̃R can be non-zero (or is at most λδ). This property is crucial to be able to decouple
the perturbations in the Markov and the independence domains, and thereby gives bounds
on the individual perturbations. It is not clear if there is an alternative partitioning of the
variables (here the partition is S, SR and ScM ) which allows us to decouple the estimation

errors for J̃M and Σ̃R. Through this decoupling, we are able to provide bounds on estimation
errors ∆̃J and ∆̃R and thus, Theorem 5 is established.

7. Experiments

In this section, we provide synthetic and real experimental results for the proposed algo-
rithm. We term our proposed optimization program as `1 +`∞ method and compare it with
the well-known `1 method which is a special case of the proposed algorithm when λ = ∞.
The primal optimization program (19) is implemented via the ADMM (Alternating Direc-
tion Method of Multipliers) technique proposed in Mohan (2013). We also compare the
performance of belief propagation on the proposed model.

7.1 Synthetic Data

We build a Markov + residual synthetic model in the following way. We choose 0.2 fraction of
Markov edges randomly to introduce residual edges. The underlying graph for the Markov
part is a q × q 2-D grid structure (4-nearest neighbor grid). Therefore, the number of
nodes is p = q2. Because of assumption (A.2), we randomly set 0.2 fraction of nonzero
Markov off-diagonal entries to {−0.2, 0.2}, and the rest of nonzero off-diagonal entries in J∗M
(corresponding to the grid edges) are randomly chosen from set ±[0.15, 0.2], i.e.,

(
J∗M
)
ij
∈

[−0.2,−0.15] ∪ [0.15, 0.2], for all (i, j) ∈ EM . Note that 0.2 fraction of edges take the
maximum absolute value which is needed by assumption (A.2). Then we ensure that J∗M
is positive definite by adding some uniform diagonal weighting. The nonzero entries of Σ∗R
are chosen from ±[0.15, 0.2] such that the sign of residual entry is the same as the sign
of overlapping Markov entry (assumption (A.3)). We also generate a random mean in the
interval [0, 1] for each variable. Note that this generated synthetic model does not necessarily
satisfy mutual incoherence conditions (A.4) and (A.5); But we observe in the following
that our method has good numerical estimation performance even when the incoherence
conditions are not fully satisfied.

Before we provide experiment results, it is worth mentioning that the realization of
above model is an example that both Markov and residual matrices J∗M and Σ∗R are sparse,
while the overall covariance matrix Σ∗ = J∗M

−1 − Σ∗R and concentration matrix J∗ = Σ∗−1

are both dense matrices.

1570



High-Dimensional Covariance Decomposition

Size(p) cγ λ

25 2.23 0.2

64 2.08 0.2

100 2.01 0.2

400 1.85 0.2

900 1.83 0.2

Table 1: Regularization parameters used for grid-structured Markov graph simulations in
Figure 4. Note that γ = cγ

√
log p/n.

7.1.1 Effect of graph size p

We apply our method (`1+`∞ method) to random realizations of the above described model

Σ∗ = J∗M
−1−Σ∗R with different sizes p ∈ {25, 64, 100, 400, 900}. Normalized Dist

(
ĴM , J

∗
M

)
,

the edit distance between the estimated and exact Markov components ĴM and J∗M , and

normalized Dist
(

Σ̂R,Σ
∗
R

)
, the edit distance between the estimated and exact residual com-

ponents Σ̂R and Σ∗R as a function of number of samples are plotted in Figure 4 for different
sizes p.

In Figure 4.a, normalized Dist
(
ĴM , J

∗
M

)
is plotted and in Figure 4.b, the same is plotted

with rescaled horizontal axis n/ log p. We observe that by increasing the number of sam-
ples, the edit distance decreases, and by increasing the size of problem, it becomes harder to
recover the components which are intuitive. More importantly, we observe in the rescaled
graph that the plots for different sizes p make a lineup which is consistent with the theo-
retical results saying that8 n = O(d2 log p) is sufficient for correct recovery.

Similarly, in Figure 4.c, normalized9 Dist
(

Σ̂R,Σ
∗
R

)
is plotted and in Figure 4.d, the same

is plotted with rescaled horizontal axis n/ log p. We similarly have the initial observations
that by increasing the number of samples, the edit distance decreases, and by increasing
the size of problem, it becomes harder to recover the components. The theoretical sample
complexity n = O(d2 log p) is also validated in Figure 4.d.

The value of regularization parameters used for this simulation are provided in Table
1. Since in the synthetic experiments, we know the value of λ∗ := ‖J∗M‖∞,off , parameter
λ is set to λ∗ = 0.2. It is observed that the recovery of sparsity pattern of the Markov
component J∗M is fairly robust to the choice of this parameter. For choosing parameter γ,
the experiment is run for several values of γ to see which one gives the best recovery result.
The effect of parameter γ is discussed in detail in the next subsection.

7.1.2 Effect of regularization parameter γ

We apply our method (`1 + `∞ method) to random realizations of the above described
grid-structured synthetic model Σ∗ = J∗M

−1 − Σ∗R with fixed size p = 64. Here, we fix the

8. Note that in the grid graph, d = 4 is fixed for different sizes p.
9. The normalized distance for recovering residual component is greater than 1 for small n. Since we

normalize the distance with the number of edges in the exact model, this may happen.
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Figure 4: Simulation results for grid-structured Markov graph with different size p. (a-b) Normal-

ized edit distance between the estimated Markov component ĴM and the exact Markov
component J∗

M . In panel (b), the horizontal axis is rescaled as n/ log p. (c-d) Normal-

ized edit distance between the estimated residual component Σ̂R and the exact residual
component Σ∗

R. In panel (d), the horizontal axis is rescaled as n/ log p. Each point in
the figures is derived from averaging 10 trials.

regularization parameter10 λ = 0.2 and change the regularization parameter γ = cγ

√
log p/n

where cγ ∈ {1, 1.3, 2.08, 2.5, 3}. The edit distance between the estimated and exact Markov

components ĴM and J∗
M , and the edit distance between the estimated and exact residual

components Σ̂R and Σ∗
R are plotted in Figure 5. We observe the pattern that for cγ less than

some optimal value c∗
γ , the Markov component is not recovered, and for values greater than

the optimal value, the components are recovered with different statistical efficiency, where
by increasing cγ , the statistical rate of Markov component recovery becomes worse. For
the simulations of previous subsection provided in Figure 4, we choose some regularization
parameter close to c∗

γ . For example, we choose cγ = 2.08 for p = 64 as suggested by Figure
5.

7.1.3 Comparing #1 + #∞ and #1 methods

We apply #1 + #∞ and #1 methods to a random realization of the above described grid-
structured synthetic model 11 Σ∗ = J∗

M
−1 −Σ∗

R with size p = 64. The edit distance between

the estimated and exact Markov components ĴM and J∗
M is plotted in Figure 6.a. We

observe that the behaviour of #1 +#∞ method is very close to #1 method which suggests that

10. λ is set to the maximum absolute value of off-diagonal entries of Markov matrix J∗
M .

11. Here, we choose the nonzero off-diagonal entries of J∗
M randomly from {−0.2, 0.2}.
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Figure 4: Simulation results for grid-structured Markov graph with different size p. (a-b) Normal-

ized edit distance between the estimated Markov component ĴM and the exact Markov
component J∗

M . In panel (b), the horizontal axis is rescaled as n/ log p. (c-d) Normal-

ized edit distance between the estimated residual component Σ̂R and the exact residual
component Σ∗

R. In panel (d), the horizontal axis is rescaled as n/ log p. Each point in
the figures is derived from averaging 10 trials.

regularization parameter10 λ = 0.2 and change the regularization parameter γ = cγ

√
log p/n

where cγ ∈ {1, 1.3, 2.08, 2.5, 3}. The edit distance between the estimated and exact Markov

components ĴM and J∗
M , and the edit distance between the estimated and exact residual

components Σ̂R and Σ∗
R are plotted in Figure 5. We observe the pattern that for cγ less than

some optimal value c∗
γ , the Markov component is not recovered, and for values greater than

the optimal value, the components are recovered with different statistical efficiency, where
by increasing cγ , the statistical rate of Markov component recovery becomes worse. For
the simulations of previous subsection provided in Figure 4, we choose some regularization
parameter close to c∗

γ . For example, we choose cγ = 2.08 for p = 64 as suggested by Figure
5.

7.1.3 Comparing #1 + #∞ and #1 methods

We apply #1 + #∞ and #1 methods to a random realization of the above described grid-
structured synthetic model 11 Σ∗ = J∗

M
−1 −Σ∗

R with size p = 64. The edit distance between

the estimated and exact Markov components ĴM and J∗
M is plotted in Figure 6.a. We

observe that the behaviour of #1 +#∞ method is very close to #1 method which suggests that

10. λ is set to the maximum absolute value of off-diagonal entries of Markov matrix J∗
M .

11. Here, we choose the nonzero off-diagonal entries of J∗
M randomly from {−0.2, 0.2}.
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Figure 4: Simulation results for grid-structured Markov graph with different size p. (a-b) Normal-

ized edit distance between the estimated Markov component ĴM and the exact Markov
component J∗

M . In panel (b), the horizontal axis is rescaled as n/ log p. (c-d) Normal-

ized edit distance between the estimated residual component Σ̂R and the exact residual
component Σ∗

R. In panel (d), the horizontal axis is rescaled as n/ log p. Each point in
the figures is derived from averaging 10 trials.

regularization parameter10 λ = 0.2 and change the regularization parameter γ = cγ

√
log p/n

where cγ ∈ {1, 1.3, 2.08, 2.5, 3}. The edit distance between the estimated and exact Markov

components ĴM and J∗
M , and the edit distance between the estimated and exact residual

components Σ̂R and Σ∗
R are plotted in Figure 5. We observe the pattern that for cγ less than

some optimal value c∗
γ , the Markov component is not recovered, and for values greater than

the optimal value, the components are recovered with different statistical efficiency, where
by increasing cγ , the statistical rate of Markov component recovery becomes worse. For
the simulations of previous subsection provided in Figure 4, we choose some regularization
parameter close to c∗

γ . For example, we choose cγ = 2.08 for p = 64 as suggested by Figure
5.

7.1.3 Comparing #1 + #∞ and #1 methods

We apply #1 + #∞ and #1 methods to a random realization of the above described grid-
structured synthetic model 11 Σ∗ = J∗

M
−1 −Σ∗

R with size p = 64. The edit distance between

the estimated and exact Markov components ĴM and J∗
M is plotted in Figure 6.a. We

observe that the behaviour of #1 +#∞ method is very close to #1 method which suggests that

10. λ is set to the maximum absolute value of off-diagonal entries of Markov matrix J∗
M .

11. Here, we choose the nonzero off-diagonal entries of J∗
M randomly from {−0.2, 0.2}.
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Figure 4: Simulation results for grid-structured Markov graph with different size p. (a-b) Normal-

ized edit distance between the estimated Markov component ĴM and the exact Markov
component J∗

M . In panel (b), the horizontal axis is rescaled as n/ log p. (c-d) Normal-

ized edit distance between the estimated residual component Σ̂R and the exact residual
component Σ∗

R. In panel (d), the horizontal axis is rescaled as n/ log p. Each point in
the figures is derived from averaging 10 trials.

regularization parameter10 λ = 0.2 and change the regularization parameter γ = cγ

√
log p/n

where cγ ∈ {1, 1.3, 2.08, 2.5, 3}. The edit distance between the estimated and exact Markov

components ĴM and J∗
M , and the edit distance between the estimated and exact residual

components Σ̂R and Σ∗
R are plotted in Figure 5. We observe the pattern that for cγ less than

some optimal value c∗
γ , the Markov component is not recovered, and for values greater than

the optimal value, the components are recovered with different statistical efficiency, where
by increasing cγ , the statistical rate of Markov component recovery becomes worse. For
the simulations of previous subsection provided in Figure 4, we choose some regularization
parameter close to c∗

γ . For example, we choose cγ = 2.08 for p = 64 as suggested by Figure
5.

7.1.3 Comparing #1 + #∞ and #1 methods

We apply #1 + #∞ and #1 methods to a random realization of the above described grid-
structured synthetic model 11 Σ∗ = J∗

M
−1 −Σ∗

R with size p = 64. The edit distance between

the estimated and exact Markov components ĴM and J∗
M is plotted in Figure 6.a. We

observe that the behaviour of #1 +#∞ method is very close to #1 method which suggests that

10. λ is set to the maximum absolute value of off-diagonal entries of Markov matrix J∗
M .

11. Here, we choose the nonzero off-diagonal entries of J∗
M randomly from {−0.2, 0.2}.
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Figure 4: Simulation results for grid-structured Markov graph with different size p. (a-b) Normal-

ized edit distance between the estimated Markov component ĴM and the exact Markov
component J∗M . In panel (b), the horizontal axis is rescaled as n/ log p. (c-d) Normal-

ized edit distance between the estimated residual component Σ̂R and the exact residual
component Σ∗R. In panel (d), the horizontal axis is rescaled as n/ log p. Each point in
the figures is derived from averaging 10 trials.

regularization parameter10 λ = 0.2 and change the regularization parameter γ = cγ
√

log p/n
where cγ ∈ {1, 1.3, 2.08, 2.5, 3}. The edit distance between the estimated and exact Markov

components ĴM and J∗M , and the edit distance between the estimated and exact residual

components Σ̂R and Σ∗R are plotted in Figure 5. We observe the pattern that for cγ less than
some optimal value c∗γ , the Markov component is not recovered, and for values greater than
the optimal value, the components are recovered with different statistical efficiency, where
by increasing cγ , the statistical rate of Markov component recovery becomes worse. For
the simulations of previous subsection provided in Figure 4, we choose some regularization
parameter close to c∗γ . For example, we choose cγ = 2.08 for p = 64 as suggested by Figure
5.

7.1.3 Comparing `1 + `∞ and `1 methods

We apply `1 + `∞ and `1 methods to a random realization of the above described grid-
structured synthetic model 11 Σ∗ = J∗M

−1−Σ∗R with size p = 64. The edit distance between

the estimated and exact Markov components ĴM and J∗M is plotted in Figure 6.a. We
observe that the behaviour of `1 +`∞ method is very close to `1 method which suggests that

10. λ is set to the maximum absolute value of off-diagonal entries of Markov matrix J∗M .
11. Here, we choose the nonzero off-diagonal entries of J∗M randomly from {−0.2, 0.2}.
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Figure 5: Simulation results for grid graph with fixed size p = 64 and regularization parameters
λ = 0.2 and varying cγ ∈ {1, 1.3, 2.08, 2.5, 3} where γ = cγ

√
log p/n. (a) Edit distance

between the estimated Markov component ĴM and the exact Markov component J∗
M .

(b) Edit distance between the estimated residual component Σ̂R and the exact residual
component Σ∗

R. Each point in the figures is derived from averaging 10 trials.

sparsity pattern of J∗
M can be estimated efficiently under either methods. The edit distance

between the estimated and exact residual components Σ̂R and Σ∗
R is plotted in Figure

6.b. Since there is not any off-diagonal #∞ constraints in #1 method, it can not recover
the residual matrix Σ∗

R. Finally the #∞-elementwise norm of error between the estimated

precision matrix Ĵ and the exact precision matrix J∗ is sketched for both methods in Figure
6.c. We observe the advantage of proposed #1 + #∞ method in estimating the overall model
precision matrix J∗ = Σ∗−1. Note that the same regularization parameters provided in
Table 1 are used for the simulations of this subsection, except for #1 method that we have
λ = ∞.

7.1.4 Benefit of applying LBP (Loopy Belief Propagation) to the proposed
model

We compare the result of applying LBP to J∗ and J∗
M components of a random realization

of the above described grid-structured synthetic model.12 The log of average mean and
variance errors over all nodes are sketched in Figure 7 throughout the iterations. We observe
that LBP does not converge for J∗ model. It is shown in Malioutov et al. (2006) that if a
model is walk-summable, then the mean estimates under LBP converge and are correct. The
spectral norms of the partial correlation matrices are |||RM ||| = 0.8613 and |||R||| = 3.2446 for
J∗

M and J∗ models respectively. Thus, the matrix J∗ is not walk-summable and therefore
its convergence under LBP is not guaranteed and this is seen in Figure 7. On the other
hand, LBP is accurate for J∗

M matrix. Thus, our method learns models which are better
suited for inference under loopy belief propagation.

7.2 Real Data

The proposed algorithm is also applied to foreign exchange rate and monthly stock returns
data sets to learn a Markov plus residual model introduced in the paper. It is important to

12. Here, we choose 0.5 fraction of Markov edges randomly to introduce residual edges.
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Figure 5: Simulation results for grid graph with fixed size p = 64 and regularization parameters
λ = 0.2 and varying cγ ∈ {1, 1.3, 2.08, 2.5, 3} where γ = cγ

√
log p/n. (a) Edit distance

between the estimated Markov component ĴM and the exact Markov component J∗
M .

(b) Edit distance between the estimated residual component Σ̂R and the exact residual
component Σ∗

R. Each point in the figures is derived from averaging 10 trials.

sparsity pattern of J∗
M can be estimated efficiently under either methods. The edit distance

between the estimated and exact residual components Σ̂R and Σ∗
R is plotted in Figure

6.b. Since there is not any off-diagonal #∞ constraints in #1 method, it can not recover
the residual matrix Σ∗

R. Finally the #∞-elementwise norm of error between the estimated

precision matrix Ĵ and the exact precision matrix J∗ is sketched for both methods in Figure
6.c. We observe the advantage of proposed #1 + #∞ method in estimating the overall model
precision matrix J∗ = Σ∗−1. Note that the same regularization parameters provided in
Table 1 are used for the simulations of this subsection, except for #1 method that we have
λ = ∞.

7.1.4 Benefit of applying LBP (Loopy Belief Propagation) to the proposed
model

We compare the result of applying LBP to J∗ and J∗
M components of a random realization

of the above described grid-structured synthetic model.12 The log of average mean and
variance errors over all nodes are sketched in Figure 7 throughout the iterations. We observe
that LBP does not converge for J∗ model. It is shown in Malioutov et al. (2006) that if a
model is walk-summable, then the mean estimates under LBP converge and are correct. The
spectral norms of the partial correlation matrices are |||RM ||| = 0.8613 and |||R||| = 3.2446 for
J∗

M and J∗ models respectively. Thus, the matrix J∗ is not walk-summable and therefore
its convergence under LBP is not guaranteed and this is seen in Figure 7. On the other
hand, LBP is accurate for J∗

M matrix. Thus, our method learns models which are better
suited for inference under loopy belief propagation.

7.2 Real Data

The proposed algorithm is also applied to foreign exchange rate and monthly stock returns
data sets to learn a Markov plus residual model introduced in the paper. It is important to

12. Here, we choose 0.5 fraction of Markov edges randomly to introduce residual edges.
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Figure 5: Simulation results for grid graph with fixed size p = 64 and regularization parameters
λ = 0.2 and varying cγ ∈ {1, 1.3, 2.08, 2.5, 3} where γ = cγ

√
log p/n. (a) Edit distance

between the estimated Markov component ĴM and the exact Markov component J∗M .

(b) Edit distance between the estimated residual component Σ̂R and the exact residual
component Σ∗R. Each point in the figures is derived from averaging 10 trials.

sparsity pattern of J∗M can be estimated efficiently under either methods. The edit distance

between the estimated and exact residual components Σ̂R and Σ∗R is plotted in Figure
6.b. Since there is not any off-diagonal `∞ constraints in `1 method, it can not recover
the residual matrix Σ∗R. Finally the `∞-elementwise norm of error between the estimated

precision matrix Ĵ and the exact precision matrix J∗ is sketched for both methods in Figure
6.c. We observe the advantage of proposed `1 + `∞ method in estimating the overall model
precision matrix J∗ = Σ∗−1. Note that the same regularization parameters provided in
Table 1 are used for the simulations of this subsection, except for `1 method that we have
λ =∞.

7.1.4 Benefit of applying LBP (Loopy Belief Propagation) to the proposed
model

We compare the result of applying LBP to J∗ and J∗M components of a random realization
of the above described grid-structured synthetic model.12 The log of average mean and
variance errors over all nodes are sketched in Figure 7 throughout the iterations. We observe
that LBP does not converge for J∗ model. It is shown in Malioutov et al. (2006) that if a
model is walk-summable, then the mean estimates under LBP converge and are correct. The
spectral norms of the partial correlation matrices are |||RM ||| = 0.8613 and |||R||| = 3.2446 for
J∗M and J∗ models respectively. Thus, the matrix J∗ is not walk-summable and therefore
its convergence under LBP is not guaranteed and this is seen in Figure 7. On the other
hand, LBP is accurate for J∗M matrix. Thus, our method learns models which are better
suited for inference under loopy belief propagation.

7.2 Real Data

The proposed algorithm is also applied to foreign exchange rate and monthly stock returns
data sets to learn a Markov plus residual model introduced in the paper. It is important to

12. Here, we choose 0.5 fraction of Markov edges randomly to introduce residual edges.
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Ĵ

‖ ∞

(c)

Figure 6: Simulation results for grid graph with size p = 64. (a) Edit distance between the esti-

mated Markov component ĴM and the exact Markov component J∗
M . (b) Edit distance

between the estimated residual component Σ̂R and the exact residual component Σ∗
R.

(c) Precision matrix estimation error ‖J∗ − Ĵ‖∞ , where Ĵ = ĴM for !1 method and
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7.2.1 Foreign exchange rate data

In this section, we apply the proposed algorithm to the foreign exchange rate data set.13

The data set includes monthly exchange rates of 19 countries currency with respect to
US dollars from October 1983 to January 2012. Thus, the data set has 340 samples of
19 variables. We apply the optimization program (7) with a slight modification. Since
the underlying model for this data set does not necessarily satisfy the proposed eigenvalue
condition (A.6), we need to make sure that the overall covariance matrix estimation Σ̂ is
positive definite and thus a valid covariance matrix. We add an additional constraint to the
optimization program (7), imposing a lower bound on the minimum eigenvalue of overall
covariance matrix λmin(Σ), i.e., λmin(Σ) ≥ σmin. The parameter σmin is set to 0.001 in this
experiment.
The resulting edges of Markov and residual matrices for some moderate choice of regulariza-
tion parameters γ = 20 and λ = 0.004 are plotted in Figure 8. The choice of regularization
parameters are further discussed at the end of this subsection. We observe sparsity on both
Markov and residual structures. There are two main observations in the learned model in
Figure 8. First, it is seen that the statistical dependencies of foreign exchange rates are
correlated with the geographical locations of countries, e.g., it is observed in the learned
model that the exchange rates of Asian countries are more correlated. We can refer to
Asian countries “South Korea”, “Japan”,“China”,“Sri Lanka”, “Taiwan”, “Thailand” and
“India” in the Markov model where several edges exist between them while other nodes in
the graph have much lower degrees. We observe similar patterns in the residual matrix,
e.g., there is an edge between “India” and “Sri Lanka” in the residual model. We also see
the interesting phenomena in the Markov graph that there exist some high degree nodes
such as “South Korea” and “Japan”. The presence of high degree nodes suggests that in-
corporating hidden variables can further lead to sparser representations, and this has been
observed before in other works, e.g., Choi et al. (2010); Chandrasekaran et al. (2010a); Choi
et al. (2011).

The regularization parameters are chosen such that the resulting Markov and residual
graphs are reasonably sparse, while still being informative. Increasing the parameter γ
makes both Markov and residual components sparser, and increasing parameter λ makes
the residual component sparser. In addition, it is worth discussing the fact that we chose
parameter γ relatively large compared to parameter λ in this simulation. In Theorem 4,
we have γ = C1

√
log p/n and λ = λ∗ + C2

√
log p/n. Now, if C1 is large compared to C2

and furthermore λ∗ is small, γ can be larger than λ. Hence, we have an agreement between
theory and practice.

7.2.2 Monthly stock returns data

In this section we apply the algorithm to monthly stock returns of a number of companies in
the S&P 100 stock index. We pick 17 companies in divisions “E.Trans, Comm, Elec&Gas”
and “G.Retail Trade” and apply the optimization program (19) to their stock returns data
to learn the model. The resulting edges for Markov and residual matrices are plotted in
Figure 9 for regularization parameters γ = 2.2e − 03 and λ = 1e − 04. There is sparsity
on both Markov and residual structure. The isolated nodes in the Markov graph are not

13. Data set available at http://research.stlouisfed.org/fred2/categories/15/downloaddata.
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Figure 8: Markov and independence graph structures for the foreign exchange rate data set with
regularization parameters γ = 20 and λ = 0.004. Solid edges indicate Markov model and
dotted edges indicate independence model.
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Figure 9: Markov and independence graph structures for the monthly stock returns data set with
regularization parameters γ = 2.2e − 03 and λ = 1e − 04. Solid edges indicate Markov
model and dotted edges indicate independence model.

presented in the figure. We see in both Markov and residual graphs that there exist higher
correlations among stock returns of companies in the same division or industry. There
are 5 connected partitions in the residual graph. e.g., nodes “HD”, “WMT”, “TGT” and
“MCD”, all belonging to division Retail Trade form a partition. This is also observed for the
telecommunication industries (companies “T” and “VZ”) and energy industries (companies
“ETR” and “EXC”). We see a similar pattern in the Markov graph but with more edges.
Similar to exchange rate data set results, we also observe high degree nodes in the Markov
graph such as “HD” and “TGT” which suggest incorporating hidden nodes.
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8. Conclusion

In this paper, we provided an in-depth study of convex optimization methods and guarantees
for high-dimensional covariance matrix decomposition. Our methods unify the existing
results for sparse covariance/precision estimation and introduce a richer class of models with
sparsity in multiple domains. We provide consistency guarantees for estimation in both the
Markov and the residual domains, and establish efficient sample complexity results for our
method. These findings open up many future directions to explore. One important aspect is
to relax the sparsity constraints imposed in the two domains, and to develop new methods
to enable decomposition of such models. Other considerations include extension to discrete
models and other models for the residual covariance matrix (e.g., low rank matrices). Such
findings will push the envelope of efficient models for high-dimensional estimation. It is
worth mentioning while in many scenarios it is important to incorporate latent variables,
in our framework it is challenging to incorporate both latent variables as well as marginal
independencies, and provide learning guarantees, and we defer it to future work.
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Appendix A. Duality Between Programs

In this section we prove duality between programs (19) and (7) (when the positive-definiteness
constraint ΣM −ΣR � 0 is dropped). By doing this, the duality between programs (6) and
(4) is also proved since they are special cases of (19) and (7) when γ is set to zero and Σ̂n

is substituted with Σ∗.
Before we prove duality, we introduce the concept of subdifferential or subgradient for

a convex function not necessarily differentiable. Subgradient (subdifferential) generalizes
the gradient (derivative) concept to nondifferentiable functions. Supposing convex function
f : Rn → R, the subgradient at a point x0 which is usually denoted by ∂f(x0) consists of
all vectors c such that

f(x) ≥ f(x0) + 〈c, x− x0〉, ∀x ∈ Dom f.

In order to prove duality, we start from program (7) (when the positive-definiteness
constraint ΣM − ΣR � 0 is dropped) and derive the primal form (19). Program (7) can be
written in the following equivalent form where λ1 goes to infinity and λ2 is used instead of
λ.

(
Σ̂M , Σ̂R

)
:= arg max

ΣM�0,ΣR

log det ΣM − λ1‖ΣR‖1,on − λ2‖ΣR‖1,off (23)
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s. t. ‖Σ̂n − ΣM + ΣR‖∞,off ≤ γ,(
ΣM

)
d
−
(
ΣR

)
d

=
(
Σ̂n
)
d
.

By introducing the dual variable JM for above program, we have:

min
‖JM‖∞,on≤λ1

‖JM‖∞,off≤λ2

−〈JM ,ΣR〉 = −λ1‖ΣR‖1,on − λ2‖ΣR‖1,off ,

where (ĴM )on ∈ λ1∂‖Σ̂R‖1,on, (ĴM )off ∈ λ2∂‖Σ̂R‖1,off minimizes the above program. Thus,
we have the following equivalent form for program (23):

min
‖JM‖∞,on≤λ1

‖JM‖∞,off≤λ2

max
ΣM�0,ΣR

‖Σ̂n−ΣM+ΣR‖∞,off≤γ
(ΣM )d−(ΣR)d=(Σ̂n)

d

log det ΣM − 〈JM ,ΣR〉,

where the order of programs is exchanged. If we define the new variable Σ = ΣM −ΣR, and
use Σ as the new variable in the program instead of ΣR, the inner max program becomes

max
ΣM�0,Σ

‖Σ̂n−Σ‖∞,off≤γ,Σd=(Σ̂n)
d

log det ΣM − 〈JM ,ΣM 〉+ 〈JM ,Σ〉.

Since the objective function and constraints are disjoint functions of variables Σ and ΣM ,
we can do optimization individually for two variables. The optimizers are Σ̂M = J−1

M and

Σ̂ = Σ̂n + γZγ , where Zγ is a member of the subgradient of ‖ · ‖1,off evaluated at point JM ,
i.e.,

(Zγ)ij =





0 for i = j
∈ [−1, 1] for i 6= j,

(
JM
)
ij

= 0

sign
((
JM
)
ij

)
for i 6= j,

(
JM
)
ij
6= 0.

Also note that since ΣM should be positive definite, the variable JM should be also positive
definite. Therefore, it adds another constraint JM � 0. If we substitute these optimizers,
we get the dual program

min
JM�0

‖JM‖∞,on≤λ1

‖JM‖∞,off≤λ2

〈Σ̂n, JM 〉 − log detJM + γ‖JM‖1,off ,

which is equivalent to (19) when λ1 goes to infinity and therefore the result is proved.

Appendix B. Characterization of the Proposed Optimization Programs

We proposed programs (6) and (19) to do decomposition and estimation respectively. For-
mer is used to decompose exact statistics to its Markov and residual covariance components
and the latter is used to estimate decomposition components given sample covariance ma-
trix. In this appendix we characterize optimal solutions of these optimization programs.
Both programs are convex and therefore the optimal solutions can be characterized using
standard convex optimization theory. Note that the proof of following lemmas is mentioned
after the remarks.

1578



High-Dimensional Covariance Decomposition

Lemma 1 For any λ > 0, primal problem (6) has a unique solution ĴM � 0 which is
characterized by the following equation:

Σ∗ − Ĵ−1
M + Ẑ = 0, (24)

where Ẑ has the following form

Ẑij =





0 for i = j

0 for i 6= j, |
(
ĴM
)
ij
| < λ

α̂ij sign
((
ĴM
)
ij

)
for i 6= j, |

(
ĴM
)
ij
| = λ,

(25)

in which α̂ij can only take nonnegative values, i.e., we have α̂ij ≥ 0.

Remark 10 Comparing Lagrangian optimality condition in (24) with relation Σ∗ = Ĵ−1
M −

Σ̂R between solutions of primal-dual optimization programs (derived in Appendix A) implies
the equality Σ̂R = Ẑ. Thus, Σ̂R entries are determined by Lagrangian multipliers of primal
program. More specifically, we have

(Σ̂R)ij =





0 for i = j

0 for i 6= j, |
(
ĴM
)
ij
| < λ

α̂ij sign
((
ĴM
)
ij

)
for i 6= j, |

(
ĴM
)
ij
| = λ,

(26)

where α̂ij ≥ 0 are the Lagrangian multipliers of primal program (6).

Lemma 2 For any λ > 0, γ ≥ 0 and sample covariance matrix Σ̂n with strictly positive
diagonal entries, primal problem (19) has a unique solution ĴM � 0 which is characterized
by the equation

Σ̂n − Ĵ−1
M + Ẑ = 0, (27)

where Ẑ = Ẑα + γẐγ. Matrix Ẑγ ∈ ∂‖ĴM‖1,off and Ẑα is represented as in (25) for some
Lagrangian multipliers α̂ij ≥ 0.

Remark 11 Comparing Lagrangian optimality condition in (27) with relation Σ̂n = Ĵ−1
M −

Σ̂R − γẐγ between solutions of primal-dual optimization programs (derived in Appendix

A) implies the equality Σ̂R = Ẑα. Thus, Σ̂R entries are determined by the Lagrangian
multipliers of primal program. More specifically, we have

(Σ̂R)ij =





0 for i = j

0 for i 6= j, |
(
ĴM
)
ij
| < λ

α̂ij sign
((
ĴM
)
ij

)
for i 6= j, |

(
ĴM
)
ij
| = λ,

(28)

where α̂ij ≥ 0 are the Lagrangian multipliers of primal program (19).

Proof We prove Lemma 2 here and Lemma 1 is a special case of that when γ is set to zero
and Σ̂n is substituted with Σ∗.

For any λ > 0 and γ ≥ 0, the optimization problem (19) is a convex programming
where the objective function is strictly convex. Therefore, if the minimum is achieved it
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is unique. Since off-diagonal entries of JM are bounded according to constraints, the only
issue for minimum achievement may arises for unbounded diagonal entries. It is shown in
Ravikumar et al. (2011) that if diagonal entries of Σ̂n are strictly positive, the function is
coercive with respect to diagonal entries and therefore here is no issue regarding unbounded
diagonal entries. Thus, the minimum is attained in JM � 0. But since when JM approaches
the boundary of positive definite cone, the objective function goes to infinity, the solution
is attained in the interior of the cone JM � 0. After showing that the unique minimum is
achieved, let us characterize the minimum.

Considering αij as Lagrangian multipliers of inequality constraints of program (19), the
Lagrangian function is

L(JM , α) = 〈Σ̂n, JM 〉 − log detJM + γ‖JM‖1,off +
∑

i 6=j
αij
[∣∣(JM

)
ij

∣∣− λ
]
.

We skipped positive definiteness constraint in writing Lagrangian function since it is in-
active. Based on standard convex optimization theory, the matrix ĴM � 0 is the optimal
solution if and only if it satisfies KKT conditions. It should minimize the Lagrangian which
happens if and only if 0 belongs to the subdifferential of Lagrangian or equivalently there
exists a matrix Ẑ such that

Σ̂n − Ĵ−1
M + Ẑ = 0,

where Ẑ = Ẑα + γẐγ . Matrix Ẑγ ∈ ∂‖ĴM‖1,off and Ẑα is

(Ẑα)ij =





0 for i = j

∈ α̂ij .[−1, 1] for i 6= j,
(
ĴM
)
ij

= 0

α̂ij sign
((
ĴM )ij

))
for i 6= j,

(
ĴM
)
ij
6= 0,

for some Lagrangian multipliers α̂ij ≥ 0. The solution should also satisfy complementary

slackness conditions α̂ij .
[∣∣(ĴM

)
ij

∣∣− λ
]

= 0 for i 6= j. Applying this condition to above Ẑα
representation, results to (25) form proposed in the lemma.

Appendix C. Proof of Theorem 4

First note that as mentioned in Remark 3, the pair
(
ĴM , Σ̂R

)
given by optimization program

gives a decomposition Σ∗ = Ĵ−1
M − Σ̂R which is desired.

Next, in order to prove the equivalence, we show that there is a one to one correspondence
between the specified conditions (A.0)-(A.3) for valid decomposition and the characteriza-
tion of optimal solution of optimization program given in lemma 1. We go through each of
these conditions one by one in the following lines.
Condition (A.0) is considered in optimization program as positive definiteness of Markov
matrix JM .
Condition (A.1) is exactly the primal constraint ‖J∗M‖∞,off ≤ λ.
Condition (A.2) is exactly the same as relation (26) where diagonal entries of residual co-
variance matrix are zero and its off-diagonal entries can be nonzero only if the absolute
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value of corresponding entry in Markov matrix takes the maximum value λ.
Condition (A.3) is exactly the same as inequality α̂ij ≥ 0.
In the above lines, we covered one by one correspondence for conditions (A.0)-(A.3). But
note that we also covered all the equalities and inequalities that characterize unique optimal
solution of optimization program. In other words by above correspondence we proved that
both of the following derivations are true where second one is the reverse of first one. On
one hand, any optimal solution of optimization program gives a valid decomposition under
desired conditions. On the other hand, any valid decomposition under desired conditions
is a solution of proposed optimization program. Thus, we can infer that these two are
exactly equivalent and the result is proved. Since the solution of optimization program is
unique and according to the equivalence between this solution and decomposition under
those conditions, uniqueness is also established. �

Appendix D. Proof of Theorem 5

In this appendix, we first mention an outline of the primal-dual witness method and then
provide the detailed proof of the theorem.

D.1 Primal-Dual Witness Method

First, continuing the proof outline presented in section 6, we provide an outline of the primal-
dual witness method steps in order to establish equivalence between optimal solutions of
the original (19) and the modified (21) optimization programs.

1. The primal witness matrix J̃M is defined as in (21).

2. The dual witness matrix is set as Z̃ = −Σ̂n + J̃−1
M . It is defined in this way to satisfy

original program optimal solution characterization mentioned in appendix B.

3. We need to check the following feasibility conditions under which the modified program
solution is equivalent to the solution of original one:

(a) ‖J̃M‖∞,off,S ≤ λ: Since we relaxed the `∞ bounds on off-diagonal entries in set
S, we need to make sure that the modified solution satisfies this bound in order
to have equivalence between modified and original programs solutions.

(b) Set
(
Z̃α
)
SR

=
(
−Σ̂n + J̃−1

M − γ
(
Z̃γ
))
SR

where Z̃γ ∈ ∂‖J̃M‖1,off . Note that since

|
(
J̃M
)
ij
| = λ 6= 0 for any (i, j) ∈ SR, then Z̃γ and therefore above equation is well-

defined. Now we need to check:
(
Z̃α
)
ij

(
J̃M
)
ij
≥ 0 for all (i, j) ∈ SR. This means

that they have the same sign or one of them is zero. We need this condition for
equivalence between solutions because Lagrangian multipliers in original program
(19) corresponding to inequality constraints should be nonnegative.

(c) ‖Z̃‖∞,Sc
M
< γ: According to the

(
JM
)
Sc
M

= 0 constraint in the modified pro-

gram, all the inequality constraints become inactive in the original one when
desired ĴM = J̃M equality is satisfied. Then, complementary slackness condi-
tion enforce all the Lagrangian multipliers corresponding to set ScM to be zero.
These can be satisfied by the above strict dual feasibility. Also note that having
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zero Lagrangian multipliers results in zero residual entries, i.e.,
(
Σ̃R

)
Sc
M

= 0 and

therefore ‖∆̃R‖∞,Sc
M

= 0 when this feasibility condition is satisfied.

Also note that we dropped the positive-definiteness constraint ΣM−ΣR � 0 in the proof
outline. Thus, in addition to above conditions, we also need to show that Σ̃ = Σ̃M− Σ̃R � 0
in the modified program.

Before we state the detailed proof for the theorem, we introduce a pair of definitions
which are used in the analysis. Let us define matrix E as difference between sample covari-
ance matrix and the exact covariance matrix

E := Σ̂n − Σ∗. (29)

We also define R
(
∆̃J

)
as the difference between J̃−1

M and its first order Taylor expansion

around J∗M . Recall that ∆̃J was defined as ∆̃J := J̃M − J∗M . According to results for first
order derivative of inverse function J−1

M (Boyd and Vandenberghe, 2004), the remainder is

R
(
∆̃J

)
= J̃−1

M − J∗M
−1 + J∗M

−1∆̃JJ
∗
M
−1. (30)

D.2 Proof of the Theorem

Exploiting lemmata mentioned in Appendix E, Theorem 5 is proved as follows:

Proof According to the sample error bound mentioned in Lemma 4, we have ‖E‖∞ ≤
δf (pτ ;n) for some τ > 2 with probability greater than or equal to 1 − 1/pτ−2. In the
discussion after this, it is assumed that the above bound for ‖E‖∞ is satisfied and therefore
the following results are valid with probability greater than or equal to 1− 1/pτ−2.

By choosing γ = m
α δf (pτ ;n), we have ‖E‖∞ ≤ α

mγ as desired for Lemma 5. Choosing λδ
as in (36) (compatible with what mentioned in the theorem), we only need to show that the
other bound on ‖R‖∞ is also satisfied to be able to apply Lemma 5. As stated in the remark
after Theorem 5, the bound on sample complexity is not asymptotic and we assume the
following lower bound on the number of samples which is compatible with the asymptotic
form mentioned in the theorem:

n > nf

(
pτ ; 1/max

{
v∗, 4ld

(
1 +

m

α

)
KSSKM max

{
1,

4

l − 1

(
1 +

m

α

)
KSSK

2
M

}})
, (31)

for some l > 1. Because of monotonic behaviour of the tail function, for any n satisfying
above bound, we have:

δf
(
pτ ;n) ≤ min

{
1

v∗
,

1

4ld(1 + m
α )KSSKM

,
l − 1

16ld(1 + m
α )2K2

SSK
3
M

}
, (32)

According to the selection for regularization parameters λδ and γ and the bound on sample
error ‖E‖∞, we have:

r := 2KSSR
λδ + 2KSS

(
‖E‖∞ + γ

)
≤
[

4KSSR
KSS

1− 2KSSR

(
1 +

α

m

)m
α

+ 2KSS

(
1 +

m

α

)]
δf (pτ ;n)
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= 2KSS

(
1 +

m

α

)
δf (pτ ;n)

1

1− 2KSSR

(=: λδ)

< 4KSS

(
1 +

m

α

)
δf (pτ ;n),

where in the last inequality, we used the second condition is assumption (A.4) that KSSR
<

1/4. Note that second line is equal to λδ since we assigned the same value in (36). Applying
the bound (32) on above inequality, we have

2KSSR
λδ + 2KSS

(
‖E‖∞ + γ

)
< min

{
1

ldKM
,

l − 1

4ld(1 + m
α )KSSK3

M

}

≤ min

{
1

ldKM
,

l − 1

2ldKSSK3
M

}
.

Thus, the conditions for Lemma 7 are satisfied and we have

‖∆̃J‖∞,S ≤ 2KSSR
λδ + 2KSS

(
‖E‖∞ + γ

)
≤ λδ < 4KSS

(
1 +

m

α

)
δf (pτ ;n). (33)

Above inequalities tell us multiple things. First, since the error ‖∆̃J‖∞,S is bounded by

λδ, the J̃M entries in set S can not deviate from exact one J∗M more than λδ. We also
assumed that the off-diagonal entries in J∗M are bounded by λ∗. Therefore according to

the definition of λδ := λ − λ∗, the entries in
(
J̃M
)

off,S
are bounded by λ and therefore

the condition (a) for feasibility of primal-dual witness method is satisfied, i.e., we have
‖J̃M‖∞,off,S ≤ λ. Second, since ‖∆̃J‖∞,SR

= λδ, we have ‖∆̃J‖∞,S ≤ ‖∆̃J‖∞,SR
and

therefore ‖∆̃J‖∞ = ‖∆̃J‖∞,SR
= λδ which results the following error bound

‖∆̃J‖∞ := ‖J̃M − J∗M‖∞ ≤ 4KSS

(
1 +

m

α

)
δf (pτ ;n). (34)

Furthermore, ‖∆̃J‖∞ < 1
ldKM

bound can be concluded from above inequality by substituting

δf (pτ ;n) from (32). Thus, the condition for Lemma 6 is satisfied and we have the following
bound on the remainder term

‖R
(
∆̃J

)
‖∞ ≤

l

l − 1
d‖∆̃J‖2∞K3

M

≤ 16l

l − 1
dK3

MK
2
SS

(
1 +

m

α

)2[
δf (pτ ;n)

]2

=

[
16l

l − 1
dK3

MK
2
SS

(
1 +

m

α

)2
δf (pτ ;n)

]
δf (pτ ;n)

≤ δf (pτ ;n) =
α

m
γ,

where in the second inequality, we used error bound in (34) and the last inequality is
concluded from bound (32).

Now the conditions for Lemma 5 are satisfied and therefore we have the upper bound on
‖∆̃R‖∞,SR

< C3γ and the strict dual feasibility on ScM . Second result satisfies condition (c)

of the primal-dual witness method feasibility conditions. The upper bound on ‖∆̃R‖∞,SR
in
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conjunction with the lower bound on
(
Σ∗R
)

min
> C3γ (mentioned in the theorem), ensures

that the sign of Σ∗R and Σ̃R are the same which results that the condition (b) of the feasibility
conditions for primal-dual witness method is satisfied. Since all three conditions (a)-(c) are
satisfied, we have equivalence between the modified program and the original one under
conditions specified in the theorem. It gives us both results (a) and (b) in the theorem.
Then by assuming lower bound on minimum nonzero value of J∗M , the result in part (c) is
also proved.

As mentioned before, we need to show that the dropped constraint Σ = ΣM − ΣR � 0
is also satisfied. Since the conditions for Corollary 13 in Appendix E.5 are satisfied,
we have the spectral norm error bound (41) on overall covariance matrix Σ. Apply-
ing the inverse tail function for Gaussian distribution in (35) to assumption (A.6) re-
sults that the minimum eigenvalue of exact covariance matrix Σ∗ satisfies lower bound
λmin(Σ∗) ≥

(
C4 + m

αC3

)
dδf (pτ ;n) + C5d

2
[
δf (pτ ;n)

]2
where C6 :=

(
C4 + m

αC3

)√
2q2 and

C7 := 2q2C5. Then by exploiting Weyl’s theorem (Theorem 4.3.1 in Horn and Johnson
(1985)), the estimated covariance matrix Σ̂ is positive definite and thus valid. Therefore,
the result is proved.

Appendix E. Auxiliary Lemmata

First, the tail condition for a probability distribution is defined as follows.

Definition 12 (Tail Condition) The random vector X satisfies tail condition with pa-
rameters f and v∗ if there exists a constant v∗ ∈ (0,∞) and function f : N×(0,∞)→ (0,∞)
such that for any (i, j) ∈ V × V :

P[|Σ̂n − Σ∗ij | ≥ δ] ≤
1

f(n, δ)
for all δ ∈ (0,

1

v∗
].

Note that since the function f(n, δ) is an increasing function of both variables n and δ,
we define the inverse functions nf (r; δ) and δf (r;n) with respect to variables n and δ
respectively (when the other argument is fixed), where f(n, δ) = r.

E.1 Concentration Bounds

From Lemma 1 in Ravikumar et al. (2011), we have the following concentration bound for
the empirical covariance matrix of Gaussian random variables.

Lemma 3 (Ravikumar et al. 2011) Consider a set of Gaussian random variables with
covariance matrix Σ∗. Given n i.i.d. samples, the sample covariance matrix Σ̂n satisfies

P[|Σ̂n
ij − Σ∗ij | > δ] ≤ 4 exp

{
−nδ

2

2q2

}
for all δ ∈ (0, q),

for some constant q > 0.
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Thus the tail function for Gaussian random vector takes the exponential form with the
following corresponding inverse functions:

nf (r; δ) =
2q2 log(4r)

δ2
, δf (r;n) =

√
2q2 log(4r)

n
(35)

Applying above Lemma, we get the following bound for sampling error.

Lemma 4 (Ravikumar et al. 2011) For any τ > 2 and sample size n such that δf (pτ ;n) <
1/v∗, we have

P
[
‖E‖∞ ≥ δf (pτ ;n)

]
≤ 1

pτ−2
→ 0.

E.2 Feasibility Conditions

In the following lemma, we propose some conditions to bound the residual error ‖∆̃R‖∞,SR

and also satisfy the condition (c) of feasibility conditions required for equivalence between
the witness solution and the original one.

Lemma 5 Suppose that

max {‖R‖∞, ‖E‖∞} ≤
α

m
γ,

λδ =
2KSS

1− 2KSSR

(
1 +

α

m

)
γ, (36)

then
a) ‖∆̃R‖∞,SR

≤ C3γ for some C3 > 0.

b) ‖Z̃‖∞,Sc
M
< γ.

Proof Applying definitions (29) and (30) to optimality condition considered in second step
of primal-dual witness method construction, gives the following equivalent equation

J∗M
−1∆̃JJ

∗
M
−1 − Σ∗R −R

(
∆̃J

)
+ E + Z̃ = 0. (37)

Above equation is a p × p matrix equation. We can rewrite it as a linear equation with
size p2 if we use the vectorized form of matrices. Vectorized form of a matrix D ∈ Rp×p is
a column vector D ∈ Rp2

which is composed by concatenating the rows of matrix D in a
single column vector. In the vectorized form, we have

vec
(
J∗M
−1∆̃JJ

∗
M
−1) =

(
J∗M
−1 ⊗ J∗M−1)∆̃J = Γ∗∆̃J .

Decomposing the vectorized form of (37) into three disjoint partitions S, SR and ScM gives
the following decomposed form




Γ∗SS Γ∗SSR
Γ∗SSc

M

Γ∗SRS
Γ∗SRSR

Γ∗SRS
c
M

Γ∗Sc
MS Γ∗Sc

MSR
Γ∗Sc

MSc
M







(
∆̃J

)
S−→

λδ
0


−




0(
Σ
∗
R

)
SR

0


+




(
−R+ E + Z̃

)
S(

−R+ E + Z̃
)
SR(

−R+ E + Z̃
)
Sc
M


 = 0,

(38)
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where we used the equalities
(
∆̃J

)
SR

=
−→
λδ and

(
∆̃J

)
Sc
M

= 0. Note that vector
−→
λδ only

includes ±λδ entries according to the constraints in the modified program. Also note that
Σ∗R is zero in sets S and ScM . We also dropped the argument ∆̃J from remainder function

R
(
∆̃J

)
to simplify the notation.

Similar to the original program, the matrix Z̃ is composed of two parts, Z̃β and Z̃γ , i.e.,

Z̃ = Z̃β + γZ̃γ . Matrix Z̃β = Σ̃R from equation (22), includes Lagrangian multipliers and

Z̃γ ∈ ∂‖J̃M‖1,off . For set S,
(
Z̃β
)
S

= 0, since we don’t have any constraint in the program
and therefore the Lagrangian multipliers are zero. Applying this to the first row of equation

(38) and since Γ∗SS is invertible, we have the following for error ∆̃J in set S

(
∆̃J

)
S

= Γ∗SS
−1
[
−Γ∗SSR

−→
λδ +RS − ES − γ

(
Z̃γ
)
S

]
, (39)

In set SR, Z̃SR
=
(
Σ̃R

)
SR

+ γ
(
Z̃γ
)
SR

. Applying this to the second row of equation (38)
results

Γ∗SRS

(
∆̃J

)
S

+ Γ∗SRSR

−→
λδ +

(
∆̃R

)
SR

+ γ
(
Z̃γ
)
SR
−RSR

+ ESR
= 0,

Recall that we defined ∆̃R := Σ̃R − Σ∗R. Substituting (39) in above equation results the

following for error ∆̃R in set SR

(
∆̃R

)
SR

=− Γ∗SRS
Γ∗SS

−1
[
−Γ∗SSR

−→
λδ +RS − ES − γ

(
Z̃γ
)
S

]

− Γ∗SRSR

−→
λδ − γ

(
Z̃γ
)
SR

+RSR
− ESR

.

Taking `∞ element-wise norm from above equation and using inequality ‖Ax‖∞ ≤ |||A|||∞‖x‖∞
for any matrix A ∈ Rr×s and vector x ∈ Rs, results the bound

‖∆̃R‖∞,SR
≤ |||−Γ∗SRS

Γ∗SS
−1Γ∗SSR

+ Γ∗SRSR
|||∞λδ + |||Γ∗SRS

Γ∗SS
−1|||∞

[
‖RS‖∞ + ‖ES‖∞ + γ

]

+
(
‖RSR

‖∞ + ‖ESR
‖∞ + γ

)
,

where we used the fact that ‖−→λδ‖∞ = λδ and ‖Z̃γ‖∞ = 1. Now if we apply the assumptions
mentioned in the lemma,

‖∆̃R‖∞,SR
≤
[

2KSS(m+ α)

m(1− 2KSSR
)
|||−Γ∗SRS

Γ∗SS
−1Γ∗SSR

+ Γ∗SRSR
|||∞

+
(
1 +

2α

m

)(
1 + |||Γ∗SRS

Γ∗SS
−1|||∞

)]
γ = C3γ, (40)

which proves part (a) of the Lemma.
Now if we substitute (39) in the equation from third row of (38), we have

Z̃Sc
M

= −Γ∗Sc
MSΓ∗SS

−1
[
−Γ∗SSR

−→
λδ +RS − ES − γ

(
Z̃γ
)
S

]
− Γ∗Sc

MSR

−→
λδ +RSc

M
− ESc

M
.

Taking `∞ element-wise norm from above equation gives the following bound

‖Z̃‖∞,Sc
M
≤ |||Γ∗Sc

MSΓ∗SS
−1Γ∗SSR

− Γ∗Sc
MSR
|||∞λδ + |||Γ∗Sc

MSΓ∗SS
−1|||∞

[
‖RS‖∞ + ‖ES‖∞ + γ

]
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+ ‖RSc
M
‖∞ + ‖ESc

M
‖∞,

where we used the fact that ‖Z̃γ‖∞ = 1. Applying assumption (A.4) to above bound results

‖Z̃‖∞,Sc
M
≤ (1− α)λδ + (2− α) [‖R‖∞ + ‖E‖∞] + (1− α)γ.

Using assumptions stated in the Lemma, we have

‖Z̃‖∞,Sc
M
≤
[

2KSS

1− 2KSSR

(
1 +

α

m

)
(1− α) + (2− α)

2α

m
+ (1− α)

]
γ

<

[
4KSS

(
1 +

α

m

)
(1− α) + (2− α)

2α

m
+ (1− α)

]
γ

<

[
4KSS

m− (m− 1)α

m
+

4α

m
+ (1− α)

]
γ ≤ γ,

where we used the bound on KSSR
in assumption (A.4) in the second inequality and the

fact that α > 0 in the third inequality. Final inequality is derived from assumption (A.5)
which finishes the proof of part (b).

E.3 Control of Remainder

In the following Lemma which is stated and proved in lemma 5 in Ravikumar et al. (2011),
the argument ∆̃J controls the remainder function behavior.

Lemma 6 Suppose that the element-wise `∞ bound ‖∆̃J‖∞ ≤ 1
lKMd for some l > 1 holds.

Then
R
(
∆̃J

)
=
(
J∗M
−1∆̃J

)2
QJ∗M

−1,

where Q :=
∑∞

k=0(−1)k
(
J∗M
−1∆̃J

)k
with bound |||QT |||∞ ≤ l

l−1 . Also, in terms of element-
wise `∞ norm, we have

‖R
(
∆̃J

)
‖∞ ≤

l

l − 1
d‖∆̃J‖2∞K3

M .

E.4 Control of ∆̃J

According to the primal-dual witness solutions construction, we have the error bounds on
∆̃J within the sets SR and ScM such that ‖∆̃J‖∞,SR

= λδ and ‖∆̃J‖∞,Sc
M

= 0. In the

following lemma, we propose some conditions to control the error ‖∆̃J‖∞,S .

Lemma 7 Suppose that

r := 2KSSR
λδ + 2KSS

(
‖E‖∞ + γ

)
≤ min

{
1

ldKM
,

l − 1

2ldKSSK3
M

}
,

then we have the following element-wise `∞ bound for
(
∆̃J

)
S

,

‖∆̃J‖∞,S ≤ r.
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The proof is within the same lines of Lemma 6 proof in Ravikumar et al. (2011) but with
some modifications since the error ‖∆̃J‖∞,SR

is not zero and therefore the nonzero value
λδ arises in the final result. Since the modified optimization program (21) is different with
the modified program in Ravikumar et al. (2011), it is worth discussing about existing a
unique solution for the modified optimization program (21). This uniqueness can be shown
with similar discussion presented in Appendix B for uniqueness of the solution of original
program (19). We only need to show that there is no problem in uniqueness by removing the
off-diagonal constaraints for set S in the modified program. By Lagrangian duality, the `1
penalty term γ‖JM‖1,off can be moved to constraints as ‖JM‖1,off ≤ C(γ) for some bounded
C(γ). Therefore, the off-diagonal entries in set S where the corresponding constraints were
relaxed in the modified program are still bounded because of this `1 constraint. Hence, the
modified program (21) has a unique solution.

E.5 Spectral Norm Error Bound on Overall Covariance Matrix Σ = J−1
M − ΣR

Corollary 13 Under the same assumptions (excluding (A.6)) as Theorem 5, with proba-
bility greater than 1− 1/pc, the overall covariance matrix estimate Σ̂ = Σ̂M − Σ̂R satisfies
spectral norm error bound

|||Σ̂− Σ∗||| ≤
(
C4 +

m

α
C3

)
dδf (pτ ;n) + C5d

2
[
δf (pτ ;n)

]2
. (41)

Proof We first bound the spectral norm errors for the Markov and residual covariance
matrices Σ̂M and Σ̂R. Along the same lines as Corollary 4 proof in Ravikumar et al. (2011),
the spectral norm error |||Σ̂M − Σ∗M ||| can be bounded as

|||Σ̂M − Σ∗M ||| ≤ C4dδf (pτ ;n) + C5d
2
[
δf (pτ ;n)

]2
,

where C4 = 4
(
1 + m

α

)
KSSK

2
M and C5 = 16l

l−1

(
1 + m

α

)2
K2
SSK

3
M .

The spectral norm error |||Σ̂R − Σ∗R||| can be also bounded as

|||Σ̂R − Σ∗R||| ≤ |||Σ̂R − Σ∗R|||∞ ≤ d‖Σ̂R − Σ∗R‖∞ ≤
m

α
C3dδf (pτ ;n),

where the first inequality is the property of spectral norm which is bounded by `∞-operator
norm, second inequality is a result of the fact that Σ̂R and Σ∗R has at most d nonzero entries
in each row (since SR ⊂ SM ) and the last inequality is concluded from the upper bound on
`∞ element-wise norm error on residual matrix estimation stated in part (a) of Theorem 5.
Applying the above bounds to the overall covariance matrix estimation Σ̂ = Σ̂M − Σ̂R and
using the triangular inequality for norms, the bound in (41) is proven.

Appendix F. Proof of Corollary 9

Proof The result in this corollary is a special case of general result in Theorem 5 when
λ∗ = 0 and some minor modifications are considered in problem formulation. Note that, it is
expressed in assumption (A.1) that the off-diagonal entries of exact Markov matrix J∗M are
upper bounded by some positive λ∗. In order to extend the proof to the case of λ∗ = 0 (The
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case in this corollary), we need some minor modifications. First, the identifiability assump-
tions (A.0)-(A.3) can be ignored and instead it is assumed that the Markov part J∗M (or
equivalently Σ∗M ) is diagonal and the residual part Σ∗R has only nonzero off-diagonal entries.
Since the diagonal Markov matrix and off-diagonal residual matrix do not have any nonzero
overlapping entries, it is natural that we do not require any more identifiability assumptions.
Then, with these new assumptions, the set SM is defined as SM := SR ∪ {(i, i)|i = 1, ..., p}
where SR is defined the same as (10) and also set S is defined the same as (11) which results
that set S includes only diagonal entries. Thus, the off-diagonal entries belongs to sets SR
and ScM . Since Σ∗M is a diagonal matrix, all submatrices of Γ∗ which are indexed by sets SR
or ScM are complete zero matrices. The result is that the terms which are bounded in the
mutual incoherence condition (A.4) are already zero and thus there is no need to consider
those additional assumptions in the corollary.
By making these changes in the problem formulation, the result in Corollary 9 can be proven
within the same lines of general result proof in Theorem 5. It is only required to change the

constraint on set SR in the modified optimization program to
(
JM
)
SR

= λ sign
((

Σ∗R
)
SR

)
.
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Abstract

Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo (MCMC) algorithm that
avoids the random walk behavior and sensitivity to correlated parameters that plague many
MCMC methods by taking a series of steps informed by first-order gradient information.
These features allow it to converge to high-dimensional target distributions much more
quickly than simpler methods such as random walk Metropolis or Gibbs sampling. However,
HMC’s performance is highly sensitive to two user-specified parameters: a step size ε and
a desired number of steps L. In particular, if L is too small then the algorithm exhibits
undesirable random walk behavior, while if L is too large the algorithm wastes computation.
We introduce the No-U-Turn Sampler (NUTS), an extension to HMC that eliminates the
need to set a number of steps L. NUTS uses a recursive algorithm to build a set of likely
candidate points that spans a wide swath of the target distribution, stopping automatically
when it starts to double back and retrace its steps. Empirically, NUTS performs at least as
efficiently as (and sometimes more efficiently than) a well tuned standard HMC method,
without requiring user intervention or costly tuning runs. We also derive a method for
adapting the step size parameter ε on the fly based on primal-dual averaging. NUTS
can thus be used with no hand-tuning at all, making it suitable for applications such as
BUGS-style automatic inference engines that require efficient “turnkey” samplers.

Keywords: Markov chain Monte Carlo, Hamiltonian Monte Carlo, Bayesian inference,
adaptive Monte Carlo, dual averaging

1. Introduction

Hierarchical Bayesian models are a mainstay of the machine learning and statistics com-
munities. Exact posterior inference in such models is rarely tractable, however, and so
researchers and practitioners must usually resort to approximate statistical inference meth-
ods. Deterministic approximate inference algorithms (for example, those reviewed by Wain-
wright and Jordan 2008) can be efficient, but introduce bias and can be difficult to apply
to some models. Rather than computing a deterministic approximation to a target poste-
rior (or other) distribution, Markov chain Monte Carlo (MCMC) methods offer schemes for
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drawing a series of correlated samples that will converge in distribution to the target distri-
bution (Neal, 1993). MCMC methods are sometimes less efficient than their deterministic
counterparts, but are more generally applicable and are asymptotically unbiased.

Not all MCMC algorithms are created equal. For complicated models with many param-
eters, simple methods such as random-walk Metropolis (Metropolis et al., 1953) and Gibbs
sampling (Geman and Geman, 1984) may require an unacceptably long time to converge
to the target distribution. This is in large part due to the tendency of these methods to
explore parameter space via inefficient random walks (Neal, 1993). When model parameters
are continuous rather than discrete, Hamiltonian Monte Carlo (HMC), also known as hybrid
Monte Carlo, is able to suppress such random walk behavior by means of a clever auxiliary
variable scheme that transforms the problem of sampling from a target distribution into the
problem of simulating Hamiltonian dynamics (Neal, 2011). The cost of HMC per indepen-
dent sample from a target distribution of dimension D is roughly O(D5/4), which stands in
sharp contrast with the O(D2) cost of random-walk Metropolis (Creutz, 1988).

HMC’s increased efficiency comes at a price. First, HMC requires the gradient of the
log-posterior. Computing the gradient for a complex model is at best tedious and at worst
impossible, but this requirement can be made less onerous by using automatic differentiation
(Griewank and Walther, 2008). Second, HMC requires that the user specify at least two
parameters: a step size ε and a number of steps L for which to run a simulated Hamiltonian
system. A poor choice of either of these parameters will result in a dramatic drop in HMC’s
efficiency. Methods from the adaptive MCMC literature (see Andrieu and Thoms 2008 for
a review) can be used to tune ε on the fly, but setting L typically requires one or more
costly tuning runs, as well as the expertise to interpret the results of those tuning runs.
This hurdle limits the more widespread use of HMC, and makes it challenging to incorporate
HMC into a general-purpose inference engine such as BUGS (Gilks and Spiegelhalter, 1992),
JAGS (http://mcmc-jags.sourceforge.net), Infer.NET (Minka et al.), HBC (Daume III,
2007), or PyMC (Patil et al., 2010).

The main contribution of this paper is the No-U-Turn Sampler (NUTS), an MCMC
algorithm that closely resembles HMC, but eliminates the need to choose the problematic
number-of-steps parameter L. We also provide a new dual averaging (Nesterov, 2009)
scheme for automatically tuning the step size parameter ε in both HMC and NUTS, making
it possible to run NUTS with no hand-tuning at all. We will show that the tuning-free
version of NUTS samples as efficiently as (and sometimes more efficiently than) HMC, even
ignoring the cost of finding optimal tuning parameters for HMC. Thus, NUTS brings the
efficiency of HMC to users (and generic inference systems) that are unable or disinclined to
spend time tweaking an MCMC algorithm.

Our algorithm has been implemented in C++ as part of the new open-source Bayesian
inference package, Stan (Stan Development Team, 2013). Matlab code implementing the
algorithms, along with Stan code for models used in our simulation study, are also available
at http://www.cs.princeton.edu/~mdhoffma/.

2. Hamiltonian Monte Carlo

In Hamiltonian Monte Carlo (HMC) (Neal, 2011, 1993; Duane et al., 1987), we introduce an
auxiliary momentum variable rd for each model variable θd. In the usual implementation,
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Algorithm 1 Hamiltonian Monte Carlo

Given θ0, ε, L, L,M :
for m = 1 to M do

Sample r0 ∼ N (0, I).
Set θm ← θm−1, θ̃ ← θm−1, r̃ ← r0.
for i = 1 to L do

Set θ̃, r̃ ← Leapfrog(θ̃, r̃, ε).
end for

With probability α = min

{
1,

exp{L(θ̃)− 1
2
r̃·r̃}

exp{L(θm−1)− 1
2
r0·r0}

}
, set θm ← θ̃, rm ← −r̃.

end for

function Leapfrog(θ, r, ε)
Set r̃ ← r + (ε/2)∇θL(θ).
Set θ̃ ← θ + εr̃.
Set r̃ ← r̃ + (ε/2)∇θL(θ̃).
return θ̃, r̃.

these momentum variables are drawn independently from the standard normal distribution,
yielding the (unnormalized) joint density

p(θ, r) ∝ exp{L(θ)− 1
2r · r},

where L is the logarithm of the joint density of the variables of interest θ (up to a normalizing
constant) and x · y denotes the inner product of the vectors x and y. We can interpret this
augmented model in physical terms as a fictitious Hamiltonian system where θ denotes a
particle’s position in D-dimensional space, rd denotes the momentum of that particle in
the dth dimension, L is a position-dependent negative potential energy function, 1

2r · r is
the kinetic energy of the particle, and log p(θ, r) is the negative energy of the particle. We
can simulate the evolution over time of the Hamiltonian dynamics of this system via the
Störmer-Verlet (“leapfrog”) integrator, which proceeds according to the updates

rt+ε/2 = rt + (ε/2)∇θL(θt); θt+ε = θt + εrt+ε/2; rt+ε = rt+ε/2 + (ε/2)∇θL(θt+ε),

where rt and θt denote the values of the momentum and position variables r and θ at time
t and ∇θ denotes the gradient with respect to θ. Since the update for each coordinate
depends only on the other coordinates, the leapfrog updates are volume-preserving—that
is, the volume of a region remains unchanged after mapping each point in that region to a
new point via the leapfrog integrator.

A standard procedure for drawing M samples via Hamiltonian Monte Carlo is described
in Algorithm 1. I denotes the identity matrix and N (µ,Σ) denotes a multivariate normal
distribution with mean µ and covariance matrix Σ. For each sample m, we first resample
the momentum variables from a standard multivariate normal, which can be interpreted as
a Gibbs sampling update. We then apply L leapfrog updates to the position and momentum
variables θ and r, generating a proposal position-momentum pair θ̃, r̃. We propose setting
θm = θ̃ and rm = −r̃, and accept or reject this proposal according to the Metropolis
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algorithm (Metropolis et al., 1953). This is a valid Metropolis proposal because it is time-
reversible and the leapfrog integrator is volume-preserving; using an algorithm for simulating
Hamiltonian dynamics that did not preserve volume complicates the computation of the
Metropolis acceptance probability (Lan et al., 2012). The negation of r̃ in the proposal is
theoretically necessary to produce time-reversibility, but can be omitted in practice if one
is only interested in sampling from p(θ).

The term log p(θ̃,r̃)
p(θ,r) , on which the acceptance probability α depends, is the negative

change in energy of the simulated Hamiltonian system from time 0 to time εL. If we could
simulate the Hamiltonian dynamics exactly, then α would always be 1, since energy is con-
served in Hamiltonian systems. The error introduced by using a discrete-time simulation

depends on the step size parameter ε—specifically, the change in energy | log p(θ̃,r̃)
p(θ,r) | is pro-

portional to ε2 for large L, or ε3 if L = 1 (Leimkuhler and Reich, 2004). In principle the
error can grow without bound as a function of L, but it typically does not due to the sym-
plecticness of the leapfrog discretization. This allows us to run HMC with many leapfrog
steps, generating proposals for θ that have high probability of acceptance even though they
are distant from the previous sample.

The performance of HMC depends strongly on choosing suitable values for ε and L. If
ε is too large, then the simulation will be inaccurate and yield low acceptance rates. If ε
is too small, then computation will be wasted taking many small steps. If L is too small,
then successive samples will be close to one another, resulting in undesirable random walk
behavior and slow mixing. If L is too large, then HMC will generate trajectories that loop
back and retrace their steps. This is doubly wasteful, since work is being done to bring the
proposal θ̃ closer to the initial position θm−1. Worse, if L is chosen so that the parameters
jump from one side of the space to the other each iteration, then the Markov chain may
not even be ergodic (Neal, 2011). More realistically, an unfortunate choice of L may result
in a chain that is ergodic but slow to move between regions of low and high density.

3. Eliminating the Need to Hand-Tune HMC

HMC is a powerful algorithm, but its usefulness is limited by the need to tune the step size
parameter ε and number of steps L. Tuning these parameters for any particular problem re-
quires some expertise, and usually one or more preliminary runs. Selecting L is particularly
problematic; it is difficult to find a simple metric for when a trajectory is too short, too long,
or “just right,” and so practitioners commonly rely on heuristics based on autocorrelation
statistics from preliminary runs (Neal, 2011).

Below, we present the No-U-Turn Sampler (NUTS), an extension of HMC that eliminates
the need to specify a fixed value of L. In Section 3.2 we present schemes for setting ε based
on the dual averaging algorithm of Nesterov (2009).

3.1 No-U-Turn Hamiltonian Monte Carlo

Our first goal is to devise an MCMC sampler that retains HMC’s ability to suppress random
walk behavior without the need to set the number L of leapfrog steps that the algorithm
takes to generate a proposal. We need some criterion to tell us when we have simulated
the dynamics for “long enough,” that is, when running the simulation for more steps would
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Figure 1: Example of building a binary tree via repeated doubling. Each doubling proceeds
by choosing a direction (forwards or backwards in time) uniformly at random,
then simulating Hamiltonian dynamics for 2j leapfrog steps in that direction,
where j is the number of previous doublings (and the height of the binary tree).
The figures at top show a trajectory in two dimensions (with corresponding binary
tree in dashed lines) as it evolves over four doublings, and the figures below show
the evolution of the binary tree. In this example, the directions chosen were
forward (light orange node), backward (yellow nodes), backward (blue nodes),
and forward (green nodes).

no longer increase the distance between the proposal θ̃ and the initial value of θ. We use
a convenient criterion based on the dot product between r̃ (the current momentum) and
θ̃ − θ (the vector from our initial position to our current position), which is the derivative
with respect to time (in the Hamiltonian system) of half the squared distance between the
initial position θ and the current position θ̃:

d

dt

(θ̃ − θ) · (θ̃ − θ)
2

= (θ̃ − θ) · d
dt

(θ̃ − θ) = (θ̃ − θ) · r̃. (1)

In other words, if we were to run the simulation for an infinitesimal amount of additional
time, then this quantity is proportional to the progress we would make away from our
starting point θ.

This suggests an algorithm in which one runs leapfrog steps until the quantity in Equa-
tion 1 becomes less than 0; such an approach would simulate the system’s dynamics until
the proposal location θ̃ started to move back towards θ. Unfortunately this algorithm does
not guarantee time reversibility, and is therefore not guaranteed to converge to the correct
distribution. NUTS overcomes this issue by means of a recursive algorithm that preserves
reversibility by running the Hamiltonian simulation both forward and backward in time.

NUTS begins by introducing a slice variable u with conditional distribution p(u|θ, r) =
Uniform(u; [0, exp{L(θ) − 1

2r · r}]), which renders the conditional distribution p(θ, r|u) =
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Figure 2: Example of a trajectory generated during one iteration of NUTS. The blue ellipse
is a contour of the target distribution, the black open circles are the positions θ
traced out by the leapfrog integrator and associated with elements of the set of
visited states B, the black solid circle is the starting position, the red solid circles
are positions associated with states that must be excluded from the set C of
possible next samples because their joint probability is below the slice variable u,
and the positions with a red “x” through them correspond to states that must be
excluded from C to satisfy detailed balance. The blue arrow is the vector from the
positions associated with the leftmost to the rightmost leaf nodes in the rightmost
height-3 subtree, and the magenta arrow is the (normalized) momentum vector
at the final state in the trajectory. The doubling process stops here, since the
blue and magenta arrows make an angle of more than 90 degrees. The crossed-
out nodes with a red “x” are in the right half-tree, and must be ignored when
choosing the next sample.

Uniform(θ, r; {θ′, r′| exp{L(θ)− 1
2r · r} ≥ u}). This slice sampling step is not strictly neces-

sary, but it simplifies both the derivation and the implementation of NUTS.
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At a high level, after resampling u|θ, r, NUTS uses the leapfrog integrator to trace out a
path forwards and backwards in fictitious time, first running forwards or backwards 1 step,
then forwards or backwards 2 steps, then forwards or backwards 4 steps, etc. This doubling
process implicitly builds a balanced binary tree whose leaf nodes correspond to position-
momentum states, as illustrated in Figure 1. The doubling is halted when the subtrajectory
from the leftmost to the rightmost nodes of any balanced subtree of the overall binary tree
starts to double back on itself (i.e., the fictional particle starts to make a “U-turn”). At
this point NUTS stops the simulation and samples from among the set of points computed
during the simulation, taking care to preserve detailed balance. Figure 2 illustrates an
example of a trajectory computed during an iteration of NUTS.

Pseudocode implementing a efficient version of NUTS is provided in Algorithm 3. A
detailed derivation follows below, along with a simplified version of the algorithm that
motivates and builds intuition about Algorithm 3 (but uses much more memory and makes
smaller jumps).

3.1.1 Derivation of Simplified NUTS Algorithm

NUTS further augments the model p(θ, r) ∝ exp{L(θ)− 1
2r ·r} with a slice variable u (Neal,

2003). The joint probability of θ, r, and u is

p(θ, r, u) ∝ I[u ∈ [0, exp{L(θ)− 1
2r · r}]],

where I[·] is 1 if the expression in brackets is true and 0 if it is false. The (unnormalized)
marginal probability of θ and r (integrating over u) is

p(θ, r) ∝ exp{L(θ)− 1
2r · r},

as in standard HMC. The conditional probabilities p(u|θ, r) and p(θ, r|u) are each uniform,
so long as the condition u ≤ exp{L(θ)− 1

2r · r} is satisfied.
We also add a finite set C of candidate position-momentum states and another finite set

B ⊇ C to the model. B will be the set of all position-momentum states that the leapfrog
integrator traces out during a given NUTS iteration, and C will be the subset of those
states to which we can transition without violating detailed balance. B will be built up by
randomly taking forward and backward leapfrog steps, and C will selected deterministically
from B. The random procedure for building B and C given θ, r, u, and ε will define a
conditional distribution p(B, C|θ, r, u, ε), upon which we place the following conditions:

C.1: All elements of C must be chosen in a way that preserves volume. That is, any
deterministic transformations of θ, r used to add a state θ′, r′ to C must have a Jacobian
with unit determinant.

C.2: p((θ, r) ∈ C|θ, r, u, ε) = 1.

C.3: p(u ≤ exp{L(θ′)− 1
2r
′ · r′}|(θ′, r′) ∈ C) = 1.

C.4: If (θ, r) ∈ C and (θ′, r′) ∈ C then for any B, p(B, C|θ, r, u, ε) = p(B, C|θ′, r′, u, ε).

C.1 ensures that p(θ, r|(θ, r) ∈ C) ∝ p(θ, r), that is, if we restrict our attention to the
elements of C then we can treat the unnormalized probability density of a particular element
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of C as an unnormalized probability mass. C.2 says that the current state θ, r must be
included in C. C.3 requires that any state in C be in the slice defined by u, that is, that any
state (θ′, r′) ∈ C must have equal (and positive) conditional probability density p(θ′, r′|u).
C.4 states that B and C must have equal probability of being selected regardless of the
current state θ, r as long as (θ, r) ∈ C (which it must be by C.2).

Deferring for the moment the question of how to construct and sample from a distribu-
tion p(B, C|θ, r, u, ε) that satisfies these conditions, we will now show that the the following
procedure leaves the joint distribution p(θ, r, u,B, C|ε) invariant:

1. sample r ∼ N (0, I),

2. sample u ∼ Uniform([0, exp{L(θt)− 1
2r · r}]),

3. sample B, C from their conditional distribution p(B, C|θt, r, u, ε),

4. sample θt+1, r ∼ T (θt, r, C),

where T (θ′, r′|θ, r, C) is a transition kernel that leaves the uniform distribution over C in-
variant, that is, T must satisfy

1

|C|
∑

(θ,r)∈C

T (θ′, r′|θ, r, C) =
I[(θ′, r′) ∈ C]

|C|

for any θ′, r′. The notation θt+1, r ∼ T (θt, r, C) denotes that we are resampling r in a way
that depends on its current value.

Steps 1, 2, and 3 resample r, u, B, and C from their conditional joint distribution given
θt, and therefore together constitute a valid Gibbs sampling update. Step 4 is valid because
the joint distribution of θ and r given u,B, C, and ε is uniform on the elements of C:

p(θ, r|u,B, C, ε) ∝ p(B, C|θ, r, u, ε)p(θ, r|u)

∝ p(B, C|θ, r, u, ε)I[u ≤ exp{L(θ)− 1
2r · r}]

∝ I[(θ, r) ∈ C].
(2)

Condition C.1 allows us to treat the unnormalized conditional density p(θ, r|u) ∝ I[u ≤
exp{L(θ) − 1

2r · r}] as an unnormalized conditional probability mass function. Conditions
C.2 and C.4 ensure that p(B, C|θ, r, u, ε) ∝ I[(θ, r) ∈ C] because by C.2 (θ, r) must be in C,
and by C.4 for any B, C pair p(B, C|θ, r, u, ε) is constant as a function of θ and r as long as
(θ, r) ∈ C. Condition C.3 ensures that (θ, r) ∈ C ⇒ u ≤ exp{L(θ)− 1

2r ·r} (so the p(θ, r|u, ε)
term is redundant). Thus, Equation 2 implies that the joint distribution of θ and r given u
and C is uniform on the elements of C, and we are free to choose a new θt+1, rt+1 from any
transition kernel that leaves this uniform distribution on C invariant.

We now turn our attention to the specific form for p(B, C|θ, r, u, ε) used by NUTS.
Conceptually, the generative process for building B proceeds by repeatedly doubling the
size of a binary tree whose leaves correspond to position-momentum states. These states
will constitute the elements of B. The initial tree has a single node corresponding to the
initial state. Doubling proceeds by choosing a random direction vj ∼ Uniform({−1, 1}) and
taking 2j leapfrog steps of size vjε (i.e., forwards in fictional time if vj = 1 and backwards in
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fictional time if vj = −1), where j is the current height of the tree. (The initial single-node
tree is defined to have height 0.) For example, if vj = 1, the left half of the new tree is the
old tree and the right half of the new tree is a balanced binary tree of height j whose leaf
nodes correspond to the 2j position-momentum states visited by the new leapfrog trajectory.
This doubling process is illustrated in Figure 1. Given the initial state θ, r and the step size
ε, there are 2j possible trees of height j that can be built according to this procedure, each
of which is equally likely. Conversely, the probability of reconstructing a particular tree of
height j starting from any leaf node of that tree is 2−j regardless of which leaf node we
start from.1

We cannot keep expanding the tree forever, of course. We want to continue expanding B
until one end of the trajectory we are simulating makes a “U-turn” and begins to loop back
towards another position on the trajectory. At that point continuing the simulation is likely
to be wasteful, since the trajectory will retrace its steps and visit locations in parameter
space close to those we have already visited. We also want to stop expanding B if the
error in the simulation becomes extremely large, indicating that any states discovered by
continuing the simulation longer are likely to have astronomically low probability. (This
may happen if we use a step size ε that is too large, or if the target distribution includes
hard constraints that make the log-density L go to −∞ in some regions.)

The second rule is easy to formalize—we simply stop doubling if the tree includes a leaf
node whose state θ, r satisfies

L(θ)− 1

2
r · r − log u < −∆max (3)

for some nonnegative ∆max. We recommend setting ∆max to a large value like 1000 so
that it does not interfere with the algorithm so long as the simulation is even moderately
accurate.

We must be careful when defining the first rule so that we can build a sampler that
neither violates detailed balance nor introduces excessive computational overhead. To de-
termine whether to stop doubling the tree at height j, NUTS considers the 2j − 1 balanced
binary subtrees of the height-j tree that have height greater than 0. NUTS stops the dou-
bling process when for one of these subtrees the states θ−, r− and θ+, r+ associated with
the leftmost and rightmost leaves of that subtree satisfies

(θ+ − θ−) · r− < 0 or (θ+ − θ−) · r+ < 0. (4)

That is, we stop if continuing the simulation an infinitesimal amount either forward or back-
ward in time would reduce the distance between the position vectors θ− and θ+. Evaluating
the condition in Equation 4 for each balanced subtree of a tree of height j requires 2j+1− 2
inner products, which is comparable to the number of inner products required by the 2j −1
leapfrog steps needed to compute the trajectory. Except for very simple models with very
little data, the cost of these inner products should be negligible compared to the cost of
computing gradients.

1. This procedure resembles the doubling procedure devised by Neal (2003) to update scalar variables in a
way that leaves their conditional distribution invariant. The doubling procedure finds a set of candidate
points by repeatedly doubling the size of a segment of the real line containing the initial point. NUTS,
by contrast, repeatedly doubles the size of a finite candidate set of vectors that contains the initial state.

1601



Hoffman and Gelman

This doubling process defines a distribution p(B|θ, r, u, ε). We now define a deterministic
process for deciding which elements of B go in the candidate set C, taking care to satisfy
conditions C.1–C.4 on p(B, C|θ, r, u, ε) laid out above. C.1 is automatically satisfied, since
leapfrog steps are volume preserving and any element of C must be within some number
of leapfrog steps of every other element of C. C.2 is satisfied as long as we include the
initial state θ, r in C, and C.3 is satisfied if we exclude any element θ′, r′ of B for which
exp{L(θ′)− 1

2r
′ · r′} < u. To satisfy condition C.4, we must ensure that p(B, C|θ, r, u, ε) =

p(B, C|θ′, r′, u, ε) for any (θ′, r′) ∈ C. For any start state (θ′, r′) ∈ B, there is at most one
series of directions {v0, . . . , vj} for which the doubling process will reproduce B, so as long
as we choose C deterministically given B either p(B, C|θ′, r′, u, ε) = 2−j = p(B, C|θ, r, u, ε)
or p(B, C|θ′, r′, u, ε) = 0. Thus, condition C.4 will be satisfied as long as we exclude from
C any state θ′, r′ that could not have generated B. The only way such a state can arise is
if starting from θ′, r′ results in the stopping conditions in Equations 3 or 4 being satisfied
before the entire tree has been built, causing the doubling process to stop too early. There
are two cases to consider:

1. The doubling procedure was stopped because either equation 3 or Equation 4 was
satisfied by a state or subtree added during the final doubling iteration. In this case
we must exclude from C any element of B that was added during this final doubling
iteration, since starting the doubling process from one of these would lead to a stopping
condition being satisfied before the full tree corresponding to B has been built.

2. The doubling procedure was stopped because equation 4 was satisfied for the leftmost
and rightmost leaves of the full tree corresponding to B. In this case no stopping
condition was met by any state or subtree until B had been completed, and condition
C.4 is automatically satisfied.

Algorithm 2 shows how to construct C incrementally while building B. After resam-
pling the initial momentum and slice variables, it uses a recursive procedure resembling a
depth-first search that eliminates the need to explicitly store the tree used by the doubling
procedure. The BuildTree() function takes as input an initial position θ and momentum r,
a slice variable u, a direction v ∈ {−1, 1}, a depth j, and a step size ε. It takes 2j leapfrog
steps of size vε (i.e., forwards in time if v = 1 and backwards in time if v = −1), and returns

1. the backwardmost and forwardmost position-momentum states θ−, r− and θ+, r+

among the 2j new states visited;

2. a set C′ of position-momentum states containing each newly visited state θ′, r′ for
which exp{L(θ′)− 1

2r
′ · r′} > u; and

3. an indicator variable s; s = 0 indicates that a stopping criterion was met by some state
or subtree of the subtree corresponding to the 2j new states visited by BuildTree().

At the top level, NUTS repeatedly calls BuildTree() to double the number of points that
have been considered until either BuildTree() returns s = 0 (in which case doubling stops
and the new set C′ that was just returned must be ignored) or Equation 4 is satisfied for
the new backwardmost and forwardmost position-momentum states θ−, r− and θ+, r+ yet
considered (in which case doubling stops but we can use the new set C′). Finally, we select
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Algorithm 2 Naive No-U-Turn Sampler

Given θ0, ε, L, M :
for m = 1 to M do

Resample r0 ∼ N (0, I).
Resample u ∼ Uniform([0, exp{L(θm−1 − 1

2r
0 · r0}])

Initialize θ− = θm−1, θ+ = θm−1, r− = r0, r+ = r0, j = 0, C = {(θm−1, r0)}, s = 1.
while s = 1 do

Choose a direction vj ∼ Uniform({−1, 1}).
if vj = −1 then
θ−, r−,−,−, C′, s′ ← BuildTree(θ−, r−, u, vj , j, ε).

else
−,−, θ+, r+, C′, s′ ← BuildTree(θ+, r+, u, vj , j, ε).

end if
if s′ = 1 then
C ← C ∪ C′.

end if
s← s′I[(θ+ − θ−) · r− ≥ 0]I[(θ+ − θ−) · r+ ≥ 0].
j ← j + 1.

end while
Sample θm, r uniformly at random from C.

end for

function BuildTree(θ, r, u, v, j, ε)
if j = 0 then

Base case—take one leapfrog step in the direction v.
θ′, r′ ← Leapfrog(θ, r, vε).

C′ ←
{
{(θ′, r′)} if u ≤ exp{L(θ′)− 1

2r
′ · r′}

∅ else

s′ ← I[L(θ′)− 1
2r
′ · r′ > log u−∆max].

return θ′, r′, θ′, r′, C′, s′.
else

Recursion—build the left and right subtrees.
θ−, r−, θ+, r+, C′, s′ ← BuildTree(θ, r, u, v, j − 1, ε).
if v = −1 then
θ−, r−,−,−, C′′, s′′ ← BuildTree(θ−, r−, u, v, j − 1, ε).

else
−,−, θ+, r+, C′′, s′′ ← BuildTree(θ+, r+, u, v, j − 1, ε).

end if
s′ ← s′s′′I[(θ+ − θ−) · r− ≥ 0]I[(θ+ − θ−) · r+ ≥ 0].
C′ ← C′ ∪ C′′.
return θ−, r−, θ+, r+, C′, s′.

end if

the next position and momentum θm, r uniformly at random from C, the union of all of the
valid sets C′ that have been returned, which clearly leaves the uniform distribution over C
invariant.

To summarize, Algorithm 2 defines a transition kernel that leaves p(θ, r, u,B, C|ε) invari-
ant, and therefore leaves the target distribution p(θ) ∝ exp{L(θ)} invariant. It does so by
resampling the momentum and slice variables r and u, simulating a Hamiltonian trajectory
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forwards and backwards in time until that trajectory either begins retracing its steps or
encounters a state with very low probability, carefully selecting a subset C of the states
encountered on that trajectory that lie within the slice defined by the slice variable u, and
finally choosing the next position and momentum variables θm and r uniformly at random
from C. Figure 2 shows an example of a trajectory generated by an iteration of NUTS where
Equation 4 is satisfied by the height-3 subtree at the end of the trajectory. Below, we will
introduce some improvements to algorithm 2 that boost the algorithm’s memory efficiency
and allow it to make larger jumps on average.

3.1.2 Efficient NUTS

Algorithm 2 requires 2j − 1 evaluations of L(θ) and its gradient (where j is the number
of times BuildTree() is called), and O(2j) additional operations to determine when to stop
doubling. In practice, for all but the smallest problems the cost of computing L and its
gradient still dominates the overhead costs, so the computational cost of algorithm 2 per
leapfrog step is comparable to that of a standard HMC algorithm. However, Algorithm
2 also requires that we store 2j position and momentum vectors, which may require an
unacceptably large amount of memory. Furthermore, there are alternative transition kernels
that satisfy detailed balance with respect to the uniform distribution on C that produce
larger jumps on average than simple uniform sampling. Finally, if a stopping criterion
is satisfied in the middle of the final doubling iteration then there is no point in wasting
computation to build up a set C′ that will never be used.

The third issue is easily addressed—if we break out of the recursion as soon as we
encounter a zero value for the stop indicator s then the correctness of the algorithm is
unaffected and we save some computation. We can address the second issue by using a more
sophisticated transition kernel to move from one state (θ, r) ∈ C to another state (θ′, r′) ∈ C
while leaving the uniform distribution over C invariant. This kernel admits a memory-
efficient implementation that only requires that we store O(j) position and momentum
vectors, rather than O(2j).

Consider the transition kernel

T (w′|w, C) =


I[w′∈Cnew]
|Cnew| if |Cnew| > |Cold|,

|Cnew|
|Cold|

I[w′∈Cnew]
|Cnew| +

(
1− |C

new|
|Cold|

)
I[w′ = w] if |Cnew| ≤ |Cold|

,

where w and w′ are shorthands for position-momentum states (θ, r), Cnew and Cold are disjoint
subsets of C such that Cnew∪Cold = C, and w ∈ Cold. In English, T proposes a move from Cold

to a random state in Cnew and accepts the move with probability |C
new|
|Cold| . This is equivalent

to a Metropolis-Hastings kernel with proposal distribution q(w′, Cold′, Cnew′|w, Cold, Cnew) ∝
I[w′ ∈ Cnew]I[Cold′ = Cnew]I[Cnew′ = Cold], and it is straightforward to show that it satisfies
detailed balance with respect to the uniform distribution on C, that is,

p(w|C)T (w′|w, C) = p(w′|C)T (w|w′, C),

and that T therefore leaves the uniform distribution over C invariant. If we let Cnew be
the (possibly empty) set of elements added to C during the final iteration of the doubling
(i.e., those returned by the final call to BuildTree() and Cold be the older elements of C,
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then we can replace the uniform sampling of C at the end of Algorithm 2 with a draw
from T (θt, rt, C) and leave the uniform distribution on C invariant. In fact, we can apply T
after every doubling, proposing a move to each new half-tree in turn. Doing so leaves the
uniform distribution on each partially built C invariant, and therefore does no harm to the
invariance of the uniform distribution on the fully built set C. Repeatedly applying T in
this way increases the probability that we will jump to a state θt+1 far from the initial state
θt; considering the process in reverse, it is as though we first tried to jump to the other
side of C, then if that failed tried to make a more modest jump, and so on. This transition
kernel is thus akin to delayed-rejection MCMC methods (Tierney and Mira, 1999), but in
this setting we can avoid the usual costs associated with evaluating new proposals.

The transition kernel above still requires that we be able to sample uniformly from the
set C′ returned by BuildTree(), which may contain as many as 2j−1 elements. In fact, we
can sample from C′ without maintaining the full set C′ in memory by exploiting the binary
tree structure in Figure 1. Consider a subtree of the tree explored in a call to BuildTree(),
and let Csubtree denote the set of its leaf states that are in C′: we can factorize the probability
that a state (θ, r) ∈ Csubtree will be chosen uniformly at random from C′ as

p(θ, r|C′) =
1

|C′|
=
|Csubtree|
|C′|

1

|Csubtree|
= p((θ, r) ∈ Csubtree|C)p(θ, r|(θ, r) ∈ Csubtree, C).

That is, p(θ, r|C′) is the product of the probability of choosing some node from the subtree
multiplied by the probability of choosing θ, r uniformly at random from Csubtree. We use
this observation to sample from C′ incrementally as we build up the tree. Each subtree
above the bottom layer is built of two smaller subtrees. For each of these smaller subtrees,
we sample a θ, r pair from p(θ, r|(θ, r) ∈ Csubtree) to represent that subtree. We then choose
between these two pairs, giving the pair representing each subtree weight proportional to
how many elements of C′ are in that subtree. This continues until we have completed the
subtree associated with C′ and we have returned a sample θ′ from C′ and an integer weight
n′ encoding the size of C′, which is all we need to apply T . This procedure only requires that
we store O(j) position and momentum vectors in memory, rather than O(2j), and requires
that we generate O(2j) extra random numbers (a cost that again is usually very small
compared with the 2j − 1 gradient computations needed to run the leapfrog algorithm).

Algorithm 3 implements all of the above improvements in pseudocode.

3.2 Adaptively Tuning ε

Having addressed the issue of how to choose the number of steps L, we now turn our
attention to the step size parameter ε. To set ε for both NUTS and HMC, we propose using
stochastic optimization with vanishing adaptation (Andrieu and Thoms, 2008), specifically
an adaptation of the primal-dual algorithm of Nesterov (2009).

Perhaps the most commonly used vanishing adaptation algorithm in MCMC is the
stochastic approximation method of Robbins and Monro (1951). Suppose we have a statistic
Ht that describes some aspect of the behavior of an MCMC algorithm at iteration t ≥ 1,
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Algorithm 3 Efficient No-U-Turn Sampler

Given θ0, ε, L, M :
for m = 1 to M do

Resample r0 ∼ N (0, I).
Resample u ∼ Uniform([0, exp{L(θm−1 − 1

2r
0 · r0}])

Initialize θ− = θm−1, θ+ = θm−1, r− = r0, r+ = r0, j = 0, θm = θm−1, n = 1, s = 1.
while s = 1 do

Choose a direction vj ∼ Uniform({−1, 1}).
if vj = −1 then
θ−, r−,−,−, θ′, n′, s′ ← BuildTree(θ−, r−, u, vj , j, ε).

else
−,−, θ+, r+, θ′, n′, s′ ← BuildTree(θ+, r+, u, vj , j, ε).

end if
if s′ = 1 then

With probability min{1, n
′

n }, set θm ← θ′.
end if
n← n+ n′.
s← s′I[(θ+ − θ−) · r− ≥ 0]I[(θ+ − θ−) · r+ ≥ 0].
j ← j + 1.

end while
end for

function BuildTree(θ, r, u, v, j, ε)
if j = 0 then

Base case—take one leapfrog step in the direction v.
θ′, r′ ← Leapfrog(θ, r, vε).
n′ ← I[u ≤ exp{L(θ′)− 1

2r
′ · r′}].

s′ ← I[L(θ′)− 1
2r
′ · r′ > log u−∆max]

return θ′, r′, θ′, r′, θ′, n′, s′.
else

Recursion—implicitly build the left and right subtrees.
θ−, r−, θ+, r+, θ′, n′, s′ ← BuildTree(θ, r, u, v, j − 1, ε).
if s′ = 1 then

if v = −1 then
θ−, r−,−,−, θ′′, n′′, s′′ ← BuildTree(θ−, r−, u, v, j − 1, ε).

else
−,−, θ+, r+, θ′′, n′′, s′′ ← BuildTree(θ+, r+, u, v, j − 1, ε).

end if
With probability n′′

n′+n′′ , set θ′ ← θ′′.

s′ ← s′′I[(θ+ − θ−) · r− ≥ 0]I[(θ+ − θ−) · r+ ≥ 0]
n′ ← n′ + n′′

end if
return θ−, r−, θ+, r+, θ′, n′, s′.

end if

and define its expectation h(x) as

h(x) ≡ Et[Ht|x] ≡ lim
T→∞

1

T

T∑
t=1

E[Ht|x],
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where x ∈ R is a tunable parameter to the MCMC algorithm. For example, if αt is the
Metropolis acceptance probability for iteration t, we might define Ht = δ − αt, where δ is
the desired average acceptance probability. If h is a nondecreasing function of x and a few
other conditions such as boundedness of the iterates xt are met (see Andrieu and Thoms
2008 for details), the update

xt+1 ← xt − ηtHt

is guaranteed to cause h(xt) to converge to 0 as long as the step size schedule defined by ηt
satisfies the conditions ∑

t

ηt =∞;
∑
t

η2
t <∞. (5)

These conditions are satisfied by schedules of the form ηt ≡ t−κ for κ ∈ (0.5, 1]. As long as
the per-iteration impact of the adaptation goes to 0 (as it will if ηt ≡ t−κ and κ > 0) the
asymptotic behavior of the sampler is unchanged. That said, in practice x often gets “close
enough” to an optimal value well before the step size η has gotten close enough to 0 to avoid
disturbing the Markov chain’s stationary distribution. A common practice, which we follow
here, is to adapt any tunable MCMC parameters during the warmup phase, and freeze the
tunable parameters afterwards (e.g., Gelman et al., 2004). For the present paper, the step
size ε is the only tuning parameter x in the algorithm. More advanced implementations
could have more options, though, so we consider the tuning problem more generally.

3.2.1 Dual Averaging

The optimal values of the parameters to an MCMC algorithm during the warmup phase
and the stationary phase are often quite different. Ideally those parameters would therefore
adapt quickly as we shift from the sampler’s initial, transient regime to its stationary regime.
However, the diminishing step sizes of Robbins-Monro give disproportionate weight to the
early iterations, which is the opposite of what we want.

Similar issues motivate the dual averaging scheme of Nesterov (2009), an algorithm
for nonsmooth and stochastic convex optimization. Since solving an unconstrained con-
vex optimization problem is equivalent to finding a zero of a nondecreasing function (the
(sub)gradient of the cost function), it is straightforward to adapt dual averaging to the prob-
lem of MCMC adaptation by replacing stochastic gradients with the statistics Ht. Again
assuming that we want to find a setting of a parameter x ∈ R such that h(x) ≡ Et[Ht|x] = 0,
we can apply the updates

xt+1 ← µ−
√
t

γ

1

t+ t0

t∑
i=1

Hi; x̄t+1 ← ηtxt+1 + (1− ηt)x̄t, (6)

where µ is a freely chosen point that the iterates xt are shrunk towards, γ > 0 is a free
parameter that controls the amount of shrinkage towards µ, t0 ≥ 0 is a free parameter that
stabilizes the initial iterations of the algorithm, ηt ≡ t−κ is a step size schedule obeying the
conditions in Equation 5, and we define x̄1 = x1. As in Robbins-Monro, the per-iteration
impact of these updates on x goes to 0 as t goes to infinity. Specifically, for large t we have

xt+1 − xt = O(−Htt
−0.5),
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which clearly goes to 0 as long as the statistic Ht is bounded. The sequence of averaged
iterates x̄t is guaranteed to converge to a value such that h(x̄t) converges to 0.

The update scheme in Equation 6 is slightly more elaborate than the update scheme
of Nesterov (2009), which implicitly has t0 ≡ 0 and κ ≡ 1. Introducing these parameters
addresses issues that are more important in MCMC adaptation than in more conventional
stochastic convex optimization settings. Setting t0 > 0 improves the stability of the algo-
rithm in early iterations, which prevents us from wasting computation by trying out extreme
values. This is particularly important for NUTS, and for HMC when simulation lengths are
specified in terms of the overall simulation length εL instead of a fixed number of steps L.
In both of these cases, lower values of ε result in more work being done per sample, so we
want to avoid casually trying out extremely low values of ε. Setting the parameter κ < 1
allows us to give higher weight to more recent iterates and more quickly forget the iterates
produced during the early warmup stages. The benefits of introducing these parameters are
less apparent in the settings originally considered by Nesterov, where the cost of a stochastic
gradient computation is assumed to be constant and the stochastic gradients are assumed
to be drawn i.i.d. given the parameter x.

Allowing t0 > 0 and κ ∈ (0.5, 1] does not affect the asymptotic convergence of the dual
averaging algorithm. For any κ ∈ (0.5, 1], x̄t will eventually converge to the same value
1
t

∑t
i=1 xt. We can rewrite the term

√
t
γ

1
t+t0

as t
√
t

γ(t+t0)
1
t ;

t
√
t

γ(t+t0) is still O(
√
t), which is the

only feature needed to guarantee convergence.

We used the values γ = 0.05, t0 = 10, and κ = 0.75 for all our experiments. We arrived
at these values by trying a few settings for each parameter by hand with NUTS and HMC
(with simulation lengths specified in terms of εL) on the stochastic volatility model described
below and choosing a value for each parameter that seemed to produce reasonable behavior.
Better results might be obtained with further tweaking, but these default parameters seem
to work consistently well for both NUTS and HMC for all of the models that we tested. It
is entirely possible that these parameter settings may not work as well for other sampling
algorithms or for H statistics other than the ones described below.

3.2.2 Finding a Good Initial Value of ε

The dual averaging scheme outlined above should work for any initial value ε1 and any
setting of the shrinkage target µ. However, convergence will be faster if we start from a
reasonable setting of these parameters. We recommend choosing an initial value ε1 according
to the simple heuristic described in Algorithm 4. In English, this heuristic repeatedly
doubles or halves the value of ε1 until the acceptance probability of the Langevin proposal
with step size ε1 crosses 0.5. The resulting value of ε1 will typically be small enough to
produce reasonably accurate simulations but large enough to avoid wasting large amounts
of computation. We recommend setting µ = log(10ε1), since this gives the dual averaging
algorithm a preference for testing values of ε that are larger than the initial value ε1. Large
values of ε cost less to evaluate than small values of ε, and so erring on the side of trying
large values can save computation.
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3.2.3 Setting ε in HMC

In HMC we want to find a value for the step size ε that is neither too small (which would
waste computation by taking needlessly tiny steps) nor too large (which would waste com-
putation by causing high rejection rates). A standard approach is to tune ε so that HMC’s
average Metropolis acceptance probability is equal to some value δ. Indeed, it has been
shown that (under fairly strong assumptions) the optimal value of ε for a given simulation
length εL is the one that produces an average Metropolis acceptance probability of approx-
imately 0.65 (Beskos et al., 2010; Neal, 2011). For HMC, we define a criterion hHMC(ε) so
that

HHMC
t ≡ min

{
1,

p(θ̃t, r̃t)

p(θt−1, rt,0)

}
; hHMC(ε) ≡ Et[HHMC

t |ε],

where θ̃t and r̃t are the proposed position and momentum at the tth iteration of the Markov
chain, θt−1 and rt,0 are the initial position and (resampled) momentum for the tth iteration
of the Markov chain, HHMC

t is the acceptance probability of this tth HMC proposal and
hHMC is the expected average acceptance probability of the chain in equilibrium for a fixed
ε. Assuming that hHMC is nonincreasing as a function of ε, we can apply the updates in
Equation 6 with Ht ≡ δ −HHMC

t and x ≡ log ε to coerce hHMC = δ for any δ ∈ (0, 1).

3.2.4 Setting ε in NUTS

Since there is no single accept/reject step in NUTS we must define an alternative statistic
to Metropolis acceptance probability. For each iteration we define the statistic HNUTS

t and
its expectation when the chain has reached equilibrium as

HNUTS
t ≡ 1

|Bfinal
t |

∑
θ,r∈Bfinal

t

min

{
1,

p(θ, r)

p(θt−1, rt,0)

}
; hNUTS ≡ Et[HNUTS

t ],

where Bfinal
t is the set of all states explored during the final doubling of iteration t of the

Markov chain and θt−1 and rt,0 are the initial position and (resampled) momentum for the
tth iteration of the Markov chain. HNUTS can be understood as the average acceptance
probability that HMC would give to the position-momentum states explored during the
final doubling iteration. As above, assuming that HNUTS is nonincreasing in ε, we can
apply the updates in Equation 6 with Ht ≡ δ −HNUTS and x ≡ log ε to coerce hNUTS = δ
for any δ ∈ (0, 1).

Algorithms 5 and 6 show how to implement HMC (with simulation length specified in
terms of εL rather than L) and NUTS while incorporating the dual averaging algorithm
derived in this section, with the above initialization scheme. Algorithm 5 requires as input
a target simulation length λ ≈ εL, a target mean acceptance probability δ, and a number
of iterations Madapt after which to stop the adaptation. Algorithm 6 requires only a target
mean acceptance probability δ and a number of iterations Madapt.
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Algorithm 4 Heuristic for choosing an initial value of ε

function FindReasonableEpsilon(θ)
Initialize ε = 1, r ∼ N (0, I). (I denotes the identity matrix.)
Set θ′, r′ ← Leapfrog(θ, r, ε).

a← 2I
[
p(θ′,r′)
p(θ,r) > 0.5

]
− 1.

while
(
p(θ′,r′)
p(θ,r)

)a
> 2−a do

ε← 2aε.
Set θ′, r′ ← Leapfrog(θ, r, ε).

end while
return ε.

Algorithm 5 Hamiltonian Monte Carlo with Dual Averaging

Given θ0, δ, λ, L,M,Madapt:
Set ε0 = FindReasonableEpsilon(θ), µ = log(10ε0), ε̄0 = 1, H̄0 = 0, γ = 0.05, t0 = 10, κ = 0.75.
for m = 1 to M do

Reample r0 ∼ N (0, I).
Set θm ← θm−1, θ̃ ← θm−1, r̃ ← r0, Lm = max{1,Round(λ/εm−1)}.
for i = 1 to Lm do

Set θ̃, r̃ ← Leapfrog(θ̃, r̃, εm−1).
end for

With probability α = min
{

1,
exp{L(θ̃)− 1

2 r̃·r̃}
exp{L(θm−1)− 1

2 r
0·r0}

}
, set θm ← θ̃, rm ← −r̃.

if m ≤Madapt then

Set H̄m =
(

1− 1
m+t0

)
H̄m−1 + 1

m+t0
(δ − α).

Set log εm = µ−
√
m
γ H̄m, log ε̄m = m−κ log εm + (1−m−κ) log ε̄m−1.

else
Set εm = ε̄Madapt .

end if
end for

4. Empirical Evaluation

In this section we examine the effectiveness of the dual averaging algorithm outlined in
Section 3.2, examine what values of the target δ in the dual averaging algorithm yield
efficient samplers, and compare the efficiency of NUTS and HMC.

For each target distribution, we ran HMC (as implemented in algorithm 5) and NUTS (as
implemented in algorithm 6) with four target distributions for 2000 iterations, allowing the
step size ε to adapt via the dual averaging updates described in Section 3.2 for the first 1000
iterations. In all experiments the dual averaging parameters were set to γ = 0.05, t0 = 10,
and κ = 0.75. We evaluated HMC with 10 logarithmically spaced target simulation lengths
λ per target distribution. For each target distribution the largest value of λ that we tested
was 40 times the smallest value of λ that we tested, meaning that each successive λ is
401/9 ≈ 1.5 times larger than the previous λ. We tried 15 evenly spaced values of the
dual averaging target δ between 0.25 and 0.95 for NUTS and 8 evenly spaced values of
the dual averaging target δ between 0.25 and 0.95 for HMC. For each sampler-simulation
length-δ-target distribution combination we ran 10 iterations with different random seeds.
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Algorithm 6 No-U-Turn Sampler with Dual Averaging

Given θ0, δ, L,M,Madapt:
Set ε0 = FindReasonableEpsilon(θ), µ = log(10ε0), ε̄0 = 1, H̄0 = 0, γ = 0.05, t0 = 10, κ = 0.75.
for m = 1 to M do

Sample r0 ∼ N (0, I).
Resample u ∼ Uniform([0, exp{L(θm−1 − 1

2
r0 · r0}])

Initialize θ− = θm−1, θ+ = θm−1, r− = r0, r+ = r0, j = 0, θm = θm−1, n = 1, s = 1.
while s = 1 do

Choose a direction vj ∼ Uniform({−1, 1}).
if vj = −1 then
θ−, r−,−,−, θ′, n′, s′, α, nα ← BuildTree(θ−, r−, u, vj , j, εm−1θ

m−1, r0).
else
−,−, θ+, r+, θ′, n′, s′, α, nα ← BuildTree(θ+, r+, u, vj , j, εm−1, θ

m−1, r0).
end if
if s′ = 1 then

With probability min{1, n
′

n
}, set θm ← θ′.

end if
n← n+ n′.
s← s′I[(θ+ − θ−) · r− ≥ 0]I[(θ+ − θ−) · r+ ≥ 0].
j ← j + 1.

end while
if m ≤Madapt then

Set H̄m =
(

1− 1
m+t0

)
H̄m−1 + 1

m+t0
(δ − α

nα
).

Set log εm = µ−
√
m
γ
H̄m, log ε̄m = m−κ log εm + (1−m−κ) log ε̄m−1.

else
Set εm = ε̄Madapt .

end if
end for

function BuildTree(θ, r, u, v, j, ε, θ0, r0)
if j = 0 then

Base case—take one leapfrog step in the direction v.
θ′, r′ ← Leapfrog(θ, r, vε).
n′ ← I[u ≤ exp{L(θ′)− 1

2
r′ · r′}].

s′ ← I[u < exp{∆max + L(θ′)− 1
2
r′ · r′}].

return θ′, r′, θ′, r′, θ′, n′, s′,min{1, exp{L(θ′)− 1
2
r′ · r′ − L(θ0) + 1

2
r0 · r0}}, 1.

else
Recursion—implicitly build the left and right subtrees.
θ−, r−, θ+, r+, θ′, n′, s′, α′, n′α ← BuildTree(θ, r, u, v, j − 1, ε, θ0, r0).
if s′ = 1 then

if v = −1 then
θ−, r−,−,−, θ′′, n′′, s′′, α′′, n′′α ← BuildTree(θ−, r−, u, v, j − 1, ε, θ0, r0).

else
−,−, θ+, r+, θ′′, n′′, s′′, α′′, n′′α ← BuildTree(θ+, r+, u, v, j − 1, ε, θ0, r0).

end if
With probability n′′

n′+n′′ , set θ′ ← θ′′.

Set α′ ← α′ + α′′, n′α ← n′α + n′′α.
s′ ← s′′I[(θ+ − θ−) · r− ≥ 0]I[(θ+ − θ−) · r+ ≥ 0]
n′ ← n′ + n′′

end if
return θ−, r−, θ+, r+, θ′, n′, s′, α′, n′α.

end if
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In total, we ran 3,200 experiments with HMC and 600 experiments with NUTS. Traditional
HMC can sometimes exhibit pathological behavior when using a fixed step size and number
of steps per iteration (Neal, 2011), so after warmup we jitter HMC’s step size, sampling
it uniformly at random each iteration from the range [0.9ε̄Madapt , 1.1ε̄Madapt ] so that the
trajectory length may vary by ±10% each iteration.

We measure the efficiency of each algorithm in terms of effective sample size (ESS)
normalized by the number of gradient evaluations used by each algorithm. The ESS of
a set of M correlated samples θ1:M with respect to some function f(θ) is the number of
independent draws from the target distribution p(θ) that would give a Monte Carlo estimate
of the mean under p of f(θ) with the same level of precision as the estimate given by the
mean of f for the correlated samples θ1:M . That is, the ESS of a sample is a measure
of how many independent samples a set of correlated samples is worth for the purposes of
estimating the mean of some function; a more efficient sampler will give a larger ESS for less
computation. We use the number of gradient evaluations performed by an algorithm as a
proxy for the total amount of computation performed; in all of the models and distributions
we tested the computational overhead of both HMC and NUTS is dominated by the cost
of computing gradients. Details of the method we use to estimate ESS are provided in
appendix A. In each experiment, we discarded the first 1000 samples as warmup when
estimating ESS.

ESS is inherently a univariate statistic, but all of the distributions we test HMC and
NUTS on are multivariate. Following Girolami and Calderhead (2011) we compute ESS
separately for each dimension and report the minimum ESS across all dimensions, since we
want our samplers to effectively explore all dimensions of the target distribution. For each
dimension we compute ESS in terms of the variance of the estimator of that dimension’s
mean and second central moment (where the estimate of the mean used to compute the
second central moment is taken from a separate long run of 50,000 iterations of NUTS with
δ = 0.5), reporting whichever statistic has a lower effective sample size. We include the
second central moment as well as the mean in order to measure each algorithm’s ability to
estimate uncertainty.

4.1 Models and Data Sets

To evaluate NUTS and HMC, we used the two algorithms to sample from four target distri-
butions, one of which was synthetic and the other three of which are posterior distributions
arising from real data sets.

4.1.1 250-dimensional Multivariate Normal (MVN)

In these experiments the target distribution was a zero-mean 250-dimensional multivariate
normal with known precision matrix A, that is,

p(θ) ∝ exp{−1
2θ
TAθ}.

The matrix A was generated from a Wishart distribution with identity scale matrix and
250 degrees of freedom. This yields a target distribution with many strong correlations.
The same matrix A was used in all experiments.
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4.1.2 Bayesian Logistic Regression (LR)

In these experiments the target distribution is the posterior of a Bayesian logistic regression
model fit to the German credit data set available from the UCI repository (Frank and
Asuncion, 2010). The target distribution is

p(α, β|x, y) ∝ p(y|x, α, β)p(α)p(β)

∝ exp{−
∑

i log(1 + exp{−yi(α+ xi · β})− 1
2σ2α

2 − 1
2σ2β · β},

where xi is a 24-dimensional vector of numerical predictors associated with a customer i,
yi is −1 if customer i should be denied credit and 1 if that customer should receive credit,
α is an intercept term, and β is a vector of 24 regression coefficients. All predictors are
normalized to have zero mean and unit variance. α and each element of β are given weak
zero-mean normal priors with variance σ2 = 100. The data set contains predictor and
response data for 1000 customers.

4.1.3 Hierarchical Bayesian Logistic Regression (HLR)

In these experiments the target distribution is again the posterior of a Bayesian logistic
regression model fit to the German credit data set, but this time the variance parameter in
the prior on α and β is given an exponential prior and estimated as well. Also, we expand the
predictor vectors by including two-way interactions, resulting in

(
24
2

)
+24 = 300-dimensional

vectors of predictors x and a 300-dimensional vector of coefficients β. These elaborations
on the model make for a more challenging problem; the posterior is in higher dimensions,
and the variance term σ2 interacts strongly with the remaining 301 variables. The target
distribution for this problem is

p(α, β, σ2|x, y) ∝ p(y|x, α, β)p(β|σ2)p(α|σ2)p(σ2)

∝ exp{−
∑

i log(1 + exp{−yixi · β})− 1
2σ2α

2 − 1
2σ2β · β − N

2 log σ2 − λσ2},

where N = 1000 is the number of customers and λ is the rate parameter to the prior on
σ2. We set λ = 0.01, yielding a weak exponential prior distribution on σ2 whose mean and
standard deviation are 100.

4.1.4 Stochastic Volatility (SV)

In the final set of experiments the target distribution is the posterior of a relatively simple
stochastic volatility model fit to 3000 days of returns from the S&P 500 index. The model
assumes that the observed values of the index are generated by the following generative
process:

τ ∼ Exponential(100); ν ∼ Exponential(100); s1 ∼ Exponential(100);

log si>1 ∼ Normal(log si−1, τ
−1); log yi−log yi−1

si
∼ tν ,

where si>1 refers to a scale parameter si where i > 1. We integrate out the precision
parameter τ to speed mixing, leading to the 3001-dimensional target distribution

p(s, ν|y) ∝ e−0.01νe−0.01s1(
∏3000
i=1 tν(s−1

i (log yi − log yi−1)))×

(0.01 + 0.5
∑3000

i=2 (log si − log si−1)2)−
3001

2 .
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Figure 3: Discrepancies between the realized average acceptance probability statistic h and
its target δ for the multivariate normal, logistic regression, hierarchical logistic
regression, and stochastic volatility models. Each point’s distance from the x-
axis shows how effectively the dual averaging algorithm tuned the step size ε for
a single experiment. Leftmost plots show experiments run with NUTS, other
plots show experiments run with HMC with various settings of εL.

4.2 Convergence of Dual Averaging

Figure 3 plots the realized versus target values of the statistics hHMC and hNUTS. The h
statistics were computed from the 1000 post-warmup samples. The dual averaging algorithm
of Section 3.2 usually does a good job of coercing the statistic h to its desired value δ. It
performs somewhat worse for the stochastic volatility model, which we attribute to the
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Figure 4: Plots of the convergence of ε̄ as a function of the number of iterations of NUTS
with dual averaging with δ = 0.65 applied to the multivariate normal (MVN),
logistic regression (LR), hierarchical logistic regression (HLR), and stochastic
volatility (SV) models. Each trace is from an independent run. The y-axis shows
the value of ε̄, divided by one of the final values of ε̄ so that the scale of the traces
for each problem can be readily compared.

longer warmup period needed for this model; since it takes more samples to reach the
stationary regime for the stochastic volatility model, the adaptation algorithm has less time
to tune ε to be appropriate for the stationary distribution. This is particularly true for
HMC with small values of δ, since the overly high rejection rates caused by setting δ too
small lead to slower convergence.

Figure 4 plots the convergence of the averaged iterates ε̄m as a function of the number of
dual averaging updates for NUTS with δ = 0.65. Except for the stochastic volatility model,
which requires longer to warm up, ε̄ roughly converges within a few hundred iterations.

4.3 NUTS Trajectory Lengths

Figure 5 shows histograms of the trajectory lengths generated by NUTS. Most of the trajec-
tory lengths are integer powers of two, indicating that the U-turn criterion in Equation 4 is
usually satisfied only after a doubling is complete and not by one of the intermediate subtrees
generated during the doubling process. This behavior is desirable insofar as it means that
we only occasionally have to throw out entire half-trajectories to satisfy detailed balance.

The trajectory length (measured in number of states visited) grows as the acceptance
rate target δ grows, which is to be expected since a higher δ will lead to a smaller step
size ε, which in turn will mean that more leapfrog steps are necessary before the trajectory
doubles back on itself and satisfies Equation 4.

4.4 Comparing the Efficiency of HMC and NUTS

Figure 6 compares the efficiency of HMC (with various simulation lengths λ ≈ εL) and
NUTS (which chooses simulation lengths automatically). The x-axis in each plot is the
target δ used by the dual averaging algorithm from Section 3.2 to automatically tune the step
size ε. The y-axis is the effective sample size (ESS) generated by each sampler, normalized by
the number of gradient evaluations used in generating the samples. HMC’s best performance
seems to occur around δ = 0.65, suggesting that this is indeed a reasonable default value
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Figure 5: Histograms of the trajectory lengths generated by NUTS with various accep-
tance rate targets δ for the multivariate normal (MVN), logistic regression (LR),
hierarchical logistic regression (HLR), and stochastic volatility (SV) models.

for a variety of problems. NUTS’s best performance seems to occur around δ = 0.6, but
does not seem to depend strongly on δ within the range δ ∈ [0.45, 0.65]. δ = 0.6 therefore
seems like a reasonable default value for NUTS.

On the two logistic regression problems NUTS is able to produce effectively indepen-
dent samples about as efficiently as HMC can. On the multivariate normal and stochastic
volatility problems, NUTS with δ = 0.6 outperforms HMC’s best ESS by about a factor of
2 and 1.5, respectively.
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Figure 6: Effective sample size (ESS) as a function of δ and (for HMC) simulation length
εL for the multivariate normal, logistic regression, hierarchical logistic regression,
and stochastic volatility models. Each point shows the ESS divided by the number
of gradient evaluations for a separate experiment; lines denote the average of the
points’ y-values for a particular δ. Leftmost plots are NUTS’s performance, other
plots shows HMC’s performance for various settings of εL.

As expected, HMC’s performance degrades if an inappropriate simulation length is cho-
sen. Across the four target distributions we tested, the best simulation lengths λ for HMC
varied by about a factor of 100, with the longest optimal λ being about 18 (for the mul-
tivariate normal) and the shortest optimal λ being about 0.14 (for the hierarchical logistic
regression). In practice, finding a good simulation length for HMC will usually require
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Figure 7: Samples generated by random-walk Metropolis, Gibbs sampling, and NUTS. The
plots compare 1,000 independent draws from a highly correlated 250-dimensional
distribution (right) with 1,000,000 samples (thinned to 1,000 samples for display)
generated by random-walk Metropolis (left), 1,000,000 samples (thinned to 1,000
samples for display) generated by Gibbs sampling (second from left), and 1,000
samples generated by NUTS (second from right). Only the first two dimensions
are shown here.

some number of preliminary runs. The results in Figure 6 suggest that NUTS can generate
samples at least as efficiently as HMC, even discounting the cost of any preliminary runs
needed to tune HMC’s simulation length.

4.5 Qualitative Comparison of NUTS, Random-Walk Metropolis, and Gibbs

In Section 4.4, we compared the efficiency of NUTS and HMC. In this section, we informally
demonstrate the advantages of NUTS over the popular random-walk Metropolis (RWM)
and Gibbs sampling algorithms. We ran NUTS, RWM, and Gibbs sampling on the 250-
dimensional multivariate normal distribution described in Section 4.1. NUTS was run with
δ = 0.5 for 2,000 iterations, with the first 1,000 iterations being used as warmup and to
adapt ε. This required about 1,000,000 gradient and likelihood evaluations in total. We
ran RWM for 1,000,000 iterations with an isotropic normal proposal distribution whose
variance was selected beforehand to produce the theoretically optimal acceptance rate of
0.234 (Gelman et al., 1996). The cost per iteration of RWM is effectively identical to the cost
per gradient evaluation of NUTS, and the two algorithms ran for about the same amount
of time. We ran Gibbs sampling for 1,000,000 sweeps over the 250 parameters. This took
longer to run than NUTS and RWM, since for the multivariate normal each Gibbs sweep
costs more than a single gradient evaluation; we chose to nonetheless run the same number
of Gibbs sweeps as RWM iterations, since for some other models Gibbs sweeps can be done
more efficiently.

Figure 7 visually compares independent samples (projected onto the first two dimen-
sions) from the target distribution with samples generated by the three MCMC algorithms.
RWM has barely begun to explore the space. Gibbs does better, but still has left parts
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of the space unexplored. NUTS, on the other hand, is able to generate many effectively
independent samples.

We use this simple example to visualize the relative performance of NUTS, Gibbs,
and RWM on a moderately high-dimensional distribution exhibiting strong correlations.
For the multivariate normal, Gibbs or RWM would of course work much better after an
appropriate rotation of the parameter space. But finding and applying an appropriate
rotation can be expensive when the number of parameters D gets large, and RWM and
Gibbs both require O(D2) operations per effectively independent sample even under the
highly optimistic assumption that a transformation can be found that renders all parameters
i.i.d. and can be applied cheaply (e.g., in O(D) rather than the usual O(D2) cost of matrix-
vector multiplication and the O(D3) cost of matrix inversion). This is shown for RWM by
Creutz (1988), and for Gibbs is the result of needing to apply a transformation requiring
O(D) operations D times per Gibbs sweep. For complicated models, even more expensive
transformations often cannot render the parameters sufficiently independent to make RWM
and Gibbs run efficiently. NUTS, on the other hand, is able to efficiently sample from
high-dimensional target distributions without needing to be tuned to the shape of those
distributions.

5. Discussion

We have presented the No-U-Turn Sampler (NUTS), a variant of the powerful Hamilto-
nian Monte Carlo (HMC) Markov chain Monte Carlo (MCMC) algorithm that eliminates
HMC’s dependence on a number-of-steps parameter L but retains (and in some cases im-
proves upon) HMC’s ability to generate effectively independent samples efficiently. We also
developed a method for automatically adapting the step size parameter ε shared by NUTS
and HMC via an adaptation of the dual averaging algorithm of Nesterov (2009), making
it possible to run NUTS with no hand tuning at all. The dual averaging approach we
developed in this paper could also be applied to other MCMC algorithms in place of more
traditional adaptive MCMC approaches based on the Robbins-Monro stochastic approxi-
mation algorithm (Andrieu and Thoms, 2008; Robbins and Monro, 1951).

In this paper we have only compared NUTS with the basic HMC algorithm, and not
its extensions, several of which are reviewed by Neal (2011). We only considered simple
kinetic energy functions of the form 1

2r · r, but both NUTS and HMC can benefit from
introducing a “mass” matrix M and using the kinetic energy function 1

2r
TM−1r. If M−1

approximates the covariance matrix of p(θ), then this kinetic energy function will reduce the
negative impacts strong correlations and bad scaling have on the efficiency of both NUTS
and HMC; indeed, experiments with hierarchical regression models with high correlations
show substantial reduction in total computation time from nonidentity and nondiagonal
mass matrices. Fitting an appropriate mass matrix can only be done during the warmup
stage, and care must be taken to ensure the stability of the fitting procedure. Since using
a mass matrix is equivalent to linearly transforming the parameter space (Neal, 2011), the
no-U-turn condition should be computed on the transformed parameters instead of in the
original space.

Another extension of HMC introduced by Neal (1994) considers windows of proposed
states rather than simply the state at the end of the trajectory to allow for larger step sizes
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without sacrificing acceptance rates (at the expense of introducing a window size parameter
that must be tuned). The effectiveness of the windowed HMC algorithm suggests that
NUTS’s lack of a single accept/reject step may be responsible for some of its performance
gains over vanilla HMC.

Girolami and Calderhead (2011) recently introduced Riemannian Manifold Hamilto-
nian Monte Carlo (RMHMC), a variant on HMC that simulates Hamiltonian dynamics in
Riemannian rather than Euclidean spaces, effectively allowing for position-dependent mass
matrices. Although the worst-case O(D3) matrix inversion costs associated with this al-
gorithm often make it expensive to apply in high dimensions, when these costs are not
too onerous RMHMC’s ability to adapt its kinetic energy function makes it very efficient.
There are no technical barriers that stand in the way of combining NUTS’s ability to adapt
its trajectory lengths with RMHMC’s ability to adapt its mass matrices, although naively
applying the no-U-turn condition (which is tied to Euclidean geometry) to Riemannian
algorithms may be suboptimal (Betancourt, 2013).

Like HMC, NUTS can only be used to resample unconstrained continuous-valued vari-
ables with respect to which the target distribution is differentiable almost everywhere. HMC
and NUTS can deal with simple constraints such as nonnegativity or restriction to the sim-
plex by an appropriate change of variable, but discrete variables must either be summed out
or handled by other algorithms such as Gibbs sampling. In models with discrete variables,
NUTS’s ability to automatically choose a trajectory length may make it more effective than
HMC when discrete variables are present, since it is not tied to a single simulation length
that may be appropriate for one setting of the discrete variables but not for others.

Some models include hard constraints that are too complex to eliminate by a simple
change of variables. Such models will have regions of the parameter space with zero posterior
probability. When HMC encounters such a region, the best it can do is stop short and restart
with a new momentum vector, wasting any work done before violating the constraints (Neal,
2011). By contrast, when NUTS encounters a zero-probability region it stops short and
samples from the set of points visited up to that point, making at least some progress.

NUTS with dual averaging makes it possible for Bayesian data analysts to obtain the
efficiency of HMC without spending time and effort hand-tuning HMC’s parameters. This
is desirable even for those practitioners who have experience using and tuning HMC, but it
is especially valuable for those who lack this experience. In particular, NUTS’s ability to
operate efficiently without user intervention makes it well suited for use in generic inference
engines in the mold of BUGS (Gilks and Spiegelhalter, 1992), which until now have largely
relied on much less efficient algorithms such as Gibbs sampling. We are currently developing
an automatic Bayesian inference system called Stan, which uses NUTS as its core inference
algorithm for continuous-valued parameters (Stan Development Team, 2013). Stan promises
to be able to generate effectively independent samples from complex models’ posteriors
orders of magnitude faster than previous systems such as BUGS and JAGS (Plummer,
2003).

In summary, NUTS makes it possible to efficiently perform Bayesian posterior inference
on a large class of complex, high-dimensional models with minimal human intervention. It is
our hope that NUTS will allow researchers and data analysts to spend more time developing
and testing models and less time worrying about how to fit those models to data.
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Appendix A. Estimating Effective Sample Size

For a function f(θ), a target distribution p(θ), and a Markov chain Monte Carlo (MCMC)
sampler that produces a set of M correlated samples drawn from some distribution q(θ1:M )
such that q(θm) = p(θm) for any m ∈ {1, . . . ,M}, the effective sample size (ESS) of θ1:M is
the number of independent samples that would be needed to obtain a Monte Carlo estimate
of the mean of f with equal variance to the MCMC estimate of the mean of f :

ESSq,f (θ1:M ) = M
Vq[ 1

M

∑M
s=1 f(θs)]

Vp[f(θ)]
M

=
M

1 + 2
∑M−1

s=1 (1− s
M )ρfs

;

ρfs ≡
Eq[(f(θt)− Ep[f(θ)])(f(θt−s)− Ep[f(θ)])]

Vp[f(θ)]
,

where ρfs denotes the autocorrelation under q of f at lag s and Vp[x] denotes the variance
of a random variable x under the distribution p(x).

To estimate ESS, we first compute the following estimate of the autocorrelation spectrum
for the function f(θ):

ρ̂fs =
1

σ̂2
f (M − s)

M∑
m=s+1

(f(θm)− µ̂f )(f(θm−s)− µ̂f ),

where the estimates µ̂f and σ̂2
f of the mean and variance of the function f are computed with

high precision from a separated 50,000-sample run of NUTS with δ = 0.5. We do not take
these estimates from the chain whose autocorrelations we are trying to estimate—doing
so can lead to serious underestimates of the level of autocorrelation (and thus a serious
overestimate of the number of effective samples) if the chain has not yet converged or has
not yet generated a fair number of effectively independent samples.

Any estimator of ρfs is necessarily noisy for large lags s, so using the naive estimator
ˆESSq,f (θ1:M ) = M

1+2
∑M−1
s=1 (1− s

M
)ρ̂fs

will yield bad results. Instead, we truncate the sum over

the autocorrelations when the autocorrelations first dip below 0.05, yielding the estimator

ˆESSq,f (θ1:M ) =
M

1 + 2
∑Mcutoff

f

s=1 (1− s
M )ρ̂fs

; M cutoff
f ≡ min

s
s s.t. ρ̂fs < 0.05.

We found that this method for estimating ESS gave more reliable confidence intervals
for MCMC estimators than the autoregressive approach used by CODA (Plummer et al.,
2006). (The more accurate estimator comes at the expense of needing to compute a costly
high-quality estimate of the true mean and variance of the target distribution.) The 0.05
cutoff is somewhat arbitrary; in our experiments we did not find the results to be very
sensitive to the precise value of this cutoff.
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Abstract
We study the variability of predictions made by bagged learners and random forests, and
show how to estimate standard errors for these methods. Our work builds on variance
estimates for bagging proposed by Efron (1992, 2013) that are based on the jackknife and
the infinitesimal jackknife (IJ). In practice, bagged predictors are computed using a finite
number B of bootstrap replicates, and working with a large B can be computationally
expensive. Direct applications of jackknife and IJ estimators to bagging require B =
Θ(n1.5) bootstrap replicates to converge, where n is the size of the training set. We propose
improved versions that only require B = Θ(n) replicates. Moreover, we show that the IJ
estimator requires 1.7 times less bootstrap replicates than the jackknife to achieve a given
accuracy. Finally, we study the sampling distributions of the jackknife and IJ variance
estimates themselves. We illustrate our findings with multiple experiments and simulation
studies.
Keywords: bagging, jackknife methods, Monte Carlo noise, variance estimation

1. Introduction

Bagging (Breiman, 1996) is a popular technique for stabilizing statistical learners. Bag-
ging is often conceptualized as a variance reduction technique, and so it is important to
understand how the sampling variance of a bagged learner compares to the variance of the
original learner. In this paper, we develop and study methods for estimating the variance
of bagged predictors and random forests (Breiman, 2001), a popular extension of bagged
trees. These variance estimates only require the bootstrap replicates that were used to form
the bagged prediction itself, and so can be obtained with moderate computational overhead.
The results presented here build on the jackknife-after-bootstrap methodology introduced
by Efron (1992) and on the infinitesimal jackknife for bagging (IJ) (Efron, 2013).

Figure 1 shows the results from applying our method to a random forest trained on the
“Auto MPG” data set, a regression task where we aim to predict the miles-per-gallon (MPG)
gas consumption of an automobile based on 7 features including weight and horsepower. The
error bars shown in Figure 1 give an estimate of the sampling variance of the random forest;
in other words, they tell us how much the random forest’s predictions might change if we

c©2014 Stefan Wager, Trevor Hastie and Bradley Efron.



Wager, Hastie and Efron

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

15 20 25 30 35 40

15
20

25
30

35

Reported MPG

P
re

di
ct

ed
 M

P
G

●●●

Figure 1: Random forest predictions on the “Auto MPG” data set. The random forest was
trained using 314 examples; the graph shows results on a test set of size 78. The
error bars are 1 standard error in each direction. Because this is a fairly small
data set, we estimated standard errors for the random forest using the averaged
estimator from Section 5.2. A more detailed description of the experiment is
provided in Appendix C.

trained it on a new training set. The fact that the error bars do not in general cross the
prediction-equals-observation diagonal suggests that there is some residual noise in the MPG
of a car that cannot be explained by a random forest model based on the available predictor
variables.1

Figure 1 tells us that the random forest was more confident about some predictions than
others. Rather reassuringly, we observe that the random forest was in general less confident
about the predictions for which the reported MPG and predicted MPG were very different.
There is not a perfect correlation, however, between the error level and the size of the error
bars. One of the points, circled in red near (32, 32), appears particularly surprising: the
random forest got the prediction almost exactly right, but gave the prediction large error
bars of ±2. This curious datapoint corresponds to the 1982 Dodge Rampage, a two-door
Coupe Utility that is a mix between a passenger car and a truck with a cargo tray. Perhaps
our random forest had a hard time confidently estimating the mileage of the Rampage

1. Our method produces standard error estimates σ̂ for random forest predictions. We then represent these
standard error estimates as Gaussian confidence intervals ŷ ± zασ̂, where zα is a quantile of the normal
distribution.
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because it could not quite decide whether to cluster it with cars or with trucks. We present
experiments on larger data sets in Section 3.

Estimating the variance of bagged learners based on the preexisting bootstrap replicates
can be challenging, as there are two distinct sources of noise. In addition to the sampling
noise (i.e., the noise arising from randomness during data collection), we also need to control
the Monte Carlo noise arising from the use of a finite number of bootstrap replicates. We
study the effects of both sampling noise and Monte Carlo noise.

In our experience, the errors of the jackknife and IJ estimates of variance are often
dominated by Monte Carlo effects. Monte Carlo bias can be particularly troublesome: if
we are not careful, the jackknife and IJ estimators can conflate Monte Carlo noise with the
underlying sampling noise and badly overestimate the sampling variance. We show how to
estimate the magnitude of this Monte Carlo bias and develop bias-corrected versions of the
jackknife and IJ estimators that outperform the original ones. We also show that the IJ
estimate of variance is able to use the preexisting bootstrap replicates more efficiently than
the jackknife estimator by having a lower Monte Carlo variance, and needs 1.7 times less
bootstrap replicates than the jackknife to achieve a given accuracy.

If we take the number of bootstrap replicates to infinity, Monte Carlo effects disappear
and only sampling errors remain. We compare the sampling biases of both the jackknife and
IJ rules and present some evidence that, while the jackknife rule has an upward sampling
bias and the IJ estimator can have a downward bias, the arithmetic mean of the two variance
estimates can be close to unbiased. We also propose a simple method for estimating the
sampling variance of the IJ estimator itself.

Our paper is structured as follows. We first present an overview of our main results
in Section 2, and apply them to random forest examples in Section 3. We then take a
closer look at Monte Carlo effects in Section 4 and analyze the sampling distribution of the
limiting IJ and jackknife rules with B →∞ in Section 5. We spread simulation experiments
throughout Sections 4 and 5 to validate our theoretical analysis.

1.1 Related Work

In this paper, we focus on methods based on the jackknife and the infinitesimal jackknife for
bagging (Efron, 1992, 2013) that let us estimate standard errors based on the pre-existing
bootstrap replicates. Other approaches that rely on forming second-order bootstrap repli-
cates have been studied by Duan (2011) and Sexton and Laake (2009). Directly bootstrap-
ping a random forest is usually not a good idea, as it requires forming a large number of base
learners. Sexton and Laake (2009), however, propose a clever work-around to this problem.
Their approach, which could have been called a bootstrap of little bags, involves bootstrap-
ping small random forests with around B = 10 trees and then applying a bias correction to
remove the extra Monte Carlo noise.

There has been considerable interest in studying classes of models for which bagging
can achieve meaningful variance reduction, and also in outlining situations where bagging
can fail completely (e.g., Skurichina and Duin, 1998; Bühlmann and Yu, 2002; Chen and
Hall, 2003; Buja and Stuetzle, 2006; Friedman and Hall, 2007). The problem of producing
practical estimates of the sampling variance of bagged predictors, however, appears to have
received somewhat less attention in the literature so far.
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2. Estimating the Variance of Bagged Predictors

This section presents our main result: estimates of variance for bagged predictors that can
be computed from the same bootstrap replicates that give the predictors. Section 3 then
applies the result to random forests, which can be analyzed as a special class of bagged
predictors.

Suppose that we have training examples Z1 = (x1, y1), ..., Zn = (xn, yn), an input x to
a prediction problem, and a base learner θ̂(x) = t(x;Z1, ..., Zn). To make things concrete,
the Zi could be a list of e-mails xi paired with labels yi that catalog the e-mails as either
spam or non-spam, t(x;Zi) could be a decision tree trained on these labeled e-mails, and x
could be a new e-mail that we seek to classify. The quantity θ̂(x) would then be the output
of the tree predictor on input x.

With bagging, we aim to stabilize the base learner t by resampling the training data. In
our case, the bagged version of θ̂(x) is defined as

θ̂∞(x) = E∗[t(x;Z∗1 , ..., Z
∗
n)], (1)

where the Z∗i are drawn independently with replacement from the original data (i.e., they
form a bootstrap sample). The expectation E∗ is taken with respect to the bootstrap
measure.

The expectation in (1) cannot in general be evaluated exactly, and so we form the bagged
estimator by Monte Carlo

θ̂B(x) =
1

B

B∑
b=1

t∗b(x), where t∗b(x) = t(x;Z∗b1, ..., Z
∗
bn) (2)

and the Z∗bi are elements in the bth bootstrap sample. As B →∞, we recover the perfectly
bagged estimator θ̂∞(x).

2.1 Basic Variance Estimates

The goal of our paper is to study the sampling variance of bagged learners

V (x) = Var
[
θ̂∞(x)

]
.

In other words, we ask how much variance θ̂B would have once we make B large enough
to eliminate the bootstrap effects. We consider two basic estimates of V : The Infinitesimal
Jackknife estimate (Efron, 2013), which results in the simple expression

V̂∞IJ =

n∑
i=1

Cov∗[N
∗
i , t
∗(x)]2, (3)

where Cov∗[N
∗
i , t
∗(x)] is the covariance between t∗(x) and the number of times N∗i the ith

training example appears in a bootstrap sample; and the Jackknife-after-Bootstrap estimate
(Efron, 1992)

V̂∞J =
n− 1

n

n∑
i=1

(
t̄∗(−i)(x)− t̄∗(x)

)2
, (4)
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where t̄∗(−i)(x) is the average of t∗(x) over all the bootstrap samples not containing the ith

example and t̄∗(x) is the mean of all the t∗(x).
The jackknife-after-bootstrap estimate V̂∞J arises directly by applying the jackknife to

the bootstrap distribution. The infinitesimal jackknife (Jaeckel, 1972), also called the non-
parametric delta method, is an alternative to the jackknife where, instead of studying the
behavior of a statistic when we remove one observation at a time, we look at what happens to
the statistic when we individually down-weight each observation by an infinitesimal amount.
When the infinitesimal jackknife is available, it sometimes gives more stable predictions than
the regular jackknife. Efron (2013) shows how an application of the infinitesimal jackknife
principle to the bootstrap distribution leads to the simple estimate V̂∞IJ .

2.2 Finite-B Bias

In practice, we can only ever work with a finite number B of bootstrap replicates. The
natural Monte Carlo approximations to the estimators introduced above are

V̂ B
IJ =

n∑
i=1

Ĉov
2

i with Ĉovi =

∑
b(N

∗
bi − 1)(t∗b(x)− t̄∗(x))

B
, (5)

and

V̂ B
J =

n− 1

n

n∑
i=1

∆̂2
i , where ∆̂i = θ̂B(−i)(x)− θ̂B(x) (6)

and θ̂B(−i)(x) =

∑
{b :N∗

bi=0} t
∗
b(x)∣∣{N∗bi = 0}
∣∣ .

Here, N∗bi indicates the number of times the ith observation appears in the bootstrap sample
b.

In our experience, these finite-B estimates of variance are often badly biased upwards
if the number of bootstrap samples B is too small. Fortunately, bias-corrected versions are
available:

V̂ B
IJ−U = V̂ B

IJ −
n

B2

B∑
b=1

(t∗b(x)− t̄∗(x))2, and (7)

V̂ B
J−U = V̂ B

J − (e− 1)
n

B2

B∑
b=1

(t∗b(x)− t̄∗(x))2. (8)

These bias corrections are derived in Section 4. In many applications, the simple estimators
(5) and (6) require B = Θ(n1.5) bootstrap replicates to reduce Monte Carlo noise down to
the level of the inherent sampling noise, whereas our bias-corrected versions only require
B = Θ(n) replicates. The bias-corrected jackknife (8) was also discussed by Sexton and
Laake (2009).

In Figure 2, we show how V̂ B
IJ−U can be used to accurately estimate the variance of a

bagged tree. We compare the true sampling variance of a bagged regression tree with our
variance estimate. The underlying signal is a step function with four jumps that are reflected

1629



Wager, Hastie and Efron

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

V
ar

ia
nc

e

True Variance
Mean Estimated Variance
+/− 1 Standard Deviation

Figure 2: Testing the performance of the bias-corrected infinitesimal jackknife estimate of
variance for bagged predictors, as defined in (15), on a bagged regression tree. We
compare the true sampling error with the average standard error estimate pro-
duced by our method across multiple runs; the dotted lines indicate one-standard-
error-wide confidence bands for our standard error estimate.

as spikes in the variance of the bagged tree. On average, our variance estimator accurately
identifies the location and magnitude of these spikes.

Figure 3 compares the performance of the four considered variance estimates on a bagged
adaptive polynomial regression example described in detail in Section 4.4. We see that the
uncorrected estimators V̂ B

J and V̂ B
IJ are badly biased: the lower whiskers of their boxplots do

not even touch the limiting estimate with B →∞. We also see that that V̂ B
IJ−U has about

half the variance of V̂ B
J−U . This example highlights the importance of using estimators that

use available bootstrap replicates efficiently: with B = 500 bootstrap replicates, V̂ B
IJ−U can

give us a reasonable estimate of V , whereas V̂ B
J is quite unstable and biased upwards by a

factor 2.
The figure also suggests that the Monte Carlo noise of V̂ B

IJ decays faster (as a function
of B) than that of V̂ B

J . This is no accident: as we show in Section 4.2, the infinitesimal
jackknife requires 1.7 times less bootstrap replicates than the jackknife to achieve a given
level of level of Monte Carlo error.

2.3 Limiting Sampling Distributions

The performance of V̂ B
J and V̂ B

IJ depends on both sampling noise and Monte Carlo noise.
In order for V̂ B

J (and analogously V̂ B
IJ) to be accurate, we need both the sampling error of

V̂∞J , namely V̂∞J − V , and the Monte Carlo error V̂ B
J − V̂∞J to be small.
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Figure 3: Performance, as a function of B, of the jackknife and IJ estimators and their
bias-corrected modifications on the cholesterol data set of Efron and Feldman
(1991). The boxplots depict bootstrap realizations of each estimator. The dotted
line indicates the mean of all the realizations of the IJ-U and J-U estimators
(weighted by B).

It is well known that jackknife estimates of variance are in general biased upwards (Efron
and Stein, 1981). This phenomenon also holds for bagging: V̂∞J is somewhat biased upwards
for V . We present some evidence suggesting that V̂∞IJ is biased downwards by a similar
amount, and that the arithmetic mean of V̂∞J and V̂∞IJ is closer to being unbiased for V
than either of the two estimators alone.

We also develop a simple estimator for the variance of V̂∞IJ itself:

̂
Var

[
V̂∞IJ

]
=

n∑
i=1

(
C∗,2i − C

∗,2
i

)2
,

where C∗i = Cov∗[N
∗
bi, t

∗
b(x)] and C∗,2i is the mean of the C∗,2i .
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3. Random Forest Experiments

Random forests (Breiman, 2001) are a widely used extension of bagged trees. Suppose that
we have a tree-structured predictor t and training data Z1, ..., Zn. Using notation from (2),
the bagged version of this tree predictor is

θ̂B(x) =
1

B

B∑
b=1

t∗b(x; Z∗b1, ..., Z
∗
bn).

Random forests extend bagged trees by allowing the individual trees t∗b to depend on an
auxiliary noise source ξb. The main idea is that the auxiliary noise ξb encourages more
diversity among the individual trees, and allows for more variance reduction than bagging.
Several variants of random forests have been analyzed theoretically by, e.g., Biau et al.
(2008), Biau (2012), Lin and Jeon (2006), and Meinshausen (2006).

Standard implementations of random forests use the auxiliary noise ξb to randomly
restrict the number of variables on which the bootstrapped trees can split at any given
training step. At each step, m features are randomly selected from the pool of all p possible
features and the tree predictor must then split on one of these m features. If m = p the
tree can always split on any feature and the random forest becomes a bagged tree; if m = 1,
then the tree has no freedom in choosing which feature to split on.

Following Breiman (2001), random forests are usually defined more abstractly for theo-
retical analysis: any predictor of the form

θ̂RF (x) =
1

B

B∑
b=1

t∗b(x; ξb, Z
∗
b1, ..., Z

∗
bn) with ξb

iid∼ Ξ (9)

is called a random forest. Various choices of noise distribution Ξ lead to different random
forest predictors. In particular, trivial noise sources are allowed and so the class of random
forests includes bagged trees as a special case. In this paper, we only consider random forests
of type (9) where individual trees are all trained on bootstrap samples of the training data.
We note, however, that that variants of random forests that do not use bootstrap noise have
also been found to work well (e.g., Dietterich, 2000; Geurts et al., 2006).

All our results about bagged predictors apply directly to random forests. The reason
for this is that random forests can also be defined as bagged predictors with different base
learners. Suppose that, on each bootstrap replicate, we drew K times from the auxiliary
noise distribution Ξ instead of just once. This would give us a predictor of the form

θ̂RF (x) =
1

B

B∑
b=1

1

K

K∑
k=1

t∗b(x; ξkb, Z
∗
b1, ..., Z

∗
bn) with ξkb

iid∼ Ξ.

Adding the extra draws from Ξ to the random forest does not change the B → ∞ limit of
the random forest. If we take K →∞, we effectively marginalize over the noise from Ξ, and
get a predictor

θ̂R̃F (x) =
1

B

B∑
b=1

t̃∗b(x; Z∗b1, ..., Z
∗
bn), where

t̃(x; Z1, ..., Zn) = Eξ∼Ξ [t(x; ξ, Z1, ..., Zn)] .

1632
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Figure 4: Standard errors of random forest predictions on the e-mail spam data. The random
forests with m = 5, 19, and 57 splitting variables were all trained on a train set
of size n = 3, 065; the panels above show class predictions and IJ-U estimates for
standard errors on a test set of size 1,536. The solid curves are smoothing splines
(df = 4) fit through the data (including both correct and incorrect predictions).

In other words, the random forest θ̂RF as defined in (9) is just a noisy estimate of a bagged
predictor with base learner t̃.

It is straight-forward to check that our results about V̂ B
IJ and V̂ B

J also hold for bagged
predictors with randomized base learners. The extra noise from using t(·; ξ) instead of t̃(·)
does not affect the limiting correlations in (3) and (4); meanwhile, the bias corrections from
(7) and (8) do not depend on how we produced the t∗ and remain valid with random forests.
Thus, we can estimate confidence intervals for random forests from N∗ and t∗ using exactly
the same formulas as for bagging.

In the rest of this section, we show how the variance estimates studied in this paper
can be used to gain valuable insights in applications of random forests. We use the V̂ B

IJ−U
variance estimate (7) to minimize the required computational resources. We implemented
the IJ-U estimator for random forests on top of the R package randomForest (Liaw and
Wiener, 2002).

3.1 E-mail Spam Example

The e-mail spam data set (spambase) is part of a standard classification task, the goal of
which is to distinguish spam e-mail (1) from non-spam (0) using p = 57 features. Here, we
investigate the performance of random forests on this data set.

We fit the spam data using random forests with m = 5, 19 and 57 splitting variables.
With m = 5, the trees were highly constrained in their choice of splitting variables, while
m = 57 is just a bagged tree. The three random forests obtained test-set accuracies of
95.1%, 95.2% and 94.7% respectively, and it appears that the m = 5 or 19 forests are best.
We can use the IJ-U variance formula to gain deeper insight into these numbers, and get a
better understanding about what is constraining the accuracy of each predictor.
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Figure 5: Comparison of the predictions made by the m = 5 and m = 19 random forests.
The stars indicate pairs of test set predictions; the solid line is a smoothing spline
(df = 6) fit through the data.

In Figure 4, we plot test-set predictions against IJ-U estimates of standard error for all
three random forests. The m = 57 random forest appears to be quite unstable, in that the
estimated errors are high. Because many of its predictions have large standard errors, it
is plausible that the predictions made by the random forest could change drastically if we
got more training data. Thus, the m = 57 forest appears to suffer from overfitting, and the
quality of its predictions could improve substantially with more data.

Conversely, predictions made by the m = 5 random forest appear to be remarkably
stable, and almost all predictions have standard errors that lie below 0.1. This suggests that
the m = 5 forest may be mostly constrained by bias: if the predictor reports that a certain
e-mail is spam with probability 0.5± 0.1, then the predictor has effectively abandoned any
hope of unambiguously classifying the e-mail. Even if we managed to acquire much more
training data, the class prediction for that e-mail would probably not converge to a strong
vote for spam or non-spam.

The m = 19 forest appears to have balanced the bias-variance trade-off well. We can
further corroborate our intuition about the bias problem faced by the m = 5 forest by
comparing its predictions with those of the m = 19 forest. As shown in Figure 5, whenever
the m = 5 forest made a cautious prediction that an e-mail might be spam (e.g., a prediction
of around 0.8), the m = 19 forest made the same classification decision but with more
confidence (i.e., with a more extreme class probability estimate p̂). Similarly, the m = 19
forest tended to lower cautious non-spam predictions made by the m = 5 forest. In other
words, the m = 5 forest appears to have often made lukewarm predictions with mid-range
values of p̂ on e-mails for which there was sufficient information in the data to make confident
predictions. This analysis again suggests that the m = 5 forest was constrained by bias and
was not able to efficiently use all the information present in the data set.
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Figure 6: Performance of random forests on the California housing data. The left panel
plots MSE and mean sampling variance as a function of the number m of splitting
variables. The MSE estimate is the out-of bag error, while the mean sampling
variance is the average estimate of variance V̂ B

IJ−U computed over all training
examples. The right panel displays the drivers of sampling variance, namely the
variance of the individual bootstrapped trees (bootstrap variance v) and their
correlation (tree correlation ρ).

3.2 California Housing Example

In the previous example, we saw that the varying accuracy of random forests with different
numbersm of splitting variables primarily reflected a bias-variance trade-off. Random forests
with small m had high bias, while those with large m had high variance. This bias-variance
trade-off does not, however, underlie all random forests. The California housing data set—a
regression task with n = 20, 460 and p = 8—provides a contrasting example.

In Figure 6a, we plot the random forest out-of-bag MSE and IJ-U estimate of average
sampling variance across all training examples, with m between 1 and 8. We immediately
notice that the sampling variance is not monotone increasing in m. Rather, the sampling
variance is high if m is too big or too small, and attains a minimum at m = 4. Meanwhile,
in terms of MSE, the optimal choice is m = 5. Thus, there is no bias-variance trade-off
here: picking a value of m around 4 or 5 is optimal both from the MSE minimization and
the variance minimization points of view.

We can gain more insight into this phenomenon using ideas going back to Breiman (2001),
who showed that the sampling variance of a random forest is governed by two factors: the
variance v of the individual bootstrapped trees and their correlation ρ. The variance of the
ensemble is then ρv. In Figure 6b, we show how both v and ρ react when we vary m. Trees
with large m are fairly correlated, and so the random forest does not get as substantial a
variance reduction over the base learner as with a smaller m. With a very small m, however,
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the variance v of the individual trees shoots up, and so the decrease in ρ is no longer sufficient
to bring down the variance of the whole forest. The increasing ρ-curve and the decreasing
v-curve thus jointly produce a U-shaped relationship between m and the variance of the
random forest. The m = 4 forest achieves a low variance by matching fairly stable base
learners with a small correlation ρ.

4. Controlling Monte Carlo Error

In this section, we analyze the behavior of both the IJ and jackknife estimators under
Monte Carlo noise. We begin by discussing the Monte Carlo distribution of the infinitesimal
jackknife estimate of variance with a finite B; the case of the jackknife-after-bootstrap
estimate of variance is similar but more technical and is presented in Appendix A. We show
that the jackknife estimator needs 1.7 times more bootstrap replicates than the IJ estimator
to control Monte Carlo noise at a given level. We also highlight a bias problem for both
estimators, and recommend a bias correction. When there is no risk of ambiguity, we use
the short-hand t∗ for t∗(x).

4.1 Monte Carlo Error for the IJ Estimator

We first consider the Monte Carlo bias of the infinitesimal jackknife for bagging. Let

V̂∞IJ =
n∑
i=1

Cov∗[N
∗
i , t
∗]2 (10)

be the perfect IJ estimator with B =∞ (Efron, 2013). Then, the Monte Carlo bias of V̂ B
IJ

is

E∗
[
V̂ B
IJ

]
− V̂∞IJ =

n∑
i=1

Var∗[Ci], where Ci =

∑
b(N

∗
bi − 1)(t∗b − t̄∗)

B

is the Monte Carlo estimate of the bootstrap covariance. Since t∗b depends on all n ob-
servations, N∗bi and t∗b can in practice be treated as independent for computing Var∗[Ci],
especially when n is large (see remark below). Thus, as Var∗[N

∗
bi] = 1, we see that

E∗
[
V̂ B
IJ

]
− V̂∞IJ ≈

n v̂

B
, where v̂ =

1

B

B∑
b=1

(t∗b − t̄∗)2. (11)

Notice that v̂ is the standard bootstrap estimate for the variance of the base learner θ̂(x).
Thus, the bias of V̂ B

IJ grows linearly in the variance of the original estimator that is being
bagged.

Meanwhile, by the central limit theorem, Ci converges to a Gaussian random vari-
able as B gets large. Thus, the Monte Carlo asymptotic variance of C2

i is approximately
2 Var∗[Ci]

2 + 4E∗[Ci]2 Var∗[Ci]. The Ci can be treated as roughly independent, and so the
limiting distribution of the IJ estimate of variance has approximate moments

V̂ B
IJ − V̂∞IJ

·∼

(
n v̂

B
, 2

n v̂2

B2
+ 4

V̂∞IJ v̂

B

)
. (12)
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Interestingly, the Monte Carlo mean squared error (MSE) of V̂ B
IJ mostly depends on the

problem through v̂, where v̂ is the bootstrap estimate of the variance of the base learner.
In other words, the computational difficulty of obtaining confidence intervals for bagged
learners depends on the variance of the base learner.

4.1.1 Remark: The IJ Estimator for Sub-bagging

We have focused on the case where each bootstrap replicate contains exactly n samples.
However, in some applications, bagging with subsamples of size m 6= n has been found to
work well (e.g., Bühlmann and Yu, 2002; Buja and Stuetzle, 2006; Friedman, 2002; Strobl
et al., 2007). Our results directly extend to the case where m 6= n samples are drawn
with replacement from the original sample. We can check that (10) still holds, but now
VarN∗bi = m/n. Carrying out the same analysis as above, we can establish an analogue to
(12):

V̂ B
IJ(m)− V̂∞IJ (m)

·∼

(
mv̂

B
, 2

m2 v̂2

nB2
+ 4

mV̂∞IJ v̂

nB

)
. (13)

For simplicity of exposition, we will restrict our analysis to the case m = n for the rest of
this paper.

4.1.2 Remark: Approximate Independence

In the above derivation, we used the approximation

Var∗ [(N∗bi − 1)(t∗b − t̄∗)] ≈ Var∗ [N∗bi] Var∗ [t∗b ] .

We can evaluate the accuracy of this approximation using the formula

Var∗ [(N∗bi − 1)(t∗b − t̄∗)]−Var∗ [N∗bi] Var [t∗b ]

= Cov∗
[
(N∗bi − 1)2, (t∗b − t̄∗)2

]
− Cov∗ [(N∗bi − 1), (t∗b − t̄∗)]

2 .

In the case of the sample mean t(Z∗1 , ..., Z∗n) = 1
n

∑
i Z
∗
i paired with the Poisson bootstrap,

this term reduces to

Cov∗
[
(N∗bi − 1)2, (t∗b − t̄∗)2

]
− Cov∗ [(N∗bi − 1), (t∗b − t̄∗)]

2 = 2

(
Zi − Z̄

)2
n2

,

and the correction to (11) would be 2v̂/(nB)� nv̂/B.

4.2 Comparison of Monte Carlo Errors

As shown in Appendix A, the Monte Carlo error for the jackknife-after-bootstrap estimate
of variance has approximate moments

V̂ B
J − V̂∞J

·∼

(
(e− 1)

n v̂

B
, 2 (e− 1)2n v̂

2

B2
+ 4 (e− 1)

V̂∞J v̂

B

)
, (14)

where V̂∞J is the jackknife estimate computed with B =∞ bootstrap replicates. The Monte
Carlo stability of V̂ B

J again primarily depends on v̂.
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By comparing (12) with (14), we notice that the IJ estimator makes better use of a finite
number B of bootstrap replicates than the jackknife estimator. For a fixed value of B, the
Monte Carlo bias of V̂ B

J is about e − 1 or 1.7 times as large as that of V̂ B
IJ ; the ratio of

Monte Carlo variance starts off at 3 for small values of B and decays down to 1.7 as B gets
much larger than n. Alternatively, we see that the IJ estimate with B bootstrap replicates
has errors on the same scale as the jackknife estimate with 1.7 ·B replicates.

This suggests that if computational considerations matter and there is a desire to per-
form as few bootstrap replicates B as possible while controlling Monte Carlo error, the
infinitesimal jackknife method may be preferable to the jackknife-after-bootstrap.

4.3 Correcting for Monte Carlo Bias

The Monte Carlo MSEs of V̂ B
IJ and V̂ B

J are in practice dominated by bias, especially for
large n. Typically, we would like to pick B large enough to keep the Monte Carlo MSE
on the order of 1/n. For both (12) and (14), we see that performing B = Θ(n) bootstrap
iterations is enough to control the variance. To reduce the bias to the desired level, namely
O(n−0.5), we would need to take B = Θ(n1.5) bootstrap samples.

Although the Monte Carlo bias for both V̂ B
IJ and V̂ B

J is large, this bias only depends
on v̂ and so is highly predictable. This suggests a bias-corrected modification of the IJ and
jackknife estimators respectively:

V̂ B
IJ−U = V̂ B

IJ −
n v̂

B
, and (15)

V̂ B
J−U = V̂ B

J − (e− 1)
n v̂

B
. (16)

Here V̂ B
IJ and V̂ B

J are as defined in (5), and v̂ is the bootstrap estimate of variance from
(11). The letter U stands for unbiased. This transformation effectively removes the Monte
Carlo bias in our experiments without noticeably increasing variance. The bias corrected
estimates only need B = Θ(n) bootstrap replicates to control Monte Carlo MSE at level
1/n.

4.4 A Numerical Example

To validate the observations made in this section, we re-visit the cholesterol data set used
by Efron (2013) as a central example in developing the IJ estimate of variance. The data
set (introduced by Efron and Feldman, 1991) contains records for n = 164 participants in a
clinical study, all of whom received a proposed cholesterol-lowering drug. The data contains
a measure d of the cholesterol level decrease observed for each subject, as well as a measure
c of compliance (i.e. how faithful the subject was in taking the medication). Efron and
Feldman originally fit d as a polynomial function of c; the degree of the polynomial was
adaptively selected by minimizing Mallows’ Cp criterion (1973).

We here follow Efron (2013) and study the bagged adaptive polynomial fit of d against c
for predicting the cholesterol decrease of a new subject with a specific compliance level. The
degree of the polynomial is selected among integers between 1 and 6 by Cp minimization.
Efron (2013) gives a more detailed description of the experiment. We restrict our attention
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Figure 7: Predicted and actual performance ratios for the uncorrected V̂ B
J and V̂ B

IJ

estimators in the cholesterol compliance example. The plot shows both
Var[V̂ B

J ]/Var[V̂ B
IJ ] and Bias[V̂ B

J ]/Bias[V̂ B
IJ ]. The observations are derived from

the data presented in Figure 3; the error bars are one standard deviation in each
direction. The solid lines are theoretical predictions obtained from (12) and (14).

to predicting the cholesterol decrease of a new patient with compliance level c = −2.25; this
corresponds to the patient with the lowest observed compliance level.

In Figure 3, we compare the performance of the variance estimates for bagged predictors
studied in this paper. The boxplots depict repeated realizations of the variance estimates
with a finite B. We can immediately verify the qualitative insights presented in this section.
Both the jackknife and IJ rules are badly biased for small B, and this bias goes away more
slowly than the Monte Carlo variance. Moreover, at any given B, the jackknife estimator is
noticeably less stable than the IJ estimator.

The J-U and IJ-U estimators appear to fix the bias problem without introducing in-
stability. The J-U estimator has a slightly higher mean than the IJ-U one. As discussed
in Section 5.2, this is not surprising, as the limiting (B → ∞) jackknife estimator has an
upward sampling bias while the limiting IJ estimator can have a downward sampling bias.
The fact that the J-U and IJ-U estimators are so close suggests that both methods work
well for this problem.

The insights developed here also appear to hold quantitatively. In Figure 7, we compare
the ratios of Monte Carlo bias and variance for the jackknife and IJ estimators with theo-
retical approximations implied by (12) and (14). The theoretical formulas appear to present
a credible picture of the relative merits of the jackknife and IJ rules.
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5. Sampling Distribution of Variance Estimates

In practice, the V̂ B
IJ and V̂ B

J estimates are computed with a finite number B of bootstrap
replicates. In this section, however, we let B go to infinity, and study the sampling properties
of the IJ and jackknife variance estimates in the absence of Monte Carlo errors. In other
words, we study the impact of noise in the data itself. Recall that we write V̂∞IJ and V̂∞J for
the limiting estimators with B =∞ bootstrap replicates.

We begin by developing a simple formula for the sampling variance of V̂∞IJ itself. In the
process of developing this variance formula, we obtain an ANOVA expansion of V̂∞IJ that
we then use in Section 5.2 to compare the sampling biases of the jackknife and infinitesimal
jackknife estimators.

5.1 Sampling Variance of the IJ Estimate of Variance

If the data Zi are independently drawn from a distribution F , then the variance of the IJ
estimator is very nearly given by

VarF

[
V̂∞IJ

]
≈ nVarF

[
h2
F (Z)

]
, where (17)

hF (Z) = EF
[
θ̂∞|Z1 = Z

]
− EF

[
θ̂∞
]
. (18)

This expression suggests a natural plug-in estimator

̂
Var[V̂ B

IJ ] =
n∑
i=1

(
C∗,2i − C

∗,2
i

)2
, (19)

where C∗i = Cov∗[N
∗
bi, t

∗
b ] is a bootstrap estimate for hF (Zi) and C∗,2i is the mean of the

C∗,2i . The rest of the notation is as in Section 2.
The relation (17) arises from a general connection between the infinitesimal jackknife

and the theory of Hájek projections. The Hájek projection of an estimator is the best
approximation to that estimator that only considers first-order effects. In our case, the
Hájek projection of θ̂∞ is

θ̂∞H = EF
[
θ̂∞
]

+

n∑
i=1

hF (Zi), (20)

where hF (Zi) is as in (18). The variance of the Hájek projection is Var
[
θ̂∞H

]
= nVar [hF (Z)].

The key insight behind (17) is that the IJ estimator is effectively trying to estimate the
variance of the Hájek projection of θ̂B, and that

V̂∞IJ ≈
n∑
i=1

h2
F (Zi). (21)

The approximation (17) then follows immediately, as the right-hand side of the above expres-
sion is a sum of independent random variables. Note that we cannot apply this right-hand
side expression directly, as h depends on the unknown underlying distribution F .

The connections between Hájek projections and the infinitesimal jackknife have been
understood for a long time. Jaeckel (1972) originally introduced the infinitesimal jackknife
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Figure 8: Stability of the IJ estimate of variance on the cholesterol data. The left panel
shows the bagged fit to the data, along with error bars generated by the IJ method;
the stars denote the data (some data points have x-values that exceed the range
of the plot). In the right panel, we use (19) to estimate error bars for the error
bars in the first panel. All error bars are one standard deviation in each direction.

as a practical approximation to the first-order variance of an estimator (in our case, the right-
hand side of (21)). More recently, Efron (2013) showed that V̂∞IJ is equal to the variance of
a “bootstrap Hájek projection.” In Appendix B, we build on these ideas and show that, in
cases where a plug-in approximation is valid, (21) holds very nearly for bagged estimators.

We apply our variance formula to the cholesterol data set of Efron (2013), following the
methodology described in Section 4.4. In Figure 8, we use the formula (19) to study the
sampling variance of V̂∞IJ as a function of the compliance level c. The main message here
is rather reassuring: as seen in Figure 8b, the coefficient of variation of V̂∞IJ appears to be
fairly low, suggesting that the IJ variance estimates can be trusted in this example. Note
that, the formula from (19) can require many bootstrap replicates to stabilize and suffers
from an upward Monte Carlo bias just like V̂ B

IJ . We used B = 100, 000 bootstrap replicates
to generate Figure 8.

5.2 Sampling Bias of the Jackknife and IJ Estimators

We can understand the sampling biases of both the jackknife and IJ estimators in the
context of the ANOVA decomposition of Efron and Stein (1981). Suppose that we have
data Z1, ..., Zn drawn independently from a distribution F , and compute our estimate θ̂∞

based on this data. Then, we can decompose its variance as

VarF

[
θ̂∞
]

= V1 + V2 + ...+ Vn, (22)
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where
V1 = nVarF

[
EF
[
θ̂∞|Z1

]]
is the variance due to first-order effects, V2 is the variance due to second-order effects of the
form

EF
[
θ̂∞|Z1, Z2

]
− EF

[
θ̂∞|Z1

]
− EF

[
θ̂∞|Z2

]
+ EF

[
θ̂∞
]
,

and so on. Note that all the terms Vk are non-negative.
Efron and Stein (1981) showed that, under general conditions, the jackknife estimate of

variance is biased upwards. In our case, their result implies that the jackknife estimator
computed on n+ 1 data points has variance

EF
[
V̂∞J

]
= V1 + 2V2 + 3V3 + ...+ nVn. (23)

Meanwhile, (21) suggests that
EF
[
V̂∞IJ

]
≈ V1. (24)

In other words, on average, both the jackknife and IJ estimators get the first-order variance
term right. The jackknife estimator then proceeds to double the second-order term, triple
the third-order term etc, while the IJ estimator just drops the higher order terms.

By comparing (23) and (24), we see that the upward bias of V̂∞J and the downward bias
of V̂∞IJ partially cancel out. In fact,

EF

[
V̂∞J + V̂∞IJ

2

]
≈ V1 + V2 +

3

2
V3 + ...+

n

2
Vn, (25)

and so the arithmetic mean of V̂∞J and V̂∞IJ has an upward bias that depends only on third-
and higher-order effects. Thus, we might expect that in small-sample situations where V̂∞J
and V̂∞IJ exhibit some bias, the mean of the two estimates may work better than either of
them taken individually.

To test this idea, we used both the jackknife and IJ methods to estimate the variance of
a bagged tree trained on a sample of size n = 25. (See Appendix C for details.) Since the
sample size is so small, both the jackknife and IJ estimators exhibit some bias as seen in
Figure 9a. However, the mean of the two estimators is nearly unbiased for the true variance
of the bagged tree. (It appears that this mean has a very slight upward bias, just as we
would expect from (25).)

This issue can arise in real data sets too. When training bagged forward stepwise re-
gression on a prostate cancer data set discussed by Hastie et al. (2009), the jackknife and
IJ methods give fairly different estimates of variance: the jackknife estimator converged to
0.093, while the IJ estimator stabilized at 0.067 (Figure 9b). Based on the discussion in
this section, it appears that (0.093 + 0.067)/2 = 0.08 should be considered a more unbiased
estimate of variance than either of the two numbers on their own.

In the more extensive simulations presented in Table 1, averaging V̂ B
IJ−U and V̂ B

J−U is in
general less biased than either of the original estimators (although the “AND” experiment
seems to provide an exception to this rule, suggesting that most of the bias of V̂ B

J−U for
this function is due to higher-order interactions). However, V̂ B

IJ−U has systematically lower
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Figure 9: Sampling bias of the jackknife and IJ rules. In the left panel, we compare the
expected values of the jackknife and IJ estimators as well as their mean with
the true variance of a bagged tree. In this example, the features take values in
(x1, x2) ∈ [−1, 1]2; we depict variance estimates along the diagonal x1 = x2. The
prostate cancer plot can be interpreted in the same way as Figure 3, except that
the we now indicate the weighted means of the J-U and IJ-U estimators separately.

variance, which allows it to win in terms of overall mean squared error. Thus, if unbiasedness
is important, averaging V̂ B

IJ−U and V̂ B
J−U seems like a promising idea, but V̂ B

IJ−U appears to
be the better rule in terms of raw MSE minimization.

Finally, we emphasize that this relative bias result relies on the heuristic relationship (24).
While this approximation does not seem problematic for the first-order analysis presented in
Section 5.1, we may be concerned that the plug-in argument from Appendix B used to justify
it may not give us correct second- and higher-order terms. Thus, although our simulation
results seem promising, developing a formal and general understanding of the relative biases
of V̂∞IJ and V̂∞J remains an open topic for follow-up research.

6. Conclusion

In this paper, we studied the jackknife-after-bootstrap and infinitesimal jackknife (IJ) meth-
ods (Efron, 1992, 2013) for estimating the variance of bagged predictors. We demonstrated
that both estimators suffer from considerable Monte Carlo bias, and we proposed bias-
corrected versions of the methods that appear to work well in practice. We also provided
a simple formula for the sampling variance of the IJ estimator, and showed that from a
sampling bias point of view the arithmetic mean of the jackknife and IJ estimators is often
preferable to either of the original methods. Finally, we applied these methods in numerous
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Function n p B ERR V̂ B
IJ−U V̂ B

J−U
1
2(V̂ B

IJ−U + V̂ B
J−U )

Bias −0.15 (±0.03) 0.14 (±0.02) −0.01 (±0.02)
Cosine 50 2 200 Var 0.08 (±0.02) 0.41 (±0.13) 0.2 (±0.06)

MSE 0.11 (±0.03) 0.43 (±0.13) 0.2 (±0.06)

Bias −0.05 (±0.01) 0.07 (±0.01) 0.01 (±0.01)
Cosine 200 2 500 Var 0.02 (±0) 0.07 (±0.01) 0.04 (±0.01)

MSE 0.02 (±0) 0.07 (±0.01) 0.04 (±0.01)

Bias −0.3 (±0.03) 0.37 (±0.04) 0.03 (±0.03)
XOR 50 50 200 Var 0.48 (±0.03) 1.82 (±0.12) 0.89 (±0.05)

MSE 0.58 (±0.03) 1.96 (±0.13) 0.89 (±0.05)

Bias −0.08 (±0.02) 0.24 (±0.03) 0.08 (±0.02)
XOR 200 50 500 Var 0.26 (±0.02) 0.77 (±0.04) 0.4 (±0.02)

MSE 0.27 (±0.01) 0.83 (±0.04) 0.41 (±0.02)

Bias −0.23 (±0.04) 0.65 (±0.05) 0.21 (±0.04)
AND 50 500 200 Var 1.15 (±0.05) 4.23 (±0.18) 2.05 (±0.09)

MSE 1.21 (±0.06) 4.64 (±0.21) 2.09 (±0.09)

Bias −0.04 (±0.04) 0.32 (±0.04) 0.14 (±0.03)
AND 200 500 500 Var 0.55 (±0.07) 1.71 (±0.22) 0.85 (±0.11)

MSE 0.57 (±0.08) 1.82 (±0.24) 0.88 (±0.11)

Bias −0.11 (±0.02) 0.23 (±0.05) 0.06 (±0.03)
Auto 314 7 1000 Var 0.13 (±0.04) 0.49 (±0.19) 0.27 (±0.1)

MSE 0.15 (±0.04) 0.58 (±0.24) 0.29 (±0.11)

Table 1: Simulation study. We evaluate the mean bias, variance, and MSE of different
variance estimates V̂ for random forests. Here, n is the number of test examples
used, p is the number of features, and B is the number of trees grown; the numbers
in parentheses are 95% confidence errors from sampling. The best methods for
each evaluation metric are highlighted in bold. The data-generating functions are
described in Appendix C.

experiments, including some random forest examples, and showed how they can be used to
gain valuable insights in realistic problems.
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Appendix A. The Effect of Monte Carlo Noise on the Jackknife
Estimator

In this section, we derive expressions for the finite-B Monte Carlo bias and variance of the
jackknife-after-bootstrap estimate of variance. Recall from (6) that

V̂ B
J =

n− 1

n

n∑
i=1

∆̂2
i , where ∆̂i =

∑
{b :N∗

bi=0} t
∗
b∣∣{N∗bi = 0}
∣∣ −

∑
b t
∗
b

B

and N∗bi indicates the number of times the ith observation appears in the bootstrap sample
b. If ∆̂i is not defined because N∗bi = 0 for either all or none of the b = 1, ..., B, then just
set ∆̂i = 0.

Now V̂ B
J is the sum of squares of noisy quantities, and so V̂ B

J will be biased upwards.
Specifically,

E∗
[
V̂ B
J

]
− V̂∞J =

n− 1

n

n∑
i=1

Var∗

[
∆̂i

]
,

where V̂∞J is the jackknife estimate computed with B =∞ bootstrap replicates. For conve-
nience, let

Bi = |{b : Nbi = 0}| ,

and recall that

Var∗

[
∆̂i

]
= E∗

[
Var∗

[
∆̂i|Bi

]]
+ Var∗

[
E∗
[
∆̂i|Bi

]]
.

For all Bi 6= 0 or B, the conditional expectation is

E∗[∆̂i|Bi] =

(
1− Bi − E [Bi]

B

)
∆i, where ∆i = E∗ [t∗b |N∗bi = 0]− E∗ [t∗b ] ;

E∗[∆̂i|Bi] = 0 in the degenerate cases with Bi ∈ {0, B}. Thus,

Var∗

[
E∗
[
∆̂i|Bi

]]
= O

(
∆2
i

/
B
)
,

and so
Var∗

[
∆̂i

]
= E∗

[
Var∗

[
∆̂i|Bi

]]
+O

(
∆2
i

/
B
)
.

Meanwhile, for Bi /∈ {0, B},

Var∗

[
∆̂i|Bi

]
=

1

B2

((
B

Bi
− 1

)2

Biṽ
(0)
i + (B −Bi)ṽ(+)

i

)

=
1

B

(
(B −Bi)2

BBi
ṽ

(0)
i +

B −Bi
B

ṽ
(+)
i

)
where

ṽ
(0)
i = Var∗ [t∗b |N∗bi = 0] and ṽ(+)

i = Var∗ [t∗b |N∗bi 6= 0] .
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Thus,

Var∗

[
∆̂i

]
=

1

B

(
E∗
[

(B −Bi)2

BBi
1i

]
ṽ

(0)
i + E∗

[
B −Bi
B

1i

]
ṽ

(+)
i

)
+O

(
∆2
i

/
B
)
,

where 1i = 1({Bi /∈ {0, B}}).
As n and B get large, Bi converges in law to a Gaussian random variable

Bi −Be−1

√
B

⇒
(
0, e−1(1− e−1)

)
and the above expressions are uniformly integrable. We can verify that

E∗
[

(B −Bi)2

BBi
1i

]
= e− 2 + e−1 +O

(
1

B

)
,

and

E∗
[
B −Bi
B

1i

]
=
e− 1

e
+O

((
1− e−1

)B)
.

Finally, this lets us conclude that

E∗
[
V̂ B
J

]
− V̂∞J =

1

B

n− 1

n

n∑
i=1

((
(e− 1)2

e

)
ṽ

(0)
i +

(
e− 1

e

)
ṽ

(+)
i

)
+O

(
1

B
+

n

B2

)
,

where the error term depends on ṽ(0)
i , ṽ(+)

i , and V̂∞J = (n− 1)/n
∑n

i=1 ∆2
i .

We now address Monte Carlo variance. By the central limit theorem, ∆̂i converges to a
Gaussian random variable as B gets large. Thus, the asymptotic Monte Carlo variance of
∆̂2
i is approximately 2 Var∗[∆̂i]

2 + 4E∗[∆̂i]
2 Var∗[∆̂i], and so

Var∗

[
V̂ B
J

]
≈ 2

(
1

B

n− 1

n

)2 n∑
i=1

((
(e− 1)2

e

)
ṽ

(0)
i +

(
e− 1

e

)
ṽ

(+)
i

)2

+ 4
1

B

n− 1

n

n∑
i=1

∆2
i

((
(e− 1)2

e

)
ṽ

(0)
i +

(
e− 1

e

)
ṽ

(+)
i

)
.

In practice, the terms ṽ(0)
i and ṽ(+)

i can be well approximated by v̂ = Var∗[t
∗
b ], namely the

bootstrap estimate of variance for the base learner. (Note that ṽ(0)
i , ṽ(+)

i , and v̂ can always
be inspected on a random forest, so this assumption can be checked in applications.) This
lets us considerably simplify our expressions for Monte Carlo bias and variance:

E∗
[
V̂ B
J

]
− V̂∞J ≈

n

B
(e− 1)v̂, and

Var∗

[
V̂ B
J

]
≈ 2

n

B2
(e− 1)2v̂2 + 4

1

B
(e− 1) V̂∞J v̂.
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Appendix B. The IJ estimator and Hájek projections

Up to (27), the derivation below is an alternate presentation of the argument made by Efron
(2013) in the proof of his Theorem 1. To establish a connection between the IJ estimate of
variance for bagged estimators and the theory of Hájek projections, it is useful to consider
θ̂B as a functional over distributions. Let G be a probability distribution, and let T be a
functional over distributions with the following property:

T (G) = EG[τ(Y1, ..., Yn)] for some function τ, (26)

where the Y1, ..., Yn are drawn independently from G. We call functionals T satisfying (26)
averaging. Clearly, θ̂B can be expressed as an averaging functional applied to the empirical
distribution F̂ defined by the observations Z1, ..., Zn.

Suppose that we have an averaging functional T , a sample Z1, ..., Zn forming an em-
pirical distribution F̂ , and want to study the variance of T (F̂ ). The infinitesimal jackknife
estimate for the variance of T̂ is given by

V̂ =
n∑
i=1

(
1

n

∂

∂ε
T
(
F̂i(ε)

))2

,

where F̂i(ε) is the discrete distribution that places weight 1/n + (n − 1)/n · ε at Zi and
weight 1/n− ε/n at all the other Zj .

We can transform samples from F̂ into samples from F̂i(ε) by the following method. Let
Z∗1 , ..., Z

∗
n be a sample from F̂ . Go through the whole sample and, independently for each

j, take Z∗j and with probability ε replace it with Zi. The sample can now be considered a
sample from F̂i(ε).

When ε → 0, the probability of replacing two of the Z∗i with this procedure becomes
negligible, and we can equivalently transform our sample into a sample from F̂i(ε) by trans-
forming a single random element from {Z∗j } into Zi with probability n ε. Without loss of
generality this element is the first one, and so we conclude that

lim
ε→0

1

ε

(
E
F̂i(ε)

[τ(Z∗1 , ..., Z
∗
n)]− E

F̂
[τ(Z∗1 , ..., Z

∗
n)]
)

= n
(
E
F̂

[
τ(Z∗1 , ..., Z

∗
n)
∣∣Z∗1 = Zi

]
− E

F̂
[τ(Z∗1 , ..., Z

∗
n)]
)
,

where τ defines T through (26). Thus,

1

n

∂

∂ε
T (F̂i(ε)) = E

F̂

[
T
∣∣Z∗1 = Zi

]
− E

F̂
[T ] ,

and so

V̂ =

n∑
i=1

(
E
F̂

[
T
∣∣Z∗1 = Zi

]
− E

F̂
[T ]
)2 (27)

≈
n∑
i=1

(
EF
[
T
∣∣Z∗1 = Zi

]
− EF [T ]

)2
, (28)
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Figure 10: Underlying model for the bagged tree example from Figure 2.

where on the last line we only replaced the empirical approximation F̂ with its true value
F . In the case of bagging, this last expression is equivalent to (21).

A crucial step in the above argument is the plug-in approximation (28). If T is just a
sum, then the error of (28) is within O(1/n); presumably, similar statements hold whenever
T is sufficiently well-behaved. That being said, it is possible to construct counter-examples
where (28) fails; a simple such example is when T counts the number of times Z∗1 is matched
in the rest of the training data. Establishing general conditions under which (28) holds is
an interesting topic for further research.

Appendix C. Description of Experiments

This section provides a more detailed description of the experiments reported in this paper.

C.1 Auto MPG Example (Figure 1)

The Auto MPG data set, available from the UCI Machine Learning Repository (Bache
and Lichman, 2013), is a regression task with 7 features. After discarding examples with
missing entries, the data set had 392 rows, which we divided into a test set of size 78 and a
train set of size 314. We estimated the variance of the random forest predictions using the
(V̂ B
J−U+V̂ B

IJ−U )/2 estimator advocated in Section 5.2, with B = 10, 000 bootstrap replicates.

C.2 Bagged Tree Simulation (Figure 2)

The data for this simulation was drawn from a model yi = f(xi) + εi, where xi ∼ U([0, 1]),
εi ∼ N (0, 1/22), and f(x) is the step function shown in Figure 10. We modeled the data
using 5-leaf regression trees generated using the R package tree (Venables and Ripley, 2002);
for bagging, we used B = 10, 000 bootstrap replicates. The reported data is compiled over
1, 000 simulation runs with n = 500 data points each.
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C.3 Cholesterol Example (Figures 3, 7, and 8)

For the cholesterol data set (Efron and Feldman, 1991), we closely follow the methodology
of Efron (2013); see his paper for details. The data set has n = 164 subjects and only one
predictor.

C.4 E-mail Spam Example (Figures 4 and 5)

The e-mail spam data set (spambase, Bache and Lichman, 2013) is a classification problem
with n = 4, 601 e-mails and p = 57 features; the goal is to discern spam from non-spam.
We divided the data into train and test sets of size 3,065 and 1,536 respectively. Each of
the random forests described in Section 3.1 was fit on the train set using the R package
randomForest (Liaw and Wiener, 2002) with B = 40, 000 bootstrap replicates.

C.5 California Housing Example (Figure 6)

The California housing data set (described in Hastie et al., 2009, and available from StatLib)
contains aggregated data from n = 20, 460 neighborhoods. There are p = 8 features; the
response is the median house value. We fit random forests on this data using the R package
randomForest (Liaw and Wiener, 2002) with B = 1, 000 bootstrap replicates.

C.6 Bagged Tree Simulation #2 (Figure 9a)

We drew n = 25 points from a model where the xi are uniformly distributed over a square,
i.e., xi ∼ U([−1, 1]2); the yi are deterministically given by yi = 1({||xi||2 ≥ 1}). We fit this
data using the R package tree (Venables and Ripley, 2002). The bagged predictors were
generated using B = 1, 000 bootstrap replicates. The reported results are based on 2,000
simulation runs.

C.7 Prostate Cancer Example (Figure 9b)

The prostate cancer data (published by Stamey et al., 1989) is described in Section 1 of
Hastie et al. (2009). We used forward stepwise regression as implemented by the R function
step as our base learner. This data set has n = 97 subjects and 8 available predictor
variables. In figure 9b, we display standard errors for the predicted response of a patient
whose features match those of patient #41 in the data set.

C.8 Simulations for Table 1

The data generation functions used in Table 1 are defined as follows. The Xi for i = 1, ..., p
are all generated as independent U([0, 1]) random variables, and ε ∼ N (0, 1).

• Cosine: Y = 3 · cos (π · (X1 +X2)), with p = 2.

• XOR: Treating XOR as a function with a 0/1 return-value,

Y = 5 · [XOR (X1 > 0.6, X2 > 0.6) + XOR (X3 > 0.6, X4 > 0.6)] + ε

and p = 50.
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• AND: With analogous notation,

Y = 10 · AND (X1 > 0.3, X2 > 0.3, X3 > 0.3, X4 > 0.3) + ε

and p = 500.

• Auto: This example is based on a parametric bootstrap built on the same data set as
used in Figure 1. We first fit a random forest to the training set, and evaluated the
MSE σ̂2 on the test set. We then generated new training sets by replacing the labels
Yi from the original training set with Ŷi + σ̂ε, where Ŷi is the original random forest
prediction at the ith training example and ε is fresh residual noise.

During the simulation, we first generated a random test set of size 50 (except for the auto
example, where we just used the original test set of size 78). Then, while keeping the test
set fixed, we generated 100 training sets and produced variance estimates V̂ at each test
point. Table 1 reports average performance over the test set.
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Abstract

The problem of bipartite ranking, where instances are labeled positive or negative and the
goal is to learn a scoring function that minimizes the probability of mis-ranking a pair of
positive and negative instances (or equivalently, that maximizes the area under the ROC
curve), has been widely studied in recent years. A dominant theoretical and algorithmic
framework for the problem has been to reduce bipartite ranking to pairwise classification;
in particular, it is well known that the bipartite ranking regret can be formulated as a
pairwise classification regret, which in turn can be upper bounded using usual regret bounds
for classification problems. Recently, Kotlowski et al. (2011) showed regret bounds for
bipartite ranking in terms of the regret associated with balanced versions of the standard
(non-pairwise) logistic and exponential losses. In this paper, we show that such (non-
pairwise) surrogate regret bounds for bipartite ranking can be obtained in terms of a broad
class of proper (composite) losses that we term as strongly proper. Our proof technique
is much simpler than that of Kotlowski et al. (2011), and relies on properties of proper
(composite) losses as elucidated recently by Reid and Williamson (2010, 2011) and others.
Our result yields explicit surrogate bounds (with no hidden balancing terms) in terms of a
variety of strongly proper losses, including for example logistic, exponential, squared and
squared hinge losses as special cases. An important consequence is that standard algorithms
minimizing a (non-pairwise) strongly proper loss, such as logistic regression and boosting
algorithms (assuming a universal function class and appropriate regularization), are in fact
consistent for bipartite ranking; moreover, our results allow us to quantify the bipartite
ranking regret in terms of the corresponding surrogate regret. We also obtain tighter
surrogate bounds under certain low-noise conditions via a recent result of Clémençon and
Robbiano (2011).

Keywords: bipartite ranking, area under ROC curve (AUC), statistical consistency,
regret bounds, proper losses, strongly proper losses

1. Introduction

Ranking problems arise in a variety of applications ranging from information retrieval to
recommendation systems and from computational biology to drug discovery, and have been
widely studied in machine learning and statistics in the last several years. Recently, there
has been much interest in understanding statistical consistency and regret behavior of algo-
rithms for a variety of ranking problems, including various forms of label/subset ranking as
well as instance ranking problems (Clémençon and Vayatis, 2007; Clémençon et al., 2008;

c©2014 Shivani Agarwal.
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Cossock and Zhang, 2008; Balcan et al., 2008; Ailon and Mohri, 2008; Xia et al., 2008;
Duchi et al., 2010; Ravikumar et al., 2011; Buffoni et al., 2011; Clémençon and Robbiano,
2011; Kotlowski et al., 2011; Uematsu and Lee, 2011; Calauzènes et al., 2012; Lan et al.,
2012; Ramaswamy and Agarwal, 2012; Ramaswamy et al., 2013).

In this paper, we study regret bounds for the bipartite instance ranking problem, where
instances are labeled positive or negative and the goal is to learn a scoring function that
minimizes the probability of mis-ranking a pair of positive and negative instances, or equiv-
alently, that maximizes the area under the ROC curve (Freund et al., 2003; Agarwal et al.,
2005). A popular algorithmic and theoretical approach to bipartite ranking has been to
treat the problem as analogous to pairwise classification (Herbrich et al., 2000; Joachims,
2002; Freund et al., 2003; Rakotomamonjy, 2004; Burges et al., 2005; Clémençon et al.,
2008). Indeed, this approach enjoys theoretical support since the bipartite ranking regret
can be formulated as a pairwise classification regret, and therefore any algorithm minimiz-
ing the latter over a suitable class of functions will also minimize the ranking regret (this
follows formally from results of Clémençon et al., 2008; see Section 3.1 for a summary).
Nevertheless, it has often been observed that algorithms such as AdaBoost, logistic regres-
sion, and in some cases even SVMs, which minimize the exponential, logistic, and hinge
losses respectively in the standard (non-pairwise) setting, also yield good bipartite ranking
performance (Cortes and Mohri, 2004; Rakotomamonjy, 2004; Rudin and Schapire, 2009).
For losses such as the exponential or logistic losses, this is not surprising since algorithms
minimizing these losses (but not the hinge loss) are known to effectively estimate conditional
class probabilities (Zhang, 2004); since the class probability function provides the optimal
ranking (Clémençon et al., 2008), it is intuitively clear (and follows formally from results
in Clémençon et al., 2008; Clémençon and Robbiano, 2011) that any algorithm providing a
good approximation to the class probability function should also produce a good ranking.
However, there has been very little work so far on quantifying the ranking regret of a scoring
function in terms of the regret associated with such surrogate losses.

Recently, Kotlowski et al. (2011) showed that the bipartite ranking regret of a scoring
function can be upper bounded in terms of the regret associated with balanced versions of
the standard (non-pairwise) exponential and logistic losses. However their proof technique
builds on analyses involving the reduction of bipartite ranking to pairwise classification,
and involves analyses specific to the exponential and logistic losses (see Section 3.2). More
fundamentally, the balanced losses in their result depend on the underlying distribution and
cannot be optimized directly by an algorithm; while it is possible to do so approximately,
one then loses the quantitative nature of the bounds.

In this work we obtain quantitative regret bounds for bipartite ranking in terms of a
broad class of proper (composite) loss functions that we term strongly proper. Our proof
technique is considerably simpler than that of Kotlowski et al. (2011), and relies on proper-
ties of proper (composite) losses as elucidated recently for example in Reid and Williamson
(2010, 2011); Gneiting and Raftery (2007); Buja et al. (2005). Our result yields explicit
surrogate bounds (with no hidden balancing terms) in terms of a variety of strongly proper
(composite) losses, including for example logistic, exponential, squared and squared hinge
losses as special cases. An immediate consequence is that standard algorithms minimiz-
ing such losses, such as standard logistic regression and boosting algorithms (assuming a
universal function class and appropriate regularization), are in fact consistent for bipartite
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ranking. We also obtain tighter surrogate bounds under certain low-noise conditions via a
recent result of Clémençon and Robbiano (2011).

The paper is organized as follows. In Section 2 we formally set up the bipartite in-
stance ranking problem and definitions related to loss functions and regret, and provide
background on proper (composite) losses. Section 3 summarizes related work that provides
the background for our study, namely the reduction of bipartite ranking to pairwise binary
classification and the result of Kotlowski et al. (2011). In Section 4 we define and charac-
terize strongly proper losses. Section 5 contains our main result, namely a bound on the
bipartite ranking regret in terms of the regret associated with any strongly proper loss,
together with several examples. Section 6 gives a tighter bound under certain low-noise
conditions via a recent result of Clémençon and Robbiano (2011). We conclude with a brief
discussion and some open questions in Section 7.

2. Formal Setup, Preliminaries, and Background

This section provides background on the bipartite ranking problem, binary loss functions
and regret, and proper (composite) losses.

2.1 Bipartite Ranking

As in binary classification, in bipartite ranking there is an instance space X and binary
labels Y = {±1}, with an unknown distribution D on X × {±1}. For (X,Y ) ∼ D and
x ∈ X , we denote η(x) = P(Y = 1 | X = x) and p = P(Y = 1). Given i.i.d. examples
(X1, Y1), . . . , (Xn, Yn) ∼ D, the goal is to learn a scoring function f : X→R̄ (where R̄ =
[−∞,∞]) that assigns higher scores to positive instances than to negative ones.1 Specifically,
the goal is to learn a scoring function f with low ranking error (or ranking risk), defined
as2

errank
D [f ] = E

[
1
(
(Y − Y ′)(f(X)− f(X ′)) < 0

)
+ 1

2 1
(
f(X) = f(X ′)

) ∣∣ Y 6= Y ′
]
, (1)

where (X,Y ), (X ′, Y ′) are assumed to be drawn i.i.d. from D, and 1(·) is 1 if its argument is
true and 0 otherwise; thus the ranking error of f is simply the probability that a randomly
drawn positive instance receives a lower score under f than a randomly drawn negative
instance, with ties broken uniformly at random. The optimal ranking error (or Bayes
ranking error or Bayes ranking risk) can be seen to be

errank,∗
D = inf

f :X→R̄
errank
D [f ] (2)

=
1

2p(1− p)
EX,X′

[
min

(
η(X)(1− η(X ′)), η(X ′)(1− η(X))

)]
. (3)

The ranking regret of a scoring function f : X→R̄ is then simply

regretrank
D [f ] = errank

D [f ]− errank,∗
D . (4)

1. Most algorithms learn real-valued functions; we also allow values −∞ and ∞ for technical reasons.
2. We assume measurability conditions where necessary.
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We will be interested in upper bounding the ranking regret of a scoring function f in terms
of its regret with respect to certain other (binary) loss functions. In particular, the loss
functions we consider will belong to the class of proper (composite) loss functions. Below we
briefly review some standard notions related to loss functions and regret, and then discuss
some properties of proper (composite) losses.

2.2 Loss Functions, Regret, and Conditional Risks and Regret

Assume again a probability distribution D on X ×{±1} as above. Given a prediction space
Ŷ ⊆ R̄, a binary loss function ` : {±1} × Ŷ→R̄+ (where R̄+ = [0,∞]) assigns a penalty
`(y, ŷ) for predicting ŷ ∈ Ŷ when the true label is y ∈ {±1}.3 For any such loss `, the
`-error (or `-risk) of a function f : X→Ŷ is defined as

er`D[f ] = E(X,Y )∼D[`(Y, f(X))] , (5)

and the optimal `-error (or optimal `-risk or Bayes `-risk) is defined as

er`,∗D = inf
f :X→Ŷ

er`D[f ] . (6)

The `-regret of a function f : X→Ŷ is the difference of its `-error from the optimal `-error:

regret`D[f ] = er`D[f ]− er`,∗D . (7)

The conditional `-risk L` : [0, 1]× Ŷ→R̄+ is defined as4

L`(η, ŷ) = EY∼η[`(Y, ŷ)] = η `(1, ŷ) + (1− η) `(−1, ŷ) , (8)

where Y ∼ η denotes a {±1}-valued random variable taking value +1 with probability η.
The conditional Bayes `-risk H` : [0, 1]→R̄+ is defined as

H`(η) = inf
ŷ∈Ŷ

L`(η, ŷ) . (9)

The conditional `-regret R` : [0, 1]× Ŷ→R̄+ is then simply

R`(η, ŷ) = L`(η, ŷ)−H`(η) . (10)

Clearly, we have for f : X→Ŷ,

er`D[f ] = EX [L`(η(X), f(X))] , (11)

and
er`,∗D = EX [H`(η(X))] . (12)

We note the following:

Lemma 1 For any Ŷ ⊆ R̄ and binary loss ` : {±1} × Ŷ→R̄+, the conditional Bayes `-risk
H` is a concave function on [0, 1].

The proof follows simply by observing that H` is defined as the pointwise infimum of a
family of linear (and therefore concave) functions, and therefore is itself concave.

3. Most loss functions take values in R+, but some loss functions (such as the logistic loss, described later)
can assign a loss of ∞ to certain label-prediction pairs.

4. Note that we overload notation by using η here to refer to a number in [0, 1]; the usage should be clear
from context.
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2.3 Proper and Proper Composite Losses

In this section we review some background material related to proper and proper composite
losses, as studied recently in Reid and Williamson (2010, 2011); Gneiting and Raftery
(2007); Buja et al. (2005). While the material is meant to be mostly a review, some of the
exposition is simplified compared to previous presentations, and we include a new, simple
proof of an important fact (Theorem 4).

2.3.1 Proper Losses

We start by considering binary class probability estimation (CPE) loss functions that op-
erate on the prediction space Ŷ = [0, 1]. A binary CPE loss function c : {±1} × [0, 1]→R̄+

is said to be proper if for all η ∈ [0, 1],

η ∈ arg min
η̂∈[0,1]

Lc(η, η̂) , (13)

and strictly proper if the minimizer is unique for all η ∈ [0, 1]. Equivalently, c is proper if
for all η ∈ [0, 1], Hc(η) = Lc(η, η), and strictly proper if Hc(η) < Lc(η, η̂) for all η̂ 6= η. We
have the following basic result:

Lemma 2 (Gneiting and Raftery (2007); Schervish (1989)) Let c : {±1}×[0, 1]→R̄+

be a binary CPE loss. If c is proper, then c(1, ·) is a decreasing function on [0, 1] and c(−1, ·)
is an increasing function. If c is strictly proper, then c(1, ·) is strictly decreasing on [0, 1]
and c(−1, ·) is strictly increasing.

We will find it useful to consider regular proper losses. As in Gneiting and Raftery (2007),
we say a binary CPE loss c : {±1} × [0, 1]→R̄+ is regular if c(1, η̂) ∈ R+ ∀η̂ ∈ (0, 1] and
c(−1, η̂) ∈ R+ ∀η̂ ∈ [0, 1), i.e., if c(y, η̂) is finite for all y, η̂ except possibly for c(1, 0) and
c(−1, 1), which are allowed to be infinite. The following characterization of regular proper
losses is well known (see also Gneiting and Raftery, 2007):

Theorem 3 (Savage (1971)) A regular binary CPE loss c : {±1} × [0, 1]→R̄+ is proper
if and only if for all η, η̂ ∈ [0, 1] there exists a superderivative H ′c(η̂) of Hc at η̂ such that5

Lc(η, η̂) = Hc(η̂) + (η − η̂) ·H ′c(η̂) .

The following is a characterization of strict properness of a proper loss c in terms of its
conditional Bayes risk Hc:

Theorem 4 A proper loss c : {±1}×[0, 1]→R̄+ is strictly proper if and only if Hc is strictly
concave.

This result can be proved in several ways. A proof in Gneiting and Raftery (2007) is
attributed to an argument in Hendrickson and Buehler (1971). If Hc is twice differentiable,
an alternative proof follows from a result in Buja et al. (2005); Schervish (1989), which
shows that a proper loss c is strictly proper if and only if its ‘weight function’ wc = −H ′′c
satisfies wc(η) > 0 for all except at most countably many points η ∈ [0, 1]; by a very recent

5. Here u ∈ R is a superderivative of Hc at η̂ if for all η ∈ [0, 1], Hc(η̂)−Hc(η) ≥ u(η̂ − η).
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result of Stein (2012), this condition is equivalent to strict convexity of the function −Hc, or
equivalently, strict concavity of Hc. Here we give a third, self-contained proof of the above
result that is derived from first principles, and that will be helpful when we study strongly
proper losses in Section 4.

Proof [of Theorem 4] Let c : {±1} × [0, 1]→R̄+ be a proper loss. For the ‘if’ direction,
assume Hc is strictly concave. Let η, η̂ ∈ [0, 1] such that η̂ 6= η. Then we have

Lc(η, η̂)−Hc(η) = Lc(η, η̂) +Hc(η̂)−Hc(η̂)−Hc(η)

= Lc(η, η̂) +Hc(η̂)− 2
(

1
2Hc(η) + 1

2Hc(η̂)
)

> Lc(η, η̂) +Hc(η̂)− 2Hc

(η + η̂

2

)
= 2

((η + η̂

2

)
c(1, η̂) +

(
1− η + η̂

2

)
c(−1, η̂)

)
− 2Hc

(η + η̂

2

)
= 2

(
Lc

(η + η̂

2
, η̂
)
−Hc

(η + η̂

2

))
≥ 0 .

Thus c is strictly proper.
Conversely, to prove the ‘only if’ direction, assume c is strictly proper. Let η1, η2 ∈ [0, 1]

such that η1 6= η2, and let t ∈ (0, 1). Then we have

Hc

(
tη1 + (1− t)η2

)
= Lc

(
tη1 + (1− t)η2, tη1 + (1− t)η2

)
= t Lc

(
η1, tη1 + (1− t)η2

)
+ (1− t)Lc

(
η2, tη1 + (1− t)η2

)
> tHc(η1) + (1− t)Hc(η2) .

Thus Hc is strictly concave.

2.3.2 Proper Composite Losses

The notion of properness can be extended to binary loss functions operating on prediction
spaces Ŷ other than [0, 1] via composition with a link function ψ : [0, 1]→Ŷ. Specifically,
for any Ŷ ⊆ R̄, a loss function ` : {±1} × Ŷ→R+ is said to be proper composite if it can be
written as

`(y, ŷ) = c(y, ψ−1(ŷ)) (14)

for some proper loss c : {±1} × [0, 1]→R̄+ and strictly increasing (and therefore invertible)
link function ψ : [0, 1]→Ŷ. Proper composite losses have been studied recently in Reid and
Williamson (2010, 2011); Buja et al. (2005), and include several widely used losses such as
squared, squared hinge, logistic, and exponential losses.

It is worth noting that for a proper composite loss ` formed from a proper loss c,
H` = Hc. Moreover, any property associated with the underlying proper loss c can also
be used to describe the composite loss `; thus we will refer to a proper composite loss `
formed from a regular proper loss c as regular proper composite, a composite loss formed
from a strictly proper loss as strictly proper composite, etc. In Section 4, we will define and
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characterize strongly proper (composite) losses, which we will use to obtain regret bounds
for bipartite ranking.

3. Related Work

As noted above, a popular theoretical and algorithmic framework for bipartite ranking has
been to reduce the problem to pairwise classification. Below we describe this reduction in
the context of our setting and notation, and then review the result of Kotlowski et al. (2011)
which builds on this pairwise reduction.

3.1 Reduction of Bipartite Ranking to Pairwise Binary Classification

For any distribution D on X ×{±1}, consider the distribution D̃ on (X ×X )×{±1} defined
as follows:

1. Sample (X,Y ) and (X ′, Y ′) i.i.d. from D;

2. If Y = Y ′, then go to step 1; else set6

X̃ = (X,X ′) , Ỹ = sign(Y − Y ′)

and return (X̃, Ỹ ).

Then it is easy to see that, under D̃,

P
(
X̃ = (x, x′)

)
=

P(X = x) P(X ′ = x′)
(
η(x)(1− η(x′)) + η(x′)(1− η(x))

)
2p(1− p)

(15)

η̃((x, x′)) = P
(
Ỹ = 1 | X̃ = (x, x′)

)
=

η(x)(1− η(x′))

η(x)(1− η(x′)) + η(x′)(1− η(x))
(16)

p̃ = P
(
Ỹ = 1

)
= 1

2 . (17)

Moreover, for the 0-1 loss `0-1 : {±1}×{±1}→{0, 1} given by `0-1(y, ŷ) = 1(ŷ 6= y), we have
the following for any pairwise binary classifier h : X × X→{±1}:

er0-1
D̃

[h] = E
(X̃,Ỹ )∼D̃

[
1
(
h(X̃) 6= Ỹ

)]
(18)

er0-1,∗
D̃

= E
X̃

[
min

(
η̃(X̃), 1− η̃(X̃)

)]
(19)

regret0-1
D̃

[h] = er0-1
D̃

[h]− er0-1,∗
D̃

. (20)

Now for any scoring function f : X→R̄, define fdiff : X × X→R̄ as

fdiff(x, x′) = f(x)− f(x′) . (21)

Then it is easy to see that:

errank
D [f ] = er0-1

D̃
[sign ◦ fdiff ] (22)

errank,∗
D = er0-1,∗

D̃
, (23)

6. Throughout the paper, sign(u) = +1 if u > 0 and −1 otherwise.
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where (g ◦f)(u) = g(f(u)). The equality in Eq. (23) follows from the fact that the classifier
h∗(x, x′) = sign(η(x)−η(x′)) achieves the Bayes 0-1 risk, i.e., er0-1

D̃
[h∗] = er0-1,∗

D̃
(Clémençon

et al., 2008). Thus

regretrank
D [f ] = regret0-1

D̃
[sign ◦ fdiff ] , (24)

and therefore the ranking regret of a scoring function f : X→R̄ can be analyzed via upper
bounds on the 0-1 regret of the pairwise classifier (sign ◦ fdiff) : X × X→{±1}.7

In particular, as noted in Clémençon et al. (2008), applying a result of Bartlett et al.
(2006), we can upper bound the pairwise 0-1 regret above in terms of the pairwise `φ-regret
associated with any classification-calibrated margin loss `φ : {±1} × R̄→R̄+, i.e., any loss
of the form `φ(y, ŷ) = φ(yŷ) for some function φ : R̄→R̄+ satisfying ∀ η ∈ [0, 1], η 6= 1

2 ,8

ŷ∗ ∈ arg min
ŷ∈R̄

Lφ(η, ŷ) =⇒ ŷ∗(η − 1
2) > 0 . (25)

We note in particular that for every proper composite margin loss, the associated link
function ψ satisfies ψ(1

2) = 0 (Reid and Williamson, 2010), and therefore every strictly
proper composite margin loss is classification-calibrated in the sense above.9

Theorem 5 (Bartlett et al. (2006); see also Clémençon et al. (2008)) Let φ : R̄→R̄+

be such that the margin loss `φ : {±1}× R̄→R̄+ defined as `φ(y, ŷ) = φ(yŷ) is classification-
calibrated as above. Then ∃ strictly increasing function gφ : R̄+→[0, 1] with gφ(0) = 0 such

that for any f̃ : X × X→R̄,

regret0-1
D̃

[sign ◦ f̃ ] ≤ gφ

(
regretφ

D̃
[f̃ ]
)
.

Bartlett et al. (2006) give a construction for gφ; in particular, for the exponential loss given
by φexp(u) = e−u and logistic loss given by φlog(u) = ln(1 + e−u), both of which are strictly
proper composite losses (see Section 5.2) and are therefore classification-calibrated, one has

gexp(z) ≤
√

2z (26)

glog(z) ≤
√

2z . (27)

As we describe below, Kotlowski et al. (2011) build on these observations to bound the
ranking regret in terms of the regret associated with balanced versions of the exponential
and logistic losses.

7. Note that the setting here is somewhat different from that of Balcan et al. (2008) and Ailon and Mohri
(2008), who consider a subset version of bipartite ranking where each instance consists of some finite
subset of objects to be ranked; there also the problem is reduced to a (subset) pairwise classification
problem, and it is shown that given any (subset) pairwise classifier h, a subset ranking function f can be
constructed such that the resulting subset ranking regret is at most twice the subset pairwise classification
regret of h (Balcan et al., 2008), or in expectation at most equal to the pairwise classification regret of
h (Ailon and Mohri, 2008).

8. We abbreviate Lφ = L`φ , erφD = er
`φ
D , etc.

9. We note that in general, every strictly proper (composite) loss is classification-calibrated with respect
to any cost-sensitive zero-one loss, using a more general definition of classification calibration with an
appropriate threshold (e.g., see (Reid and Williamson, 2010)).
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3.2 Result of Kotlowski et al. (2011)

For any binary loss ` : {±1}×Ŷ→R̄+, consider defining a balanced loss `bal : {±1}×Ŷ→R̄+

as

`bal(y, ŷ) =
1

2p
`(1, ŷ) · 1(y = 1) +

1

2(1− p)
`(−1, ŷ) · 1(y = −1) . (28)

Note that such a balanced loss depends on the underlying distribution D via p = P(Y = 1).
Then Kotlowski et al. (2011) show the following, via analyses specific to the exponential
and logistic losses:

Theorem 6 (Kotlowski et al. (2011)) For any f : X→R̄,

regretexp

D̃
[fdiff ] ≤ 9

4
regretexp,bal

D [f ]

regretlog

D̃
[fdiff ] ≤ 2 regretlog,bal

D [f ] .

Combining this with the results of Eq. (24), Theorem 5, and Eqs. (26-27) then gives the
following bounds on the ranking regret of any scoring function f : X→R̄ in terms of the
(non-pairwise) balanced exponential and logistic regrets of f :

regretrank
D [f ] ≤ 3√

2

√
regretexp,bal

D [f ] (29)

regretrank
D [f ] ≤ 2

√
regretlog,bal

D [f ] . (30)

This suggests that an algorithm that produces a function f : X→R̄ with low balanced
exponential or logistic regret will also have low ranking regret. Unfortunately, since the
balanced losses depend on the unknown distribution D, they cannot be optimized by an
algorithm directly.10 Kotlowski et al. (2011) provide some justification for why in certain
situations, minimizing the usual exponential or logistic loss may also minimize the balanced
versions of these losses; however, by doing so, one loses the quantitative nature of the above
bounds. Below we obtain upper bounds on the ranking regret of a function f directly
in terms of its loss-based regret (with no balancing terms) for a wide range of proper
(composite) loss functions that we term strongly proper, including the exponential and
logistic losses as special cases.

4. Strongly Proper Losses

We define strongly proper losses as follows:

Definition 7 Let c : {±1} × [0, 1]→R̄+ be a binary CPE loss and let λ > 0. We say c is
λ-strongly proper if for all η, η̂ ∈ [0, 1],

Lc(η, η̂)−Hc(η) ≥ λ

2
(η − η̂)2 .

We have the following necessary and sufficient conditions for strong properness:

10. We note it is possible to optimize approximately balanced losses, e.g., by estimating p from the data.
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Lemma 8 Let λ > 0. If c : {±1} × [0, 1]→R̄+ is λ-strongly proper, then Hc is λ-strongly
concave.

Proof The proof is similar to the ‘only if’ direction in the proof of Theorem 4. Let c be
λ-strongly proper. Let η1, η2 ∈ [0, 1] such that η1 6= η2, and let t ∈ (0, 1). Then we have

Hc

(
tη1 + (1− t)η2

)
= Lc

(
tη1 + (1− t)η2, tη1 + (1− t)η2

)
= t Lc

(
η1, tη1 + (1− t)η2

)
+ (1− t)Lc

(
η2, tη1 + (1− t)η2

)
≥ t

(
Hc(η1) +

λ

2
(1− t)2(η1 − η2)2

)
+ (1− t)

(
Hc(η2) +

λ

2
t2(η1 − η2)2

)
= tHc(η1) + (1− t)Hc(η2) +

λ

2
t(1− t)(η1 − η2)2 .

Thus Hc is λ-strongly concave.

Lemma 9 Let λ > 0 and let c : {±1} × [0, 1]→R̄+ be a regular proper loss. If Hc is
λ-strongly concave, then c is λ-strongly proper.

Proof Let η, η̂ ∈ [0, 1]. By Theorem 3, there exists a superderivative H ′c(η̂) of Hc at η̂ such
that

Lc(η, η̂) = Hc(η̂) + (η − η̂) ·H ′c(η̂) .

This gives

Lc(η, η̂)−Hc(η) = Hc(η̂)−Hc(η) + (η − η̂) ·H ′c(η̂)

≥ λ

2
(η̂ − η)2 , since Hc is λ-strongly concave.

Thus c is λ-strongly proper.

This gives us the following characterization of strong properness for regular proper losses:

Theorem 10 Let λ > 0 and let c : {±1} × [0, 1]→R̄+ be a regular proper loss. Then c is
λ-strongly proper if and only if Hc is λ-strongly concave.

We note that from Lemma 8, another way to think about strongly proper losses is that the
weight function w(η) = −H ′′(η), used to express the proper loss as a weighted mixture of
cost-sensitive misclassification losses (e.g., Buja et al., 2005; Reid and Williamson, 2010), is
bounded below by a positive constant.

Several examples of strongly proper (composite) losses will be provided in Section 5.2
and Section 5.3. Theorem 10 will form our main tool in establishing strong properness of
many of these loss functions.
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5. Regret Bounds via Strongly Proper Losses

We start by recalling the following result of Clémençon et al. (2008) (adapted to account
for ties, and for the conditioning on Y 6= Y ′):

Theorem 11 (Clémençon et al. (2008)) For any f : X→R̄,

regretrank
D [f ] =

1

2p(1− p)
EX,X′

[∣∣η(X)− η(X ′)
∣∣ · (1

(
(f(X)− f(X ′))(η(X)− η(X ′)) < 0

)
+ 1

21
(
f(X) = f(X ′)

))]
.

As noted by Clémençon and Robbiano (2011), this leads to the following corollary on the
regret of any plug-in ranking function based on an estimate η̂:

Corollary 12 For any η̂ : X→[0, 1],

regretrank
D

[
η̂
]
≤ 1

p(1− p)
EX

[∣∣η̂(X)− η(X)
∣∣] .

For completeness, a proof is given in Appendix A. We now give our main result.

5.1 Main Result

Theorem 13 Let Ŷ ⊆ R̄ and let λ > 0. Let ` : {±1} × Ŷ→R̄+ be a λ-strongly proper
composite loss. Then for any f : X→Ŷ,

regretrank
D [f ] ≤

√
2

p(1− p)
√
λ

√
regret`D[f ] .

Proof Let c : {±1}× [0, 1]→R̄+ be a λ-strongly proper loss and ψ : [0, 1]→Ŷ be a (strictly
increasing) link function such that `(y, ŷ) = c(y, ψ−1(ŷ)) for all y ∈ {±1}, ŷ ∈ Ŷ. Let
f : X→Ŷ. Then we have

regretrank
D [f ] = regretrank

D [ψ−1 ◦ f ] , since ψ is strictly increasing

≤ 1

p(1− p)
EX

[∣∣ψ−1(f(X))− η(X)
∣∣] , by Corollary 12

=
1

p(1− p)

√(
EX

[∣∣ψ−1(f(X))− η(X)
∣∣])2

≤ 1

p(1− p)

√
EX

[(
ψ−1(f(X))− η(X)

)2]
,

by convexity of φ(u) = u2 and Jensen’s inequality

≤ 1

p(1− p)

√
2

λ
EX

[
Rc(η(X), ψ−1(f(X)))

]
, since c is λ-strongly proper

=
1

p(1− p)

√
2

λ
EX

[
R`(η(X), f(X))

]
=

√
2

p(1− p)
√
λ

√
regret`D[f ].
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Theorem 13 shows that for any strongly proper composite loss ` : {±1} × Ŷ→R̄+, a
function f : X→Ŷ with low `-regret will also have low ranking regret. Below we give
several examples of such strongly proper (composite) loss functions; properties of some of
these losses are summarized in Table 1.

5.2 Examples

Example 1 (Exponential loss) The exponential loss `exp : {±1} × R̄→R̄+ defined as

`exp(y, ŷ) = e−yŷ

is a proper composite loss with associated proper loss cexp : {±1} × [0, 1]→R̄+ and link
function ψexp : [0, 1]→R̄ given by

cexp(y, η̂) =

(
1− η̂
η̂

)y/2
; ψexp(η̂) =

1

2
ln

(
η̂

1− η̂

)
.

It is easily verified that cexp is regular. Moreover, it can be seen that

Hexp(η) = 2
√
η(1− η) ,

with

−H ′′exp(η) =
1

2(η(1− η))3/2
≥ 4 ∀η ∈ [0, 1] .

Thus Hexp is 4-strongly concave, and so by Theorem 10, we have `exp is 4-strongly proper
composite. Therefore applying Theorem 13 we have for any f : X→R̄,

regretrank
D [f ] ≤ 1√

2 p(1− p)

√
regretexp

D [f ] .

Example 2 (Logistic loss) The logistic loss `exp : {±1} × R̄→R̄+ defined as

`log(y, ŷ) = ln(1 + e−yŷ)

is a proper composite loss with associated proper loss clog : {±1} × [0, 1]→R̄+ and link
function ψlog : [0, 1]→R̄ given by

clog(1, η̂) = − ln η̂ ; clog(−1, η̂) = − ln(1− η̂) ; ψlog(η̂) = ln

(
η̂

1− η̂

)
.

Again, it is easily verified that clog is regular. Moreover, it can be seen that

Hlog(η) = − η ln η − (1− η) ln(1− η) ,

with

−H ′′log(η) =
1

η(1− η)
≥ 4 ∀η ∈ [0, 1] .

Thus Hlog is 4-strongly concave, and so by Theorem 10, we have `log is 4-strongly proper
composite. Therefore applying Theorem 13 we have for any f : X→R̄,

regretrank
D [f ] ≤ 1√

2 p(1− p)

√
regretlog

D [f ] .
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Example 3 (Squared and squared hinge losses) The (binary) squared loss (1 − yŷ)2

and squared hinge loss ((1−yŷ)+)2 (where u+ = max(u, 0)) are generally defined for ŷ ∈ R.
To obtain class probability estimates from a predicted value ŷ ∈ R, one then truncates ŷ to
[−1, 1], and uses η̂ = ŷ+1

2 (Zhang, 2004). To obtain a proper loss, we can take Ŷ = [−1, 1];
in this range, both losses coincide, and we can define `sq : {±1} × [−1, 1]→[0, 4] as

`sq(y, ŷ) = (1− yŷ)2 .

This is a proper composite loss with associated proper loss csq : {±1} × [−1, 1]→[0, 4] and
link function ψsq : [0, 1]→[−1, 1] given by

csq(1, η̂) = 4(1− η̂)2 ; csq(−1, η̂) = 4η̂2 ; ψsq(η̂) = 2η̂ − 1 .

It can be seen that
Lsq(η, η̂) = 4η(1− η̂)2 + 4(1− η)η̂2

and
Hsq(η) = 4η(1− η) ,

so that
Lsq(η, η̂)−Hsq(η) = 4(η − η̂)2 .

Thus `sq is 8-strongly proper composite, and so applying Theorem 13 we have for any f :
X→[−1, 1],

regretrank
D [f ] ≤ 1

2 p(1− p)

√
regretsq

D [f ] .

Note that, if a function f : X→R is learned, then our bound in terms of `sq-regret applies
to the ranking regret of an appropriately transformed function f̄ : X→[−1, 1], such as that
obtained by truncating values f(x) /∈ [−1, 1] to the appropriate endpoint −1 or 1:

f̄(x) =


−1 if f(x) < −1
f(x) if f(x) ∈ [−1, 1]

1 if f(x) > 1.

5.3 Constructing Strongly Proper Losses

In general, given any concave function H : [0, 1]→R+, one can construct a proper loss
c : {±1} × [0, 1]→R̄+ with Hc = H as follows:

c(1, η̂) = H(η̂) + (1− η̂)H ′(η̂) (31)

c(−1, η̂) = H(η̂)− η̂H ′(η̂) , (32)

where H ′(η̂) denotes any superderivative of H at η̂. It can be verified that this gives
Lc(η, η̂) = H(η̂) + (η − η̂)H ′(η̂) for all η, η̂ ∈ [0, 1], and therefore Hc(η) = H(η) for all η ∈
[0, 1]. Moreover, if H is such that H(η̂)+(1− η̂)H ′(η̂) ∈ R+ ∀η̂ ∈ (0, 1] and H(η̂)− η̂H ′(η̂) ∈
R+ ∀η̂ ∈ [0, 1), then the loss c constructed above is also regular. Thus, starting with any
λ-strongly concave function H : [0, 1]→R+ satisfying these regularity conditions, any proper
composite loss ` formed from the loss function c constructed according to Eqs. (31-32) (and
any link function ψ) is λ-strongly proper composite.
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Loss Ŷ `(y, ŷ) c(y, η̂) ψ(η̂) λ

y = 1 y = −1

Exponential R̄ e−yŷ
√

1−η̂
η̂

√
η̂

1−η̂
1
2 ln

(
η̂

1−η̂
)

4

Logistic R̄ ln(1 + e−yŷ) − ln η̂ − ln(1− η̂) ln
(

η̂
1−η̂
)

4

Squared [−1, 1] (1− yŷ)2 4(1− η̂)2 4η̂2 2η̂ − 1 8

Spherical [0, 1] c(y, ŷ) 1− η̂√
η̂2+(1−η̂)2

1− 1−η̂√
η̂2+(1−η̂)2

η̂ 1

Canonical
‘exponential’

R̄
√

1 +
(
ŷ
2

)2 − yŷ
2

√
1−η̂
η̂

√
η̂

1−η̂
2η̂−1√
η̂(1−η̂)

4

Canonical
squared

[−1, 1] 1
4 (1− yŷ)2 (1− η̂)2 η̂2 2η̂ − 1 2

Canonical
spherical

[−1, 1] 1− 1
2

(√
2− ŷ2 + yŷ

)
1− η̂√

η̂2+(1−η̂)2
1− 1−η̂√

η̂2+(1−η̂)2
2η̂−1√

η̂2+(1−η̂)2
1

Table 1: Examples of strongly proper composite losses ` : {±1} × Ŷ→R̄+ satisfying the
conditions of Theorem 13, together with prediction space Ŷ, proper loss c : {±1}×
[0, 1]→R̄+, link function ψ : [0, 1]→Ŷ, and strong properness parameter λ.

Example 4 (Spherical loss) Consider starting with the function Hspher : [0, 1]→R de-
fined as

Hspher(η) = 1−
√
η2 + (1− η)2 .

Then

H ′spher(η) =
−(2η − 1)√
η2 + (1− η)2

and

−H ′′spher(η) =
1

(η2 + (1− η)2)3/2
≥ 1 ∀η ∈ [0, 1] ,

and therefore Hspher is 1-strongly concave. Moreover, since Hspher and H ′spher are both
bounded, the conditions for regularity are also satisfied. Thus we can use Eqs. (31-32) to
construct a 1-strongly proper loss cspher : {±1} × [0, 1]→R as follows:

cspher(1, η̂) = Hspher(η̂) + (1− η̂)H ′spher(η̂) = 1− η̂√
η̂2 + (1− η̂)2

cspher(−1, η̂) = Hspher(η̂)− η̂H ′spher(η̂) = 1− 1− η̂√
η̂2 + (1− η̂)2

.

Therefore by Theorem 13, we have for any f : X→[0, 1],

regretrank
D [f ] ≤

√
2

p(1− p)

√
regretspher

D [f ] .
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The loss cspher above corresponds to the spherical scoring rule described in Gneiting and
Raftery (2007).

We also note that, for every strictly proper loss c : {±1} × [0, 1]→R̄+, there is an
associated ‘canonical’ link function ψ : [0, 1]→Ŷ defined as

ψ(η̂) = c(−1, η̂)− c(1, η̂) , (33)

where Ŷ = {ψ(η̂) : η̂ ∈ [0, 1]}. We refer to composite losses comprised of such a strictly
proper loss c with the corresponding canonical link ψ as canonical proper composite losses.
Clearly, multiplying c by a factor α > 0 results in the corresponding canonical link ψ also
being multiplied by α; adding a constant (or a function θ(y, η̂) = θ(η̂) that is independent
of y) to c has no effect on ψ. Conversely, given any Ŷ ⊆ R̄ and any (strictly increasing)
link function ψ : [0, 1]→Ŷ, there is a unique strictly proper loss c : {±1} × [0, 1]→R̄+ (up
to addition of constants or functions of the form θ(y, η̂) = θ(η̂)) for which ψ is canonical;
this is obtained using Eqs. (31-32) with H satisfying H ′(η̂) = −ψ(η̂) (with possible addition
of a term θ(η̂) to both c(1, η̂) and c(−1, η̂) thus constructed). Canonical proper composite
losses `(y, ŷ) have some desirable properties, including for example convexity in their second
argument ŷ for each y ∈ {±1}; we refer the reader to Buja et al. (2005); Reid and Williamson
(2010) for further discussion of such properties.

We note that the logistic loss in Example 2 is a canonical proper composite loss. On
the other hand, as noted in Buja et al. (2005), the link ψexp associated with the exponential
loss in Example 1 is not the canonical link for the proper loss cexp (see Example 5). The
squared loss in Example 3 is almost canonical, modulo a scaling factor; one needs to scale
either the link function or the loss appropriately (Example 6).

Example 5 (Canonical proper composite loss associated with cexp) Let cexp : {±1}×
[0, 1]→R̄+ be as in Example 1. The corresponding canonical link ψexp,can : [0, 1]→R̄ is given
by

ψexp,can(η̂) =

√
η̂

1− η̂
−

√
1− η̂
η̂

=
2η̂ − 1√
η̂(1− η̂)

.

With a little algebra, it can be seen that the resulting canonical proper composite loss `exp,can :
{±1} × R̄→R̄+ is given by

`exp,can(y, ŷ) =

√
1 +

( ŷ
2

)2
− yŷ

2
.

Since we saw cexp is 4-strongly proper, we have `exp,can is 4-strongly proper composite, and
therefore we have from Theorem 13 that for any f : X→R̄,

regretrank
D [f ] ≤ 1√

2 p(1− p)

√
regretexp,can

D [f ] .

Example 6 (Canonical squared loss) For csq : {±1}× [0, 1]→[0, 4] defined as in Exam-

ple 3, the canonical link ψsq,can : [0, 1]→Ŷ is given by

ψsq,can(η̂) = 4η̂2 − 4(1− η̂)2 = 4(2η̂ − 1) ,
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with Ŷ = [−4, 4], and the resulting canonical squared loss `sq,can : {±1} × [−4, 4]→[0, 4] is
given by

`sq,can(y, ŷ) =
(

1− yŷ

4

)2
.

Since we saw csq is 4-strongly proper, we have `sq,can is 4-strongly proper composite, giving
for any f : X→[−4, 4],

regretrank
D [f ] ≤ 1

2 p(1− p)

√
regretsq,can

D [f ] .

For practical purposes, this is equivalent to using the loss `sq : {±1}× [−1, 1]→[0, 4] defined
in Example 3. Alternatively, we can start with a scaled version of the squared proper loss
csq′ : {±1} × [0, 1]→[0, 1] defined as

csq′(1, η̂) = (1− η̂)2 ; csq′(−1, η̂) = η̂2 ,

for which the associated canonical link ψsq′,can : [0, 1]→Ŷ is given by

ψsq′,can(η̂) = η̂2 − (1− η̂)2 = 2η̂ − 1 ,

with Ŷ = [−1, 1], and the resulting canonical squared loss `sq′,can : {±1} × [−1, 1]→[0, 1] is
given by

`sq′,can(y, ŷ) =
(1− yŷ)2

4
.

Again, it can be verified that csq′ is regular; in this case Hsq′(η) = η(1−η) which is 2-strongly
concave, giving that Hsq′,can is 4-strongly proper composite. Therefore applying Theorem 13
we have for any f : X→[−1, 1],

regretrank
D [f ] ≤ 1

p(1− p)

√
regretsq′,can

D [f ] .

Again, for practical purposes, this is equivalent to using the loss `sq defined in Example 3.

Example 7 (Canonical spherical loss) For cspher : {±1} × [0, 1]→R defined as in Ex-

ample 4, the canonical link ψspher,can : [0, 1]→Ŷ is given by

ψspher,can(η̂) =
2η̂ − 1√

η̂2 + (1− η̂)2
,

with Ŷ = [−1, 1]. The resulting canonical spherical loss `spher,can : {±1} × [−1, 1]→R is
given by

`spher,can(y, ŷ) = 1− 1

2

(√
2− ŷ2 + yŷ

)
.

Since we saw cspher is 1-strongly proper, we have `spher,can is 1-strongly proper composite,
and therefore we have from Theorem 13 that for any f : X→[−1, 1],

regretrank
D [f ] ≤

√
2

p(1− p)

√
regretspher,can

D [f ] .
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6. Tighter Bounds under Low-Noise Conditions

In essence, our results exploit the fact that for any scoring function f : X→R̄, given a
strongly proper composite loss `, one can construct a class probability estimator from f
whose distance from the true class probability function η can be upper bounded in terms
of the `-regret of f . Specifically, if ` is a strongly proper composite loss with underlying
strongly proper loss c and link function ψ, then the L2 (and therefore L1) distance between
ψ−1(f(X)) and η(X) (with respect to µ, the marginal density of D on X ) can be upper
bounded precisely in terms of the `-regret of f . From this perspective, η̂ = ψ−1 ◦ f can be
treated as a class probability estimator and therefore a ‘plug-in’ scoring function, which we
analyzed via Corollary 12.

Recently, Clémençon and Robbiano (2011) showed that, under certain low-noise as-
sumptions, one can obtain tighter bounds on the ranking risk of a plug-in scoring function
η̂ : X→[0, 1] than that offered by Corollary 12. Specifically, Clémençon and Robbiano
(2011) consider the following noise assumption for bipartite ranking (inspired by the noise
condition studied in Tsybakov (2004) for binary classification):

Noise Assumption NA(α) (α ∈ [0, 1]): A distribution D on X × {±1} satisfies assump-
tion NA(α) if ∃ a constant C > 0 such that for all x ∈ X and t ∈ [0, 1],

PX

(∣∣η(X)− η(x)
∣∣ ≤ t) ≤ C · tα .

Note that α = 0 imposes no restriction on D, while larger values of α impose greater
restrictions. Clémençon and Robbiano (2011) showed the following result (adapted slightly
to our setting, where the ranking risk is conditioned on Y 6= Y ′):

Theorem 14 (Clémençon and Robbiano (2011)) Let α ∈ [0, 1) and q ∈ [1,∞). Then
∃ a constant Cα,q > 0 such that for any distribution D on X × {±1} satisfying noise
assumption NA(α) and any η̂ : X→[0, 1],

regretrank
D [ η̂ ] ≤ Cα,q

p(1− p)

(
EX

[∣∣η̂(X)− η(X)
∣∣q]) 1+α

q+α
.

This allows us to obtain the following tighter version of our regret bound in terms of
strongly proper losses under the same noise assumption:

Theorem 15 Let Ŷ ⊆ R̄ and λ > 0, and let α ∈ [0, 1). Let ` : {±1} × Ŷ→R̄+ be a λ-
strongly proper composite loss. Then ∃ a constant Cα > 0 such that for any distribution D
on X × {±1} satisfying noise assumption NA(α) and any f : X→Ŷ,

regretrank
D [f ] ≤ Cα

p(1− p)

(
2

λ

) 1+α
2+α (

regret`D[f ]
) 1+α

2+α
.

Proof Let c : {±1}× [0, 1]→R̄+ be a λ-strongly proper loss and ψ : [0, 1]→Ŷ be a (strictly
increasing) link function such that `(y, ŷ) = c(y, ψ−1(ŷ)) for all y ∈ {±1}, ŷ ∈ Ŷ. Let D be
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a distribution on X × {±1} satisfying noise assumption NA(α) and let f : X→Ŷ. Then

regretrank
D [f ] = regretrank

D [ψ−1 ◦ f ] , since ψ is strictly increasing

≤ Cα,2
p(1− p)

(
EX

[(
ψ−1(f(X))− η(X)

)2]) 1+α
2+α

,

by Theorem 14, taking q = 2

≤ Cα,2
p(1− p)

(
2

λ
EX

[
Rc(η(X), ψ−1(f(X)))

]) 1+α
2+α

,

since c is λ-strongly proper

=
Cα,2

p(1− p)

(
2

λ
EX

[
R`(η(X), f(X))

]) 1+α
2+α

=
Cα,2

p(1− p)

(
2

λ

) 1+α
2+α (

regret`D[f ]
) 1+α

2+α
.

The result follows by setting Cα = Cα,2.

For α = 0, as noted above, there is no restriction on D, and so the above result gives
the same dependence on regret`D[f ] as that obtained from Theorem 13. On the other hand,
as α approaches 1, the exponent of the regret`D[f ] term in the above bound approaches 2

3 ,
which improves over the exponent of 1

2 in Theorem 13.

7. Conclusion and Open Questions

We have obtained upper bounds on the bipartite ranking regret of a scoring function in terms
of the (non-pairwise) regret associated with a broad class of proper (composite) losses that
we have termed strongly proper (composite) losses. This class includes several widely used
losses such as exponential, logistic, squared and squared hinge losses as special cases.

The definition and characterization of strongly proper losses may be of interest in its
own right and may find applications elsewhere. As one example, we recently found strongly
proper losses to be useful in analyzing consistency of algorithms for binary classification
in class imbalance settings (Menon et al., 2013). An open question concerns the necessity
of the regularity condition in the characterization of strong properness of a proper loss in
terms of strong concavity of the conditional Bayes risk (Theorem 10). The characterization
of strict properness of a proper loss in terms of strict concavity of the conditional Bayes
risk (Theorem 4) does not require such an assumption, and one wonders whether it may be
possible to remove the regularity assumption in the case of strong properness as well.

Many of the strongly proper composite losses that we have considered, such as the
exponential, logistic, squared and spherical losses, are margin-based losses, which means the
bipartite ranking regret can also be upper bounded in terms of the regret associated with
pairwise versions of these losses via the reduction to pairwise classification (Section 3.1).
A natural question that arises is whether it is possible to characterize conditions on the
distribution under which algorithms based on one of the two approaches (minimizing a
pairwise form of the loss as in RankBoost/pairwise logistic regression, or minimizing the

1670



Surrogate Regret Bounds for Bipartite Ranking via Strongly Proper Losses

standard loss as in AdaBoost/standard logistic regression) lead to faster convergence than
those based on the other. We hope the tools and results established here may help in
studying such questions in the future.
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Appendix A. Proof of Corollary 12

Proof Let η̂ : X→[0, 1]. By Theorem 11, we have

regretrank
D [ η̂ ] ≤ 1

2p(1− p)
EX,X′

[∣∣η(X)− η(X ′)
∣∣ · 1((η̂(X)− η̂(X ′))(η(X)− η(X ′)) ≤ 0

)]
.

The result follows by observing that for any x, x′ ∈ X ,

(η̂(x)− η̂(x′))(η(x)− η(x′)) ≤ 0 =⇒ |η(x)− η(x′)| ≤ |η̂(x)− η(x)|+ |η̂(x′)− η(x′)| .

To see this, note the statement is trivially true if η(x) = η(x′). If η(x) > η(x′), we have

(η̂(x)− η̂(x′))(η(x)− η(x′)) ≤ 0 =⇒ η̂(x) ≤ η̂(x′)

=⇒ η(x)− η(x′) ≤ (η(x)− η̂(x)) + (η̂(x′)− η(x′))

=⇒ η(x)− η(x′) ≤ |η(x)− η̂(x)|+ |η̂(x′)− η(x′)|
=⇒ |η(x)− η(x′)| ≤ |η̂(x)− η(x)|+ |η̂(x′)− η(x′)| .

The case η(x) < η(x′) can be proved similarly. Thus we have

regretrank
D [ η̂ ] ≤ 1

2p(1− p)
EX,X′

[∣∣η̂(X)− η(X)
∣∣+
∣∣η̂(X ′)− η(X ′)

∣∣]
=

1

p(1− p)
EX

[∣∣η̂(X)− η(X)
∣∣] .
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Abstract

Given a dictionary of Mn predictors, in a random design regression setting with n ob-
servations, we construct estimators that target the best performance among all the linear
combinations of the predictors under a sparse `q-norm (0 ≤ q ≤ 1) constraint on the linear
coefficients. Besides identifying the optimal rates of convergence, our universal aggregation
strategies by model mixing achieve the optimal rates simultaneously over the full range of
0 ≤ q ≤ 1 for any Mn and without knowledge of the `q-norm of the best linear coefficients
to represent the regression function.

To allow model misspecification, our upper bound results are obtained in a framework
of aggregation of estimates. A striking feature is that no specific relationship among the
predictors is needed to achieve the upper rates of convergence (hence permitting basically
arbitrary correlations between the predictors). Therefore, whatever the true regression
function (assumed to be uniformly bounded), our estimators automatically exploit any
sparse representation of the regression function (if any), to the best extent possible within
the `q-constrained linear combinations for any 0 ≤ q ≤ 1.

A sparse approximation result in the `q-hulls turns out to be crucial to adaptively
achieve minimax rate optimal aggregation. It precisely characterizes the number of terms
needed to achieve a prescribed accuracy of approximation to the best linear combination
in an `q-hull for 0 ≤ q ≤ 1. It offers the insight that the minimax rate of `q-aggregation is
basically determined by an effective model size, which is a sparsity index that depends on
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q, Mn, n, and the `q-norm bound in an easily interpretable way based on a classical model
selection theory that deals with a large number of models.

Keywords: high-dimensional sparse learning, minimax rate of convergence, model selec-
tion, optimal aggregation, sparse `q-constraint

1. Introduction

Learning a high-dimensional function has become a central research topic in machine learn-
ing. In this paper, we intend to provide a theoretical understanding on how well one can
adaptively estimate a regression function by sparse linear combinations of a number of
predictors based on i.i.d observations.

1.1 Motivation

Sparse modeling has become a popular area of research to handle high-dimensional linear
regression learning. One notable approach is to exploit the assumption that the “true”
linear coefficients have a bounded `q-norm (or simply q-norm) for some 0 ≤ q ≤ 1, which
implies that the parameter space is necessarily sparse in a proper sense. A major recent
theoretical advancement is made by Raskutti, Wainwright, and Yu (2012), who derive
minimax rates of convergence both for estimating the regression function and for estimating
the parameter vector, which spells out how the sparsity parameter q (in conjunction with the
number of predictors, say, Mn) affects the intrinsic capability of estimation for the `q-hulls.
The results confirm that even if Mn is much larger than the sample size n, relatively fast
rates of convergence in learning the linear regression function are possible. In a Gaussian
sequence model framework, Donoho and Johnstone (1994) identify precisely how the `q-
constraint (q > 0) on the mean vector affects estimation accuracy under the `p-loss (p ≥ 1).

In this paper, differently from the fixed design setting in Raskutti et al. (2012); Negahban
et al. (2012), under a random design, we examine the issue of minimax optimal estimation of
a linear regression function in the `q-hulls for 0 ≤ q ≤ 1. Besides confirming the same role of
q on determining the minimax rate of convergence for estimation of the regression function
also for the random design, we prove that the minimax rate can be adaptively achieved
without any knowledge of q or the `q-radius of the linear coefficients. The adaptation results
show that in high-dimensional linear regression learning, theoretically speaking, should the
regression function happen to depend on just a few predictors (i.e., hard sparsity or q = 0)
or only a small number of coefficients really matter (i.e., soft sparsity or 0 < q ≤ 1), the
true sparsity nature is automatically exploited, leading to whatever the optimal rate of
convergence for the situation. No restriction is imposed on Mn. To our knowledge, this is
the most general result on minimax learning in the `q-hulls for 0 ≤ q ≤ 1.

In reality, obviously, the soft or hard sparsity is only an approximation that hopefully
captures the nature of the target function. To deal with possible model misspecification
(i.e., the sparsity assumption may or may not be suitable for the data), our upper bound
results on regression estimation will be given in a framework that permits the regression
function to be outside of the `q-hulls. The risk bounds show that whichever soft or hard
sparse representation of the true regression function by linear combination of the predictors
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best describes the truth, the corresponding optimal performance (in rate) is automatically
achieved (with some additional conditions for deriving matching minimax lower bounds).

Our aim of simultaneous adaptive estimation over the `q-hulls for all 0 ≤ q ≤ 1 and
positive `q-radius, especially with possible model misspecification, requires a deeper under-
standing of sparse approximation of functions in the `q-hulls than what is available in the
literature. As a solution, we provide a sharp sparse approximation error bound for `q-hulls
with 0 ≤ q ≤ 1, which may also be relevant for studying other linear representation based
high-dimensional sparse learning methods.

The aforementioned flexible approach to optimal estimation that allows model misspec-
ification is done in the framework of aggregation of estimates. Besides the aspect of not
assuming the true target function to have any specific relationship to the predictors/the
initial estimates to be aggregated, the theory of aggregation emphasizes that the predic-
tors/the initial estimates are basically arbitrary in their association with each other. With
this characteristic in sight, the minimax rate of aggregation is properly determined by find-
ing a specific set of initial estimates with known relationship (e.g., independence) under
which an existing upper bound can be shown to be un-improvable up to a constant factor.
In contrast, for minimax optimal regression, one works with whatever (hopefully weak) as-
sumptions imposed on the predictors and tries to achieve the minimax rate of convergence
for the function class of interest. With the above, the problem of aggregation of estimates
is closely related to the usual regression estimation: A risk upper bound on aggregation of
estimates readily gives a risk upper bound for regression estimation, but one has to derive
minimax lower bounds for the specific regression learning settings. In this work, we will
first give results on aggregation of estimates (where most work is on the upper bounds
under minimal assumptions on the initial estimates) and then present results on minimax
regression in `q-hulls (where most work is on deriving lower rates of convergence). The
focus is on random design and additions results on fixed design are in Wang et al. (2011).

1.2 Aggregation of Estimates

The idea of sharing strengths of different learning procedures by combining them instead of
choosing a single one has led to fruitful and exciting research results in statistics and machine
learning. The theoretical advances have centered on optimal risk or loss bounds that require
almost no assumption on the behaviors of the individual estimators to be aggregated. See,
e.g., Yang (1996, 2000a); Catoni (1997, 2004); Juditsky and Nemirovski (2000); Nemirovski
(2000); Yang (2004); Tsybakov (2003); Leung and Barron (2006) for early representative
work (the reader is referred to Cesa-Bianchi and Lugosi 2006 for interesting results and
references from an individual sequence perspective). While there are many different ways
that one can envision to combine the advantages of the candidate procedures, the combining
methods can be put into two main categories: those intended for combining for adaptation,
which aim at combining the procedures to perform adaptively as well as the best candidate
procedure no matter what the truth is, and those for combining for improvement, which
aim at improving over the performance of all the candidate procedures in certain ways.
Whatever the goal is, for the purpose of estimating the regression function, we expect to
pay a price: the risk of the combined procedure is typically larger than the target risk. The
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difference between the two risks (or a proper upper bound on the difference) is henceforth
called risk regret of the combining method.

The research attention is often focused on one but the main step in the process of
combining procedures, namely, aggregation of estimates, wherein one has already obtained
estimates by all the candidate procedures (based on initial data, most likely from data
splitting or previous studies; some exceptions are in e.g., Leung and Barron 2006; Dalalyan
and Salmon 2012), and is trying to aggregate these estimates into a single one based on
data that are independent of the initial data. The performance of the aggregated estimator
(conditional on the initial estimates) plays the most important role in determining the total
risk of the whole combined procedure, although proportion of the initial data and the later
one certainly also influences the overall performance. In this work, we will mainly focus on
the aggregation step.

It is now well-understood that given a collection of procedures, one only needs to pay a
relatively small price for aggregation for adaptation (Yang 2000b; Catoni 2004; Tsybakov
2003). In contrast, aggregation for improvement under a convex constraint or `1-constraint
on coefficients is associated with a higher risk regret (as shown in Juditsky and Nemirovski
2000; Nemirovski 2000; Yang 2004; Tsybakov 2003). Several other directions of aggregation
for improvement, defined via proper constraints imposed on the `0-norm alone or in con-
junction with the `1-norm of the linear coefficients, have also been studied, including linear
aggregation (no constraint, Tsybakov 2003), aggregation to achieve the best performance
of a linear combination of no more than a given number of initial estimates (Bunea et al.
2007) and also under an additional constraint on the `1-norm of these coefficients (Lounici
2007). Interestingly, combining for adaptation plays a fundamental role in combining for
improvement: it serves as an effective tool in constructing multi-directional (or universal)
aggregation methods, that is methods which simultaneously achieve the best performance
in multiple specific directions of aggregation for improvement. This strategy was taken in,
e.g., Yang (2004), Tsybakov (2003), Bunea et al. (2007), Rigollet and Tsybakov (2010), and
Dalalyan and Tsybakov (2012b).

The goal of our work on aggregation is to propose aggregation methods that achieve the
performance (in risk with/without a multiplying factor), up to a multiple of the optimal risk
regret as defined in Tsybakov (2003), of the best linear combination of the initial estimates
under the constraint that the `q-norm (0 ≤ q ≤ 1) of the linear coefficients is no larger than
some positive number tn (henceforth the `q-constraint). We call this type of aggregation
`q-aggregation. It turns out that the optimal rate is simply determined by an effective model
size m∗, which roughly means that only m∗ terms are really needed for effective estimation.
We strive to achieve the optimal `q-aggregation simultaneously for all q (0 ≤ q ≤ 1) and tn
(tn > 0).

It is useful to note that the `q-aggregation provides a general framework: our proposed
strategies enable one to reach the optimal bounds automatically and simultaneously for the
major state-of-art aggregation strategies and more, as will be seen.

1.3 Plan of the Paper

The paper is organized as follows. In Section 2, we introduce notation and some prelimi-
naries of the estimators and aggregation algorithms that will be used in our strategies for
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learning. In Section 3, we derive optimal rates of `q-aggregation and show that our methods
achieve multi-directional aggregation. In Section 4, we derive the minimax rate for linear
regression with `q-constrained coefficients. A discussion is then reported in Section 5. Fi-
nally, we report in Appendix A the derivation of metric entropy and approximation error
bounds for `Mn

q,tn-hulls, while Appendix B provides an insight from the sparse approximation
bound based on classical model selection theory. The proofs of the results in Sections 3 and
4 are then provided in the Appendix C.

2. Preliminaries

Consider the regression problem where a dictionary of Mn prediction functions (Mn ≥ 2
unless stated otherwise) are given as initial estimates of the unknown true regression func-
tion. The goal is to construct a linearly combined estimator using these estimates to pursue
the performance of the best (possibly constrained) linear combinations. A learning strat-
egy with two building blocks will be considered. First, we construct candidate estimators
from subsets of the given estimates. Second, we aggregate the candidate estimators using
aggregation algorithms to obtain the final estimator.

2.1 Notation and Definition

Let (X1, Y1), . . . , (Xn, Yn) be n (n ≥ 2) i.i.d. observations where Xi = (Xi,1, . . . , Xi,d),
1 ≤ i ≤ n, take values in X with a probability distribution PX . We assume the regression
model

Yi = f0(Xi) + εi, i = 1, . . . n, (1)

where f0 is the unknown true regression function to be estimated. The random errors εi,
1 ≤ i ≤ n, are independent of each other and of Xi, and have the probability density
function h(x) (with respect to the Lebesgue measure or a general measure µ) such that
E(εi) = 0 and E(ε2i ) = σ2 < ∞. The quality of estimating f0 by using the estimator f̂ is
measured by the squared L2 risk (with respect to PX)

R(f̂ ; f0;n) = E‖f̂ − f0‖2 = E

(∫
(f̂ − f0)2dPX

)
,

where, as in the rest of the paper, ‖ · ‖ denotes the L2-norm with respect to the distribution
of PX .

Let Fn = {f1, f2, . . . , fMn} be a dictionary of Mn initial estimates of f0. In this pa-
per, unless stated otherwise, ‖fj‖ ≤ 1, 1 ≤ j ≤ Mn. The condition is satisfied, pos-
sibly after a scaling, if the fj ’s are uniformly bounded between known constants, and
it may require additional assumptions on the distribution of PX to check its validity
for a general case. Consider the constrained linear combinations of the estimates F ={
fθ =

∑Mn
j=1 θjfj : θ ∈ Θn, fj ∈ Fn

}
, where Θn is a subset of RMn . Let

d2(f0;F) = inf
fθ∈F

‖fθ − f0‖2

denote the smallest approximation error to f0 over a function class F .
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The problem of constructing an estimator f̂ that pursues the best performance in F
is called aggregation of estimates. We consider aggregation of estimates with sparsity con-
straints on θ. For any θ = (θ1, . . . , θMn)′, define the `0-norm and the `q-norm (0 < q ≤ 1)
by

‖θ‖0 =

Mn∑
j=1

I(θj 6= 0), and ‖θ‖q =

Mn∑
j=1

|θj |q
1/q

,

where I(·) is the indicator function. Note that for 0 < q < 1, ‖ · ‖q is not a norm but a
quasinorm, and for q = 0, ‖ · ‖0 is not even a quasinorm. However, we choose to refer them
as norms for ease of exposition. For any 0 ≤ q ≤ 1 and tn > 0, define the `q-ball

Bq(tn;Mn) =
{
θ = (θ1, θ2, . . . , θMn)′ : ‖θ‖q ≤ tn

}
.

When q = 0, tn is understood to be an integer between 1 and Mn, and sometimes denoted
by kn to be distinguished from tn when q > 0. Define the `Mn

q,tn-hull of Fn to be the class of
linear combinations of functions in Fn with the `q-constraint

Fq(tn) = Fq(tn;Mn;Fn) =

fθ =

Mn∑
j=1

θjfj : θ ∈ Bq(tn;Mn), fj ∈ Fn

 , 0 ≤ q ≤ 1, tn > 0.

One of our goals is to propose an estimator f̂Fn =
∑Mn

j=1 θ̂jfj such that its risk is upper
bounded by a multiple of the smallest risk over the class Fq(tn) plus a small risk regret
term

R(f̂Fn ; f0;n) ≤ C inf
fθ∈Fq(tn)

‖fθ − f0‖2 +REGq(tn;Mn),

where C is a constant that does not depend on f0, n, and Mn, or C = 1 for some estimators.
In various situations (e.g., adaptive estimation with data splitting as in Yang 2000a), the
initial estimates can be made such that inffθ∈Fq(tn) ‖fθ−f0‖

2 approaches zero as n→∞ in
a proper manner. Thus, results with C > 1 (especially under heavy tailed random errors)
are also of interest.

2.2 Two Starting Estimators

A key step of our strategy is the construction of candidate estimators using subsets of the
initial estimates. The T- and AC-estimators, described below, were chosen because of the
relatively mild assumptions for them to work with respect to the squared L2 risk (each of
them gives cleaner results in different aspects). Under the data generating model (1) and
i.i.d. observations (X1, Y1), . . . , (Xn, Yn), suppose we are given m terms {g1, . . . , gm} (i.e.,
m functions of the original explanatory variables) as regressors.

When working on the minimax upper bounds in random design settings, we always make
the following assumption on the true regression function.

Assumption BD: There exists a known constant L > 0 such that ‖f0‖∞ ≤ L <∞.
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To our knowledge, Assumption BD is typically assumed in the literature of aggregation
of estimates. A recent work of Birgé (2014) successfully removes this limitation in a density
estimation framework.

(T-estimator) Birgé (2006, 2004) constructed the T-estimator and derived its L2 risk
bounds under the Gaussian regression setting. The following proposition is a simple conse-
quence of Theorem 3 of Birgé (2004). Suppose
T1. The error distribution h(·) is normal;
T2. 0 < σ <∞ is known.

Proposition 1 Suppose Assumptions BD and T1, T2 hold. We can construct a T-
estimator f̂ (T ) such that

E‖f̂ (T ) − f0‖2 ≤ CL,σ

 inf
ϑ∈Rm

∥∥∥∥∥∥
m∑
j=1

ϑjgj − f0

∥∥∥∥∥∥
2

+
m

n

 ,

where CL,σ is a constant depending only on L and σ.

(AC-estimator) For our purpose, consider the class of linear combinations with the
`1-constraint Gs = {g =

∑m
j=1 ϑjgj : ‖ϑ‖1 ≤ s} for some s > 0. Audibert and Catoni

proposed a sophisticated AC-estimator f̂
(AC)
s (Audibert and Catoni 2010, page 25). The

following proposition is a direct result from Theorem 4.1 in Audibert and Catoni (2010)
under the following conditions.
AC1. There exists a constant H > 0 such that supg,g′∈Gs,x∈X |g(x)− g′(x)| = H <∞.
AC2. There exists a constant σ′ > 0 such that supx∈X E

(
(Y − g∗s(X))2|X = x

)
≤ (σ′)2 <

∞, where g∗s = infg∈Gs ‖g − f0‖
2.

Proposition 2 Suppose Assumptions AC1 and AC2 hold. For any s > 0, we can construct

an AC-estimator f̂
(AC)
s (that may depend on H and σ′) such that

E‖f̂ (AC)
s − f0‖2 ≤ inf

g∈Gs
‖g − f0‖2 + c

(
2σ′ +H

)2 m
n
,

where c is a pure constant.

The risk bound for the AC-estimator improves over that for the T-estimator in terms of i)
reducing the multiplying constant in front of the optimal approximation error to the best
possible; ii) relaxing the normality assumption on the errors. But this is achieved at the
expense of restricting the `1-norm of the linear coefficients in approximation. Note also that

under the assumption ‖f0‖∞ ≤ L, we can always enforce the estimators f̂ (T ) and f̂
(AC)
s to

be in the range of [−L,L] with the same risk bounds in the propositions.
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2.3 Two Aggregation Algorithms for Adaptation

Suppose N estimates f̌1, . . . , f̌N are obtained from N candidate procedures based on some
initial data. Two aggregation algorithms, the ARM algorithm (Adaptive Regression by
Mixing, Yang 2001) and Catoni’s algorithm (Catoni 2004, 1999), can be used to construct
the final estimator f̂ by aggregating the candidate estimates f̌1, . . . , f̌N based on n additional
i.i.d. observations (Xi, Yi)

n
i=1. The ARM algorithm requires knowing the form of the error

distribution but it allows heavy tail cases. In contrast, Catoni’s algorithm does not assume
any functional form of the error distribution, but demands exponential decay of the tail
probability.

(The ARM algorithm) Suppose
Y1. There exist two known constants σ and σ such that 0 < σ ≤ σ ≤ σ <∞;
Y2. The error density has the form h(x) = h0(x/σ)/σ, where h0 is known and has mean
zero, variance 1, and a finite fourth moment. In addition, for each pair of constants R0 > 0
and 0 < S0 < 1, there exists a constant BS0,R0 (depending on S0 and R0) such that for all
|R| < R0 and S0 ≤ S ≤ S−10 ,∫

h0(x) log
h0(x)

S−1h0((x−R)/S)
dx ≤ BS0,R0((1− S)2 +R2).

The condition Y2 can be shown to hold for Gaussian, Laplace and Student’s t (with
at least 3 degrees of freedom) distributions. We can construct an estimator f̂Y which
aggregates f̌1, . . . , f̌N by the ARM algorithm with prior probabilities πk (

∑N
k=1 πk = 1) on

the procedures.

Proposition 3 (Yang 2004, Proposition 1) Suppose Assumptions BD and Y1, Y2 hold,
and ‖f̌k‖∞ ≤ L < ∞ with probability 1, 1 ≤ k ≤ N . The estimator f̂Y by the ARM
algorithm has the risk

R(f̂Y ; f0;n) ≤ CY inf
1≤k≤N

(
‖f̌k − f0‖2 +

σ2

n

(
1 + log

1

πk

))
,

where CY is a constant that depends on σ, σ, L, and also h (through the fourth moment of
the random error and BS0,R0 with S0 = σ/σ,R0 = L).

(Catoni’s algorithm) Suppose for some positive constant α < ∞, there exist known
constants Uα, Vα <∞ such that
C1. E(exp(α|εi|)) ≤ Uα;

C2.
E(ε2i exp(α|εi|))
E(exp(α|εi|)) ≤ Vα.

Let λC = min{ α2L , (Uα(17L2 + 3.4Vα))−1} and πk be the prior for f̌k, 1 ≤ k ≤ N .

Proposition 4 (Catoni 2004, Theorem 3.6.1) Suppose Assumptions BD and C1, C2 hold,
and ‖f̌k‖∞ ≤ L <∞, 1 ≤ k ≤ N . The estimator f̂C that aggregates f̌1, . . . , f̌N by Catoni’s
algorithm has the risk

R(f̂C ; f0;n) ≤ inf
1≤k≤N

(
‖f̌k − f0‖2 +

2

nλC
log

1

πk

)
.
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Juditsky et al. (2008) (p. 2200) give a similar result under simplified conditions.

3. `q-Aggregation of Estimates

Consider the setup from Section 2.1. We focus on the problem of aggregating the estimates
in Fn to pursue the best performance in Fq(tn) for 0 ≤ q ≤ 1, tn > 0, which we call
`q-aggregation of estimates. To be more precise, when needed, it will be called `q(tn)-
aggregation, and for the special case of q = 0, we call it `0(kn)-aggregation for 1 ≤ kn ≤Mn.

3.1 The Strategy

For each 1 ≤ m ≤ Mn ∧ n and each subset model Jm ⊂ {1, 2, . . . ,Mn} of size m, define
FJm = {

∑
j∈Jm θjfj : θj ∈ R, j ∈ Jm}. Let FLJm,s = {fθ =

∑
j∈Jm θjfj : ‖θ‖1 ≤ s, ‖fθ‖∞ ≤

L} (s = 1, 2, ...) be the class of `1-constrained linear combinations in Fn with a sup-norm
bound on fθ. Our strategy is as follows.

Step I. Divide the data into two parts: Z(1) = (Xi, Yi)
n1
i=1 and Z(2) = (Xi, Yi)

n
i=n1+1.

Step II. Based on data Z(1), obtain a T-estimator for each function class FJm , or
obtain an AC-estimator for each function class FLJm,s with s ∈ N.

Step III. Based on data Z(2), combine all estimators obtained in step II and the
null model (f ≡ 0) using Catoni’s or the ARM algorithm. Let p0 be a small pos-
itive number in (0, 1). In all, we have to combine

∑Mn∧n
m=1

(
Mn

m

)
T-estimators with

the weight πJm = (1 − p0)
(

(Mn ∧ n)
(
Mn

m

))−1
and the null model with the weight

π0 = p0, or combine countably many AC-estimators with the weight πJm,s = (1 −

p0)
(

(1 + s)2(Mn ∧ n)
(
Mn

m

))−1
and the null model with the weight π0 = p0. (Note

that sub-probabilities on the models do not affect the validity of the risk bounds to
be given.)

For simplicity of exposition, from now on and when relevant, we assume n is even and
choose n1 = n/2 in our strategy. However, similar results hold for other values of n and n1.

We use the expression “E-G strategy” for ease of presentation where E = T or AC
represents the estimators constructed in Step II, and G = C or Y stands for the aggregation
algorithm used in Step III. By our construction, Assumption AC1 is automatically satisfied:
for each Jm, HJm,s = supf,f ′∈FLJm,s,x∈X

|f(x) − f ′(x)| ≤ 2L. Assumption AC2 is met with

(σ′)2 = σ2 + 4L2.
We assume the following conditions are satisfied for each strategy, respectively.

AT−C and AT−Y : BD, T1, T2.

AAC−C : BD, C1, C2.

AAC−Y : BD, Y1, Y2.

Given that T1, T2 are stronger than C1, C2 and Y1, Y2, it is enough to require their
satisfaction in AT−C and AT−Y.
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3.2 Minimax Rates for `q-Aggregation of Estimates

Consider general Mn, tn and 0 < q ≤ 1. The ideal model size (in order) that balances the
approximation error and the estimation error under the `q-constraint over 1 ≤ m ≤Mn ∧n
is

m∗ = m∗(q, tn) =
⌈
2
(
nt2nτ

)q/2⌉ ∧Mn ∧ n,

where τ = σ−2 is the precision parameter. The effective model size (in order) that yields
the optimal rate of convergence, as will be shown, is

m∗ = m∗(q, tn) =


m∗ if m∗ = Mn ∧ n,⌈

m∗

(1+log Mn
m∗ )

q/2

⌉
otherwise.

See Appendix B for an explanation on why m∗ is expected to yield the minimax rate of
convergence. Let FLq (tn) = Fq(tn) ∩ {f : ‖f‖∞ ≤ L} for 0 ≤ q ≤ 1, and define

mF∗ =


m∗(q, tn) for case 1: F = Fq(tn), 0 < q ≤ 1,
kn ∧ n for case 2: F = F0(kn),
m∗(q, tn) ∧ kn for case 3: F = Fq(tn) ∩ F0(kn), 0 < q ≤ 1.

Note that in the third case, we are simply taking the smaller one between the effective
model sizes from the soft sparsity constraint (`q-constraint with 0 < q ≤ 1) and the hard
sparsity one (`0-constraint), and this smaller size determines the final sparsity. Define

REG(mF∗ ) = σ2

1 ∧
mF∗ ·

(
1 + log

(
Mn

mF∗

))
n

 ,

which will be shown to be typically the optimal rate of the risk regret for `q-aggregation.
For case 3, we intend to achieve the best performance of linear combinations when both

`0- and `q-constraints are imposed on the linear coefficients, which results in `q-aggregation
using just a subset of the initial estimates and is called `0 ∩ `q-aggregation. For the special
case of q = 1, this `0 ∩ `1-aggregation is studied in Yang (2004) (page 36) for multi-
directional aggregation and in Lounici (2007) (called D-convex aggregation) more formally,
giving also lower bounds. Our results below not only handle q < 1 but also close a gap of
a logarithmic factor in upper and lower bounds in Lounici (2007).

For ease of presentation, we may use the same symbol (e.g., C) to denote possibly
different constants of the same nature.

Theorem 5 Suppose AE−G holds for the E-G strategy respectively. Our estimator f̂Fn
simultaneously has the following properties.

(i) For T- strategies, for F = Fq(tn) with 0 < q ≤ 1, or F = F0(kn), or F = Fq(tn) ∩
F0(kn) with 0 < q ≤ 1, we have

R(f̂Fn ; f0;n) ≤
[
C0d

2(f0;F) + C1REG(mF∗ )
]
∧
[
C0

(
‖f0‖2 ∨

C2σ
2

n

)]
.
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(ii) For AC- strategies, for F = Fq(tn) with 0 < q ≤ 1, or F = F0(kn), or F = Fq(tn)∩
F0(kn) with 0 < q ≤ 1, we have

R(f̂Fn ; f0;n) ≤ C1REG(mF∗ ) +

C0


d2(f0;FLq (tn)) + C2σ2 log(1+tn)

n for case 1,

infs≥1

(
d2(f0;F1(s) ∩ FL0 (kn)) + C2σ2 log(1+s)

n

)
for case 2,

d2(f0;FLq (tn) ∩ FL0 (kn)) + C2σ2 log(1+tn)
n for case 3.

Also, R(f̂Fn ; f0;n) ≤ C0

(
‖f0‖2 ∨ C2σ2

n

)
.

For all these cases, C0, C1, and C2 do not depend on n, f0, tn, q, kn,Mn. These constants
may depend on L, p0, σ

2 or σ2/σ2, α, Uα, Vα when relevant. An exception is that C0 = 1
for the AC-C strategy.

Remark 6 For case 2, the boundedness assumption of ‖fj‖ ≤ 1, 1 ≤ j ≤ Mn is not
necessary.

Remark 7 If the true function f0 happens to have a small L2-norm such that ‖f0‖2 ∨ σ2

n
is of a smaller order than REG(mF∗ ), then its inclusion in the risk bounds may improve the
rate of convergence.

Discussion of the bounds. Note that an extra term of log(1 + tn)/n is present in
the upper bounds of the estimator obtained by AC- strategies. For case 1, let us focus
on the high-dimensional situation of Mn between order n and order eO(n). When tn is no
larger (in order) than σn1/q−1/2, the extra price log(1 + tn)/n does not damage the rate

of convergence if log(1+tn)
tqn

is no larger in order than nq/2

σq (logMn)1−q/2, which does hold as

n → ∞ when q is fixed. When tn is at least of order σn1/q−1/2, REG(mF∗ ) is of order 1,
and from Proposition 15 in the Appendix, it can be seen that under the conditions of the
theorem, the risks of the AC- strategies are also of order 1. For case 2, the extra term in
Theorem 5 is harmless in rate if for some s ≤ ecn ∧ eckn(1+log(Mn/kn)) for some constant
c > 0, the `1-norm constraint does not enlarge the approximation error order.

Comparison to the existing literature. When q = 1, our theorem covers some
important previous aggregation results. With tn = 1, Juditsky and Nemirovski (2000)
obtained the optimal result for large Mn; Yang (2004) gave upper bounds for all Mn, but
the rate is slightly sub-optimal (by a logarithmic factor) when Mn = O(

√
n) and with

a factor larger than 1 in front of the approximation error; Tsybakov (2003) derived the
optimal rates for both large and small Mn (and also for linear aggregation) but under the
assumption that the joint distribution of {fj(X), j = 1, ...,Mn} is known. For the case
Mn = O(

√
n), Audibert and Catoni (2010) have improved over Yang (2004) and Tsybakov

(2003) by giving an optimal risk bound. Thus in the special case of q = 1, our result
overcomes the aforementioned shortcomings by integrating the previous understandings
together, with the additional generality of tn. In the direction of adaptive aggregation,
Dalalyan and Tsybakov (2012b) give risk bounds, up to a logarithmic factor, suitable for
q = 0, 1. Our result here closes the logarithmic factor gap and also handles q between 0 and
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1. Note also that Rigollet and Tsybakov (2010) obtain adaptive optimal `q-aggregation for
q = 0, 1 under a fixed design Gaussian regression setting.

Next, we establish lower bounds for the aggregation problems that match (up to a
multiplicative constant) the upper bounds above, which then implies that the estimators
by our strategies are indeed minimax adaptive for `q-aggregation of estimates (with respect
to both q and the `q-radius). Let f1, . . . , fMn be an orthonormal basis with respect to the
distribution of X. Since the earlier upper bounds are obtained under the assumption that
the true regression function f0 satisfies ‖f0‖∞ ≤ L for some known (possibly large) constant
L > 0, for our lower bound result below, this assumption will also be considered. For the
last result in part (iii) below under the sup-norm constraint on f0, the functions f1, . . . , fMn

are specially constructed on [0, 1] and PX is the uniform distribution on [0, 1]. See the proof
for details.

In order to give minimax lower bounds without any norm assumption on f0, let m̃F∗ be
defined the same as mF∗ except that the ceiling of n is removed. Define

REG(m̃F∗ ) =
σ2m̃F∗ ·

(
1 + log

(
Mn

m̃F∗

))
n

∧
{
t2n for cases 1 and 3,
∞ for case 2,

REG(mF∗ ) = REG(mF∗ ) ∧
{
t2n for cases 1 and 3,
∞ for case 2.

Theorem 8 Suppose the noise ε follows a normal distribution with mean 0 and variance
σ2 > 0.

(i) For any aggregated estimator f̂Fn based on an orthonormal dictionary Fn = {f1, . . . , fMn},
for F = Fq(tn), or F = F0(kn), or F = Fq(tn)∩F0(kn) with 0 < q ≤ 1, one can find
a regression function f0 (that may depend on F) such that

R(f̂Fn ; f0;n)− d2(f0;F) ≥ C ·REG(m̃F∗ ),

where C may depend on q (and only q) for cases 1 and 3 and is an absolute constant
for case 2.

(ii) Under the additional assumption that ‖f0‖ ≤ L for a known L > 0, the above lower
bound becomes C

′ · REG(mF∗ ) for the three cases, where C
′

may depend on q and L
for cases 1 and 3 and on L for case 2.

(iii) With the additional knowledge ‖f0‖∞ ≤ L for a known L > 0, the lower bound C
′′ ·

REG(mF∗ ) also holds for the following situations: 1) for F = Fq(tn) with 0 < q ≤ 1,
if supfθ∈Fq(tn) ‖fθ‖∞ ≤ L; 2) for F = F0(kn), if sup1≤j≤Mn

‖fj‖∞ ≤ L < ∞ and
k2n
n (1 + log Mn

kn
) are bounded above; 3) for F = F0(kn), if Mn/

(
1 + log Mn

kn

)
≤ bn for

some constant b > 0 and the orthonormal basis is specially chosen.

Remark 9 Consider the interesting high-dimensional case of Mn between order n and order
eO(n). Then REG(mF∗ ) is of the same order as REG(mF∗ ) unless t2n is of a smaller order
than logMn/n. Thus, except this situation of small tn, the lower bounds above match the
orders of the upper bounds in the previous theorem.
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For satisfaction of supfθ∈Fq(tn) ‖fθ‖∞ ≤ L, consider uniformly bounded functions fj ,
then for 0 < q ≤ 1,

‖
Mn∑
j=1

θjfj‖∞ ≤
Mn∑
j=1

|θj |‖fj‖∞ ≤

(
sup

1≤j≤Mn

‖fj‖∞

)
‖θ‖1 ≤

(
sup

1≤j≤Mn

‖fj‖∞

)
‖θ‖q.

Thus, under the condition that
(
sup1≤j≤Mn

‖fj‖∞
)
tn is upper bounded, supfθ∈Fq(tn) ‖fθ‖∞ ≤

L is met.
The lower bounds given in part (iii) of the theorem for the three cases of `q-aggregation

of estimates are of the same order of the upper bounds in the previous theorem, respec-
tively, unless tn is too small. Hence, under the given conditions, the minimax rates for
`q-aggregation are identified according to the definition of the minimax rate of aggregation
in Tsybakov (2003). When no restriction is imposed on the norm of f0, the lower bounds
can certainly approach infinity (e.g., when tn is really large). That is why REG(m̃F∗ ) is
introduced. The same can be said for later lower bounds.

For the new case 0 < q < 1, the `q-constraint imposes a type of soft-sparsity more
stringent than q = 1: even more coefficients in the linear expression are pretty much
negligible. For the discussion below, assume m∗ < n. When the radius tn increases or
q → 1, m∗ increases given that the `q-ball enlarges. When m∗ = m∗ = Mn < n, the `q-
constraint is not tight enough to impose sparsity: `q-aggregation is then simply equivalent
to linear aggregation and the risk regret term corresponds to the estimation price of the full
model, Mnσ

2/n. In contrast, when 1 < m∗ < Mn ∧ n, the rate for `q-aggregation is

σ2−qtqn

 log
(

1 + Mn

(nτt2n)
q/2

)
n

1−q/2

.

When m∗ ≤ (1 + log(Mn/m
∗))q/2 or equivalently m∗ = 1, the `q-constraint restricts the

search space of the optimization problem so much that it suffices to consider at most one
fj and the null model may provide a better risk.

Now let us explain that our `q-aggregation includes the commonly studied aggregation
problems in the literature. First, when q = 1, we have the well-known convex or `1-
aggregation (but now with the `1-norm bound allowed to be general). Second, when q = 0,
with kn = Mn ≤ n, we have the linear aggregation. For other kn < Mn ∧ n, we have the
aggregation to achieve the best linear performance of only kn initial estimates. The case
q = 0 and kn = 1 has a special implication. Observe that from Theorem 5, we deduce that
for both the T- strategies and AC- strategies, under the assumption supj ‖fj‖∞ ≤ L, our
estimator satisfies

R(f̂Fn ; f0;n) ≤ C0 inf
1≤j≤Mn

‖fj − f0‖2 + C1σ
2

(
1 ∧ 1 + logMn

n

)
,

where C0 = 1 for the AC-C strategy. Together with the lower bound of the order

σ2
(

1 ∧ 1+logMn

n

)
on the risk regret of aggregation for adaptation given in Tsybakov (2003),

we conclude that `0(1)-aggregation directly implies the aggregation for adaptation (model
selection aggregation). As mentioned earlier, `0(kn) ∩ `q(tn)-aggregation pursues the best
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performance of the linear combination of at most kn initial estimates with coefficients sat-
isfying the `q-constraint, which includes the D-convex aggregation as a special case (with
q = 1).

Some additional interesting results on combining procedures are in Audibert (2007,
2009); Birgé (2006); Bunea and Nobel (2008); Catoni (2012); Dalalyan and Tsybakov (2007,
2012a); Giraud (2008); Goldenshluger (2009); Györfi et al. (2002); Györfi and Ottucsák
(2007); Wegkamp (2003); Yang (2001).

4. Linear Regression with `q-Constrained Coefficients under Random
Design

Let’s consider the linear regression model with Mn predictors X1, . . . , XMn . Suppose the
data are drawn i.i.d. from the following model

Y = f0(X) + ε =

Mn∑
j=1

θjXj + ε. (2)

As previously defined, for a function f(x1, . . . , xMn) : X → R, the L2-norm ‖f‖ is the
square root of Ef2(X1, . . . , XMn), where the expectation is taken with respect to PX , the
distribution of X. Denote the `Mn

q,tn-hull in this context by

Fq(tn;Mn) =

fθ =

Mn∑
j=1

θjxj : ‖θ‖q ≤ tn

 , 0 ≤ q ≤ 1, tn > 0.

For linear regression, we assume coefficients of the true regression function f0 have a
sparse `q-representation (0 < q ≤ 1) or `0-representation or both, i.e., f0 ∈ F where
F = Fq(tn;Mn), F0(kn;Mn) or Fq(tn;Mn)

⋂
F0(kn;Mn).

Assumptions BD and AE−G are still relevant in this section. As in the previous section,
for AC-estimators, we consider `1- and sup-norm constraints.

For each 1 ≤ m ≤Mn∧n and each subset Jm of sizem, let GJm = {
∑

j∈Jm θjxj : θ ∈ Rm}
and GLJm,s = {

∑
j∈Jm θjxj : ‖θ‖1 ≤ s, ‖fθ‖∞ ≤ L}. We introduce now the adaptive estimator

f̂A, built with the same strategy used to construct f̂Fn except that we now consider GJm
and GLJm,s instead of FJm and FLJm,s.

4.1 Upper Bounds

We give upper bounds for the risk of our estimator assuming f0 ∈ FLq (tn;Mn), FL0 (kn;Mn),

or FLq (tn;Mn) ∩ FL0 (kn;Mn), where FL = {f : f ∈ F , ‖f‖∞ ≤ L} for a positive constant
L. Let αn = supf∈FL0 (kn;Mn)

inf{‖θ‖1 : fθ = f} be the maximum smallest `1-norm needed

to represent the functions in FL0 (kn;Mn).
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Recall m∗ =
⌈
2
(
nt2n/σ

2
)q/2⌉ ∧ Mn ∧ n and m∗ equals m∗ when m∗ = Mn ∧ n and⌈

m∗

(1+log Mn
m∗ )

q/2

⌉
otherwise. For ease of presentation, define ΨF as follows:

ΨF
L
q (tn;Mn) =



σ2 if m∗ = n,
σ2Mn
n if m∗ = Mn < n,

σ2−qtqn

(
1+log Mn

(nt2nτ)
q/2

n

)1−q/2

∧ σ2 if 1 < m∗ < Mn ∧ n,(
t2n ∨ σ2

n

)
∧ σ2 if m∗ = 1,

ΨF
L
0 (kn;Mn) = σ2

1 ∧
kn

(
1 + log Mn

kn

)
n

 ,

ΨF
L
q (tn;Mn)∩FL0 (kn;Mn) = ΨF

L
q (tn;Mn) ∧ΨF

L
0 (kn;Mn).

In addition, for lower bound results, let ΨF
L
q (tn;Mn) (0 ≤ q ≤ 1) and ΨF

L
q (tn;Mn)∩FL0 (kn;Mn)

(0 < q ≤ 1) be the same as ΨF
L
q (tn;Mn) and ΨF

L
q (tn;Mn)∩FL0 (kn;Mn), respectively, except that

when 0 < q ≤ 1 and m∗ = 1, ΨF
L
q (tn;Mn) takes the value σ2 ∧ t2n instead of σ2 ∧

(
t2n ∨ σ2

n

)
and ΨF

L
q (tn;Mn)∩FL0 (kn;Mn) is modified the same way.

Corollary 10 Suppose AE−G holds for the E-G strategy respectively, and sup1≤j≤Mn
‖Xj‖∞ ≤

1. The estimator f̂A simultaneously has the following properties.

(i) For T- strategies, for F = FLq (tn;Mn) with 0 < q ≤ 1, or F = FL0 (kn;Mn), or

F = FLq (tn;Mn) ∩ FL0 (kn;Mn) with 0 < q ≤ 1, we have

sup
f0∈F

R(f̂A; f0;n) ≤ C1Ψ
F ,

where the constant C1 does not depend on n.

(ii) For AC- strategies, for F = FLq (tn;Mn) with 0 < q ≤ 1, or F = FL0 (kn;Mn), or

F = FLq (tn;Mn) ∩ FL0 (kn;Mn) with 0 < q ≤ 1, we have

sup
f0∈F

R(f̂A; f0;n) ≤ C1Ψ
F + C2

{
σ2 log(1+αn)

n for F = FL0 (kn;Mn),
σ2 log(1+tn)

n otherwise,

where the constants C1 and C2 do not depend on n.

We need to point out that closely related work has been done under a fixed design
setting. While determining the minimax rate of convergence, Raskutti et al. (2012) derive
optimal estimators of a function (only at the design points) in the `q-hulls for 0 ≤ q ≤ 1,
but the estimators require knowledge of q and tn. Negahban et al. (2012), when applying
their general M -estimation methodology to the same fixed design regression setting, give
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an optimal estimator of the true coefficient vector (as opposed to the regression function)
assumed in any `q-ball for 0 ≤ q ≤ 1 under the squared error loss. It requires that the
predictors satisfy a restricted eigenvalue (RE) condition. Raskutti et al. (2010) show that
under broad Gaussian random designs, the RE condition holds with exponentially small
exception probability. Therefore, the fixed design performance bounds in Negahban et al.
(2012), as well as those in Raskutti et al. (2012) (which do not need the RE condition), can
be used to draw some conclusions for Gaussian random designs or more general random
design in the latter case. Our risk upper bounds (directly under the global squared L2 loss)
do not require the Gaussian assumption on the covariates nor the RE condition. In addition,
differently from the aforementioned two papers, our performance bounds hold without any
restriction on the relationship between M and n.

4.2 Lower Bounds

The lower bounds used in the previous section for deriving the minimax rate of aggregation
are not suitable for obtaining the minimax rate of convergence for the current regression
estimation problem. We make the following near orthogonality assumption on sparse sub-
collections of the predictors. Such an assumption, similar to the sparse Riesz condition
(SRC) (Zhang 2010) under fixed design, is used only for lower bounds but not for upper
bounds.

Assumption SRC: For some γ > 0, there exist two positive constants a and a that do
not depend on n such that for every θ with ‖θ‖0 ≤ min(2γ,Mn) we have

a‖θ‖2 ≤ ‖fθ‖ ≤ a‖θ‖2.

Theorem 11 Suppose the noise ε follows a normal distribution with mean 0 and variance
0 < σ2 <∞.

(i) For 0 < q ≤ 1, under Assumption SRC with γ = m∗, we have

inf
f̂

sup
f0∈Fq(tn;Mn)

E‖f̂ − f0‖2 ≥ cΨF
L
q (tn;Mn).

(ii) Under Assumption SRC with γ = kn, we have

inf
f̂

sup
f0∈F0(kn;Mn)∩{fθ:‖θ‖2≤an}

E‖f̂−f0‖2 ≥ c
′


ΨF

L
0 (kn;Mn) if an ≥ c̃σ

√
kn
(
1+log Mn

kn

)
n ,

a2n if an < c̃σ

√
kn
(
1+log Mn

kn

)
n .

where c̃ is a pure constant.

(iii) For any 0 < q ≤ 1, under Assumption SRC with γ = kn ∧m∗, we have

inf
f̂

sup
f0∈F0(kn;Mn)∩Fq(tn;Mn)

E‖f̂ − f0‖2 ≥ c
′′
ΨF

L
q (tn;Mn)∩FL0 (kn;Mn).
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For all cases, inf f̂ is over all estimators and the constants c, c
′

and c
′′

may depend on

a, a, q and σ2.

For the second case (ii), the lower bound is stated in a more informative way because
the effect of the bound on ‖θ‖2 is clearly seen.

4.3 The Minimax Rates of Convergence

Combining the upper and lower bounds, we give a representative minimax rate result with
the roles of the key quantities n, Mn, q, and kn explicitly seen in the rate expressions. Below
“�” means of the same order when L, L0, q, tn = t, and σ2 ( σ2 is defined in Corollary 12
below) are held constant in the relevant expressions.

Corollary 12 Suppose the noise ε follows a normal distribution with mean 0 and variance
σ2, and there exists a known constant σ such that 0 < σ ≤ σ <∞. Also assume there exists
a known constant L0 > 0 such that sup1≤j≤Mn

‖Xj‖∞ ≤ L0 <∞.

(i) For 0 < q ≤ 1, under Assumption SRC with γ = m∗,

inf
f̂

sup
f0∈FLq (t;Mn)

E‖f̂ − f0‖2 � 1 ∧


1 if m∗= n,
Mn
n if m∗= Mn < n,(
1+log Mn

(nt2τ)q/2

n

)1−q/2

if 1 ≤ m∗ < Mn ∧ n.

(ii) If there exists a constant K0 > 0 such that
k2n

(
1+log Mn

kn

)
n ≤ K0, then under Assump-

tion SRC with γ = kn,

inf
f̂

sup
f0∈FL0 (kn;Mn)∩{fθ:‖θ‖∞≤L0}

E‖f̂ − f0‖2 � 1 ∧
kn

(
1 + log Mn

kn

)
n

.

(iii) If σ > 0 is actually known, then under the condition
k2n

(
1+log Mn

kn

)
n ≤ K0 and

Assumption SRC with γ = kn, we have

inf
f̂

sup
f0∈FL0 (kn;Mn)

E‖f̂ − f0‖2 � 1 ∧
kn

(
1 + log Mn

kn

)
n

,

and for any 0 < q ≤ 1, under Assumption SRC with γ = kn ∧m∗, we have

inf
f̂

sup
f0∈FL0 (kn;Mn)∩FLq (t;Mn)

E‖f̂ − f0‖2 � 1 ∧


kn
(
1+log Mn

kn

)
n if m∗ > kn,(

1+log Mn

(nt2τ)q/2

n

)1−q/2

if 1 ≤ m∗ ≤ kn.
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5. Conclusion

Sparse modeling by imposing an `q-constraint on the coefficients of a linear representation
of a target function to be learned has found consensus among academics and practitioners
in many application fields, among which, just to mention a few, compressed sensing, signal
and image compression, gene-expression, cryptography and recovery of loss data. The
`q-constraints promote sparsity essential for high-dimensional learning and they also are
often approximately satisfied on natural classes of signal and images, such as the bounded
variation model for images and the bump algebra model for spectra (see Donoho 2006).

In the direction of using the `1-constraints in constructing estimators, algorithmic and
theoretical results have been well developed. Both the Lasso and the Dantzig selector have
been shown to achieve the rate kn log(Mn)/n under different conditions on correlations
of predictors and the hard sparsity constraint on the linear coefficients (see van de Geer
and Bühlmann 2009 for a discussion about the sufficient conditions for deriving oracle
inequalities for the Lasso). Our upper bound results do not require any of those conditions,
but we do assume the sparse Riesz condition for deriving the lower bounds. Computational
issues aside, we have seen that the approach of model selection/combination with descriptive
complexity penalty has provided the most general adaptive estimators that automatically
exploit the sparsity characteristics of the target function in terms of linear approximations
subject to `q-constraints.

In our results, the effective model size m∗ (as defined in Section 3.2 and further explained
in Appendix B) plays a key role in determining the minimax rate of `q-aggregation for
0 < q ≤ 1. With the extended definition of the effective model size m∗ to be simply the
number of nonzero components kn when q = 0 and re-defining m∗ to be m∗ ∧ kn under
both `q- (0 < q ≤ 1) and `0-constraints, the minimax rate of aggregation is unified to be

the simple form 1 ∧
m∗
(
1+log

(
Mn
m∗

))
n .

The `q-aggregation includes as special cases the state-of-art aggregation problems, namely
aggregation for adaptation, convex and D-convex aggregations, linear aggregation, and sub-
set selection aggregation, and all of them can be defined (or essentially so) by considering
linear combinations under `0- and/or `1-constraints. Our investigation provides optimal
rates of aggregation, which not only agrees with (and, in some cases, improves over) pre-
vious findings for the mostly studied aggregation problems, but also holds for a much
larger set of linear combination classes. Indeed, we have seen that `0-aggregation includes
aggregation for adaptation over the initial estimates (or model selection aggregation) (`0(1)-
aggregation), linear aggregation when Mn ≤ n (`0(Mn)-aggregation), and aggregation to
achieve the best performance of linear combination of kn estimates in the dictionary for
1 < kn < Mn (sometimes called subset selection aggregation) (`0(kn)-aggregation). When
Mn is large, aggregating a subset of the dictionary under an `q-constraint for 0 < q ≤ 1
can be advantageous, which is just `0(kn) ∩ `q(tn)-aggregation. Since the optimal rates of
aggregation as defined in Tsybakov (2003), can differ substantially in different directions
of aggregation and typically one does not know which direction works the best for the un-
known regression function, multi-directional or universal aggregation is important so that
the final estimator is automatically conservative and aggressive, whichever is better (see
Yang 2004). Our aggregation strategy is indeed multi-directional , achieving the optimal
rates over all `q-aggregation for 0 ≤ q ≤ 1 and `0 ∩ `q-aggregation for all 0 < q ≤ 1.
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Our focus in this work is of a theoretical nature to provide an understanding of the fun-
damental theoretical issues about `q-aggregation or linear regression under `q-constraints.
Computational aspects will be studied in the future.
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Appendix A. Metric Entropy and Sparse Approximation Error of
`Mn
q,tn-Hulls

It is well-known that the metric entropy plays a fundamental role in determining minimax-
rates of convergence, as shown, e.g., in Birgé (1986); Yang and Barron (1999).

For each 1 ≤ m ≤ Mn and each subset Jm ⊂ {1, 2, . . . ,Mn} of size m, recall FJm =
{
∑

j∈Jm θjfj : θj ∈ R, j ∈ Jm}. Recall also

d2(f0;F) = inf
fθ∈F

‖fθ − f0‖2

is the smallest approximation error to f0 over a function class F .

Theorem 13 (Metric entropy and sparse approximation bound for `Mn
q,tn-hulls)

Suppose Fn = {f1, f2, ..., fMn} with ‖fj‖L2(ν) ≤ 1, 1 ≤ j ≤ Mn, where ν is a σ-finite
measure.

(i) For 0 < q ≤ 1, there exists a positive constant cq depending only on q, such that
for any 0 < ε < tn, Fq(tn) contains an ε-net {ej}Nεj=1 in the L2(ν) distance with ‖ej‖0 ≤
5(tnε

−1)2q/(2−q) + 1 for j = 1, 2, ..., Nε, where Nε satisfies

logNε ≤

 cq
(
tnε
−1) 2q

2−q log(1 +M
1
q
− 1

2
n t−1n ε) if ε > tnM

1
2
− 1
q

n ,

cqMn log(1 +M
1
2
− 1
q

n tnε
−1) if ε ≤ tnM

1
2
− 1
q

n .
(3)

(ii) For any 1 ≤ m ≤ Mn, 0 < q ≤ 1, tn > 0, there exists a subset Jm and fθm ∈ FJm
with ‖θm‖1 ≤ tn such that the sparse approximation error is upper bounded as follows

‖fθm − f0‖2 − d2(f0;Fq(tn)) ≤ 22/q−1t2nm
1−2/q. (4)
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Remark 14 The metric entropy estimate (3) is the best possible. Indeed, if fj, 1 ≤ j ≤
Mn, are orthonormal functions, then (3) is sharp in order for any ε satisfying that ε/tn
is bounded away from 1 (see Kühn 2001). Part (i) of Theorem 13 implies Lemma 3 of

Raskutti et al. (2012), with an improvement of a log(Mn) factor when ε ≈ tnM
1
2
− 1
q

n , and

an improvement from (tnε
−1)

2q
2−q log(Mn) to Mn log(1 + M

1
q
− 1

2
n tnε

−1) when ε < tnM
1
2
− 1
q

n .
These improvements are needed to derive the exact minimax rates for some of the possible
situations in terms of Mn, q, and tn.

A.1 Proof of Theorem 13

(i) Because {ej}Nεj=1 is an ε-net of Fq(tn) if and only if {t−1n ej}Nεj=1 is an ε/tn-net of Fq(1),
we only need to prove the theorem for the case tn = 1. Recall that for any positive integer
k, the unit ball of `Mn

q can be covered by 2k−1 balls of radius εk in `1 distance, where

εk ≤ c


1 1 ≤ k ≤ log2(2Mn)(

log2(1+
2Mn
k

)

k

) 1
q
−1

log2(2Mn) ≤ k ≤ 2Mn

2−
k

2Mn (2Mn)
1− 1

q k ≥ 2Mn

(c.f., Edmunds and Triebel 1998, page 98). Thus, there are 2k−1 functions gj , 1 ≤ j ≤ 2k−1,
such that

Fq(1) ⊂
2k−1⋃
j=1

(gj + F1(εk)).

Note that without loss of generality, gj can be assumed to belong to Fq(1) (because if not
we can replace it by a member in Fq(1) closest to it in `1 distance on the coefficient vectors
(which is a real distance), the effect of which is merely a change of the constant c above).
For any g ∈ F1(εk), g can be expressed as g =

∑Mn
i=1 cifi with

∑Mn
i=1 |ci| ≤ εk. Following the

idea of Maurey’s empirical method (see, e.g., Pisier 1981), we define a random function U ,
such that

P(U = sign(ci)εkfi) = |ci|/εk, P(U = 0) = 1−
Mn∑
i=1

|ci|/εk.

Then, we have ‖U‖2 ≤ εk a.s. and EU = g under the randomness just introduced. Let
U1, U2, ..., Um be i.i.d. copies of U , and let V = 1

m

∑m
i=1 Ui. We have

E‖V − g‖2 ≤
√

1

m
‖Var(U)‖2 ≤

√
1

m
E‖U‖22 ≤

εk√
m
.

In particular, there exists a realization of V , such that ‖V − g‖2 ≤ εk/
√
m. Note that V

can be expressed as εkm
−1(k1f1 + k2f2 + · · ·+ kMnfMn), where k1, k2, ..., kMn are integers,

and |k1| + |k2| + · · · + |kMn | ≤ m. Thus, the total number of different realizations of V is
upper bounded by

(
2Mn+m

m

)
. Furthermore, ‖V ‖0 ≤ m.

If log2(2Mn) ≤ k ≤ 2Mn, we choose m to be the largest integer such that
(
2Mn+m

m

)
≤ 2k.

Then we have
1

m
≤ c′

k
log2

(
1 +

2Mn

k

)
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for some positive constant c′. Hence, Fq(1) can be covered by 22k−1 balls of radius

εk

√
c′k−1 log2

(
1 +

2Mn

k

)
in L2 distance.

If k ≥ 2Mn, we choose m = Mn. Then Fq(1) can be covered by 2k−1
(
2Mn+m

m

)
balls of

radius εkM
−1/2
n in L2 distance. Consequently, there exists a positive constant c′′ such that

Fq(1) can be covered by 2l−1 balls of radius rl, where

rl ≤ c′′


1 1 ≤ l ≤ log2(2Mn),

l
1
2
− 1
q [log2(1 + 2Mn

l )]
1
q
− 1

2 log2(2Mn) ≤ l ≤ 2Mn,

2−
l

2Mn (2Mn)
1
2
− 1
q l ≥ 2Mn.

For any given 0 < ε < 1, by choosing the smallest l such that rl < ε/2, we find an ε/2-net
{ui}Ni=1 of Fq(1) in L2 distance, where

N = 2l−1 ≤


exp

(
c′′′ε
− 2q

2−q log(1 +M
1
q
− 1

2
n ε)

)
ε > M

1
2
− 1
q

n ,

exp

(
c′′′Mn log(1 +M

1
2
− 1
q

n ε−1)

)
ε < M

1
2
− 1
q

n ,

and c′′′ is some positive constant.
It remains to show that for each 1 ≤ i ≤ N , we can find a function ei so that ‖ei‖0 ≤

5ε2q/(q−2) + 1 and ‖ei − ui‖2 ≤ ε/2.
Suppose ui =

∑Mn
j=1 cijfj , 1 ≤ i ≤ N , with

∑Mn
j=1 |cij |q ≤ 1. Let Li = {j : |cij | >

ε2/(2−q)}. Then, |Li|ε2q/(2−q) ≤
∑
|cij |q ≤ 1, which implies |Li| ≤ ε2q/(q−2) and also∑

j /∈Li

|cij | ≤
∑
j /∈Li

|cij |q[ε2/(2−q)]1−q ≤ ε
2−2q
2−q .

Define vi =
∑

j∈Li cijfj and wi =
∑

j /∈Li cijfj . We have wi ∈ F1(ε
2−2q
2−q ). By the probability

argument above, we can find a function w′i such that ‖w′i‖0 ≤ m and ‖wi−w′i‖2 ≤ ε
2−2q
2−q /

√
m.

In particular, if we choose m to be the smallest integer such that m ≥ 4ε2q/(q−2). Then,
‖wi − w′i‖2 ≤ ε/2.

We define ei = vi + w′i, we have ‖ui − ei‖2 ≤ ε/2, and then we can show that

‖ei‖0 = ‖vi‖0 + ‖w′i‖0 ≤ |Li|+m ≤ 5ε2q/(q−2) + 1.

(ii) Let f∗θ =
∑Mn

j=1 cjfj = arg inffθ∈Fq(tn) ‖fθ − f0‖2 be a best approximation of f0

over the class Fq(tn). For any 1 ≤ m ≤ Mn, let L∗ = {j : |cj | > tnm
−1/q}. Because∑Mn

j=1 |cj |q ≤ t
q
n, we have |L∗|tqn/m <

∑
|cj |q ≤ tqn. So, |L∗| < m. Also,

D :=
∑
j /∈L∗
|cj | ≤

∑
j /∈L∗
|cj |q[tn(1/m)1/q]1−q =

∑
j /∈L∗
|cj |qt1−qn (1/m)(1−q)/q ≤ tnm1−1/q.
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Define v∗ =
∑

j∈L∗ cjfj and w∗ =
∑

j /∈L∗ cjfj . We have w∗ ∈ F1(D). Define a random
function U so that P(U = Dsign(cj)fj) = |cj |/D, j /∈ L∗. Thus, EU = w∗, where E
denotes expectation with respect to the randomness P (just introduced). Also, ‖U‖ ≤
D sup1≤j≤Mn

‖fj‖ ≤ D. Let U1, U2, ..., Um be i.i.d. copies of U , then ∀x ∈ X ,

E

(
f0(x)− v∗(x)− 1

m

m∑
i=1

Ui(x)

)2

= (f∗θ (x)− f0(x))2 +
1

m
Var (U(x)) .

Together with Fubini,

E

∥∥∥∥∥f0 − v∗ − 1

m

m∑
i=1

Ui

∥∥∥∥∥
2

≤ ‖f∗θ − f0‖2 +
1

m
E‖U‖2 ≤ ‖f∗θ − f0‖2 + t2nm

1−2/q.

In particular, there exists a realization of v∗+ 1
m

∑m
i=1 Ui, denoted by fθm , such that ‖fθm−

f0‖2 ≤ ‖f∗θ − f0‖2 + t2nm
1−2/q. Note that ‖θm‖1 ≤ tn and ‖θm‖0 ≤ 2m− 1. If we consider

m̃ = b(m+ 1)/2c instead, we have 2m̃− 1 ≤ m and m̃ ≥ m/2. The conclusion then follows.
This completes the proof of the theorem.

Appendix B. An Insight from the Sparse Approximation Bound Based
on Classical Model Selection Theory

Consider general Mn, tn and 0 < q ≤ 1. With the approximation error bound in Theorem
13, classical model selection theories can provide key insight on what to expect regarding
the minimax rate of convergence for estimating a function in the `Mn

q,tn-hull.
Suppose Jm is the best subset model of size m in terms of having the smallest L2

approximation error to f0. Then, the estimator based on Jm is expected to have the risk
(under some squared error loss) of order

22/qt2nm
1−2/q +

σ2m

n
.

Minimizing this bound over m, we get the best choice (in order) in the range 1 ≤ m ≤
Mn ∧ n :

m∗ = m∗(q, tn) =
⌈
2
(
nt2nτ

)q/2⌉ ∧Mn ∧ n,

where τ = σ−2 is the precision parameter. When q = 0 with tn = kn, m
∗ should be

taken to be kn ∧ n. It is the ideal model size (in order) under the `q-constraint because it
provides the best possible trade-off between the approximation error and estimation error
when 1 ≤ m ≤ Mn ∧ n. The calculation of balancing the approximation error and the
estimation error is well-known to lead to the minimax rate of convergence for general full
approximation sets of functions with pre-determined order of the terms in an approximation
system (see section 4 of Yang and Barron 1999). However, when the terms are not pre-
ordered, there are many models of the same size m∗, and one must pay a price for dealing
with exponentially many or more models (see, e.g., section 5 of Yang and Barron 1999). The
classical model selection theory that deals with searching over a large number of models
tells us that the price of searching over

(
Mn

m∗

)
many models is the addition of the term

1696



Adaptive Optimal Estimation over Sparse `q-Hulls

log
(
Mn

m∗

)
/n (e.g., Barron and Cover 1991; Yang and Barron 1998; Barron et al. 1999; Yang

1999; Baraud 2000; Birgé and Massart 2001; Baraud 2002; Massart 2007). That is, the risk
(under squared error type of loss) of the estimator based on subset selection with a model
descriptive complexity term of order log

(
Mn

m

)
added to the AIC-type of criteria is typically

upper bounded in order by the smallest value of

(squared) approximation errorm +
σ2m

n
+
σ2 log

(
Mn

m

)
n

over all the subset models, which is called the index of the resolvability of the function

to be estimated. Note that m
n +

log (Mnm )
n is uniformly of order m

(
1 + log

(
Mn
m

))
/n over

0 ≤ m ≤Mn. Evaluating the above bound at m∗ in our context yields a quite sensible rate
of convergence. Note also that log

(
Mn

m∗

)
/n (price of searching) is of a higher order than m∗

n
(price of estimation) when m∗ ≤Mn/2. Define

SER(m) = 1 + log

(
Mn

m

)
�
m+ log

(
Mn

m

)
m

, 1 ≤ m ≤Mn,

to be the ratio of the price with searching to that without searching (i.e., only the price of
estimation of the parameters in the model). Here “�” means of the same order as n→∞.

Observe that reducing m∗ slightly will reduce the order of searching price m∗SER(m∗)
n (since

x(1 + log (Mn/x)) is an increasing function for 0 < x < Mn) and increase the order of the

squared bias plus variance (i.e., 22/qt2nm
1−2/q + σ2m

n ). The best choice will typically make

the approximation error 22/qt2nm
1−2/q of the same order as

m(1+log Mn
m

)

n (as also pointed out
in Raskutti et al. 2012 from a different analysis). Define

m∗ = m∗(q, tn) =


m∗ if m∗ = Mn ∧ n,⌈

m∗

(1+log Mn
m∗ )

q/2

⌉
=
⌈

m∗

SER(m∗)q/2

⌉
otherwise.

We call this the effective model size (in order) under the `q-constraint because evaluating
the index of resolvability expression from our general oracle inequality (see Proposition 15
in the Appendix) at the best model of this size gives the minimax rate of convergence, as
shown in this work. When m∗ = n, the minimax risk is of order 1 (or higher sometimes)
and thus does not converge. Note that the down-sizing factor SER(m∗)q/2 from m∗ to m∗
depends on q: it becomes more severe as q increases; when q = 1, the down-sizing factor

reaches the order
(
1 + log

(
Mn
m∗

))1/2
. Since the risk of the ideal model and that by a good

model selection rule differ only by a factor of log(Mn/m
∗), as long as Mn is not too large,

the price of searching over many models of the same size is small, which is a fact well known
in the model selection literature (see, e.g., Yang and Barron 1998, section III.D).

For q = 0, under the assumption of at most kn ≤ Mn ∧ n nonzero terms in the linear
representation of the true regression function, the risk bound immediately yields the rate(

1 + log
(
Mn

kn

))
/n �

kn
(
1+log Mn

kn

)
n . Thus, from all above, we expect that m∗SER(m∗)

n ∧ 1 is

the unifying optimal rate of convergence for regression under the `q-constraint for 0 ≤ q ≤ 1.
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Appendix C.

In this appendix, the theorems in Sections 3-4 are proved, with additional results given as
preparations.

C.1 Some General Oracle Inequalities

The proofs of the upper bound results rely on some oracle inequalities, which may be of
interest in other applications. Consider the setting in Section 3.2 of the main paper.

Proposition 15 Suppose AE−G holds for the E-G strategy, respectively. Then, the follow-
ing oracle inequalities hold for the estimator f̂Fn.

(i) For T-C and T-Y strategies,

R(f̂Fn ; f0;n)

≤ c0 inf
1≤m≤Mn∧n

(
c1 inf

Jm
d2(f0;FJm) + c2

m

n1
+ c3

1 + log
(
Mn

m

)
+ log(Mn ∧ n)− log(1− p0)

n− n1

)

∧c0
(
‖f0‖2 + c3

1− log p0
n− n1

)
,

where c0 = 1, c1 = c2 = CL,σ, c3 = 2
λC

for the T-C strategy; c0 = CY , c1 = c2 = CL,σ,

c3 = σ2 for the T-Y strategy.
(ii) For AC-C and AC-Y strategies,

R(f̂Fn ; f0;n)

≤ c0 inf
1≤m≤Mn∧n

(
R(f0,m, n) + c2

m

n1
+ c3

1 + log
(
Mn

m

)
+ log(Mn ∧ n)− log(1− p0)

n− n1

)

∧c0
(
‖f0‖2 + c3

1− log p0
n− n1

)
,

where

R(f0,m, n) = c1 inf
Jm

inf
s≥1

(
d2(f0;FLJm,s) + 2c3

log(1 + s)

n− n1

)
,

and c0 = c1 = 1, c2 = 8c(σ2 + 5L2), c3 = 2
λC

for the AC-C strategy; c0 = CY , c1 = 1,

c2 = 8c(σ2 + 5L2), c3 = σ2 for the AC-Y strategy.

From the proposition above, the risk R(f̂Fn ; f0;n) is upper bounded by a multiple of
the best trade-off of the different sources of errors (approximation error, estimation error
due to estimating the linear coefficients, and error associated with searching over many
models of the same dimension). For a model J, let IR(f0; J) generically denote the sum
of these three sources of errors. Then, the best trade-off is IR(f0) = infJ IR(f0; J), where
the infimum is over all the candidate models. Following the terminology in Barron and
Cover (1991), IR(f0) is the so-called index of resolvability of the true function f0 by the
estimation method over the candidate models. We call IR(f0; J) the index of resolvability
at model J. The utility of the index of resolvability is that for f0 with a given characteristic,
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an evaluation of the index of resolvability at the best J immediately tells us how well the
unknown function is “resolved” by the estimation method at the current sample size. Thus,
accurate index of resolvability bounds often readily show minimax optimal performance of
the model selection based estimator.

Proof of Proposition 15.

(i) For the T-C strategy,

R(f̂Fn ; f0;n) ≤ inf
1≤m≤Mn∧n

{
CL,σ

(
inf
Jm

d2(f0;FJm) +
m

n1

)
+

2

λC

(
log(Mn ∧ n) + log

(
Mn

m

)
− log(1− p0)

n− n1

)}
∧
{
‖f0‖2 −

2

λC

log p0
n− n1

}
.

For the T-Y strategy,

R(f̂Fn ; f0;n) ≤ CY inf
1≤m≤Mn∧n

{
CL,σ inf

Jm
d2(f0;FJm) + CL,σ

m

n1
+

σ2

(
1 + log(Mn ∧ n) + log

(
Mn

m

)
− log(1− p0)

n− n1

)}
∧ CY

{
‖f0‖2 + σ2

1− log p0
n− n1

}
.

(ii) For the AC-C strategy,

R(f̂Fn ; f0;n)

≤ inf
1≤m≤Mn∧n

{
inf
Jm

inf
s≥1

(
d2(f0;FLJm,s) + c(2σ′ +H)2

m

n1
+

2

λC
×(

log(Mn ∧ n) + log
(
Mn

m

)
− log(1− p0)

n− n1
+

2 log(1 + s)

n− n1

))}
∧
{
‖f0‖2 −

2

λC

log p0
n− n1

}
≤ inf

1≤m≤Mn∧n

{
inf
Jm

inf
s≥1

(
d2(f0;FLJm,s) + 8c(σ2 + 5L2)

m

n1
+

2

λC
×(

log(Mn ∧ n) + log
(
Mn

m

)
− log(1− p0)

n− n1
+

2 log(1 + s)

n− n1

))}
∧
{
‖f0‖2 −

2

λC

log p0
n− n1

}
.

For the AC-Y strategy,

R(f̂Fn ; f0;n)

≤ CY inf
1≤m≤Mn∧n

{
inf
Jm

inf
s≥1

(
d2(f0;FLJm,s) + c(2σ′ +H)2

m

n1
+ σ2

(
1 + log(Mn ∧ n)

n− n1
+

+
log
(
Mn

m

)
n− n1

+
− log(1− p0) + 2 log(1 + s)

n− n1

))}
∧ CY

{
‖f0‖2 + σ2

1− log p0
n− n1

}
≤ CY inf

1≤m≤Mn∧n

{
inf
Jm

inf
s≥1

(
d2(f0;FLJm,s) + 8c(σ2 + 5L2)

m

n1
+ σ2

(
1 + log(Mn ∧ n)

n− n1
+

+
log
(
Mn

m

)
n− n1

+
− log(1− p0) + 2 log(1 + s)

n− n1

))}
∧ CY

{
‖f0‖2 + σ2

1− log p0
n− n1

}
.
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This completes the proof of Proposition 15.

C.2 Proof of Theorem 5

To derive the upper bounds, we only need to examine the index of resolvability for each
strategy. The nature of the constants in Theorem 5 follows from Proposition 15.

(i) For T- strategies, according to Theorem 13 and the general oracle inequalities in
Proposition 15, for each 1 ≤ m ≤Mn ∧ n, there exists a subset Jm and the best fθm ∈ FJm
such that

R(f̂Fn ; f0;n) ≤ c0

(
c1‖fθm − f0‖2 + 2c2

m

n
+ 2c3

1 + log
(
Mn

m

)
+ log(Mn ∧ n)− log(1− p0)

n

)

∧c0
(
‖f0‖2 + 2c3

1− log p0
n

)
.

Under the assumption that f0 has sup-norm bounded, the index of resolvability evaluated
at the null model fθ ≡ 0 leads to the fact that the risk is always bounded above by

C0

(
‖f0‖2 + C2σ2

n

)
for some constant C0, C2 > 0.

For F = Fq(tn), and when m∗ = m∗ = Mn < n, evaluating the index of resolvability at
the full model JMn , we get

R(f̂Fn ; f0;n) ≤ c0c1d2(f0;Fq(tn)) +
CMn

n
with

CMn

n
=
Cm∗

(
1 + log

(
Mn
m∗

))
n

.

Thus, the upper bound is proved when m∗ = m∗ = Mn.

For F = Fq(tn), and when m∗ = m∗ = n < Mn, then clearly m∗

(
1 + log

(
Mn
m∗

))
/n is

larger than 1, and then the risk bound given in the theorem in this case holds.

For F = Fq(tn), and when 1 ≤ m∗ ≤ m∗ < Mn∧n, for 1 ≤ m < Mn, and from Theorem
13, we have

R(f̂Fn ; f0;n) ≤ c0

(
c1d

2(f0;Fq(tn)) + c12
2/q−1t2nm

1−2/q + 2c2
m

n

+2c3
1 + log

(
Mn

m

)
+ log(Mn ∧ n)

n
− 2c3

log(1− p0)
n

)
.

Since log
(
Mn

m

)
≤ m log

(
eMn
m

)
= m

(
1 + log Mn

m

)
, then

R(f̂Fn ; f0;n) ≤ c0c1d
2(f0;Fq(tn)) + C

(
22/qt2nm

1−2/q +
m
(
1 + log Mn

m

)
n

+
log(Mn ∧ n)

n

)

≤ c0c1d
2(f0;Fq(tn)) + C

′

(
22/qt2nm

1−2/q +
m
(
1 + log Mn

m

)
n

)
,
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where C and C ′ are constants that do not depend on n, q, tn, and Mn (but may depend on
σ2, p0 and L). Choosing m = m∗, we have

22/qt2nm
1−2/q +

m
(
1 + log Mn

m

)
n

≤ C ′′
m∗

(
1 + log

(
Mn
m∗

))
n

,

where C ′′ is an absolute constant. The upper bound for this case then follows.
For F = F0(kn), by evaluating the index of resolvability from Proposition 15 at m = kn,

the upper bound immediately follows.
For F = Fq(tn) ∩ F0(kn), both `q- and `0-constraints are imposed on the coefficients,

the upper bound will go with the faster rate from the tighter constraint. The result follows.
(ii) For AC- strategies, three constraints ‖θ‖1 ≤ s (s > 0), ‖θ‖q ≤ tn (0 ≤ q ≤ 1, tn > 0)

and ‖fθ‖∞ ≤ L are imposed on the coefficients. Notice that ‖θ‖1 ≤ ‖θ‖q when 0 < q ≤ 1,
then the `1-constraint is satisfied by default as long as s ≥ tn and ‖θ‖q ≤ tn with 0 < q ≤ 1.
Using similar arguments as used for T-strategies, the desired upper bounds can be easily
derived. This completes the proof of Theorem 5.

C.3 Global Metric Entropy and Local Metric Entropy

The derivations of the lower bounds in the main paper require some preparations.
Consider estimating a regression function f0 in a general function class F based on i.i.d.

observations (Xi, Yi)
n
i=1 from the model

Y = f0(X) + σ · ε, (5)

where σ > 0 and ε follows a standard normal distribution and is independent of X.
Given F , we say G ⊂ F is an ε-packing set in F (ε > 0) if any two functions in G are

more than ε apart in the L2 distance. Let 0 < α < 1 be a constant.
Definition 1: (Global metric entropy) The packing ε-entropy of F is the logarithm of

the largest ε-packing set in F . The packing ε-entropy of F is denoted by M(ε).
Definition 2: (Local metric entropy) The α-local ε-entropy at f ∈ F is the logarithm of

the largest (αε)-packing set in B(f, ε) = {f ′ ∈ F :‖ f ′−f ‖≤ ε}. The α-local ε-entropy at f
is denoted by Mα(ε | f). The α-local ε-entropy of F is defined as M loc

α (ε) = maxf∈FMα(ε |
f).

Suppose that M loc
α (ε) is lower bounded by M loc

α (ε) (a continuous function), and assume
that M(ε) is upper bounded by M(ε) and lower bounded by M(ε) (with M(ε) and M(ε)
both being continuous).

Suppose there exist εn, εn, and εn such that

M loc
α (σεn) ≥ nε2n + 2 log 2, (6)

M(
√

2σεn) = nε2n, (7)

M(σεn) = 4nε2n + 2 log 2. (8)

Proposition 16 (Yang and Barron 1999) The minimax risk for estimating f0 from model
(5) in the function class F is lower-bounded as the following

inf
f̂

sup
f0∈F

E‖f̂ − f0‖2 ≥
α2σ2ε2n

8
,
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inf
f̂

sup
f0∈F

E‖f̂ − f0‖2 ≥
σ2ε2n

8
.

Let F be a subset of F . If a packing set in F of size at least exp(M loc
α (σεn)) or exp(M(σεn))

is actually contained in F , then inf f̂ supf0∈F E‖f̂−f0‖
2 is lower bounded by α2σ2ε2n

8 or
σ2ε2n
8 ,

respectively.

Proof. The result is essentially given in Yang and Barron (1999), but not in the concrete
forms. The second lower bound is given in Yang (2004). We briefly derive the first one.

Let N be an (αεn)-packing set in B(f, σεn) = {f ′ ∈ F :‖ f ′ − f ‖≤ σεn}. Let Θ denote
a uniform distribution on N. Then, by applying the upper bound on mutual information
displayed in the middle of page 1571 of Yang and Barron (1999), together with the specific
form of the K-L divergence between the Gaussian regression densities (see the first paragraph
of the proof of Theorem 6 of Yang and Barron 1999 on page 1583), the mutual information
between Θ and the observations (Xi, Yi)

n
i=1 is upper bounded by n

2 ε
2
n, and an application

of Fano’s inequality (see the proof of Theorem 1 in Yang and Barron 1999, particularly
Equation 1 on page 1571) to the regression problem gives the minimax lower bound

α2σ2ε2n
4

(
1− I (Θ; (Xi, Yi)

n
i=1) + log 2

log |N |

)
,

where |N | denotes the size of N. By our way of defining εn, the conclusion of the first lower
bound follows.

For the last statement, we prove for the global entropy case and the argument for the
local entropy case similarly follows. Observe that the upper bound on I (Θ; (Xi, Yi)

n
i=1) by

log(|G|) + nε2n, where G is an εn-net of F under the square root of the Kullback-Leibler
divergence (see Yang and Barron 1999, page 1571), continues to be an upper bound on
I (Θ; (Xi, Yi)

n
i=1) , where Θ is the uniform distribution on a packing set in F . Therefore, by

the derivation of Theorem 1 in Yang and Barron (1999), the same lower bound holds for F
as well. This completes the proof.

C.4 Proof of Theorem 8

Assume f0 ∈ F in each case of F so that d2(f0;F) = 0. Without loss of generality, assume
σ = 1.

(i) We first derive the lower bounds without L2 or L∞ upper bound assumption on f0.
To prove case 1 (i.e., F = Fq(tn)), it is enough to show that

inf
f̂

sup
f0∈Fq(tn)

E‖f̂ − f0‖2 ≥ Cq


Mn
n if m̃∗ = Mn,

tqn

(
1+log Mn

(nt2n)q/2

n

)1−q/2

if 1 < m̃∗ ≤m̃∗ < Mn,

t2n if m̃∗= 1,

in light of the fact that, by definition, when m̃∗ = Mn, m̃∗ = Mn and when 1 < m̃∗ ≤ m̃∗ <
Mn, we have

m̃∗(1+log Mn
m̃∗

)

n is upper and lower bounded by multiples (depending only on q)
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of tqn

(
1+log Mn

(nt2n)q/2

n

)1−q/2

. Note that m̃∗ and m̃∗ are defined as m∗ and m∗ except that no

ceiling of n is imposed there.

Given that the basis functions are orthonormal, the L2 distance on Fq(tn) is the same
as the `2 distance on the coefficients in Bq(tn;Mn) = {θ : ‖θ‖q ≤ tn}. Thus, the entropy of
Fq(tn) under the L2 distance is the same as that of Bq(tn;Mn) under the `2 distance.

When m̃∗ = Mn, we use the lower bound tool in terms of local metric entropy. Given
the `q-`2-relationship ‖θ‖q ≤Mn

1/q−1/2‖θ‖2 for 0 < q ≤ 2, for ε ≤
√
Mn/n, taking f∗0 ≡ 0,

we have

B(f∗0 ; ε) = {fθ : ‖fθ − f∗0 ‖ ≤ ε, ‖θ‖q ≤ tn} = {fθ : ‖θ‖2 ≤ ε, ‖θ‖q ≤ tn} = {fθ : ‖θ‖2 ≤ ε},

where the last equality holds because when ε ≤
√
Mn/n, for ‖θ‖2 ≤ ε, ‖θ‖q ≤ tn is always

satisfied. Consequently, for ε ≤
√
Mn/n, the (ε/2)-packing of B(f∗0 ; ε) under the L2 distance

is equivalent to the (ε/2)-packing of Bε = {θ : ‖θ‖2 ≤ ε} under the `2 distance. Note that
the size of the maximum packing set is at least the ratio of volumes of the balls Bε and Bε/2,

which is 2Mn . Thus, the local entropy M loc
1/2(ε) of Fq(t) under the L2 distance is at least

M loc
1/2(ε) = Mn log 2 for ε ≤

√
Mn/n. The minimax lower bound for the case of m̃∗ = Mn

then directly follows from Proposition 16.

When 1 < m̃∗ ≤ m̃∗ < Mn, the use of global entropy is handy. Applying the minimax
lower bound in terms of global entropy in Proposition 16, with the metric entropy order
for larger ε (which is tight in our case of orthonormal functions in the dictionary) from
Theorem 13 the minimax lower rate is readily obtained. Indeed, for the class Fq(tn), with

ε > tnM
1
2
− 1
q

n , there are constants c′ and c′ (depending only on q) such that

c′
(
tnε
−1) 2q

2−q log(1 +M
1
q
− 1

2
n t−1n ε) ≤M(ε) ≤M(ε) ≤ c′

(
tnε
−1) 2q

2−q log(1 +M
1
q
− 1

2
n t−1n ε).

Thus, we see that εn determined by (8.4) is lower bounded by c
′′′
t
q
2
n

(
(1 + log Mn

(nt2n)
q/2 )/n

) 1
2
− q

4
,

where c
′′′

is a constant depending only on q.

When m̃∗ = 1, note that with f∗0 = 0 and ε ≤ tn,

B(f∗0 ; ε) = {fθ : ‖θ‖2 ≤ ε, ‖θ‖q ≤ tn} ⊃ {fθ : ‖θ‖q ≤ ε}.

Observe that the (ε/2)-packing of {fθ : ‖θ‖q ≤ ε} under the L2 distance is equivalent to
the (1/2)-packing of {fθ : ‖θ‖q ≤ 1} under the same distance. Thus, by applying Theorem
13 with tn = 1 and ε = 1/2, we know that the (ε/2)-packing entropy of B(f∗0 ; ε) is lower

bounded by c
′′

log(1 + 1
2M

1/q−1/2
n ) for some constant c

′′
depending only on q, which is at

least a multiple of nt2n when m̃∗ ≤
(
1 + log Mn

m̃∗
)q/2

. Therefore we can choose 0 < δ < 1
small enough (depending only on q) such that

c
′′

log(1 +
1

2
M1/q−1/2
n ) ≥ nδ2t2n + 2 log 2.

The conclusion then follows from applying the first lower bound of Proposition 16.
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To prove case 2 (i.e., F = F0(kn)), noticing that for Mn/2 ≤ kn ≤ Mn, we have

(1 + log 2)/2Mn ≤ kn

(
1 + log Mn

kn

)
≤ Mn, together with the monotonicity of the minimax

risk in the function class, it suffices to show the lower bound for kn ≤Mn/2. Let Bkn(ε) =
{θ : ‖θ‖2 ≤ ε, ‖θ‖0 ≤ kn}. As in case 1, we only need to understand the local entropy of the
set Bkn(ε) for the critical ε that gives the claimed lower rate. Let η = ε/

√
kn. Then Bkn(ε)

contains the set Dkn(η), where

Dk(η) = {θ = ηI : I ∈ {1, 0,−1}Mn , ‖I‖0 ≤ k}.

Clearly ‖ηI1 − ηI2‖2 ≥ η (dHM (I1, I2))
1/2 , where dHM (I1, I2) is the Hamming distance

between I1, I2 ∈ {1, 0,−1}Mn . From Lemma 4 of Raskutti et al. (2012) (the result there
actually also holds when requiring the pairwise Hamming distance to be strictly larger than
k/2; see also Lemma 4 of Birgé and Massart 2001 or the derivation of a metric entropy
lower bound in Kühn 2001), there exists a subset of {I : I ∈ {1, 0,−1}Mn , ‖I‖0 ≤ k} with

more than exp
(
k
2 log 2(Mn−k)

k

)
points that have pairwise Hamming distance larger than

k/2. Consequently, we know the local entropy M loc
1/
√
2
(ε) of F0(kn) is lower bounded by

kn
2 log 2(Mn−kn)

kn
. The result follows.

To prove case 3 (i.e., Fq(tn) ∩ F0(kn)), for the larger kn case, from the proof of case
1, we have used fewer than kn nonzero components to derive the minimax lower bound
there. Thus, the extra `0-constraint does not change the problem in terms of lower bound.

For the smaller kn case, note that for θ with ‖θ‖0 ≤ kn, ‖θ‖q ≤ k
1/q−1/2
n ‖θ‖2 ≤ k

1/q−1/2
n ·√

Ckn

(
1 + log Mn

kn

)
/n for θ with ‖θ‖2 ≤

√
Ckn

(
1 + log Mn

kn

)
/n for some constant C >

0. Therefore the `q-constraint is automatically satisfied when ‖θ‖2 is no larger than the

critical order

√
kn

(
1 + log Mn

kn

)
/n, which is sufficient for the lower bound via local entropy

techniques. The conclusion follows.

(ii) Now, we turn to the lower bounds under the L2-norm condition. When the regression
function f0 satisfies the boundedness condition in L2-norm, the estimation risk is obviously
upper bounded by L2 by taking the trivial estimator f̂ = 0. In all of the lower boundings in
(i) through local entropy argument, if the critical radius ε is of order 1 or lower, the extra con-
dition ‖f0‖ ≤ L does not affect the validity of the lower bound. Otherwise, we take ε to be L.
Then, since the local entropy stays the same, it directly follows from the first lower bound in
Proposition 16 that L2 is a lower order of the minimax risk. The only case remained is that

of
(
1 + log Mn

m∗

)q/2 ≤ m∗ < Mn. If tqn
(

(1 + log Mn

(nt2)q/2
)/n
)1−q/2

is upper bounded by a con-

stant, from the proof of the lower bound of the metric entropy of the `q-ball in Kühn (2001),
we know that the functions in the special packing set satisfy the L2 bound. Indeed, consider

{fθ : θ ∈ Dmn(η)} with mn being a multiple of
(
nt2n/

(
1 + log Mn

(nt2n)
q/2

))q/2
and η being a

(small enough) multiple of
√

(1 + log Mn

(nt2n)
q/2 )/n. Then these fθ have ‖fθ‖ upper bounded

by a multiple of tqn
(

(1 + log Mn

(nt2n)
q/2 )/n

)1−q/2
and the minimax lower bound follows from

the last statement of Proposition 16. If tqn
(

(1 + log Mn

(nt2n)
q/2 )/n

)1−q/2
is not upper bounded,
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we reduce the packing radius to L (i.e., choose η so that η
√
mn is bounded by a multiple

of L). Then the functions in the packing set satisfy the L2 bound and furthermore, the

number of points in the packing set is of a larger order than ntqn
(

(1 + log Mn

(nt2n)
q/2 )/n

)1−q/2
.

Again, adding the L2 condition on f0 ∈ Fq(t) does not increase the mutual information
bound in our application of Fano’s inequality. We conclude that the minimax risk is lower
bounded by a constant.

(iii) Finally, we prove the lower bounds under the sup-norm bound condition. For 1),
under the direct sup-norm assumption, the lower bound is obvious. For the general Mn

case 2), note that the functions fθ’s in the critical packing set satisfies that ‖θ‖2 ≤ ε with ε

being a multiple of

√
kn
(
1+log Mn

kn

)
n . Then together with ‖θ‖0 ≤ kn, we have ‖θ‖1 ≤

√
kn‖θ‖2,

which is bounded by assumption. The lower bound conclusion then follows from the last

part of Proposition 16. To prove the results for the case Mn/
(

1 + log Mn
kn

)
≤ bn, as in

Tsybakov (2003), we consider the special dictionary Fn = {fi : 1 ≤ i ≤Mn} on [0, 1], where

fi(x) =
√
MnI[ i−1

Mn
, i
Mn

)(x), i = 1, ...,Mn.

Clearly, these functions are orthonormal. By the last statement of Proposition 16, we only
need to verify that the functions in the critical packing set in each case do have the sup-
norm bound condition satisfied. Note that for any fθ with θ ∈ Dkn(η) (as defined earlier),
we have ‖fθ‖ ≤ η

√
kn and ‖fθ‖∞ ≤ η

√
Mn. Thus, it suffices to show that the critical

packing sets for the previous lower bounds without the sup-norm bound can be chosen

with θ in Dkn(η) for some η = O
(
M
−1/2
n

)
. Consider η to be a (small enough) multiple of√(

1 + log Mn
kn

)
/n = O

(
M
−1/2
n

)
(which holds under the assumption Mn

1+log Mn
kn

≤ bn). From

the proof of part (ii) without constraint, we know that there is a subset of Dkn(η) that

with more than exp(kn2 log 2(Mn−kn)
kn

) points that are separated in `2 distance by at least√
kn

(
1 + log Mn

kn

)
/n. This completes the proof.

C.5 Proof of Corollary 10

Since f0 belongs to FLq (tn;Mn), or FL0 (kn;Mn), or both, thus d2(f0,F) is equal to zero for

all cases (except for AC- strategies when F = FL0 (kn;Mn), which we discuss later).

(i) For T- strategies and F = FLq (tn;Mn). For each 1 ≤ m ≤Mn ∧ n, according to the

general oracle inequalities in the proof of Theorem 5, the adaptive estimator f̂A has

sup
f0∈F

R(f̂A; f0;n) ≤ c0

(
2c2

m

n
+ 2c3

1 + log
(
Mn

m

)
+ log(Mn ∧ n)− log(1− p0)

n

)

∧c0
(
‖f0‖2 − 2c3

log p0
n

)
.

When m∗ = m∗ = Mn < n, the full model JMn results in an upper bound of order
Mn/n.
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When m∗ = m∗ = n < Mn, we choose the null model and the upper bound is simply of
order one.

When 1 < m∗ ≤ m∗ < Mn ∧ n, the similar argument of Theorem 5 leads to an up-

per bound of order 1 ∧ m∗
n

(
1 + log Mn

m∗

)
. Since (nt2n)q/2

(
1 + log Mn

(nt2n)
q/2

)−q/2
≤ m∗ ≤

4(nt2n)q/2
(

1 + log Mn

2(nt2n)
q/2

)−q/2
, then the upper bound is further upper bounded by cqt

q
n·(

1+log Mn

(nt2n)q/2

n

)1−q/2

for some constant cq only depending on q.

When m∗ = 1, the null model leads to an upper bound of order ‖f0‖2 + 1
n ≤ t2n + 1

n ≤
2(t2n ∨ 1

n) if f0 ∈ FLq (tn;Mn).

For F = FL0 (kn;Mn) or F = FLq (tn;Mn)∩FL0 (kn;Mn), one can use the same argument
as in Theorem 5.

(ii) For AC- strategies, for F = FLq (tn;Mn) or F = FLq (tn;Mn) ∩ FL0 (kn;Mn), again

one can use the same argument as in the proof of Theorem 5. For F = FL0 (kn;Mn),

the approximation error is infs≥1

(
inf{θ:‖θ‖1≤s,‖θ‖0≤kn,‖fθ‖∞≤L} ‖fθ − f0‖

2 + 2c3
log(1+s)

n

)
≤

inf{θ:‖θ‖1≤αn,‖θ‖0≤kn,‖fθ‖∞≤L} ‖fθ − f0‖
2 + 2c3

log(1+αn)
n = 2c3

log(1+αn)
n if f0 ∈ FL0 (kn;Mn).

The upper bound then follows. This completes the proof.

C.6 Proof of Theorem 11

Without loss of generality, we assume σ2 = 1 for the error variance. First, we give a simple
fact. Let Bk(η) = {θ : ‖θ‖2 ≤ η, ‖θ‖0 ≤ k} and Bk(f0; ε) = {fθ : ‖fθ‖ ≤ ε, ‖θ‖0 ≤ k}
(take f0 = 0). Then, under Assumption SRC with γ = k, the a

2a -local ε-packing entropy of
Bk(f0; ε) is lower bounded by the 1

2 -local η-packing entropy of Bk(η) with η = ε/a.

(i) The proof is essentially the same as that of Theorem 8. When m∗ = Mn, the previous

lower bounding method works with a slight modification. When
(
1 + log Mn

m∗

)q/2
< m∗ <

Mn, we again use the global entropy to derive the lower bound based on Proposition 16. The
key is to realize that in the derivation of the metric entropy lower bound for {θ : ‖θ‖q ≤ tn}
in Kühn (2001), an optimal size packing set is constructed in which every member has at
most m∗ non-zero coefficients. Assumption SRC with γ = m∗ ensures that the L2 distance
on this packing set is equivalent to the `2 distance on the coefficients and then we know the
metric entropy of Fq(tn;Mn) under the L2 distance is at the order given. The result follows

as before. When m∗ ≤
(
1 + log Mn

m∗

)q/2
, observe that Fq(tn;Mn) ⊃ {βxj : |β| ≤ tn} for any

1 ≤ j ≤Mn. The use of the local entropy result in Proposition 16 readily gives the desired
result.

(ii) As in the proof of Theorem 8, without loss of generality, we can assume kn ≤Mn/2.
Together with the simple fact given at the beginning of the proof, for Bkn(ε/a) = {θ :‖θ‖2 ≤
ε/a, ‖θ‖0 ≤ kn}, with η′ = ε/(a

√
kn), we know Bkn(ε/a) contains the set

{θ = η′I : I ∈ {1, 0,−1}Mn , ‖I‖0 ≤ kn}.

For θ1 = η′I1, θ2 = η′I2 both in the above set, by Assumption SRC, ‖fθ1 − fθ2‖2 ≥
a2η

′2dHM (I1, I2) ≥ a2ε2/(2a2) when the Hamming distance dHM (I1, I2) is larger than kn/2.
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With the derivation in the proof of part (i) of Theorem 8 (case 2), we know the local en-
tropy M loc

a/(
√
2a)

(ε) of F0(kn;Mn) ∩ {fθ : ‖θ‖2 ≤ an} with an ≥ ε is lower bounded by

kn
2 log 2(Mn−kn)

kn
. Then, under the condition an ≥ C

√
kn

(
1 + log Mn

kn

)
/n for some constant

C, the minimax lower rate kn

(
1 + log Mn

kn

)
/n follows from a slight modification of the

proof of Theorem 8 with ε = C ′
√
kn

(
1 + log Mn

kn

)
/n for some constant C ′ > 0. When

0 < an < C

√
kn

(
1 + log Mn

kn

)
/n, with ε of order an, the lower bound follows.

(iii) For the larger kn case, from the proof of part (i) of the theorem, we have used fewer
than kn nonzero components to derive the minimax lower bound there. Thus, the extra
`0-constraint does not change the problem in terms of lower bound. For the smaller kn case,

note that for θ with ‖θ‖0 ≤ kn, ‖θ‖q ≤ k1/q−1/2n ‖θ‖2 ≤ k1/q−1/2n

√
Ckn

(
1 + log Mn

kn

)
/n for θ

with ‖θ‖2 ≤
√
Ckn

(
1 + log Mn

kn

)
/n. Therefore the `q-constraint is automatically satisfied

when ‖θ‖2 is no larger than the critical order

√
kn

(
1 + log Mn

kn

)
/n, which is sufficient for

the lower bound via local entropy techniques. The conclusion follows. This completes the
proof.

C.7 Proof of Corollary 12

(i) We only need to derive the lower bound part. Under the assumptions that supj ‖Xj‖∞ ≤
L0 < ∞ for some constant L0 > 0, for a fixed tn = t > 0, we have ∀fθ ∈ Fq(tn;Mn),

‖fθ‖∞ ≤ supj ‖Xj‖∞ ·
∑Mn

j=1 |θj | ≤ L0‖θ‖1 ≤ L0‖θ‖q ≤ L0t. Then the conclusion follows
directly from Theorem 11 (Part (i)). Note that when tn is fixed, the case m∗ = 1 does not
need to be separately considered.

(ii) For the upper rate part, we use the AC-C upper bound. For fθ with ‖θ‖∞ ≤ L0,
clearly, we have ‖θ‖1 ≤MnL0, and consequently, since log(1+MnL0) is upper bounded by a

multiple of kn

(
1 + log Mn

kn

)
, the upper rate kn

n

(
1 + log Mn

kn

)
∧ 1 is obtained from Corollary

10. Under the assumptions that supj ‖Xj‖∞ ≤ L0 <∞ and kn

√(
1 + log Mn

kn

)
/n ≤

√
K0,

we know that ∀fθ ∈ F0(kn;Mn)
⋂
{fθ : ‖θ‖2 ≤ an} with an = C

√
kn

(
1 + log Mn

kn

)
/n for

some constant C > 0, the sup-norm of fθ is upper bounded by

‖
Mn∑
j=1

θjxj‖∞ ≤ L0‖θ‖1 ≤ L0

√
knan = CL0kn

√
1 + log Mn

kn

n
≤ C

√
K0L0.

Then the functions in F0(kn;Mn)
⋂
{f : ‖θ‖2 ≤ an} have sup-norm uniformly bounded.

Note that for bounded an, ‖θ‖2 ≤ an implies that ‖θ‖∞ ≤ an. Thus, the extra restriction
‖θ‖∞ ≤ L0 does not affect the minimax lower rate established in part (ii) of Theorem 11.

(iii) The upper and lower rates follow similarly from Corollary 10 and Theorem 11. The
details are thus skipped. This completes the proof.
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L. Birgé. Model selection for density estimation with L2-loss. Probab. Theory Related Fields,
158:533–574, 2014.
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L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. A Distribution-Free Theory of Nonpara-
metric Regression. Springer, New York, 2002.

A. Juditsky and A. Nemirovski. Functional aggregation for nonparametric estimation. An-
nals of Statistics, 28:681–719, 2000.

A. Juditsky, P. Rigollet, and A.B. Tsybakov. Learning by mirror averaging. Annals of
Statistics, 36:2183–2206, 2008.
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1980/1981, Exp. V., 1981.

G. Raskutti, M. Wainwright, and B. Yu. Restricted eigenvalue properties for correlated
gaussian designs. Journal of Machine Learning Research, 11:2241–2259, 2010.

G. Raskutti, M. Wainwright, and B. Yu. Minimax rates of estimation for high-dimensional
linear regression over `q-balls. IEEE Transactions on Information Theory, 57:6976–699,
2012.

P. Rigollet and A.B. Tsybakov. Exponential screening and optimal rates of sparse estima-
tion. Annals of Statistics, 39:731–771, 2010.

A.B. Tsybakov. Optimal rates of aggregation. Annals of Statistics, 39:731–771, 2003.

S.A. van de Geer and P. Bühlmann. On the conditions used to prove oracle results for the
lasso. Electron. J. Statist, 3:1360–1392, 2009.

Z. Wang, S. Paterlini, F. Gao, and Y. Yang. Adaptive minimax estimation over sparse
`q-hulls. Arxiv preprint arXiv:1108.1961, 2011.

M. Wegkamp. Model selection in nonparametric regression. Annals of Statistics, 31:252–273,
2003.

Y. Yang. Minimax optimal density estimation. Ph.D. Dissertation, Department of Statistics,
Yale University, 1996.

Y. Yang. Model selection for nonparametric regression. Statistica Sinica, 9:475–499, 1999.

Y. Yang. Combining different procedures for adaptive regression. Journal of Multivariate
Analysis, 74:135–161, 2000a.

Y. Yang. Mixing strategies for density estimation. Annals of Statistics, 28:75–87, 2000b.

Y. Yang. Adaptive regression by mixing. Journal of American Statistical Association, 96:
574–588, 2001.

1710



Adaptive Optimal Estimation over Sparse `q-Hulls

Y. Yang. Aggregating regression procedures to improve performance. Bernoulli, 10:25–47,
2004. An older version of the paper is Preprint #1999-17 of Department of Statistics at
Iowa State University.

Y. Yang and A.R. Barron. An asymptotic property of model selection criteria. IEEE Trans.
Inform. Theory, 44:95–116, 1998.

Y. Yang and A.R. Barron. Information theoretic determination of minimax rates of con-
vergence. Annals of Statistics, 27:1564–1599, 1999.

C.H. Zhang. Nearly unbiased variable selection under minimax concave penalty. Annals of
Statistics, 38:894–942, 2010.

1711



 



Journal of Machine Learning Research 15 (2014) 1713-1750 Submitted 5/13; Revised 3/14; Published 5/14

Graph Estimation From Multi-Attribute Data

Mladen Kolar mkolar@chicagobooth.edu
The University of Chicago Booth School of Business
Chicago, Illinois 60637, USA

Han Liu hanliu@princeton.edu
Department of Operations Research and Financial Engineering
Princeton University
Princeton, New Jersey 08544, USA

Eric P. Xing epxing@cs.cmu.edu

Machine Learning Department

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213, USA

Editor: Yuan (Alan) Qi

Abstract

Undirected graphical models are important in a number of modern applications that in-
volve exploring or exploiting dependency structures underlying the data. For example,
they are often used to explore complex systems where connections between entities are
not well understood, such as in functional brain networks or genetic networks. Existing
methods for estimating structure of undirected graphical models focus on scenarios where
each node represents a scalar random variable, such as a binary neural activation state
or a continuous mRNA abundance measurement, even though in many real world prob-
lems, nodes can represent multivariate variables with much richer meanings, such as whole
images, text documents, or multi-view feature vectors. In this paper, we propose a new
principled framework for estimating the structure of undirected graphical models from such
multivariate (or multi-attribute) nodal data. The structure of a graph is inferred through
estimation of non-zero partial canonical correlation between nodes. Under a Gaussian
model, this strategy is equivalent to estimating conditional independencies between ran-
dom vectors represented by the nodes and it generalizes the classical problem of covariance
selection (Dempster, 1972). We relate the problem of estimating non-zero partial canonical
correlations to maximizing a penalized Gaussian likelihood objective and develop a method
that efficiently maximizes this objective. Extensive simulation studies demonstrate the ef-
fectiveness of the method under various conditions. We provide illustrative applications to
uncovering gene regulatory networks from gene and protein profiles, and uncovering brain
connectivity graph from positron emission tomography data. Finally, we provide sufficient
conditions under which the true graphical structure can be recovered correctly.

Keywords: graphical model selection, multi-attribute data, network analysis, partial
canonical correlation

1. Introduction

Gaussian graphical models are commonly used to represent and explore conditional inde-
pendencies between variables in a complex system. An edge between two nodes is present

c©2014 Mladen Kolar, Han Liu, and Eric P. Xing.
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in the graph if and only if the corresponding variables are conditionally independent given
all the other variables. Current approaches to estimating the Markov network structure
underlying a Gaussian graphical model focus on cases where nodes in a network repre-
sent scalar variables such as the binary voting actions of actors (Banerjee et al., 2008; Kolar
et al., 2010) or the continuous mRNA abundance measurements of genes (Peng et al., 2009).
However, in many modern problems, we are interested in studying a network where nodes
can represent more complex and informative vector-variables or multi-attribute entities.
For example, due to advances of modern data acquisition technologies, researchers are able
to measure the activities of a single gene in a high-dimensional space, such as an image of
the spatial distribution of the gene expression, or a multi-view snapshot of the gene activity
such as mRNA and protein abundances; when modeling a social network, a node may corre-
spond to a person for which a vector of attributes is available, such as personal information,
demographics, interests, and other features. Therefore, there is a need for methods that
estimate the structure of an undirected graphical model from such multi-attribute data.

In this paper, we develop a new method for estimating the structure of undirected
graphical models of which the nodes correspond to vectors, that is, multi-attribute entities.
We consider the following setting. Let X “ pXT

1 , ..., X
T
p q

T where X1 P Rk1 , . . . , Xp P Rkp
are random vectors that jointly follow a multivariate Gaussian distribution with mean µ “
pµT1 , . . . , µ

T
p q
T and covariance matrix Σ˚, which is partitioned as

Σ˚ “

¨

˚

˝

Σ˚11 ¨ ¨ ¨ Σ˚1p
...

. . .
...

Σ˚p1 ¨ ¨ ¨ Σ˚pp

˛

‹

‚

, (1)

with Σ˚ij “ CovpXi, Xjq. Without loss of generality, we assume µ “ 0. Let G “ pV,Eq be
a graph with the vertex set V “ t1, . . . , pu and the set of edges E Ď V ˆ V that encodes
the conditional independence relationships among pXaqaPV . That is, each node a P V of
the graph G corresponds to the random vector Xa and there is no edge between nodes a
and b in the graph if and only if Xa is conditionally independent of Xb given all the vectors
corresponding to the remaining nodes, X ab “ tXc : c P V zta, buu. Such a graph is
known as a Markov network (of Markov graph), which we shall emphasize in this paper to
contrast an alternative graph over V known as the association network, which is based on
pairwise marginal independence. Conditional independence can be read from the inverse of
the covariance matrix of X, as the block corresponding to Xa and Xb will be equal to zero
when they are conditionally independent, whereas marginal independencies are captured by
the covariance matrix itself. It is well known that estimating an association network from
data can result in a hard-to-interpret dense graph due to prevalent indirect correlations
among variables (for example, multiple nodes each influenced by a common single node
could result in a clique over all these nodes), which can be avoided in estimating a Markov
network.

Let Dn “ txiu
n
i“1 be a sample of n independent and identically distributed (iid) vectors

drawn from Np0,Σ˚q. For a vector xi, we denote xi,a P Rka the component corresponding
to the node a P V . Our goal is to estimate the structure of the graph G from the sample
Dn. Note that we allow for different nodes to have different number of attributes, which
is useful in many applications, for example, when a node represents a gene pathway (of
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different sizes) in a regulatory network, or a brain region (of different volumes) in a neural
activation network.

Learning the structure of a Gaussian graphical model, where each node represents a
scalar random variable, is a classical problem, known as the covariance selection (Demp-
ster, 1972). One can estimate the graph structure by estimating the sparsity pattern of the
precision matrix Ω “ Σ´1. For high dimensional problems, Meinshausen and Bühlmann
(2006) propose a parallel Lasso approach for estimating Gaussian graphical models by solv-
ing a collection of sparse regression problems. This procedure can be viewed as a pseudo-
likelihood based method. In contrast, Banerjee et al. (2008), Yuan and Lin (2007), and
Friedman et al. (2008) take a penalized likelihood approach to estimate the sparse precision
matrix Ω. To reduce estimation bias, Lam and Fan (2009), Johnson et al. (2012), and Shen
et al. (2012) developed the non-concave penalties to penalize the likelihood function. More
recently, Yuan (2010) and Cai et al. (2011) proposed the graphical Dantzig selector and
CLIME, which can be solved by linear programming and are more amenable to theoretical
analysis than the penalized likelihood approach. Under certain regularity conditions, these
methods have proven to be graph-estimation consistent (Ravikumar et al., 2011; Yuan, 2010;
Cai et al., 2011) and scalable software packages, such as glasso and huge, were developed
to implement these algorithms (Zhao et al., 2012). For a recent survey see Pourahmadi
(2011). However, these methods cannot be extended to handle multi-attribute data we
consider here in an obvious way. For example, if the number of attributes is the same for
each node, one may naively estimate one graph per attribute, however, it is not clear how
to combine such graphs into a summary graph with a clear statistical interpretation. The
situation becomes even more difficult when nodes correspond to objects that have different
number of attributes.

In a related work, Katenka and Kolaczyk (2011) use canonical correlation to estimate
association networks from multi-attribute data, however, such networks have different in-
terpretation to undirected graphical models. In particular, as mentioned above, association
networks are known to confound the direct interactions with indirect ones as they only
represent marginal associations, whereas Markov networks represent conditional indepen-
dence assumptions that are better suited for separating direct interactions from indirect
confounders. Our work is related to the literature on simultaneous estimation of multiple
Gaussian graphical models under a multi-task setting (Guo et al., 2011; Varoquaux et al.,
2010; Honorio and Samaras, 2010; Chiquet et al., 2011; Danaher et al., 2014). However, the
model given in (1) is different from models considered in various multi-task settings and the
optimization algorithms developed in the multi-task literature do not extend to handle the
optimization problem given in our setting.

Unlike the standard procedures for estimating the structure of Gaussian graphical mod-
els, for example, neighborhood selection (Meinshausen and Bühlmann, 2006) or glasso
(Friedman et al., 2008), which infer the partial correlations between pairs of nodes, our
proposed method estimates the graph structure based on the partial canonical correlation,
which can naturally incorporate complex nodal observations. Under that the Gaussian
model in (1), the estimated graph structure has the same probabilistic independence inter-
pretations as the Gaussian graphical model over univariate nodes. The main contributions
of the paper are the following. First, we introduce a new framework for learning structure
of undirected graphical models from multi-attribute data. Second, we develop an efficient
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algorithm that estimates the structure of a graph from the observed data. Third, we provide
extensive simulation studies that demonstrate the effectiveness of our method and illustrate
how the framework can be used to uncover gene regulatory networks from gene and pro-
tein profiles, and to uncover brain connectivity graph from functional magnetic resonance
imaging data. Finally, we provide theoretical results, which give sufficient conditions for
consistent structure recovery.

2. Methodology

In this section, we propose to estimate the graph by estimating non-zero partial canonical
correlation between the nodes. This leads to a penalized maximum likelihood objective, for
which we develop an efficient optimization procedure.

2.1 Preliminaries

LetXa andXb be two multivariate random vectors. Canonical correlation is defined between
Xa and Xb as

ρcpXa, Xbq “ max
uPRka ,vPRkb

corrpuTXa, v
TXbq.

That is, computing canonical correlation between Xa and Xb is equivalent to maximizing
the correlation between two linear combinations uTXa and vTXb with respect to vectors
u and v. Canonical correlation can be used to measure association strength between two
nodes with multi-attribute observations. For example, in Katenka and Kolaczyk (2011), a
graph is estimated from multi-attribute nodal observations by elementwise thresholding the
canonical correlation matrix between nodes, but such a graph estimator may confound the
direct interactions with indirect ones.

In this paper, we exploit the partial canonical correlation to estimate a graph from
multi-attribute nodal observations. A graph is going to be formed by connecting nodes
with non-zero partial canonical correlation. Let pA “ argmin E

`

||Xa ´AX ab||
2
2

˘

and
pB “ argmin E

`

||Xb ´BX ab||
2
2

˘

, then the partial canonical correlation between Xa and
Xb is defined as

ρcpXa, Xb;X abq “ max
uPRka ,vPRkb

corrtuT pXa ´ pAX abq, v
T pXb ´ pBX abqu, (2)

that is, the partial canonical correlation between Xa and Xb is equal to the canonical
correlation between the residual vectors of Xa and Xb after the effect of X ab is removed
(Rao, 1969).1

Let Ω˚ “ pΣ˚q´1 denote the precision matrix. A simple calculation, given in Ap-
pendix B.3, shows that

ρcpXa, Xb;X abq ‰ 0 if and only if max
uPRka ,vPRkb

uTΩ˚abv ‰ 0. (3)

This implies that estimating whether the partial canonical correlation is zero or not can be
done by estimating whether a block of the precision matrix is zero or not. Furthermore,

1. The operator Ep¨q denotes the expectation and X ab “ tXc : c P V zta, buu denotes all the variables
except for Xa and Xb.
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under the Gaussian model in (1), vectors Xa and Xb are conditionally independent given
X ab if and only if partial canonical correlation is zero. A graph built on this type of
inter-nodal relationship is known as a Markov network, as it captures both local and global
Markov properties over all arbitrary subsets of nodes in the graph, even though the graph
is built based on pairwise conditional independence properties. In Section 2.2, we use
the above observations to design an algorithm that estimates the non-zero partial canonical
correlation between nodes from data Dn using the penalized maximum likelihood estimation
of the precision matrix.

Based on the relationship given in (3), we can motivate an alternative method for
estimating the non-zero partial canonical correlation. Let a “ tb : b P V ztauu denote
the set of all nodes minus the node a. Then

E pXa | Xa “ xaq “ Σ˚a,aΣ
˚,´1
a,a xa.

Since Ω˚a,a “ ´pΣ˚aa ´ Σ˚a,aΣ
˚,´1
a,a Σ˚a,aq

´1Σ˚a,aΣ
˚,´1
a,a , we observe that a zero block Ωab can

be identified from the regression coefficients when each component of Xa is regressed on
Xa. We do not build an estimation procedure around this observation, however, we note
that this relationship shows how one would develop a regression based analogue of the work
presented in Katenka and Kolaczyk (2011).

2.2 Penalized Log-Likelihood Optimization

Based on the data Dn, we propose to minimize the penalized negative Gaussian log-
likelihood under the model in (1),

min
Ωą0

!

trSΩ´ log |Ω| ` λ
ÿ

a,b

||Ωab||F

)

, (4)

where S “ n´1
řn
i“1 xix

T
i is the sample covariance matrix, ||Ωab||F denotes the Frobenius

norm of Ωab and λ is a user defined parameter that controls the sparsity of the solution
pΩ. The first two terms in (4) correspond to the negative Gaussian log-likelihood, while
the second term is the Frobenius norm penalty, which encourages blocks of the precision
matrix to be equal to zero, similar to the way that the `2 penalty is used in the group Lasso
(Yuan and Lin, 2006). Here we assume that the same number of samples is available per
attribute. However, the same method can be used in cases when some samples are obtained
on a subset of attributes. Indeed, we can simply estimate each element of the matrix S
from available samples, treating non-measured attributes as missing completely at random
(for more details see Kolar and Xing, 2012).

The dual problem to (4) is

max
Σ

ÿ

jPV

kj ` log |Σ| subject to max
a,b

||Sab ´ Σab||F ď λ, (5)

where kj is the number attributes of node j, Σ is the dual variable to Ω and |Σ| denotes the
determinant of Σ. Note that the primal problem gives us an estimate of the precision matrix,
while the dual problem estimates the covariance matrix. The proposed optimization pro-
cedure, described below, will simultaneously estimate the precision matrix and covariance
matrix, without explicitly performing an expensive matrix inversion.
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We propose to optimize the objective function in (4) using an inexact block coordinate
descent procedure, inspired by Mazumder and Agarwal (2011). The block coordinate de-
scent is an iterative procedure that operates on a block of rows and columns while keeping
the other rows and columns fixed. We write

Ω “

ˆ

Ωaa Ωa,a

Ωa,a Ωa,a

˙

, Σ “

ˆ

Σaa Σa,a

Σa,a Σa,a

˙

, S “

ˆ

Saa Sa,a
Sa,a Sa,a

˙

,

and suppose that prΩ, rΣq are the current estimates of the precision matrix and covari-
ance matrix. With the above block partition, we have log |Ω| “ logpΩa,aq ` logpΩaa ´

Ωa,apΩa,aq
´1Ωa,aq. In the next iteration, pΩ is of the form

pΩ “ rΩ`

ˆ

∆aa ∆a,a

∆a,a 0

˙

“

˜

pΩaa
pΩa,a

pΩa,a
rΩa,a

¸

,

and is obtained by minimizing

trSaaΩaa`2 trSa,aΩa,a ´ log |Ωaa ´ Ωa,aprΩa,aq
´1Ωa,a| ` λ||Ωaa||F ` 2λ

ÿ

b‰a

||Ωab||F . (6)

Exact minimization over the variables Ωaa and Ωa,a at each iteration of the block coordinate
descent procedure can be computationally expensive. Therefore, we propose to update Ωaa

and Ωa,a using one generalized gradient step update (see Beck and Teboulle, 2009) in each
iteration. Note that the objective function in (6) is a sum of a smooth convex function and a
non-smooth convex penalty so that the gradient descent method cannot be directly applied.
Given a step size t, generalized gradient descent optimizes a quadratic approximation of the
objective at the current iterate rΩ, which results in the following two updates

pΩaa “ argmin
Ωaa

!

trpSaa ´ rΣaaqΩaa `
1

2t
||Ωaa ´ rΩaa||

2
F ` λ||Ωaa||F

)

, and (7)

pΩab “ argmin
Ωab

!

trpSab ´ rΣabqΩba `
1

2t
||Ωab ´ rΩab||

2
F ` λ||Ωab||F

)

, @b P a. (8)

If the resulting estimator pΩ is not positive definite or the update does not decrease the
objective, we halve the step size t and find a new update. Once the update of the precision
matrix pΩ is obtained, we update the covariance matrix pΣ. Updates to the precision and
covariance matrices can be found efficiently, without performing expensive matrix inversion.
First, note that the solutions to (7) and (8) can be computed in a closed form as

pΩaa “ p1´ tλ{||rΩaa ` tprΣaa ´ Saaq||F q`prΩaa ` tprΣaa ´ Saaqq, and (9)

pΩab “ p1´ tλ{||rΩab ` tprΣab ´ Sabq||F q`prΩab ` tprΣab ´ Sabqq, @b P a, (10)

where pxq` “ maxp0, xq. Next, the estimate of the covariance matrix can be updated
efficiently, without inverting the whole pΩ matrix, using the matrix inversion lemma as
follows

pΣa,a “ prΩa,aq
´1 ` prΩa,aq

´1
pΩa,appΩaa ´ pΩa,aprΩa,aq

´1
pΩa,aq

´1
pΩa,aprΩa,aq

´1,

pΣa,a “ ´pΩaa
pΩa,a

pΣa,a,

pΣaa “ ppΩaa ´ pΩa,aprΩa,aq
´1

pΩa,aq
´1,

(11)
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with prΩa,aq
´1 “ rΣa,a ´ rΣa,a

rΣ´1
aa

rΣa,a.

Combining all three steps we get the following algorithm:

1. Set the initial estimator rΩ “ diagpSq and rΣ “ rΩ´1. Set the step size t “ 1.

2. For each a P V perform the following:

Update pΩ using (9) and (10).

If pΩ is not positive definite, set tÐ t{2 and repeat the update.

Update pΣ using (11).

3. Repeat Step 2 until the duality gap

ˇ

ˇ

ˇ
trpSpΩq ´ log |pΩ| ` λ

ÿ

a,b

||pΩab||F ´
ÿ

jPV

kj ´ log |Σ|
ˇ

ˇ

ˇ
ď ε,

where ε is a prefixed precision parameter (for example, ε “ 10´3).

Finally, we form a graph pG “ pV, pEq by connecting nodes with ||pΩab||F ‰ 0.

Computational complexity of the procedure is given in Appendix A. Convergence of the
above described procedure to the unique minimum of the objective function in (4) does
not follow from the standard results on the block coordinate descent algorithm (Tseng,
2001) for two reasons. First, the minimization problem in (6) is not solved exactly at each
iteration, since we only update Ωaa and Ωa,a using one generalized gradient step update
in each iteration. Second, the blocks of variables, over which the optimization is done at
each iteration, are not completely separable between iterations due to the symmetry of the
problem. The proof of the following convergence result is given in Appendix B.

Lemma 1 For every value of λ ą 0, the above described algorithm produces a sequence of

estimates
!

rΩptq
)

tě1
of the precision matrix that monotonically decrease the objective values

given in (4). Every element of this sequence is positive definite and the sequence converges
to the unique minimizer pΩ of (4).

2.3 Efficient Identification of Connected Components

When the target graph pG is composed of smaller, disconnected components, the solution
to the problem in (4) is block diagonal (possibly after permuting the node indices) and can
be obtained by solving smaller optimization problems. That is, the minimizer pΩ can be
obtained by solving (4) for each connected component independently, resulting in massive
computational gains. We give necessary and sufficient condition for the solution pΩ of (4)
to be block-diagonal, which can be easily checked by inspecting the empirical covariance
matrix S.

Our first result follows immediately from the Karush-Kuhn-Tucker conditions for the
optimization problem (4) and states that if pΩ is block-diagonal, then it can be obtained by
solving a sequence of smaller optimization problems.
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Lemma 2 If the solution to (4) takes the form pΩ “ diagppΩ1, pΩ2, . . . , pΩlq, that is, pΩ is a
block diagonal matrix with the diagonal blocks pΩ1, . . . , pΩl, then it can be obtained by solving

min
Ωl1ą0

!

trSl1Ωl1 ´ log |Ωl1 | ` λ
ÿ

a,b

||Ωab||F

)

separately for each l1 “ 1, . . . , l, where Sl1 are submatrices of S corresponding to Ωl1.

Next, we describe how to identify diagonal blocks of pΩ. Let P “ tP1, P2, . . . , Plu be a
partition of the set V and assume that the nodes of the graph are ordered in a way that if
a P Pj , b P Pj1 , j ă j1, then a ă b. The following lemma states that the blocks of pΩ can be
obtained from the blocks of a thresholded sample covariance matrix.

Lemma 3 A necessary and sufficient condition for pΩ to be block diagonal with blocks
P1, P2, . . . , Pl is that ||Sab||F ď λ for all a P Pj, b P Pj1, j ‰ j1.

Blocks P1, P2, . . . , Pl can be identified by forming a p ˆ p matrix Q with elements
qab “ 1It||Sab||F ą λu and computing connected components of the graph with adjacency
matrix Q. The lemma states also that given two penalty parameters λ1 ă λ2, the set of un-
connected nodes with penalty parameter λ1 is a subset of unconnected nodes with penalty
parameter λ2. The simple check above allows us to estimate graphs on data sets with large
number of nodes, if we are interested in graphs with small number of edges. However, this is
often the case when the graphs are used for exploration and interpretation of complex sys-
tems. Lemma 3 is related to existing results established for speeding-up computation when
learning single and multiple Gaussian graphical models (Witten et al., 2011; Mazumder and
Hastie, 2012; Danaher et al., 2014). Each condition is different, since the methods optimize
different objective functions.

3. Consistent Graph Identification

In this section, we provide theoretical analysis of the estimator described in Section 2.2.
In particular, we provide sufficient conditions for consistent graph recovery. For simplicity
of presentation, we assume that ka “ k, for all a P V , that is, we assume that the same
number of attributes is observed for each node. For each a “ 1, . . . , kp, we assume that
pσ˚aaq

´1{2Xa is sub-Gaussian with parameter γ, where σ˚aa is the ath diagonal element of
Σ˚. Recall that Z is a sub-Gaussian random variable if there exists a constant σ P p0,8q
such that

E pexpptZqq ď exppσ2t2q, for all t P R.

Our assumptions involve the Hessian of the function fpAq “ trSA´ log |A| evaluated at
the true Ω˚, H “ HpΩ˚q “ pΩ˚q´1 b pΩ˚q´1 P Rppkq2ˆppkq2 , with b denoting the Kronecker
product, and the true covariance matrix Σ˚. The Hessian and the covariance matrix can
be thought of as block matrices with blocks of size k2 ˆ k2 and kˆ k, respectively. We will
make use of the operator Cp¨q that operates on these block matrices and outputs a smaller
matrix with elements that equal to the Frobenius norm of the original blocks. For example,
CpΣ˚q P Rpˆp with elements CpΣ˚qab “ ||Σ˚ab||F . Let T “ tpa, bq : ||Ωab||F ‰ 0u and
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N “ tpa, bq : ||Ωab||F “ 0u. With this notation introduced, we assume that the following
irrepresentable condition holds. There exists a constant α P r0, 1q such that

|||C
`

HNT pHT T q´1
˘

|||8 ď 1´ α, (12)

where |||A|||8 “ maxi
ř

j |Aij |. We will also need the following quantities to specify the

results κΣ˚ “ |||CpΣ˚q|||8 and κH “ |||CpH´1
T T q|||8. These conditions extend the conditions

specified in Ravikumar et al. (2011) needed for estimating graphs from single attribute
observations.

We have the following result that provides sufficient conditions for the exact recovery of
the graph.

Proposition 4 Let τ ą 2. We set the penalty parameter λ in (4) as

λ “ 8kα´1
´

128p1` 4γ2q2pmax
a
pσ˚aaq

2qn´1p2 logp2kq ` τ logppqq
¯1{2

.

If n ą C1s
2k2p1 ` 8α´1q2pτ log p ` log 4 ` 2 log kq, where s is the maximal degree of nodes

in G, C1 “ p48
?

2p1` 4γ2qpmaxa σ
˚
aaqmaxpκΣ˚κH, κ

3
Σ˚κ

2
Hqq

2 and

min
pa,bqPT ,a‰b

||Ωab||F ą 16
?

2p1` 4γ2qpmax
a

σ˚aaqp1` 8α´1qκHk

ˆ

τ log p` log 4` 2 log k

n

˙1{2

,

then pr
´

pG “ G
¯

ě 1´ p2´τ .

The proof of Proposition 4 is given in Appendix B. We extend the proof of Ravikumar
et al. (2011) to accommodate the Frobenius norm penalty on blocks of the precision matrix.
This proposition specifies the sufficient sample size and a lower bound on the Frobenius norm
of the off-diagonal blocks needed for recovery of the unknown graph. Under these conditions
and correctly specified tuning parameter λ, the solution to the optimization problem in (4)
correctly recovers the graph with high probability. In practice, one needs to choose the
tuning parameter in a data dependent way. For example, using the Bayesian information
criterion. Even though our theoretical analysis obtains the same rate of convergence as
that of Ravikumar et al. (2011), our method has a significantly improved finite-sample
performance, as will be shown in Section 5. It remains an open question whether the
sample size requirement can be improved as in the case of group Lasso (see, for example,
Lounici et al., 2011). The analysis of Lounici et al. (2011) relies heavily on the special
structure of the least squares regression. Hence, their method does not carry over to the
more complicated objective function as in (4).

4. Interpreting Edges

We propose a post-processing step that will allow us to quantify the strength of links
identified by the method proposed in Section 2.2, as well as identify important attributes
that contribute to the existence of links.

For any two nodes a and b for which Ωab ‰ 0, we define N pa, bq “ tc P V zta, bu : Ωac ‰

0 or Ωbc ‰ 0u, which is the Markov blanket for the set of nodes tXa, Xbu. Note that the
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conditional distribution of pXT
a , X

T
b q

T given X ab is equal to the conditional distribution
of pXT

a , X
T
b q

T given XN pa,bq. Now,

ρcpXa, Xb;X abq “ ρcpXa, Xb;XN pa,bqq

“ max
waPRka ,wbPRkb

corrpuT pXa ´ rAXN pa,bqq, v
T pXb ´ rBXN pa,bqqq,

where rA “ argmin E
`

||Xa ´AXN pa,bq||
2
2

˘

and rB “ argmin E
`

||Xb ´BXN pa,bq||
2
2

˘

. Let

Σpa, bq “ varpXa, Xb | XN pa,bqq. Now we can express the partial canonical correlation as

ρcpXa, Xb;XN pa,bqq “ max
waPRka ,wbPRka

wTa Σabwb
`

wTa Σaawa
˘1{2 `

wTb Σbbwb
˘1{2

,

where

Σpa, bq “

ˆ

Σaa Σab

Σba Σbb

˙

.

The weight vectors wa and wb can be easily found by solving the system of eigenvalue
equations

#

Σ
´1
aa ΣabΣ

´1
bb Σbawa “ φ2wa

Σ
´1
bb ΣbaΣ

´1
aa Σabwb “ φ2wb

(13)

with wa and wb being the vectors that correspond to the maximum eigenvalue φ2. Fur-
thermore, we have ρcpXa, Xb;XN pa,bqq “ φ. Following Katenka and Kolaczyk (2011), the
weights wa, wb can be used to access the relative contribution of each attribute to the
edge between the nodes a and b. In particular, the weight pwa,iq

2 characterizes the relative
contribution of the ith attribute of node a to ρcpXa, Xb;XN pa,bqq.

Given an estimate pN pa, bq “ tc P V zta, bu : pΩac ‰ 0 or pΩbc ‰ 0u of the Markov blanket
N pa, bq, we form the residual vectors

ri,a “ xi,a ´ qAx
i,xN pa,bq, ri,b “ xi,b ´ qBx

i,xN pa,bq,

where qA and qB are the least square estimators of rA and rB. Given the residuals, we form
qΣpa, bq, the empirical version of the matrix Σpa, bq, by setting

qΣaa “ corr
`

tri,auiPrns
˘

, qΣbb “ corr
`

tri,buiPrns
˘

, qΣab “ corr
`

tri,auiPrns, tri,auiPrns
˘

.

Now, solving the eigenvalue system in (13) will give us estimates of the vectors wa, wb and
the partial canonical correlation.

Note that we have described a way to interpret the elements of the off-diagonal blocks in
the estimated precision matrix. The elements of the diagonal blocks, which correspond to
coefficients between attributes of the same node, can still be interpreted by their relationship
to the partial correlation coefficients.
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5. Simulation Studies

In this section, we perform a set of simulation studies to illustrate finite sample performance
of our method. We demonstrate that the scalings of pn, p, sq predicted by the theory are
sharp. Furthermore, we compare against three other methods: 1) a method that uses the
glasso first to estimate one graph over each of the k individual attributes and then creates
an edge in the resulting graph if an edge appears in at least one of the single attribute
graphs, 2) the method of Guo et al. (2011) and 3) the method of Danaher et al. (2014). We
have also tried applying the glasso to estimate the precision matrix for the model in (1) and
then post-processing it, so that an edge appears in the resulting graph if the corresponding
block of the estimated precision matrix is non-zero. The result of this method is worse
compared to the first baseline, so we do not report it here.

All the methods above require setting one or two tuning parameters that control the
sparsity of the estimated graph. We select these tuning parameters by minimizing the
Bayesian information criterion (Schwarz, 1978), which balances the goodness of fit of the
model and its complexity, over a grid of parameter values. For our multi-attribute method,
the Bayesian information criterion takes the following form

BICpλq “ trpSpΩq ´ log |pΩ| `
ÿ

aăb

1ItpΩab ‰ 0ukakb logpnq.

Other methods for selecting tuning parameters are possible, like minimization of cross-
validation or Akaike information criterion (Akaike, 1974). However, these methods tend to
select models that are too dense.

Theoretical results given in Section 3 characterize the sample size needed for consis-
tent recovery of the underlying graph. In particular, Proposition 4 suggests that we need
n “ θs2k2 logppkq samples to estimate the graph structure consistently, for some control pa-
rameter θ ą 0. Therefore, if we plot the hamming distance between the true and recovered
graph against θ, we expect the curves to reach zero distance for different problem sizes at
a same point. We verify this on randomly generated chain and nearest-neighbors graphs.

Simulation 1. We generate data as follows. A random graph with p nodes is created
by first partitioning nodes into p{20 connected components, each with 20 nodes, and then
forming a random graph over these 20 nodes. A chain graph is formed by permuting the
nodes and connecting them in succession, while a nearest-neighbor graph is constructed
following the procedure outlined in Li and Gui (2006). That is, for each node, we draw a
point uniformly at random on a unit square and compute the pairwise distances between
nodes. Each node is then connected to s “ 4 closest neighbors. Since some of nodes will
have more than 4 adjacent edges, we randomly remove edges from nodes that have degree
larger than 4 until the maximum degree of a node in a graph is 4. Once the graph is created,
we construct a precision matrix, with non-zero blocks corresponding to edges in the graph.
Elements of diagonal blocks are set as 0.5|a´b|, 0 ď a, b ď k, while off-diagonal blocks have
elements with the same value, 0.2 for chain graphs and 0.3{k for nearest-neighbor graph.
Finally, we add ρI to the precision matrix, so that its minimum eigenvalue is equal to 0.5.
Note that s “ 2 for the chain graph and s “ 4 for the nearest-neighbor graph. Simulation
results are averaged over 100 replicates.

Figure 1 shows simulation results. Each row in the figure reports results for one method,
while each column in the figure represents a different simulation setting. For the first two
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(b) Procedure of Danaher et al. (2014)
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(c) Procedure of Guo et al. (2011)
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(d) Multi-attribute procedure

Figure 1: Results of Simulation 1. Average hamming distance plotted against the rescaled
sample size. Off-diagonal blocks are full matrices.
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Figure 2: Results of Simulation 1 for smaller sample size. The number of attributes is k “ 2.
Average F1 score plotted against the sample size.

columns, we set k “ 3 and vary the total number of nodes in the graph. The third simulation
setting sets the total number of nodes p “ 20 and changes the number of attributes k. In
the case of the chain graph, we observe that for small sample sizes the method of Danaher
et al. (2014) outperforms all the other methods. We note that the multi-attribute method is
estimating many more parameters, which require large sample size in order to achieve high
accuracy. However, as the sample size increases, we observe that multi-attribute method
starts to outperform the other methods. In particular, for the sample size indexed by
θ “ 13 all the graph are correctly recovered, while other methods fail to recover the graph
consistently at the same sample size. In the case of nearest-neighbor graph, none of the
methods recover the graph well for small sample sizes. However, for moderate sample sizes,
multi-attribute method outperforms the other methods. Furthermore, as the sample size
increases none of the other methods recover the graph exactly. This suggests that the
conditions for consistent graph recovery may be weaker in the multi-attribute setting.

From Figure 1 we can observe that for sufficiently large sample size n, multi-attribute
method recovers the graph structure exactly. Next, we evaluate performance of the methods
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for smaller sample sizes, with the number of attributes k “ 2. Figure 2 shows average F1

score plotted against the sample size.2 This figure shows more precisely performance of
the methods for smaller sample sizes that are not sufficient for perfect graph recovery.
Again, even though none of the methods perform well, we can observe somewhat better
performance of the multi-attribute procedure.

5.1 Alternative Structure of Off-diagonal Blocks

In this section, we investigate performance of different estimation procedures under different
assumptions on the elements of the off-diagonal blocks of the precision matrix.

Simulation 2. First, we investigate a situation where the multi-attribute method does
not perform as well as the methods that estimate multiple graphical models. One such
situation arises when different attributes are conditionally independent. To simulate this
situation, we use the data generating approach as before, however, we make each block Ωab

of the precision matrix Ω a diagonal matrix. Figure 3 summarizes results of the simulation.
We see that the methods of Danaher et al. (2014) and Guo et al. (2011) perform better,
since they are estimating much fewer parameters than the multi-attribute method. glasso
does not exploit any structural information underlying the estimation problem and requires
larger sample size to correctly estimate the graph than other methods.

Simulation 3. A completely different situation arises when the edges between nodes
can be inferred only based on inter-attribute data, that is, when a graph based on any
individual attribute is empty. To generate data under this situation, we follow the proce-
dure as before, but with the diagonal elements of the off-diagonal blocks Ωab set to zero.
Figure 4 summarizes results of the simulation. In this setting, we clearly see the advantage
of the multi-attribute method, compared to other three methods. Furthermore, we can see
that glasso does better than multi-graph methods of Danaher et al. (2014) and Guo et al.
(2011). The reason is that glasso can identify edges based on inter-attribute relationships
among nodes, while multi-graph methods rely only on intra-attribute relationships. This
simulation illustrates an extreme scenario where inter-attribute relationships are important
for identifying edges.

Simulation 4. So far, off-diagonal blocks of the precision matrix were constructed to
have constant values. Now, we use the same data generating procedure, but generate off-
diagonal blocks of a precision matrix in a different way. Each element of the off-diagonal
block Ωab is generated independently and uniformly from the set r´0.3,´0.1s

Ť

r0.1, 0.3s.
The results of the simulation are given in Figure 5. Again, qualitatively, the results are
similar to those given in Figure 1, except that in this setting more samples are needed to
recover the graph correctly.

5.2 Different Number of Samples per Attribute

In this section, we show how to deal with a case when different number of samples is available
per attribute. As noted in Section 2.2, we can treat non-measured attributes as missing
completely at random (see Kolar and Xing, 2012, for more details).

2. The F1 score is a measure commonly used in information retrieval and is defined as the harmonic mean
of precision and recall, that is, F1 :“ 2 ˚ precision ˚ recall{pprecision ` recallq. The precision is defined
as precision :“ | pE X E|{| pE| and the recall is defined as recall :“ | pE X E|{|E| .
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(b) Procedure of Danaher et al. (2014)
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(c) Procedure of Guo et al. (2011)
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(d) Multi-attribute procedure

Figure 3: Results of Simulation 2 described in Section 5.1. Average hamming distance
plotted against the rescaled sample size. Blocks Ωab of the precision matrix Ω are
diagonal matrices.
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(b) Procedure of Danaher et al. (2014)
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(c) Procedure of Guo et al. (2011)
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Figure 4: Results of Simulation 3 described in Section 5.1. Average hamming distance
plotted against the rescaled sample size. Off-diagonal blocks Ωab of the precision
matrix Ω have zeros as diagonal elements.
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Figure 5: Results of Simulation 4 described in Section 5.1. Average hamming distance
plotted against the rescaled sample size. Off-diagonal blocks Ωab of the precision
matrix Ω have elements uniformly sampled from r´0.3,´0.1s

Ť

r0.1, 0.3s.
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Figure 6: Results of Simulation 5 described in Section 5.2. Average hamming distance
plotted against the rescaled sample size. Additional samples available for the
first attribute.

Let R “ prilqiPt1,...,nu,lPt1,...,pku P Rnˆpk be an indicator matrix, which denotes for each
sample point xi the components that are observed. Then we can form an estimate of the
sample covariance matrix S “ pσlkq P Rpkˆpk as

σlk “

řn
i“1 ri,lri,kxi,lxi,k
řn
i“1 ri,lri,k

.

This estimate is plugged into the objective in (4).
Simulation 5. We generate a chain graph with p “ 60 nodes, construct a precision

matrix associated with the graph and k “ 3 attributes, and generate n “ θs2k2 logppkq
samples, θ ą 0. Next, we generate additional 10%, 30% and 50% samples from the same
model, but record only the values for the first attribute. Results of the simulation are given
in Figure 6. Qualitatively, the results are similar to those presented in Figure 1.

5.3 Scale-Free Graphs

In this section, we show simulation results when the methods are applied to estimate struc-
ture of scale-free graph, that is, graph whose degree distribution follows a power low. A
prominent characteristic of these graphs is presence of hub nodes.3 Such graphs commonly
arise in studies of real world systems, such as gene or protein networks (Albert and Barabási,
2002).

Simulation 6. We generate a scale-free graph using the preferential attachment pro-
cedure described in Barabási and Albert (1999). The procedure starts with a 4-node cycle.
New nodes are added to the graph, one at a time, and connected to nodes currently in
the graph with probability proportional to their degree. Once the graph is generated, pa-
rameters in the model are set as in Simulation 1, with the number of attributes k “ 2.
Simulation results are summarized in Figure 7. These networks are harder to estimate
using the `1-penalized procedures, due to the presence of high-degree hubs (Peng et al.,
2009).

3. Hub nodes are nodes whose degree greatly exceeds average degree in a network.
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Figure 7: Results of Simulation 6 described in Section 5.3. Average F1 score plotted against
the sample size.

6. Illustrative Applications to Real Data

In this section, we illustrate how to apply our method to data arising in studies of biological
regulatory networks and Alzheimer’s disease.

6.1 Analysis of a Gene/Protein Regulatory Network

We provide illustrative, exploratory analysis of data from the well-known NCI-60 database,
which contains different molecular profiles on a panel of 60 diverse human cancer cell lines.
Data set consists of protein profiles (normalized reverse-phase lysate arrays for 92 antibod-
ies) and gene profiles (normalized RNA microarray intensities from Human Genome U95
Affymetrix chip-set forą 9000 genes). We focus our analysis on a subset of 91 genes/proteins
for which both types of profiles are available. These profiles are available across the same
set of 60 cancer cells. More detailed description of the data set can be found in Katenka
and Kolaczyk (2011).

We inferred three types of networks: a network based on protein measurements alone,
a network based on gene expression profiles and a single gene/protein network. For pro-
tein and gene networks we use the glasso, while for the gene/protein network, we use
our procedure outlined in Section 2.2. We use the stability selection (Meinshausen and
Bühlmann, 2010) procedure to estimate stable networks. In particular, we first select the
penalty parameter λ using cross-validation, which over-selects the number of edges in a net-
work. Next, we use the selected λ to estimate 100 networks based on random subsamples
containing 80% of the data-points. Final network is composed of stable edges that appear
in at least 95 of the estimated networks. Table 1 provides a few summary statistics for the
estimated networks. Furthermore, protein and gene/protein networks share 96 edges, while
gene and gene/protein networks share 104 edges. Gene and protein network share only 17
edges. Finally, 66 edges are unique to gene/protein network. Figure 8 shows node degree
distributions for the three networks. We observe that the estimated networks are much
sparser than the association networks in Katenka and Kolaczyk (2011), as expected due to
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Figure 8: Node degree distributions for protein, gene and gene/protein networks.
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p.

marginal correlations between a number of nodes. The differences in networks require a
closer biological inspection by a domain scientist.

We proceed with a further exploratory analysis of the gene/protein network. We in-
vestigate the contribution of two nodal attributes to the existence of an edge between the
nodes. Following Katenka and Kolaczyk (2011), we use a simple heuristic based on the

protein network gene network gene/protein network
Number of edges 122 214 249
Density 0.03 0.05 0.06
Largest connected component 62 89 82
Avg Node Degree 2.68 4.70 5.47
Avg Clustering Coefficient 0.0008 0.001 0.003

Table 1: Summary statistics for protein, gene, and gene/protein networks (p “ 91).
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(a) Healthy subjects (b) Mild Cognitive Impairment (c) Alzheimer’s & Dementia

Figure 10: Brain connectivity networks

weight vectors to classify the nodes and edges into three classes. For an edge between the
nodes a and b, we take one weight vector, say wa, and normalize it to have unit norm.
Denote wp the component corresponding to the protein attribute. Left plot in Figure 9
shows the values of w2

p over all edges. The edges can be classified into three classes based
on the value of w2

p. Given a threshold T , the edges for which w2
p P p0, T q are classified as

gene-influenced, the edges for which w2
p P p1´T, 1q are classified as protein influenced, while

the remainder of the edges are classified as mixed type. In the left plot of Figure 9, the
threshold is set as T “ 0.25 following Katenka and Kolaczyk (2011). Similar classification
can be performed for nodes after computing the proportion of incident edges. Let p1, p2

and p3 denote proportions of gene, protein and mixed edges, respectively, incident with
a node. These proportions are represented in a simplex in the right subplot of Figure 9.
Nodes with mostly gene edges are located in the lower left corner, while the nodes with
mostly protein edges are located in the lower right corner. Mixed nodes are located in the
center and towards the top corner of the simplex. Further biological enrichment analysis is
possible (see Katenka and Kolaczyk, 2011), however, we do not pursue this here.

6.2 Uncovering Functional Brain Network

We apply our method to the Positron Emission Tomography data set, which contains 259
subjects, of whom 72 are healthy, 132 have mild cognitive Impairment and 55 are diagnosed
as Alzheimer’s & Dementia. Note that mild cognitive impairment is a transition stage
from normal aging to Alzheimer’s & Dementia. The data can be obtained from http:

//adni.loni.ucla.edu/. The preprocessing is done in the same way as in Huang et al.
(2009).

Each Positron Emission Tomography image contains 91 ˆ 109 ˆ 91 “ 902, 629 voxels.
The effective brain region contains 180, 502 voxels, which are partitioned into 95 regions,
ignoring the regions with fewer than 500 voxels. The largest region contains 5, 014 voxels and
the smallest region contains 665 voxels. Our preprocessing stage extracts 948 representative
voxels from these regions using the K-median clustering algorithm. The parameter K is
chosen differently for each region, proportionally to the initial number of voxels in that
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Healthy Mild Cognitive Alzheimer’s &
subjects Impairment Dementia

Number of edges 116 84 59
Density 0.030 0.020 0.014
Largest connected component 48 27 25
Avg Node Degree 2.40 1.73 1.2
Avg Clustering Coefficient 0.001 0.0023 0.0007

Table 2: Summary statistics for brain connectivity networks

region. More specifically, for each category of subjects we have an n ˆ pd1 ` . . . ` d95q

matrix, where n is the number of subjects and d1 ` . . . ` d95 “ 902, 629 is the number
of voxels. Next we set Ki “ rdi{

ř

j djs, the number of representative voxels in region i,
i “ 1, . . . , 95. The representative voxels are identified by running the K-median clustering
algorithm on a sub-matrix of size nˆ di with K “ Ki.

We inferred three networks, one for each subtype of subjects using the procedure out-
lined in Section 2.2. Note that for different nodes we have different number of attributes,
which correspond to medians found by the clustering algorithm. We use the stability se-
lection (Meinshausen and Bühlmann, 2010) approach to estimate stable networks. The
stability selection procedure is combined with our estimation procedure as follows. We first
select the penalty parameter λ in (4) using cross-validation, which overselects the number
of edges in a network. Next, we create 100 subsampled data sets, each of which contain
80% of the data points, and estimate one network for each data set using the selected λ.
The final network is composed of stable edges that appear in at least 95 of the estimated
networks.

We visualize the estimated networks in Figure 10. Table 2 provides a few summary
statistics for the estimated networks. Appendix C contains names of different regions, as
well as the adjacency matrices for networks. From the summary statistics, we can observe
that in normal subjects there are many more connections between different regions of the
brain. Loss of connectivity in Alzheimer’s & Dementia has been widely reported in the
literature (Greicius et al., 2004; Hedden et al., 2009; Andrews-Hanna et al., 2007; Wu et al.,
2011).

Learning functional brain connectivity is potentially valuable for early identification of
signs of Alzheimer’s disease. Huang et al. (2009) approach this problem using exploratory
data analysis. The framework of Gaussian graphical models is used to explore functional
brain connectivity. Here we point out that our approach can be used for the same ex-
ploratory task, without the need to reduce the information in the whole brain to one num-
ber. For example, from our estimates, we observe the loss of connectivity in the cerebellum
region of patients with Alzheimer’s disease, which has been reported previously in Sjöbeck
and Englund (2001). As another example, we note increased connectivity between the
frontal lobe and other regions in the patients, which was linked to compensation for the lost
connections in other regions (Stern, 2006; Gould et al., 2006).
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7. Conclusion and Discussion

This paper extends the classical Gaussian graphical model to handle multi-attribute data.
Multi-attribute data appear naturally in social media and scientific data analysis. For
example, in a study of social networks, one may use personal information, including demo-
graphics, interests, and many other features, as nodal attributes. We proposed a new family
of Gaussian graphical models for modeling such multi-attribute data. The main idea is to
replace the notion of partial correlation in the existing graphical model literature by partial
canonical correlation. Such a modification, though simple, has profound impact to both
applications and theory. Practically, many challenging data, including brain imaging and
gene expression profiles, can be naturally fitted using this model, which has been illustrated
in the paper. Theoretically, we proved sufficient conditions that secure the correct recovery
of the unknown population network structure.

The methods and theory of this paper can be naturally extended to handle non-Gaussian
data by replacing the Gaussian model with the more general nonparanormal model (Liu
et al., 2009) or the transelliptical model (Liu et al., 2012). Both of them can be viewed as
semiparametric extensions of the Gaussian graphical model. Instead of assuming that data
follows a Gaussian distribution, one assumes that there exists a set of strictly increasing
univariate functions, so that after marginal transformation the data follows a Gaussian or
Elliptical distribution. More details on model interpretation can be found in Liu et al. (2009)
and Liu et al. (2012). To handle multi-attribute data in this semiparametric framework, we
would replace the sample covariance matrix S in Eq. (4) by a rank-based correlation matrix
estimator. We leave the formal analysis of this approach for future work.
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Appendix A. Complexity Analysis of Multi-attribute Estimation

Step 2 of the estimation algorithm updates portions of the precision and covariance matri-
ces corresponding to one node at a time. We observe that the computational complexity of
updating the precision matrix is O

`

pk2
˘

. Updating the covariance matrix requires comput-

ing prΩa,aq
´1, which can be efficiently done in O

`

p2k2 ` pk2 ` k3
˘

“ O
`

p2k2
˘

operations,
assuming that k ! p. With this, the covariance matrix can be updated in O

`

p2k2
˘

opera-
tions. Therefore the total cost of updating the covariance and precision matrices is O

`

p2k2
˘

operations. Since step 2 needs to be performed for each node a P V , the total complexity is
O
`

p3k2
˘

. Let T denote the total number of times step 2 is executed. This leads to the over-
all complexity of the algorithm as O

`

Tp3k2
˘

. In practice, we observe that T « 10 to 20 for
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sparse graphs. Furthermore, when the whole solution path is computed, we can use warm
starts to further speed up computation, leading to T ă 5 for each λ.

Appendix B. Technical Proofs

In this appendix, we collect proofs of the results presented in the main part of the paper.

B.1 Proof of Lemma 1

We start the proof by giving to technical results needed later. The following lemma states
that the minimizer of (4) is unique and has bounded minimum and maximum eigenvalues,
denoted as Λmin and Λmax.

Lemma 5 For every value of λ ą 0, the optimization problem in Eq. (4) has a unique
minimizer pΩ, which satisfies ΛminppΩq ě pΛmaxpSq`λpq

´1 ą 0 and ΛmaxppΩq ď λ´1
ř

jPV kj.

Proof The optimization objective given in (4) can be written in the equivalent constrained
form as

min
Ωą0

trSΩ´ log |Ω| subject to
ÿ

a,b

||Ωab||F ď Cpλq.

The procedure involves minimizing a continuous objective over a compact set, and so
by Weierstrass theorem, the minimum is always achieved. Furthermore, the objective is
strongly convex and therefore the minimum is unique.

The solution pΩ to the optimization problem (4) satisfies

S ´ pΩ´1 ` λZ “ 0, (14)

where Z P B
ř

a,b ||
pΩab||F is the element of the sub-differential and satisfies ||Zab||F ď 1 for

all pa, bq P V 2. Therefore,

ΛmaxppΩ
´1q ď ΛmaxpSq ` λΛmaxpZq ď ΛmaxpSq ` λp.

Next, we prove an upper bound on ΛmaxppΩq. At optimum, the primal-dual gap is zero,
which gives that

ÿ

a,b

||pΩab||F ď λ´1p
ÿ

jPV

kj ´ trSpΩq ď λ´1
ÿ

jPV

kj ,

as S ľ 0 and pΩ ą 0. Since ΛmaxppΩq ď
ř

a,b ||
pΩab||F , the proof is done.

The next results states that the objective function has a Lipschitz continuous gradient,
which will be used to show that the generalized gradient descent can be used to find pΩ.

Lemma 6 The function fpAq “ trSA´ log |A| has a Lipschitz continuous gradient on the
set tA P Sp : ΛminpAq ě γu, with the Lipschitz constant L “ γ´2.

Proof We have that ∇fpAq “ S ´A´1. Then

||∇fpAq ´∇fpA1q||F “ ||A´1 ´ pA1q´1||F

ď ΛmaxA
´1||A´A1||FΛmaxA

´1

ď γ´2||A´A1||F ,
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which completes the proof.

Now, we provide the proof of Lemma 1.
By construction, the sequence of estimates prΩptqqtě1 decrease the objective value and

are positive definite.
To prove the convergence, we first introduce some additional notation. Let fpΩq “

trSΩ´ log |Ω| and F pΩq “ fpΩq `
ř

ab ||Ωab||F . For any L ą 0, let

QLpΩ; Ωq :“ fpΩq ` trrpΩ´ Ωq∇fpΩqs ` L

2
||Ω´ Ω||2F `

ÿ

ab

||Ωab||F

be a quadratic approximation of F pΩq at a given point Ω, which has a unique minimizer

pLpΩq :“ arg min
Ω
QLpΩ; Ωq.

From Lemma 2.3. in Beck and Teboulle (2009), we have that

F pΩq ´ F ppLpΩqq ě
L

2
||pLpΩq ´ Ω||2F , (15)

if F ppLpΩqq ď QLppLpΩq; Ωq. Note that F ppLpΩqq ď QLppLpΩq; Ωq always holds if L is as
large as the Lipschitz constant of ∇F .

Let rΩpt´1q and rΩptq denote two successive iterates obtained by the procedure. With-
out loss of generality, we can assume that rΩptq is obtained by updating the rows/columns
corresponding to the node a. From (15), it follows that

2

Lk
pF prΩpt´1qq ´ F prΩptqqq ě ||rΩpt´1q

aa ´ rΩptqaa ||F ` 2
ÿ

b‰a

||rΩ
pt´1q
ab ´ rΩ

ptq
ab ||F , (16)

where Lk is a current estimate of the Lipschitz constant. Recall that in our procedure the
scalar t serves as a local approximation of 1{L. Since eigenvalues of pΩ are bounded according
to Lemma 5, we can conclude that the eigenvalues of rΩpt´1q are bounded as well. Therefore
the current Lipschitz constant is bounded away from zero, using Lemma 6. Combining the
results, we observe that the right hand side of (16) converges to zero as t Ñ 8, since the
optimization procedure produces iterates that decrease the objective value. This shows that

||rΩ
pt´1q
aa ´ rΩ

ptq
aa ||F ` 2

ř

b‰a ||
rΩ
pt´1q
ab ´ rΩ

ptq
ab ||F converges to zero, for any a P V . Since prΩptq is

a bounded sequence, it has a limit point, which we denote pΩ. It is easy to see, from the
stationary conditions for the optimization problem given in (6), that the limit point pΩ also
satisfies the global KKT conditions to the optimization problem in (4).

B.2 Proof of Lemma 3

Suppose that the solution pΩ to (4) is block diagonal with blocks P1, P2, . . . , Pl. For two
nodes a, b in different blocks, we have that ppΩq´1

ab “ 0 as the inverse of the block diagonal
matrix is block diagonal. From the KKT conditions, it follows that ||Sab||F ď λ.

Now suppose that ||Sab||F ď λ for all a P Pj , b P Pj1 , j ‰ j1. For every l1 “ 1, . . . , l
construct

rΩl1 “ arg min
Ωl1ą0

trSl1Ωl1 ´ log |Ωl1 | ` λ
ÿ

a,b

||Ωab||F .
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Then pΩ “ diagppΩ1, pΩ2, . . . , pΩlq is the solution of (4) as it satisfies the KKT conditions.

B.3 Proof of Eq. (3)

First, we note that

var
`

pXT
a , X

T
b q

T | Xab

˘

“ Σab,ab ´ Σab,abΣ
´1
ab,ab

Σab,ab

is the conditional covariance matrix of pXT
a , X

T
b q

T given the remaining nodes Xab (see
Proposition C.5 in Lauritzen (1996)). Define Σ “ Σab,ab´Σab,abΣ

´1
ab,ab

Σab,ab. Partial canon-

ical correlation between Xa and Xb is equal to zero if and only if Σab “ 0. On the other

hand, the matrix inversion lemma gives that Ωab,ab “ Σ
´1

. Now, Ωab “ 0 if and only if
Σab “ 0. This shows the equivalence relationship in Eq. (3).

B.4 Proof of Proposition 4

We provide sufficient conditions for consistent network estimation. Proposition 4 given in
Section 3 is then a simple consequence. To provide sufficient conditions, we extend the work
of Ravikumar et al. (2011) to our setting, where we observe multiple attributes for each
node. In particular, we extend their Theorem 1.

For simplicity of presentation, we assume that ka “ k, for all a P V , that is, we assume
that the same number of attributes is observed for each node. Our assumptions involve the
Hessian of the function fpAq “ trSA´ log |A| evaluated at the true Ω˚,

H “ HpΩ˚q “ pΩ˚q´1 b pΩ˚q´1 P Rppkq
2ˆppkq2 , (17)

and the true covariance matrix Σ˚. The Hessian and the covariance matrix can be thought
of block matrices with blocks of size k2 ˆ k2 and k ˆ k, respectively. We will make use of
the operator Cp¨q that operates on these block matrices and outputs a smaller matrix with
elements that equal to the Frobenius norm of the original blocks,

¨

˚

˚

˚

˝

A11 A12 ¨ ¨ ¨ A1p

A21 A22 ¨ ¨ ¨ A2p
...

. . .
...

Ap1 ¨ ¨ ¨ App

˛

‹

‹

‹

‚

Cp¨q
ÝÝÝÝÝÝÑ

¨

˚

˚

˚

˝

||A11||F ||A12||F ¨ ¨ ¨ ||A1p||F

||A21||F ||A22||F ¨ ¨ ¨ ||A2p||F
...

. . .
...

||Ap1||F ¨ ¨ ¨ ||App||F

˛

‹

‹

‹

‚

.

In particular, CpΣ˚q P Rpˆp and CpHq P Rp2ˆp2 .
We denote the index set of the non-zero blocks of the precision matrix as

T :“ tpa, bq P V ˆ V : ||Ω˚ab||2 ‰ 0u Y tpa, aq : a P V u

and let N denote its complement in V ˆ V , that is,

N “ tpa, bq : ||Ωab||F “ 0u.

As mentioned earlier, we need to make an assumption on the Hessian matrix, which
takes the standard irrepresentable-like form. There exists a constant α P r0, 1q such that

|||C
`

HNT pHT T q´1
˘

|||8 ď 1´ α. (18)
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These condition extends the irrepresentable condition given in Ravikumar et al. (2011),
which was needed for estimation of networks from single attribute observations. It is worth
noting, that the condition given in Eq. (18) can be much weaker than the irrepresentable
condition of Ravikumar et al. (2011) applied directly to the full Hessian matrix. This can
be observed in simulations done in Section 5, where a chain network is not consistently
estimated even with a large number of samples.

We will also need the following two quantities to specify the results

κΣ˚ “ |||CpΣ˚q|||8, (19)

and
κH “ |||CpH´1

T T q|||8. (20)

Finally, the results are going to depend on the tail bounds for the elements of the
matrix CpS ´ Σ˚q. We will assume that there is a constant v˚ P p0,8s and a function
f : Nˆ p0,8q ÞÑ p0,8q such that for any pa, bq P V ˆ V

pr pCpS ´ Σ˚qab ě δq ď
1

fpn, δq
δ P p0, v´1

˚ s. (21)

The function fpn, δq will be monotonically increasing in both n and δ. Therefore, we define
the following two inverse functions

nf pδ; rq “ arg maxtn : fpn, δq ď ru (22)

and
δf pr;nq “ arg maxtδ : fpn, δq ď ru (23)

for r P r1,8q.
With the notation introduced, we have the following result.

Theorem 7 Assume that the irrepresentable condition in Eq. (18) is satisfied and that
there exists a constant v˚ P p0,8s and a function fpn, δq so that Eq. (21) is satisfied for
any pa, bq P V ˆ V . Let

λ “
8

α
δf pn, p

τ q

for some τ ą 2. If

n ą nf

ˆ

1

maxpv˚, 6p1` 8α´1qsmaxpκΣ˚κH, κ
3
Σ˚κ

2
Hqq

, pτ
˙

, (24)

then
||CppΩ´ Ωq||8 ď 2p1` 8α´1qκHδf pn, p

τ q (25)

with probability at least 1´ p2´τ .

Theorem 7 is of the same form as Theorem 1 in Ravikumar et al. (2011), but the `8 element-
wise convergence is established for CppΩ´Ωq, which will guarantee successful recovery of non-
zero partial canonical correlations if the blocks of the true precision matrix are sufficiently
large.

1739



Kolar, Liu, and Xing

Theorem 7 is proven as Theorem 1 in Ravikumar et al. (2011). We provide technical
results in Lemma 8, Lemma 9 and Lemma 10, which can be used to substitute results of
Lemma 4, Lemma 5 and Lemma 6 in Ravikumar et al. (2011) under our setting. The rest
of the arguments then go through. Below we provide some more details.

First, let Z : Rpkˆpk ÞÑ Rpkˆpk be the mapping defined as

ZpAqab “

#

Aab
||Aab||F

if ||Aab||F ‰ 0,

Z with ||Z||F ď 1 if ||Aab||F “ 0,
(26)

Next, define the function

GpΩq “ tr ΩS ´ log |Ω| ` λ||CpΩq||1, @Ω ą 0 (27)

and the following system of equations

"

Sab ´ pΩ
´1qab “ ´λZpΩqab, if Ωab ‰ 0

||Sab ´ pΩ
´1qab||F ď λ, if Ωab “ 0.

(28)

It is known that Ω P Rrpˆrp is the minimizer of optimization problem in Eq. (4) if and only if
it satisfies the system of equations given in Eq. (28). We have already shown in Lemma 5
that the minimizer is unique.

Let rΩ be the solution to the following constrained optimization problem

min
Ωą0

trSΩ´ log |Ω| ` λ||CpΩq||1 subject to CpΩqab “ 0, @pa, bq P N . (29)

Observe that one cannot find rΩ in practice, as it depends on the unknown set N . However,
it is a useful construction in the proof. We will prove that rΩ is solution to the optimization
problem given in Eq. (4), that is, we will show that rΩ satisfies the system of equations (28).

Using the first-order Taylor expansion we have that

rΩ´1 “ pΩ˚q´1 ´ pΩ˚q´1∆pΩ˚q´1 `Rp∆q, (30)

where ∆ “ Ω ´ Ω˚ and Rp∆q denotes the remainder term. With this, we state and prove
Lemma 8, Lemma 9 and Lemma 10. They can be combined as in Ravikumar et al. (2011)
to complete the proof of Theorem 7.

Lemma 8 Assume that

max
ab
||∆ab||F ď

αλ

8
and max

ab
||Σ˚ab ´ Sab||F ď

αλ

8
. (31)

Then rΩ is the solution to the optimization problem in Eq. (4).

Proof We use R to denote Rp∆q. Recall that ∆N “ 0 by construction. Using (30) we can
rewrite (28) as

Hab,T∆T ´Rab ` Sab ´ Σ
˚

ab ` λZprΩqab “ 0 if pa, bq P T (32)

||Hab,T∆T ´Rab ` Sab ´ Σ
˚

ab||2 ď λ if pa, bq P N . (33)
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By construction, the solution rΩ satisfy (32). Under the assumptions, we show that (33) is
also satisfied with inequality.

From (32), we can solve for ∆T ,

∆T “ H´1
T ,T rRT ´ ΣT ` ST ´ λZprΩqT s.

Then

||Hab,TH´1
T ,T rRT ´ ΣT ` ST ´ λZprΩqT s ´Rab ` Sab ´ Σ

˚

ab||2

ď λ||Hab,TH´1
T ,T ZprΩqT ||2 ` ||Hab,TH´1

T ,T rRT ´ ΣT ` ST s||2 ` ||Rab ` Sab ´ Σ
˚

ab||2

ď λp1´ αq ` p2´ αq
αλ

4
ă λ

using assumption on H in (18) and (31). This shows that rΩ satisfies (28).

Lemma 9 Assume that

||Cp∆q||8 ď
1

3κΣ˚s
. (34)

Then

||CpRp∆qq||8 ď
3s

2
κ3

Σ˚ ||Cp∆q||28. (35)

Proof Remainder term can be written as

Rp∆q “ pΩ˚ `∆q´1 ´ pΩ˚q´1 ` pΩ˚q´1∆pΩ˚q´1.

Using (40), we have that

|||CppΩ˚q´1∆q|||8 ď |||CppΩ˚q´1q|||8|||Cp∆q|||8
ď s|||CppΩ˚q´1q|||8||Cp∆q||8

ď
1

3
,

which gives us the following expansion

pΩ˚ `∆q´1 “ pΩ˚q´1 ´ pΩ˚q´1∆pΩ˚q´1 ` pΩ˚q´1∆pΩ˚q´1∆JpΩ˚q´1,

with J “
ř

kě0p´1qkppΩ˚q´1∆qk. Using (41) and (40), we have that

||CpRq||8 ď ||CppΩ˚q´1∆q||8|||CppΩ˚q´1∆JpΩ˚q´1qT |||8

ď |||CppΩ˚q´1q|||38||Cp∆q||8|||CpJT q|||8|||Cp∆q|||8
ď s|||CppΩ˚q´1q|||38||Cp∆q||28|||CpJT q|||8.
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Next, we have that

|||CpJT q|||8 ď
ÿ

ką0

|||Cp∆pΩ˚q´1q|||k8

ď
1

1´ |||Cp∆pΩ˚q´1q|||8

ď
3

2
,

which gives us

||CpRq||8 ď
3s

2
κ3

Σ˚ ||Cp∆q||28
as claimed.

Lemma 10 Assume that

r :“ 2κHp||CpS ´ Σ˚q||8 ` λq ď min

ˆ

1

3κΣ˚s
,

1

3κHκ3
Σ˚s

˙

. (36)

Then
||Cp∆q||8 ď r. (37)

Proof The proof follows the proof of Lemma 6 in Ravikumar et al. (2011). Define the ball

Bprq :“ tA : CpAqab ď r,@pa, bq P T u,

the gradient mapping
GpΩT q “ ´pΩ

´1qT ` ST ` λZpΩqT
and

F p∆T q “ ´H´1
T TGpΩ

˚
T `∆T q `∆T .

We need to show that F pBprqq Ď Bprq, which implies that ||Cp∆T q||8 ď r.
Under the assumptions of the lemma, for any ∆S P Bprq, we have the following decom-

position
F p∆T q “ H´1

T T Rp∆qT `H´1
T T pST ´ Σ

˚

T ` λZpΩ˚ `∆qT q.

Using Lemma 9, the first term can be bounded as

||CpH´1
T T Rp∆qT q||8 ď |||CpH

´1
T T q|||8||CpRp∆q||8

ď
3s

2
κHκ

3
Σ˚ ||Cp∆q||28

ď
3s

2
κHκ

3
Σ˚r

2

ď r{2

where the last inequality follows under the assumptions. Similarly

||CpH´1
T T pST ´ Σ

˚

T ` λZpΩ˚ `∆qT q||8

ď |||CpH´1
T T q|||8p||CpS ´ Σ˚q||8 ` λ||CpZpΩ˚ `∆qq||8q

ď κHp||CpS ´ Σ
˚
q||8 ` λq

ď r{2.

1742



Graph Estimation From Multi-attribute Data

This shows that F pBprqq Ď Bprq.

The following result is a corollary of Theorem 7, which shows that the graph structure
can be estimated consistently under some assumptions.

Corollary 11 Assume that the conditions of Theorem 7 are satisfied. Furthermore, suppose
that

min
pa,bqPT , a‰b

||Ω||F ą 2p1` 8α´1qκHδf pn, p
τ q,

then Algorithm 1 estimates a graph pG which satisfies

pr
´

pG ‰ G
¯

ě 1´ p2´τ .

Next, we specialize the result of Theorem 7 to a case where X has sub-Gaussian tails.
That is, the random vector X “ pX1, . . . , Xpkq

T is zero-mean with covariance Σ˚. Each
pσ˚aaq

´1{2Xa is sub-Gaussian with parameter γ.

Proposition 12 Set the penalty parameter in λ in Eq. (4) as

λ “ 8kα´1
´

128p1` 4γ2q2pmax
a
pσ˚aaq

2qn´1p2 logp2kq ` τ logppqq
¯1{2

.

If
n ą C1s

2k2p1` 8α´1q2pτ log p` log 4` 2 log kq,

where C1 “ p48
?

2p1` 4γ2qpmaxa σ
˚
aaqmaxpκΣ˚κH, κ

3
Σ˚κ

2
Hqq

2, then

||CppΩ´ Ωq||8 ď 16
?

2p1` 4γ2qmax
i
σ˚iip1` 8α´1qκHk

ˆ

τ log p` log 4` 2 log k

n

˙1{2

with probability 1´ p2´τ .

The proof simply follows by observing that, for any pa, bq,

pr pCpS ´ Σ˚qab ą δq ď pr

ˆ

max
pc,dqPpa,bq

pσcd ´ σ
˚
cdq

2 ą δ2{k2

˙

ď k2pr p|σcd ´ σ
˚
cd| ą δ{kq

ď 4k2 exp

ˆ

´
nδ2

c˚k2

˙

(38)

for all δ P p0, 8p1` 4γ2qpmaxa σ
˚
aaqq with c˚ “ 128p1` 4γ2q2pmaxapσ

˚
aaq

2q. Therefore,

fpn, δq “
1

4k2
exppc˚

nδ2

k2
q,

nf pδ; rq “
k2 logp4k2rq

c˚δ2
,

δf pr;nq “

ˆ

k2 logp4k2rq

c˚n

˙1{2

.

Theorem 7 and some simple algebra complete the proof.
Proposition 4 is a simple consequence of Proposition 12.
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B.5 Some Results on Norms of Block Matrices

Let T be a partition of V . Throughout this section, we assume that matrices A,B P Rpˆp
and a vector b P Rp are partitioned into blocks according to T .

Lemma 13

max
aPT

||Aa¨b||2 ď max
aPT

ÿ

bPT
||Aab||F max

cPT
||bc||2. (39)

Proof For any a P T ,

||Aa¨b||2 ď
ÿ

bPT
||Aabbb||2

“
ÿ

bPT

˜

ÿ

iPa

pAibbbq
2

¸1{2

ď
ÿ

bPT

˜

ÿ

iPa

||Aib||
2
2||bb||

2
2

¸1{2

ď
ÿ

bPT

˜

ÿ

iPa

||Aib||
2
2

¸1{2

max
cPT

||bc||2

“
ÿ

bPT
||Aab||F max

cPT
||bc||2.

Lemma 14

|||CpABq|||8 ď |||CpBq|||8|||CpAq|||8. (40)

Proof Let C “ AB and let T be a partition of V .

|||CpABq|||8 “ max
aPT

ÿ

bPT
||Cab||F

ď max
aPT

ÿ

b

ÿ

c

||Aac||F ||Bcb||F

ď tmax
aPT

ÿ

c

||Aac||F utmax
cPT

ÿ

b

||Bcb||F u

“ |||CpAq|||8|||CpBq|||8.

Lemma 15

||CpABq||8 ď ||CpAq||8|||CpBqT |||8. (41)
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Proof For a fixed a and b,

CpABqab “ ||
ÿ

c

AacBcb||F

ď
ÿ

c

||Aac||F ||Bcb||F

ď max
c
||Aac||

ÿ

c

||Bcb||F .

Maximizing over a and b gives the result.

Appendix C. Additional Information About Functional Brain Networks

Table 3 contains list of the names of the brain regions. The number before each region is
used to index the node in the connectivity models. Figures 11, 12 and 13 contain adjacency
matrices for the estimated graph structures.
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Figure 11: Adjacency matrix for the brain connectivity network: healthy subjects
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Figure 12: Adjacency matrix for the brain connectivity network: Mild Cognitive Impair-
ment
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Figure 13: Adjacency matrix for the brain connectivity network: Alzheimer’s & Dementia
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1 Precentral_L 49 Fusiform_L

2 Precentral_R 50 Fusiform_R

3 Frontal_Sup_L 51 Postcentral_L

4 Frontal_Sup_R 52 Postcentral_R

5 Frontal_Sup_Orb_L 53 Parietal_Sup_L

6 Frontal_Sup_Orb_R 54 Parietal_Sup_R

7 Frontal_Mid_L 55 Parietal_Inf_L

8 Frontal_Mid_R 56 Parietal_Inf_R

9 Frontal_Mid_Orb_L 57 SupraMarginal_L

10 Frontal_Mid_Orb_R 58 SupraMarginal_R

11 Frontal_Inf_Oper_L 59 Angular_L

12 Frontal_Inf_Oper_R 60 Angular_R

13 Frontal_Inf_Tri_L 61 Precuneus_L

14 Frontal_Inf_Tri_R 62 Precuneus_R

15 Frontal_Inf_Orb_L 63 Paracentral_Lobule_L

16 Frontal_Inf_Orb_R 64 Paracentral_Lobule_R

17 Rolandic_Oper_L 65 Caudate_L

18 Rolandic_Oper_R 66 Caudate_R

19 Supp_Motor_Area_L 67 Putamen_L

20 Supp_Motor_Area_R 68 Putamen_R

21 Frontal_Sup_Medial_L 69 Thalamus_L

22 Frontal_Sup_Medial_R 70 Thalamus_R

23 Frontal_Med_Orb_L 71 Temporal_Sup_L

24 Frontal_Med_Orb_R 72 Temporal_Sup_R

25 Rectus_L 73 Temporal_Pole_Sup_L

26 Rectus_R 74 Temporal_Pole_Sup_R

27 Insula_L 75 Temporal_Mid_L

28 Insula_R 76 Temporal_Mid_R

29 Cingulum_Ant_L 77 Temporal_Pole_Mid_L

30 Cingulum_Ant_R 78 Temporal_Pole_Mid_R

31 Cingulum_Mid_L 79 Temporal_Inf_L

32 Cingulum_Mid_R 80 Temporal_Inf_R

33 Hippocampus_L 81 Cerebelum_Crus1_L

34 Hippocampus_R 82 Cerebelum_Crus1_R

35 ParaHippocampal_L 83 Cerebelum_Crus2_L

36 ParaHippocampal_R 84 Cerebelum_Crus2_R

37 Calcarine_L 85 Cerebelum_4_5_L

38 Calcarine_R 86 Cerebelum_4_5_R

39 Cuneus_L 87 Cerebelum_6_L

40 Cuneus_R 88 Cerebelum_6_R

41 Lingual_L 89 Cerebelum_7b_L

42 Lingual_R 90 Cerebelum_7b_R

43 Occipital_Sup_L 91 Cerebelum_8_L

44 Occipital_Sup_R 92 Cerebelum_8_R

45 Occipital_Mid_L 93 Cerebelum_9_L

46 Occipital_Mid_R 94 Cerebelum_9_R

47 Occipital_Inf_L 95 Vermis_4_5

48 Occipital_Inf_R

Table 3: Names of the brain regions. L means that the brain region is located at the left
hemisphere; R means right hemisphere.
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Abstract

In machine learning, a popular tool to analyze the structure of graphs is the hitting time
and the commute distance (resistance distance). For two vertices u and v, the hitting time
Huv is the expected time it takes a random walk to travel from u to v. The commute
distance is its symmetrized version Cuv = Huv +Hvu. In our paper we study the behavior
of hitting times and commute distances when the number n of vertices in the graph tends
to infinity. We focus on random geometric graphs (ε-graphs, kNN graphs and Gaussian
similarity graphs), but our results also extend to graphs with a given expected degree
distribution or Erdős-Rényi graphs with planted partitions. We prove that in these graph
families, the suitably rescaled hitting time Huv converges to 1/dv and the rescaled commute
time to 1/du + 1/dv where du and dv denote the degrees of vertices u and v. In these cases,
hitting and commute times do not provide information about the structure of the graph,
and their use is discouraged in many machine learning applications.

Keywords: commute distance, resistance, random graph, k-nearest neighbor graph, spec-
tral gap

1. Introduction

Given an undirected, weighted graph G = (V,E) with n vertices, the commute distance
between two vertices u and v is defined as the expected time it takes the natural random
walk starting in vertex u to travel to vertex v and back to u. It is equivalent (up to a
constant) to the resistance distance, which interprets the graph as an electrical network
and defines the distance between vertices u and v as the effective resistance between these
vertices. See below for exact definitions, for background reading see Doyle and Snell (1984);
Klein and Randic (1993); Xiao and Gutman (2003); Fouss et al. (2006), Chapter 2 of Lyons
and Peres (2010), Chapter 3 of Aldous and Fill (2001), or Section 9.4 of Levin et al. (2008).
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The commute distance is very popular in many different fields of computer science and be-
yond. As examples consider the fields of graph embedding (Guattery, 1998; Saerens et al.,
2004; Qiu and Hancock, 2006; Wittmann et al., 2009), graph sparsification (Spielman and
Srivastava, 2008), social network analysis (Liben-Nowell and Kleinberg, 2003), proximity
search (Sarkar et al., 2008), collaborative filtering (Fouss et al., 2006), clustering (Yen et al.,
2005), semi-supervised learning (Zhou and Schölkopf, 2004), dimensionality reduction (Ham
et al., 2004), image processing (Qiu and Hancock, 2005), graph labeling (Herbster and Pon-
til, 2006; Cesa-Bianchi et al., 2009), theoretical computer science (Aleliunas et al., 1979;
Chandra et al., 1989; Avin and Ercal, 2007; Cooper and Frieze, 2003, 2005, 2007, 2011), and
various applications in chemometrics and bioinformatics (Klein and Randic, 1993; Ivanciuc,
2000; Fowler, 2002; Roy, 2004; Guillot et al., 2009).

The commute distance has many nice properties, both from a theoretical and a practical
point of view. It is a Euclidean distance function and can be computed in closed form.
As opposed to the shortest path distance, it takes into account all paths between u and
v, not just the shortest one. As a rule of thumb, the more paths connect u with v, the
smaller their commute distance becomes. Hence it supposedly satisfies the following, highly
desirable property:

Property (F): Vertices in the same “cluster” of the graph have a small
commute distance, whereas vertices in different clusters of the graph have a
large commute distance to each other.

Consequently, the commute distance is considered a convenient tool to encode the cluster
structure of the graph.

In this paper we study how the commute distance behaves when the size of the graph
increases. We focus on the case of random geometric graphs (k-nearest neighbor graphs,
ε-graphs, and Gaussian similarity graphs). Denote by Huv the expected hitting time and
by Cuv the commute distance between two vertices u and v, by du the degree of vertex u,
by vol(G) the volume of the graph. We show that as the number n of vertices tends to
infinity, there exists a scaling term sc such that the hitting times and commute distances
in random geometric graphs satisfy

sc ·
∣∣∣ 1

vol(G)
Huv −

1

dv

∣∣∣ −→ 0 and sc ·
∣∣∣ 1

vol(G)
Cuv −

( 1

du
+

1

dv

)∣∣∣ −→ 0,

and at the same time sc · du and sc · dv converge to positive constants (precise definitions,
assumptions and statements below). Loosely speaking, the convergence result says that the
rescaled commute distance can be approximated by the sum of the inverse rescaled degrees.

We present two different strategies to prove these results: one based on flow arguments on
electrical networks, and another one based on spectral arguments. While the former ap-
proach leads to tighter bounds, the latter is more general. Our proofs heavily rely on prior
work by a number of authors: Lovász (1993), who characterized hitting and commute times
in terms of their spectral properties and was the first one to observe that the commute dis-
tance can be approximated by 1/du+1/dv; Boyd et al. (2005), who provided bounds on the
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spectral gap in random geometric graphs, and Avin and Ercal (2007), who already studied
the growth rates of the commute distance in random geometric graphs. Our main technical
contributions are to strengthen the bound provided by Lovász (1993), to extend the results
by Boyd et al. (2005) and Avin and Ercal (2007) to more general types of geometric graphs
such as k-nearest neighbor graphs with general domain and general density, and to develop
the flow-based techniques for geometric graphs.

Loosely speaking, the convergence results say that whenever the graph is reasonably large,
the degrees are not too small, and the bottleneck is not too extreme, then the commute
distance between two vertices can be approximated by the sum of their inverse degrees.
These results have the following important consequences for applications.

Negative implication: Hitting and commute times can be misleading. Our approximation
result shows that the commute distance does not take into account any global properties of
the data in large geometric graphs. It has been observed before that the commute distance
sometimes behaves in an undesired way when high-degree vertices are involved (Liben-
Nowell and Kleinberg, 2003; Brand, 2005), but our work now gives a complete theoretical
description of this phenomenon: the commute distance just considers the local density (the
degree of the vertex) at the two vertices, nothing else. The resulting large sample commute
distance dist(u, v) = 1/du + 1/dv is completely meaningless as a distance on a graph. For
example, all data points have the same nearest neighbor (namely, the vertex with the largest
degree), the same second-nearest neighbor (the vertex with the second-largest degree), and
so on. In particular, one of the main motivations to use the commute distance, Property
(F), no longer holds when the graph becomes large enough. Even more disappointingly,
computer simulations show that n does not even need to be very large before (F) breaks
down. Often, n in the order of 1000 is already enough to make the commute distance close
to its approximation expression. This effect is even stronger if the dimensionality of the
underlying data space is large. Consequently, even on moderate-sized graphs, the use of the
raw commute distance should be discouraged.

Positive implication: Efficient computation of approximate commute distances. In some ap-
plications the commute distance is not used as a distance function, but as a tool to encode
the connectivity properties of a graph, for example in graph sparsification (Spielman and
Srivastava, 2008) or when computing bounds on mixing or cover times (Aleliunas et al.,
1979; Chandra et al., 1989; Avin and Ercal, 2007; Cooper and Frieze, 2011) or graph label-
ing (Herbster and Pontil, 2006; Cesa-Bianchi et al., 2009). To obtain the commute distance
between all points in a graph one has to compute the pseudo-inverse of the graph Lapla-
cian matrix, an operation of time complexity O(n3). This is prohibitive in large graphs.
To circumvent the matrix inversion, several approximations of the commute distance have
been suggested in the literature (Spielman and Srivastava, 2008; Sarkar and Moore, 2007;
Brand, 2005). Our results lead to a much simpler and well-justified way of approximating
the commute distance on large random geometric graphs.

After introducing general definitions and notation (Section 3), we present our main results
in Section 4. This section is divided into two parts (flow-based part and spectral part). In
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Section 5 we show in extensive simulations that our approximation results are relevant for
many graphs used in machine learning. Relations to previous work is discussed in Section
2. All proofs are deferred to Sections 6 and 7. Parts of this work is built on our conference
paper von Luxburg et al. (2010).

2. Related Work

The resistance distance became popular through the work of Doyle and Snell (1984) and
Klein and Randic (1993), and the connection between commute and resistance distance
was established by Chandra et al. (1989) and Tetali (1991). By now, resistance and com-
mute distances are treated in many text books, for example Chapter IX of Bollobas (1998),
Chapter 2 of Lyons and Peres (2010), Chapter 3 of Aldous and Fill (2001), or Section 9.4 of
Levin et al. (2008). It is well known that the commute distance is related to the spectrum of
the unnormalized and normalized graph Laplacian (Lovász, 1993; Xiao and Gutman, 2003).
Bounds on resistance distances in terms of the eigengap and the term 1/du + 1/dv have
already been presented in Lovász (1993). We present an improved version of this bound
that leads to our convergence results in the spectral approach.

Properties of random geometric graphs have been investigated thoroughly in the literature,
see for example the monograph of Penrose (2003). Our work concerns the case where the
graph connectivity parameter (ε or k, respectively) is so large that the graph is connected
with high probability (see Penrose, 1997; Brito et al., 1997; Penrose, 1999, 2003; Xue and
Kumar, 2004; Balister et al., 2005). We focus on this case because it is most relevant for
machine learning. In applications such as clustering, people construct a neighborhood graph
based on given similarity scores between objects, and they choose the graph connectivity
parameter so large that the graph is well-connected.

Asymptotic growth rates of commute distances and the spectral gap have already been
studied for a particular special case: ε-graphs on a sample from the uniform distribution
on the unit cube or unit torus in Rd (Avin and Ercal, 2007; Boyd et al., 2005; Cooper
and Frieze, 2011). However, the most interesting case for machine learning is the case of
kNN graphs or Gaussian graphs (as they are the ones used in practice) on spaces with a
non-uniform probability distribution (real data is never uniform). A priori, it is unclear
whether the commute distances on such graphs behave as the ones on ε-graphs: there are
many situations in which these types of graphs behave very different. For example their
graph Laplacians converge to different limit objects (Hein et al., 2007). In our paper we
now consider the general situation of commute distances in ε, kNN and Gaussian graphs
on a sample from a non-uniform distribution on some subset of Rd.

Our main techniques, the canonical path technique for bounding the spectral gap (Diaconis
and Stroock, 1991; Sinclair, 1992; Jerrum and Sinclair, 1988; Diaconis and Saloff-Coste,
1993) and the flow-based techniques for bounding the resistance, are text book knowledge
(Section 13.5. of Levin et al., 2008; Sec. IX.2 of Bollobas, 1998). Our results on the spectral
gap in random geometric graphs, Theorems 6 and 7, build on similar results in Boyd et al.

1754



Hitting and Commute Times in Large Random Neighborhood Graphs

(2005); Avin and Ercal (2007); Cooper and Frieze (2011). These three papers consider the
special case of an ε-graph on the unit cube / unit torus in Rd, endowed with the uniform
distribution. For this case, the authors also discuss cover times and mixing times, and Avin
and Ercal (2007) also include bounds on the asymptotic growth rate of resistance distances.
We extend these results to the case of ε, kNN and Gaussian graphs with general domain and
general probability density. The focus in our paper is somewhat different from the related
literature, because we care about the exact limit expressions rather than asymptotic growth
rates.

3. General Setup, Definitions and Notation

We consider undirected graphs G = (V,E) that are connected and not bipartite. By n we
denote the number of vertices. The adjacency matrix is denoted by W := (wij)i,j=1,...,n.
In case the graph is weighted, this matrix is also called the weight matrix. All weights
are assumed to be non-negative. The minimal and maximal weights in the graph are de-
noted by wmin and wmax. By di :=

∑n
j=1wij we denote the degree of vertex vi. The

diagonal matrix D with diagonal entries d1, . . . , dn is called the degree matrix, the minimal
and maximal degrees are denoted dmin and dmax. The volume of the graph is given as
vol(G) =

∑
j=1,...,n dj . The unnormalized graph Laplacian is given as L := D − W , the

normalized one as Lsym = D−1/2LD−1/2. Consider the natural random walk on G. Its
transition matrix is given as P = D−1W . It is well-known that λ is an eigenvalue of Lsym

if and only if 1− λ is an eigenvalue of P . By 1 = λ1 ≥ λ2 ≥ . . . ≥ λn > −1 we denote the
eigenvalues of P . The quantity 1−max{λ2, |λn|} is called the spectral gap of P .

The hitting time Huv is defined as the expected time it takes a random walk starting in ver-
tex u to travel to vertex v (where Huu = 0 by definition). The commute distance (commute
time) between u and v is defined as Cuv := Huv + Hvu. Closely related to the commute
distance is the resistance distance. Here one interprets the graph as an electrical network
where the edges represent resistors. The conductance of a resistor is given by the corre-
sponding edge weight. The resistance distance Ruv between two vertices u and v is defined
as the effective resistance between u and v in the network. It is well known (Chandra et al.,
1989) that the resistance distance coincides with the commute distance up to a constant:
Cuv = vol(G)Ruv. For background reading on resistance and commute distances see Doyle
and Snell (1984); Klein and Randic (1993); Xiao and Gutman (2003); Fouss et al. (2006).

Recall that for a symmetric, non-invertible matrix A its Moore-Penrose inverse is defined as
A† := (A+U)−1−U where U is the projection on the eigenspace corresponding to eigenvalue
0. It is well known that commute times can be expressed in terms of the Moore-Penrose
inverse L† of the unnormalized graph Laplacian (e.g., Klein and Randic, 1993; Xiao and
Gutman, 2003; Fouss et al., 2006):

Cij = vol(G)
〈
ei − ej , L†(ei − ej)

〉
,

where ei is the i-th unit vector in Rn. The following representations for commute and
hitting times involving the pseudo-inverse L†sym of the normalized graph Laplacian are direct
consequences of Lovász, 1993:
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Proposition 1 (Closed form expression for hitting and commute times) Let G be
a connected, undirected graph with n vertices. The hitting times Hij, i 6= j, can be computed
by

Hij = vol(G)
〈 1√

dj
ej , L

†
sym

( 1√
dj
ej −

1√
di
ei

)〉
,

and the commute times satisfy

Cij = vol(G)
〈 1√

di
ei −

1√
dj
ej , L

†
sym

( 1√
dj
ej −

1√
di
ei

)〉
.

Our main focus in this paper is the class of geometric graphs. For a deterministic geometric
graph we consider a fixed set of points X1, . . . , Xn ∈ Rd. These points form the vertices
v1, . . . , vn of the graph. In the ε-graph we connect two points whenever their Euclidean
distance is less than or equal to ε. In the undirected symmetric k-nearest neighbor graph
we connect vi to vj if Xi is among the k nearest neighbors of Xj or vice versa. In the
undirected mutual k-nearest neighbor graph we connect vi to vj if Xi is among the k near-
est neighbors of Xj and vice versa. Note that by default, the terms ε- and kNN-graph
refer to unweighted graphs in our paper. When we treat weighted graphs, we always make
it explicit. For a general similarity graph we build a weight matrix between all points
based on a similarity function k : Rd × Rd → R≥0, that is we define the weight matrix W
with entries wij = k(Xi, Xj) and consider the fully connected graph with weight matrix
W . The most popular weight function in applications is the Gaussian similarity function
wij = exp(−‖Xi −Xj‖2/σ2), where σ > 0 is a bandwidth parameter.

While these definitions make sense with any fixed set of vertices, we are most interested
in the case of random geometric graphs. We assume that the underlying set of vertices
X1, ..., Xn has been drawn i.i.d. according to some probability density p on Rd. Once
the vertices are known, the edges in the graphs are constructed as described above. In
the random setting it is convenient to make regularity assumptions in order to be able to
control quantities such as the minimal and maximal degrees.

Definition 2 (Valid region) Let p be any density on Rd. We call a connected subset
X ⊂ Rd a valid region if the following properties are satisfied:

1. The density on X is bounded away from 0 and infinity, that is for all x ∈ X we have
that 0 < pmin ≤ p(x) ≤ pmax <∞ for some constants pmin, pmax.

2. X has “bottleneck” larger than some value h > 0: the set {x ∈ X : dist(x, ∂X ) >
h/2} is connected (here ∂X denotes the topological boundary of X ).

3. The boundary of X is regular in the following sense. We assume that there exist
positive constants α > 0 and ε0 > 0 such that if ε < ε0, then for all points x ∈ ∂X
we have vol(Bε(x) ∩ X ) ≥ α vol(Bε(x)) (where vol denotes the Lebesgue volume).
Essentially this condition just excludes the situation where the boundary has arbitrarily
thin spikes.
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Sometimes we consider a valid region with respect to two points s, t. Here we additionally
assume that s and t are interior points of X .

In the spectral part of our paper, we always have to make a couple of assumptions that
will be summarized by the term general assumptions. They are as follows: First we
assume that X := supp(p) is a valid region according to Definition 2. Second, we assume
that X does not contain any holes and does not become arbitrarily narrow: there exists
a homeomorphism h : X → [0, 1]d and constants 0 < Lmin < Lmax < ∞ such that for all
x, y ∈ X we have

Lmin‖x− y‖ ≤ ‖h(x)− h(y)‖ ≤ Lmax‖x− y‖.

This condition restricts X to be topologically equivalent to the cube. In applications this
is not a strong assumption, as the occurrence of “holes” with vanishing probability density
is unrealistic due to the presence of noise in the data generating process. More generally
we believe that our results can be generalized to other homeomorphism classes, but refrain
from doing so as it would substantially increase the amount of technicalities.

In the following we denote the volume of the unit ball in Rd by ηd. For readability reasons, we
are going to state our main results using constants ci > 0. These constants are independent
of n and the graph connectivity parameter (ε or k or h, respectively) but depend on the
dimension, the geometry of X , and p. The values of all constants are determined explicitly
in the proofs. They are not the same in different propositions.

4. Main Results

Our paper comprises two different approaches. In the first approach we analyze the re-
sistance distance by flow based arguments. This technique is somewhat restrictive in the
sense that it only works for the resistance distance itself (not the hitting times) and we only
apply it to random geometric graphs. The advantage is that in this setting we obtain good
convergence conditions and rates. The second approach is based on spectral arguments and
is more general. It works for various kinds of graphs and can treat hitting times as well.
This comes at the price of slightly stronger assumptions and worse convergence rates.

4.1 Results Based on Flow Arguments

Theorem 3 (Commute distance on ε-graphs) Let X be a valid region with bottleneck
h and minimal density pmin. For ε ≤ h, consider an unweighted ε-graph built from the
sequence X1, . . . , Xn that has been drawn i.i.d. from the density p. Fix i and j. Assume
that Xi and Xj have distance at least h from the boundary of X , and that the distance
between Xi and Xj is at least 8ε. Then there exist constants c1, . . . , c7 > 0 (depending on
the dimension and geometry of X ) such that with probability at least 1− c1n exp(−c2nεd)−
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c3 exp(−c4nεd)/εd the commute distance on the ε-graph satisfies

∣∣∣∣ nεd

vol(G)
Cij −

(
nεd

di
+
nεd

dj

)∣∣∣∣ ≤

c5/nε

d if d > 3

c6 · log(1/ε)/nε3 if d = 3

c7/nε
3 if d = 2

The probability converges to 1 if n→∞ and nεd/ log(n)→∞. The right hand side of the
deviation bound converges to 0 as n→∞, if

nεd →∞ if d > 3

nε3/ log(1/ε)→∞ if d = 3

nε3 = nεd+1 →∞ if d = 2.

Under these conditions, if the density p is continuous and if ε→ 0, then

nεd

vol(G)
Cij −→

1

ηdp(Xi)
+

1

ηdp(Xj)
a.s.

Theorem 4 (Commute distance on kNN-graphs) Let X be a valid region with bot-
tleneck h and density bounds pmin and pmax. Consider an unweighted kNN-graph (either
symmetric or mutual) such that (k/n)1/d/(2pmax) ≤ h, built from the sequence X1, . . . , Xn

that has been drawn i.i.d. from the density p.
Fix i and j. Assume that Xi and Xj have distance at least h from the boundary of X , and
that the distance between Xi and Xj is at least 4(k/n)1/d/pmax. Then there exist constants
c1, . . . , c5 > 0 such that with probability at least 1− c1n exp(−c2k) the commute distance on
both the symmetric and the mutual kNN-graph satisfies

∣∣∣∣ k

vol(G)
Cij −

(
k

di
+
k

dj

)∣∣∣∣ ≤

c4/k if d > 3

c5 · log(n/k)/k if d = 3

c6n
1/2/k3/2 if d = 2

The probability converges to 1 if n→∞ and k/ log(n)→∞. In case d > 3, the right hand
side of the deviation bound converges to 0 if k → ∞ (and under slightly worse conditions
in cases d = 3 and d = 2). Under these conditions, if the density p is continuous and if
additionally k/n→ 0, then k

vol(G)Cij → 2 almost surely.

Let us make a couple of technical remarks about these theorems.

To achieve the convergence of the commute distance we have to rescale it appropriately (for
example, in the ε-graph we scale by a factor of nεd). Our rescaling is exactly chosen such
that the limit expressions are finite, positive values. Scaling by any other factor in terms of
n, ε or k either leads to divergence or to convergence to zero.

In case d > 3, all convergence conditions on n and ε (or k, respectively) are the ones to
be expected for random geometric graphs. They are satisfied as soon as the degrees grow
faster than log(n). For degrees of order smaller than log(n), the graphs are not connected
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anyway, see for example Penrose (1997, 1999); Xue and Kumar (2004); Balister et al. (2005).
In dimensions 3 and 2, our rates are a bit weaker. For example, in dimension 2 we need
nε3 →∞ instead of nε2 →∞. On the one hand we are not too surprised to get systematic
differences between the lowest few dimensions. The same happens in many situations, just
consider the example of Polya’s theorem about the recurrence/ transience of random walks
on grids. On the other hand, these differences might as well be an artifact of our proof
methods (and we suspect so at least for the case d = 3; but even though we tried, we did
not get rid of the log factor in this case). It is a matter of future work to clarify this.

The valid region X has been introduced for technical reasons. We need to operate in such
a region in order to be able to control the behavior of the graph, e.g. the minimal and
maximal degrees. The assumptions on X are the standard assumptions used regularly in
the random geometric graph literature. In our setting, we have the freedom of choosing
X ⊂ Rd as we want. In order to obtain the tightest bounds one should aim for a valid X
that has a wide bottleneck h and a high minimal density pmin. In general this freedom of
choosing X shows that if two points are in the same high-density region of the space, the
convergence of the commute distance is fast, while it gets slower if the two points are in
different regions of high density separated by a bottleneck.

We stated the theorems above for a fixed pair i, j. However, they also hold uniformly over
all pairs i, j that satisfy the conditions in the theorem (with exactly the same statement).
The reason is that the main probabilistic quantities that enter the proofs are bound on the
minimal and maximal degrees, which of course hold uniformly.

4.2 Results Based on Spectral Arguments

The representation of the hitting and commute times in terms of the Moore-Penrose inverse
of the normalized graph Laplacian (Proposition 1) can be used to derive the following key
proposition that is the basis for all further results in this section.

Proposition 5 (Absolute and relative bounds in any fixed graph) Let G be a fi-
nite, connected, undirected, possibly weighted graph that is not bipartite.

1. For i 6= j ∣∣∣∣ 1

vol(G)
Hij −

1

dj

∣∣∣∣ ≤ 2

(
1

1− λ2
+ 1

)
wmax

d2min

.

2. For i 6= j ∣∣∣∣ 1

vol(G)
Cij −

(
1

di
+

1

dj

)∣∣∣∣ ≤ wmax

dmin

(
1

1− λ2
+ 2

)(
1

di
+

1

dj

)
≤ 2

(
1

1− λ2
+ 2

)
wmax

d2min

. (1)
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We would like to point out that even though the bound in Part 2 of the proposition is
reminiscent to statements in the literature, it is much tighter. Consider the following
formula from Lovász (1993)

1

2

(
1

di
+

1

dj

)
≤ 1

vol(G)
Cij ≤

1

1− λ2

(
1

di
+

1

dj

)
that can easily be rearranged to the following bound:∣∣∣∣ 1

vol(G)
Cij −

(
1

di
+

1

dj

)∣∣∣∣ ≤ 1

1− λ2
2

dmin
. (2)

The major difference between our bound (1) and Lovasz’ bound (2) is that while the latter
has the term dmin in the denominator, our bound has the term d2min in the denominator.
This makes all of a difference: in the graphs under considerations our bound converges to
0 whereas Lovasz’ bound diverges. In particular, our convergence results are not a trivial
consequence of Lovász (1993).

4.2.1 Application to Unweighted Random Geometric Graphs

In the following we are going to apply Proposition 5 to various random geometric graphs.
Next to some standard results about the degrees and number of edges in random geometric
graphs, the main ingredients are the following bounds on the spectral gap in random geo-
metric graphs. These bounds are of independent interest because the spectral gap governs
many important properties and processes on graphs.

Theorem 6 (Spectral gap of the ε-graph) Suppose that the general assumptions hold.
Then there exist constants c1, . . . , c6 > 0 such that with probability at least 1−c1n exp(−c2nεd)−
c3 exp(−c4nεd)/εd,

1− λ2 ≥ c5 · ε2 and 1− |λn| ≥ c6 · εd+1/n.

If nεd/ log n→∞, then this probability converges to 1.

Theorem 7 (Spectral gap of the kNN-graph) Suppose that the general assumptions
hold. Then for both the symmetric and the mutual kNN-graph there exist constants c1, . . . , c4 >
0 such that with probability at least 1− c1n exp(−c2k),

1− λ2 ≥ c3 · (k/n)2/d and 1− |λn| ≥ c4 · k2/d/n(d+2)/d.

If k/ log n→∞, then the probability converges to 1.

The following theorems characterize the hitting and commute times for ε-and kNN-graphs.
They are direct consequences of plugging the results about the spectral gap into Proposi-
tion 5. In the corollaries, the reader should keep in mind that the degrees also depend on
n and ε (or k, respectively).
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Corollary 8 (Hitting and commute times on ε-graphs) Assume that the general as-
sumptions hold. Consider an unweighted ε-graph built from the sequence X1, . . . , Xn drawn
i.i.d. from the density p. Then there exist constants c1, . . . , c5 > 0 such that with probability
at least 1− c1n exp(−c2nεd)− c3 exp(−c4nεd)/εd, we have uniformly for all i 6= j that∣∣∣∣ nεd

vol(G)
Hij −

nεd

dj

∣∣∣∣ ≤ c5
nεd+2

.

If the density p is continuous and n→∞, ε→ 0 and nεd+2 →∞, then

nεd

vol(G)
Hij −→

1

ηd · p(Xj)
almost surely.

For the commute times, the analogous results hold due to Cij = Hij +Hji.

Corollary 9 (Hitting and commute times on kNN-graphs) Assume that the gen-
eral assumptions hold. Consider an unweighted kNN-graph built from the sequence
X1, . . . , Xn drawn i.i.d. from the density p. Then for both the symmetric and mu-
tual kNN-graph there exist constants c1, c2, c3 > 0 such that with probability at least
1− c1 · n · exp(−kc2), we have uniformly for all i 6= j that∣∣∣∣ k

vol(G)
Hij −

k

dj

∣∣∣∣ ≤ c3 ·
n2/d

k1+2/d
.

If the density p is continuous and n→∞, k/n→ 0 and k
(
k/n

)2/d →∞, then

k

vol(G)
Hij −→ 1 almost surely.

For the commute times, the analogous results hold due to Cij = Hij +Hji.

Note that the density shows up in the limit for the ε-graph, but not for the kNN graph.
The explanation is that in the former, the density is encoded in the degrees of the graph,
while in the latter it is only encoded in the k-nearest neighbor distance, but not the degrees
themselves. As a rule of thumb, it is possible to convert the last two corollaries into each
other by substituting ε by (k/(np(x)ηd))1/d or vice versa.

4.2.2 Application to Weighted Graphs

In several applications, ε-graphs or kNN graphs are endowed with edge weights. For
example, in the field of machine learning it is common to use Gaussian weights wij =
exp(−‖Xi −Xj‖2/σ2), where σ > 0 is a bandwidth parameter. We can use standard spec-
tral results to prove approximation theorems in such cases.

Theorem 10 (Results on fully connected weighted graphs) Consider a fixed, fully
connected weighted graph with weight matrix W . Assume that its entries are upper and
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lower bounded by some constants wmin, wmax, that is 0 < wmin ≤ wij ≤ wmax for all i, j.
Then, uniformly for all i, j ∈ {1, ..., n}, i 6= j,∣∣∣∣ n

vol(G)
Hij −

n

dj

∣∣∣∣ ≤ 4n

(
wmax

wmin

)
wmax

d2min

≤ 4
w2
max

w3
min

1

n
.

For example, this result can be applied directly to a Gaussian similarity graph (for fixed
bandwidth σ).

The next theorem treats the case of Gaussian similarity graphs with adapted bandwidth σ.
The technique we use to prove this theorem is rather general. Using the Rayleigh principle,
we reduce the case of the fully connected Gaussian graph to a truncated graph where edges
beyond a certain length are removed. Bounds for this truncated graph, in turn, can be
reduced to bounds of the unweighted ε-graph. With this technique it is possible to treat
very general classes of graphs.

Theorem 11 (Results on Gaussian graphs with adapted bandwidth) Let X ⊆ Rd

be a compact set and p a continuous, strictly positive density on X . Consider a fully con-
nected, weighted similarity graph built from the points X1, . . . , Xn drawn i.i.d. from density

p. As weight function use the Gaussian similarity function kσ(x, y) = 1

(2πσ2)
d
2

exp
(
−‖x−y‖

2

2σ2

)
.

If the density p is continuous and n→∞, σ → 0 and nσd+2/ log(n)→∞, then

n

vol(G)
Cij −→

1

p(Xi)
+

1

p(Xj)
almost surely.

Note that in this theorem, we introduced the scaling factor 1/σd already in the definition of
the Gaussian similarity function to obtain the correct density estimate p(Xj) in the limit.
For this reason, the resistance results are rescaled with factor n instead of nσd.

4.2.3 Application to Random Graphs with Given Expected Degrees and
Erdős-Rényi Graphs

Consider the general random graph model where the edge between vertices i and j is cho-
sen independently with a certain probability pij that is allowed to depend on i and j.
This model contains popular random graph models such as the Erdős-Rényi random graph,
planted partition graphs, and random graphs with given expected degrees. For this class
of random graphs, bounds on the spectral gap have been proved by Chung and Radcliffe
(2011). These bounds can directly be applied to derive bounds on the resistance distances.
It is not surprising to see that hitting times are meaningless, because these graphs are ex-
pander graphs and the random walk mixes fast. The model of Erdős-Rényi graphs with
planted partitions is more interesting because it gives insight to the question how strongly
clustered the graph can be before our results break down.

Theorem 12 (Chung and Radcliffe, 2011) Let G be a random graph where edges be-
tween vertices i and j are put independently with probabilities pij. Consider the normal-
ized Laplacian Lsym, and define the expected normalized Laplacian as the matrix Lsym :=
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I − D−1/2AD−1/2 where Aij = E(Aij) = pij and D = E(D). Let dmin be the minimal
expected degree. Denote the eigenvalues of Lsym by µ, the ones of Lsym by µ. Choose ε > 0.
Then there exists a constant k = k(ε) such that if dmin > k log(n), then with probability at
least 1− ε,

∀j = 1, ..., n : |µj − µj | ≤ 2

√
3 log(4n/ε)

dmin

.

Random graphs with given expected degrees. For a graph of n vertices we have n parameters
d̄1, ..., d̄n > 0. For each pair of vertices vi and vj , we independently place an edge between
these two vertices with probability d̄id̄j/

∑n
k=1 d̄k. It is easy to see that in this model, vertex

vi has expected degree d̄i (cf. Section 5.3. in Chung and Lu, 2006 for background reading).

Corollary 13 (Random graphs with given expected degrees) Consider any se-
quence of random graphs with expected degrees such that dmin = ω(log n). Then the
commute distances satisfy for all i 6= j,∣∣∣∣ 1

vol(G)
Cij −

(
1

di
+

1

dj

)∣∣∣∣/( 1

di
+

1

dj

)
= O

(
1

log(2n)

)
−→ 0, almost surely.

Planted partition graphs. Assume that the n vertices are split into two “clusters” of equal
size. We put an edge between two vertices u and v with probability pwithin if they are in
the same cluster and with probability pbetween < pwithin if they are in different clusters. For
simplicity we allow self-loops.

Corollary 14 (Random graph with planted partitions) Consider an Erdős-Rényi
graph with planted bisection. Assume that pwithin = ω(log(n)/n) and pbetween such that
npbetween →∞ (arbitrarily slow). Then, for all vertices u, v in the graph∣∣∣∣ 1n ·Hij − 1

∣∣∣∣ = O

(
1

n pbetween

)
→ 0 in probability.

This result is a nice example to show that even though there is a strong cluster structure in
the graph, hitting times and commute distances cannot see this cluster structure any more,
once the graph gets too large. Note that the corollary even holds if npbetween grows much
slower than npwithin. That is, the larger our graph, the more pronounced is the cluster
structure. Nevertheless, the commute distance converges to a trivial result. On the other
hand, we also see that the speed of convergence is O(npbetween), that is, if pbetween = g(n)/n
with a slowly growing function g, then convergence can be slow. We might need very large
graphs before the degeneracy of the commute time will be visible.
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5. Experiments

In this section we examine the convergence behavior of the commute distance in practice.
We ran a large number of simulations, both on artificial and real world data sets, in order
to evaluate whether the rescaled commute distance in a graph is close to its predicted
limit expression 1/du + 1/dv or not.We conducted simulations for artificial graphs (random
geometric graphs, planted partition graphs, preferential attachment graphs) and real world
data sets of various types and sizes (social networks, biological networks, traffic networks;
up to 1.6 million vertices and 22 million edges). The general setup is as follows. Given a
graph, we compute the pairwise resistance distance Rij between all points. The relative
deviation between resistance distance and predicted result is then given by

RelDev(i, j) :=
|Rij − 1/di − 1/dj |

Rij
.

Note that we report relative rather than absolute deviations because this is more meaning-
ful if Rij is strongly fluctuating on the graph. It also allows to compare the behavior of
different graphs with each other. In all figures, we then report the maximum, mean and
median relative deviations. In small and moderate sized graphs, these operations are taken
over all pairs of points. In some of the larger graphs, computing all pairwise distances is
prohibitive. In these cases, we compute mean, median and maximum based on a random
subsample of vertices (see below for details).

The bottom line of our experiments is that in nearly all graphs, the deviations are small.
In particular, this also holds for many moderate sized graphs, even though our results are
statements about n → ∞. This shows that the limit results for the commute distance are
indeed relevant for practice.

5.1 Random Geometric Graphs

We start with the class of random geometric graphs, which is very important for machine
learning. We use a mixture of two Gaussian distributions on Rd. The first two dimen-
sions contain a two-dimensional mixture of two Gaussians with varying separation (centers
(−sep/2, 0) and (+sep/2, 0), covariance matrix 0.2 · Id, mixing weights 0.5 for both Gaus-
sians). The remaining d − 2 dimensions contain Gaussian noise with variance 0.2 as well.
From this distribution we draw n sample points. Based on this sample, we either compute
the unweighted symmetric kNN graph, the unweighted ε-graphs or the Gaussian similarity
graph. In order to be able to compare the results between these three types of graphs
we match the parameters of the different graphs: given some value k for the kNN-graph
we choose the values of ε for the ε-graph and σ for the Gaussian graph as the maximal
k-nearest neighbor distance in the data set.

Figure 1 shows the results of the simulations. We can see that the deviations decrease fast
with the sample size. In particular, already for small sample sizes reported, the maximal
deviations get very small. The more clustered the data is (separation is larger), the larger
the deviations get. This is the case as the deviation bound scales inversely with the spectral
gap, which gets larger the more clustered the data is. The deviations also decrease with
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Figure 1: Deviations in random geometric graphs. Solid lines show the maximum relative
deviation, dashed lines the mean relative deviation. See text for more details.

increasing dimension, as predicted by our bounds. The intuitive explanation is that in
higher dimensions, geometric graphs mix faster as there exist more “shortcuts” between the
two sides of the point cloud. For a similar reason, the deviation bounds also decrease with
increasing connectivity in the graph. All in all, the deviations are very small even though
our sample sizes in these experiments are modest.

5.2 Planted Partition Graphs

Next we consider graphs according to the planted partition model. We modeled a graph with
n vertices and two equal sized clusters with connectivity parameters pwithin and pbetween.
As the results in Figure 2 show, the deviation decreases rapidly when n increases, and it
decreases when the cluster structure becomes less pronounced.
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Figure 2: Deviations in planted partition graphs. Solid lines show the maximum relative
deviation, dashed lines the mean relative deviation. See text for more details.

5.3 Preferential Attachment Graphs

An important class of random graphs is the preferential attachment model (Barabási and
Albert, 1999), because it can be used to model graphs with power law behavior. Our current
convergence proofs cannot be carried over to preferential attachment graphs: the minimal
degree in preferential attachment graphs is constant, so our proofs break down. However,
our simulation results show that approximating commute distances by the limit expression
1/du + 1/dv gives accurate approximations as well. This finding indicates that our conver-
gence results seem to hold even more generally than our theoretical findings suggest.

In our simulation we generated preferential attachment graphs according to the following
standard procedure: Starting with a graph that consists of two vertices connected by an
edge, in each time step we add a new vertex to the graph. The new vertex is connected by
a fixed number of edges to existing vertices (this number is called NumLinks in the figures
below). The target vertices of these edges are chosen randomly among all existing vertices,
where the probability to connect to a particular vertex is proportional to its degree. All
edges in the graph are undirected. As an example, we show the adjacency matrix and the
degree histogram for such a graph in Figure 3. The next plots in this figure shows the
relative deviations in such a preferential attachment graph, plotted against the sparsity of
the graph (number of outlinks). Overall we can see that the deviations are very small, they
are on the same scale as the ones in all the other simulations above. The mean deviations
simply decrease as the connectivity of the graph increases. The maximum deviations show
an effect that is different from what we have seen in the other graphs: while it decreases
in the sparse regime, it starts to increase again when the graph becomes denser. However,
investigating this effect more closely reveals that it is just generated by the three vertices in
the graph which have the largest degrees. If we exclude these three vertices when computing
the maximum deviation, then the maximum deviation decreases as gracefully as the mean
deviation. All in all we can say that in the sparse regime, the commute distance can be well
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Figure 3: Relative deviations for a preferential attachment graph. First two figures: illus-
tration of such a graph in terms of histogram of degrees and heat plot of the
adjacency matrix. Third figure: Relative deviations. As before the solid line
shows the maximum relative deviation and the dashed line the mean relative de-
viation. The line “max 3 removed” refers to the maximum deviation when we
exclude the three highest-degree vertices from computing the maximum. See text
for details.

approximated by the expression 1/du + 1/dv. In the dense regime, the same is true unless
u or v is among the very top degree vertices.

5.4 Real World Data

Now we consider the deviations for a couple of real world data sets. We start with similarity
graphs on real data, as they are often used in machine learning. As example we use the full
USPS data set of handwritten digits (9298 points in 256 dimensions) and consider the dif-
ferent forms of similarity graphs (kNN, ε, Gaussian) with varying connectivity parameter.
In Figure 4 we can see that overall, the relative errors are pretty small.
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Figure 4: Relative deviations on different similarity graphs on the USPS data. As before
the solid line shows the maximum relative deviation and the dashed line the mean
relative deviation. See text for details.

Type of Number Number mean median max
Name Network Vertices Edges rel dev rel dev rel dev

mousegene2 gene network 42923 28921954 0.12 0.01 0.70
jazz1 social network 198 5484 0.09 0.06 0.51
soc-Slashdot09022 social network 82168 1008460 0.10 0.06 0.33
cit-HepPh2 citation graph 34401 841568 0.09 0.07 0.25
soc-sign-epinions2 social network 119130 1408534 0.14 0.09 0.53
pdb1HYS2 protein databank 36417 4308348 0.12 0.10 0.28
as-Skitter2 internet topology 1694616 22188418 0.16 0.12 0.54
celegans1 neural network 453 4065 0.18 0.12 0.77
email1 email traffic 1133 10903 0.15 0.13 0.77
Amazon05052 co-purchase 410236 4878874 0.28 0.24 0.80
CoPapersCiteseer2 coauthor graph 434102 32073440 0.33 0.30 0.76
PGP1 user network 10680 48632 0.54 0.53 0.97

Figure 5: Relative Error of the approximation in real world networks. Downloaded from: 1,
http://deim.urv.cat/~aarenas/data/welcome.htm and 2, http://www.cise.
ufl.edu/research/sparse/matrices/. See text for details.

Furthermore, we consider a number of network data sets that are available online, see Fig-
ure 5 for a complete list. Some of these networks are directed, but we use their undirected
versions. In cases the graphs were not connected, we ran the analysis on the largest con-
nected component. On the smaller data sets, we computed all pairwise commute distances
and used all these values to compute mean, median and maximum relative deviations. On
the larger data sets we just draw 20 vertices at random, then compute all pairwise com-
mute distances between these 20 vertices, and finally evaluate mean, median and maximum
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based on this subset. Figure 5 shows the mean, median and maximum relative commute
distances in all these networks. We can see that in many of these data sets, the deviations
are reasonable small. Even though they are not as small as in the artificial data sets, they
are small enough to acknowledge that our approximation results tend to hold in real world
graphs.

6. Proofs for the Flow-Based Approach

For notational convenience, in this section we work with the resistance distance Ruv =
Cuv/ vol(G) instead of the commute distance Cuv, then we do not have to carry the factor
1/ vol(G) everywhere.

6.1 Lower Bound

It is easy to prove that the resistance distance between two points is lower bounded by the
sum of the inverse degrees.

Proposition 15 (Lower bound) Let G be a weighted, undirected, connected graph and
consider two vertices s and t, s 6= t. Assume that G remains connected if we remove s and
t. Then the effective resistance between s and t is bounded by

Rst ≥
Qst

1 + wstQst
,

where Qst = 1/(ds − wst) + 1/(dt − wst). Note that if s and t are not connected by a direct
edge (that is, wst = 0), then the right hand side simplifies to 1/ds + 1/dt.

Proof. The proof is based on Rayleigh’s monotonicity principle that states that increasing
edge weights (conductances) in the graph can never increase the effective resistance between
two vertices (cf. Corollary 7 in Section IX.2 of Bollobas, 1998). Given our original graph G,
we build a new graph G′ by setting the weight of all edges to infinity, except the edges that
are adjacent to s or t (setting the weight of an edge to infinity means that this edge has
infinite conductance and no resistance any more). This can also be interpreted as taking all
vertices except s and t and merging them to one super-node a. Now our graph G′ consists
of three vertices s, a, t with several parallel edges from s to a, several parallel edges from a
to t, and potentially the original edge between s and t (if it existed in G). Exploiting the
laws in electrical networks (resistances add along edges in series, conductances add along
edges in parallel; see Section 2.3 in Lyons and Peres (2010) for detailed instructions and
examples) leads to the desired result.

6.2 Upper Bound

This is the part that requires the hard work. Our proof is based on a theorem that shows
how the resistance between two points in the graph can be computed in terms of flows on
the graph. The following result is taken from Corollary 6 in Section IX.2 of Bollobas (1998).
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Theorem 16 (Resistance in terms of flows, cf. Bollobas, 1998) Let G = (V,E) be
a weighted graph with edge weights we (e ∈ E). The effective resistance Rst between two
fixed vertices s and t can be expressed as

Rst = inf

{∑
e∈E

u2e
we

∣∣∣ u = (ue)e∈E unit flow from s to t

}
.

Note that evaluating the formula in the above theorem for any fixed flow leads to an upper
bound on the effective resistance. The key to obtaining a tight bound is to distribute the
flow as widely and uniformly over the graph as possible.

For the case of geometric graphs we are going to use a grid on the underlying space to
construct an efficient flow between two vertices. Let X1, ..., Xn be a fixed set of points in
Rd and consider a geometric graph G with vertices X1, ..., Xn. Fix any two of them, say
s := X1 and t := X2. Let X ⊂ Rd be a connected set that contains both s and t. Consider
a regular grid with grid width g on X . We say that grid cells are neighbors of each other if
they touch each other in at least one edge.

Definition 17 (Valid grid) We call the grid valid if the following properties are satisfied:

1. The grid width is not too small: Each cell of the grid contains at least one of the
points X1, ..., Xn.

2. The grid width g is not too large: Points in the same or neighboring cells of the grid
are always connected in the graph G.

3. Relation between grid width and geometry of X : Define the bottleneck h of the region
X as the largest u such that the set {x ∈ X

∣∣ dist(x, ∂X ) > u/2} is connected.

We require that
√
d g ≤ h (a cube of side length g should fit in the bottleneck).

Under the assumption that a valid grid exists, we can prove the following general proposition
that gives an upper bound on the resistance distance between vertices in a fixed geometric
graph. Note that proving the existence of the valid grid will be an important part in the
proofs of Theorems 3 and 4.

Proposition 18 (Resistance on a fixed geometric graph) Consider a fixed set of
points X1, ..., Xn in some connected region X ⊂ Rd and a geometric graph on X1, ..., Xn.
Assume that X has bottleneck not smaller than h (where the bottleneck is defined as in the
definition of a valid grid). Denote s = X1 and t = X2. Assume that s and t can be con-
nected by a straight line that stays inside X and has distance at least h/2 to ∂X . Denote
the distance between s and t by d(s, t). Let g be the width of a valid grid on X and assume
that d(s, t) > 4

√
d g. By Nmin denote the minimal number of points in each grid cell, and

define a as

a :=
⌊
h/(2g

√
d− 1)

⌋
.
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Assume that points that are connected in the graph are at most Q grid cells apart from each
other (for example, two points in the two grey cells in Figure 6b are 5 cells apart from each
other). Then the effective resistance between s and t can be bounded as follows:

In case d > 3 : Rst ≤
1

ds
+

1

dt
+

(
1

ds
+

1

dt

)
1

Nmin
+

1

N2
min

(
6 +

d(s, t)

g(2a+ 1)3
+ 2Q

)
In case d = 3 : Rst ≤

1

ds
+

1

dt
+

(
1

ds
+

1

dt

)
1

Nmin

+
1

N2
min

(
4 log(a) + 8 +

d(s, t)

g(2a+ 1)2
+ 2Q

)
In case d = 2 : Rst ≤

1

ds
+

1

dt
+

(
1

ds
+

1

dt

)
1

Nmin
+

1

N2
min

(
4a+ 2 +

d(s, t)

g(2a+ 1)
+ 2Q

)
Proof. The general idea of the proof is to construct a flow from s to t with the help of
the underlying grid. On a high level, the construction of the proof is not so difficult, but
the details are lengthy and a bit tedious. The rest of this section is devoted to it.

Construction of the flow — overview. Without loss of generality we assume that there exists
a straight line connecting s and t which is along the first dimension of the space. By C(s)
we denote the grid cell in which s sits.

Step 0. We start a unit flow in vertex s.

Step 1. We make a step to all neighbors Neigh(s) of s and distribute the flow uniformly
over all edges. That is, we traverse ds edges and send flow 1/ds over each edge (see
Figure 6a). This is the crucial step which, ultimately, leads to the desired limit result.

Step 2. Some of the flow now sits inside C(s), but some of it might sit outside of C(s). In
this step, we bring back all flow to C(s) in order to control it later on (see Figure 6b).

Step 3. We now distribute the flow from C(s) to a larger region, namely to a hypercube
H(s) of side length h that is perpendicular to the linear path from s to t and centered
at C(s) (see the hypercubes in Figure 6c). This can be achieved in several substeps
that will be defined below.

Step 4. We now traverse from H(s) to an analogous hypercube H(t) located at t using
parallel paths, see Figure 6c.

Step 5. From the hypercube H(t) we send the flow to the neighborhood Neigh(t) (this is
the “reverse” of steps 2 and 3).

Step 6. From Neigh(t) we finally send the flow to the destination t (“reverse” of step 1).

Details of the flow construction and computation of the resistance between s and t in the
general case d > 3. We now describe the individual steps and their contribution to the
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(a) Step 1. Distribut-
ing the flow from s
(black dot) to all its
neighbors (grey dots).

C(s) = C(6)

C(p) = C(1)

C(3) C(2)

(b) Step 2. We bring
back all flow from p
to C(s). Also shown
in the figure is the hy-
percube to which the
flow will be expanded
in Step 3.

s t

(c) Steps 3 and 4 of the flow construction:
distribute the flow from C(s) to a “hyper-
cube” H(s), then transmit it to a similar
hypercube H(t) and guide it to C(t).

Figure 6: The flow construction — overview.

Layer 1 

Layer 2

C(s)

(a) Definition of lay-
ers.

(b) Before Step 3A
starts, all flow is uni-
formly distributed in
Layer i − 1 (dark
area).

(c) Step 3A then dis-
tributes the flow from
Layer i− 1 to the ad-
jacent cells in Layer i

(d) After Step 3A: all
flow is in Layer i, but
not yet uniformly dis-
tributed

(e) Step 3B redis-
tributes the flow in
Layer i.

(f) After Step 3B, the
flow is uniformly dis-
tributed in Layer i.

Figure 7: Details of Step 3 between Layers i − 1 and i. The first row corresponds to the
expansion phase, the second row to the redistribution phase. The figure is shown
for the case of d = 3.
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bound on the resistance. We start with the general case d > 3. We will discuss the special
cases d = 2 and d = 3 below.

In the computations below, by the “contribution of a step” we mean the part of the sum in
Theorem 16 that goes over the edges considered in the current step.

Step 1: We start with a unit flow at s that we send over all ds adjacent edges. This leads
to flow 1/ds over ds edges. According to the formula in Theorem 16 this contributes

r1 = ds ·
1

d2s
=

1

ds

to the overall resistance Rst.

Step 2: After Step 1, the flow sits on all neighbors of s, and these neighbors are not nec-
essarily all contained in C(s). To proceed we want to re-concentrate all flow in C(s). For
each neighbor p of s, we thus carry the flow along a Hamming path of cells from p back to
C(s), see Figure 6b for an illustration.

To compute an upper bound for Step 2 we exploit that each neighbor p of s has to traverse
at most Q cells to reach C(s) (recall the definition of Q from the proposition). Let us fix p.
After Step 1, we have flow of size 1/ds in p. We now move this flow from p to all points in
the neighboring cell C(2) (cf. Figure 6b). For this we can use at least Nmin edges. Thus we
send flow of size 1/ds over Nmin edges, that is each edge receives flow 1/(dsNmin). Summing
the flow from C(p) to C(2), for all points p, gives

dsNmin

(
1

dsNmin

)2

=
1

dsNmin
,

Then we transport the flow from C(2) along to C(s). Between each two cells on the way
we can use N2

min edges. Note, however, that we need to take into account that some of
these edges might be used several times (for different points p). In the worst case, C(2) is
the same for all points p, in which case we send the whole unit flow over these edges. This
amounts to flow of size 1/(N2

min) over (Q− 1)N2
min edges, that is a contribution of

Q− 1

N2
min

.

Altogether we obtain

r2 ≤
1

dsNmin
+

Q

N2
min

.

Step 3: At the beginning of this step, the complete unit flow resides in the cube C(s). We
now want to distribute this flow to a “hypercube” of three dimensions (no matter what d
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is, as long as d > 3) that is perpendicular to the line that connects s and t (see Figure 6c,
where the case of d = 3 and a 2-dimensional “hypercube” are shown). To distribute the
flow to this cube we divide it into layers (see Figure 7a). Layer 0 consists of the cell C(s)
itself, the first layer consists of all cells adjacent to C(s), and so on. Each side of Layer i
consists of

li = (2i+ 1)

cells. For the 3-dimensional cube, the number zi of grid cells in Layer i, i ≥ 1, is given as

zi = 6 · (2i− 1)2︸ ︷︷ ︸
interior cells of the faces

+ 12 · (2i− 1)︸ ︷︷ ︸
cells along the edges (excluding corners)

+ 8︸︷︷︸
corner cells

= 24i2 + 2.

All in all we consider

a =
⌊
h/(2g

√
d− 1)

⌋
≤
⌊
h/(2(g − 1)

√
d− 1)

⌋
layers, so that the final layer has diameter just a bit smaller than the bottleneck h. We now
distribute the flow stepwise through all layers, starting with unit flow in Layer 0. To send
the flow from Layer i− 1 to Layer i we use two phases, see Figure 7 for details. In the “ex-
pansion phase” 3A(i) we transmit the flow from Layer i− 1 to all adjacent cells in Layer i.
In the “redistribution phase” 3B(i) we then redistribute the flow in Layer i to achieve that it
is uniformly distributed in Layer i. In all phases, the aim is to use as many edges as possible.

Expansion phase 3A(i). We can lower bound the number of edges between Layer i− 1 and
Layer i by zi−1N

2
min: each of the zi−1 cells in Layer i− 1 is adjacent to at least one of the

cells in Layer i, and each cell contains at least Nmin points. Consequently, we can upper
bound the contribution of the edges in the expansion phase 3A(i) to the resistance by

r3A(i) ≤ zi−1N2
min ·

(
1

zi−1N2
min

)2

=
1

zi−1N2
min

.

Redistribution phase 3B(i). We make a crude upper bound for the redistribution phase.
In this phase we have to move some part of the flow from each cell to its neighboring
cells. For simplicity we bound this by assuming that for each cell, we had to move all its
flow to neighboring cells. By a similar argument as for Step 3A(i), the contribution of the
redistribution step can be bounded by

r3B(i) ≤ ziN2
min ·

(
1

ziN2
min

)2

=
1

ziN2
min

.

All of Step 3. All in all we have a layers. Thus the overall contribution of Step 3 to the
resistance can be bounded by
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r3 =
a∑
i=1

r3A(i) + r3B(i) ≤
2

N2
min

a∑
i=1

1

zi−1
≤ 2

N2
min

(
1 +

1

24

a−1∑
i=1

1

i2

)
≤ 3

N2
min

.

To see the last inequality, note that the sum
∑a−1

i=1 1/i2 is a partial sum of the over-harmonic
series that converges to a constant smaller than 2.

Step 4: Now we transfer all flow in “parallel cell paths” from H(s) to H(t). We have
(2a + 1)3 parallel rows of cells going from H(s) to H(t), each of them contains d(s, t)/g
cells. Thus all in all we traverse (2a + 1)3N2

mind(s, t)/g edges, and each edge carries flow
1/((2a+ 1)3N2

min). Thus step 4 contributes

r4 ≤ (2a+ 1)3N2
min

d(s, t)

g
·
(

1

(2a+ 1)3N2
min

)2

=
d(s, t)

g(2a+ 1)3N2
min

.

Step 5 is completely analogous to steps 2 and 3, with the analogous contribution r5 =
1

dtNmin
+ Q

N2
min

+ r3.

Step 6 is completely analogous to step 1 with overall contribution of r6 = 1/dt.

Summing up the general case d > 3. All these contributions lead to the following overall
bound on the resistance in case d > 3:

Rst ≤
1

ds
+

1

dt
+

(
1

ds
+

1

dt

)
1

Nmin
+

1

N2
min

(
6 +

d(s, t)

g(2a+ 1)3
+ 2Q

)

with a and Q as defined in Proposition 18. This is the result stated in the proposition for
case d > 3.

Note that as spelled out above, the proof works whenever the dimension of the space satisfies
d > 3. In particular, note that even if d is large, we only use a 3-dimensional “hypercube”
in Step 3. It is sufficient to give the rate we need, and carrying out the construction for
higher-dimensional hypercube (in particular Step 3B) is a pain that we wanted to avoid.

The special case d = 3. In this case, everything works similar to above, except that we we
only use a 2-dimensional “hypercube” (this is what we always show in the figures). The
only place in the proof where this really makes a difference is in Step 3. The number zi of
grid cells in Layer i is given as zi = 8i. Consequently, instead of obtaining an over-harmonic
sum in r3 we obtain a harmonic sum. Using the well-known fact that

∑a
i=1 1/i ≤ log(a) + 1

we obtain
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r3 ≤
2

N2
min

(
1 +

1

8

a−1∑
i=1

1

i

)
≤ 2

N2
min

(2 + log(a)) .

In Step 4 we just have to replace the terms (2a+ 1)3 by (2a+ 1)2. This leads to the result
in Proposition 18.

The special case d = 2. Here our “hypercube” only consists of a “pillar” of 2a + 1 cells.
The fundamental difference to higher dimensions is that in Step 3, the flow does not have
so much “space” to be distributed. Essentially, we have to distribute all unit flow through
a “pillar”, which results in contributions

r3 ≤
2a+ 1

N2
min

r4 ≤
d(s, t)

g

1

(2a+ 1)N2
min

.

This concludes the proof of Proposition 18.

Let us make a couple of technical remarks about this proof. For the ease of presentation
we simplified the proof in a couple of respects.

Strictly speaking, we do not need to distribute the whole unit flow to the outmost Layer a.
The reason is that in each layer, a fraction of the flow already “branches off” in direction
of t. We simply ignore this leaving flow when bounding the flow in Step 3, our construction
leads to an upper bound. It is not difficult to take the outbound flow into account, but it
does not change the order of magnitude of the final result. So for the ease of presentation
we drop this additional complication and stick to our rough upper bound.

When we consider Steps 2 and 3 together, it turns out that we might have introduced some
loops in the flow. To construct a proper flow, we can simply remove these loops. This
would then just reduce the contribution of Steps 2 and 3, so that our current estimate is an
overestimation of the whole resistance.

The proof as it is spelled out above considers the case where s and t are connected by a
straight line. It can be generalized to the case where they are connected by a piecewise
linear path. This does not change the result by more than constants, but adds some tech-
nicality at the corners of the paths.

The construction of the flow only works if the bottleneck of X is not smaller than the di-
ameter of one grid cell, if s and t are at least a couple of grid cells apart from each other,
and if s and t are not too close to the boundary of X . We took care of these conditions in
Part 3 of the definition of a valid grid.
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6.3 Proof of the Theorems 3 and 4

First of all, note that by Rayleigh’s principle (cf. Corollary 7 in Section IX.2 of Bollobas,
1998) the effective resistance between vertices cannot decrease if we delete edges from the
graph. Given a sample from the underlying density p, a random geometric graph based on
this sample, and some valid region X , we first delete all points that are not in X . Then we
consider the remaining geometric graph. The effective resistances on this graph are upper
bounds on the resistances of the original graph. Then we conclude the proofs with the
following arguments:

Proof of Theorem 3. The lower bound on the deviation follows immediately from Propo-
sition 15. The upper bound is a consequence of Proposition 18 and well known properties
of random geometric graphs (summarized in the appendix). In particular, note that we can
choose the grid width g := ε/(2

√
d− 1) to obtain a valid grid. The quantity Nmin can be

bounded as stated in Proposition 28 and is of order nεd, the degrees behave as described
in Proposition 29 and are also of order nεd (we use δ = 1/2 in these results for simplicity).
The quantity a in Proposition 18 is of the order 1/ε, and Q can be bounded by Q = ε/g
and by the choice of g is indeed a constant. Plugging all these results together leads to the
final statement of the theorem.

Proof of Theorem 4. This proof is analogous to the ε-graph. As grid width g we choose
g = Rk,min/(2

√
d− 1) where Rk,min is the minimal k-nearest neighbor distance (note that

this works for both the symmetric and the mutual kNN-graph). Exploiting Propositions 28
and 30 we can see that Rk,min and Rk,max are of order (k/n)1/d, the degrees and Nmin are
of order k, a is of the order (n/k)1/d and Q a constant. Now the statements of the theorem
follow from Proposition 18.

7. Proofs for the Spectral Approach

In this section we present the proofs of the results obtained by spectral arguments.

7.1 Proof of Propositions 1 and 5

First we prove the general formulas to compute and approximate the hitting times.

Proof of Proposition 1. For the hitting time formula, let u1, . . . , un be an orthonormal
set of eigenvectors of the matrix D−1/2WD−1/2 corresponding to the eigenvalues µ1, . . . , µn.
Let uij denote the j-th entry of ui. According to Lovász (1993) the hitting time is given by

Hij = vol(G)
n∑
k=2

1

1− µk

(
u2kj
dj
−
ukiukj√
didj

)
.

A straightforward calculation using the spectral representation of Lsym yields

Hij = vol(G)

〈
1√
dj
ej ,

n∑
k=2

1

1− µk

〈
uk,

1√
dj
ej − 1√

di
ei

〉
uk

〉
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= vol(G)

〈
1√
dj
ej , L

†
sym

(
1√
dj
ej − 1√

di
ei

)〉
.

The result for the commute time follows from the one for the hitting times.

In order to prove Proposition 5 we first state a small lemma. For convenience, we set
A = D−1/2WD−1/2 and ui = ei/

√
di. Furthermore, we are going to denote the projection

on the eigenspace of the j-the eigenvalue λj of A by Pj .

Lemma 19 (Pseudo-inverse L†sym) The pseudo-inverse of the symmetric Laplacian sat-
isfies

L†sym = I − P1 +M,

where I denotes the identity matrix and M is given as follows:

M =

∞∑
k=1

(A− P1)
k =

n∑
r=2

λr
1− λr

Pr. (3)

Furthermore, for all u, v ∈ Rn we have

| 〈u,Mv〉 | ≤ 1

1− λ2
· ‖(A− P1)u‖ · ‖(A− P1)v‖+ | 〈u , (A− P1)v〉 |. (4)

Proof. The projection onto the null space of Lsym is given by P1 =
√
d
√
d
T
/
∑

i=1 di where√
d = (

√
d1, . . . ,

√
dn)T . As the graph is not bipartite, λn > −1. Thus the pseudoinverse of

Lsym can be computed as

L†sym = (I −A)† = (I −A+ P1)
−1 − P1 =

∞∑
k=0

(A− P1)
k − P1.

Thus

M :=
∞∑
k=1

(A− P1)
k =

∞∑
k=0

(A− P1)
k(A− P1)

= (
∞∑
k=0

n∑
r=2

λkrPr)(
n∑
r=2

λrPr) = (
n∑
r=2

1

1− λr
Pr)(

n∑
r=2

λrPr)

=
n∑
r=2

λr
1− λr

Pr

which proves Equation (3). By a little detour, we can also see

M =

∞∑
k=0

(A− P1)
k(A− P1)

2 + (A− P1) = (

n∑
r=2

1

1− λr
Pr)(A− P1)

2 + (A− P1).
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Exploiting that (A− P1) commutes with all Pr gives

〈u,Mv〉 =
〈
(A− P1)u , (

n∑
r=2

1

1− λr
Pr)(A− P1)v

〉
+ 〈u, (A− P1)v〉 .

Applying the Cauchy-Schwarz inequality and the fact ‖
∑n

r=2
1

1−λrPr‖2 = 1/(1− λ2) leads
to the desired statement.

Proof of Proposition 5. This proposition now follows easily from the Lemma above.
Observe that

〈ui, Auj〉 =
wij
didj

≤ wmax

d2min

‖Aui‖2 =
n∑
k=1

w2
ik

d2i dk
≤ wmax

dmind2i

∑
k

wik =
wmax

dmin

1

di
≤ wmax

d2min

‖A(ui − uj)‖2 ≤
wmax

dmin

(
1

di
+

1

dj

)
≤ 2wmax

d2min

.

Exploiting that P1(ui − uj) = 0 we get for the hitting time∣∣∣∣ 1

vol(G)
Hij −

1

dj

∣∣∣∣ = | 〈uj ,M(uj − ui)〉 |

≤ 1

1− λ2
‖Auj‖ · ‖A(uj − ui)‖+ |〈uj , A(uj − ui)〉|

≤ 1

1− λ2
wmax

dmin

(
1√
dj

√
1

di
+

1

dj

)
+
wij
didj

+
wjj
d2j

≤ 2
wmax

d2min

(
1

1− λ2
+ 1

)
.

For the commute time, we note that∣∣∣∣ 1

vol(G)
Cij −

( 1

di
+

1

dj

)∣∣∣∣ =
∣∣ 〈ui − uj ,M(ui − uj)〉

∣∣
≤ 1

1− λ2
‖A(ui − uj)‖2 +

∣∣ 〈ui − uj , A(ui − uj)〉
∣∣

≤ wmax

dmin

(
1

1− λ2
+ 2

)(
1

di
+

1

dj

)
.

We would like to point out that the key to achieving this bound is not to give in to the
temptation to manipulate Eq. (3) directly, but to bound Eq. (4). The reason is that we
can compute terms of the form 〈ui, Auj〉 and related terms explicitly, whereas we do not
have any explicit formulas for the eigenvalues and eigenvectors in (3).
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7.2 The Spectral Gap in Random Geometric Graphs

As we have seen above, a key ingredient in the approximation result for hitting times and
commute distances is the spectral gap. In this section we show how the spectral gap can be
lower bounded for random geometric graphs. We first consider the case of a fixed geometric
graph. From this general result we then derive the results for the special cases of the ε-graph
and the kNN-graphs. All graphs considered in this section are unweighted and undirected.
We follow the strategy in Boyd et al. (2005) where the spectral gap is bounded by means
of the Poincaré inequality (see Diaconis and Stroock, 1991, for a general introduction to
this technique; see Cooper and Frieze, 2011, for a related approach in simpler settings).
The outline of this technique is as follows: for each pair (X,Y ) of vertices in the graph we
need to select a path γXY in the graph that connects these two vertices. In our case, this
selection is made in a random manner. Then we need to consider all edges in the graph and
investigate how many of the paths γXY , on average, traverse this edge. We need to control
the maximum of this “load” over all edges. The higher this load is, the more pronounced
is the bottleneck in the graph, and the smaller the spectral gap is. Formally, the spectral
gap is related to the maximum average load b as follows.

Proposition 20 (Spectral gap, Diaconis and Stroock, 1991) Consider a finite, con-
nected, undirected, unweighted graph that is not bipartite. For each pair of vertices X 6=Y
let PXY be a probability distribution over all paths that connect X and Y and have uneven
length. Let (γXY )X,Y be a family of paths independently drawn from the respective PXY .
Define b := max{e edge} E|{γXY

∣∣ e ∈ γXY }|. Denote by |γmax| the maximum path length
(where the length of the path is the number of edges in the path). Then the spectral gap in
the graph is bounded as follows:

1− λ2 ≥
vol(G)

d2max|γmax|b
and 1− |λn| ≥

2

dmax|γmax|b
.

For deterministic sets Γ, this proposition has been derived as Corollary 1 and 2 in Diaconis
and Stroock (1991). The adaptation for random selection of paths is straightforward, see
Boyd et al. (2005).

The key to tight bounds based on Proposition 20 is a clever choice of the paths. We need
to make sure that we distribute the paths as “uniformly” as possible over the whole graph.
This is relatively easy to achieve in the special situation where X is a torus with uniform
distribution (as studied in Boyd et al., 2005; Cooper and Frieze, 2011) because of symmetry
arguments and the absence of boundary effects. However, in our setting with general X
and p we have to invest quite some work.

7.2.1 Fixed Geometric Graph on the Unit Cube in Rd

We first treat the special case of a fixed geometric graph with vertices in the unit cube [0, 1]d

in Rd. Consider a grid on the cube with grid width g. For now we assume that the grid cells
are so small that points in neighboring cells are always connected in the geometric graph,
and so large that each cell contains a minimal number of data points. We will specify the
exact value of g later. In the following, cells of the grid are identified with their center points.
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C(b)

C(a)

Figure 8: Canonical path between a and b. We first consider a “Hamming path of cells”
between a and b. In all intermediate cells, we randomly pick a point.

Construction of the paths. Assume we want to construct a path between two vertices a
and b that correspond to the points a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ [0, 1]d. Let C(a)
and C(b) denote the grid cells containing a and b, denote the centers of these cells by
c(a) = (c(a)1, . . . , c(a)d) and c(b) = (c(b)1, . . . , c(b)d). We first construct a deterministic
“cell path” between the cells C(a) and C(b) (see Figure 8). This path simply follows a
Hamming path: starting at cell C(a) we change the first coordinate until we have reached
c(b)1. For example, if c(a)1 < c(b)1 we traverse the cells(
c(a)1, c(a)2, . . . , c(a)d

)
;
(
c(a)1 + g, c(a)2, . . . , c(a)d

)
; . . . ;

(
c(b)1, c(a)2, . . . , c(a)d

)
.

Then we move along the second coordinate from c(a)2 until we have reached c(b)2, that is
we traverse the cells (c(b)1, ∗, c(a)3, . . . , c(a)d). And so on. This gives a deterministic way
of traversing adjacent cells from C(a) to C(b). Now we transform this deterministic “cell
path” to a random path on the graph. In the special cases where a and b are in the same
cell or in neighboring cells, we directly connect a and b by an edge. In the general case,
we select one data point uniformly at random in each of the interior cells on the cell path.
Then we connect the selected points to form a path. Note that we can always force the
paths to have uneven lengths by adding one more point somewhere in between.

Proposition 21 (Path construction is valid) Assume that (1) Each cell of the grid
contains at least one data point. (2) Data points in the same and in neighboring cells
are always connected in the graph. Then the graph is connected, and the paths constructed
above are paths in the graph.

Proof. Obvious, by construction of the paths.

In order to apply Proposition 20 we now need to compute the maximal average load of all
paths.

Proposition 22 (Maximum average load for fixed graph on cube) Consider a ge-
ometric graph on [0, 1]d and the grid of width g on [0, 1]d. Denote by Nmin and Nmax the
minimal and maximal number of points per grid cell. Construct a random set of paths as
described above.

1. Let C be any fixed cell in the grid. Then there exist at most d/gd+1 pairs of cells
(A,B) such that cell paths starting in cell A and ending in cell B pass through C.
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2. If the path construction is valid, then the maximal average load is upper bounded by

b ≤ 1 +

(
N2

max

N2
min

+ 2
Nmax

Nmin

)
d

gd+1
.

Proof. Part 1. We identify cells with their centers. Consider two different grid cells A
and B with centers a and b. By construction, the Hamming path between A and B has the
corners

a =(a1, a2, a3, . . . , ad) ; (b1, a2, a3, . . . , ad) ; (b1, b2, a3, . . . , ad)

; . . . ; (b1, b2, b3, . . . , bd−1, ad) ; (b1, b2, b3, . . . , bd−1, bd) = b.

All cells on the path have the form (b1, b2, . . . , bl−1, ∗, al+1, . . . , ad) where ∗ can take any
value between al and bl. A path can only pass through the fixed cell with center c if there
exists some l ∈ {1, . . . , d} such that

(c1, . . . , cd) = (b1, b2, . . . , bl−1, ∗, al+1, . . . , ad).

That is, there exists some l ∈ {1, . . . , d} such that

(I) bi = ci for all i = 1, . . . , l − 1 and (II) ai = ci for all i = l + 1, . . . , d.

For the given grid size g there are 1/g different cell centers per dimension. For fixed l there
thus exist 1/gd−l+1 cell centers that satisfy (I) and 1/gl cell centers that satisfy (II). So
all in all there are 1/gd+1 pairs of cells A and B such that both (I) and (II) are satisfied
for a fixed value of l. Adding up the possibilities for all choices of l ∈ {1, . . . , d} leads to
the factor d.

Part 2. Fix an edge e in the graph and consider its two adjacent vertices v1 and v2. If v1
and v2 are in two different cells that are not neighbors to each other, then by construction
none of the paths traverses the edge. If they are in the same cell, by construction at most
one of the paths can traverse this edge, namely the one directly connecting the two points.
The interesting case is the one where v1 and v2 lie in two neighboring grid cells C and C̃.
If both cells are “interior” cells of the path, then by construction each edge connecting
the two cells has equal probability of being selected. As there are at least Nmin points in
each cell, there are at least N2

min different edges between these cells. Thus each of the edges
between the cells is selected with probability at most 1/N2

min. We know by Part 1 that there
are at most d/gd+1 pairs of start/end cells. As each cell contains at most Nmax points, this
leads to N2

maxd/g
d+1 different paths passing through C. This is also an upper bound on

the number of paths passing through both C and C̃. Thus, the number of paths using each
edge is at most dN2

max/(g
d+1N2

min).
If at least one of the cells is the start cell of the path, then the corresponding vertex, say
v1, is the start point of the path. If v2 is an intermediate point, then it is selected with
probability at most 1/Nmin (the case where v2 is an end point has already been treated at
the beginning). Similarly to the last case, there are at most Nmaxd/g

d+1 paths that start
in v1 and pass through C̃. This leads to an average load of dNmax/(g

d+1Nmin) on edge e.
The same holds with the roles of v1 and v2 exchanged, leading to a factor 2.
The overall average load is now the sum of the average loads in the different cases.
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7.2.2 Fixed Geometric Graph on a Domain X That Is Homeomorphic to a
Cube

Now assume that X ⊂ Rd is a compact subset that is homeomorphic to the cube [0, 1]d

in the following sense: we assume that there exists a homeomorphism h : X → [0, 1]d and
constants 0 < Lmin < Lmax <∞ such that for all x, y ∈ X we have

Lmin‖x− y‖ ≤ ‖h(x)− h(y)‖ ≤ Lmax‖x− y‖. (5)

The general idea is now as follows. Assume we are given a geometric graph on X1, . . . , Xn ∈
X . In order to construct the paths we first map the points in the cube using h. Then we
construct the paths on h(X1), . . . , h(Xn) ∈ [0, 1]d as in the last section. Finally, we map
the path back to X .

Proposition 23 (Maximum average load for fixed graph on general domain)
Let G be a geometric graph based on X1, . . . , Xn ∈ X . Assume that there exists some g̃ > 0
such that points of distance smaller than g̃ are always connected in the graph. Consider a
mapping h : X → [0, 1]d as in Equation (5) and a grid of width g on [0, 1]d. Let (Ci)i be
the cells of the g-grid on [0, 1]d, denote their centers by ci. Let Bi and B′i be balls in X
with radius r = g/(2Lmax) and R =

√
d g/Lmin centered at h−1(ci).

1. These balls satisfy Bi ⊆ h−1(Ci) ⊆ B′i.

2. Denote by Ñmin the minimal number of points in Bi and Ñmax the maximal number
of points in B′i. Construct paths between the points h(Xi) ∈ [0, 1]d as described in the
previous subsection. If Ñmin ≥ 1 and g ≤ Lming̃/

√
d+ 3, then these paths are valid.

3. In this case, the maximal average load can be upper bounded by

1 +

(
Ñ2

max

Ñ2
min

+ 2
Ñmax

Ñmin

)
d

(g̃Lmin/
√
d+ 3)d+1

.

Proof. Part (1). To see the first inclusion, consider any point x ∈ Bi. By the Lipschitz
continuity and the definition of Bi we get

‖h(x)− ci‖ ≤ Lmax‖x− h−1(ci)‖ ≤ Lmax · r = g/2.

Hence, h(x) ∈ Ci. To show the other inclusion let x ∈ h−1(Ci). Then by the Lipschitz
continuity and the definition of Ci we get

‖x− h−1(ci)‖ ≤ ‖h(x)− ci‖/Lmin ≤
√
dg/Lmin = R,

hence x ∈ B′i.
Part (2). By the definition of Ñmin and Part (1) it is clear that each cell of the grid
contains at least one point. Consider two points Xi, Xj ∈ X such that h(Xi) and h(Xj) are
in neighboring cells of the g-grid. Then ‖h(Xi)−h(Xj)‖ ≤ g

√
d+ 3. By the properties of h,

‖h−1(Xi)− h−1(Xj)‖ ≤
1

Lmin
‖Xi −Xj‖ ≤

1

Lmin

√
d+ 3 g ≤ g̃.

Thus, by the definition of g̃ the points Xi and Xj are connected in G.

Part (3). Follows directly from Proposition 22 and Parts (1) and (2).
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7.2.3 Spectral Gap for the ε-Graph

Now we are going to apply Proposition 23 to ε-graphs. We will use the general results on
ε-graphs summarized in the appendix.

Proposition 24 (Maximal average load for ε-graph) Assume that X is homeomor-
phic to the cube with a mapping h as described in Equation (5). Then there exist constants
c1, c2, c3 > 0 such that with probability at least 1−c1 exp(−c2nεd)/εd, the maximum average
load is upper bounded by c3/ε

d+1. If nεd/ log n → ∞, then this probability tends to 1 as
n→∞.

Proof. The proof is based on Proposition 23. By construction we know that points with
distance at most g̃ = ε are always connected in the ε-graph. By Part 2 of Proposition 23,
to ensure that points in neighboring grid cells are always connected in the graph we thus
need to choose the grid width g = ε · Lmin/

√
d+ 3. The radius r defined in Proposition 23

is then given as

r =
g

2Lmax
= ε · Lmin

2
√
d+ 3Lmax

.

The probability mass of the balls Bi is thus bounded by

bmin ≥ rdηdpminα = εd ·
(
Lmin

Lmax

)d ηd
2d(d+ 3)d/2

pminα =: εd · cmin

(recall that the constant α takes care of boundary points, see Definition 2 of the valid
region).
We have

K = 1/gd =
√
d+ 3/Ldmin · (1/εd) =: κ · (1/εd)

grid cells and thus the same number of balls Bi. We can now apply Proposition 28 (with
δ := 1/2) to deduce the bound for the quantity Ñmin used in Proposition 23:

P
(
Ñmin ≤ nεdcmin/2

)
≤ κ

εd
exp(−nεdcmin/12).

Analogously, for Ñmax we have R = ε > ε
√
d/
√
d+ 3 and bmax = Rdηdpmax = εdηdpmax :=

εd · cmax. With δ = 0.5 we then obtain

P
(
Ñmax ≥ nεdcmax3/2

)
≤ κ

εd
exp(−nεdcmax/12).

Plugging these values into Proposition 23 leads to the result.

Proof of Theorem 6. With probability at least 1 − c1n exp(−c2nεd), both the min-
imal and maximal degrees in the graph are of the order Θ(nεd) (cf. Proposition 29),
and the volume of G is of order Θ(n2εd). To compute the maximal number |γmax| of
edges in each of the paths constructed above, observe that each path can traverse at most
d · 1/g = (d

√
d+ 3/Lmin) · (1/ε) cubes, and a path contains just one edge per cube. Thus

|γmax| is of the order Θ(1/ε). In Proposition 24 we have seen that with probability at least
c4 exp(−c5nεd)/εd the maximum average load b is of the order Ω(1/εd+1). Plugging all these
quantities in Proposition 20 leads to the result.
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7.2.4 Spectral Gap for the kNN-Graph

As in the case of the flow proofs, the techniques in the case of the kNN-graphs are identical
to the ones for the ε-graph, we just have to replace the deterministic radius ε by the minimal
kNN-radius. As before we exploit that if two sample points have distance less than Rk,min

from each other, then they are always connected both in the symmetric and mutual kNN-
graph.

Proposition 25 (Maximal average load in the kNN-graph) Under the general as-
sumptions, with probability at least 1−c1 ·n ·exp(−c2k) the maximal average load in both the
symmetric and mutual kNN-graph is bounded from above by c3(n/k)1+1/d. If k/ log n→∞,
then this probability converges to 1.

Proof. This proof is analogous to the one of Proposition 24, the role of ε is now taken over
by Rk,min.

Proof of Theorem 7. With probabilities at least 1−n exp(−c1k) the following statements
hold: the minimal and maximal degree are of order Θ(k), thus the number of edges in the
graph is of order Θ(nk). Analogously to the proof for the ε-graph, the maximal path length
|γmax| is of the order 1/Rk,min = Θ((k/n)1/d). The maximal average load is of the order
O((n/k)d+1/d). Plugging all these quantities in Proposition 20 leads to the result.

7.3 Proofs of Corollaries 8 and 9

Now we collected all ingredients to finally present the following proofs.

Proof of Corollary 8. This is a direct consequence of the results on the minimal degree
(Proposition 29) and the spectral gap (Theorem 6). Plugging these results into Proposition
5 leads to the first result. The last statement in the theorem follows by a standard density
estimation argument, as the degree of a vertex in the ε-graph is a consistent density esti-
mator (see Proposition 29).

Proof of Corollary 9. Follows similarly as Theorem 8 by applying Proposition 5. The
results on the minimal degree and the spectral gap can be found in Proposition 30 and Theo-
rem 7. The last statement follows from the convergence of the degrees, see Proposition 30.

7.4 Weighted Graphs

For weighted graphs, we use the following results from the literature.

Proposition 26 (Spectral gap in weighted graphs) 1. For any row-stochastic ma-
trix P ,

λ2 ≤
1

2
max
i,j

n∑
k=1

∣∣wik
di
−
wjk
dj

∣∣ ≤ 1− nmin
i,j

wij
di
≤ 1− wmin

wmax
.

2. Consider a weighted graph G with edge weights 0 < wmin ≤ wij ≤ wmax and denote its
second eigenvalue by λ2,weighted. Consider the corresponding unweighted graph where
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all edge weights are replaced by 1, and denote its second eigenvalue by λ2,unweighted.
Then we have

(1− λ2,unweighted) ·
wmin

wmax
≤ (1− λ2,weighted) ≤ (1− λ2,unweighted) ·

wmax

wmin
.

Proof.

1. This bound was obtained by Zenger (1972), see also Section 2.5 of Seneta (2006) for
a discussion. Note that the second inequality is far from being tight. But in our
application, both bounds lead to similar results.

2. This statement follows directly from the well-known representation of the second
eigenvalue µ2 of the normalized graph Laplacian Lsym (see Sec. 1.2 in Chung, 1997),

µ2 = inf
f∈Rn

∑n
i,j=1wij(fi − fj)2

minc∈R
∑n

i=1 di(fi − c)2
.

Note that the eigenvalue µ2 of the normalized Laplacian and the eigenvalue λ2 of the
random walk matrix P are in relation 1− λ2 = µ2.

Proof of Theorem 10. Follows directly from plugging in the first part of Proposition 26
in Proposition 5.

Proof of Theorem 11. We split

∣∣∣∣nRij − 1

p(Xi)
− 1

p(Xj)

∣∣∣∣ ≤ ∣∣∣∣nRij − n

di
− n

dj

∣∣∣∣+

∣∣∣∣ ndi +
n

dj
− 1

p(Xi)
− 1

p(Xj)

∣∣∣∣ .
Under the given assumption, the second term on the right hand side converges to 0 a.s.
by a standard kernel density estimation argument (e.g., Section 9 of Devroye and Lugosi,
2001). The main work is the first term on the right hand side. We treat upper and lower
bounds of Rij − 1/di − 1/dj separately.

To get a lower bound, recall that by Proposition 15 we have

Rij ≥
Qij

1 + wijQij
,

where Qij = 1/(di − wij) + 1/(dj − wij) and wij is the weight of the edge between i and j.
Observe that under the given conditions, for any two fixed points Xi, Xj the Gaussian edge
weight wij converges to 0 (as σ → 0). Thus

n

(
Rij −

1

di
− 1

dj

)
≥ n

(
Qij

1 + wijQij
− 1

di
− 1

dj

)
→ 0 a.s.

To treat the upper bound, we define the ε-truncated Gauss graph Gε as the graph with
edge weights

wεij :=

{
wij if ‖Xi −Xj‖ ≤ ε,
0 else.
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Let dεi =
∑n

j=1w
ε
ij . Because of wεij ≤ wij and Rayleigh’s principle, we have Rij ≤ Rεij ,

where Rε denotes the resistance of the ε-truncated Gauss graph. Obviously,

nRij −
(
n

di
+
n

dj

)
≤
∣∣∣∣nRεij − ( ndi +

n

dj

)∣∣∣∣
≤

∣∣∣∣∣nRεij −
(
n

dεi
+
n

dεj

)∣∣∣∣∣︸ ︷︷ ︸
(∗)

+

∣∣∣∣∣
(
n

dεi
+
n

dεj

)
−
(
n

di
+
n

dj

)∣∣∣∣∣︸ ︷︷ ︸
(∗∗)

.

To bound term (∗∗) we show that the degrees in the truncated graph converge to the ones
in the non-truncated graph. To see this, note that

E
(dεi
n

∣∣∣ Xi

)
=

1

(2π)
d
2

1

σd

∫
B(Xi,ε)

e
−‖Xi−y‖

2

2σ2 p(y) dy

=
1

(2π)
d
2

∫
B(0, ε

σ
)
e−
‖z‖2
2 p(Xi + σz) dz

= E
(di
n

∣∣∣ Xi

)
− 1

(2π)
d
2

∫
Rd\B(0, ε

σ
)
e−
‖z‖2
2 p(Xi + σz) dz.

Exploiting that

1

(2π)
d
2

∫
Rd\B(0, ε

σ
)
e−
‖z‖2
2 ≤ 1

(2π)
d
2

e−
ε2

4σ2

∫
Rd
e−
‖z‖2
4

≤ 2
d
2 e−

ε2

4σ2 = 2
d
2

1

(nεd+2)
1
4

we obtain the convergence of the expectations: under the assumptions on n and σ from the
theorem, ∣∣∣ E

(dεi
n

∣∣∣ Xi

)
− E

(di
n

∣∣∣ Xi

) ∣∣∣ → 0.

Now, a probabilistic bound for term (∗∗) can be obtained by standard concentration argu-
ments.

We now bound term (∗). Up to now, our argument holds for arbitrary ε. For this last step,
we now require that ε satisfies σ2 = ω(ε2/ log(nεd+2)). Note that for this choice of ε, the
truncated Gaussian graph “converges” to the non-truncated graph, as we truncate less and
less weight.

Denote by λε,weighted the eigenvalues of the ε-truncated Gauss graph, and by wεmin, wεmax

its minimal and maximal edge weights. Also consider the graph G′′ that is the unweighted
version of the ε-truncated Gauss graph Gε . Note that G′′ coincides with the standard
ε-graph. We denote its eigenvalues by λε,unweighted. By applying Proposition 5, Corollary 8
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and Proposition 26 we get∣∣∣∣∣nRεij −
(
n

dεi
+
n

dεj

)∣∣∣∣∣ ≤ wεmax

dεmin

(
1

1− λε,weighted2

+ 2

)(
n

dεi
+
n

dεj

)
≤ wεmax

dεmin

(
wεmax

wεmin

1

1− λε,unweighted2

+ 2

)(
n

dεi
+
n

dεj

)
(6)

where the first inequality holds with probability at least 1 − c1n exp(−c2nσd) −
c3 exp(−c4nσd)/σd. By (∗∗) we already know that the last factor in (6) converges to a
constant: (

n

dεi
+
n

dεj

)
→ 1/p(Xi) + 1/p(Xj).

For the other factors of Term (6) we use the following quantities:

wεmin ≥
1

σd
exp(− ε2

2σ2
)

wεmax ≤
1

σd

dεmin ≥ nεdwεmin

1− λε,unweighted2 ≥ ε2

Plugging these quantities in (6) and exploiting σ2 = ω(ε2/ log(nεd+2)) leads to the desired
convergence of (∗) to 0.

Proof of Corollary 13. We use the result from Theorem 4 in Chung and Radcliffe (2011)
which states that under the assumption that the minimal expected degree dmin satisfies
dmin/ log(n)→∞, then with probability at least 1− 1/n the spectral gap is bounded by a
term of the order O(log(2n)/dmin). Plugging this in Part (2) of Proposition 5 shows that
with high probability,

∣∣∣ 1
vol(G)Cij −

1
di
− 1

dj

∣∣∣
1
di

+ 1
dj

s ≤
(

dmin

log(2n)
+ 2

)
1

dmin
= O

(
1

log(2n)

)
.

Proof of Corollary 14. The expected degree of each vertex is n(pwithin + pbetween)/2,
the expected volume of the graph is n2(pwithin + pbetween)/2. The matrix A has the form(
pJ qJ
qJ pJ

)
where J is the (n/2 × n/2)-matrix of all ones and p = pwithin and q = pbetween.

The expected degree of all vertices is n(p + q)/2. Hence, D−1/2AD−1/2 = 2
n(p+q) · A. This

matrix has rank 2, its largest eigenvalue is 1 (with eigenvector the constant 1 vector), the
other eigenvalue is (p− q)/(p+ q) with eigenvector (1, ..., 1,−1, ...,−1). Hence, the spectral
gap in this model is 2q/(p+ q).
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Under the assumption that p = ω(log(n)/n), the deviations in Theorem 12 converge to 0.
Plugging the spectral gap in our bound in Proposition 5 shows that with high probability,

n(pwithin + pbetween)

2
·
∣∣∣∣ 1

vol(G)
Hij −

1

di

∣∣∣∣ ≤ 4

npbetween
+

4

n(pwithin + pbetween)

= O

(
1

npbetween

)
.

8. Discussion

We have presented different strategies to prove that in many large graphs the commute
distance can be approximated by 1/di + 1/dj . Both our approaches tell a similar story.
Our result holds as soon as there are “enough disjoint paths” between i and j, compared
to the size of the graph, and the minimal degree is “large enough” compared to n. Most
relevant for machine learning, our results hold for all kinds of random geometric graphs
(ε-graphs, kNN graphs, Gaussian similarity graphs). Here, the limit distance function
dist(i, j) = 1/di + 1/dj is meaningless: It just considers the local density (the degree) at
the two vertices, but does not take into account any global property such as the cluster
structure of the graph. As the speed of convergence is very fast (for example, of the order
1/n in the case of Gaussian similarity graphs), the use of the raw commute distance should
be discouraged even on moderate sized graphs.

An important point to note is that the results on the degeneracy of the hitting and
commute times are not due to pathologies such as a “misconstruction” of the graphs or
“wrong scaling constants”. For example, in the random geometric graph setting the graph
Laplacian can be proved to converge to the Laplace-Beltrami operator on the underlying
space under similar assumptions as the ones above (Hein et al., 2007). But even though the
Laplacian itself converges to a meaningful limit, the resistance distance, which is computed
based on point evaluations of the inverse of this Laplacian, does not converge to a useful
limit.

There are two important classes of graphs that are not covered in our approach. In power
law graphs as well as in grid-like graphs, the minimal degree is constant, thus our results
do not lead to tight bounds. The resistance distances on grid-like graphs has been studied
in some particular cases. For example, Cserti (2000) and Wu (2004) prove explicit formulas
for the resistance on regular one-and two-dimensional grids, and Benjamini and Rossignol
(2008) characterize the variance of the resistance on random Bernoulli grids.

Beyond the commute distance, there exists a large variety of distance functions on graphs,
and it is an interesting question to study their convergence behavior as n → ∞. In par-
ticular, several authors constructed parametric families of distances that include both the
shortest path distance and commute distance as special cases (e.g., Yen et al., 2008, Cheb-
otarev, 2011, Alamgir and von Luxburg, 2011). For such families, the limit behavior is
particularly interesting. On the one hand, it is well-known that shortest path distances
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on random geometric graphs converge to the Euclidean or geodesic distances in the un-
derlying space (Bernstein et al., 2000). On the other hand, as we have just seen in this
paper, the commute distance converges to a meaningless distance function. Hence it is an
interesting problem to characterize those distances that are degenerate. For the family of
p-resistance distances this question has been solved in Alamgir and von Luxburg (2011). If
p > p∗ for some critical threshold p∗, we are in a similar regime as the commute distance
and the p-resistance is degenerate. For p < p∗ the commute distance is in a similar regime
as the shortest path distance and is not degenerate. We believe that a solution to this
question would be particularly interesting for the family of logarithmic forest distances by
Chebotarev (2011). This family has many nice properties and, in our experience, tends to
perform nicely in practice. So what are the parameters α for which we can guarantee that
the distance is not degenerate as n→∞?
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Appendix A. General Properties of Random Geometric Graphs

In this appendix we collect some basic results on random geometric graphs. These results
are well-known, cf. Penrose (2003), but we did not find any reference where the material
is presented in the way we need it (often the results are used implicitly or are tailored
towards particular applications).

In the following, assume that X := supp(p) is a valid region according to Definition 1.
Recall the definition of the boundary constant α in the valid region.

A convenient tool for dealing with random geometric graphs is the following well-known
concentration inequality for binomial random variables with small p (originally found by
Chernoff, 1952 and Hoeffding, 1963, we use the version as published in Angluin and Valiant,
1977).

Proposition 27 (Concentration inequalities) Let N be a Bin(n, p)-distributed random
variable. Then, for all δ ∈]0, 1],

P
(
N ≤ (1− δ)np

)
≤ exp(−1

3
δ2np)

P
(
N ≥ (1 + δ)np

)
≤ exp(−1

3
δ2np).

We will see below that computing expected, minimum and maximum degrees in random
geometric graphs always boils down to counting the number of data points in certain balls
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in the space. The following proposition is a straightforward application of the concentration
inequality above and serves as “template” for all later proofs.

Proposition 28 (Counting sample points) Consider a sample X1, . . . , Xn drawn i.i.d.
according to density p on X . Let B1, . . . , BK be a fixed collection of subsets of X (the Bi do
not need to be disjoint). Denote by bmin := mini=1,...,K

∫
Bi
p(x)dx the minimal probability

mass of the sets Bi (similarly by bmax the maximal probability mass), and by Nmin and Nmax

the minimal (resp. maximal) number of sample points in the sets Bi. Then for all δ ∈]0, 1]

P
(
Nmax ≥ (1 + δ)nbmax

)
≤ K · exp(−δ2nbmax/3)

P
(
Nmin ≤ (1− δ)nbmin

)
≤ K · exp(−δ2nbmin/3).

Proof. This is a straightforward application of Proposition 27 using the union bound.

When working with ε-graphs or kNN-graphs, we often need to know the degrees of the
vertices. As a rule of thumb, the expected degree of a vertex in the ε-graph is of the order
Θ(nεd), the expected degree of a vertex in both the symmetric and mutual kNN-graph is
of the order Θ(k). The expected kNN-distance is of the order Θ((k/n)1/d). Provided the
graph is “sufficiently connected” , all these rules of thumb also apply to the minimal and
maximal values of these quantities. The following propositions make these rules of thumb
explicit.

Proposition 29 (Degrees in the ε-graph) Consider an ε-graph on a valid region
X ⊂ Rd.

1. Then, for all δ ∈]0, 1], the minimal and maximal degrees in the ε-graph satisfy

P
(
dmax ≥ (1 + δ)nεdpmaxηd

)
≤ n · exp(−δ2nεdpmaxηd/3)

P
(
dmin ≤ (1− δ)nεdpminηdα

)
≤ n · exp(−δ2nεdpminηdα/3).

In particular, if nεd/ log n→∞, then these probabilities converge to 0 as n→∞.

2. If n→∞, ε→ 0 and nεd/ log n→∞, and the density p is continuous, then for each
interior point Xi ∈ X the degree is a consistent density estimate: di/(nε

dηd) −→ p(Xi)
a.s.

Proof. Part 1 follows by applying Proposition 28 to the balls of radius ε centered at the
data points. Note that for the bound on dmin, we need to take into account boundary
effects as only a part of the ε-ball around a boundary point is contained in X . This is
where the constant α comes in (recall the definition of α from the definition of a valid
region). Part 2 is a standard density estimation argument: the expected degree of Xi is
the expected number of points in the ε-ball around Xi. For ε small enough, the ε-ball
around Xi is completely contained in X and the density is approximately constant on this
ball because we assumed the density to be continuous. The expected number of points is
approximately nεdηdp(Xi) where ηd denotes the volume of a d-dimensional unit ball. The
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result now follows from Part 1.

Recall the definitions of the k-nearest neighbor radii: Rk(x) denotes the distance of x to
its k-nearest neighbor among the Xi, and the maximum and minimum values are denoted
Rk,max := maxi=1,...,nRk(Xi) and Rk,min := maxi=1,...,nRk(Xi). Also recall the definition of
the boundary constant α from the definition of a valid region.

Proposition 30 (Degrees in the kNN-graph) Consider a valid region X ⊂ Rd.

1. Define the constants a = 1/(2pmaxηd)
1/d and ã := 2/(pminηdα)1/d. Then

P
(
Rk,min ≤ a

(
k

n

)1/d )
≤ n exp(−k/3)

P
(
Rk,max ≥ ã

(
k

n

)1/d )
≤ n exp(−k/12).

If n→∞ and k/ log n→∞, then these probabilities converge to 0.

2. Moreover, with probability at least 1 − n exp(−c4k) the minimal and maximal degree
in both the symmetric and mutual kNN-graph are of the order Θ(k) (the constants
differ).

3. If the density is continuous, n → ∞, k/ log n → ∞ and additionally k/n → 0, then
in both the symmetric and the mutual kNN-graph, the degree of any fixed vertex vi in
the interior of X satisfies k/di → 1 a.s.

Proof. Part 1. Define the constant a = 1/(2pmaxηd)
1/d and the radius r := a (k/n)1/d, fix

a sample point x, and denote by µ(x) the probability mass of the ball around x with radius r.
Set µmax := rdηdpmax ≥ maxx∈X µ(x). Note that µmax < 1. Observe that Rk(x) ≤ r if and
only if there are at least k data points in the ball of radius r around x. Let M ∼ Bin(n, µ)
and V ∼ Bin(n, µmax). Note that by the choices of a and r we have E(V ) = k/2. All this
leads to

P
(
Rk(x) ≤ r

)
≤ P

(
M ≥ k

)
≤ P

(
V ≥ k

)
= P

(
V ≥ 2E(V )

)
.

Applying the concentration inequality of Proposition 27 (with δ := 1)) and using a union
bound leads to the following result for the minimal kNN-radius:

P
(
Rk,min ≤ a

(
k

n

)1/d )
≤ P

(
∃i : Rk(Xi) ≤ a

(
k

n

)1/d )
≤ n max

i=1,...,n

(
Rk(Xi) ≤ r

)
≤ n exp(−k/3).

By a similar approach we can prove the analogous statement for the maximal kNN-radius.
Note that for the bound on Rk,max we additionally need to take into account boundary
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effects: at the boundary of X , only a part of the ball around a point is contained in X ,
which affects the value of µmin. We thus define ã := 2/(pminηdα)1/d, r := ã(k/n)1/d, µmin :=
rdηdpminα where α ∈]0, 1] is the constant defined in the valid region. With V = Bin(n, µmin)
with EV = 2k we continue similarly to above and get (using δ = 1/2)

P
(
Rk,max ≥ ã

(
k

n

)1/d )
≤ n exp(−k/12).

Part 2. In the directed kNN-graph, the degree of each vertex is exactly k. Thus, in the
mutual kNN-graph, the maximum degree over all vertices is upper bounded by k, in the
symmetric kNN-graph the minimum degree over all vertices is lower bounded by k.

For the symmetric graph, observe that the maximal degree in the graph is bounded by the
maximal number of points in the balls of radius Rk,max centered at the data points. We
know that with high probability, a ball of radius Rk,max contains of the order Θ(nRdk,max)

points. Using Part 1 we know that with high probability, Rk,max is of the order (k/n)1/d.
Thus the maximal degree in the symmetric kNN-graph is of the order Θ(k), with high
probability.

In the mutual graph, observe that the minimal degree in the graph is bounded by the
minimal number of points in the balls of radius Rk,min centered at the data points. Then
the statement follows analogously to the last one.

Part 3, proof sketch. Consider a fixed point x in the interior of X . We know that both
in the symmetric and mutual kNN-graph, two points cannot be connected if their distance
is larger than Rk,max. As we know that Rk,max is of the order (k/n)1/d, under the growth
conditions on n and k this radius becomes arbitrarily small. Thus, because of the continuity
of the density, if n is large enough we can assume that the density in the ball B(x,Rk,max)
of radius Rk,max around x is approximately constant. Thus, all points y ∈ B(x,Rk,max)
have approximately the same k-nearest neighbor radius R := (k/(n · p(x)ηd))

1/d. Moreover,
by concentration arguments it is easy to see that the actual kNN-radii only deviate by a
factor 1± δ from their expected values.

Then, with high probability, all points inside of B(x,R(1 − δ)) are among the k nearest
neighbors of x, and all k nearest neighbors of x are inside B(x,R(1+δ)). On the other hand,
with high probability x is among the k nearest neighbors of all points y ∈ B(x,R(1 − δ)),
and not among the k nearest neighbors of any point outside of B(x,R(1 + δ)). Hence,
in the mutual kNN-graph, with high probability x is connected exactly to all points y ∈
B(x,R(1 − δ)). In the symmetric kNN-graph, x might additionally be connected to the
points in B(x,R(1+δ))\B(x,R(1−δ)). By construction, with high probability the number
of sample points in these balls is (1 + δ)k and (1− δ)k. Driving δ to 0 leads to the result.
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Abstract

Existing Bayesian models, especially nonparametric Bayesian methods, rely on specially
conceived priors to incorporate domain knowledge for discovering improved latent represen-
tations. While priors affect posterior distributions through Bayes’ rule, imposing posterior
regularization is arguably more direct and in some cases more natural and general. In this
paper, we present regularized Bayesian inference (RegBayes), a novel computational frame-
work that performs posterior inference with a regularization term on the desired post-data
posterior distribution under an information theoretical formulation. RegBayes is more flex-
ible than the procedure that elicits expert knowledge via priors, and it covers both directed
Bayesian networks and undirected Markov networks. When the regularization is induced
from a linear operator on the posterior distributions, such as the expectation operator, we
present a general convex-analysis theorem to characterize the solution of RegBayes. Fur-
thermore, we present two concrete examples of RegBayes, infinite latent support vector ma-
chines (iLSVM) and multi-task infinite latent support vector machines (MT-iLSVM), which
explore the large-margin idea in combination with a nonparametric Bayesian model for dis-
covering predictive latent features for classification and multi-task learning, respectively.
We present efficient inference methods and report empirical studies on several benchmark
data sets, which appear to demonstrate the merits inherited from both large-margin learn-
ing and Bayesian nonparametrics. Such results contribute to push forward the interface
between these two important subfields, which have been largely treated as isolated in the
community.

Keywords: Bayesian inference, posterior regularization, Bayesian nonparametrics,
large-margin learning, classification, multi-task learning

1. Introduction

Over the past decade, nonparametric Bayesian models have gained remarkable popularity in
machine learning and other fields, partly owing to their desirable utility as a “nonparamet-
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ric” prior distribution for a wide variety of probabilistic models, thereby turning the largely
heuristic model selection practice, such as determining the unknown number of components
in a mixture model (Antoniak, 1974) or the unknown dimensionality of latent features in a
factor analysis model (Griffiths and Ghahramani, 2005), as a Bayesian inference problem in
an unbounded model space. Popular examples include Gaussian process (GP) (Rasmussen
and Ghahramani, 2002), Dirichlet process (DP) (Ferguson, 1973; Antoniak, 1974), and Beta
process (BP) (Thibaux and Jordan, 2007). DP is often described with a Chinese restau-
rant process (CRP) metaphor, and similarly BP is often described with an Indian buffet
process (IBP) metaphor (Griffiths and Ghahramani, 2005). Such nonparametric Bayesian
approaches allow the model complexity to grow as more data are observed, which is a key
factor differing them from other traditional “parametric” Bayesian models.

One recent development in practicing Bayesian nonparametrics is to relax some unreal-
istic assumptions on data, such as homogeneity and exchangeability. For example, to handle
heterogenous observations, predictor-dependent processes (MacEachern, 1999; Williamson
et al., 2010) have been proposed; and to relax the exchangeability assumption, stochastic
processes with various correlation structures, such as hierarchical structures (Teh et al.,
2006), temporal or spatial dependencies (Beal et al., 2002; Blei and Frazier, 2010), and
stochastic ordering dependencies (Hoff, 2003; Dunson and Peddada, 2007), have been in-
troduced. A common principle shared by these approaches is that they rely on defining,
or in some unusual cases learning (Welling et al., 2012) a nonparametric Bayesian prior1

encoding some special structures, which indirectly2 influences the posterior distribution of
interest through an interplay with a likelihood model according to the Bayes’ rule (also
known as Bayes’ theorem). In this paper, we explore a different principle known as poste-
rior regularization, which offers an additional and arguably richer and more flexible set of
means to augment a posterior distribution under rich side information, such as predictive
margin, structural bias, etc., which can be harder, if possible, to be captured by a Bayesian
prior.

Let Θ denote model parameters and H denote hidden variables. Then given a set of
observed data D, posterior regularization (Ganchev et al., 2010) is generally defined as
solving a regularized maximum likelihood estimation (MLE) problem:

Posterior Regularization : max
Θ
L(Θ;D) + Ω(p(H|D,Θ)), (1)

where L(Θ;D) is the marginal likelihood of D, and Ω(·) is a regularization function of
the model posterior over latent variables. Note that here we view posterior as a generic
post-data distribution on hidden variables in the sense of Ghosh and Ramamoorthi (2003,
pp.15), not necessarily corresponding to a Bayesian posterior that must be induced by the
Bayes’ rule. The regularizer can be defined as a KL-divergence between a desired distri-
bution with certain properties over latent variables and the model posterior in question,
or other constraints on the model posterior, such as those used in generalized expecta-
tion (Mann and McCallum, 2010) or constraint-driven semi-supervised learning (Chang

1. Although likelihood is another dimension that can incorporate domain knowledge, existing work on
Bayesian nonparametrics has been mainly focusing on the priors. Following this convention, this paper
assumes that a common likelihood model (e.g., Gaussian likelihood for continuous data) is given.

2. A hard constraint on the prior (e.g., a truncated Gaussian) can directly affect the support of the posterior.
RegBayes covers this as a special case as shown in Remark 7.
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et al., 2007). An EM-type procedure can be applied to solve (1) approximately, and obtain
an augmented MLE of the hidden variable model: p(H|D,ΘMLE). When a distribution over
the model parameter is of interest, going beyond the classical Bayesian theory, recent at-
tempts toward learning a regularized posterior distribution of model parameters (and latent
variables as well if present) include the “learning from measurements” (Liang et al., 2009),
maximum entropy discrimination (MED) (Jaakkola et al., 1999; Zhu and Xing, 2009) and
maximum entropy discrimination latent Dirichlet allocation (MedLDA) (Zhu et al., 2009).
All these methods are parametric in that they give rise to distributions over a fixed and
finite-dimensional parameter space. To the best of our knowledge, very few attempts have
been made to impose posterior regularization in a nonparametric setting where model com-
plexity depends on data, such as the case for nonparametric Bayesian latent variable models.
A general formalism for (parametric and nonparametric) Bayesian inference with posterior
regularization seems to be not yet available or apparent. In this paper, we present such
a formalism, which we call regularized Bayesian inference, or RegBayes, built on the con-
vex duality theory over distribution function spaces; and we apply this formalism to learn
regularized posteriors under the Indian buffet process (IBP), conjoining two powerful ma-
chine learning paradigms, nonparametric Bayesian inference and SVM-style max-margin
constrained optimization.

Unlike the regularized MLE formulation in (1), under the traditional formulation of
Bayesian inference one is not directly optimizing an objective with respect to the posterior.
To enable a regularized optimization formulation of RegBayes, we begin with a variational
reformulation of the Bayes’ theorem, and define L(q(M|D)) as the KL-divergence between
a desired post-data posterior q(M|D) over model M and the standard Bayesian posterior
p(M|D) (see Section 3.1 for a recapitulation of the connection between KL-minimization
and Bayes’ theorem). RegBayes solves the following optimization problem:

RegBayes : inf
q(M|D)∈Pprob

L(q(M|D)) + Ω(q(M|D)), (2)

where the regularization Ω(·) is a function of the post-data posterior q(M|D), and Pprob

is the feasible space of well-defined distributions. By appropriately defining the model
and its prior distribution, RegBayes can be instantiated to perform either parametric and
nonparametric regularized Bayesian inference.

One particularly interesting way to derive the posterior regularization is to impose pos-
terior constraints. Let ξ denote slack variables and Ppost(ξ) denote the general soft posterior
constraints (see Section 3.2 for a formal description), then, we can express the regularization
term variationally:

Ω(q(M|D)) = inf
ξ

U(ξ), s.t.: q(M|D) ∈ Ppost(ξ), (3)

where U(ξ) is normally defined as a convex penalty function. The RegBayes formalism
defined in (2) applies to a wide spectrum of models, including directed graphical models
(i.e., Bayesian networks) and undirected Markov networks. For undirected models, when
performing Bayesian inference the resulting posterior takes the form of a hybrid chain
graphical model (Frydenberg, 1990; Murray and Ghahramani, 2004; Qi et al., 2005; Welling
and Parise, 2006), which is usually much more challenging to regularize than for Bayesian

1801



Zhu, Chen and Xing

inference with directed graphical models. When the regularization term is convex and
induced from a linear operator (e.g., expectation) of the posterior distributions, RegBayes
can be solved with convex analysis theory.

By allowing direct regularization over posterior distributions, RegBayes provides a sig-
nificant source of extra flexibility for post-data posterior inference, which applies to both
parametric and nonparametric Bayesian learning (see the remarks after the main Theo-
rem 6). In this paper, we focus on applying this technique to the later case, and illustrate
how to use RegBayes to facilitate integration of Bayesian nonparametrics and large-margin
learning, which have complementary advantages but have been largely treated as two dis-
joint subfields. Previously, it has been shown that, the core ideas of support vector ma-
chines (Vapnik, 1995) and maximum entropy discrimination (Jaakkola et al., 1999), as well
as their structured extensions to the max-margin Markov networks (Taskar et al., 2003)
and maximum entropy discrimination Markov networks (Zhu and Xing, 2009), have led to
successful outcomes in many scenarios. But a large-margin model rarely has the flexibility
of nonparametric Bayesian models to automatically handle model complexity from data,
especially when latent variables are present (Jebara, 2001; Zhu et al., 2009). In this paper,
we intend to bridge this gap using the RegBayes principle.

Specifically, we develop the infinite latent support vector machines (iLSVM) and multi-
task infinite latent support vector machines (MT-iLSVM), which explore the discriminative
large-margin idea to learn infinite latent feature models for classification and multi-task
learning (Argyriou et al., 2007; Bakker and Heskes, 2003), respectively. We show that
both models can be readily instantiated from the RegBayes master equation (2) by defining
appropriate posterior regularization using the large-margin principle, and by employing
an appropriate prior. For iLSVM, we use the IBP prior to allow the model to have an
unbounded number of latent features a priori. For MT-iLSVM, we use a similar IBP prior to
infer a latent projection matrix to capture the correlations among multiple predictive tasks
while avoiding pre-specifying the dimensionality of the projection matrix. The regularized
inference problems can be efficiently solved with an iterative procedure, which leverages
existing high-performance convex optimization techniques.

The rest of the paper is organized as follows. Section 2 discusses related work. Section
3 presents regularized Bayesian inference (RegBayes), together with the convex duality re-
sults that will be needed in latter sections. Section 4 concretizes the ideas of RegBayes and
presents two infinite latent feature models with large-margin constraints for both classifi-
cation and multi-task learning. Section 5 presents some preliminary experimental results.
Finally, Section 6 concludes and discusses future research directions.

2. Related Work

Expectation regularization or expectation constraints have been considered to regularize
model parameter estimation in the context of semi-supervised learning or learning with
weakly labeled data. Mann and McCallum (2010) summarized the recent developments of
the generalized expectation (GE) criteria for training a discriminative probabilistic model
with unlabeled data, e.g., maximum entropy models or conditional random fields (Lafferty
et al., 2001). By providing appropriate side information, such as labeled features or esti-
mates of label distributions, a GE-based penalty function is defined to regularize the model
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distribution, e.g., the distribution of class labels. One commonly used GE function is the
KL-divergence between empirical expectation and model expectation of some feature func-
tions if the expectations are normalized or the general Bregman divergence for unnormalized
expectations. Although the GE criteria can be used alone as a scoring function to estimate
the unknown parameters of a discriminative model, it is more usually used as a regulariza-
tion term to an estimation method, such as maximum (conditional) likelihood estimation.
Bellare et al. (2009) presented a different formulation of using expectation constraints in
semi-supervised learning by introducing an auxiliary distribution to GE, together with an
alternating projection algorithm, which can be more efficient. Liang et al. (2009) proposed
to use the general notion of “measurements” to encapsulate the variety of weakly labeled
data for learning exponential family models. The measurements can be labels, partial labels
or other constraints on model predictions. Under the EM framework, posterior constraints
were used in Graca et al. (2007) to modify the E-step of an EM algorithm to project model
posterior distributions onto the subspace of distributions that satisfy a set of auxiliary
constraints.

Dud́ık et al. (2007) studied the generalized maximum entropy principle with a rich
form of expectation constraints using convex duality theory, where the standard moment
matching constraints of maximum entropy are relaxed to inequality constraints. But their
analysis was restricted to KL-divergence minimization (maximum entropy is a special case)
and the finite dimensional space of observations. Later on, Altun and Smola (2006) pre-
sented a more general duality theory for a family of divergence functions on Banach spaces.
We have drawn inspiration from both papers to develop the regularized Bayesian inference
framework using convex duality theory.

When using large-margin posterior regularization, RegBayes generalizes the previous
work on maximum entropy discrimination (Jaakkola et al., 1999; Zhu and Xing, 2009). The
present paper provides a full extension of our preliminary work on max-margin nonpara-
metric Bayesian models (Zhu et al., 2011b,a). For example, the infinite SVM (iSVM) (Zhu
et al., 2011b) is a latent class model, where each data example is assigned to a single mix-
ture component (i.e., an 1-dimensional space), and both iLSVM and MT-iLSVM extend
the ideas to infinite latent feature models. For multi-task learning, nonparametric Bayesian
models have been developed by Xue et al. (2007) and Rai and Daume III (2010) for learning
features shared by multiple tasks. However, these methods are based on standard Bayesian
inference without a posterior regularization using, for example, the large-margin constraints.
Finally, MT-iLSVM can be also regarded as a nonparametric Bayesian formulation of the
popular multi-task learning methods (Ando and Zhang, 2005; Jebara, 2011).

3. Regularized Bayesian Inference

We begin by laying out a general formulation of regularized Bayesian inference, using an
optimization framework built on convex duality theory.

3.1 Variational formulation of Bayes’ theorem

We first derive an optimization-theoretic reformulation of the Bayes’ theorem. LetM denote
the space of feasible models, and M ∈ M represents an atom in this space. We assume
that M is a complete separable metric space endowed with its Borel σ-algebra B(M). Let
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Π be a distribution (i.e., a probability measure) on the measurable space (M,B(M)). We
assume that Π is absolutely continuous with respect to some background measure µ, so
that there exists a density π such that dΠ = πdµ. Let D = {xn}Nn=1 be a collection of
observed data, which we assume to be i.i.d. given a model. Let P (·|M) be the likelihood
distribution, which is assumed to be dominated by a σ-finite measure λ for all M with
positive density, so that there exists a density p(·|M) such that dP (·|M) = p(·|M)dλ. Then,
the Bayes’ conditionalization rule gives a posterior distribution with the density (Ghosh and
Ramamoorthi, 2003, Chap.1.3):

p(M|D) =
π(M)p(D|M)

p(D)
=
π(M)

∏N
n=1 p(xn|M)

p(x1, · · · ,xN )
,

a density over M with respect to the base measure µ, where p(D) is the marginal likelihood
of the observed data.

For reasons to be clear shortly, we now introduce a variational formulation of the Bayes’
theorem. Let Q are an arbitrary distribution on the measurable space (M,B(M)). We
assume that Q is absolutely continuous with respect to Π and denote by q its density with
respect to the background measure µ.3 It can be shown that the posterior distribution of
M due to the Bayes’ theorem is equivalent to the optimum solution of the following convex
optimization problem:

inf
q(M)

KL(q(M)‖π(M))−
∫
M

log p(D|M)q(M)dµ(M) (4)

s.t. : q(M) ∈ Pprob,

where KL(q(M)‖π(M)) =
∫
M q(M) log(q(M)/π(M))dµ(M) is the Kullback-Leibler (KL)

divergence from q(·) to π(·), and Pprob represents the feasible space of all density functions
over M with respect to the measure µ. The proof is straightforward by noticing that the
objective will become KL(q(M)‖p(M|D)) by adding the constant log p(D). It is noteworthy
that q(M) here represents the density of a general post-data posterior distribution in the
sense of Ghosh and Ramamoorthi (2003, pp.15), not necessarily corresponding to a Bayesian
posterior that is induced by the Bayes’ rule. As we shall see soon later, when we introduce
additional constraints, the post-data posterior q(M) is different from the Bayesian posterior
p(M|D), and moreover, it could even not be obtainable from any Bayesian conditionalization
in a different model. In the sequel, in order to distinguish q(·) from the Bayesian posterior,
we will call it post-data distribution in short or post-data posterior distribution in full.4 For
notation simplicity, we have omitted the condition D in the post-data posterior distribution
q(M).

Remark 1 The optimization formulation in (4) implies that Bayes’ rule is an information
projection procedure that projects a prior density to a post-data posterior by taking account
of the observed data. In general, Bayes’s rule is a special case of the principle of minimum
information (Williams, 1980).

3. This assumption is necessary to make the KL-divergence between the two distributions Q and Π well-
defined. This assumption (or constraint) will be implicitly included in Pprob for clarity.

4. Rigorously, q(·) is the density of the post-data posterior distribution Q(·). We simply call q a distribution
if no confusion arises.
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3.2 Regularized Bayesian Inference with Expectation Constraints

In the variational formulation of Bayes’ rule in (4), the constraints on q(M) ensure that
q is well-normalized and the objective is well-defined, i.e., q(M) ∈ Pprob, which do not
capture any domain knowledge or structures of the model or data. Some previous efforts
have been devoted to eliciting domain knowledge by constraining the prior or the base
measure µ (Robert, 1995; Garthwaite et al., 2005). As we shall see, such constraints without
considering data are special cases of RegBayes to be presented.

Specifically, the optimization-based formulation of Bayes’ rule makes it straightforward
to generalize Bayesian inference to a richer type of posterior inference, by replacing the
standard normality constraint on q with a wide spectrum of knowledge-driven and/or data-
driven constraints or regularization. To contrast, we will refer to problem (4) as “uncon-
strained” or “unregularized”. Formally, we define regularized Bayesian inference (RegBayes)
as a generalized posterior inference procedure that solves a constrained optimization prob-
lem due to such additional regularization imposed on q:

inf
q(M),ξ

KL(q(M)‖π(M))−
∫
M

log p(D|M)q(M)dµ(M) + U(ξ) (5)

s.t. : q(M) ∈ Ppost(ξ),

where Ppost(ξ) is a subspace of distributions that satisfy a set of additional constraints be-
sides the standard normality constraint of a probability distribution. Using the variational
formulation in (3), problem (5) can be rewritten in the form of the master equation (2),
of which the objective is: L(q(M)) = KL(q(M)‖π(M)) −

∫
M log p(D|M)q(M)dµ(M) =

KL(q(M)‖p(M,D)) and the posterior regularization is Ω(q(M)) = infξ U(ξ), s.t.: q(M|D) ∈
Ppost(ξ). Note that when D is given, the distribution p(M,D) is unnormalized for M; and
we have abused the KL notation for unnormalized distributions in KL(q(M)‖p(M,D)), but
with the same formula.

Obviously this formulation enables different types of constraints to be employed in
practice. In this paper, we focus on the expectation constraints, of which each one is a
function of q(M) through an expectation operator. For instance, let ψ = (ψ1, · · · , ψT )
be a vector of feature functions, each of which is ψt(M;D) defined on M and possibly
data dependent. Then a subspace of feasible post-data distributions can be defined in the
following form:

Ppost(ξ)
def
=
{
q(M)| ∀t = 1, · · · , T, h

(
Eq(ψt;D)

)
≤ ξt

}
, (6)

where E is the expectation operator that maps q(M) to a point in the space RT , and for

each feature function ψt: Eq(ψt;D)
def
= Eq(M)[ψt(M;D)]. The function h can be of any form

in theory, though a simple h function will make the optimization problem easy to solve.
The auxiliary parameters ξ are usually nonnegative and interpreted as slack variables. The
constraints with non-trivial ξ are soft constraints as illustrated in Figure 1(b). But we
emphasize that by defining U as an indicator function, the formulation (5) covers the case
where hard constraints are imposed. For instance, if we define

U(ξ) =

T∑
t=1

I(ξt = γt) = I(ξ = γ),
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(a)
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Figure 1: Illustration for the (a) hard and (b) soft constraints in the simple setting which
has only three possible models. For hard constraints, we have only one feasible
subspace. In contrast, we have many (normally infinite for continuous ξ) feasible
subspaces for soft constraints and each of them is associated with a different
complexity or penalty, measured by the U function.

where I(c) is an indicator function that equals to 0 if the condition c is satisfied; otherwise∞,
then all the expectation constraints in (6) are hard constraints. As illustrated in Figure 1(a),
hard constraints define one single feasible subspace (assuming to be non-empty). In general,
we assume that U(ξ) is a convex function, which represents a penalty on the size of the
feasible subspaces, as illustrated in Figure 1(b). A larger subspace typically leads to models
with a higher complexity. In the classification models to be presented, U corresponds to a
surrogate loss, e.g., hinge loss of a prediction rule, as we shall see.

Similarly, the formulation of RegBayes with expectation constraints in (6) can be equiv-
alently written in an “unconstrained” form by using the rule in (3). Specifically, let

g(Eq(ψ;D))
def
= infξ U(ξ), s.t. : h(Eq(ψt;D)) ≤ ξt, ∀t, we have the equivalent optimization

problem:

inf
q(M)∈Pprob

KL(q(M)‖π(M))−
∫
M

log p(D|M)q(M)dµ(M) + g(Eq(ψ;D)), (7)

where Eq(ψ;D) is a point in RT and the t-th coordinate is Eq(ψt;D), a function of q(M)
as defined before. We assume that the real-valued function g : RT → R is convex and
lower semi-continuous. For each U , we can induce a g function by taking the infimum of
U(ξ) over ξ with the posterior constraints; vice versa. If we use hard constraints, similar as
in regularized maximum entropy density estimation (Altun and Smola, 2006; Dud́ık et al.,
2007), we have

g(Eq) =

T∑
t=1

I(h(Eq(ψt;D)) ≤ γt).

For the regularization function g, as well as U , we can have many choices, besides
the above mentioned indicator function. For example, if the feature function ψt is an
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indicator function and we could obtain ‘prior’ expectations Ep̃[ψt] from domain/expert
knowledge about M. If we further normalize the empirical expectations of T functions
and denote the discrete distribution by p̃(M), one natural regularization function would
be the KL-divergence between prior expectations and the expectations computed from the
normalized model posterior q(M), i.e., g(Eq) =

∑
t s(Ep̃[ψt], Eq(ψt)) = KL(p̃(M)‖q(M)),

where s(x, y) = x log(x/y) for x, y ∈ (0, 1). The general Bregman divergence can be used
for unnormalized expectations. This kind of regularization function has been used in Mann
and McCallum (2010) for label regularization, in the context of semi-supervised learning.
Other choices of the regularization function include the `22 penalty or indicator function
with equality constraints; see Table 1 in Dud́ık et al. (2007) for a summary.

Remark 2 So far, we have focused on RegBayes in the context of full Bayesian inference.
Indeed, RegBayes can be generalized to apply to empirical Bayesian inference, where some
model parameters need to be estimated. More generally, RegBayes applies to both directed
Bayesian networks (of which the hierarchical Bayesian models we have discussed are an
example) and undirected Markov random fields. But for undirected models, a RegBayes
treatment will have to deal with a chain graph resultant from Bayesian inference, which is
more challenging due to existence of normalization factors. We will discuss some details
and examples in Appendix A.

3.3 Optimization with Convex Duality Theory

Depending on several factors, including the size of the model space, the data likelihood
model, the prior distribution, and the regularization function, a RegBayes problem in gen-
eral can be highly non-trivial to solve, either in the constrained or unconstrained form, as
can be seen from several concrete examples of RegBayes models we will present in the next
section and in the Appendix B. In this section, we present a representation theorem to
characterize the solution the convex RegBayes problem (7) with expectation regularization.
These theoretical results will be used later in developing concrete RegBayes models.

To make the subsequent statements general, we consider the following problem:

inf
x∈X

f(x) + g(Ax),

where f : X → R is a convex function; A : X → B is a bounded linear operator; and
g : B → R is also convex. Below we introduce some tools in convex analysis theory to
study this problem. We begin by formulating the primal-dual space relationships of convex
optimization problems in the general settings, where we assume both X and B are Banach
spaces.5 An important result we build on is the Fenchel duality theorem.

Definition 3 (Convex Conjugate) Let X be a Banach space and X ∗ be its dual space.
The convex conjugate or the Legendre-Frenchel transformation of a function f : X →
[−∞,+∞] is f∗ : X ∗ → [−∞,+∞], where

f∗(x∗) = sup
x∈X
{〈x∗, x〉 − f(x)}.

5. A Banach space is a vector space with a metric that allows the computation of vector length and distance
between vectors. Moreover, a Cauchy sequence of vectors always converges to a well defined limit in the
space.
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Theorem 4 (Fenchel Duality (Borwein and Zhu, 2005)) Let X and B be Banach
spaces, f : X → R ∪ {+∞} and g : B → R ∪ {+∞} be convex functions and A : X → B
be a bounded linear map. Define the primal and dual values t, d by the Fenchel problems

t = inf
x∈X
{f(x) + g(Ax)} and d = sup

x∗∈B∗
{−f∗(A∗x∗)− g∗(−x∗)}.

Then these values satisfy the weak duality inequality t ≥ d. If f , g and A satisfy either

0 ∈ core(domg −Adomf) and both f and g are lower semicontinuous (lsc),

or

Adomf ∩ contg 6= ∅,

then t = d and the supremum to the dual problem is attainable if finite.

Let S be a subset of a Banach space B. In the above theorem, we say s is in the core of S,
denoted by s ∈ core(S), provided that ∪λ>0λ(S − s) = B.

The Fenchel duality theorem has been applied to solve divergence minimization problems

for density estimation (Altun and Smola, 2006; Dud́ık et al., 2007). Letψ
def
= (ψ1, · · · , ψT ) be

a vector of feature functions. Each feature function is a mapping, ψt :M→ R. Therefore, B
is the product space RT , a simple Banach space. Let X be the Banach space of finite signed
measures (with total variation as the norm) that are absolutely continuous with respect to
the measure µ, and let A be the expectation operator of the feature functions with respect to

the distribution q onM, that is, Aq
def
= EM∼q[ψ(M)], where ψ(M) = (ψ1(M), · · · , ψT (M)).

Let ψ̃ be a reference point in RT . As for density estimation, we have some observations of
M here, and ψ̃ = Apemp[ψ(M)], where pemp is the empirical distribution. Then, when the f
function is a KL-divergence and the constraints are relaxed moment matching constraints,
the following result can be proven.

Lemma 5 (KL-divergence with Constraints (Altun and Smola, 2006))

inf
q

{
KL(q‖p) s.t. : ‖Eq[ψ]− ψ̃‖B ≤ ε and q ∈ Pprob

}
= sup

φ

{
〈φ, ψ̃〉 − log

∫
M
p(M) exp(〈φ,ψ(M)〉)dµ(M)− ε‖φ‖B∗

}
,

where the unique solution is given by q̂φ̂(M) = p(M) exp(〈φ̂,ψ(M)〉−Λφ̂); φ̂ is the solution
of the dual problem; and Λφ̂ is the log-partition function.

Note that for this lemma and the ones to be presented below to hold, the problems need to
meet some regularity conditions (or constraint qualifications), such as those in Theorem 4.
In practice it can be difficult to check whether the constraint qualifications hold. One solu-
tion is to solve the dual optimization problem and examine if the conditions hold depending
on whether the solution diverge or not (Altun and Smola, 2006).

The problem in the above lemma is subject to hard constraints, therefore the corre-
sponding g is the indicator function I(‖Eq[ψ]− ψ̃‖B ≤ ε) when applying the Fenchel duality
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theorem. Other examples of the posterior constraints can be found in Dud́ık et al. (2007);
Mann and McCallum (2010); Ganchev et al. (2010), as we have discussed in Section 3.2. In
this paper, we consider the general soft constraints as defined in the RegBayes problem (5).
Furthermore, we do not assume the existence of a fully observed data set to compute the
empirical expectation φ̃. Specifically, following a similar line of reasoning as in Altun and
Smola (2006), though this time with an un-normalized p in KL(q‖p), we have the following
result. The detailed proof is deferred to Appendix C.1.

Theorem 6 (Representation theorem of RegBayes) Let E be the expectation opera-
tor with feature functions ψ(M;D), and assume g is convex and lower semicontinuous (lsc).
We have

inf
q(M)

{
KL(q(M)‖p(M,D)) + g(Eq) s.t. : q(M) ∈ Pprob

}
= sup

φ

{
− log

∫
M
p(M,D) exp(〈φ,ψ(M;D)〉)dµ(M)− g∗(−φ)

}
,

where the unique solution is given by q̂φ̂(M) = p(M,D) exp(〈φ̂,ψ(M;D)〉 − Λφ̂); and φ̂ is
the solution of the dual problem; and Λφ̂ is the log-partition function.

From the optimum solution q̂φ̂(M), we can see that the form of the RegBayes poste-
rior is symbolically similar to that of the Bayesian posterior; but instead of multiply-
ing the likelihood term with a prior distribution, RegBayes introduces an extra term,
exp(〈φ̂,ψ(M;D)〉 − Λφ̂), whose coefficients are derived from an constrained optimization
problem resultant from the constraints on the posterior. We make the following remarks.

Remark 7 (Putting constraints on priors is a special case of RegBayes) If both
the feature function ψ(M;D) and φ̂ depend on the model M only, this extra term con-
tributes to define a new prior π′(M) ∝ π(M) exp(〈φ̂,ψ(M;D)〉 − Λφ̂). For example, if we
constrain the model space to a subset M0 ⊂ M a priori, this constraint can be incorpo-
rated in RegBayes by defining the expectation constraint on M only. Specifically, define the
single feature function ψ(M): ψ(M) = 0 if M ∈ M0, otherwise 1; and define the simple
posterior regularization g(Eq) = I(Eq[ψ(M)] = 0). Then, by Theorem 6,6 we have φ̂ = −∞
and q̂φ̂(M) ∝ π′(M)p(D|M), where π′(M) ∝ π(M)I(M ∈ M0) is the constrained prior.
Therefore, such a constraint lets RegBayes cover the widely used truncated priors, such as
truncated Gaussian (Robert, 1995).

Remark 8 (RegBayes is more flexible than Bayes’ rule) For the more general case
where ψ(M;D) depends on both M and D, the term p(M,D) exp(〈φ̂,ψ(M;D)〉) implicitly
defines a joint distribution on (M,D) if it has a finite measure. In this case, RegBayes
is doing implicit Bayesian conditionalization, that is, the posterior q̂φ̂(M) can be obtained
through Bayes’ rule with some well-defined prior and likelihood. However, it could be that
the integral of p(M,D) exp(〈φ̂,ψ(M;D)〉) with respect to (M,D) is not finite because of the
way φ̂ varies with D,7 in which case there is no implicit prior and likelihood that give back

6. We also used the fact that if f(x) = I(x = c) is an indicator function, its conjugate is f∗(µ) = c · µ.
7. Note: this does not affect the well-normalization of the posterior q̂φ̂(M) because its integral is taken

over M only, with D fixed.
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q̂φ̂(M) through Bayesian conditionalization. Therefore, RegBayes is more flexible than the
standard Bayesian inference, where the prior and likelihood model are explicitly defined, but
no additional constraints or regularization can be systematically incorporated. The recent
work (Mei et al., 2014) presents an example. Specifically, we show that incorporating domain
knowledge via posterior regularization can lead to a flexible framework that automatically
learns the importance of each piece of knowledge, thereby allowing for a robust incorporation,
which is important in the scenarios where noisy knowledge is collected from crowds. In
contrast, eliciting expert knowledge via fitting some priors is generally hard, especially in
high-dimensional spaces, as experts are normally good at perceiving low-dimensional and
well-behaved distributions but can be very bad in perceiving high-dimensional or skewed
distributions (Garthwaite et al., 2005).

It is worth mentioning that although the above theorem provides a generic representa-
tion of the solution to RegBayes, in practice we usually need to make additional assumptions
in order to make either the primal or dual problem tractable to solve. Since such assump-
tions could make the feasible space non-convex, additional cautions need to be paid. For
instance, the mean-field assumptions will lead to a non-convex feasible space (Wainright
and Jordan, 2008), and we can only apply the convex analysis theory to deal with convex
sub-problems within an EM-type procedure. More concrete examples will be provided later
along the developments of various models. We should also note that the modeling flexibility
of RegBayes comes with risks. For example, it might lead to inconsistent posteriors (Barron
et al., 1999; Choi and Ramamoorthi, 2008). This paper focuses on presenting several prac-
tical instances of RegBayes and we leave a systematic analysis of the Bayesian asymptotic
properties (e.g., posterior consistency and convergence rates) for future work.

Now, we derive the conjugate functions of three examples which will be used shortly
for developing the infinite latent SVM models we have intended. We defer the proof to
Appendix C. Specifically, the first one is the conjugate of a simple function, which will be
used in a binary latent SVM classification model.

Lemma 9 Let g0 : R→ R be defined as g0(x) = C max(0, x). Then, we have

g∗0(µ) = I(0 ≤ µ ≤ C).

The second function is slightly more complex, which will be used for defining a multi-way
latent SVM classifier. Specifically, we define the function g1 : RL → R as

g1(x) = C max(x), (8)

where max(x)
def
= max(x1, · · · , xL). Apparently, g1 is convex because it is a point-wise

maximum (Boyd and Vandenberghe, 2004) of the simple linear functions φi(x) = xi. Then,
we have the following results.

Lemma 10 The convex conjugate of g1(x) as defined above is

g∗1(µ) = I
(
∀i, µi ≥ 0; and

∑
i

µi = C
)
.
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Let y ∈ R and ε ∈ R+ are fixed parameters. The last function that we are interested in
is g2 : R→ R, where

g2(x; y, ε) = C max(0, |x− y| − ε).

Finally, we have the following lemma, which will be used in developing large-margin regres-
sion models.

Lemma 11 The convex conjugate of g2(x) as defined above is

g∗2(µ; y, ε) = µy + ε|µ|+ I
(
|µ| ≤ C

)
.

4. Infinite Latent Support Vector Machines

Given the general theoretical framework of RegBayes introduced in Section 3, now we
are ready to present its application to the development of two interesting nonparametric
RegBayes models. In these two models we conjoin the ideas behind the nonparametric
Bayesian infinite feature model known as the Indian buffet process (IBP), and the large
margin classifier known as support vector machines (SVM) to build a new class of models
for simultaneous single-task (or multi-task) classification and feature learning. A parametric
Bayesian model is presented in Appendix B.

Specifically, to illustrate how to develop latent large-margin classifiers and automatically
resolve the unknown dimensionality of latent features from data, we demonstrate how to
choose/define the three key elements of RegBayes, that is, prior distribution, likelihood
model, and posterior regularization. We first present the single-task classification model.
The basic setup is that we project each data example x ∈ X ⊂ RD to a latent feature
vector z. Here, we consider binary features. Real-valued features can be easily considered
by elementwise multiplication of z by a Guassian vector (Griffiths and Ghahramani, 2005).
Given a set of N data examples, let Z be the matrix, of which each row is a binary vector zn
associated with data sample n. Instead of pre-specifying a fixed dimension of z, we resort
to the nonparametric Bayesian methods and let z have an infinite number of dimensions.
To make the expected number of active latent features finite, we employ an IBP as prior
for the binary feature matrix Z, as reviewed below.

4.1 Indian Buffet Process

Indian buffet process (IBP) was proposed in Griffiths and Ghahramani (2005) and has
been successfully applied in various fields, such as link prediction (Miller et al., 2009) and
multi-task learning (Rai and Daume III, 2010). We will make use of its stick-breaking
construction (Teh et al., 2007), which is good for developing efficient inference methods.
Let πk ∈ (0, 1) be a parameter associated with each column of the binary matrix Z. Given
πk, each znk in column k is sampled independently from Bernoulli(πk). The parameter π
are generated by a stick-breaking process

π1 = ν1, and πk = νkπk−1 =
k∏
i=1

νi,
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where νi ∼ Beta(α, 1). Since each νi is less than 1, this process generates a decreasing
sequence of πk. Specifically, given a finite data set, the probability of seeing feature k
decreases exponentially with k.

IBP has several properties. For a finite number of rows, N , the prior of the IBP gives
zero mass on matrices with an infinite number of ones, as the total number of columns with
non-zero entries is Poisson(αHN ), where HN is the Nth harmonic number, HN =

∑N
j=1

1
j .

Thus, Z has almost surely only a finite number of non-zero entries, though this number is
unbounded. A second property of IBP is that the number of features possessed by each
data point follows a Poisson(α) distribution. Therefore, the expected number of non-zero
entries in Z is Nα.

4.2 Infinite Latent Support Vector Machines

Consider a single-task, but multi-way classification, where each training data is provided

with a categorical label y ∈ Y def
= {1, · · · , L}. Suppose that the latent features zn for

document n are given, then we can define the latent discriminant function as linear

f(y,xn, zn;η)
def
= η>g(y,xn, zn), (9)

where g(y,xn, zn) is a vector stacking L subvectors of which the yth is z>n and all the others
are zero;8 η is the corresponding infinite-dimensional vector of feature weights. Since we are
doing Bayesian inference, we need to maintain the entire distribution profile of the latent
feature matrix Z. However, in order to make a prediction on the observed data x, we need
to remove the uncertainty of Z. Here, we define the effective discriminant function as an
expectation9 (i.e., a weighted average considering all possible values of Z) of the latent
discriminant function. To fully explore the flexibility offered by Bayesian inference, we also
treat η as random and aim to infer its posterior distribution from given data. For the
prior, we assume all the dimensions of η are independent and each dimension ηk follows the
standard normal distribution. This is in fact a Gaussian process (GP) prior as η is infinite
dimensional. More formally, the effective discriminant function f : X × Y 7→ R is

f
(
y,xn; q(Z,η,W)

) def
= Eq(Z,η,W)

[
f(y,xn, zn;η)

]
(10)

= Eq(Z,η,W)

[
η>g(y,xn, zn)

]
,

where q(Z,η,W) is the post-data posterior distribution we want to infer. We have included
W as a place holder for any other variables we may define, e.g., the variables arising from
a data likelihood model. Since we are taking the expectation, the variables which do not
appear in the feature map g (i.e., W) will be marginalized out.

Before moving on, we should note that since we require q to be absolutely continuous
with respect to the prior to make the KL-divergence term well defined in the RegBayes

8. We can consider the input features xn or its certain statistics in combination with the latent features zn
to define a classifier boundary, by simply concatenating them in the subvectors.

9. Although other choices such as taking the mode are possible, our choice could lead to a computationally
easy problem because expectation is a linear functional of the distribution under which the expectation
is taken. Moreover, expectation can be more robust than taking the mode (Khan et al., 2010), and it
has been widely used in previous work (Zhu et al., 2009, 2011b).
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problem, q(Z) will also put zero mass on Z’s with an infinite number of non-zero entries,
because of the properties of the IBP prior. The sparsity of Z is essential to ensure that the
dot-product in (9) and the expectation in (10) are well defined, i.e., with finite values.10

Moreover, in practice, to make the problem computationally feasible, we usually set a
finite upper bound K to the number of possible features, where K is sufficiently large and
known as the truncation level (See Section 4.4 and Appendix D.2 for details). As shown
in Doshi-Velez (2009), the `1-distance truncation error of marginal distributions decreases
exponentially as K increases. For a finite truncation level, all the expectations are definitely
finite.

Let Itr denote the set of training data. Then, with the above definitions, we define the
Ppost(ξ) in problem (5) using soft large-margin constraints as11

Pcpost(ξ)
def
=

{
q(Z,η,W)

∀n ∈ Itr : ∆f(y,xn; q(Z,η,W)) ≥ `∆n (y)− ξn, ∀y
ξn ≥ 0

}
,

where ∆f(y,xn; q(Z,η,W))
def
= f(yn,xn; q(Z,η,W)) − f(y,xn; q(Z,η,W)) is the margin

favored by the true label yn over an arbitrary label y and the superscript is used to distin-
guish from the posterior constraints for multi-task iLSVM to be presented. We define the
penalty function for classification as

U c(ξ)
def
= C

∑
n∈Itr

ξκn,

where κ ≥ 1. If κ is 1, minimizing U c(ξ) is equivalent to minimizing the hinge-loss (or
`1-loss) Rch of the averaging prediction rule (13), where

Rch(q(Z,η,W)) = C
∑
n∈Itr

max
y

(
`∆n (y)−∆f(yn,xn; q(Z,η,W))

)
;

if κ is 2, the surrogate loss is the squared `2-loss. For clarity, we consider the hinge loss.
The non-negative cost function `∆n (y) (e.g., 0/1-cost) measures the cost of predicting xn to
be y when its true label is yn. Itr is the index set of training data.

Besides performing the prediction task, we may also be interested in explaining observed
data x using the latent factors Z. This can be done by defining a likelihood model p(x|Z).
Here, we define the most common linear-Gaussian likelihood model for real-valued data

p
(
xn|zn,W, σ2

n0

)
= N

(
xn|Wz>n , σ

2
n0I
)
,

where W is a D × ∞ random loading matrix. We assume W follows an independent
Gaussian prior and each entry has the prior distribution π(wdk) = N (wdk|0, σ2

0). The
hyperparameters σ2

0 and σ2
n0 can be set a priori or estimated from observed data (See

Appendix D.2 for details). Figure 2 (a) shows the graphical structure of iLSVM as defined
above, where the plate means N replicates.

10. A more rigorous derivation of finiteness of these quantities is beyond the scope of this work and could
require additional technical conditions (Orbanz, 2012). We refer the readers to Stummer and Vajda
(2012) for a generic definition of Bregman divergence (or KL divergence in particular) on Banach spaces
and in the case where the second measure is unnormalized.

11. Hard constraints for the separable cases are covered by simply setting ξ = 0.
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Training: Putting the above definitions together, we get the RegBayes problem for
iLSVM in the following two equivalent forms

inf
q(Z,η,W),ξ

KL(q(Z,η,W)‖p(Z,η,W,D)) + U c(ξ) (11)

s.t. : q(Z,η,W) ∈ Pcpost(ξ)

⇐⇒ inf
q(Z,η,W)∈Pprob

KL(q(Z,η,W)‖p(Z,η,W,D)) +Rch(q(Z,η,W)), (12)

where p(Z,η,W,D) = π(η)π(Z)π(W)
∏N
n=1 p(xn|zn,W, σ2

n0) is the joint distribution of
the model; π(Z) is an IBP prior; and π(η) and π(W) are Gaussian process priors with
identity covariance functions.

Directly solving the iLSVM problems is not easy because either the posterior constraints
or the non-smooth regularization functionRc is hard to deal with. Thus, we resort to convex
duality theory, which will be useful for developing approximate inference algorithms. We
can either solve the constrained form (11) using Lagrangian duality theory (Ito and Kunisch,
2008) or solve the unconstrained form (12) using Fenchel duality theory. Here, we take the
second approach. In this case, the linear operator is the expectation operator, denoted by
E : Pprob → R|Itr|×L and the element of Eq evaluated at y for the nth example is

Eq(n, y)
def
= ∆f

(
y,xn; q(Z,η,W)

)
= Eq(Z,η,W)

[
η>∆gn(y,Z)

]
,

where ∆gn(y,Z)
def
= g(yn,xn, z)− g(y,xn, z). Then, let g1 : RL → R be a function defined

in the same form as in (8). We have

Rch
(
q(Z,η,W)

)
=
∑
n∈Itr

g1

(
`∆n − Eq(n)

)
,

where Eq(n)
def
= (Eq(n, 1), · · · , Eq(n,L)) and `∆n

def
= (`∆n (1), · · · , `∆n (L)) are the vectors of

elements evaluated for nth data. By the Fenchel’s duality theorem and the results in
Lemma 10, we can derive the conjugate of the problem (12). The proof is deferred to
Appendix C.4.

Lemma 12 (Conjugate of iLSVM) For the iLSVM problem, we have that

inf
q(Z,η,W)∈Pprob

KL
(
q(Z,η,W)‖p(Z,η,W,D)

)
+Rch

(
q(Z,η,W)

)
= sup

ω
− logZ(ω|D) +

∑
n∈Itr

∑
y

ωyn`
∆
n (y)−

∑
n

g∗1(ωn),

where ωn = (ω1
n, · · · , ωLn ) is the subvector associated with data n. Moreover, The optimum

distribution is the posterior distribution

q̂(Z,η,W) =
1

Z(ω̂|D)
p(Z,η,W,D) exp

{∑
n∈Itr

∑
y

ω̂ynη
>∆gn(y, Z)

}
,

where Z(ω̂|D) is the normalization factor and ω̂ is the solution of the dual problem.
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Figure 2: Graphical structures of (a) infinite latent SVM (iLSVM); and (b) multi-task in-
finite latent SVM (MT-iLSVM). For MT-iLSVM, the dashed nodes (i.e., ςm)
illustrate the task relatedness but do not exist.

Testing: to make prediction on test examples, we put both training and test data
together to do regularized Bayesian inference. For training data, we impose the above
large-margin constraints because of the awareness of their true labels, while for test data,
we do the inference without the large-margin constraints since we do not know their true
labels. Therefore, the classifier q(η) is learned from the training data only, while both
training and testing data influence the posterior distributions of the likelihood model W.
After inference, we make the prediction via the rule

y∗
def
= argmax

y
f
(
y,x; q(Z,η,W)

)
. (13)

Note that the ability to generalize to test data relies on the fact that all the data examples
share η and the IBP prior. We can also cast the problem as a transductive inference
problem by imposing additional large-margin constraints on test data (Joachims, 1999).
However, the resulting problem will be generally harder to solve because it needs to resolve
the unknown labels of testing examples. We also note that the testing is different from
the standard inductive setting (Zhu et al., 2011b), where the latent features of a new data
example can be approximately inferred given the training data. Our empirical study shows
little difference on performance between our setting and the standard inductive setting.

4.3 Multi-Task Infinite Latent Support Vector Machines

Different from classification, which is typically formulated as a single learning task, multi-
task learning aims to improve a set of related tasks through sharing statistical strength
among these tasks, which are performed jointly. Many different approaches have been
developed for multi-task learning; see Jebara (2011) for a review. In particular, learning a
common latent representation shared by all the related tasks has proven to be an effective
way to capture task relationships (Ando and Zhang, 2005; Argyriou et al., 2007; Rai and
Daume III, 2010). Below, we present the multi-task infinite latent SVM (MT-iLSVM) for
learning a common binary projection matrix Z to capture the relationships among multiple
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tasks. Similar as in iLSVM, we also put the IBP prior on Z to allow it to have an unbounded
number of columns.

Suppose we have M related tasks. Let Dm = {(xmn, ymn)}n∈Imtr be the training data
for task m. We consider binary classification tasks, where Ym = {+1,−1}. Extension to
multi-way classification or regression can be easily done. A näıve way to solve this learning
problem with multiple tasks is to perform the multiple tasks independently. In order to make
the multiple tasks coupled and share statistical strength, MT-iLSVM introduces a latent
projection matrix Z. If the latent matrix Z is given, we define the latent discriminant
function for task m as

fm(xmn,Z;ηm)
def
= (Zηm)>xmn = η>m(Z>xmn),

where xmn is one data example in Dm and ηm is the vector of parameters for task m.
The dimension of ηm is the number of columns of the latent projection matrix Z, which is
unbounded in the nonparametric setting. This definition provides two views of how the M
tasks get related.

(1) If we let ςm = Zηm, then ςm is the actual parameter of task m and all ςm in different
tasks are coupled by sharing the same latent matrix Z;

(2) Another view is that each task m has its own parameters ηm, but all the tasks share the
same latent projection matrix Z to extract latent features Z>xmn, which is a projection
of the input features xmn.

As such, our method can be viewed as a nonparametric Bayesian treatment of alternating
structure optimization (ASO) (Ando and Zhang, 2005), which learns a single projection
matrix with a pre-specified latent dimension. Moreover, different from Jebara (2011), which
learns a binary vector with known dimensionality to select features or kernels on x, we learn
an unbounded projection matrix Z using nonparametric Bayesian techniques.

As in iLSVM, we employ a Bayesian treatment of ηm, and view it as random variables.
We assume that ηm has a fully-factorized Gaussian prior, i.e., ηmk ∼ N (0, 1). Then, we
define the effective discriminant function for task m as the expectation

fm
(
x; q(Z,η,W)

) def
= Eq(Z,η,W)

[
fm(x,Z;ηm)

]
= Eq(Z,η,W)[Zηm]>x,

where W is a place holder for the variables that possibly arise from other parts of the
model. As in iLSVM, since we are taking expectation, the variables which do not appear
in the feature map (i.e., W) will be marginalized out. Then, the prediction rule for task

m is naturally y∗m
def
= signfm(x). Similarly, we perform regularized Bayesian inference by

defining:

UMT (ξ)
def
= C

∑
m,n∈Imtr

ξmn

and imposing the following constraints:

PMT
post(ξ)

def
=

{
q(Z,η,W)

∀m, ∀n ∈ Imtr : ymnEq(Z,η,W)[Zηm]>xmn ≥ 1− ξmn
ξmn ≥ 0

}
. (14)
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Finally, as in iLSVM we may also be interested in explaining observed data x. Therefore,
we relate Z to the observed data x by defining a likelihood model:

p
(
xmn|wmn,Z, λ

2
mn

)
= N

(
xmn|Zwmn, λ

2
mnI

)
,

where wmn is a vector. We assume that W (the collection of wmn) has an independent prior
π(W) =

∏
mnN (wmn|0, σ2

m0I). Fig. 2 (b) illustrates the graphical structure of MT-iLSVM.
For training, we can derive the similar convex conjugate as in the case of iLSVM. Similar

as in iLSVM, minimizing UMT (ξ) is equivalent to minimizing the hinge-loss RMT
h of the

multiple binary prediction rules, where

RMT
h

(
q(Z,η,W)

)
= C

∑
m,n∈Imtr

max
(

0, 1− ymnEq(Z,η,W)[Zηm]>xmn

)
.

Thus, the RegBayes problem of MT-iLSVM can be equivalently written as

inf
q(Z,η,W)

KL
(
q(Z,η,W)‖p(Z,η,W,D)

)
+RMT

h

(
q(Z,η,W)

)
. (15)

Then, by the Fenchel’s duality theorem and Lemma 9, we can derive the conjugate of
MT-iLSVM. The proof is deferred to Appendix C.5.

Lemma 13 (Conjugate of MT-iLSVM) For the MT-iLSVM problem, we have that

inf
q(Z,η,W)∈Pprob

KL(q(Z,η,W)‖p(Z,η,W,D)) +RMT
h (q(Z,η,W))

= sup
ω

− logZ ′(ω|D) +
∑
m,n

ωmn −
∑
m,n

g∗0(ωmn).

Moreover, The optimum distribution is the posterior distribution

q̂(Z,η,W) =
1

Z ′(ω̂|D)
p(Z,η,W,D) exp

{∑
m,n

ymnω̂mn(Zηm)>xmn

}
,

where Z ′(ω̂|D) is the normalization factor and ω̂ is the solution of the dual problem.

For testing, we use the same strategy as in iLSVM to do Bayesian inference on both
training and test data. The difference is that training data are subject to large-margin
constraints, while test data are not. Similarly, the hyper-parameters σ2

m0 and λ2
mn can be

set a priori or estimated from data (See Appendix D.1 for details).

4.4 Inference with Truncated Mean-Field Constraints

Now we discuss how to perform regularized Bayesian inference with the large-margin con-
straints for both iLSVM and MT-iLSVM. From the primal-dual formulations, it is obvious
that there are basically two methods to perform the regularized Bayesian inference. One
is to directly solve the primal problem for the posterior distribution q(Z,η,W), and the
other is to first solve the dual problem for the optimum ω̂ and then infer the posterior
distribution. However, both the primal and dual problems are intractable for iLSVM and
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Algorithm 1 Inference Algorithm for Infinite Latent SVMs

1: Input: corpus D and constants (α,C).
2: Output: posterior distribution q(ν,Z,η,W).
3: repeat
4: infer q(ν), q(W) and q(Z) with q(η) and ω given;
5: infer q(η) and solve for ω with q(Z) given.
6: until convergence

MT-iLSVM. The intrinsic hardness is due to the mutual dependency among the latent vari-
ables in the desired posterior distribution. Therefore, a natural approximation method is
the mean field (Jordan et al., 1999), which breaks the mutual dependency by assuming that
q is of some factorization form. This method approximates the original problems by impos-
ing additional constraints. An alternative method is to apply approximate methods (e.g.,
MCMC sampling) to infer the true posterior distributions derived via convex conjugates
as above, and iteratively estimate the dual parameters using approximate statistics (e.g.,
feature expectations estimated using samples) (Schofield, 2006). Below, we use MT-iLSVM
as an example to illustrate the idea of the first strategy. A full discussion on the second
strategy is beyond the scope of this paper. For iLSVM, the similar procedure applies and
we defer its details to Appendix D.2.

To make the problem easier to solve, we use the stick-breaking representation of IBP,
which includes the auxiliary variable ν, and infer the augmented posterior q(ν,W,Z,η).
The joint model distribution is now q(ν,W,Z,η,D). Furthermore, we impose the truncated
mean-field constraint that

q(ν,W,Z,η) = q(η)

K∏
k=1

(
q(νk|γk)

D∏
d=1

q(zdk|ψdk)
)∏
mn

q
(
wmn|Φmn, σ

2
mnI

)
, (16)

where K is the truncation level, and we assume that

q(νk|γk) = Beta(γk1, γk2),

q(zdk|ψdk) = Bernoulli(ψdk),

q(wmn|Φmn, σ
2
mnI) = N (wmn|Φmn, σ

2
mnI).

Then, we can use the duality theory12 to solve the RegBayes problem by alternating between
two substeps, as outlined in Algorithm 1 and detailed below.

Infer q(ν), q(W) and q(Z): Since q(ν) and q(W) are not directly involved in the
posterior constraints, we can solve for them by using standard Bayesian inference, i.e.,
minimizing a KL-divergence. Specifically, for q(W), since the prior is also normal, we can
easily derive the update rules for Φmn and σ2

mn. For q(ν), we have the same update rules
as in Doshi-Velez (2009). We defer the details to Appendix D.1.

12. Lagrangian duality (Ito and Kunisch, 2008) was used in Zhu et al. (2011a) to solve the constrained
variational formulations, which is closely related to Fenchel duality (Magnanti, 1974) and leads to the
same solutions for iLSVM and MT-iLSVM.
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For q(Z), it is directly involved in the posterior constraints. So, we need to solve it
together with q(η) using conjugate theory. However, this is intractable. Here, we adopt an
alternating strategy that first infers q(Z) with q(η) and dual parameters ω fixed, and then
infers q(η) and solves for ω. Specifically, since the large-margin constraints are linear of
q(Z), we can get the mean-field update equation as

ψdk =
1

1 + e−ϑdk
,

where

ϑdk =

k∑
j=1

Eq[log vj ]− Lνk −
∑
mn

1

2λ2
mn

(
(Kσ2

mn + (φkmn)2)

−2xdmnφ
k
mn + 2

∑
j 6=k

φjmnφ
k
mnψdj

)
+

∑
m,n∈Imtr

ymnEq[ηmk]xdmn,

and Lνk is an lower bound of Eq[log(1−
∏k
j=1 vj)] (See Appendix D.1 for details). The last

term of ϑdk is due to the large-margin posterior constraints as defined in (14). Therefore,
from this equation we can see how the large-margin constraints regularize the procedure of
inferring the latent matrix Z.

Infer q(η) and solve for ω: Now, we can apply the convex conjugate theory and show
that the optimum posterior distribution of η is

q(η) =
∏
m

q(ηm), where q(ηm) ∝ π(ηm) exp
{
η>mµm

}
,

and µm =
∑

n∈Imtr
ymnωmn(ψ>xmn). Here, we assume π(ηm) is standard normal. Then, we

have q(ηm) = N (ηm|µm, I) and the optimum dual parameters can be obtained by solving
the following M independent dual problems

sup
ωm

−1

2
µ>mµm +

∑
n∈Imtr

ωmn

∀n ∈ Imtr , s.t. : 0 ≤ ωmn ≤ C,

where the constraints are from the conjugate function g∗0 in Lemma 13. These dual problems
(or their primal forms) can be efficiently solved with a binary SVM solver, such as SVM-light
or LibSVM.

5. Experiments

We present empirical results for both classification and multi-task learning. Our results
appear to demonstrate the merits inherited from both Bayesian nonparametrics and large-
margin learning.

5.1 Multi-way Classification

We evaluate the infinite latent SVM (iLSVM) for classification on the real TRECVID2003
and Flickr image data sets, which have been extensively evaluated in the context of learning
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TRECVID2003 Flickr
Model Accuracy F1 score Accuracy F1 score

EFH+SVM 0.565 ± 0.0 0.427 ± 0.0 0.476 ± 0.0 0.461 ± 0.0
MMH 0.566 ± 0.0 0.430 ± 0.0 0.538 ± 0.0 0.512 ± 0.0

IBP+SVM 0.553 ± 0.013 0.397 ± 0.030 0.500 ± 0.004 0.477 ± 0.009
iLSVM 0.563 ± 0.010 0.448 ± 0.011 0.533 ± 0.005 0.510 ± 0.010

Table 1: Classification accuracy and F1 scores on the TRECVID2003 and Flickr image
data sets (Note: MMH and EFH have zero std because of their deterministic
initialization).
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Figure 3: Accuracy and F1 score of MMH on the Flickr data set with different numbers of
latent features.

finite latent feature models (Chen et al., 2012). TRECVID2003 consists of 1078 video key-
frames that belong to 5 categories, including Airplane scene, Basketball scene, Weather
news, Baseball scene, and Hockey scene. Each data example has two types of features,
including a 1894-dimension binary vector of text features and a 165-dimension HSV color
histogram. The Flickr image data set consists of 3411 natural scene images about 13 types
of animals, including squirrel, cow, cat, zebra, tiger, lion, elephant, whales, rabbit, snake,
antlers, hawk and wolf, downloaded from the Flickr website.13 Also, each example has two
types of features, including 500-dimension SIFT bag-of-words and 634-dimension real-valued
features (e.g., color histogram, edge direction histogram, and block-wise color moments).
Here, we consider the real-valued features only by defining Gaussian likelihood distributions
for x; and we define the discriminant function using latent features only as in (9). We follow
the same training/testing splits as in Chen et al. (2012).

We compare iLSVM with the large-margin Harmonium (MMH) (Chen et al., 2012),
which was shown to outperform many other latent feature models, and two decoupled
approaches of EFH+SVM and IBP+SVM. EFH+SVM uses the exponential family Harmo-

13. The website is available at: http://www.flickr.com/.
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Figure 4: (Up) the overall average values of the latent features with standard deviation
over different classes; and (Bottom) the per-class average values of latent features
learned by iLSVM on the TRECVID data set.
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Figure 5: The overall average values of the latent features with standard deviation over
different classes on the Flickr data set.

nium (EFH) (Welling et al., 2004) to discover latent features and then learns a multi-way
SVM classifier. IBP+SVM is similar, but uses an IBP factor analysis model to discover
latent features (Griffiths and Ghahramani, 2005). To initialize the learning algorithms for
these models, we found that using the SVD factors of the input feature matrix as the ini-
tial weights for MMH and EFH can produce better results. Here, we also use the SVD
factors as the initial mean of weights in the likelihood models for iLSVM. Both MMH and
EFH+SVM are finite models and they need to pre-specify the dimensionality of latent fea-
tures. We report their results on classification accuracy and F1 score (i.e., the average
F1 score over all possible classes) (Zhu et al., 2011b) achieved with the best dimensional-
ity in Table 1. Figure 3 illustrates the performance change of MMH when using different
number of latent features, from which we can see that K = 40 produces the best per-
formance and either increasing or decreasing K could make the performance worse. For
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Figure 6: Six example features discovered iLSVM on the Flickr animal data set. For each
feature, we show 5 top-ranked images.

iLSVM and IBP+SVM, we use the mean-field inference method and present the average
performance with 5 randomly initialized runs (Please see Appendix D.2 for the algorithm
and initialization details). We perform 5-fold cross-validation on training data to select
hyperparameters, e.g., α and C (we use the same procedure for MT-iLSVM). We can see
that iLSVM can achieve comparable performance with the nearly optimal MMH, without
needing to pre-specify the latent feature dimension,14 and is much better than the decoupled
approaches (i.e., IBP+SVM and EFH+SVM). For the two stage methods, we don’t have
a clear winner—IBP+SVM performs a bit worse than EFH+SVM on the TRECVID data
set, while it outperforms EFH+SVM on the flickr data set. The reason for the difference
may be due to the initialization or different properties of the data.

It is also interesting to examine the discovered latent features. Figure 4 shows the overall
average values of latent features and the per-class average feature values of iLSVM in one
run on the TRECVID data set. We can see that on average only about 45 features are
active for the TRECVID data set. For the overall average, we also present the standard
deviation over the 5 categories. A larger deviation means that the corresponding feature
is more discriminative when predicting different categories. For example, feature 26 and
feature 34 are generally less discriminative than many other features, such as feature 1

14. We set the truncation level to 300, which is sufficiently large.
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and feature 30. Figure 5 shows the overall average feature values together with standard
deviation on the Flickr data set. We omitted the per-class average because that figure is
too crowded with 13 categories. We can that as k increases, the probability that feature k
is active decreases. The reason for the features with stable values (i.e., standard deviations
are extremely small) is due to our initialization strategy (each feature has 0.5 probability
to be active). Initializing ψdk as being exponentially decreasing (e.g., like the constructing
process of π) leads to a faster decay and many features will be inactive. To examine the
semantics of each feature,15 Figure 6 presents some example features discovered on the
Flickr animal data set. For each feature, we present 5 top-ranked images which have large
values on this particular feature. We can see that most of the features are semantically
interpretable. For instance, feature F1 is about squirrel; feature F2 is about ocean animal,
which is whales in the Flickr data set; and feature F4 is about hawk. We can also see that
some features are about different aspects of the same category. For example, feature F2
and feature F3 are both about whales, but with different background.

5.2 Multi-task Learning

Now, we evaluate the multi-task infinite latent SVM (MT-iLSVM) on several well-studied
real data sets.

5.2.1 Description of the Data

Scene and Yeast Data: These data sets are from the UCI repository, and each data
example has multiple labels. As in Rai and Daume III (2010), we treat the multi-label
classification as a multi-task learning problem, where each label assignment is treated as
a binary classification task. The Yeast data set consists of 1500 training and 917 test
examples, each having 103 features, and the number of labels (or tasks) per example is 14.
The Scene data set consists 1211 training and 1196 test examples, each having 294 features,
and the number of labels (or tasks) per example for this data set is 6.

School Data: This data set comes from the Inner London Education Authority and
has been used to study the effectiveness of schools. It consists of examination records
of 15,362 students from 139 secondary schools in years 1985, 1986 and 1987. The data
set is publicly available and has been extensively evaluated in various multi-task learning
methods (Bakker and Heskes, 2003; Bonilla et al., 2008; Zhang and Yeung, 2010), where
each task is defined as predicting the exam scores of students belonging to a specific school
based on four student-dependent features (year of the exam, gender, VR band and ethnic
group) and four school-dependent features (percentage of students eligible for free school
meals, percentage of students in VR band 1, school gender and school denomination). In
order to compare with the above methods, we follow the same setup described by Argyriou
et al. (2007) and Bakker and Heskes (2003) and similarly we create dummy variables for
those features that are categorical forming a total of 19 student-dependent features and 8
school-dependent features. We use the same 10 random splits16 of the data, so that 75%
of the examples from each school (task) belong to the training set and 25% to the test set.

15. The interpretation of latent features depends heavily on the input data.
16. The splits are available at: http://ttic.uchicago.edu/~argyriou/code/index.html.
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Data set Model Acc F1-Micro F1-Macro

Yeast

YaXue 0.5106 0.3897 0.4022
Piyushrai-1 0.5212 0.3631 0.3901
Piyushrai-2 0.5424 0.3946 0.4112

MT-IBP+SVM 0.5475 ± 0.005 0.3910 ± 0.006 0.4345 ± 0.007
MT-iLSVM 0.5792 ± 0.003 0.4258 ± 0.005 0.4742 ± 0.008

Scene

YaXue 0.7765 0.2669 0.2816
Piyushrai-1 0.7756 0.3153 0.3242
Piyushrai-2 0.7911 0.3214 0.3226

MT-IBP+SVM 0.8590 ± 0.002 0.4880 ± 0.012 0.5147 ± 0.018
MT-iLSVM 0.8752 ± 0.004 0.5834 ± 0.026 0.6148 ± 0.020

Table 2: Multi-label classification performance on Scene and Yeast data sets.

On average, the training set includes about 80 students per school and the test set about
30 students per school.

5.2.2 Results

Scene and Yeast Data: We compare with the closely related nonparametric Bayesian
methods, including kernel stick-breaking (YaXue) (Xue et al., 2007) and the basic and
augmented infinite predictor subspace models (i.e., Piyushrai-1 and Piyushrai-2) proposed
by Rai and Daume III (2010). These nonparametric Bayesian models were shown to out-
perform the independent Bayesian logistic regression and a single-task pooling approach
in previous work (Rai and Daume III, 2010). We also compare with a decoupled method
MT-IBP+SVM that uses an IBP factor analysis model to find shared latent features among
multiple tasks and then builds separate SVM classifiers for different tasks.17 For MT-
iLSVM and MT-IBP+SVM, we use the mean-field inference method in Sec 4.4 and report
the average performance with 5 randomly initialized runs (See Appendix D.1 for initializa-
tion details). For comparison with Rai and Daume III (2010) and Xue et al. (2007), we
use the overall classification accuracy, F1-Macro and F1-Micro as performance measures.
Table 2 shows the results. On both data sets, MT-iLSVM needs less than 50 latent fea-
tures on average. We can see that the large-margin MT-iLSVM performs much better than
other nonparametric Bayesian methods and MT-IBP+SVM, which separates the inference
of latent features from learning the classifiers.

School Data: We use the percentage of explained variance (Bakker and Heskes, 2003)
as the measure of the regression performance, which is defined as the total variance of the
data minus the sum-squared error on the test set as a percentage of the total variance.
Since we use the same settings, we can compare with the state-of-the-art results of

(1) Bayesian multi-task learning (BMTL) (Bakker and Heskes, 2003);

(2) Multi-task Gaussian processes (MTGP) (Bonilla et al., 2008);

17. This decoupled approach is in fact an one-iteration MT-iLSVM, where we first infer the shared latent
matrix Z and then learn an SVM classifier for each task.
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Figure 7: Percentage of explained variance by various models on the School data set.

(3) Convex multi-task relationship learning (MTRL) (Zhang and Yeung, 2010);

and single-task learning (STL) as reported in Bonilla et al. (2008) and Zhang and Yeung
(2010). For MT-iLSVM and MT-IBP+SVM, we also report the results achieved by using
both the latent features (i.e., Z>x) and the original input features x through vector concate-
nation, and we denote the corresponding methods by MT-iLSVMf and MT-IBP+SVMf ,
respectively. On average the multi-task latent SVM (i.e., MT-iLSVM) needs about 50 latent
features to get sufficiently good and robust performance. From the results in Figure 7, we
can see that the MT-iLSVM achieves better results than the existing methods that have
been tested in previous studies. Again, the joint MT-iLSVM performs much better than
the decoupled method MT-IBP+SVM, which separates the latent feature inference from the
training of large-margin classifiers. Finally, using both latent features and the original input
features can boost the performance slightly for MT-iLSVM, while much more significantly
for the decoupled MT-IBP+SVM.

5.3 Sensitivity Analysis

Figure 8 shows how the performance of MT-iLSVM changes against the hyper-parameter
α and regularization constant C on the Yeast and School data sets. We can see that on
the Yeast data set, MT-iLSVM is insensitive to both α and C. For the School data set,
MT-iLSVM is very insensitive the α, and it is stable when C is set between 0.3 and 1.

Figure 9 shows how the training size affects the performance and running time of MT-
iLSVM on the School data set. We use the first b% (b = 50, 60, 70, 80, 90, 100) of the training
data in each of the 10 random splits as training set and use the corresponding test data
as test set. We can see that as training size increases, the performance and running time
generally increase; and MT-iLSVM achieves the state-of-art performance when using about
70% training data. From the running time, we can also see that MT-iLSVM is generally
quite efficient by using mean-field inference.

Finally, we investigate how the performance of MT-iLSVM changes against the hyper-
parameters σ2

m0 and λ2
mn. We initially set σ2

m0 = 1 and compute λ2
mn from observed data.

If we further estimate them by maximizing the objective function, the performance does
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Figure 8: Sensitivity study of MT-iLSVM: (a) classification accuracy with different α on
Yeast data; (b) classification accuracy with different C on Yeast data; (c) per-
centage of explained variance with different α on School data; and (d) percentage
of explained variance with different C on School data.

not change much (±0.3% for average explained variance on the School data set). We have
similar observations for iLSVM.

6. Conclusions and Discussions

We present regularized Bayesian inference (RegBayes), a computational framework to per-
form post-data posterior inference with a rich set of regularization/constraints on the desired
post-data posterior distributions. RegBayes is formulated as a information-theoretical op-
timization problem, and it is applicable to both directed and undirected graphical models.
We present a general theorem to characterize the solution of RegBayes, when the posterior
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Figure 9: Percentage of explained variance and running time by MT-iLSVM with various
training sizes.

regularization is induced from a linear operator (e.g., expectation). Furthermore, we par-
ticularly concentrate on developing two large-margin nonparametric Bayesian models under
the RegBayes framework to learn predictive latent features for classification and multi-task
learning, by exploring the large-margin principle to define posterior constraints. Both mod-
els allow the latent dimension to be automatically resolved from the data. The empirical
results on several real data sets appear to demonstrate that our methods inherit the merits
from both Bayesian nonparametrics and large-margin learning.

RegBayes offers a flexible framework for considering posterior regularization in perform-
ing parametric or nonparametric Bayesian inference. For future work, we plan to study other
posterior regularization beyond the large-margin constraints, such as posterior constraints
defined on manifold structures (Huh and Fienberg, 2012) and those represented in the form
of first-order logic, and investigate how posterior regularization can be used in other inter-
esting nonparametric Bayesian models (Beal et al., 2002; Teh et al., 2006; Blei and Frazier,
2010) in different contexts, such as link prediction (Miller et al., 2009) for social network
analysis and low-rank matrix factorization for collaborative prediction. Some of our pre-
liminary results (Xu et al., 2012; Zhu, 2012; Mei et al., 2014) have shown great promise.
It is interesting to investigate more carefully along this direction. Moreover, as we have
stated, RegBayes can be developed for undirected MRFs. But the inference would be even
harder. We plan to do a systematic investigation along this direction too. We have some
preliminary results presented in Chen et al. (2014), but there is a lot of room to further
improve. Finally, regularized Bayesian inference in general leads to a highly nontrivial infer-
ence problem. Although the general solution can be derived with convex analysis theory, it
is normally intractable to infer them directly. Therefore, approximate inference techniques
such as the truncated mean-field approximation have to be used. For the current truncated
inference methods, one key limit is to pre-specify the truncation level. A too conservative
truncation level could lead to a waste of computing resources. So, it is important to develop
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inference algorithms that could adaptively determine the number of latent features, such as
Monte Carlo methods. We have some preliminary progress along this direction as reported
in Jiang et al. (2012) and Zhu et al. (2013). It is interesting to extend these techniques to
deal with other challenging nonparametric Bayesian models.
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Appendix A. Generalization Beyond Bayesian Networks

Standard Bayesian inference and the proposed regularized Bayesian inference implicitly
make the assumption that the model can be graphically drawn as a Bayesian network as
illustrated in Figure 10(a).18 Here, we consider a more general formulation which could
cover both directed and undirected latent variable models, such as the well-studied Boltz-
mann machines (Murray and Ghahramani, 2004; Welling et al., 2004), as well as the case
where a model could have some unknown parameters (e.g., hyper-parameters) and need
an estimation procedure, such as maximum likelihood estimation (MLE), besides posterior
inference. The latter is also known as empirical Bayesian methods, which are frequently
employed by practitioners.

Extension 1: Empirical Bayesian Inference with Unknown Parameters: As
illustrated in Figure 10(b), in some cases we need to perform the empirical Bayesian infer-
ence in the presence of unknown parameters. For instance, in a linear-Gaussian Bayesian
model, we may choose to estimate its covariance matrix using MLE; and in a latent Dirichlet
allocation (LDA) (Blei et al., 2003) model, we may choose to estimate the unknown topical
dictionary, although in principle we can treat these parameters as random variables and
perform full Bayesian inference. In such cases, we need some mechanisms to estimate the
unknown parameters when doing Bayesian inference. Let Θ be model parameters. We can
formulate empirical Bayesian inference as solving19

inf
Θ,q(M)

KL(q(M)‖π(M))−
∫
M

log p(D|M,Θ)q(M)dM (17)

s.t. : q(M) ∈ Pprob.

18. The structure within M can be arbitrary, either a directed, undirected or hybrid chain graph.
19. The objective can be derived using variational techniques. It is in fact a variational upper bound of the

negative log-likelihood.
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Figure 10: Illustration graphs for three different types of models that involve Bayesian
inference: (a) a Bayesian generative model; (b) a Bayesian generative model
with unknown parameters Θ; and (c) a chain graph model.

Although the problem is convex over q(M) for any fixed Θ, it is not jointly convex in general.
A natural algorithm to solve this problem is the well-known EM procedure (Dempster et al.,
1977), which converges to a local optimum. Specifically, we have the following result.

Lemma 14 For problem (17), the optimum solution of q(M) is equivalent to the posterior
distribution by Bayes’ theorem for any Θ; and the optimum Θ∗ is the MLE

Θ∗ = argmax
Θ

log p(D|Θ).

Proof According to the variational formulation of Bayes’ rule in (4), we get that the op-
timum solution is q(M) = p(M|D,Θ) for any Θ. Substituting the optimum solution of q
into the objective, we get the optimization problem of Θ.

Extension 2: Chain Graph: In the above cases, we have assumed that the observed
data are generated by some model in a directed causal sense. This assumption holds in
directed latent variable models. However, in many cases, we may choose alternative for-
mulations to define the joint distribution of a model and the observed data. Figure 10(c)
illustrates one such scenario, where the model M consists of two subsets of random vari-
ables. One subset H is connected to the observed data via an undirected graph and the
other subset Z is connected to the observed data and H using directed edges. This graph is
known as a chain graph. Due to the Markov properties of chain graph (Frydenberg, 1990),
we know that the joint distribution has the factorization form as

p(M,D) = p(Z)p(H,D|Z), (18)

where p(H,D|Z) is a Markov random field (MRF). One concrete example of such a hybrid
chain model is the Bayesian Boltzman machines (Murray and Ghahramani, 2004), which
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treat the parameters of a Boltzmann machine as random variables and perform Bayesian
inference with MCMC sampling methods.

The insights that RegBayes covers undirected or chain graph latent variable models come
from the observation that the objective L(q(M)) of problem (4) is in fact an KL-divergence,
namely, we can show that

L(q(M)) = KL(q(M)‖p(M,D)), (19)

where p(M,D) is the joint distribution. Note that when D is given, the distribution p(M,D)
is non-normalized for M; and we have abused the KL notation for non-normalized distri-
butions in (19), but with the same formula. For directed Bayesian networks (Zhu et al.,
2011a), we naturally have p(M,D) = π(M)p(D|M). For the undirected MRF models, we
have M = {Z,H} and again we can define the joint distribution as in (18).

Putting the above two extensions of Bayesian inference together, the regularized Bayesian
inference with estimating unknown model parameters can be generally formulated as

inf
Θ,q(M),ξ

L(Θ, q(M)) + U(ξ) or inf
Θ,q(M)

L(Θ, q(M)) + g(Eq(M)) (20)

s.t. : q(M) ∈ Ppost(ξ) s.t. : q(M) ∈ Pprob,

where L(Θ, q(M)) is the objective function of problem (17). These two formulations are
equivalent. We will call the former a constrained formulation and call the latter an uncon-
strained formulation by ignoring the standard normalization constraints, which are easy to
deal with.

Appendix B. MedLDA—A RegBayes Model with Finite Latent Features

This section presents a new interpretation of MedLDA (maximum entropy discrimination
latent Dirichlet allocation) (Zhu et al., 2009) under the framework of regularized Bayesian
inference. MedLDA is a max-margin supervised topic model, an extension of latent Dirichlet
allocation (LDA) (Blei et al., 2003) for supervised learning tasks. In MedLDA, each data
example is projected to a point in a finite dimensional latent space, of which each feature
corresponds to a topic, i.e., a unigram distribution over the terms in a vocabulary. MedLDA
represents each data as a probability distribution over the features, which results in a
conservation constraint (i.e., the more a data expresses on one feature, the less it can express
others) (Griffiths and Ghahramani, 2005). The infinite latent feature models discussed in
Section 4 do not have such a constraint.

Without loss of generality, we consider the MedLDA regression model as an example
(classification model is similar), whose graphical structure is shown in Figure 11. We assume
that all data examples have the same length V for notation simplicity. Each document is as-
sociated with a response variable Y , which is observed in the training phase but unobserved
in testing. We will use y to denote an instance value of Y . Let K be the number of topics
or the dimensionality of the latent topic space. MedLDA builds an LDA model to describe
the observed words. The generating process of LDA is that each document n has a mixing
proportion θn ∼ Dirichlet(α); each word wnm is associated with a topic znm ∼ θn, which
indexes the topic that generates the word, i.e., wnm ∼ βznm

. Define Z̄n = 1
V

∑V
m=1 Znm

as the average topic assignment for document n. Let Θ = {α,β, δ2} denote the unknown
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Figure 11: Graphical structure of MedLDA.

model parameters and D = {yn, wnm} be the training set. MedLDA was defined as solving
a regularized MLE problem with expectation constraints

inf
Θ,ξ,ξ∗

− log p({yn, wnm}|Θ) + C
N∑
n=1

(ξn + ξ∗n)

s.t. ∀n :


yn − Ep[η>Z̄n] ≤ ε+ ξn
−yn + Ep[η>Z̄n] ≤ ε+ ξ∗n

ξn, ξ
∗
n ≥ 0

The posterior constraints are imposed following the large-margin principle and they corre-
spond to a quality measure of the prediction results on training data. In fact, it is easy to
show that minimizing U(ξ, ξ∗) = C

∑N
n=1(ξn+ξ∗n) under the above constraints is equivalent

to minimizing an ε-insensitive loss (Smola and Schölkopf, 2003)

Rε
(
p({θn, znm,η}|D,Θ)

)
= C

N∑
n=1

max
(

0,
∣∣∣yn − Ep

[
η>Z̄n

]∣∣∣− ε) .
of the expected linear prediction rule ŷn = Ep[η>Z̄n].

To practically learn an MedLDA model, since the above problem is intractable, vari-
ational methods were used by introducing an auxiliary distribution q({θn, znm,η}|Θ) to
approximate the true posterior p({θn, znm,η}|D,Θ),20 replacing the negative data likeli-
hood with its upper bound L

(
q({θn, znm,η}|Θ)

)
, and replacing p by q in the constraints.

The variational MedLDA regression model is

inf
q,Θ,ξ,ξ∗

L
(
q({θn, znm,η}|Θ)

)
+ C

N∑
n=1

(ξn + ξ∗n)

s.t. ∀n :


yn − Eq[η>Z̄n] ≤ ε+ ξn
−yn + Eq[η>Z̄n] ≤ ε+ ξ∗n

ξn, ξ
∗
n ≥ 0

where L
(
q({θn, znm,η}|Θ)

)
= −Eq

[
log p({θn, znm,η},D|Θ)

]
− H

(
q({θn, znm,η}|Θ)

)
is a

variational upper-bound of the negative data log-likelihood. The upper bound is tight if no

20. We have explicitly written the condition on model parameters.
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restricting constraints are made on the variational distribution q. In practice, additional
assumptions (e.g., mean-field) can be made on q to derive a practical approximate algorithm.

Based on the previous discussions on the extensions of RegBayes and the duality in
Lemma 14, we can reformulate the MedLDA regression model as an example of RegBayes.
Specifically, for the MedLDA regression model, we have M = {θn, znm,η}. According
to (19), we can easily show that

L
(
q({θn, znm,η}|Θ)

)
= KL

(
q({θn, znm,η}|Θ)‖p({θn, znm,η}, {wnm, yn}|Θ)

)
= LB

(
Θ, q(M|Θ)

)
.

Then, the MedLDA problem is a RegBayes model in (20) with

PMedLDA
post (Θ, ξ, ξ∗)

def
=

q({θn, znm,η}|Θ)
∀n : yn − Eq[η>Z̄n]≤ ε+ ξn
−yn + Eq[η>Z̄n]≤ ε+ ξ∗n

ξn, ξ
∗
n≥ 0

 . (21)

For the MedLDA problem, we can use Lagrangian methods to solve the constrained for-
mulation. Alternatively, we can use the convex duality theorem to solve an equivalent uncon-
strained form. For the variational MedLDA, the ε-insensitive loss is Rε(q({θn, znm,η}|Θ)).
Its conjugate can be derived using the results of Lemma 11. Specifically, we have the
following result, whose proof is deferred to Appendix C.6.

Lemma 15 (Conjugate of MedLDA) For the variational MedLDA problem, we have

inf
Θ,q({θn,znm,η}|Θ)∈Pprob

L (q({θn, znm,η}|Θ),Θ) +Rε (q({θn, znm,η}|Θ))

= sup
ω

− logZ ′(ω,Θ∗)−
∑
n

g∗2(ωn;−yn + ε, yn + ε),

where ωn = (ωn, ω
′
n). Moreover, The optimum distribution is the posterior distribution

q̂({θn, znm,η}|Θ∗) =
1

Z ′(ω̂,Θ∗|D)
p ({θn, znm,η},D|Θ∗) exp

{∑
n

(ω̂n − ω̂′n)η>z̄n

}
,(22)

where Z ′(ω̂,Θ|D) is the normalization factor and the optimum parameters are

Θ∗ = argmax
Θ

log p(D|Θ).

Note that although in general, either the primal or the dual problem is hard to solve
exactly, the above conjugate results are still useful when developing approximate inference
algorithms. For instance, we can impose additional mean-field assumptions on q in the pri-
mal formulation and iteratively solve for each factor; and in this process convex conjugates
are useful to deal with the large-margin constraints (Zhu et al., 2009). Alternatively, we can
apply approximate methods (e.g., MCMC sampling) to infer q based on its solution in (22),
and iteratively solves for the dual parameters ω using approximate statistics (Schofield,
2006). We will discuss more on this when presenting the inference algorithms for iLSVM
and MT-iLSVM.
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In the above discussions, we have treated the topics β as fixed unknown parameters.
A fully Bayesian formulation would treat β as random variables, e.g., with a Dirichlet
prior (Blei et al., 2003; Griffiths and Steyvers, 2004). Under the RegBayes interpretation,
we can easily do such an extension of MedLDA, simply by moving β from Θ to M.

Appendix C. Proof of the Theorems and Lemmas

This section provides the proof of the theorems and lemmas.

C.1 Proof of Theorem 6

Proof The adjoint of the linear operator E is given by 〈Ex, φ〉 = 〈E∗φ, x〉. In this theorem,
E is the expectation with respect to q. Thus, we have

〈Eq, φ〉=
〈∫

q(M)ψ(M,D)dµ(M), φ

〉
=

∫
q(M) 〈ψ(M,D), φ〉 dµ(M)

= (E∗φ)(q),

where E∗φ = 〈φ, ψ(.)〉.
By definition, we have KL(q(M)‖p(M,D)) = KL(q(M)‖p(M|D)) + c, where c is a

constant, c = − log p(D). Let f(q(M)) denote the KL-divergence KL(q(M)‖p(M|D)). The
following proof is similar to the proof of the Fenchel duality theorem (Borwein and Zhu,
2005). Let t and d denote the primal value and the dual value, respectively. By Lemma
4.3.1 (Borwein and Zhu, 2005), under appropriate regularity conditions, there is a φ̂ such
that

t ≤
[
f(q)−

〈
φ̂, Eq

〉]
+
[
g(φ) +

〈
φ̂, φ

〉]
+ c.

For any µ, setting φ = Eq + µ in the above inequality, we have

t≤ f(q) + g(Eq + µ) +
〈
φ̂, µ

〉
+ c

=
{
f(q)−

〈
E∗φ̂, q

〉}
+
{
g(Eq + µ)−

〈
−φ̂, Eq + µ

〉}
+ c.

Taking the infimum over all points µ, we have

t ≤
{
f(q)−

〈
E∗φ̂, q

〉}
− g∗(−φ̂) + c.

Then, taking the infimum over all points q ∈ Pprob, we have

t≤ inf
q∈Pprob

{
f(q)−

〈
E∗φ̂, q

〉}
− g∗(−φ̂) + c

=−f∗(E∗φ̂)− g∗(−φ̂) + c

≤ d, (23)
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where

f∗(E∗φ) = log

∫
p(M|D) exp (〈φ, ψ(M,D)〉) dµ(M)

is the convex conjugate of the KL-divergence.
Since d ≤ t due to the Fenchel weak duality theorem (Borwein and Zhu, 2005) (Theorem

4.4.2), we have the strong duality that t = d, and φ̂ attains the supremum in the dual
problem. During the deviation of the infimum in (23), we get the optimum solution of q:

q̂φ̂(M)∝ p(M|D) exp
(〈
φ̂,ψ(M;D)

〉)
= p(M,D) exp

(〈
φ̂,ψ(M;D)

〉
− Λφ̂

)
.

Absorbing the constant c into f∗, we get the dual objective of Theorem 6.

C.2 Proof of Lemma 9

Proof By definition, g∗0(µ) = supx∈R(xµ − C max(0, x)). We consider two cases. First, if
µ < 0, we have

g∗0(µ) ≥ sup
x<0

(xµ− C max(0, x)) = sup
x<0

xµ =∞.

Therefore, we have g∗0(µ) =∞ if µ < 0. Second, if µ ≥ 0, we have

g∗0(µ) = sup
x≥0

(xµ− Cx) = I(µ ≤ C).

Putting the above results together, we prove the claim.

C.3 Proof of Lemma 10

Proof The proof has a similar structure as the proof of Lemma 9. By definition, we have

g∗1(µ) = sup
x

{
µ>x− g1(x)

}
= sup

x

∑
j

µjxj −max(x1, · · · , xL)

 .

We first show that ∀i, µi ≥ 0 in order to have finite g∗1 values. Suppose that ∃j, µj < 0.
Then, we define

Gj =
{
x ∈ RL : xj < 0

}
, and Goj = {x ∈ Gj : xi = 0, if i 6= j} .

Since Goj ⊂ Gj ⊂ RL, we have

g∗1(µ) ≥ sup
x∈Gj

{
µ>x− g1(x)

}
≥ sup

x∈Goj

{
µ>x− g1(x)

}
= sup

xj∈R−
{xjµj − 0} =∞.

Therefore, g∗1(µ) =∞ if ∃j, µj < 0.
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Now, we consider the second case, where ∀i, µi ≥ 0. We can easily show that

∀x ∈ RL, µ>x− g1(x) ≤
∑
i

µi max(x)− g1(x).

Therefore

g∗1(µ) ≤ sup
x∈RL

{
(
∑
i

µi − C) max(x)

}
= I

(∑
i

µi = C

)
.

Moreover, let G1 = {x ∈ RL : x = xe, x ∈ R}, where e is a vector with every element
being 1. Then, we have

g∗1(µ) ≥ sup
x∈G1

{
µ>x− g1(x)

}
= sup

x∈R

{
(
∑
i

µi − C)x

}
= I

(∑
i

µi = C

)
.

Putting the above results together proves the claim.

C.4 Proof of Lemma 11

Proof By definition, the conjugate is

g∗2(µ) = sup
x∈R
{µx− C max(0, |x− y| − ε)} .

= − inf
x∈R
{−µx+ C max(0, |x− y| − ε)} .

= − inf
x∈R;t≥0;t≥|x−y|−ε

{−µx+ Ct}

= − sup
α,β≥0

{
inf
x,t∈R

{−µx+ Ct− α(t− |x− y|+ ε)− βt}
}

= − sup
α,β≥0

{
inf
x∈R
{−µx+ α|x− y|}+ inf

t∈R
{Ct− αt− βt} − αε

}
For the second infimum, it is easy to show that

inf
t∈R

{
Ct− αt− βt

}
= −I(α+ β = C).

For the first infimum, we can show that

inf
x∈R

{
− µx+ α|x− y|

}
= −µy + inf

x′∈R

{
− µx′ + α|x′|

}
= −µy − I(|µ| ≤ α).

Thus, we have

g∗2(µ) = − sup
α,β≥0

{
− µy − αε− I(|µ| ≤ α)− I(α+ β = C)

}
= −(−µy − ε|µ| − I(|µ| ≤ C))

= µy + ε|µ|+ I(|µ| ≤ C),

where the second equality holds by setting α = |µ|, under the condition that ε is positive;
the condition |µ| ≤ C is induced from the conditions α+ β = C and β ≥ 0.

1835



Zhu, Chen and Xing

C.5 Proof of Lemma 12

Proof By definition, we have g(Eq)
def
= Rch

(
q(Z,η,W)

)
=
∑

n g1(`∆n − Eq(n)). Let µn =
Eq(n). We have the conjugate

g∗(ω) = sup
µ

{
ω>µ−

∑
n

g1(`∆n − µn)
}

=
∑
n

sup
µn

{
ω>nµn − g1(`∆n − µn)

}
=
∑
n

sup
νn

{
ω>n (`∆n − νn)− g1(νn)

}
=
∑
n

(
ω>n `

∆
n + g∗1(−ωn)

)
.

Thus,

g∗(−ω) =
∑
n

(
−ω>n `∆n + g∗1(ωn)

)
.

Using the results of Theorem 6 proves the claim.

C.6 Proof of Lemma 13

Proof Similar structure as the proof of Lemma 12. In this case, the linear expectation
operator is E : Pprob → R

∑
m |Imtr | and the element of Eq evaluated at the nth example for

task m is

Eq(n,m)
def
= ymnEq(Z,η)[Zηm]>xmn = Eq(Z,η)

[
ymn(Zηm)>xmn

]
.

Then, let g0 : R→ R be a function defined in Lemma 9. We have

g(Eq)
def
= RMT

h

(
q(Z,η,W)

)
=

∑
m,n∈Imtr

g0

(
1− Eq(n,m)

)
.

Let µ = Eq. By definition, the conjugate is

g∗(ω) = sup
µ

{
ω>µ−

∑
m,n∈Imtr

g0(1− µmn)
}

=
∑

m,n∈Imtr

sup
µmn

{
ωmnµmn − g0(1− µmn)

}
=

∑
m,n∈Imtr

sup
νmn

{
ωmn(1− νmn)− g0(νmn)

}
=

∑
m,n∈Imtr

(
ωmn + g∗0(−ωmn)

)
.

Thus,

g∗(−ω) =
∑

m,n∈Imtr

(
− ωmn + g∗0(ωmn)

)
.
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By the results in Theorem 6 and Lemma 9, we can derive the conjugate of the problem (15).

C.7 Proof of Lemma 15

Proof Similar structure as the proof of Lemma 12. In this case, the linear expectation
operator is E : Pprob → RN and the elements of Eq evaluated at the nth example is

µn = Eq({θn,znm,η}|Θ)

[
η>z̄n

]
.

Then, using the g2 function defined in Lemma 11, we have

g(Eq)
def
= Rε(q({θn, znm,η}|Θ)) =

∑
n

g2

(
µn; yn, ε

)
.

Therefore g∗(ω) =
∑

n g
∗
2(ωn; yn, ε) and g∗(−ω) =

∑
n g
∗
2(−ωn; yn, ε). By the results in The-

orem 6 and Lemma 9, we can derive the conjugate and the optimum solution of q̂. The
optimum solution of Θ is due to Lemma 14. Note that the constraints are not directly
dependent on Θ.

Appendix D. Inference Algorithms for Infinite Latent SVMs

D.1 Inference for MT-iLSVM

In this section, we provide the derivation of the inference algorithm for MT-iLSVM, which
is outlined in Algorithm 2 and detailed below.

For MT-iLSVM, the model M consists of all the latent variables (ν,W,Z,η). Let

Lmn(q)
def
= Eq[log p(xmn|Z,wmn, λ

2
mn)] be the expected data likelihood. Then, under the

truncated mean-field assumption (16), we have

Lmn(q) = −x>mnxmn − 2x>mnEq[Zwmn] + Eq[w>mnUwmn]

2λ2
mn

− D log(2πλ2
mn)

2
,

where x>mnEq[Zwmn] =
∑

k x>mnψ.k; ψ.k
def
= (ψ1k · · ·ψDk)> is the kth column of ψ = Eq[Z];

Eq[w>mnUwmn] = 2
∑
j<k

φjmnφ
k
mnUjk +

∑
k

Ukk

(
Kσ2

mn + Φ>mnΦmn

)
;

and U
def
= Eq[Z>Z] is a K ×K matrix, whose element is

Uij =

{∑
d ψdi, if i = j∑
d ψdiψdj , otherwise.
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For the KL-divergence term, we have KL(q(M)‖π(M)) = KL(q(ν)‖π(ν))+KL(q(W)‖π(W))+
Eq(ν)[KL(q(Z)‖π(Z|ν))] + KL(q(η)‖π(η)), where the individual terms are

KL(q(ν)‖π(ν)) =
K∑
k=1

(
(γk1 − α)(ϕ(γk1)− ϕ(γk1 + γk2))− log

Γ(γk1)Γ(γk2)

Γ(γk1 + γk2)

+(γk2 − 1)(ϕ(γk2)− ϕ(γk1 + γk2))
)
−K logα,

Eq(ν)[KL(q(Z)‖π(Z|ν))] =
∑
dk

(
− ψdk

k∑
j=1

Eq[log νj ]− (1− ψdk)Eq[log(1−
k∏
j=1

νj)]

+ψdk logψdk + (1− ψdk) log(1− ψdk)
)

KL(q(W)‖π(W)) =
∑
mn

Kσ2
mn + Φ>mnΦmn

2σ2
m0

−
K(1 + log σ2

mn

σ2
m0

)

2

 .

where ϕ(·) is the digamma function and Eq[log vj ] = ϕ(γj1)−ϕ(γj1+γj2). For KL(q(η)‖π(η)),
we do not need to write it explicitly, as we shall see. Finally, the effective discriminant func-
tion is

fm(xmn; q(Z,η)) = Eq[ηm]>ψ>xmn =
K∑
k=1

Eq[ηmk]ψ>.kxmn.

All the above terms can be easily computed, except the term Eq[log(1 −
∏k
j=1 νj)]. Here,

we adopt the multivariate lower bound (Doshi-Velez, 2009)

Eq

log

1−
k∏
j=1

νj

 ≥ k∑
m=1

qkmϕ(γm2) +

k−1∑
m=1

(
k∑

n=m+1

qkn

)
ϕ(γm1)

−
k∑

m=1

(
k∑

n=m

qkn

)
ϕ(γm1 + γm2) +H(qk.),

where the variational parameters qk. = (qk1 · · · qkk)> belong to the k-simplex, and H(qk.) is
the entropy of qk.. The tightest lower bound is achieved by setting qk. to be the optimum
value

qkm =
1

Zk
exp

(
ϕ(γm2) +

m−1∑
n=1

ϕ(γn1)−
m∑
n=1

ϕ(γn1 + γn2)

)
, (24)

where Zk is a normalization factor to make qk. be a distribution. We denote the tightest
lower bound by Lνk. Replacing the term Eq[log(1 −

∏k
j=1 νj)] with its lower bound Lνk, we

can have an upper bound of KL(q(M)‖π(M)) and we denote this upper bound by L(q).

With the above terms and the upper bound L(q), we can implement the general proce-
dure outlined in Algorithm 1 to solve the MT-iLSVM problem. Specifically, the inference
procedure iteratively solves the following steps, as summarized in Algorithm 2:
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Algorithm 2 Inference Algorithm of MT-iLSVM

1: Input: data D = {(xmn, ymn)}m,n∈Imtr ∪ {xmn}m,n∈Imtst , constants α and C
2: Output: distributions q(ν), q(Z), q(W), q(η) and hyper-parameters σ2

m0 and λ2
mn

3: Initialize γk1 = α, γk2 = 1, ψdk = 0.5 + ε, where ε ∼ N (0, 0.001), Φmn = 0, σ2
mn =

σ2
m0 = 1, µm = 0, λ2

mn is computed from D.
4: repeat
5: repeat
6: update (γk1, γk2) using (26), ∀1 ≤ k ≤ K;
7: update φkmn and σ2

mn using (25), ∀m,∀n, ∀1 ≤ k ≤ K;
8: update ψdk using (27), ∀1 ≤ d ≤ D,∀1 ≤ k ≤ K;
9: until relative change of L is less than τ (e.g., 1e−3) or iteration number is T (e.g.,

10)
10: for m = 1 to M do
11: solve the dual problem (28) using a binary SVM learner.
12: end for
13: update the hyper-parameters σ2

m0 using (29) and λ2
mn using (30). (Optional)

14: until relative change of L is less than τ ′ (e.g., 1e−4) or iteration number is T ′ (e.g., 20)

Infer q(ν), q(Z) and q(W): For q(W), since both the prior π(W) and q(W) are
Gaussian, we can easily derive the update rules, similar as in Gaussian mixture models

φkmn =

∑
d x

d
mnψdk −

∑
j 6=k φ

j
mnUkj

λ2
mn

(
1

σ2
m0

+

∑
d ψdk
λ2
mn

)−1

(25)

σ2
mn =

(
1

σ2
m0

+
1

K

∑
k

Ukk

λ2
mn

)−1

For q(ν), we have the update rules similar as in (Doshi-Velez, 2009), that is,

γk1 = α+

K∑
m=k

D∑
d=1

ψdm +

K∑
m=k+1

(
D −

D∑
d=1

ψdm

)(
m∑

i=k+1

qmi

)
(26)

γk2 = 1 +

K∑
m=k

(
D −

D∑
d=1

ψdm

)
qmk.

For q(Z), we have the mean-field update equation as

ψdk =
1

1 + e−ϑdk
, (27)

where

ϑdk =
k∑
j=1

Eq[log vj ]− Lνk −
∑
mn

1

2λ2
mn

(
(Kσ2

mn + (φkmn)2)

−2xdmnφ
k
mn + 2

∑
j 6=k

φjmnφ
k
mnψdj

)
+

∑
m,n∈Imtr

ymnEq[ηmk]xdmn.
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Infer q(η) and solve for ω: By the convex duality theory, we have the solution

q(η) ∝ π(η) exp

 ∑
m,n∈Imtr

ymnωmnη
>
mψ
>xmn


=

M∏
m=1

π(ηm) exp

η>m
∑
n∈Imtr

ymnωmnψ
>xmn

 .

Therefore, we can see that although we did not assume q(η) is factorized, we can get the
induced factorization form q(η) =

∏
m q(ηm), where

q(ηm) ∝ π(ηm) exp

η>m
∑
n∈Imtr

ymnωmnψ
>xmn

 .

Here, we assume π(ηm) is standard normal. Then, we have q(ηm) = N (ηm|µm, I), where

µm =
∑
n∈Imtr

ymnωmnψ
>xmn.

The optimum dual parameters can be obtained by solving the following M independent
dual problems

sup
ωm

−1

2
µ>mµm +

∑
n∈Imtr

ωmn s.t.. : 0 ≤ ωmn ≤ C,∀n ∈ Imtr , (28)

which (and its primal form) can be efficiently solved with a binary SVM solver, such as
SVM-light.

As we have stated, the hyperparameters σ2
0 and λ2

mn can be set a priori or estimated
from the data. The empirical estimation can be easily done with closed form solutions by
optimizing the RegBayes objective with all the variational terms fixed. For MT-iLSVM, we
have

σ2
m0 =

∑Nm
n=1(Kσ2

mn + Φ>mnΦmn)

KNm
(29)

λ2
mn =

x>mnxmn − 2x>mnEq[Zwmn] + Eq[w>mnUwmn]

D
. (30)

D.2 Inference for Infinite Latent SVM

In this section, we develop the inference algorithm for iLSVM based on the stick-breaking
construction of the IBP prior. The algorithm is outlined in Algorithm 3.

Similar as in the inference for MT-iLSVM, we make the additional constraint about the
feasible distribution

q(ν,W,Z,η) = q(η)q(W|Φ,Σ)
∏
n

(
K∏
k=1

q(znk|ψnk)

)
K∏
k=1

q(νk|γk),
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where q(W|Φ,Σ) =
∏
kN (W.k|Φ.k, σ

2
kI); q(znk|φnk) = Bernoulli(φnk); and q(νk|γk) =

Beta(γk1, γk2); and K is the truncation level. Then, we solve the unconstrained problem

using convex duality with dual parameters being ω. Let Ln(q)
def
= Eq[log p(xn|zn,W)]. We

have

Ln(q) = −x>nxn − 2x>nΦEq[zn]> + Eq[znAz>n ]

2σ2
n0

− D log(2πσ2
n0)

2
,

where A
def
= Eq[W>W] is a K ×K matrix; x>nΦEq[zn]> = 2

∑
k ψnk(x

>
nΦ.k); and

Eq[znAz>n ] = 2
∑
j<k

ψnjψnkAjk +
∑
k

ψnk(Dσ
2
k + Akk).

The effective discriminant function is f(y,xn) =
∑

k Eq[ηky ]ψnk. Again, for computational

tractability, we need the lower bound Lνk of the term Eq[log(1 −
∏k
j=1 vj)]. Using this

lower bound, we can get an upper bound of the KL-divergence term. Then, the inference
procedure iteratively solves the following steps:

Infer q(ν), q(Z) and q(W): For q(W), we have the update rules

Φ.k =
∑
n

ψnk
σ2
n0

xn −
∑
j 6=k

ψnjΦ.j

(1 +
∑
n

ψnk
σ2
n0

)−1

(31)

σ2
k =

(
1 +

∑
n

ψnk
σ2
n0

)−1

.

For q(ν), we have the update rules similar as in (Doshi-Velez, 2009), that is,

γk1 = α+
K∑
m=k

N∑
n=1

ψnm +
K∑

m=k+1

(
N −

N∑
n=1

ψnm

)(
m∑

i=k+1

qmi

)
(32)

γk2 = 1 +
K∑
m=k

(
N −

N∑
n=1

ψnm

)
qmk,

where q.k is computed in the same way as in (24). For q(Z), the mean-field update equation
for ψ is

ψnk =
1

1 + e−ϑnk
, (33)

where

ϑnk =
k∑
j=1

Eq[log vj ]− Lνk(q)− 1

2σ2
n0

(
Dσ2

k + Φ>.kΦ.k

)

+
1

σ2
n0

Φ>.k

xn −
∑
j 6=k

ψnjΦ.j

+
∑
y

ωynEq[ηkyn − η
k
y ].
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Algorithm 3 Inference Algorithm of iLSVM

1: Input: data D = {(xn, yn)}n∈Itr ∪ {xn}n∈Itst , constants α and C
2: Output: distributions q(ν), q(Z), q(W), q(η) and hyper-parameters σ2

0 and σ2
n0

3: Initialize γk1 = α, γk2 = 1, ψnk = 0.5 + ε, where ε ∼ N (0, 0.001), Φ.k = 0, σ2
k = σ2

0 = 1,
µ = 0, σ2

n0 is computed from D.
4: repeat
5: repeat
6: update (γk1, γk2) using (32), ∀1 ≤ k ≤ K;
7: update Φ.k and σ2

k using (31), ∀1 ≤ k ≤ K;
8: update ψnk using (33), ∀n ∈ Itr, ∀1 ≤ k ≤ K;
9: update ψnk using (33), but ϑnk doesn’t have the last term, ∀n ∈ Itst,∀1 ≤ k ≤ K;

10: until relative change of L is less than τ (e.g., 1e−3) or iteration number is T (e.g.,
10)

11: solve the dual problem (34) (or its primal form) using a multi-class SVM learner.
12: update the hyper-parameters σ2

0 using (35) and σ2
n0 using (36). (Optional)

13: until relative change of L is less than τ ′ (e.g., 1e−4) or iteration number is T ′ (e.g., 20)

For testing data, ϑnk does not have the last term because of the absence of large-margin
constraints.

Infer q(η) and solve for ω: By the convex duality theory, we have

q(η) ∝ π(η) exp

{
η>

(∑
n∈Itr

∑
y

ωynEq[g(yn,xn, zn)− g(y,xn, zn)]

)}
.

For the standard normal prior π(η), we have that q(η) is also normal, with mean

µ =
∑
n∈Itr

∑
y

ωydEq[g(yn,xn, zn)− g(y,xn, zn)]

and identity covariance matrix. The dual problem is

sup
ω
−1

2
µ>µ+

∑
n∈Itr

∑
y

ωyn s.t.. : ωyn ≥ 0,
∑
y

ωyn = C,∀n ∈ Itr, (34)

which (and its primal form) can be efficiently solved with a multi-class SVM solver.

Similar as in MT-iLSVM, the hyperparameters σ2
0 and σ2

n0 can be set a priori or es-
timated from the data. The empirical estimation can be easily done with closed form
solutions. For iLSVM, we have

σ2
0 =

∑K
k=1(Dσ2

k + Φ>.kΦk)

KD
(35)

σ2
n0 =

x>nxn − 2x>nΦEp[zn]> + Eq[znAz>n ]

D
. (36)
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Abstract

We propose a novel approach for nonlinear regression using a two-layer neural network
(NN) model structure with sparsity-favoring hierarchical priors on the network weights.
We present an expectation propagation (EP) approach for approximate integration over
the posterior distribution of the weights, the hierarchical scale parameters of the priors,
and the residual scale. Using a factorized posterior approximation we derive a computation-
ally efficient algorithm, whose complexity scales similarly to an ensemble of independent
sparse linear models. The approach enables flexible definition of weight priors with different
sparseness properties such as independent Laplace priors with a common scale parameter or
Gaussian automatic relevance determination (ARD) priors with different relevance param-
eters for all inputs. The approach can be extended beyond standard activation functions
and NN model structures to form flexible nonlinear predictors from multiple sparse linear
models. The effects of the hierarchical priors and the predictive performance of the algo-
rithm are assessed using both simulated and real-world data. Comparisons are made to two
alternative models with ARD priors: a Gaussian process with a NN covariance function
and marginal maximum a posteriori estimates of the relevance parameters, and a NN with
Markov chain Monte Carlo integration over all the unknown model parameters.

Keywords: expectation propagation, neural network, multilayer perceptron, linear model,
sparse prior, automatic relevance determination

1. Introduction

Gaussian priors may not be the best possible choice for the input layer weights of a feed-
forward neural network (NN) because allowing, a priori, a large weight wj for a potentially
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irrelevant feature xj may deteriorate the predictive performance. This behavior is analo-
gous to a linear model because the input layer weights associated with each hidden unit of
a multilayer perceptron (MLP) network can be interpreted as separate linear models whose
outputs are combined nonlinearly in the next layer. Integrating over the posterior uncer-
tainty of the unknown input weights mitigates the potentially harmful effects of irrelevant
features but it may not be sufficient if the number of input features, or the total number
of unknown variables, grows large compared with the number of observations. In such
cases, an alternative strategy is required to suppress the effect of the irrelevant features. In
this article we focus on a two-layer MLP model structure but aim to form a more general
framework that can be used to combine linear models with sparsity-promoting priors using
general activation functions and interaction terms between the hidden units.

A popular approach has been to apply hierarchical automatic relevance determination
(ARD) priors (Mackay, 1995; Neal, 1996), where individual Gaussian priors are assigned
for each weight, wj ∼ N (0, αlj ), with separate variance hyperparameters αlj controlling
the relevance of the group of weights related to each feature. Mackay (1995) described an
ARD approach for NNs, where point estimates for the relevance parameters αlj along with
other model hyperparameters, such as the noise level, are determined using a marginal likeli-
hood estimate obtained by approximate integration over the weights with Laplace’s method.
Neal (1996) proposed an alternative Markov chain Monte Carlo (MCMC) approach, where
approximate integration is performed over the posterior uncertainty of all the model pa-
rameters including wj and αlj . In connection with linear models, various computationally
efficient algorithms have been proposed for determining marginal likelihood based point
estimates for the relevance parameters (Tipping, 2001; Qi et al., 2004; Wipf and Nagarajan,
2008). The point-estimate based methods, however, may suffer from overfitting because
the maximum a posteriori (MAP) estimate of αlj may be close to zero also for relevant
features as demonstrated by Qi et al. (2004). The same applies also for infinite neural
networks implemented using Gaussian process (GP) priors when separate hyperparameters
controlling the nonlinearity of each input are optimized (Williams, 1998; Rasmussen and
Williams, 2006).

Recently, appealing surrogates for ARD priors have been presented for linear models.
These approaches are based on sparsity favoring priors, such as the Laplace prior (Seeger,
2008) and the spike and slab prior (Hernández-Lobato et al., 2008, 2010). The methods
utilize the expectation propagation (EP) (Minka, 2001b) algorithm to efficiently integrate
over the analytically intractable posterior distributions. Importantly, these sparse priors
do not suffer from similar overfitting as many ARD approaches because point estimates of
feature specific parameters such as αlj are not used, but instead, approximate integration is
done over the posterior uncertainty resulting from a sparse prior on the weights. Expecta-
tion propagation provides a useful alternative to MCMC for carrying out the approximate
integration because it has been found computationally efficient and very accurate in many
practical applications (Nickisch and Rasmussen, 2008; Hernández-Lobato et al., 2010).

In nonlinear regression, sparsity favoring Laplace priors have been considered for NNs,
for instance, by Williams (1995), where the inference is performed using the Laplace ap-
proximation. However, a problem with the Laplace approximation is that the curvature
of the log-posterior density at the posterior mode may not be well defined for all types of
prior distributions, such as, the Laplace distribution whose derivatives are not continuous
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at the origin (Williams, 1995; Seeger, 2008). Implementing a successful algorithm requires
some additional approximations as described by Williams (1995), whereas with EP the im-
plementation is straightforward since it relies only on expectations of the prior terms with
respect to a Gaussian measure.

Another possibly undesired characteristic of the Laplace approximation is that it ap-
proximates the posterior mean of the unknowns with their MAP estimate and their posterior
covariance with the negative Hessian of the posterior distribution at the mode. This local
estimate may not represent well the overall uncertainty on the unknown variables and it may
lead to worse predictive performance for example when the posterior distribution is skewed
(Nickisch and Rasmussen, 2008) or multimodal (Jylänki et al., 2011). Furthermore, when
there are many unknowns compared to the effective number of observations, which is typical
in practical NN applications, the MAP solution may differ significantly from the posterior
mean. For example, with linear models the Laplace prior leads to strictly sparse estimates
with many zero weight values only when the MAP estimator of the weights is used. The
posterior mean estimate, on the other hand, can result in many clearly nonzero values for
the same weights whose MAP estimates are zero (Seeger, 2008). In such case the Laplace
approximation underestimates the uncertainty of the feature relevances, that is, the joint
mode is sharply peaked at zero but the bulk of the probability mass is distributed widely at
nonzero weight values. Recently, it has also been shown that in connection with linear mod-
els the ARD solution is exactly equivalent to a MAP estimate of the coefficients obtained
using a particular class of non-factorized coefficient prior distributions which includes mod-
els that have desirable advantages over MAP weight estimates (Wipf and Nagarajan, 2008;
Wipf et al., 2011). This connection suggests that the Laplace approximation of the input
weights with a sparse prior may possess more similar characteristics with the point-estimate
based ARD solution compared to the posterior mean solution.

Our aim is to introduce the benefits of the sparse linear models (Seeger, 2008; Hernández-
Lobato et al., 2008) into nonlinear regression by combining the sparse priors with a two-layer
NN in a computationally efficient EP framework. We propose a logical extension of the linear
regression models by adopting the algorithms presented for sparse linear models to MLPs
with a linear input layer. For this purpose, the main challenge is constructing a reliable
Gaussian EP approximation for the analytically intractable likelihood resulting from the
NN observation model. In addition to the already discussed Laplace’s method (see, e.g.,
Mackay, 1995; Williams, 1995), Gaussian approximations for NN models have been formed
using variational Bayesian (VB) methods (Hinton and van Camp, 1993; Barber and Bishop,
1998; Honkela and Valpola, 2005), the extended Kalman filter (EKF) (Freitas, 1999), and
the unscented Kalman filter (UKF) (Wan and van der Merwe, 2000). Alternative mean
field approaches possessing similar characteristic with EP have been proposed by Opper and
Winther (1996) and Winther (2001). Comparisons between Laplace approximation, VB, and
MCMC have been made by Heskes et al. (2002) and Bakker et al. (2004). Recently, Graves
(2011) proposed stochastic VB method applicable for multi-layered network architectures
with various regularizing priors.

We extend the ideas from the UKF approach by utilizing similar decoupling approx-
imations for the weights as proposed by Puskorius and Feldkamp (1991) for EKF-based
inference and derive a computationally efficient algorithm that does not require numerical
sigma point approximations for multi-dimensional integrals. We propose a posterior ap-
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proximation that assumes the weights associated with the output-layer and each hidden
unit independent. The complexity of the EP updates in the resulting algorithm scale lin-
early with respect to the number of hidden units and they require only one-dimensional
numerical quadratures. The complexity of the posterior computations scale similarly to an
ensemble of independent sparse linear models (one for each hidden unit) with one additional
linear predictor associated with the output layer. It follows that all existing methodology
on sparse linear models (e.g., methods that facilitate computations with large number of
inputs) can be applied separately on the sparse linear model corresponding to each hidden
unit. Furthermore, the complexity of the algorithm scales linearly with respect to the num-
ber of observations, which is beneficial for large data sets. The proposed approach can also
be extended beyond standard activation functions and NN model structures, for example,
by including a linear hidden unit or predefined interactions between the linear input-layer
models.

In addition to generalizing the standard EP framework for sparse linear models we intro-
duce an efficient EP approach for inference on the unknown hyperparameters, such as the
noise level and the scale parameters of the weight priors. This framework enables flexible
definition of different hierarchical priors, such as one common scale parameter for all input
weights, or a separate scale parameter for all weights associated with one input variable
(i.e., an integrated ARD prior). For example, assigning independent Laplace priors on the
input weights with a common unknown scale parameter does not produce very sparse ap-
proximate posterior mean solutions, but, if required, more sparse solutions can be obtained
by adjusting the common hyperprior of the scale parameters with the ARD specification.
We show that by making independent approximations for the hyperparameters, the infer-
ence on them can be done simultaneously within the EP algorithm for the network weights,
without the need for separate optimization steps which is common for many EP approaches
for sparse linear models and GPs (Rasmussen and Williams, 2006; Seeger, 2008), as well
as combined EKF and expectation maximization (EM) algorithms for NNs (Freitas, 1999).
Additional benefits are achieved by introducing left-truncated priors on the output weights
which prevent possible convergence problems in the EP algorithm resulting from inherent
unidentifiability in the MLP network specification.

The main contributions of the paper can be summarized as:

• An efficiently scaling EP approximation for the non-Gaussian likelihood resulting from
the MLP-model that requires numerical approximations only for one-dimensional in-
tegrals. We derive closed-form solutions for the parameters of the site term approxi-
mations, which can be interpreted as pseudo-observations of a linear model associated
with each hidden unit (Sections 3.1–3.4 and Appendices A–E).

• An EP approach for integrating over the posterior uncertainty of the input weights
and their hierarchical scale parameters assigned on predefined weight groups (Section
3.2.2). The approach could be applied also for sparse linear models to construct
factorized approximations for predefined weight groups with shared hyperparameters.

• Approximate integration over the posterior uncertainty of the observation noise simul-
taneously within the EP algorithm for inference on the weights of a MLP-network (see
Appendix D). Using factorizing approximations, the approach could be extended also
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for approximate inference on other hyperparameters associated with the likelihood
terms and could be applied, for example, in recursive filtering.

Key properties of the proposed model are first demonstrated with three artificial case
studies in which comparisons are made with a neural network with infinitely many hidden
units implemented as a GP regression model with a NN covariance function and an ARD
prior (Williams, 1998; Rasmussen and Williams, 2006). Finally, the predictive performance
of the proposed approach is assessed using four real-world data sets and comparisons are
made with two alternative models with ARD priors: a GP with a NN covariance function
where point estimates of the relevance hyperparameters are determined by optimizing their
marginal posterior distribution, and a NN where approximate inference on all unknowns is
done using MCMC (Neal, 1996).

2. The Model

We focus on two layer NNs where the unknown function value fi = f(xi) related to a
d-dimensional input vector xi is modeled as

f(xi) =
K∑
k=1

vkg(wT
k xi) + v0, (1)

where g(x) is a nonlinear activation function, K the number of hidden units, and v0 the
output bias. Vector wk = [wk,1, wk,2, ..., wk,d]

T contains the input layer weights related
to hidden unit k and vk is the corresponding output layer weight. Input biases can be
introduced by adding a constant term to the input vectors xk. In the sequel, all weights
are denoted by vector z = [wT,vT]T, where w = [wT

1 , ...,w
T
K ]T, and v = [v1, ..., vK , v0]

T.

In this work, we use the following activation function:

g(x) =
1√
K

erf

(
x√
2

)
=

2√
K

(Φ(x)− 0.5) , (2)

where Φ(x) =
∫ x
−∞N (t|0, 1)dt, and the scaling by 1/

√
K ensures that the prior variance of

f(xi) does not increase with K assuming fixed Gaussian priors on vk and wkj . We focus on
regression problems with Gaussian observation model p(yi|fi, σ2) = N (yi|fi, σ2), where σ2 is
the noise variance. However, the proposed approach could be extended for other activation
functions and observations models, for example, the probit model for binary classification.

2.1 Prior Definitions

To reduce the effects of irrelevant features, sparsity-promoting priors p(wj |φlj ) with hierar-

chical scale parameters φlj ∈ φ = {φl}Ll=1 are placed on the input layer weights. Each input
weight wj corresponding to the j:th element of w is assigned to one of L predefined groups
indicated by the index variable lj ∈ {1, ..., L}, and φl is a joint hyperparameter controlling
the prior variance of all the input weights belonging to group l, that is, Var(wj |φ) = exp(φl)
for all j ∈ {1, ...,Kd|lj = l}. We consider two types of input weight priors conditioned on
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φ; Laplace priors and Gaussian priors defined as

Laplace: p(wj |φlj ) =
1√
2λlj

exp

(
−
√

2

λlj
|wj |

)
Gaussian: p(wj |φlj ) = N (wj |0, λ2lj ), (3)

where λ2lj = exp(φlj ) = Var(wj |φlj ). The grouping of the weights can be chosen freely
and also other weight prior distributions can be used in place of the Laplace or Gaussian
distributions in (3). The approximate inference on the variance parameters λ2l > 0 is
carried out using the log-transformed scale parameters φl = log(λ2l ) ∈ R to facilitate an EP
algorithm based on Gaussian approximating families as described in Section 3. By defining a
suitable prior on the unknown group scales φl, useful hierarchical priors can be implemented
on the input layer. Possible definitions include one common scale parameter for all inputs
(L = 1), and a separate scale parameter for all the weights related to each feature, which
implements an ARD prior (L = d). The traditional ARD setting is obtained by using a
Gaussian distributions for p(wj |φlj ) as defined in (3) and choosing simply lj = 1, ..., d for

all j = K(k− 1) + lj . We assign Gaussian hyperpriors to the scale parameters φ = {φl}Ll=1:

p(φl) = N (µφ,0, σ
2
φ,0), (4)

where a common mean µφ,0 and a variance σ2φ,0 have been defined for all groups l = 1, ..., L.

Definition (4) corresponds to a log-normal prior for the associated prior variance λ2l =
exp(φl) of the weights in group l.

Because of the symmetry g(x) = −g(−x) of the activation function, changing the signs
of output weight vk and the corresponding input weights wk results in the same prediction
f(x). This unidentifiability may cause converge problems in the EP algorithm: if the
approximate posterior probability mass of output weight vk concentrates too close to zero,
expected values of vk and wk may start fluctuating between small positive and negative
values. Therefore the output weights are constrained to positive values by assigning left-
truncated heavy-tailed priors to them:

p(vk) = 2tν(vk|0, σ2v,0), (5)

where vk ≥ 0, k = 1, ...,K, and tν(vk|0, σ2v,0) denotes a Student-t distribution with degrees

of freedom ν, mean zero, and scale parameter σ2v,0. The prior scale is fixed to σ2v,0 = 1 and
the degrees of freedom to ν = 4, which by experiments was found to produce sufficiently
large posterior variations of f(x) when the activation function is scaled according to (2) and
the observations are normalized to zero mean and unit variance. The heavy-tailed prior (5)
enables very large output weights if required, for example, when some hidden unit is forming
almost a linear predictor (see, e.g, Section 4.2). A zero-mean Gaussian prior is assigned
to the output bias: p(v0) = N (0, σ2v0,0), where the scale parameter is fixed to σ2v0,0 = 1
because it was also found to be a sufficient simplification with the same data normalization
conditions. The noise level σ2 is assumed unknown and therefore a log-normal prior is
assigned to it corresponding to a normal prior on θ = log(σ2):

p(θ) = N (µθ,0, σ
2
θ,0) (6)

with prior mean µθ,0 and variance σ2θ,0.
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Figure 1: A directed graph representing the joint distribution of all the model parameters
written in equation (7) resulting from the observation model and prior definitions
summarized in Section 2. The observed variables indexed with i = 1, ..., n are
denoted with boxes, the unobserved random variables are denoted with circles,
and the fixed prior parameters are denoted with dots. For each input xi, i =
1, ..., n, two intermediate random variables are visualized: The linear hidden unit
activations defined as hi,k = wT

k xi and the latent function value given by fi =∑K
k=1 vkg(hi,k) + v0.

2.2 The Posterior Distribution

Given the previous prior definitions and a set of n observations D = {X,y}, where y =
[y1, ..., yn]T and X = [x1, ...,xn]T, the joint posterior distribution of w, v, φ, and θ is given
by

p(w,v, θ,φ|D,γ) = Z−1
n∏
i=1

p(yi|fi, θ)
Kd∏
j=1

p(wj |φlj )
K∏
k=0

p(vk|γ)

L∏
l=1

p(φl|γ)p(θ|γ), (7)

where fi =
∑K

k=1 vkg(wTxi) + v0, γ = {σ2v,0, σ2v0,0, µφ,0, σ
2
φ,0, µθ,0, σ

2
θ,0} contains all the fixed

hyperparameters and Z is the marginal likelihood of the observations conditioned on γ:

Z = p(y|X,γ) =

∫
p(y|w,v,X, θ)p(w|φ)p(v|γ)p(φ|γ)p(θ|γ)dwdvdφdθ. (8)

Figure 1 shows a directed graph representing the joint distribution (7) where we have also
included intermediate random variables hi,k = wT

k xi and fi =
∑K

k=1 vkg(hi,k) + v0 related
to each data point to clarify the upcoming description of the approximate inference scheme.
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2.3 General Properties of the Model

The values of the hyperparameters λl = exp(φl/2) and σ2v,0 affect the smoothness properties
of the model in different ways. In the following discussion we first assume that there is
only one input scale parameter λ1 (L = 1) for clarity. Choosing a smaller value for λ1
penalizes more strongly for larger input weights and produces smoother functions with
respect to changes in the input features. More precisely, in the two-layer NN model (1) the
magnitudes of the input weights (or equivalently the ARD scale parameters) are related
to the nonlinearity of the latent function f(x) with respect to the corresponding inputs
x. Strong nonlinearities require large input weights whereas almost a linear function is
obtained with a very large output weight and very small input weights for a certain hidden
unit (see Section 4.2 for illustration).

Because the values of the activation function g(x) are constrained to the interval [−1, 1],
hyperparameter σ2v,0 controls the overall magnitude of the latent function f(x). Larger

values of σ2v,0 increase the magnitude of the steps the hidden unit activation vkg(wT
k x) can

take in the direction of weight vector wk in the feature space. Choosing a smaller value
for σ2v,0 can improve the predictive performance by constraining the overall flexibility of the
model but too small value can prevent the model from explaining all the variance in the
target variable y. In this work, we keep σ2v,0 fixed to a sufficiently large value and infer λl
from data promoting simultaneously smoother solutions with the prior on φl = log(λ2l ). If
only one common scale parameter φ1 is used, the sparsity-inducing properties of the prior
depend on the shape of the joint distribution p(w|λ1) =

∏
j p(wj |λ1) resulting from the

choice of the prior terms (3). By decreasing µφ,0, we can favor smaller input weight values
overall, and with σ2φ,0, we can adjust the thickness of the tails of p(w|λ1). On the other
hand, if individual scale parameters are assigned for all inputs according to the ARD setting,
a family of sparsity-promoting priors is obtained by adjusting µφ,0 and σ2φ,0. If µφ,0 is set

to a small value, say 0.01, and σ2φ,0 is increased, sparser solutions are favored by allocating
increasing amounts of prior probability on the axes of the input weight space. A sparse
prior could be introduced also on the output weights vk to suppress redundant hidden units
but this was not found necessary in the experiments because the proposed EP updates have
a fixed point at E(vk) = 0 and E(wk) = 0 for each k = 1, ...,K and during the iterations
unused hidden units are gradually driven towards zero (see Section 3.5.3 and Appendix E).

3. Approximate Inference

In this section, we describe how approximate Bayesian inference on the unknown model
parameters w, v, θ, and φ = [φ1, ..., φL]T can be done efficiently using EP. First, in Section
3.1, we describe how the posterior approximation can be formed using local factorized site
approximations and then, in Section 3.2, we summarize a general EP algorithm suitable for
determining their parameters. In Section 3.3, we discuss suitable parametric forms for the
local site approximations and properties of the resulting approximate posterior distributions.
We discuss the various computational blocks required in the EP algorithm first in Section
3.4 and give detailed descriptions of the methods in Appendices A– I. Finally, we give an
algorithm description with references to the different building blocks in Section 3.5.

1856



Expectation Propagation for Neural Networks with Sparse Priors

3.1 The Posterior Approximation

To form an analytically tractable approximation for the posterior distribution (7), all the
non-tractable likelihood and prior terms are approximated with unnormalized Gaussian
site functions, which provide a suitable approximating family for random vectors defined
in the real vector space. The Gaussian distribution is a commonly used approximate fam-
ily for the weights of linear models and neural networks (see, e.g, Seeger, 2008; Freitas,
1999) but in our case it is also a suitable family for the hyperparameters φl = log(λ2l ) and
θ = log(σ2), because of the logarithmic transformations and Gaussian prior definitions (4)
and (6). Alternatively one could consider other exponential family distributions such as
the inverse-gamma for the variance parameters λ2l and σ2 directly. We approximate the
posterior distribution (7) as

p(z, θ,φ|D) = Z−1
n∏
i=1

p(yi|fi, θ)
Kd∏
j=1

p(wj |φlj )
K∏
k=0

p(vk)

L∏
l=1

p(φl)p(θ) (9)

≈Z−1EP

n∏
i=1

Z̃y,it̃z,i(z)t̃θ,i(θ)

Kd∏
j=1

Z̃w,j t̃w,j(wj)t̃φ,j(φlj )

K∏
k=1

Z̃v,k t̃v,k(vk)p(v0)

L∏
l=1

p(φl)p(θ),

where z = [wT,vT]T and ZEP is the EP approximation of the marginal likelihood Z =
p(y|X,γ) defined in (8) (for details, see Appendix I). We have excluded the fixed hyper-
parameters γ = {σ2v,0, σ2v0,0, µφ,0, σ

2
φ,0, µθ,0, σ

2
θ,0} from the notation in equation (9) and will

do that also in the following sections, because they are assumed to be fixed during the EP
iterations.

3.1.1 The Likelihood Term Approximations

The likelihood terms that depend on the weights z = [wT,vT]T through fi according to (1)
are approximated with a product of two unnormalized Gaussian site functions:

p(yi|fi, θ) ≈ Z̃y,it̃z,i(z)t̃θ,i(θ), (10)

where Z̃y,i is a scalar scaling parameter. Because the approximate posterior correlations
between the components of z are defined by the likelihood site approximations t̃z,i(z), their
parametric structure is crucial for computationally efficient EP updates especially when
K and d are large. Section 3.3 discusses alternative structures for t̃z,i(z) and proposes
factorized Gaussian site approximations of the form

t̃z,i(z) = t̃v,i(v)

K∏
k=1

t̃wk,i(wk) (11)

that result in independent approximations for v, w1,..., wK and computationally more
efficient EP updates compared to fully-coupled site approximations. The second likelihood
site approximation dependent on the scalar θ = log σ2 is parameterized as

t̃θ,i(θ) = exp

(
−1

2
σ̃−2θ,i θ

2 + µ̃θ,iσ̃
−2
θ,i θ

)
∝ N (θ|µ̃θ,i, σ̃2θ,i), (12)
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where the site parameters µ̃θ,i and σ̃2θ,i control the location and the scale of the site approx-
imation, respectively. Combined with the known Gaussian prior term p(θ) this results in
a Gaussian posterior approximation for θ that corresponds to a log-normal approximation
for σ2.

3.1.2 The Prior Term Approximations

The prior terms of the output weights vk, for k = 1, ...,K, are approximated with

p(vk) ≈ Z̃v,k t̃v,k(vk) ∝ N (vk|µ̃v,k, σ̃2v,k), (13)

where Z̃v,k is a scalar scaling parameter, t̃v,k(vk) has a similar exponential form as (12), and
the site parameters µ̃v,k and σ̃2v,k control the location and scale of the site approximation,
respectively. If the prior scales φl are assumed unknown, the prior terms of the input weights
{wj |j = 1, ...,Kd}, are approximated with

p(wj |φlj ) ≈ Z̃w,j t̃w,j(wj)t̃φ,j(φlj ) ∝ N (wj |µ̃w,j , σ̃2w,j)N (φlj |µ̃φ,j , σ̃
2
φ,j), (14)

where a factorized site approximation with location parameters µ̃w,j and µ̃φ,j , and scale
parameters σ̃2w,j and σ̃2φ,j , is assigned to weight wj and the associated scale parameter φlj ,

respectively. A similar exponential form to equation (12) is assumed for both t̃w,j(wj) and
t̃φ,j(φlj ). This factorizing site approximation results in independent posterior approxima-
tions for w and each component of φ.

3.1.3 Forming the Joint Posterior Approximation

Multiplying the site approximations together according to (9) and normalizing the resulting
expression gives the following factorized posterior approximation:

p(z, θ,φ|D, γ) ≈ q(z)q(θ)

L∏
l=1

q(φl), (15)

where

q(z) = N (z|µ,Σ) ∝
n∏
i=1

t̃z,i(z)

Kd∏
j=1

t̃w,j(wj)

K∏
k=1

t̃v,k(vk)p(v0)

q(φl) = N (φl|µ2φl , σ
2
φl

) ∝
Kd∏

j=1,lj=l

t̃φ,j(φl)p(φl) l = 1, ..., L

q(θ) = N (θ|µ2θ, σ2θ) ∝
n∏
i=1

t̃θ,i(θ)p(θ). (16)

Multiplying the likelihood site approximations t̃θ,i(θ) defined in (12) together according to
(16) results in a Gaussian approximation q(θ) = N (µθ, σ

2
θ), where the mean and variance

are given by

σ2θ =

(
n∑
i=1

σ̃−2θ,i + σ−2θ,0

)−1
and µθ = σ2θ,0

(
n∑
i=1

σ̃−2θ,i µ̃θ,i + σ−2θ,0µθ,0

)
. (17)
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Similarly, combining the prior site approximations t̃φ,j(φlj ) from (14) results in a Gaussian
approximation q(φl) = N (µφl , σ

2
φl

) with the mean and variance given by

σ2φl =

 Kd∑
j=1,lj=l

σ̃−2φ,j + σ−2φl,0

−1 and µφl = σ2φ,0

 Kd∑
j=1,lj=l

σ̃−2φ,jµ̃φ,j + σ−2φ,0µφ,0

 . (18)

Note that in (18) only the approximations of the prior terms p(wj |φlj ) linked to scale
parameter φl via lj = l affect the summations.

Adopting the factorized site approximation (11) results in a posterior approximation
where the weights related to the different hidden units and the output layer decouple:

q(z) = q(v)
K∏
k=1

q(wk), (19)

where

q(wk) = N (µwk ,Σwk) ∝
n∏
i=1

t̃wk,i(wk)

m+d∏
j=m+1

t̃w,j(wj) k = 1, ...,K, and m = K(k − 1)

q(v) = N (µv,Σv) ∝
n∏
i=1

t̃v,i(v)
K∏
k=1

t̃v,k(vk)p(v0). (20)

The exact parametric forms of the Gaussian posterior approximations q(z), q(v), and q(wk)
are presented in Section 3.3.

3.2 Expectation Propagation

The parameters of the local site approximations that define the approximate posterior
distribution (15) are determined using the EP algorithm (Minka, 2001b). In the following,
we give general descriptions of the EP updates separately for the likelihood terms and the
weight prior terms.

3.2.1 EP Updates for the Likelihood Terms

Here we consider the procedure for updating the likelihood sites t̃z,i and t̃θ,i defined in equa-
tions (10)–(12) and assume that the prior site approximations (13) and (14) are kept fixed.
Because the likelihood terms p(yi|fi, θ) do not depend on φ and the posterior approximation
can be factorized as q(z, θ,φ) = q(z)q(θ)q(φ), we need to consider only the approximations
for z and θ. Furthermore, independent approximations for wk and v are obtained by using
(11) and (19) in place of t̃z,i and q(z), respectively.

At each iteration, first a proportion η of the i:th site term is removed from the posterior
approximation to obtain a cavity distribution:

q−i(z, θ) = q−i(z)q−i(θ) ∝ q(z)q(θ)
(
Z̃y,it̃z,i(z)t̃θ,i(θ)

)−η
, (21)

where η ∈ (0, 1] is a fraction parameter that can be adjusted to implement fractional (or
power) EP updates (Minka, 2004, 2005) (regular EP updates are obtained by setting η = 1).
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Then, the removed fraction of the i:th site approximation is replaced with a corresponding
fraction of the exact likelihood term to form a tilted distribution

p̂i(z, θ) = Ẑ−1i q−i(z, θ)p(yi|z, θ,xi)η, (22)

where Ẑi =
∫
q−i(z, θ)p(yi|z, θ,xi)ηdzdθ is a normalization factor. The tilted distribution

(22) can be regarded as a more refined approximation to the true posterior distribution
assuming that all the other local approximations that form the cavity distribution are
sufficiently accurate. Next, the algorithm attempts to match the approximate posterior
distribution q(z, θ) with p̂i(z, θ) by finding first a member of the chosen approximate family,
q̂i(z, θ) = q̂i(z)q̂i(θ), that satisfies

q̂i(z, θ) = arg minqi KL
(
p̂i(z, θ)||qi(z, θ)

)
,

where KL denotes the Kullback-Leibler divergence. When q(z, θ) is chosen to be a Gaus-
sian distribution this is equivalent to setting the approximate mean vectors and covariance
matrices that determine q̂i(z) and q̂i(θ) equal to the marginal mean vectors and covariance
matrices of z and θ with respect to p̂i. Then, the parameters of the i:th site terms are
updated so that the new posterior approximation q(z, θ)new that would result from the site
update is consistent with q̂i(z, θ):

q(z, θ)new = Ẑ−1i q−i(z, θ)
(
Z̃new
y,i t̃z,i(z)newt̃θ,i(θ)

new
)η

= q̂i(z, θ). (23)

Finally, the posterior approximation q(z, θ) is updated according to the changes in the site
parameters. These steps are repeated for all sites in some suitable order until convergence,
that is, when all the n tilted distributions (22) are consistent with the approximation q(z, θ).
From now on, we refer to the previously described EP update scheme as sequential EP. If
the update of the posterior approximation q(z, θ) in the last step is done only after new
parameter values have been determined for all sites (in this case the n likelihood term
approximations), we refer to parallel EP (see, e.g., Gerven et al., 2009).

The actual numerical values of the normalization parameters Z̃y,i (or Z̃v,k and Z̃w,j
with the prior term updates in Section 3.2.2) are not required during the iterations of
the EP algorithm because with exponential approximating families it suffices to update
only the natural parameters of q(z, θ) so that the expected sufficient statistics of q(z, θ)
are matched with p̂i(z, θ). However, the effect of the normalization parameters must be
taken into account if one wishes to form an EP approximation for the marginal likelihood
Z = p(y|X,γ) (see Appendix I). This estimate could be utilized to compare models or to
alternatively determine type-II MAP estimates for the hyperparameters γ or parameters θ
and {φl}Ll=1 in case they are not inferred within the EP framework.

Setting the fraction parameter to η = 1 corresponds to regular EP updates whereas
choosing a smaller value produces a slightly different approximation that puts less emphasis
on preserving all the nonzero probability mass of the tilted distributions (Minka, 2005).
Consequently, choosing a smaller value of η < 1 tries to represent possible multimodalities in
(22) but ignores modes far away from the main probability mass, which results in a tendency
to underestimate variances. Taking the limit η → 0 corresponds to minimizing the reverse
KL divergence q̂i(z, θ) = arg minqi KL

(
qi(z, θ)||p̂i(z, θ)

)
resulting in a local approximation

that tries to represent only one mode of the tilted distribution. In practice, decreasing η can
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improve the overall numerical stability of the algorithm and alleviate convergence problems
resulting from possible multimodalities in case the unimodal approximation is not a good fit
for the true posterior distribution (Minka, 2001b, 2005; Seeger, 2008; Jylänki et al., 2011).

In case the likelihood term approximations are updated with η = 1, the cavity dis-
tribution (21) can be interpreted as an approximation to the leave-one-out (LOO) poste-
rior distribution where the contribution of the i:th likelihood term p(yi|fi, θ) is removed
from q(z, θ). Furthermore, the normalization factor of the tilted distribution (22) can be
thought of as an approximation to the LOO predictive density of the excluded data point yi:
p(yi|D−i,xi) ≈ Ẑi =

∫
q−i(z, θ)p(yi|z, θ,xi)dzdθ. In Section 3.5 we use these normalization

factors as a one measure of the model fit.

There is no theoretical convergence guarantee for the standard EP algorithm but damp-
ing the site parameter updates can help to achieve convergence in harder problems (Minka
and Lafferty, 2002; Heskes and Zoeter, 2002).1 With exponential approximate families
damping can be understood as leaving part of the old site approximation in the posterior
approximation according to q(z)new = q(z)t̃z,i(z)−δ(t̃z,i(z)new)δ, where δ ∈ (0, 1] is a damp-
ing factor. This corresponds to updating the site parameters (in their natural exponential
forms) to a convex combination of their old values and the new values resulting from (23)
(see, e.g, equation (60) in Appendix E). The convergence problems are usually seen as os-
cillations over iterations in the site parameter values and they may occur, for example, if
there are inaccuracies in the tilted moment evaluations, or if the approximate distribution
is not a suitable proxy for the true posterior because of multimodalities. With damping,
smaller steps are taken in the site parameter updates, which can reduce the oscillations and
alleviate numerical problems caused by ill-conditioned approximate posterior (or cavity)
covariance matrices.

3.2.2 EP Updates for the Weight Prior Terms

Assuming that the likelihood term approximations (10) are fixed, the EP algorithm for
determining the parameters of the prior term approximations (13) and (14) can be imple-
mented in the same way as with sparse linear models (see, e.g., Seeger, 2008; Hernández-
Lobato et al., 2008; Gerven et al., 2010; Hernández-Lobato et al., 2013).

To derive EP updates for the prior term approximations of the output weights v assum-
ing the factorized approximation (19), we need to consider only the prior site approximations
p(vk) ≈ Z̃v,k t̃v,k(vk) from (13) and the approximate posterior q(v) = N (v|µv,Σv) defined
in equation (20). All approximate posterior information from the observations D = {y,X}
and the priors on the input weights w are conveyed by the likelihood term approximations
{t̃v,i(v)}ni=1 that are determined during the EP iterations for the likelihood sites which
is why a standard EP implementation (see, e.g., Seeger, 2008) can be readily applied to
determine tv,k(vk) by using

∏n
i=1 t̃v,i(v) as an approximate Gaussian likelihood. The EP

updates can be derived by following the same general scheme that was described in 3.2.1.
Because the prior terms p(vk) depend only on one random variable vk, deriving the param-
eters of the cavity distributions q−k(vk) ∝ q(vk)t̃v,k(vk|µ̃v,k, σ̃2v,k)−η and updates for the site

1. Alternative provably convergent double-loop algorithms exist but usually they require more computa-
tional effort in the form of additional inner-loop iterations (Minka, 2001b; Heskes and Zoeter, 2002;
Opper and Winther, 2005; Seeger and Nickisch, 2011).
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parameters µ̃v,k and σ̃2v,k require only manipulating univariate Gaussians. The moments of
the tilted distribution p̂k(vk) ∝ q−k(vk)p(vk)η can be computed either analytically or using
one-dimensional numerical quadratures depending on the functional form of the exact prior
term p(vk). Appendix F presents an algorithm description that can used to implement these
steps in practice.

To derive EP updates for the site approximations of the hierarchical prior terms p(wj |φlj )
assuming the factorized approximation (19), we need to consider the approximate posterior
distributions q(wk) = N (wk|µwk ,Σwk) from (20) for k = 1, ...,K together with the corre-
sponding prior site approximations p(wj |φlj ) ≈ Z̃w,j t̃w,j(wj)t̃φ,j(φlj ) from (14) for indices
j = (k−1)+1, ..., (k−1)+d. Separate EP algorithms can be run for each of the hidden units
if they are not coupled through shared scale parameters φl. Since all approximate posterior
information from the observations D is conveyed by the likelihood term approximations
{t̃wk,i(wk)}ni=1 that are determined during the EP updates for the likelihood sites, the EP
updates to determine Z̃w,j , t̃w,j(wj), and t̃φ,j(φlj ) can now be derived using

∏n
i=1 t̃wk,i(wk)

as an approximate Gaussian likelihood for wk, and {p(φl)}Ll=1 as fixed priors for φl in the
posterior approximations q(wk) and q(φl) defined in (16) and (20). EP algorithms for sparse
linear models that operate on site terms depending on a nonlinear combination of multiple
random variables have been described earlier, e.g., by Hernández-Lobato et al. (2008) and
Gerven et al. (2009).

Because the j:th exact prior term (3) depends on both the weight wj and the correspond-
ing log-transformed scale parameter φlj , the j:th cavity distribution is formed by removing a
fraction η of both site approximations t̃w,j(wj) and t̃φ,j(φlj ) from the approximate posterior:

q−j(wj , φlj ) = q−j(wj)q−j(φlj ) ∝ q(wj)q(φlj )
(
Z̃w,j t̃w,j(wj)t̃φ,j(φlj )

)−η
, (24)

where q(wj) is the j:th marginal density extracted from the corresponding approximation
q(wk) and q(φlj ) is defined by (16) and (18). The j:th tilted distribution is formed by
replacing the removed site terms with a fraction η of the exact prior term p(wj |φlj ):

p̂j(wj , φlj ) = Ẑ−1w,jq−j(wj)q−j(φlj )p(wj |φlj )
η ≡ q̂(wj , φlj ), (25)

where q̂(wj , φlj ) is a Gaussian approximation formed by determining the mean and co-
variance of p̂j(wj , φlj ). The site parameters are updated so that the resulting posterior
approximation is consistent with the marginal means and variances of q̂(wj , φlj ):

q̂j(wj)q̂j(φlj ) = Ẑ−1w,jq−j(wj)q−j(φlj )
(
Z̃new
w,j t̃w,j(wj)

newt̃φ,j(φlj )
new
)η
. (26)

Because of the factorized approximation, the cavity computations (24) and the site updates
(26) require only scalar operations. An algorithm description implementing the update
steps (24)–(26) is presented in Appendix F.

Determining the moments of (25) can be done efficiently using one-dimensional quadra-
tures if the means and variances of wj with respect to the conditional distribution p̂j(wj |φlj )
can be determined analytically. This can be readily done when p(wj |φlj ) is a Laplace dis-
tribution or a finite mixture of Gaussians. The marginal tilted distribution for φlj is given
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by

p̂(φlj ) = Ẑ−1w,j

∫
q−j(wj)q−j(φlj )p(wj |φlj )

ηdwj = Ẑ−1w,jZ(φlj , η)q−j(φlj )

≈ N (φlj |µ̂φ,j , σ̂
2
φ,j), (27)

where it is assumed that Z(φlj , η) =
∫
q−j(wj)p(wj |φlj )ηdwj can be calculated analytically.

The normalization term Ẑw,j =
∫
Z(φlj , η)q−j(φlj )dφlj , the marginal mean µ̂φ,j , and the

variance σ̂2φ,j can be determined using numerical quadratures.
The marginal tilted mean and variance of wj can be determined by integrating numeri-

cally the conditional expectations of wj and w2
j over p̂j(φlj ):

E(wj) = Ẑ−1w,j

∫
wj p̂j(wj |φlj )Z(φlj , η)q−j(φlj )dwjdφlj =

∫
E(wj |φlj , η)p̂j(φlj )dφlj

Var(wj) =

∫
E(w2

j |φlj , η)p̂j(φlj )dφlj − E(wj)
2, (28)

where p̂j(wj |φlj ) = Z(φlj , η)−1q−j(wj)p(wj |φlj )η, and it is assumed that the conditional
expectations E(wj |φlj , η) and E(w2

j |φlj , η) can be calculated analytically. The fraction pa-
rameter can also be handled conveniently because the exponentiation with η results in a
distribution of the same family multiplied by a tractable function of η and φlj when the prior
distribution p(wj |φlj ) belongs to the exponential family. Computing the marginal moments
using equations (27) and (28) requires a total of five one-dimensional quadrature integra-
tions but in practice this can be done efficiently by utilizing the same function evaluations
of p̂j(φlj ) and taking into account the prior specific forms of E(wj |φlj , η) and E(w2

j |φlj , η).

3.3 Structure of the Weight Approximation

In this section we consider different possibilities for approximating the likelihood terms
p(yi|fi, θ) which depend on the noise parameter θ = log σ2 and the weight vectors w and v
through the latent function value fi as

fi = vTg(x̃T
i w) = vTg(hi), (29)

where x̃i = IK ⊗xi is a Kd×K auxiliary matrix formed as a Kronecker product. It can be
used to write all the linear input layer activations hi related to xi as hi = h(xi) = x̃T

i w. The
vector valued function g(hi) applies the nonlinear transformation (2) on each component of
hi according to g(hi) = [g(hi,1), g(hi,2), ..., g(hi,K), 1]T, where the last element corresponds
to the output bias v0.

3.3.1 Fully-Coupled Approximation for the Network Weights

If we approximate the posterior distribution of all the weights z = [wT,vT]T with a multi-
variate Gaussian approximation q(z) from (16) that is independent of all the other unknowns
including φ and θ, the resulting EP algorithm requires fast evaluation of the means and
covariances of tilted distributions of the form

p̂i(z) ∝ p(yi|vTg(hi), θ)
ηq−i(z), (30)
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which is equivalent to (22) except that θ is assumed fixed for clarity. Approximating
the tilted moments with unknown θ is described in Appendix D. Assuming Gaussian site
approximations t̃z,i(z) and using (21) results in a Gaussian cavity distribution q−i(z) =
N (z|µ−i,Σ−i), where µ−i is a dz×1 mean vector and Σ−i a dz×dz covariance matrix with
dz = Kd+K + 1.

Because the non-Gaussian likelihood term depends on w only through the linear trans-
formation hi = x̃T

i w, it can be shown (e.g., by differentiating (30) twice with respect to
µ−i) that the normalization term, mean and covariance of p̂i(z) can be exactly determined
by using the corresponding moments of the transformed lower dimensional random vector
ui = BT

i z = [wTx̃i,v
T]T = [hT

i ,v
T]T, where the transformation matrix Bi can be written

as

Bi =

[
x̃i 0
0 IK+1

]
. (31)

This results in significant computational savings because the size of Bi is dz × du, where
the dimensions of ui and z are du = 2K + 1 and dz = Kd+ K + 1 respectively. It follows
that the EP algorithm can be implemented by propagating the moments of ui using, for
example, the general algorithm described by Cseke and Heskes (2011, appendix C). The
same principle has been utilized to form computationally efficient algorithms also for linear
binary classification (Minka, 2001a; Qi et al., 2004) and multi-class classification (Riihimäki
et al., 2013).

Because of the previously described property, the first likelihood site approximation
t̃z,i(z) in (10) depends on z only through the linear transformation BT

i z (Cseke and Heskes,
2011):

t̃z,i(z) = exp

(
−1

2
zTBiT̃iB

T
i z + zTBib̃i

)
, (32)

where b̃i is a du × 1 vector of location parameters, and T̃i a du × du site precision matrix.
Multiplying the site approximations (32) together according to (16) results in a Gaussian
approximation q(z) = N (µ,Σ), where the mean vector and covariance matrix are given by

Σ =

(
n∑
i=1

BiT̃iB
T
i + Σ−10

)−1
and µ = Σ

(
n∑
i=1

Bib̃i + Σ−10 µ0

)
. (33)

In (33) the parameters of the prior term approximations t̃w,j(wj) ∝ N (µ̃w,j , σ̃
2
w,j) and

t̃v,k(vk) ∝ N (µ̃v,k, σ̃
2
v,k) and the prior p(v0) = N (0, σ2v0,0) are collected together in Σ0 =

diag([σ̃2w,1, ..., σ̃
2
w,Kd, σ̃

2
v,1, ..., σ̃

2
v,K , σ

2
v0,0

]) and µ0 = [µ̃w,1, ..., µ̃w,Kd, µ̃v,1, ..., µ̃v,K , 0]T. The
fully-coupled approximation defined by (32) and (33) can capture correlations between all
components of z because the off-diagonal elements of T̃i will typically become non-zero
during the EP updates. Because the base computational scaling of these updates is O(d3u)
and determining the tilted moments requires multi-dimensional numerical integrations, the
fully-coupled approximation is feasible only with a small number of hidden units or with
additional low rank approximations for the site precision parameters T̃i. These issues
together with computationally more efficient approximations are considered in the next
section.
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3.3.2 Factorized Approximation for the Network Weights

A drawback with the fully-coupled approximation (33) is that computing the covariance

matrix Σ scales as O
(

min
(
Kd+K+1,

∑
i rank(T̃i)

)3)
, which may not be feasible with large

values of d or K. In addition, an EP update for each likelihood site would require multiple
rank(T̃i) matrix inversion (or decomposition) to compute the mean and covariance of the
cavity distribution (21) and the new site parameters using (23). Determining the mean and
covariance of ui = Biz = [hT

i ,v
T]T is also computationally challenging when z is distributed

according to (30). If the observation model is Gaussian and θ is fixed, this requires at
least K-dimensional numerical quadratures (or other alternative approximations) that may
quickly become infeasible as K increases. By adopting suitable independence assumptions
between v and the input weights wk associated with the different hidden units, the mean
and covariance of ui can be approximated using only 1-dimensional numerical quadratures
as will be described in Section 3.4.

The structure of the correlations in the approximation (33) can be studied by dividing
T̃i into four blocks as follows:

T̃i =

[
T̃hihi T̃hiv

T̃vhi T̃i,vv

]
, (34)

where T̃hihi is a K×K matrix, T̃hiv = T̃T
vhi

a K×K+1 matrix, and T̃i,vv a K+1×K+1

matrix. The element [T̃hihi ]k,k′ contributes to the approximate posterior covariance between
wk and wk′ , and the k:th row of sub-matrix T̃hiv contributes to the approximate covariance
between wk and v. To form an alternative computationally more efficient approximation
we propose a simpler structure for T̃i. First, we approximate T̃hihi with a diagonal matrix,
that is, T̃hihi = diag(τ̃i), where only the k:th component of the vector τ̃i contributes to
the posterior covariance of wk. Secondly, we set T̃hiv = T̃T

vhi
= 0, and approximate T̃i,vv

with an outer-product of the form T̃i,vv = α̃iα̃
T
i . With this precision structure the site

approximation (32) can be factorized into terms depending only on the output weights v
or the input weights wk associated with the different hidden units k = 1, ...,K:

t̃z,i(z) = exp

(
−1

2
(α̃T

i v)2 + vTβ̃i

)
︸ ︷︷ ︸

=t̃v,i(v|α̃i,β̃i)

K∏
k=1

exp

(
−1

2
τ̃i,k(x

T
i wk)

2 + ν̃i,kw
T
k xi

)
︸ ︷︷ ︸

=t̃wk,i(wk|τ̃i,k,ν̃i,k)

, (35)

where the scalar site location parameters ν̃i,k now correspond to the first K elements of b̃i in
equation (32), that is, ν̃i = [ν̃i,1, ...ν̃i,K ]T = [b̃i,1, ..., b̃i,K ]T, and analogously, the site loca-
tion vector β̃i corresponds to the last K+1 entries of b̃i, that is, β̃i = [b̃i,K+1, ..., b̃i,2K+1]

T.
Equation (35) defines the parametric structure of the factorized likelihood site approxima-
tion already introduced in (11).

Combining the site approximations (35) according to (20) results in an independent
posterior approximation q(v) = N (µv,Σv) for the output weights and independent approx-
imations q(wk) = N (µwk ,Σwk) for the input weights associated with the different hidden
units k = 1, ...,K. The approximate mean and covariance of wk are given by

Σwk =
(
XTT̃wkX + Σ−1wk,0

)−1
and µwk = Σwk

(
XTν̃wk + Σ−1wk,0

µwk,0

)
, (36)
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where the diagonal matrix T̃wk = diag(τ̃wk) and the vector ν̃wk collect all the site pa-
rameters related to hidden unit k: τ̃wk = [τ̃1,k, ..., τ̃n,k]

T and ν̃wk = [ν̃1,k, ..., ν̃n,k]
T. The

parameters of the prior term approximations t̃w,j(wj) ∝ N (µ̃w,j , σ̃
2
w,j) related to hidden

unit k are collected in the diagonal matrix Σwk,0 = diag(σ̃2w,m+1, ..., σ̃
2
w,m+d) and vector

µwk,0 = [µ̃w,m+1, ..., µ̃w,m+d]
T, where m = K(k − 1). The approximate mean and covari-

ance of the output weights v are given by

Σv =

(
n∑
i=1

α̃iα̃
T
i + Σ−1v,0

)−1
and µv = Σv

(
n∑
i=1

β̃i + Σ−1v µv,0

)
, (37)

where the parameters of the prior term approximations t̃v,k(vk) ∝ N (µ̃v,k, σ̃
2
v,k) are collected

in the diagonal matrix Σv,0 = diag(σ̃2v,1, ..., σ̃
2
v,K) and vector µv,0 = [µ̃v,1, ..., µ̃v,K ]T.

For each hidden unit k, approximation (36) can be interpreted as an independent linear
model with Gaussian likelihood terms N (ỹi,k|xT

i wk, τ̃
−1
i,k ), where the pseudo-observations

are given by ỹi,k = τ̃−1i,k ν̃i,k. The approximation for the output weights (37) has no explicit
dependence on the input vectors xi but later we will show that the independence assumption
results in a similar dependence on expected values of the hidden unit activations gi = g(hi)
taken with respect to the cavity distributions q−i(w) and q−i(v) (see Appendix E).

One sequential EP update for each of the n likelihood sites requires either one rank(T̃i)
covariance matrix update for the fully-correlated approximation (33), or K+1 rank-one co-
variance matrix updates for each of the factorized approximations (36) and (37). In parallel
EP these updates are replaced with a single re-computation of the posterior representation
after each sweep over all the n sites. In practice, one parallel iteration step over all the sites
can be much faster compared to a sequential EP iteration, especially if d or K are large,
but parallel EP may require larger number of iterations for overall convergence.

3.4 Implementing the EP Algorithm

In this section, we describe the computational implementation of the EP algorithm result-
ing from the choice of the approximating family described in Section 3.3. Because the
non-Gaussian likelihood term in the tilted distribution (22) depends on z = [wT,vT]T only
through the linear transformation ui = [hT

i ,v
T]T = BT

i z, the EP algorithm can be im-
plemented by iteratively determining and matching the moments of the lower-dimensional
random vector ui instead of z (Cseke and Heskes, 2011, appendix C). The computations
can be further facilitated by using the factorized approximation (19): Because the hidden
activations hi,k = xT

i wk related to the different hidden units k = 1, ...,K are independent
of each other and v, it is only required to propagate the marginal means and covariances of
hi,k and v to determine the new site parameters. This enables more efficient formulas for
determining the cavity distributions (21), the tilted distributions (22), and site parameter
updates from (23). Details of the computations required for updating the likelihood site
approximations are presented in Appendices A–E. The main properties of the procedure
can be summarized as follows:

• Appendix A presents the formulas for computing the parameters of the cavity dis-
tributions (21). The factorized approximation (19) leads to efficient computations,
because the cavity distribution can be factored as q−i(z) = q−i( v)

∏K
k=1 q−i(wk).
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The parameters of q−i(hi,k) resulting from the transformation hi,k = xT
i wk can be

computed using only scalar manipulations of the mean and covariance of q(hi,k) =
N (xT

i µwk ,x
T
i Σwkxi). Because of the outer-product structure of t̃v,i(v) in equation

(35), also the parameters of q−i(v) can be computed using rank-one matrix updates.

• Appendix B describes how the marginal mean and covariance of v with respect to
the tilted distribution (22) can be approximated efficiently using a similar Gaussian
approximation as is used in the UKF filter (Wan and van der Merwe, 2000). Because
of the factorized approximation (19) only one-dimensional quadratures are required
to compute the means and variances of g(hi,k) with respect to q−i(hi,k) and no mul-
tivariate quadrature or sigma-point approximations are needed.

• Appendix C presents a new way to approximate the marginal distribution of p̂i(hi,k)
resulting from (22). In preliminary simulations we found that an approach based
on the unscented transform and the approximate linear filtering paradigm used in
Appendix B did not capture well the information from the left-out observation yi.
This behavior was more problematic when there was a large discrepancy between
the information provided by the likelihood term through the marginal tilted distri-
bution p̂i(yi|hi,k) =

∫
p(yi|fi, θ)ηq−i(v)q−i(hi,−k)dvdhi,−k and the cavity distribution

q−i(hi,k), where hi,−k includes all components of hi except hi,k.
2

The improved numerical approximation of p̂i(hi,k) is obtained by approximating the
cavity distribution q−i(fi|hi,k), that is, the distribution of the latent function value

fi =
∑K

k=1 g(hi,k)+v0 resulting from q−i(hi,−k,v|hi,k) = q−i(v)
∏
k′ 6=k q−i(hi,−k), with

a Gaussian distribution and carrying out the integration over fi analytically. Accord-
ing to the central limit theorem we expect this approximation to become more accurate
as K increases. A similar approach has been used by Ribeiro and Opper (2011) to form
factorized EP approximations for the input weights with a linear single-layer model
structure. They used the central limit argument to form Laplace approximations for
the marginal tilted distributions resulting from univariate Gaussian approximations
for the input weights. We utilize the same idea to approximate the tilted moments
of the transformed variables hi,k = wT

k xi using numerical quadratures and an input
weight approximation that can be factorized between the different hidden units.

• Appendix D generalizes the tilted moment estimations of Appendices B and C for
approximate integration over the posterior uncertainty of θ = log σ2. Computation-
ally convenient marginal mean and covariance estimates for v, {hi,k}Kk=1, and θ can
be obtained by utilizing the independent posterior approximation for θ and the same
Gaussian approximation for q−i(fi) as in Appendix C. Compared to the tilted mo-
ments approximations of v and hi with fixed θ, the approach requires five additional
univariate quadratures for each likelihood term, which can be facilitated by utilizing
the same function evaluations.

2. The UKF approach was found to perform better with smaller values of η because then a fraction of
the site approximation from the previous iteration is left in the cavity, which can reduce the possible
multimodality of p̂i(hi,k).
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• Appendix E presents expressions for the new site parameters obtained by applying
the results of Appendices A–D in the moment matching condition (23). Because of
the factorization assumption in (19) and the UKF-style approximation in the tilted
moment estimations (Appendix B), the parameters of the likelihood term approxima-
tions related to v (see (35)) can be written as α̃i = mgi σ̃

−1
v,i and β̃i = mgi σ̃

−2
v,i ỹv,i,

where [mgi ]k =
∫
g(hi,k)q−i(hi,k)dhi,k and ỹv,i can be interpreted as Gaussian pseudo-

observations with noise variances σ̃2v,i (compare with equation (55) and (56)). Thus,
by comparing the parameter expressions with (37), the output-layer approximation
q(v) can be interpreted as a linear model where the cavity expectations of the hidden
unit outputs g(hi,k) = g(wT

k xi) are used as input features. The EP updates for the
site parameters τ̃i,k and ν̃i,k related to the input weight approximations q(wk) require
only scalar operations similarly to other standard EP implementations (Minka, 2001a;
Rasmussen and Williams, 2006).

Appendix F summarizes an EP algorithm that can be used to implement the EP up-
dates for the prior site approximations described in Section 3.2.2. Appendix G presents
some practical tips to improve the numerical stability of the EP updates proposed in Ap-
pendices A–F. Appendix H describes how the predictive distribution p(y∗|x∗) related to
a new input vector x∗ can be approximated efficiently using q(v), {q(wk)}Kk=1, and q(θ).
Note that the prior scale approximations {q(φl)}Ll=1 are not needed in the predictions be-
cause information from the hierarchical input weight priors is approximately absorbed in
{q(wk)}Kk=1 during the EP iterations. Appendix I shows how the EP marginal likelihood
approximation, logZEP ≈ log p(y|X,γ), conditioned on fixed hyperparameters γ, can be
computed in a numerically efficient and stable manner. The marginal likelihood estimate
can be used to monitor convergence of the EP iterations, to determine marginal MAP
estimates of the fixed hyperparameters, and to compare different model structures.

3.5 General Algorithm Description and Practical Considerations

Algorithm 1 collects together all the computational components described in Section 3.4 and
Appendices A–F into a single EP algorithm. In this section we will discuss the initializa-
tion, the order of updates between the different term approximations, and the convergence
properties of the algorithm.

3.5.1 Scheduling Between the Likelihood and Prior term updates

In algorithm 1, we have combined the EP updates for the site approximations of the like-
lihood terms p(yi|vTg(x̃T

i w), θ) (lines 2-7) and the prior terms p(wj |φlj ) (line 1) and p(vk)
(line 8) by running them in turn. Because all information from the observations y is con-
veyed by the likelihood term approximations, it is sensible to iterate first the parameters τ̃i
and ν̃i of {t̃wk,i(wk)}Kk=1 together with the parameters α̃i and β̃i of t̃v,i(v) to obtain a good
data fit while keeping the prior term approximations of p(wj |φlj ) and p(vk) fixed so that all
the output weights remain effectively positive and all the input weights have equal prior dis-
tributions. Otherwise, depending on the scales of the priors, many hidden units and input
weights could be effectively pruned out of the model by the prior sites {t̃v,k(vk|µ̃v,k, σ̃2v,k)}Kk=1

and {t̃w,j(wj |µ̃w,j , σ̃2w,j), t̃φ,j(φlj |µ̃φ,j , σ̃2φ,j)}Kdj=1: For example, the location parameters µ̃w,j
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Algorithm 1: An EP algorithm for a two-layer MLP-network with non-Gaussian hierar-
chical priors on the weights.

Initialize q(v|µv,Σv), {q(wk|µwk ,Σwk)}Kk=1, q(θ|µθ, σ2θ), and {q(φl|µφl , σ2φl)}
L
l=1 using site

approximations
{
t̃w,i(w|τ̃i, ν̃i), t̃v,i(v|α̃i, β̃i), t̃θ,i(θ|µ̃θ,i, σ̃2θ,i)

}n
i=1

,
{
t̃v,k(vk|µ̃v,k, σ̃2v,k

}K
k=1

,

and
{
t̃w,j(wj |µ̃w,j , σ̃2w,j), t̃φ,j(φlj |µ̃φ,j , σ̃2φ,j

}Kd
j=1

(equations (17), (18), (36), and (37)).

repeat

if sufficient convergence in {τ̃i, ν̃i, α̃i, β̃i, µ̃θ,i, σ̃
2
θ,i}ni=1 and {µ̃v,k, σ̃2v,k}Kk=1 then

1 Run the EP algorithm from Appendix F to update the parameters {µ̃w,j , σ̃2w,j ,
µ̃φ,j , σ̃

2
φ,j}Kdj=1 of the prior site approximations t̃w,j(wj) and t̃φ,j(φlj ) from (14).

end
Loop over the likelihood terms to update t̃v,i(v), {t̃wk,i(wk)}Kk=1, and t̃θ,i(θ):
for i← 1 to n do

2 Compute the means and covariances of the cavity distributions: {q−i(hi,k)}Kk=1

and q−i(v) using equations (39) and (40).
If θ unknown, compute the cavity distribution q−i(θ) using (41).

3 Compute the means and covariances of the tilted distributions q̂i(v) = N (µ̂i, Σ̂i)

and q̂i(hi,j) = N (m̂i, V̂i) for k = 1, ...,K:
If θ known, use (45) and (49).
Otherwise, use (51), (52), and (54), and compute q̂i(θ) = N (µ̂θ,i, σ̂

2
θ,i) from (50).

4 Update the site parameters τ̃i, ν̃i, α̃i, β̃i using (57), (59), and (60).
If θ unknown, update µ̃θ,i, σ̃

2
θ,i using (61).

if sequential updates then
5 Rank-1 updates for {q(wk)}Kk=1 according to the changes in {τ̃i,k, ν̃i,k}Kk=1.

If θ unknown, update q(θ) according to the changes in {µ̃θ,i, σ̃2θ,i}.
end

end
if parallel updates then

6 Recompute the approximations {q(wk)}Kk=1 using {τ̃i, ν̃i}ni=1 and {µ̃w,j , σ̃2w,j}Kdj=1.

If θ unknown, recompute q(θ) using
{
µ̃θ,i, σ̃

2
θ,i)
}n
i=1

and {µθ,0, σ2θ,0}.
end

7 Recompute (parallel update) q(v) using {α̃i, β̃i}ni=1 and {µ̃v,k, σ̃2v,k}Kk=1.

if sufficient data fit then
8 Run the EP algorithm from Appendix F to update the parameters {µ̃v,k, σ̃2v,k}Kk=1

of the prior site approximations t̃v,k(vk) from (13) and recompute
q(v) = N (µv,Σv).

end

until convergence or maximum number of iterations exceeded

would push the approximate marginal distribution q(wj) towards zero and the scale param-
eter σ̃2w,j would adjust the approximate variance of wj to the level reflecting the fixed scale

prior definition p(φlj ) = N (µφ,0, σ
2
φ,0) in case enough information was not conveyed from
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the observations due to poorly fitted likelihood site approximations. To enable convenient
implementation of various learning strategies, different damping factors were assigned to
the different types of likelihood term approximations t̃v,i(v), t̃wk,i(wk), and t̃θ,i(θ). For
example, only one of the approximations, say q(v), can by updated simply by setting the
damping factors related to t̃wk,i(wk) and t̃θ,i(θ) to zero. Similarly individual damping fac-
tors were assigned to the prior term approximations t̃v,k(vk) and {t̃w,j(wj), t̃φ,j(φlj )}. A
more detailed discussion about damping and scheduling of the likelihood and prior site
updates will be given in Sections 3.5.5 and 3.5.6.

3.5.2 Monitoring Convergence and Model Quality

During the iterations, the data fit can be assessed by monitoring the convergence of the ap-
proximate LOO predictive density logZLOO =

∑
i log p(yi|y−i,X) ≈

∑
i log Ẑi that should

increase steadily in the beginning of the learning process as the model adapts to the obser-
vations y. In contrast, the approximate marginal likelihood logZEP ≈ log p(y|X) depends
more on the model complexity and usually fluctuates more during the learning process
because many different model structures can produce similar predictions. Convergence
of the EP algorithm and quality of the approximation can be assessed by checking the
consistency between the tilted distributions and the posterior approximation. For the like-
lihood site updates, we monitor the differences of the means and covariances of p̂i(v),
p̂i(hi,k), and p̂i(θ) from the corresponding marginal approximations q(v) = N (µv,Σv),
q(hi,k) = N (xT

i µwk ,x
T
i Σwkxi), and q(θ) = N (µθ, σ

2
θ) for all sites i = 1, ..., n and hidden

units k = 1, ...,K. Similarly for the prior site updates, we monitor the differences of p̂j(wj),
p̂j(φlj ), and p̂k(vk) from the corresponding marginal approximations for all j = 1, ...,Kd
and k = 1, ...,K, respectively. Note that the site parameter updates in (60), (61), and (65)
become zero when these consistency conditions are satisfied.

3.5.3 Initial Parameter Values and Early Iterations

We initialized the algorithm with 10-20 iterations over the likelihood sites with θ fixed to a
sufficiently small value, such as σ2 = exp(θ) = 0.32, to obtain a good data fit before learning
θ from the data. The parameters of the input weight priors were initialized to µ̃w,j = 0
and σ̃2w,j = 0.5, where we have assumed that the target variables y and the columns of
X containing the input variables are normalized to zero mean and unit variance. Larger
initial variances σ̃2w,j = 22 can be used for the input bias terms j = d, 2d, ...,Kd so that
the network is able to distribute the hidden units more flexibly to different locations of
the input space. The prior means of the output weights µ̃v,k were initialized with linear
spacing in some appropriate interval, for example [1, 2], and the prior variances were set to
sufficiently small values such as σ̃2v,k = 0.22 so that the elements of the approximate mean
vector µv remain positive during the initial iterations.

We initialized the likelihood site parameters {τ̃i, ν̃i, α̃i, β̃i}ni=1 to zero, which means
that in the beginning all hidden units produce zero expected outputs mgi = 0 resulting in
zero messages to the output weight approximation t̃v,i(v|α̃i, β̃i) in equations (55) and (56).
However, because of the initialization of µ̃v,k and σ̃2v,k, the initial approximate means of
the output weights [µv]k = µ̃v,k will be positive and nonidentical. It follows that different
nonzero messages will be sent to the input weights according to (60) because the tilted
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moments m̂i,k and V̂i,k of hi,k as given by (49) will differ from the corresponding marginal
approximations mi,k = xT

i µwk and Vi,k = xT
i Σwkxi. If in the beginning all the hidden

units were updated simultaneously with the same priors for the output weights, they would
get very similar approximate posteriors. In this case all the computational units would
do more or less the same thing but sufficiently many iterations would eventually result in
different values for all the input weight approximations q(wk). This learning process can
be accelerated by the previously described linearly spaced prior means µ̃v,j or by updating
only one hidden unit in the beginning and increasing the number of updated units one by
one after every few iterations. The rationale behind the latter incremental scheme is that
the first unit will usually explain the dominant linear relationships between x and y and
the remaining units will fit to more local nonlinearities.

An alternative approach that can speed up the learning is to initialize the prior location
parameters µ̃w,j related to the input bias terms (j = d, 2d, ...,Kd) to random values, which
can be interpreted as placing the hidden unit activations randomly in different locations
of the input space. Also the prior location parameters µ̃w,j of the input weights (j =
k + 1, ..., k + d − 1 for k = 1, ...,K) could be initialized to random or some preselected
values, which can be interpreted as starting the learning process from an initial feature
embedding. The prior scale parameters σ̃2w,j can be adjusted to control how strongly these
prior constraints are enforced. After some iterations for the likelihood sites, the prior
parameters can be relaxed and learned from data as described in the next section.

3.5.4 Relaxing the Initial Weight Prior and Noise Approximations

The positive Gaussian output weight priors defined at the initialization of µ̃v,k and σ̃2v,k can
be relaxed after the initial iterations by running the EP algorithm on the approximations
t̃v,k(vk) of the truncated prior terms (5) (line 8 in Algorithm 1). The EP updates for the
truncated prior terms ensure that the mass of the approximate density q(v) will remain
on the positive values for each component of v. For this same reason we do only parallel
updates on q(v) on line 7 of Algorithm 1, because otherwise we would have to run the EP
updates for the output weight priors (line 8) after each sequential update of q(v). This
parallel update scheme is discussed further in 3.5.5.

The EP updates for the observation noise θ (lines 2-5 in Algorithm 1) can be started
after the initial iterations with fixed θ and weight priors. We initialized the site parameters
{µ̃θ,i, σ̃2θ,i}ni=1 to zero, and at the first iteration for θ we also kept parameters τ̃i, ν̃i, α̃i, and

β̃i fixed so that the initial fluctuations of µ̃θ,i and σ̃2θ,i do not affect the approximations q(v)
and q(wk).

After sufficient convergence is obtained in the EP iterations for the parameters of the
likelihood sites {τ̃i, ν̃i, α̃i, β̃i, µ̃θ,i, σ̃

2
θ,i}ni=1 and the parameters of the output weight prior

sites {µ̃v,k, σ̃2v,k}Kk=1, EP updates can be started for the parameters {µ̃w,j , σ̃2w,j , µ̃φ,j , σ̃2φ,j}Kdj=1

of the prior term approximations t̃w,j(wj) and t̃φ,j(φlj ) (line 1 in Algorithm 1). This en-
sures that input weights and hidden units are not pruned out of the model before enough
information is propagated from the observations to the likelihood term approximations.
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3.5.5 Scheduling and Convergence of the Likelihood Term Iterations

If all the prior term approximations together with {t̃w,i(w|τ̃i, ν̃i)}ni=1 are kept fixed, that is,
q(wk) are not updated, the EP algorithm for the site approximations t̃v,i(v|α̃i, β̃i) related
to q(v) converges typically in 5-10 iterations. In addition, if only the site approximations
t̃wk,i(wk|τ̃i,k, ν̃i,k) related to only one hidden unit k are updated, the algorithm will typically
converge in less than 10 iterations. The fast convergence is expected in both settings because
in both cases the iterations can be interpreted as a standard EP algorithm on a linear
model with known input variables. However, updating only one hidden unit at a time will
induce moment inconsistencies between the approximations and the corresponding tilted
distributions of the other K−1 hidden unit activations hi,k and the output weights v. This
means that such update scheme would require many separate EP runs for each hidden unit
and v to achieve overall convergence, and in practice it was found more efficient to update
all of them together simultaneously with a sufficient level of damping.

The updates on α̃i and β̃i were damped more strongly by δ ∈ 0.2 so that subsequent
changes in q(v) would not inflict unnecessary fluctuations in the parameters of q(wk), which
are more difficult to determine and converge more slowly compared with q(v). In other
words, we wanted to change the output weight approximations more slowly so that there is
enough time for the messages to propagate between the different hidden units. For the same
reason, on the line 7 of Algorithm 1, parallel updates are done on q(v) whereas the user can
choose between sequential and parallel updates for q(wk) (lines 5 and 6). With sequential
posterior updates for q(wk), damping the updates of τ̃i and ν̃i with δ ∈ [0.5, 0.8] was found
sufficient whereas with parallel updates much more damping (δ < 0.5) was usually required.
If the number of input features is very large, it can be more efficient to use parallel updates
for q(wk) with a larger amount of damping in a similar framework as described by Gerven
et al. (2009). In this large scale parallel learning scheme it may also be useful to update
only one hidden unit or a subset of them at a time.

3.5.6 Scheduling and Convergence of the Prior Term Iterations

The EP updates for the site approximations of the prior terms p(vk) and p(wj |φlj ) are
computationally less expensive and converge faster compared with the likelihood term ap-
proximations. With fixed values of {τ̃i, ν̃i, α̃i, β̃i}ni=1, typically only 5-10 iterations were
required for convergence of the updates on the prior term approximations t̃v,k(vk) in line
8 of Algorithm 1, because q(v) was allowed to change relatively slowly by damping the
updates on α̃i and β̃i in line 4. Because the relative time required for these computations is
negligible compared with the likelihood term updates in lines 2-7, we ran the EP algorithm
for t̃v,k(vk) to convergence after each parallel update of q(v) on line 7 to make sure that the
components of v are distributed at positive values at all times.

With fixed likelihood term approximations, typically 10-40 iterations were required for
convergence of the EP updates on the site approximations of p(wj |φlj ) in line 1 of Algorithm
1. More iterations are required compared to the EP algorithm on p(vk), because information
needs to be propagated in multiple passes between the different hidden unit approximations
q(wk) via the hierarchical scale parameter approximations q(φl). After sufficient conver-
gence is achieved for the likelihood term updates with the initial Gaussian priors defined
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using µ̃w,j and σ̃2w,j , at least two sensible update schemes can be considered for updating
the site approximations of the input weight priors:

1. The EP algorithm in line 1 is run only once until convergence and then the other
parameters {τ̃i, ν̃i, α̃i, β̃i, µ̃θ,i, σ̃

2
θ,i}ni=1 and {µ̃v,k, σ̃2v,k}Kk=1 are iterated to convergence

with fixed {µ̃w,j , σ̃2w,j}Kdj=1.

2. The EP algorithm in line 1 is run once until convergence and after that only one inner
iteration is done on {µ̃w,j , σ̃2w,j , µ̃φ,j , σ̃2φ,j}Kdj=1 in line 1.

In the first scheme a fixed sparsity-favoring Gaussian prior is constructed using the current
likelihood term approximations whereas in the second scheme the prior is iterated further
within the EP algorithm for the likelihood terms. The second scheme usually converges
more slowly and requires more damping. In our experiments, damping the updates by
δ ∈ [0.5, 0.7] and choosing a fraction parameter η ∈ [0.7, 0.9] resulted in numerically stable
updates and convergence for the EP algorithms on the prior term approximations.

3.5.7 Fractional EP Updates

Adjusting the fraction parameter η when the likelihood term approximations are updated
according to equations (21) – (23) can have a significant effect on the behavior of the
algorithm and the quality of the resulting approximation. The tilted distribution p̂i(hi,k)
approximated using (49) or (54) can become multimodal if the prediction resulting from the
cavity distributions q−i(v) and q−i(hi) does not fit well the left out observation yi. More
precisely, there can exist one mode corresponding to the cavity q−i(hi,k) and one to the
values of hi,k that result in good fit for the observation yi. If η is close to one and the
discrepancy between yi and the cavity prediction is large, the resulting multimodal tilted
distribution is approximated with a wide Gaussian distribution q̂i(hi,k) = N (hi,k|m̂i,k, V̂i,k)
to represent the uncertainty of both modes. If there are no other data points supporting
the deviating information provided by yi, the approximation needs to widen the predictive
distribution at xi considerably requiring large changes to τ̃i and ν̃i based on only one site
term.

These kind of large local updates corresponding to sites with large discrepancies are
inherently more challenging in terms of finding stable fixed points of the message passing
algorithm and require therefore more damping. Furthermore, the approximation may not
fit well the training data if there are isolated data points that cannot be considered as
outliers. If smaller value of η is chosen, for example η ∈ [0.4, 0.7], a fraction 1 − η of the
site approximations {t̃wk,i(wk|τ̃i,k, ν̃i,k)}Kk=1 from the previous iteration is left in the cavity
distribution and the discrepancy between the cavity prediction and yi is usually smaller.
Consequently, the model fits more strongly to the training data, the EP updates are nu-
merically more robust, and usually less damping is required. However, in the experiments
we found that with smaller values of η the model can also overfit, because more and more
past information is accumulated in p̂i(hi,k) during subsequent iterations. Therefore we set
η = 0.95 and applied more damping for the likelihood term updates as described already in
Section 3.5.5. The tilted distributions related to the EP updates for the prior terms approx-
imations are not likely to become multimodal unless d or K are not very large compared to
n, which is the typical setting in highly underdetermined linear models, or extremely sparse
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prior settings are chosen. In our experiments the prior term approximations were not found
to be sensitive to the choice of the fraction parameter which is why we used smaller values
η = [0.7, 0.9] to improve numerical stability as described in Section 3.5.6.

4. Experiments

First, three case studies with simulated data were carried out to illustrate the properties
of the proposed EP-based neural network approach with sparse priors (NN-EP). Case 1
compares the effects of integration over the uncertainty resulting from a sparsity-favoring
prior with a point-estimate based ARD solution. Case 2 illustrates the benefits of sparse
ARD priors on regularizing the proposed NN-EP solution in the presence of irrelevant
features and various input effects with different degree of nonlinearity. Case 3 compares
the parametric NN-EP solution to an infinite Gaussian process network using observations
from a discontinuous latent function. In cases 1 and 3, comparisons are made with an
infinite network (GP-ARD) implemented using a Gaussian process with a neural network
covariance function and ARD-priors with separate variance parameters for all input weights
(Williams, 1998; Rasmussen and Williams, 2006). The neural-network covariance function
for the GP-prior can be derived by letting the number of hidden units approach infinity in
a 2-layer MLP network that has cumulative Gaussian activation functions and fixed zero-
mean Gaussian priors with separate variance (ARD) parameters on the input-layer weights
related to each input variable (Williams, 1998). Point estimates for the ARD parameters,
the variance parameter of the output weights, and the noise variance were determined
by optimizing the marginal likelihood with uniform priors on the log-scale. Finally, the
predictive accuracy of NN-EP is assessed with four real-world data sets and comparisons
are made with a neural network GP with a single variance parameter for all input features
(GP), a GP with ARD priors (GP-ARD), and a neural network with hierarchical ARD
priors (NN-MC) inferred using MCMC as described by Neal (1996).

4.1 Case 1: Overfitting of the ARD

The first case illustrates the overfitting of ARD with a similar example as presented by Qi
et al. (2004). Figure 2 shows a two-dimensional regression problem with two relevant inputs
x1 and x2. The data points are obtained from three clusters, {f(x) = 1|x1 > 0.5, x2 > 0.5},
{f(x) = 0|0.5 > x1 > −0.5, 0.5 > x2 > −0.5}, and {f(x) = 0.8|x1 < −0.5, x2 < −0.5}. The
noisy observations were generated according to y = f(x) + ε, where ε ∼ N (0, 0.12). The
observations can be explained by using a combination of two step functions with only either
one of the input features but a more robust model can be obtained by using both of them.

Subfigure (a) shows the predictive mean of the latent function f(x) obtained with the
optimized GP-ARD solution. Input x2 is effectively pruned out and almost a step function
is obtained with respect to input x1. Subfigure (b) shows the NN-EP solution with K = 10
hidden units and Laplace priors with one common unknown scale parameter φ1 on the input
weights w. The prior for φ1 was defined as φ1 ∼ N (µφ,0, σ

2
φ,0), where µφ,0 = 2 log(0.1) and

σ2φ,0 = 1.52. The noise variance σ2 was inferred using the same prior definition for both

models: θ = log(σ2) ∼ N (µθ,0, σ
2
θ,0), where µθ,0 = 2 log(0.05) and σ2θ,0 = 1.52. NN-EP

produces a much smoother step function that uses both of the input features. Despite of
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Figure 2: Case 1: An example of the overfitting of the point-estimate based ARD on a
simulated data set with two relevant input features. (a) A GP model with a neural
network covariance function and point-estimates for the ARD parameters. (b)
An EP approximation for a neural network with 10 hidden units and independent
Laplace priors with one common unknown scale parameter φ on the input weights.
(c) and (d) The 95 % approximate marginal posterior probability intervals for the
input weights and the output weights of the EP-based neural network.

the sparsity favoring Laplace prior, the NN-EP solution preserves the uncertainty on the
input variable relevances. This shows that the approximate integration over the weight
prior can help to avoid pruning out potentially relevant inputs.

Subfigure (c) shows the 95% approximate marginal posterior probability intervals de-
rived from the Gaussian approximations q(wk) with the same ordering of the weights as
in vector zT = [wT

1 , ...,w
T
K ] (every third weight corresponds to the input bias term). The

vertical dotted lines separate the input weights associated with the different hidden units.
Subfigure (d) shows the same marginal posterior intervals for the output weights computed
using q(v). Only hidden units 5 and 6 have clearly nonzero output weights and input
weights corresponding to the input variables x1 and x2 (see the first two weight distribu-
tions in triplets 5 and 6 in panel (c)). For the other hidden units, the input weights related
to x1 and x2 are distributed around zero and they have negligible effect on the predictions.
In panel (c), the third input weight distribution corresponding to the bias term in each
triplet are distributed in nonzero values for many unused hidden units but these bias effects
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affect only the mean level of the predictions. These nonzero bias weight values may be
caused by the observations not being normalized to zero mean. The weights corresponding
to hidden unit 1 differ from the other unused units, because a linear action function was as-
signed to it for illustration purposes. If required, a truly sparse model could be obtained by
removing the unused hidden units and running additional EP iterations until convergence.

4.2 Case 2: The Effect of Sparse Priors in a Regression Problem Consisting of
Additive Input Effects with Different Degree of Nonlinearity

The second case study illustrates the effects of sparse priors using a similar regression
example as considered by Lampinen and Vehtari (2001). In our experiments we found
two main effects from applying sparsity-promoting priors with adaptive scale parameters
φ = [φ1, ..., φL] on the input-layer. Firstly, the sparse priors can help to suppress the
effects of irrelevant features and protect from overfitting effects in input variable relevance
determination as illustrated in Case 1 (Section 4.1). Secondly, sparsity-promoting priors
with adaptive prior scale parameters φ can mitigate the effects of unsuitable initial Gaussian
prior definitions on the input layer (too large or too small initial prior variances σ̃2w,j , see
Section 3.5 for discussion on the initialization). More precisely, the sparse priors with
adaptive scale parameters can help to obtain better data fit and more accurate predictions
by shrinking the uncertainty on the weights related to irrelevant features towards zero and
by allowing the relevant input weights to gain larger values which are needed in modeling
strongly nonlinear (or step) functions. Placing very large initial prior variances σ̃2w,j on all
weights enables the model to fit strong nonlinearities but the initial learning phase is more
challenging and prone to end up in poor local minima. In this section, we demonstrate
that switching to Gaussian ARD priors with adaptive scale parameter φ1, ..., φd after a
converged EP solution is obtained with fixed Gaussian priors can reduce the effects of
irrelevant features, decrease the posterior uncertainties on the predictions on f(x), and
enable the model to fit more accurately latent nonlinear effects.

A data set with 200 observations and ten input variables with different additive effects
on the target variable was simulated. The black lines in Figure 3 show the additive effects
as a function of each input variable xi,j . The targets yi were calculated by summing the
additive effects together and adding Gaussian noise with a standard deviation of 0.2. The
first input variable is irrelevant and variables 2-5 have an increasing linear effect on the
target. The effects of input variables 6-10 are increasingly nonlinear and the last three of
them require at least three hidden units for explaining the observations.

Figure 3(a) shows the converged NN-EP solution with fixed zero-mean Gaussian priors
on the input weights. The number of hidden units was set to K = 10 and the noise
variance σ2 was inferred using the prior definition µθ,0 = 2 log(0.05) and σ2θ,0 = 22. The
Gaussian priors were defined by initializing the prior site parameters of the input weights
as {µ̃w,j = 0, σ̃2w,j = 0.42}Kdj=1. The dark grey lines illustrate the posterior mean predictions
and the shaded light gray area the 95% approximate posterior predictive intervals of the
latent function f(x). The graphs are obtained by changing the value of each input in turn
from −5 to 5 while keeping the others fixed at zero. The training observations are obtained
by sampling all input variables linearly from the interval xi,j ∈ [−π, π]. Panel (b) shows
the resulting NN-EP solution when the Gaussian priors of the network in panel (a) are
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Figure 3: Case 2: An artificial regression problem where the observations are formed as a
sum of additive input effects dependent on ten input features. The true additive
effects are shown with black lines and the estimated mean predictions with dark
grey lines. The 95% posterior predictive intervals are shaded with light grey.
(a) A converged EP approximation for a neural network with ten hidden units
and fixed zero-mean Gaussian priors on the input weights. (b) The resulting EP
approximation when the Gaussian priors of the network in panel (a) are replaced
with Gaussian ARD priors with separate scale parameters φ1, ..., φd for all input
variables, and additional EP iterations are done until a new converged solution
is obtained. Figure 4 visualizes the approximate posterior distributions of the
parameters of the ARD network from panel (b).

replaced with Gaussian ARD priors with adaptive scale parameter φ1, ..., φd and additional
EP iterations are done until convergence. Prior distributions for the scale parameters were
defined as φl ∼ N (µφ,0, σ

2
φ,0), where µφ,0 = 2 log(0.01) and σ2φ,0 = 2.52. This prior definitions

favors small input variances close to 0.01 but enables also larger values around one. It should
be noted that the actual variance parameters σ̃2w,j of the prior site approximations can attain
much larger values from the EP updates.

With the Gaussian priors (Figure 3(a)), the predictions do not capture the nonlinear
effects very accurately and the model produces a small nonzero effect on the irrelevant input
1. Applying the ARD priors (Figure 3(b)) with additional iterations produces clearly more
accurate predictions on the latent input effects and effectively removes the predictive effect
of input 1. The overall approximate posterior uncertainties on the latent function f(x) are
also smaller compared with the initial Gaussian priors. We should note that the result of
panel (a) depends on the initial Gaussian prior definitions and choosing a smaller σ̃2w,j = 0.22

or optimizing it could give more accurate predictions compared with the solution visualized
in panel (a).

Figure 4 shows the 95% posterior credible intervals for the input weights w (a), the prior
scale parameters φ1, ..., φd (b), and the output weights v (c) of the NN-EP approximation
with ARD priors visualized in Figure 3(b). In panel (a) the input weights from the different
hidden units are grouped together according to the different additive input effects 1–10,
and the weights related to the linear effects 1–5 are scaled by 40 for illustration purposes,
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Figure 4: Case 2: Visualization of the model parameters related to the artificial regression
problem shown in Figure 3. Panels (a), (b), and (c) show the 95% marginal
posterior credible intervals for the input weights w, the scale parameters φ1, ..., φd,
and the output weights v of the neural network with Gaussian ARD priors from
Figure 3(b). In panel (a) the input weights associated with each additive input
effect (1-10) are grouped together (the bias terms are not shown). The weight
distributions related to the linear input effects 1–5 are much smaller compared
with the nonlinear effects 6–10, which is why they are scaled by 40 for better
illustration in panel (a).

because they are much smaller compared with the weights associated with the nonlinear
input effects 6–10. From panels (a) and (c) we see that only hidden units are 1–5 and 9
have clearly non-zero effect on the predictions. The linear effects of inputs 1–5 are modeled
by unit 3 that has very small but clearly nonzero input weights in panel (a) and a very
large output weight in panel (a). The input weights related to the irrelevant input 1 are all
zero in the 95% posterior credible level. By comparing panels (a) and (c) we can also see
that hidden units 1, 2, 4, 5, and 9 are most probably responsible for modeling the nonlinear
input effects 6-7 because of large input weights values. Panel (b) gives further evidence on
this interpretation because the scale parameters associated with the nonlinear input effects
6–10 are clearly larger compared to effects 1–5. The scale parameters associated with the
linear input effects 1–5 increase steadily as the magnitudes of the true effects increase.
These results are congruent with the findings of Lampinen and Vehtari (2001) who showed
by MCMC experiments that with MLP models the magnitudes of the ARD parameters
and the associated input weights also reflect the degree of nonlinearity associated with the
latent input effects, not only the relevance of the input features.

4.3 Case 3: Comparison of a Finite vs. Infinite Network with Observations
from a Latent Function with a Discontinuity

The third case study compares the performance of the finite NN-EP network with an in-
finite GP network in a one-dimensional regression problem with a strong discontinuity.
Figure 5 shows the true underlying function (black lines) that has a discontinuity at zero
together with the noisy observations (black dots). Panel (a) shows the predictive distri-
butions obtained using NN-EP with ten hidden units (K = 10) and Laplace priors with
one common scale parameter φ. The prior distribution for the scale parameter was defined
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Figure 5: Case 3: An artificial regression problem consisting of noisy observations (black
dots) generated from a latent function (black lines) that has a discontinuity at
zero. Panel (a) shows the mean predictions (dark grey line) and the 95% credible
intervals (light gray shaded area) obtained using the proposed EP approach for
a NN with ten hidden units and Laplace priors with one common scale param-
eter φ on the input weights. Panel (b) visualizes the corresponding predictive
distribution obtained using a GP with a neural network covariance function.

with µφ,0 = 2 log(0.01) and σ2φ,0 = 2.52, and the noise variance σ2 was inferred from the

data using the prior definition µθ,0 = 2 log(0.05) and σ2θ,0 = 22. Panel (b) shows the corre-
sponding predictions obtained using a GP with a neural network covariance function. With
the GP network the noise variance was optimized together with the other hyperparameters
using the marginal likelihood. The finite NN-EP network explains the discontinuity with a
slightly smoother step compared to infinite GP network, but the GP mean estimate shows
fluctuations near the discontinuity. It seems that the infinite GP network fits more strongly
to individual observations near the discontinuity. This shows that a flexible parametric
model with a limited complexity may generalize better with finite amount of observations
even though the GP model includes the correct solution a priori. This is in accordance with
the results described by Winther (2001).

4.4 Predictive Comparisons with Real World Data

In this section the predictive performance of NN-EP is compared to three other nonlin-
ear regression methods using the following real-world data sets: the concrete quality data
(Concrete) analyzed by Lampinen and Vehtari (2001), the Boston housing data (Housing)
and the unnormalized Communities and Crime data (Crime) that can be obtained from the
UCI data repository (Bache and Lichman, 2013), and the robot arm data (Kin40k) utilized
by Schwaighofer and Tresp (2003).3 The number of observations n and the number of input
features d are shown in Table 1 for each data set. The Kin40k includes originally only 8

3. Kin40k data is based on the same simulation of the forward kinematics of an 8 link all-revolute robot
arm as the Kin family of data sets available at http://www.cs.toronto.edu/~delve/ except for lower
noise level and larger amount of observations.
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input features but we added 92 irrelevant uniformly sampled random inputs to create a
challenging feature selection problem. The columns of the input matrices X and the output
vectors y were normalized to zero mean and unit variance for all methods. The predictive
performance of the models was measured using the log predictive densities and the squared
errors evaluated with separate test data. We used 10-fold cross-validation with the Housing,
Concrete, and Crime data, whereas with Kin40k we chose randomly 5000 data points for
training and used the remaining observations for validation.

The proposed NN-EP solution was computed using two alternative prior definitions:
Laplace priors with one common scale parameter φ (NN-EP-LA), and Gaussian ARD priors
with separate scale parameters φ1, ..., φd for all inputs including the input bias terms (NN-
EP-ARD). With both prior frameworks, the hyperpriors for the scale parameters were
defined as φl ∼ N (µφ,0, σ

2
φ,0), where µφ,0 = 2 log(0.01) and σ2φ,0 = 2.52. This definition

encourages small input weight variances (around 0.012) but enables also large input weight
values if required for strong nonlinearities assuming the input variables are scaled to unit
variance. The noise level θ = log(σ2) was inferred from data with a prior distribution
defined by µθ,0 = 2 log(0.01) and σ2θ,0 = 22, which is a sufficiently flexible prior when the
output variables y are scaled to unit variance. The methods used for comparison include an
MCMC-based MLP network with ARD priors (NN-MC) and two GPs with a neural network
covariance function: one with common variance parameter for all inputs (GP), and another
with separate variance hyperparameters for all inputs (GP-ARD). With both GP models the
hyperparameters were estimated by gradient-based optimization of the analytically tractable
marginal likelihood (Rasmussen and Williams, 2006). For NN-MC and NN-EP, we set the
number of hidden units to K = 10 with the Housing, Concrete, and Crime data sets. With
the Kin40k data, we set K = 30 because n is large and fewer units were found to produce
clearly worse data fits.

Table 1 summarizes the means (mean) and standard deviations (std) of the log predictive
densities (LPDs) and the squared errors (SEs). Because the distributions of the LPD values
are heavily skewed towards negative values, we summarize also the lower 1% percentiles (prct
1%). Similarly, because the SE values are skewed towards positive values we summarize
also the 99% percentiles (prct 99%). These additional measures describe the quality of
the worst case predictions of the methods. Table 1 summarizes also the average relative
CPU times (cputime) required for parameter estimation and predictions using MATLAB
implementations. The GP models were implemented using the GPstuff toolbox (Vanhatalo
et al., 2013) and NN-MC was implemented using the MCMCstuff toolbox.4 The CPU times
were averaged over the CV-folds and scaled so that the relative cost for NN-EP is one. These
running time measures are highly dependent on the implementation, the tolerance levels
in optimization and iterative algorithms, and the number of posterior draws, and therefore
they are reported only to summarize the main properties regarding the scalability of the
different methods. When assessing the results with respect to the Housing and Concrete
data sets, it is worth noting that there is evidence that an outlier-robust observation model
is beneficial over the Gaussian model used in this comparison with both data sets (Jylänki
et al., 2011).

4. The MCMCstuff toolbox can be obtained from http://becs.aalto.fi/en/research/bayes/mcmcstuff/

and the GPstuff toolbox from http://becs.aalto.fi/en/research/bayes/gpstuff/.

1880

http://becs.aalto.fi/en/research/bayes/mcmcstuff/
http://becs.aalto.fi/en/research/bayes/gpstuff/


Expectation Propagation for Neural Networks with Sparse Priors

Housing log predictive density (LPD) squared error (SE)
(n=506, d=13) mean std prct 1% mean std prct 99% cputime

NN-EP-LA -0.44 1.64 -7.55 0.15 0.45 2.42 1.0
NN-EP-ARD -0.50 1.66 -6.31 0.17 0.49 1.60 1.0
NN-MC -0.08 1.17 -4.54 0.11 0.50 1.18 110.5
GP -0.29 2.35 -7.57 0.13 0.53 1.98 0.3
GP-ARD -0.20 2.00 -10.71 0.10 0.37 1.53 1.0

Concrete (n=215, d=27)

NN-EP-LA 0.18 0.85 -3.05 0.05 0.08 0.30 1.0
NN-EP-ARD 0.05 1.03 -4.61 0.05 0.11 0.57 0.8
NN-MC 0.22 1.52 -3.62 0.04 0.08 0.28 103.0
GP -0.07 1.70 -5.12 0.06 0.11 0.66 0.03
GP-ARD 0.15 1.98 -4.23 0.04 0.08 0.28 0.6

Crime (n=1993, d=102)

NN-EP-LA -0.83 0.89 -4.64 0.31 0.55 2.60 1.0
NN-EP-ARD -0.84 0.89 -4.81 0.31 0.55 2.75 0.2
NN-MC -0.80 0.93 -4.81 0.29 0.53 2.60 19.8
GP -0.81 0.91 -4.80 0.30 0.54 2.69 0.2
GP-ARD -0.81 1.01 -5.49 0.30 0.55 2.75 4.4

Kin40k (n=5000, d=100)

NN-EP-LA -0.59 0.89 -4.27 0.19 0.29 1.38 1.0
NN-EP-ARD 0.27 1.19 -4.63 0.03 0.08 0.37 0.9
NN-MC 0.49 1.51 -5.37 0.02 0.07 0.26 48.7
GP -1.15 0.72 -4.18 0.58 0.83 4.06 0.5
GP-ARD 0.64 1.11 -3.90 0.02 0.05 0.24 32.3

Table 1: A predictive assessment of the proposed EP approach for neural networks with
two different prior definitions: Laplace priors with one common scale parameter φ
(NN-EP-LA) and Gaussian ARD priors with separate scale parameters φ1, ..., φd
for all inputs (NN-EP-ARD). Comparisons are made with a neural network with
ARD priors inferred using MCMC (NN-MC), and two GPs with a neural network
covariance: one with a common variance hyperparameter for all inputs (GP), and
another with separate variance hyperparameters for all inputs (GP-ARD). The log
predictive densities are summarized with their means, standard deviations (std),
and lower 1% percentiles (prct 1%). The squared errors are summarized with their
means, standard deviations (std), and upper 99% percentiles (prct 99%).

Table1 shows that NN-EP-LA performs slightly better compared to NN-EP-ARD in
all data sets except in Kin40k, where NN-EP-ARD gives clearly better results. The main
reason for this is probably the stronger sparsity of the NN-EP-ARD solutions: In Kin40k
data there are a large number truly irrelevant features that should be completely pruned out
of the model, whereas with the other data sets most features have probably some relevance
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for predictions or at least they are not generated in a completely random manner. Further
evidence for this is given by the clearly better performance of GP-ARD over GP with the
Kin40k data.

If the mean log predictive densities (MLPDs) are considered, the NN-MC approach based
on a finite network performs best in all data sets except with Kin40k, where the infinite GP-
ARD network is slightly better. The main reason for this is probably the strong nonlinearity
of the true latent mapping, which requires a large number of hidden units, and consequently
the infinite GP network with ARD priors gives very accurate predictions. In pair-wise
comparisons the differences in MLPDs are significant in 95% posterior credible level only
with Housing and Kin40k data sets. In terms of mean squared errors (MSEs), GP-ARD is
best in all data sets except Crime, but with 95% credible level the pair-wise differences are
significant only with the Kin40k data. With the Kin40k data, the performance of NN-MC
could probably be improved by increasing K or drawing more posterior samples, because
learning the nonlinear mapping with a large number of unknown parameters and potentially
multimodal posterior distribution may require a very large number of posterior draws.

When compared with NN-MC and GP-ARD, NN-EP gives slightly worse MLPD scores
with all data sets except with Concrete. The pair-wise differences in MLPDs are significant
with 95% credible level in all cases except with the Concrete data. In terms of MSE scores,
NN-EP is also slightly but significantly worse with 95% credible level in all data sets. By
inspecting the std:s and 1% percentiles of the LPDs, it can be seen that NN-EP achieves
better or comparable worst case performance when compared to GP-ARD. In other words,
NN-EP seems to make more cautions predictions by producing less very high or very low
LPD values. One possible explanation for this behavior is that it might be an inherent
property of the chosen approximation. Approximating the possibly multimodal tilted dis-
tribution p̂(hi,k), where one mode is near the cavity distribution q−i(hi,k) and another at
the values of hi,k giving the best fit for yi, with an unimodal Gaussian approximation as
described in Appendix C, may lead to reduced fit to individual observations. Another pos-
sibility is that the EP-iterations have converged into a suboptimal stationary solution or
the maximum number of iterations has been exceeded. Doing more iterations or using an
alternative non-zero initialization for the input-layer weights might result in better data fit.
The second possibility is supported by the generally acknowledged benefits from different
initializations, for example, the unsupervised schemes discussed by Erhan et al. (2010), and
our experiments using the Kin40k data without the extra random inputs. We found that
initializing the location parameters µ̃v,k and µ̃w,j of the prior site approximations (13) and
(14) using a gradient-based MAP estimate of the weights w and v, and relaxing the prior
site approximations after initial iterations using the proposed EP framework, can result
in better MSE and MLPD scores. However, such alternative initialization schemes were
left out of these experiments, because our aim was to test how good performance could be
obtained using only the EP algorithm with the zero initialization described in Section 3.5.

The CPU times of Table 1 indicate that with small n the computational cost of NN-EP
is larger compared to GP-ARD, which requires only one O(n3) Cholesky decomposition
per analytically tractable marginal likelihood evaluation. However, as n increases GP-ARD
becomes slower, which is why several different sparse approximation schemes have been
proposed (see, e.g, Rasmussen and Williams, 2006). Furthermore, assuming a non-Gaussian
observation model, such as the binary probit classification model, GP or GP-ARD would
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require several O(n3) iterations to form Laplace or EP approximations for the marginal
likelihood at each hyperparameter configuration. With NN-EP, probit or Gaussian mixture
models could be used without additional computations. The computational cost of NN-EP
increases linearly with n and K, but as d increases the posterior updates of q(wk), which
scale as O(Kd3), become more demanding. The results of Table 1 were generated using
a sequential scheme for updating q(wk) (see Algorithm 1), which can be seen as larger
computational costs with respect to NN-MC with the Crime and Kin40k data sets. One
option with larger d is to use parallel EP updates, but this may require more damping
or better initialization for the input weight approximations. Another possibility would be
to use fully factorized posterior approximations in place of q(wk), or to assign different
overlapping subgroups of the input features into the different hidden units and to place
hierarchical prior scale parameters between the groups.

5. Discussion

In this article, we have described how approximate inference using EP can be carried out
with a two-layer NN model structure with sparse hierarchical priors on the network weights,
resulting in a novel method for nonlinear regression problems.

We have described a computationally efficient EP algorithm that utilizes independent
approximations for the weights associated with the different hidden units and layers to
achieve computational complexity scaling similar to an ensemble of K sparse linear models.
More generally, our approach can be regarded as a non-linear adaptation of the various EP
methods proposed for sparse linear regression models. This is achieved by constructing a
factorized Gaussian approximation for the posterior distribution resulting from the nonlin-
ear MLP model structure with a linear input layer, and adapting the algorithms proposed
for sparse linear models on the Gaussian approximations of the hidden units. Because
of the structure of the approximation, all existing methodology presented for facilitating
the computations in sparse linear models can be applied on the hidden unit approximations
separately. We have also introduced an EP framework that enables definition of flexible hier-
archical priors using higher level scale parameters that are shared by a group of independent
linear models (in our case the hidden units). The proposed EP approach enables efficient
approximate integration over these scale parameters simultaneously with the coefficients of
the linear models. We used this framework for inferring the common scale parameter of
Laplace priors assigned to the input weights, and to implement Gaussian ARD priors for
the input-layer. In this article, we have focused on the Gaussian observation model, but
the method can be readily extended to others as well (e.g., binary probit classification and
robust regression with Gaussian mixture models).

Using simple artificial examples we demonstrated several desirable characteristics of our
approach. The sparsity promoting priors can be used to suppress the confounding predictive
influences of possibly irrelevant features without the potential risk of overfitting associated
with point-estimate-based ARD priors. More precisely, the approximate integration over
the posterior uncertainty helps to avoid pruning out potentially relevant features in cases
with large uncertainty on the input relevances. Albeit more challenging to estimate, the
finite parametric model enables a posteriori inspection of the model structure and feature
relevances using the hyperparameter and weight approximations. Furthermore, the para-
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metric model structure can also be used to construct more constrained models by assigning
different input variables into different hidden units, defining overlapping groups for the in-
puts using the hierarchical scale priors, using different nonlinear activation functions for the
different hidden units, or using fixed interaction terms dependent on certain hidden units
as inputs for the output-layer.

In the derivations of the EP algorithm, we have also described different computational
techniques that could be useful in other models and approximation methods. These include
the EP approximation for the hierarchical priors on the scale parameters of the weights
that could be useful in combining sparse linear models associated with different subjects or
measurement instances, the noise estimation framework that could be used for estimating
the likelihood parameters in sparse linear models or approximate Gaussian filtering meth-
ods, and the proposed approach for approximating the tilted distributions of the hidden
unit activations that could be useful in forming EP approximations for observation models
involving sums of nonlinear functions taken from random variables with factorized Gaussian
posterior approximations.

A Matlab demonstration code implementing the proposed EP approach for neural net-
works will be made available at http://becs.aalto.fi/en/research/bayes/epnn/.
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Appendix A. Cavity Distributions with the Factorized Approximation

Because the likelihood terms p(yi|vTg(hi), θ) depend on the input weights w only through
the linear transformation hi = [hi,1, ..., hi,K ]T, where hi,k = wT

k xi, the EP updates can be
implemented by propagating the moments of hi and v. Assuming the factorized approx-
imation (19) for w1, ...,wK and v, the parameters of the cavity distribution (21) can be
determined from

q−i(w,v, θ) = q−i(v)

K∏
k=1

q−i(wk)q−i(θ) ∝ q(v)

K∏
k=1

q(wk)q(θ)
(
t̃v,i(v)

K∏
k=1

t̃wk,i(wk)t̃θ,i(θ)
)−η

,

which can be transformed into

q−i(hi,v, θ) = q−i(v)

K∏
k=1

q−i(hi,k)q−i(θ) (38)

by applying the transformation hi,k = wT
k xi. Plugging in q(wk) = N (µwk ,Σwk) from

(36) and the site approximations t̃wk,i(wk|τ̃i,k, ν̃i,k) from (35), and doing the transfor-
mation hi,k = wT

k xi, results in the following scalar mean and variance for q−i(hi,k) =
N (hi,k|m−i,k, V−i,k):

V−i,k = (V −1i,k − ητ̃i,k)
−1

m−i,k = V−i,k(V
−1
i,k mi,k − ην̃i,k), (39)
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where the mean and variance of hi,k under the current approximation q(wk) are denoted with
mi,k = xT

i µwk and Vi,k = xT
i Σwkxi, respectively. Similarly, plugging in q(v) = N (µv,Σv)

from (37) and the site approximation t̃v,i(v|α̃i, β̃i) from (35) gives the cavity distribution
q−i(v) = N (v|µ−i,Σ−i) with the mean and covariance given by

Σ−i = Σv + Σvα̃is
−1α̃T

i Σv

µ−i = a + Σvα̃is
−1α̃T

i a, (40)

where s = η−1 − α̃T
i Σvα̃i and a = µv − ηΣvβ̃i. Using q(θ) = N (µθ, σ

2
θ) from (17)

and the site approximation t̃θ,i(θ|µ̃θ,i, σ̃2θ,i) from (12) gives the cavity distribution q−i(θ) =

N (µθ,−i, σ
2
θ,−i) with the mean and variance given by

σ2θ,−i =
(
σ−2θ − ητ̃θ,i

)−1
µθ,−i = σ2θ,−i(σ

−2
θ µθ − ην̃θ,i), (41)

where the site parameters are written in their natural exponential forms τ̃θ,i = σ̃−2θ,i and

ν̃θ,i = σ̃−2θ,i µ̃θ,i. Using (39), (40), and (41) the cavity evaluations can be implemented
efficiently: for the input weights wk and the noise parameter θ only scalar moments of
hi,1, ..., hi,K and θ need to be determined, and for the output weights v rank-one matrix
updates are required.

Appendix B. Tilted Moments of the Output Weights

To obtain closed-form expressions for the parameters of the likelihood site approximations
t̃v,i(v|α̃i, β̃i), {t̃wk,i(wk|τ̃i,k, ν̃i,k)}Kk=1, and t̃θ,i(θ|µ̃θ,i, σ̃2θ,i) that satisfy the moment match-
ing condition (23), we need to form suitable approximations for the marginal means and
covariances of {hi,k = wT

k xi}Kk=1, v, and θ resulting from the tilted distribution (22). First,
we combine the cavity distribution (38) with the i:th likelihood term to obtain a transformed
tilted distribution

p̂i(hi,v, θ) ∝ p(yi|vTg(hi), θ)
ηq−i(v|µ−i,Σ−i)

K∏
k=1

q−i(hi,k|m−i,k, V−i,k)q−i(θ|µθ,−i, σ2θ,−i),

(42)

where the cavity parameters are given by (39)–(41). We start by assuming the noise level θ
known and present a simple and efficient way to approximate the moments of v in this ap-
pendix. In Appendix C we describe a more accurate approximation scheme for the marginal
moments of hi,k, and finally extend the presented approach for approximate integration over
q−i(θ) in Appendix D.

In the following we consider an approximate scheme which has already been utilized
in the unscented Kalman filtering framework for inferring the weights of a neural network
(Wan and van der Merwe, 2000). The approach is based on the assumption that the
probability distribution of the random vector [uT

i , ỹi]
T = [hT

i ,v
T, ỹi]

T that is given by
p̂i(hi,v, ỹi|θ) ∝ p(ỹi|vTg(hi), θ)

ηq−i(hi)q−i(v), can be reasonable well approximated with a
joint Gaussian approximation q̂i(hi,v, ỹi). Here random variable ỹi corresponds to a target
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yi, which we assume first unknown and condition upon later. The Gaussian approximation
is constructed as

q̂i(hi,v, ỹi) = N

m−i
µ−i
mỹi

 ,
 V−i 0 Σhi,ỹi

0 Σ−i Σv,ỹi

ΣT
hi,ỹi

ΣT
v,ỹi

Vỹi

 , (43)

where the marginal means and covariances of hi and v are set equal to the cavity moments
m−i = [m−i,1, ...,m−i,K ]T, V−i = diag(V−i,1, ..., V−i,K), µ−i and Σ−i defined in (39) and
(40), respectively. The dependencies of ỹi from hi and v are approximated linearly by
determining the central moments mỹi = E(ỹi|θ), Vỹi = Var(ỹi|θ), Σhi,ỹi = Cov(hi, ỹi|θ),
and Σv,ỹi = Cov(v, ỹi|θ) with respect to p̂i(hi,v, ỹi|θ) using, e.g., the unscented transform.
Approximations to the mean and covariance of the tilted distribution (42) can now be deter-
mined by conditioning on ỹi in the joint Gaussian approximation (43) to obtain E(ui|ỹi, θ)
and Cov(ui|ỹi, θ), and plugging in the observation ỹi = yi.

In our experiments, this approach was found sufficiently accurate for approximating
the moments of v, which is most likely explained by the conditional linear dependence
of fi on v via transformation fi = vTg(hi) in the observation model. To facilitate the
upcoming approximate integration over q−i(θ) in Appendix D, we rewrite the moments
mỹi , Vỹi , and Σv,ỹi in equation (43) using the latent function value fi = vTg(hi) instead of
the noisy observation ỹi. Because p̂i(ỹi,hi,v|θ) = p̂i(ỹi|fi, θ)p̂i(hi,v|θ), where p̂i(ỹi|fi, θ) ∝
N(ỹi|fi, exp(θ))η ∝ N(ỹi|fi, exp(θ)/η) and p̂i(hi,v|θ) ∝ q−i(hi)q−i(v), we can write the
required moments as

mỹi = E (E(ỹi|fi, θ)|θ) = E(fi|θ) = mfi

Vỹi = Var (E(ỹi|fi, θ)|θ) + E (Var(ỹi|fi, θ)|θ) = Var(fi|θ) + E
(
η−1 exp(θ)|θ

)
= Vfi + η−1 exp(θ)

Σv,ỹi = E (E(v, ỹi|fi))− E(v) E(E(ỹi|fi)) = E (E(v|fi) E(ỹi|fi))− E(v) E(fi)

= E (E(vfi|fi))− E(v) E(fi) = Cov(v, fi) = Σv,fi , (44)

where integrals over fi are taken with respect to p̂i(hi,v|θ) using substitution fi = vTg(hi),
and on the last two lines we have omitted the conditioning on θ for clarity. Using (43) and
(44), we form the approximation to the marginal tilted distribution of v as p̂i(v|θ) ≈
N (µ̂i(θ), Σ̂i(θ)) with the mean and covariance given by

µ̂i(θ) = µ−i + Σv,fiV
−1
ỹi

(yi −mfi)

Σ̂i(θ) = Σ−i −Σv,fiV
−1
ỹi

ΣT
v,fi

, (45)

where Vỹi = Vfi + η−1 exp(θ). Because p̂i(hi,v|θ) ∝ q−i(hi)q−i(v) factorizes between
hi,1, ..., hi,K and v according to (38), the central moments of fi = vTg(hi) required in
(45) can be computed efficiently as

mfi = E(fi) = µT
−imgi

Vfi = Var(fi) = mT
giΣ−imgi + VT

gi(diag(Σ−i) + µ−i ◦ µ−i)
Σv,fi = Cov(v, fi) = Σ−imgi , (46)
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where ◦ denotes the element-wise matrix product, and the (K + 1) × 1 vectors mgi =
E(g(hi)) and Vgi = Var(g(hi)) are formed by computing the means and variances from
each component of gi = g(hi) = [g(hi,1), ..., g(hi,K), 1]T with respect to q−i(hi) defined in
(39). Note that the last elements of mgi and Vgi are one and zero corresponding to the
output bias term v0.

With the probit activation function (2) the elements of mgi can be computed analytically
as

E(g(hi,k)) = 2K−1/2
(

Φ
(
m−i,k(1 + V−i,k)

−1/2
)
− 0.5

)
,

and for computing the variance vector Vgi , the following integral has to be evaluated
numerically for all k = 1, ...,K:

Var(g(hi,k)) = 2(Kπ)−1
∫ sin−1(ρ)

0
exp

(
−

m2
−i,k

(1 + V−i,k)(1 + sin(x))

)
dx,

where ρ = V−i,k(1 + V−i,k)
−1. Other activation functions could be incorporated by using

one-dimensional numerical quadratures. Note that with the full posterior couplings (33),
K-dimensional numerical integrations would be required to approximate mfi , Vfi , and Σv,fi .

Appendix C. Tilted Moments for the Hidden Unit Activations

To determine the parameters of the site approximations {t̃wk,i(wk|τ̃i,k, ν̃i,k)}Kk=1, we need to
form suitable approximations for the marginal means and covariances of {hi,k = wT

k xi}Kk=1

resulting from the transformed tilted distribution (42). In this appendix we approximate
these tilted moments with known θ and extend the approach for unknown noise level in
Appendix D. The marginal conditional tilted distribution of hi,k is given by

p̂i(hi,k|θ) ∝
∫∫

p(yi|vTg(hi), θ)
ηq−i(v|µ−i,Σ−i)dv

K∏
k′=1

q−i(hi,k′ |m−i,k′ , V−i,k′)dhi,−k,

(47)

where hi,−k contains all other hidden unit activations except hi,k. The challenge in approx-
imating the mean and variance of p̂i(hi,k|θ) is that this marginal density can have multiple
distinct modes, one related to the high-density areas of the cavity distribution q−i(hi) and
another one related to the likelihood p(yi|vTg(hi), θ), that is, to the values of hi,k that give
better fit for the left-out observation yi. In our numerical experiments, the simple approach
from Appendix B that is based on a joint Gaussian approximation to [hT

i ,v
T, fi] was found

to underestimate the marginal probability mass of the latter mode related to yi especially
in cases where the modes were clearly separated from each other. This problem was found
to be mitigated by decreasing η, which probably stems from leaving a fraction of the old
site approximation t̃wk,i(wk|τ̃i,k, ν̃i,k) from the previous iteration in the approximation that
in turn shifts the cavity towards the observation yi. With some difficult data sets, η-values
as small as 0.5 were found necessary for obtaining a good data fit but usually this also
required more iterations for achieving convergence compared to larger values of η.

To form robust approximations to the marginal tilted distributions p̂i(hi,k|θ) also in the
presence of multiple modes, we propose an alternative approximate method that enables
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numerical integration over the values of hi,k using one-dimensional quadratures. More
precisely, we aim to form a computationally cheap approximation to the integration over v
and hi,−k in (47) and use it to explore numerically the effect of hi,k on the marginal density
p̂i(hi,k|θ). The key difference from the Gaussian approximation of Appendix B is that
more complex dependencies between hi,k and fi = vTg(hi) can be taken into account by
numerically inspecting an approximation to p̂i(hi,k|θ) at different values of hi,k in contrast to
relaying only on linear dependencies encoded by Cov(hi,k, fi) (or equivalently Cov(hi,k, ỹi))
in approximation (43).

To approximate the marginalization over hi,−k and v in equation (47), we utilize the
fact that the likelihood term p(yi|vTg(hi), θ) depends on v and hi only through the trans-
formed scalar function value fi = vTg(hi). We first approximately transform the inte-
gration variables from {h−i,v} to the univariate latent function value fi = vTg(hi) =
vT
−kg(hi,−k) + vkg(hi,k) that depends on hi,k, and subsequently integrate analytically over

fi. For the likelihood term in (47), we plug in the transformed variable fi = vTg(hi),
but for the cavity distributions q−i(v)

∏
k 6=k′ q−i(hi,k′) we need to make a transformation

to obtain q−i(fi|hi,k), that is, the cavity distribution of fi conditioned on hi,k. Because,
q−i(fi|hi,k) cannot be computed analytically, we utilize the analytical moments from (46)
to approximate it with a univariate Gaussian as

q−i(fi|hi,k) ≈ N (fi|mfi(hi,k), Vfi(hi,k)) , (48)

where mfi(hi,k) and Vfi(hi,k) are the mean and variance of fi computed with respect to
q−i(v,hi,−k) = q−i(v|µ−i,Σ−i)

∏
k 6=k′ q−i(hi,k′ |m−i,k, V−i,k) with fixed hi,k. The required

conditional moments mfi(hi,k) and Vfi(hi,k) can be computed efficiently using equation
(46) by modifying the k:th element of mgi = E(g(hi)) and Vgi = Var(g(hi)) corresponding
to the known values of hi,k, that is, setting [mgi ]k = g(hi,k) and [Vgi ]k = 0. Using equation
(48), we can write the following approximation for the marginal tilted distribution of hi,k:

p̂i(hi,k|θ) ∝
∫
N (yi|vT

−kg(hi,−k) + vkg(hi,k), exp(θ))ηq−i(v)
K∏
k′=1

q−i(hi,k′)dvdhi,−k

=

∫
N (yi|fi, exp(θ))η q−i (fi|hi,k)) q−i(hi,k)dfi

≈ Z(θ)N
(
yi|mfi(hi,k), Vfi(hi,k) + η−1 exp(θ)

)
q−i(hi,k)

≈ Ẑi,k(θ)q̂i
(
hi,k|m̂i,k(θ), V̂i,k(θ)

)
, (49)

where all output weights excluding vk are denoted by v−k, Ẑi,k(θ) is a normalizing constant,

and q̂i(hi,k|m̂i,k(θ), V̂i,k(θ)) = N (hi,k|m̂i,k(θ), V̂i,k(θ)) is the final Gaussian approximation
to p̂i(hi,k|θ). In the last step we have substituted approximation (48) and carried out the
integration over fi analytically to give Z(θ) = (2π exp(θ))(1−η)/2η−1/2. Approximation (49)
enables numerical inspection for possible multimodality of p̂i(hi,k|θ), and it can be used for

approximating the conditional tilted means m̂i,k(θ) and variances V̂i,k(θ) efficiently with
one-dimensional numerical quadratures.

In our implementation, for each hidden unit k = 1, ...,K, we first computed mfi(hi,k)
and Vfi(hi,k) using (46) in all quadrature points that were selected to cover all the relevant
cavity density q−i(hi,k). In this step we reused the means mgi = E(g(hi)) and variances
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Vgi = Var(g(hi)) that were computed previously to determine the moments of p̂i(v|θ) with
(45). Note that only terms dependent on [mgi ]k have to be re-evaluated for each value of
hi,k, because [mgi ]k = g(hi,k) and [Vgi ]k = 0. Then we computed the tilted mean m̂i,k(θ)

and variance V̂i,k(θ) using the same values of the integrand in the third line of (49) for each
k = 1, ...,K.

The approximation (48) can be justified using the central limit theorem according to
which the distribution of the sum in fi =

∑K
k′=1 vk′g(hi,k′) + v0 given hi,k approaches a

normal distribution as K increases. Therefore, the approximate transformation used in
(48) and (49) becomes more accurate as the number of hidden units increase. However,
the proposed approximation can be very useful also with smaller values of K, because the
predictions are made using exactly the same scheme (see Appendix H). During training, the
input weight approximations are adjusted so that the Gaussian approximations of q(fi|hi,k)
in (48) encompass the high-density regions of the likelihood terms p(yi|fi, θ) in equation
(49). Therefore, the approximation should be able to produce high predictive densities also
for test observations.

A similar approach has been used by Ribeiro and Opper (2011) to form factorized
EP approximations for the input weights with linear single-layer models. They used the
central limit argument to form second-order Taylor approximations for the marginal tilted
distributions resulting from univariate Gaussian approximations for the input weights. We
utilize the same idea to approximate the tilted moments of the transformed variables hi,k =
wT
k xi using numerical quadratures and an input weight approximation that can be factorized

between the different hidden units.

Appendix D. Tilted Moments with Unknown Noise Level

In this appendix we propose ways to approximate the moments of v, {hi,k = wT
k xi}Kk=1,

and θ resulting from the transformed tilted distribution (42) by extending the derivations
of Appendices B and C for approximate integration over θ for the setting where the noise
level is assumed unknown and estimated using the proposed EP framework. The mean µ̂θ,i
and variance σ̂2θ,i of the marginal tilted distribution

p̂i(θ)∝
∫
p(yi|vTg(hi), θ)

ηq−i(v|µ−i,Σ−i)dv
K∏
k=1

q−i(hi,k|m−i,k, V−i,k)dhiq−i(θ|µθ,−i, σ2θ,−i),

can be approximated with a similar approach to the one that was used to determine the
moments of p̂i(hi,k|θ) in Appendix C. We first transform the integration over v and hi to in-
tegration over fi = vTg(hi) by forming a Gaussian approximation to the cavity distribution
of fi as

q−i(fi|θ) = q−i(fi) ≈ N (fi|mfi , Vfi),

where the mean mfi and variance Vfi are computed using (46). Note that q−i(fi|θ) is
independent of θ, because of the factorized approximation. Then, assuming a Gaussian
observation model, we can integrate analytically over fi to obtain a numerical approximation
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for the tilted distribution of θ:

p̂i(θ) ∝
∫
N (yi|vTg(hi), exp(θ))ηq−i(v)q−i(hi)dvdhiq−i(θ)

=

∫
N (yi|fi, exp(θ))η q−i(fi)q−i(θ)dfi

≈ Z(θ)N
(
yi|mfi , Vfi + η−1 exp(θ)

)
q−i(θ) ≈ Ẑiq̂i(θ|µ̂θ,i, σ̂2θ,i), (50)

where Z(θ) = (2π exp(θ))(1−η)/2η−1/2, Ẑi is an approximation to the normalization term
of the tilted distribution (22), and q̂i(θ|µ̂θ,i, σ̂2θ,i) = N (θ|µ̂θ,i, σ̂2θ,i) is our final Gaussian
approximation to the marginal tilted distribution p̂i(θ). The approximate tilted mean µ̂θ,i,

variance σ̂2θ,i, and normalization term Ẑi can be computed by integrating numerically over
the integrand on the third line of (50) using a quadrature. From (50) we also see that the
normalization term Ẑi can by approximated with Ẑi(θ) = Z(θ)N

(
yi|mfi , Vfi + η−1 exp(θ)

)
,

if θ is known or fixed.
To approximate the marginal mean and covariance of v with unknown θ, we can utilize

the conditional tilted moments from equation (45) by taking expectations with respect to

q̃i(θ) = Ẑ−1i Z(θ)N
(
yi|mfi , Vfi + η−1 exp(θ)

)
q−i(θ),

because the conditional moments are determined using an approximation to p̂i(hi,v|θ) and
from (50) we see that p̂i(hi,v, θ) ≈ Ẑ−1i p̂i(hi,v|θ)q̃i(θ). In case of the simple joint Gaussian
approximation for v we can write

µ̂i = Ep̂i(v)(v) = Ep̂i(θ)
(

Ep̂i(v|θ)(v|θ)
)
≈ Eq̃i(θ)(µ̂i(θ))

= µ−i + Σv,fi Eq̃i(θ)
(
V −1yi

)
(yi −mfi), (51)

where the conditional mean of v with respect to p̂i(v|θ) is approximated using (45), and
the integration over V −1yi = (Vfi + η−1 exp(θ))−1 can be done using a one-dimensional
quadrature. Similarly, for the marginal covariance of v we can write

Σ̂i = Covp̂i(v)(v) = Ep̂i(θ)
(

Covp̂i(v|θ)(v|θ)
)

+ Covp̂i(θ)
(

Ep̂i(v|θ)(v|θ)
)

≈ Eq̃i(θ)
(
Σ̂i(θ)

)
+ Eq̃i(θ)

((
µ̂i(θ)− µ̂i

)
(µ̂i(θ)− µ̂i)

T
)

= Σ−i −Σv,fi

(
Eq̃i(θ)

(
V −1yi

)
− (yi −mfi)

2 Varq̃i(θ)
(
V −1yi

))
ΣT

v,fi
, (52)

where the conditional covariance of v with respect to p̂i(v|θ) is approximated using (45) and
Varq̃i(θ)

(
V −1yi

)
= Eq̃i(θ)

(
(V −1yi − Eq̃i(θ)(V

−1
yi ))2

)
can be computed with a numerical quadra-

ture. For the output weights v the integration over the uncertainty of θ can be done without
significant additional computational cost. The mean Eq̃i(θ)(V

−1
yi ) and variance Varq̃i(θ)(V

−1
yi )

can be determined by reusing the same function evaluations that are needed in the quadra-
ture integrations of µ̂θ,i, σ̂

2
θ,i, and Ẑi according to equation (50).

Approximating the marginal tilted moments of the hidden unit activations hi,k with
unknown θ is more demanding because determining the means and variances of p̂i(hi,k)
using the approximation (49) requires two-dimensional numerical quadratures over both
hi,k and θ in

p̂i(hi,k, θ) ≈ Ẑ−1i Z(θ)N
(
yi|mfi(hi,k), Vfi(hi,k) + η−1 exp(θ)

)
q−i(θ)q−i(hi,k), (53)
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for each hidden unit k = 1, ...,K. To reduce the computational burden, we approximate the
probability density of p̂i(hi,k, θ) to be relatively sharply peaked near the marginal expected
value µ̂θ,i determined using (50) leading to approximation

p̂i(hi,k) ≈ Ẑ−1i Z(θ)N
(
yi|m(hi,k), V (hi,k) + η−1 exp(µ̂θ,i)

)
q−i(hi,k)

≈ q̂i
(
hi,k|m̂i,k(µ̂θ,i), V̂i,k(µ̂θ,i)

)
, (54)

where q̂i(hi,k|m̂i,k(µ̂θ,i), V̂i,k(µ̂θ,i)) = N (hi,k|m̂i,k(µ̂θ,i), V̂i,k(µ̂θ,i)) is our final Gaussian ap-
proximation for p̂i(hi,k). This approximation does not require any additional computational
effort compared to the conditional estimate (49) and the difference in accuracy compared
to the two-dimensional quadrature estimate based on (53) was found small after a few
iterations provided that there are enough observations.

Appendix E. Site Parameters and Damped Updates

In this appendix we present closed form expressions for the parameters of the likelihood site
approximations t̃v,i(v|α̃i, β̃i), {t̃wk,i(wk|τ̃i,k, ν̃i,k)}Kk=1, and t̃θ,i(θ|µ̃θ,i, σ̃2θ,i) that are obtained
by applying the moment matching condition (23) with the approximate tilted moments
derived in Appendices B–D.

Using the moment matching condition Σ̂−1i = Σ−1−i + ηα̃iα̃
T
i resulting from (23) and

approximate tilted covariance Σ̂i from (45) or (52), we can write the following expression
for the scale parameter vector α̃i of the i:th approximate site term t̃v,i(v|α̃i, β̃i) defined in
(35):

α̃i = mgisign(âi)|âi|1/2
(
1− âimT

giΣ−imgi

)−1/2
η−1/2, (55)

where âi = V −1yi = (Vfi + η−1 exp(θ))−1 > 0 with known θ (see equation (45)), and âi =
Eq̃i(θ)

(
V −1yi

)
− (yi −mfi)

2 Varq̃i(θ)
(
V −1yi

)
with unknown θ (see equation (52)). Similarly for

the location parameter vector β̃i, equation (23) results in the moment matching condition
Σ̂−1i µ̂i = Σ−1−iµ−i + ηβ̃i that together with the approximate tilted mean µ̂i from equation
(45) or (51) gives

β̃i = mgi

(
1− âimT

giΣ−imgi

)−1 (
âim

T
giµ−i + b̂i(yi −mfi)

)
η−1 (56)

where âi is defined similarly with the previous equation, b̂i = V −1yi with known θ (see

equation (45)), and b̂i = Eq̂i(θ)
(
V −1yi

)
when θ is unknown (see equation (51)).

By looking at equations (55) and (56) we can now extend our previous discussion about
the structure of the site parameters after equation (37) in Section 3.3. The mean and
covariance of the posterior approximation q(v) defined in equation (37) can be interpreted
as the posterior distribution of a linear model where the input features are replaced with the
expected values of the nonlinearly transformed input layer activations mgi = Eq−i(g(x̃T

i w))

and pseudo observations ỹi = mT
giµ−i+â

−1
i b̂i(yi−mfi) are made according to an observation

model N (ỹi|mT
giv, â

−1
i −mT

giΣ−imgi).
Damping the site updates can improve the numerical robustness and convergence of

the EP algorithm, but applying damping on the site precision structure T̃i,vv = α̃iα̃
T
i
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resulting from equations (37) and (55), that is, T̃new
i,vv = (1− δ)α̃old

i (α̃old
i )T + δα̃iα̃

T
i , would

break the outer product form of the likelihood site approximations (35) and produce a
computationally more demanding rank-K site precision after K iterations. In case the
input weight approximations q(wk) were kept fixed while updating the output weights v,
the expected activations m(gi) would remain constant and one could consider damping only
the scalar terms on the right hand side of equations (55) and (56).

In the more general case where also the site parameters τ̃i,k and ν̃i,k related to the input
weights are updated simultaneously, we can approximate the new site precision structure
T̃new
i,vv = AiA

T
i , where Ai = [(1 − δ)1/2α̃old

i , δ1/2α̃i] and α̃i is obtained from (55), with
its largest eigenvector at each site update step. This requires solving the eigenvector vi
corresponding to the largest eigenvalue λi of the 2× 2 matrix AT

i Ai ≈ viλiv
T
i after which

the new damped site parameter vector can be approximated as

α̃new
i = Aivi. (57)

Damping the site location vector β̃i is straightforward because update β̃new
i = (1− δ)β̃old

i +
δβ̃i = bi, where β̃i is obtained from (56), will preserve the structure of the site approxima-
tion (35). However, approximation α̃new

i = Aivi changes the moment consistency conditions
used in deriving (56) which is why β̃new

i has to be modified so that combining it with α̃new
i

according to the moment matching rule (23) results in the same mean vector µv as the
rank-2 site AiA

T
i combined with bi:

µv =
(
Σ−1−i + ηα̃new

i (α̃new
i )T

)−1 (
Σ−1−iµ−i + ηβ̃new

i

)
=
(
Σ−1−i + ηAiA

T
i

)−1 (
Σ−1−iµ−i + ηbi

)
. (58)

In other words, we approximate the posterior covariance Σv = (Σ−1−i + ηAiA
T
i )−1 resulting

from the rank-two damped update with the rank-one update Σv ≈ (Σ−1−i +ηα̃new
i (α̃new

i )T)−1

but choose β̃new
i so that the mean µv will be exact. Plugging in α̃new

i = Aivi and solving
for β̃new

i gives the following update rule

β̃new
i = bi + η−1Ai(viv

T
i − I)(AT

i Σ−iAi + η−1I)−1AT
i (µ−i + ηΣ−ibi), (59)

where bi = (1− δ)β̃old
i + δβ̃i with β̃i given by (56).

Because of the factorized posterior approximation (19), the likelihood site approxima-
tion terms associated with the input weights decouple over the different hidden units as∏K
k=1 t̃wk,i(wk|τ̃i,k, ν̃i,k) and consequently the moment matching condition (23) results in

simple scalar site parameter updates. Using the moment matching condition with the cav-
ity definitions (39) and the tilted moments approximated with either (49) or (54) gives the
following site updates

τ̃newi,k = (1− δ)τ̃i,k + δη−1(V̂ −1i,k − V
−1
−i,k) = τ̃i,k + δη−1(V̂ −1i,k − V

−1
i,k ) (60)

ν̃newi,k = (1− δ)ν̃i,k + δη−1(V̂ −1i,k m̂i,k − V −1−i,km−i,k) = ν̃i,k + δη−1(V̂ −1i,k m̂i,k − V −1i,k mi,k),

where δ ∈ (0, 1] is a damping factor and the marginal tilted mean m̂i,k and variance V̂i,k are
computed using (49) or (54) depending on whether θ is known or unknown. Equation (60)
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shows that the EP iterations on the input weights wk have converged when the approximate
marginal means mi,k and variances Vi,k of the activations hi,k from all hidden units are
consistent with all tilted distributions.

In case θ is inferred using EP, parameter updates for the site approximations t̃θ,i(θ|µ̃θ,i, σ̃2θ,i)
can be derived by combining the cavity definitions (41) with the tilted moment approxima-
tions (50) according to the moment consistency conditions (23), which results in

τ̃newθ,i = τ̃θ,i + δη−1
(
σ̂−2θ,i − σ

−2
θ

)
(61)

ν̃newθ,i = ν̃θ,i + δη−1(σ̂−2θ,i µ̂θ,i − σ
−2
θ µθ),

where we have written the site parameters in their natural exponential forms as τ̃θ,i = σ̃−2θ,i
and ν̃θ,i = σ̃−2θ,i µ̃θ,i.

Appendix F. EP Algorithm for the Weight Prior Terms

This appendix summarizes an EP algorithm that can be used to determine the site approxi-
mations of the weight prior terms (13) and (14) as discussed in Section 3.2.2. The following
algorithm is written for the input weight terms

p(wj |φlj ) ≈ Z̃w,j t̃w,j(wj)t̃φ,j(φlj ) ∝ N (wj |µ̃w,j , σ̃2w,j)N (φlj |µ̃φ,j , σ̃
2
φ,j)

that depend also on the scale parameters {φl}Ll=1. We denote the parameters of the site
approximations in their natural exponential forms as τ̃w,j = σ̃−2w,j , ν̃w,j = σ̃−2w,jµ̃w,j , τ̃φ,j = σ̃−2φ,j
and ν̃φ,j = σ̃−2φ,jµ̃φ,j . The algorithm can be applied for updating the output weight terms
for k = 1, ...,K,

p(vk) ≈ Z̃v,k t̃v,k(vk) ∝ N (vk|µ̃v,k, σ̃2v,k),
by leaving out the computations related to parameters φl, and replacing the natural param-
eters ν̃w,j and τ̃w,j with τ̃v,k = σ̃−2v,kµ̃v,k and ν̃v,k = σ̃−2w,k, and the posterior approximation
q(wk) = N (µwk ,Σwk) with q(v) = N (µv,Σv). One iteration of the algorithm consist of
the following update steps for all site approximations j = K(k − 1) + 1, ...,K(k − 1) + d
related to all hidden units k = 1, ...,K:

1. Compute the mean and covariance of the cavity distribution q−j(wj) = N (mw,−j , Vw,−j):

Vw,−j = (V −1w,j − ητ̃w,j)
−1

mw,−j = Vw,−j(V
−1
w,jmw,j − ην̃w,j), (62)

where the approximate mean and variance of wj are given by mw,j = [µwk ]i = µwkei
and Vw,j = [Σwk ]i,i = eTi Σwkei with µwk and Σwk defined by (36), i = j −K(k− 1),
and ei the i:th unit vector. Compute also the mean and covariance of the cavity
distribution q−j(φlj ) = N (mφ,−j , Vφ,−j):

Vφ,−j = (σ−2φlj ,
− ητ̃φ,j)−1

mφ,−j = Vφ,−j(σ
−2
φlj
µφlj − ην̃φ,j), (63)

where µφlj and σ2φlj
are the mean and covariance of q(φlj ) given by (18).
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2. Compute the marginal moments Ẑw,j , m̂w,j = E(wj), V̂w,j = Var(wj), m̂φ,j = E(φlj ),

and V̂φ,j = Var(φlj ) of the tilted distribution p̂j(wj , φlj ) either analytically or using a
numerical quadrature depending on the functional form of the prior term p(wj |φlj ):

p̂j(wj , φlj ) = Ẑ−1w,jq−j(wj)q−j(φlj )p(wj |φlj )
η

≈ N (wj |m̂w,j , V̂w,j)N (φlj |m̂φ,j , V̂φ,j), (64)

where Ẑw,j =
∫
q−j(wj)q−j(φlj )p(wj |φlj )ηdwjdφlj .

3. Update the site parameters related to t̃w,j(wj) as τ̃neww,j = τ̃w,j + ∆τ̃w,j and ν̃neww,j =

ν̃w,j + ∆ν̃w,j together with the parameters related to t̃φ,j(φlj ) as τ̃newφ,j = τ̃φ,j + ∆τ̃φ,j
and ν̃newφ,j = ν̃φ,j + ∆ν̃φ,j , where the parameter adjustments damped by δ ∈ (0, 1] are
given by

∆τ̃w,j = δη−1(V̂ −1w,j − V
−1
w,j )

∆ν̃w,j = δη−1(V̂ −1w,j m̂w,j − V −1w,jmw,j)

∆τ̃φ,j = δη−1(V̂ −1φ,j − σ
−2
φlj

)

∆ν̃φ,j = δη−1(V̂ −1φ,j m̂φ,j − σ−2φljµφlj ). (65)

4. If sequential EP is used, update the posterior approximation q(wk) = N (µw,Σw)
using a rank-one update:

Σnew
wk

= Σwk − aj∆τ̃w,js
−1
j aT

j

µnew
wk

= µwk + ajs
−1
j (∆ν̃w,j −∆τ̃w,jmw,j), (66)

where sj = 1+∆τ̃w,jVw,j and aj = Σwei with i = j−K(k−1). Also the determinant
of Σwk can be updated sequentially as log |Σnew

wk
| = log |Σwk | − log(sj), which can be

used in evaluating the approximate marginal likelihood as described in Appendix I.
For the scalar φlj , the posterior q(φlj ) = N (µφlj , σ

2
φlj

) can be updated as

σ2φlj
new

=
(
σ−2φlj

+ ∆τ̃φ,j

)−1
µnewφlj

= σ2φlj
new
(
σ−2φlj

µφlj + ∆ν̃φ,j

)
. (67)

Steps 1–4 are repeated until all the tilted distributions are consistent with the approximate
posterior, that is, m̂w,j = mw,j , V̂w,j = Vw,j , m̂φ,j = µφlj and V̂φ,j = σ2φlj

. In parallel

EP, step 4 is replaced with a single re-computation of {µwk}Kk=1 and {Σwk}Kk=1 using,
e.g., K Cholesky decompositions after each sweep over all the site approximations j =
K(k − 1) + 1, ...,K(k − 1) + d for all the hidden units k = 1, ...,K.

Appendix G. Improving the Numerical Stability of the EP algorithm

This appendix outlines some practical procedures for conducting the updates (57), (59),
(60), and (65) so that the EP algorithm 1 remains numerically stable. From (66) we see
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that the approximate posterior Σwk becomes ill-conditioned (or negative definite) in a
sequential update if sj ≤ 0, that is, when ∆τ̃w,j ≤ −V −1w,j , because |Σnew

wk
| = |Σwk |/sj .

According to (65), this can result from site updates where ∆τ̃w,j ≤ −V −1w,j , corresponding

to cases with V̂ −1w,j ≤ (1−η/δ)V −1w,j . If no damping is used , i.e., δ = 1, this requires that the

tilted precision V̂ −1w,j becomes very small (or even negative if η = 1) corresponding to a very
(or infinitely) large approximate posterior uncertainty in p̂j(wj). Therefore, it is sensible
to make sure that each EP update is done only if the corresponding tilted distribution is
proper. From V̂ −1w,j ≤ (1− η/δ)V −1w,j we can also see that using damping δ < 1 helps to avoid
problems arising from inaccurate tilted moment derivations. This discussion applies also to
the rank-one updates in the EP iterations for the likelihood terms in line 5 of Algorithm 1
with si = 1 + ∆τ̃i,kVi,k, Vi,k = xT

i Σwkxi, and ai = Σwkxi.

Another type of problem can arise from the rank-one update (66) if −V −1w,j < ∆τ̃w,j < 0,
although the approximate covariance remains positive definite. If the site precisions τ̃w,j that
are used to construct Σwk according to (36) are allowed to become negative, a large negative
site precision adjustment ∆τ̃w,j can cause some of the cavity precisions {V −1w,−l}l 6=j related
to the other terms to become very small or even negative at subsequent cavity computation
steps (62) (Jylänki et al., 2011). Negative cavity precisions should not occur if all site
precision parameters are non-negative but still, with certain models, the cavity variances
can become very large causing unstable tilted moment integrations and site updates (Minka,
2001a; Seeger, 2008). Because negative cavity precisions are associated with too large
negative adjustments ∆τ̃w,j , a useful heuristic way to mitigate these problems is to apply
more damping in the updates with ∆τ̃w,j < 0 in (65). As a result, more cautious steps are
taken whenever the posterior variances are increased locally but otherwise greedier updates
are done to decrease the posterior uncertainty. In our experiments, this was found helpful
especially with the updates of the likelihood term approximations t̃wk,i(w|τ̃i,k, ν̃i,k) in (60).
In case of parallel updates in lines 6 and 7 of Algorithm 1, the posterior covariances can
be recomputed by gradually increasing damping (especially for the negative site precision
adjustments) as many times as required so that all the resulting cavity distributions are
well defined.

Constraining the site precision parameters to positive values can improve the stability
and convergence of the EP algorithm but it can also change the properties of the poste-
rior approximation because the moment consistency conditions (23) may not be satisfied
anymore. In addition, constraining the site precisions may not be sensible with certain
models. For example, a robust non-log-concave observation model can result in negative
precision parameters for the likelihood terms related to the outlying observations mean-
ing that such observations increase the posterior uncertainty locally. Thus, we do not
wish to tamper with the likelihood site parameters, because our observation model is also
non-log-concave and prone to multimodal tilted distributions. On the other hand, con-
straining the precision parameters of the prior site approximations can be viewed as setting
a limit to the maximum prior uncertainty on the unknown model parameters. Therefore,
we chose to leave the parameters τ̃i,k, α̃i, and τ̃θ,i = σ̃−2θ,i related to the likelihood term

approximations (12) and (35) unconstrained but assign constraints τ̃v,k = σ̃−2v,k ≥ τ̃min and

τ̃w,j = σ̃−2w,j ≥ τ̃min to the precision parameters of the prior term approximations (13) and

(14) with some small positive value such as 0.12 for τ̃min. In practice, this is implemented
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by modifying the outcome of the tilted moment derivations (64) in the algorithm of Ap-
pendix F with V̂ −1w,j = V −1w,j + δ−1η(τ̃min − τ̃w,j) whenever the unconstrained update (65)
results in τ̃neww,j < τ̃min. Recomputing the update (65) with this modified tilted variance re-
sults in slightly underestimated variances only in case of very wide tilted distributions but
the tilted means m̂w,j are matched exactly. In our experiments, this improved the stability
of the challenging likelihood term updates in lines 2–7 of Algorithm 1 by preventing the
effective weight prior variances σ̃2v,k and σ̃2w,j from becoming very large.

Appendix H. Computing the Predictions

The prediction for a new test input x∗ can be computed using approximations (17), (36)
and (37), as follows

p(y∗|x∗) ≈
∫
p(y∗|f(x∗), θ)q(v|µv,Σv)

K∏
k=1

q(wk|µwk ,Σwk)q(θ|µθ, σ2θ)dvdwdθ

≈
∫
N (y∗|f∗, exp(θ))N (f∗|mf∗ , Vf∗)q(θ)df∗dθ

=

∫
N (y∗|mf∗ , Vf∗ + exp(θ))q(θ)dθ, (68)

where the approximate mean mf∗ and Vf∗ of the latent function value f(x∗) = f∗ =∑K
k=1 vkg(wT

k x∗) + v0 is approximated in the same way as in equation (46). The cavity
mean µ−i and covariance Σ−i are replaced with µv and Σv, and the means mg∗ = E(g(h∗))
and variances Vg∗ = Var(g(h∗)) of the hidden unit activations are computed with re-
spect to the approximations q(wk) = N (wk|µwk ,Σwk). The predictive mean is given
by E(y∗|x∗) = E(E(y∗|x∗, θ)) = E(mf∗) = mf∗ . The predictive variances Var(y∗|x∗) =
E(Var(y∗|x∗, θ)) + Var(E(y∗|x∗, θ)) = Vf∗ + E(exp(θ)) and the predictive densities p(y∗|x∗),
can be approximated either with a plug-in value for θ = µθ or by integrating over θ using
a numerical quadrature (in the experiments we used numerical quadratures).

Appendix I. Marginal Likelihood Approximation

An EP approximation to the log marginal likelihood logZ = log p(y|X,γ) conditioned on
the fixed hyperparameters γ as defined in (8) can be computed in a numerically stable and
efficient manner following the general EP formulation for Gaussian approximating families
summarized by Cseke and Heskes (2011, appendix C). Adopting the formulation for our
approximate family gives

logZEP = Ψ(µv,Σv) +

K∑
k=1

Ψ(µwk ,Σwk) + Ψ(µθ, σ
2
θ) +

L∑
l=1

Ψ(µφ,l, σ
2
φ,l)

+
1

η

n∑
i=1

(
ln Ẑi + Ψ(µθ,−i, σ

2
θ,−i)−Ψ(µθ, σ

2
θ) +

K∑
k=1

(
Ψ(m−i,k, V−i,k)−Ψ(mi,k, Vi,k)

))
+

1

η

n∑
i=1

(1

2

(
s−1i (aT

i α̃i)
2 − ηβ̃T

i (µv + ai)− ln(siη)
))
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+
1

ηw

Kd∑
j=1

(
log Ẑw,j +Ψ(mw,−j , Vw,−j)−Ψ(mw,j , Vw,j) +Ψ(µφ,−j , σ

2
φ,−j)−Ψ(µφlj , σ

2
φlj

)
)

+
1

ηv

K∑
k=1

(
ln Ẑv,k + Ψ(mv,−k, Vv,−k)−Ψ(mv,k, Vv,k)

)
−Ψ(µv0 , σ

2
v0)−Ψ(µθ,0, σ

2
θ,0)−

L∑
l=1

Ψ(µφ,0, σ
2
φ,0), (69)

where η, ηw, and ηv are the fraction parameters related to the model terms p(yi|fi, θ),
p(wj |φlj ), and p(vk), respectively, and si = η−1 − α̃T

i Σvα̃i together with ai = µv − ηΣvβ̃i
can be computed during the cavity computations (40). The normalization terms Ψ(·, ·)
related to unnormalized Gaussian densities (also known as log partition functions) computed
for various Gaussian cavity and marginal distributions in (69) are defined as

Ψ(µ,Σ) = log

∫
exp

(
−1

2
wTΣ−1w + νTw

)
dw =

1

2
µTν +

1

2
log |Σ|+ d

2
log(2π),

where w, µ, and ν = Σ−1µ are d × 1 vectors and Σ is a d × d matrix. The approximate
means and covariances in line one of (69) are given by equations (37), (36), (18), and (17) in
respective order. The cavity and marginal moments in line two related to the likelihood sites
are defined in (41) and (39). Line three corresponds to Ψ(µ−i,Σ−i)−Ψ(µv,Σv), which can
be computed efficiently using si = η−1 − α̃T

i Σvα̃i and ai = µv − ηΣvβ̃i as defined in the
cavity computations (40). The cavity and marginal moments in line four associated with the
prior terms p(wj |φlj ) are computed using (62), and analogous definitions can also be used
in line five that is related to prior terms p(vk). The last line of (69) contains the constant
normalization terms related to the fixed Gaussian priors including p(v0) = N (µv0 , σ

2
v0) for

the output bias, p(θ) = N (µθ,0, σ
2
θ,0) for the noise level, and p(φl) = N (µφ,0, σ

2
φ,0) for the

input weight scales for l = 1, ..., L.

When θ is inferred using EP, the normalization terms of the tilted distributions in line
two of (69), which are defined by

Ẑi ≈
∫
p(yi|vTg(hi), θ)

ηq−i(v,hi, θ)dvdhidθ,

can be computed using approximation (50). Otherwise, they can be computed using the
expression Ẑi = Z(θ)N

(
yi|mfi , Vfi + η−1 exp(θ)

)
from (50) with the known value of θ. The

normalization terms of the other tilted distributions related to the prior terms on lines four
and five are defined as

Ẑv,k =

∫
p(vk|σ2v,0)ηvq−k(vk)dvk and Ẑw,j =

∫
p(wj |φlj )

ηwq−j(wj)q−j(φlj )dwjdφlj ,

and they can be computed during the step 2 of the EP algorithm summarized in Appendix F.

All terms of equation (69) excluding Ψ(µv,Σv) and Ψ(µwk ,Σwk) can be computed with-
out significant additional cost simultaneously during the EP update of the corresponding
site approximation. Term Ψ(µv,Σv) can be computed using one Cholesky decomposition
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at each parallel update step of q(wk) in line 7 of Algorithm 1. Similarly, if parallel updates
are used for the input weight approximations, Ψ(µwk ,Σwk) can be computed using the
same Cholesky decompositions that are used to recompute q(wk) in line 6 of Algorithm 1.
In case sequential EP is used for q(wk) in line 5 of Algorithm 1, vectors νwk = Σ−1wk

µwk

and determinant term log |Σv| can be updated simultaneously with the rank-1 updates of
µwk and Σwk that are given by (66).

The EP approximation logZEP has the appealing property that its partial derivatives
with respect to the site parameters in their canonical forms5 are zero when the algorithm
has been iterated until convergence (Opper and Winther, 2005). This follows form the fact
that the fixed points of the EP algorithm correspond to the stationary points of (69) with
respect to the site parameters (or equivalently the cavity parameters) using constraints
of the form V −1−i,k = V −1i,k − ητ̃i,k and V −1−i,km−i,k = V −1i,k mi,k − ην̃i,k, which are equivalent
to the cavity definitions. Thereby, the marginal likelihood approximation can be used for
gradient-based estimation of the hyperparameters σ2v,0, σ

2
v0,0

, µ2φ,0 and σ2φ,0, and also param-

eters θ and {φl}Ll=1 in case they are not inferred within the EP framework for determining
{q(wk)}Kk=1 and q(v). Because the convergence of the likelihood approximation can take
many iterations it is advisable to initialize the hyperparameters to sensible values and run
the EP algorithm once until sufficient convergence starting from a zero initialization for
the site parameters. After that, gradient-based local update steps can be taken for the
hyperparameter values by continuing the EP iterations from the previous site parameter
values at each new hyperparameter configuration.
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Abstract

We propose a novel and efficient algorithm for maximizing the observed log-likelihood of a
multivariate normal data matrix with missing values. We show that our procedure, based
on iteratively regressing the missing on the observed variables, generalizes the standard EM
algorithm by alternating between different complete data spaces and performing the E-Step
incrementally. In this non-standard setup we prove numerical convergence to a stationary
point of the observed log-likelihood. For high-dimensional data, where the number of
variables may greatly exceed sample size, we perform regularization using a Lasso-type
penalty. This introduces sparsity in the regression coefficients used for imputation, permits
fast computation and warrants competitive performance in terms of estimating the missing
entries. We show on simulated and real data that the new method often improves upon
other modern imputation techniques such as k-nearest neighbors imputation, nuclear norm
minimization or a penalized likelihood approach with an `1-penalty on the concentration
matrix.

Keywords: missing data, observed likelihood, (partial) E- and M-Step, Lasso, penalized
variational free energy

1. Introduction and Motivation

Missing data imputation for large data sets is a significant challenge in many complex data
applications. One well-known example are microarray data sets which contain expression
profiles of p genes from a series of n experiments, where p is typically much larger than

c©2014 Nicolas Städler, Daniel J. Stekhoven and Peter Bühlmann.
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n (Troyanskaya et al., 2001; Aittokallio, 2010). In this paper, we propose a novel and
computationally efficient imputation algorithm based on missingness pattern alternating
maximization in the high-dimensional multivariate normal model. The Gaussian assump-
tion in our model is used for computation of the likelihood but empirical findings suggest
that the method is applicable to a wide range of problems where continuous data is arranged
in the form of a n× p matrix with p� n.

There is a growing literature on missing values in the high-dimensional context (Allen and
Tibshirani, 2010; Josse et al., 2011; Loh and Wainwright, 2012; Rosenbaum and Tsybakov,
2010). In recent years, a special focus has been given to the so-called matrix completion
problem, where the goal is to recover a low-rank matrix from an incomplete set of entries. It
has been shown in a series of fascinating papers that one can recover the missing data entries
by solving a convex optimization problem, namely, nuclear-norm minimization subject to
data constraints (Candès and Recht, 2009; Candès and Tao, 2010; Keshavan et al., 2010).
Efficient algorithms for the matrix completion problem were proposed by Cai et al. (2010)
and Mazumder et al. (2010). However, many incomplete data problems do not arise from
a near low rank matrix scenario. In these cases there is substantial room to improve upon
the convex matrix completion algorithms. We will empirically demonstrate this point for
some high-throughput biological data.

In this manuscript we assume a multivariate normal model (MVN) with p-dimensional
covariance matrix Σ and address the missing data problem through a likelihood approach
(Little and Rubin, 1987; Schafer, 1997). Recently, in the high-dimensional setup, Städler
and Bühlmann (2012) proposed to maximize the penalized observed log-likelihood with an
`1-penalty on the concentration matrix Σ−1. They called their method MissGLasso, as
an extension of the graphical Lasso (Friedman et al., 2008) for missing data. MissGLasso
induces sparsity in the concentration matrix and uses an EM algorithm for optimization.
Roughly, the algorithm can be summarized as follows: in the E-Step, for each sample, the
regression coefficients of the missing against the observed variables are computed from the
current estimate Σ̂−1; in the following M-Step, the missing values are imputed by linear
regressions and Σ̂−1 is re-estimated by applying the graphical Lasso on completed data.
There are two main drawbacks of this algorithm in a high-dimensional context. First, the
E-Step is rather complex as it involves (for each sample) inversion and multiplication of large
matrices in order to compute the regression coefficients. Secondly, a sparse concentration
matrix does not imply sparse regression coefficients while we believe that in high-dimensions,
sparse regression coefficients would enhance imputations. Our new algorithm, MissPALasso
in this paper, generalizes the E-Step in order to resolve the disadvantages of MissGLasso.
In particular, inversion of a matrix (in order to compute the regression coefficients) will be
replaced by a simple soft-thresholding operator. In addition, the regression coefficients will
be sparse, which leads to a new sparsity concept for missing data estimation.

MissPALasso emerges from the missingness pattern alternating maximization algorithm
(MissPA) which we propose for optimizing the (unpenalized) observed log-likelihood. We
show that this method generalizes the E- and M-Step of the EM algorithm by alternating
between different complete data spaces and performing the E-Step incrementally (Dempster
et al., 1977; Fessler and Hero, 1994; Neal and Hinton, 1998). Such a generalization does not
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fit into any of the existing methodologies which extend the standard EM. We analyse our
procedure using the variational free energy (Jordan et al., 1999) and prove convergence to
a stationary point of the observed log-likelihood.

The further organization of the paper is as follows: Section 2 introduces the setup and the
useful notion of missingness patterns. In Section 3 we present our new methodology based on
(missingness) pattern alternating maximization and develop MissPALasso for imputation
in the high-dimensional scenario. Section 4 compares performance of MissPALasso with
other competitive methods and reports on computational efficiency. Finally, in Section 5,
we present some theory to gain insights into the numerical properties of the procedure.

2. Setup

We assume X = (X1, . . . , Xp) ∼ N (µ,Σ) has a p-variate normal distribution with mean µ
and covariance matrix Σ. In order to simplify the notation we set without loss of generality
µ = 0: for µ 6= 0, some of the formulae involve the parameter µ and an intercept column
of (1, . . . , 1) in the design matrices but conceptually, we can proceed as for the case with
µ = 0. We then write X = (Xobs,Xmis), where X represents an i.i.d. random sample of
size n, Xobs denotes the set of observed values, and Xmis the missing data.

2.1 Missingness Patterns and Different Parametrizations

For our purpose it will be convenient to group rows of the matrix X according to their
missingness patterns (Schafer, 1997). We index the unique missingness patterns that
actually appear in our data by k = 1, . . . , s. Furthermore, with ok ⊂ {1, . . . , p} and
mk = {1, . . . , p}\ok we denote the set of observed variables and the set of missing variables,
respectively. Ik is the index set of the samples (row numbers) which belong to pattern
k, whereas Ick = {1, . . . , n} \ Ik stands for the row numbers which do not belong to that
pattern. By convention, samples with all variables observed do not belong to a missingness
pattern.

Consider a partition X = (Xok , Xmk
) of a single Gaussian random vector. It is well known

that Xmk
|Xok follows a linear regression on Xok with regression coefficients Bmk|ok and

covariance Σmk|ok given by

Bmk|ok = Σmk,okΣ−1
ok
,

Σmk|ok = Σmk
− Σmk,okΣ−1

ok
Σok,mk

. (1)

Consequently, we can write the density function p(x; Σ) of X as

p(x; Σ) = p(xmk
|xok ;Bmk|ok ,Σmk|ok)p(xok ; Σok),

i.e., the density can be characterized by either the parameter Σ or (Σok , Bmk|ok ,Σmk|ok).
The transformation (1) allows us to switch between both parametrizations.
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2.2 Observed Log-Likelihood and Maximum Likelihood Estimation (MLE)

A systematic approach to estimate the parameter of interest Σ from Xobs maximizes the
observed log-likelihood `(Σ; Xobs) given by

`(Σ; Xobs) =
∑

i/∈
⋃

k Ik

log p(xi; Σ) +
s∑

k=1

∑
i∈Ik

log p(xi,ok ; Σok). (2)

Inference for Σ can be based on (2) if the underlying missing data mechanism is ignorable.
The missing data mechanism is said to be ignorable if the probability that an observation is
missing may depend on Xobs but not on Xmis (Missing at Random) and if the parameters
of the data model and the parameters of the missingness mechanism are distinct. For a
precise definition see Little and Rubin (1987).

Explicit maximization of `(Σ; Xobs) is only possible for special missing data patterns. Most
prominent are examples with a so-called monotone missing data pattern (Little and Ru-
bin, 1987; Schafer, 1997), where X1 is more observed than X2, which is more observed
than X3, and so on. In this case, the observed log-likelihood factorizes and explicit max-
imization is achieved by performing several regressions. For a general pattern of missing
data, the standard EM algorithm is often used for optimization of (2). See Schafer (1997)
for a detailed description of the algorithm. In the next section we present an alternative
method for maximizing the observed log-likelihood. We will argue that this new algorithm
is computationally more efficient than the standard EM.

3. Missingness Pattern Alternating Maximization

For each missingness pattern, indexed by k = 1, . . . , s, we introduce some further notation:

Xk = (xi,j) with i ∈ Ik, j = 1, . . . , p

X−k = (xi,j) with i ∈ Ick, j = 1, . . . , p.

Thus, Xk is the |Ik| × p submatrix of X with rows belonging to the kth pattern. Similarly,
X−k is the |Ick| × p matrix with rows not belonging to the kth pattern. In the same way we
define Xk

ok
,Xk

mk
,X−kok and X−kmk

. For example, Xk
ok

is defined as the |Ik| × |ok| matrix with

Xk
ok

= (xi,j) with i ∈ Ik, j ∈ ok.

3.1 MLE for Data with a Single Missingness Pattern

Assume that the data matrix X has only one single missingness pattern, denoted by s. This
is the most simple example of a monotone pattern. The observed log-likelihood factorizes
according to:
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`(Σ; Xobs) =
∑
i∈Is

log p(xi,os ; Σos) +
∑
i∈Ics

log p(xi; Σ)

=

n∑
i=1

log p(xi,os ; Σos) +
∑
i∈Ics

log p(xi,ms |xi,os ;Bms|os ,Σms|os). (3)

The left and right part in Equation (3) can be maximized separately. The first part is
maximized by the sample covariance of the observed variables based on all samples, whereas
the second part is maximized by a regression of the missing against observed variables based
on only the fully observed samples. In formulae:

Σ̂os = tXosXos/n, (4)

and

B̂ms|os = tX−sms
X−sos (tX−sos X−sos )−1,

Σ̂ms|os = t(X−sms
−X−sos

tB̂ms|os)(X
−s
ms
−X−sos

tB̂ms|os)/|I
c
s |. (5)

Having these estimates at hand, it is easy to impute the missing data:

x̂i,ms = B̂ms|os
txi,os for all i ∈ Is, or, in matrix notation, X̂s

ms
= Xs

os
tB̂ms|os .

It is important to note, that, if interested in imputation, only the regression part of the
MLE is needed and the estimate Σ̂os in (4) is superfluous.

3.2 MLE for General Missing Data Pattern

We turn now to the general case, where we have more than one missingness pattern, indexed
by k = 1, . . . , s. The general idea of the new algorithm is as follows. Assume we have some
initial imputations for all missing values. Our goal is to improve on these imputations. For
this purpose, we iterate as follows:

• Keep all imputations except those of the 1st missingness pattern fixed and compute
the single pattern MLE (for the first pattern) as explained in Section 3.1. In particular,
compute the regression coefficients of the missing 1st pattern against all other variables
(treated as “observed”) based on all samples which do not belong to the 1st pattern.

• Use the resulting estimates (regression coefficients) to impute the missing values from
only the 1st pattern.

Next, turn to the 2nd pattern and repeat the above steps. In this way we continue cycling
through the different patterns until convergence.

We now describe the missingness pattern alternating maximization algorithm (MissPA)
which makes the above idea precise. Let T = tXX be the sufficient statistic in the multivari-
ate normal model. Furthermore, we let T k = t(Xk)Xk and T−k = t(X−k)X−k =

∑
l 6=k T

l.
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Let T and T k (k = 1, . . . , s) be some initial guess of T and T k (k = 1, . . . , s), for example,
using zero imputation. Our algorithm proceeds as follows:

Algorithm 1: MissPA

(1) T , T k: initial guess of T and T k (k = 1, . . . , s).
(2) For k = 1, . . . , s do:

M-Step: Compute the MLE B̂mk|ok , and Σ̂mk|ok , based on T −k = T −T k:

B̂mk|ok = T −kmk,ok
(T −kok,ok

)−1,

Σ̂mk|ok =
(
T −kmk,mk

− T −kmk,ok
(T −kok,ok

)−1T −kok,mk

)
/|Ick|.

Partial E-Step:

Set T l = T l for all l 6= k (this takes no time),

Set T k = E[T k|Xk
ok
, B̂mk|ok , Σ̂mk|ok ],

Update T = T −k + T k.

(3) Repeat step (2) until some convergence criterion is met.

(4) Compute the final maximum likelihood estimator Σ̂ via:

Σ̂os = Tos,os/n, Σ̂ms,os = B̂ms|osΣ̂os and Σ̂ms = Σ̂ms|os + B̂ms|osΣ̂os,ms .

Note, that we refer to the maximization step as M-Step and to the imputation step as
partial E-Step. The word partial refers to the fact that the expectation is only performed
with respect to samples belonging to the current pattern. The partial E-Step takes the
following simple form:

T kok,mk
= t(Xk

ok
)X̂k

mk
,

T kmk,mk
= t(X̂k

mk
)X̂k

mk
+ |Ik| Σ̂mk|ok ,

where X̂k
mk

= E[Xk
mk
|Xk

ok
, B̂mk|ok , Σ̂mk|ok ] = Xk

ok
tB̂mk|ok .

Algorithm 1 does not require an evaluation of Σ̂ok in the M-Step, as it is not used in the
following partial E-Step. But, if we are interested in the observed log-likelihood or the
maximum likelihood estimator Σ̂ at convergence, we compute Σ̂os (at convergence), use
it together with B̂ms|os and Σ̂ms|os to get Σ̂ via the transformations (1) as explained in
step (4).

MissPA is computationally more efficient than the standard EM for missing data: one cycle
through all patterns (k = 1, . . . , s) takes about the same time as one iteration of the standard
EM. But our algorithm makes more progress since the information from the partial E-Step
is employed immediately to perform the next M-Step. We will demonstrate empirically the
gain of computational efficiency in Section 4.2. The new MissPA generalizes the standard
EM in two ways. Firstly, MissPA alternates between different complete data spaces in the
sense of Fessler and Hero (1994). Secondly, the E-Step is performed incrementally (Neal
and Hinton, 1998). In Section 5 we will expand on these generalizations and we will provide
an appropriate framework which allows analyzing the convergence properties of MissPA.
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Finally, a small modification of MissPA, namely replacing in Algorithm 1 the M-Step by

M-Step2: Compute the MLE B̂mk|ok , and Σ̂mk|ok , based on T :

B̂mk|ok = Tmk,ok(Tok,ok)−1

Σ̂mk|ok =
(
Tmk,mk

− Tmk,ok(Tok,ok)−1Tok,mk

)
/n,

results in an alternative algorithm. We show in Section 5 that Algorithm 1 with M-Step2
is equivalent to an incremental EM in the sense of Neal and Hinton (1998).

3.3 High-Dimensionality and Lasso Penalty

The M-Step of Algorithm 1 is basically a multivariate regression of the missing (Xmk
)

against the observed variables (Xok). In a high-dimensional framework with p � n the
number of observed variables |ok| will be large and therefore some regularization is neces-
sary. The main idea is, in order to regularize, to replace regressions with Lasso analogues
(Tibshirani, 1996). We give now the details.

Estimation of Bmk|ok : The estimation of the multivariate regression coefficients in the
M-Step2 can be expressed as |mk| separate minimization problems of the form

B̂j|ok = arg min
β

−Tj,okβ + tβTok,okβ/2,

where j ∈ mk. Here, B̂j|ok denotes the jth row vector of the (|mk| × |ok|)-matrix B̂mk|ok
and represents the regression of variable j against the variables from ok.

Consider now the objective function

−Tj,okβ + tβTok,okβ/2 + λ‖β‖1, (6)

with an additional Lasso penalty. Instead of minimizing (6) with respect to β (for all
j ∈ mk), it is computationally much more efficient to perform coordinate-wise improvements
from the old parameters (computed in the last cycle through all patterns). For that purpose,

let B
(r)
mk|ok be the regression coefficients for pattern k in cycle r and B

(r)
j|ok its jth row vector.

In cycle r+ 1 we compute B
(r+1)
j|ok by minimizing (6) with respect to each of the components

of β, holding the other components fixed at their current value. Closed-form updates have
the form:

B
(r+1)
j|l =

Soft
(
Tl,lB

(r)
j|l − S

(r)
l , λ

)
Tl,l

, for all l ∈ ok, (7)

where

• B(r+1)
j|l is the lth component of B

(r+1)
j|ok equal to the element (j, l) of matrix B

(r+1)
mk|ok

• S(r)
l , the gradient of −Tj,okβ + tβTok,okβ/2 with respect to βl, which equals

S
(r)
l = −Tj,l +

∑
v<l
v∈ok

Tl,vB
(r+1)
j|v + Tl,lB

(r)
j|l +

∑
v>l
v∈ok

Tl,vB
(r)
j|v (8)
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• Soft(z, λ) =


z − λ if z > λ
z + λ if z < −λ
0 if |z| ≤ λ

, is the standard soft-thresholding operator.

In a sparse setup the soft-thresholding update (7) can be evaluated very quickly as l varies.
Often coefficients which are zero remain zero after thresholding and therefore nothing has
to be changed in (8). See also the naive- or covariance update of Friedman et al. (2010) for
efficient computation of (7) and (8).

Estimation of Σmk|ok : We update the residual covariance matrix as:

Σ
(r+1)
mk|ok =

(
Tmk,mk

− Tmk,ok
tB

(r+1)
mk|ok −B

(r+1)
mk|okTok,mk

+B
(r+1)
mk|okTok,ok

tB
(r+1)
mk|ok

)
/n. (9)

Formula (9) can be viewed as a generalized version of Equation (5), when multiplying out
the matrix product in (5) and taking conditional expectations.

Our regularized algorithm, MissPALasso, is summarized in Algorithm 2. Note, that we
update the sufficient statistic in the partial E-Step according to T = γT + T k where
γ = 1−|Ik|/n. This update, motivated by Nowlan (1991), calculates T as an exponentially
decaying average of recently-visited data points. It prevents MissPALasso from storing T k
for all k = 1, . . . , s which gets problematic for large p. As we are mainly interested in
estimating the missing values, we will output the data matrix with missing values imputed
by the regression coefficients B̂mk|ok (k = 1, . . . , s) as indicated in step (4) of Algorithm 2.

MissPALasso provides not only the imputed data matrix X̂ but also T̂ , the completed
version of the sufficient statistic tXX. The latter can be very useful if MissPALasso is used
as a pre-processing step followed by a learning method which is expressible in terms of
the sufficient statistic. Examples include regularized regression (e.g., Lasso), discriminant
analysis, or estimation of directed acyclic graphs with the PC-algorithm (Spirtes et al.,
2000).

By construction, the regression estimates B̂mk|ok are sparse due to the employed `1-penalty,

and therefore imputation of missing values X̂k
mk

= Xk
ok
tB̂mk|ok is based on sparse regressions.

This is in sharp contrast to the MissGLasso approach (see Section 4.1) which places sparsity
on Σ−1. But this does not imply that regressions of variables in mk on variables in ok
are sparse since the inverse of sub-matrices of a sparse Σ−1 are not sparse in general.
MissPALasso employs another type of sparsity and this seems to be the main reason for its
better statistical performance than MissGLasso.

In practice, we propose to run MissPALasso for a decreasing sequence of values for λ, using
each solution as a warm start for the next problem with smaller λ. This pathwise strategy is
computationally very attractive and our algorithm converges (for each λ) after a few cycles.
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Algorithm 2: MissPALasso

(1) Set r = 0 and start with initial guess for T and B
(0)
mk|ok (k = 1, . . . , s).

(2) In cycle r + 1; for k = 1, . . . , s do:

Penalized M-Step2:

For all j ∈ mk, compute B
(r+1)
j|ok by improving −Tj,okβ + tβTok,okβ/2 + λ‖β‖1

in a coordinate-wise manner from B
(r)
j|ok .

Set Σ
(r+1)
mk|ok =

(
Tmk,mk

− Tmk,ok
tB

(r+1)
mk|ok−B

(r+1)
mk|okTok,mk

+B
(r+1)
mk|okTok,ok

tB
(r+1)
mk|ok

)
/n.

Partial E-Step:

Set T k = E[T k|Xk
ok
, B

(r+1)
mk|ok ,Σ

(r+1)
mk|ok ],

Update T = γT + T k where γ = 1− |Ik|/n.

Increase: r ← r + 1.

(3) Repeat step (2) until some convergence criterion is met.

(4) Output the imputed data matrix X̂, with missing values estimated by:

X̂k
mk

= Xk
ok
tB̂mk|ok , k = 1, . . . , s.

4. Numerical Experiments

In this section we explore the performance of MissPALasso in recovering missing entries
and we report on computational efficiency of the algorithm.

4.1 Performance of MissPALasso

Our new approach is compared with the following imputation methods which are well-suited
for the high-dimensional context:

• KnnImpute. Impute the missing values by the K-nearest neighbors imputation method
introduced by Troyanskaya et al. (2001).

• SoftImpute. The soft imputation algorithm is proposed by Mazumder et al. (2010)
in order to solve the matrix completion problem. They propose to approximate the
incomplete data matrix X by a complete (low-rank) matrix Z minimizing

1

2

∑
(i,j)∈Ω

(zij − xij)2 + λ‖Z‖∗.

Here, Ω denotes the indices of observed entries and ‖ · ‖∗ is the nuclear norm, or the
sum of the singular values. The missing values of X are imputed by the corresponding
values of Z.
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• MissGLasso. Compute Σ̂ by minimizing −`(Σ; Xobs) + λ‖Σ−1‖1, where ‖ · ‖1 is the
entrywise `1-norm. Then, use this estimate to impute the missing values by conditional
mean imputation. MissGLasso is described in Städler and Bühlmann (2012).

• MissPALasso. This is the method introduced in Section 3.3.

To assess the performances of the methods we use the normalized root mean squared error
(Oba et al., 2003) which is defined by

NRMSE =

√√√√mean
(

(Xtrue − X̂)2
)

var (Xtrue)
.

Here, Xtrue is the original data matrix (before deleting values) and X̂ is the imputed matrix.
With mean and var we abbreviate the empirical mean and variance, calculated over only
the missing entries.

All methods involve one tuning parameter. In KnnImpute we have to choose the number
K of nearest neighbors, while SoftImpute, MissGLasso and MissPALasso involve a regular-
ization parameter which is always denoted by λ. In all of our experiments we select the
tuning parameters to obtain optimal prediction of the missing entries in terms of NRMSE.

4.1.1 Simulation Study

We consider both high- and a low-dimensional MVN models with ∼ Np(0,Σ) where

• Model 1: p = 50 and 500;
Σ: block diagonal with p/2 blocks of the form

(
1 0.9

0.9 1

)
.

• Model 2: p = 100 and 1000;
Σ: two blocks B1, B2 each of size p

2 ×
p
2 with B1 = I p

2
and (B2)j,j′ = 0.9|j−j

′|.

• Model 3: p = 55 and 496;
Σ: block diagonal with b = 1, . . . , 10 for p = 55 and b = 1, . . . , 31 for p = 496
(increasing) blocks Bb of the size b× b, with (Bb)j,j′ = 0.9 (j 6= j′) and (Bb)j,j = 1.

• Model 4: p = 100 and 500;
Σj,j′ = 0.9|j−j

′| for j, j′ = 1, . . . , p.

For all four settings we perform 50 independent simulation runs. In each run we generate
n = 50 i.i.d. samples from the model. We then delete randomly 5%, 10% and 15% of the
values in the data matrix, apply an imputation method and compute the NRMSE. The
results of the different imputation methods are reported in Table 1 for the low-dimensional
models and Table 2 for the high-dimensional models. MissPALasso is very competitive in all
setups. SoftImpute works rather poorly, perhaps because the resulting data matrices are not
well approximable by low-rank matrices. KnnImpute works very well in model 1 and model
4. Model 1, where each variable is highly correlated with its neighboring variable, represents
an example which fits well into the KnnImpute framework. However, in model 2 and model
3, KnnImpute performs rather poorly. The reason is that with an inhomogeneous covariance
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matrix, as in model 2 and 3, the optimal number of nearest neighbors is varying among
the different blocks, and a single parameter K is too restrictive. For example in model 2, a
variable from the first block is not correlated to any other variable, whereas a variable from
the second block is correlated to other variables. Except for the low-dimensional model 3
MissGLasso is inferior to MissPALasso. Furthermore, MissPALasso strongly outperforms
MissGLasso with respect to computation time (see Figure 4 in Section 4.2). Interestingly,
all methods exhibit a quite large NRMSE in the high-dimensional model 3. They seem
to have problems coping with the complex covariance structure in higher dimensions. If
we look at the same model but with p = 105 the NRMSE for 5% missing values is: 0.85
for KnnImpute, 0.86 for SoftImpute, 0.77 for MissGLasso and 0.77 for MissPALasso. This
indicates an increase in NRMSE according to the size of p. Arguably, we consider here
only multivariate normal models which are ideal, from a distributional point of view, for
MissGLasso and our MissPALasso. The more interesting case will be with real data (all
from genomics) where model assumptions never hold exactly.

KnnImpute SoftImpute MissGLasso MissPALasso

Model 1 5% 0.4874 (0.0068) 0.7139 (0.0051) 0.5391 (0.0079) 0.5014 (0.0070)
p=50 10% 0.5227 (0.0051) 0.7447 (0.0038) 0.5866 (0.0057) 0.5392 (0.0055)

15% 0.5577 (0.0052) 0.7813 (0.0037) 0.6316 (0.0048) 0.5761 (0.0047)

Model 2 5% 0.8395 (0.0101) 0.8301 (0.0076) 0.7960 (0.0082) 0.7786 (0.0075)
p=100 10% 0.8572 (0.0070) 0.8424 (0.0063) 0.8022 (0.0071) 0.7828 (0.0066)

15% 0.8708 (0.0062) 0.8514 (0.0053) 0.8082 (0.0058) 0.7900 (0.0054)

Model 3 5% 0.4391 (0.0061) 0.4724 (0.0050) 0.3976 (0.0056) 0.4112 (0.0058)
p=55 10% 0.4543 (0.0057) 0.4856 (0.0042) 0.4069 (0.0047) 0.4155 (0.0047)

15% 0.4624 (0.0054) 0.4986 (0.0036) 0.4131 (0.0043) 0.4182 (0.0044)

Model 4 5% 0.3505 (0.0037) 0.5515 (0.0039) 0.3829 (0.0035) 0.3666 (0.0031)
p=100 10% 0.3717 (0.0033) 0.5623 (0.0033) 0.3936 (0.0027) 0.3724 (0.0026)

15% 0.3935 (0.0032) 0.5800 (0.0031) 0.4075 (0.0026) 0.3827 (0.0026)

Table 1: Average (SE) NRMSE of KnnImpute, SoftImpute, MissGLasso and MissPALasso
with different degrees of missingness in the low-dimensional models.

4.1.2 Real Data Examples

We consider the following four publicly available data sets:

• Isoprenoid gene network in Arabidopsis thaliana: The number of genes in the
network is p = 39. The number of observations (gene expression profiles), correspond-
ing to different experimental conditions, is n = 118. More details about the data can
be found in Wille et al. (2004).

• Colon cancer: In this data set, expression levels of 40 tumor and 22 normal colon
tissues (n = 62) for p = 2000 human genes are measured. For more information see
Alon et al. (1999).
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KnnImpute SoftImpute MissGLasso MissPALasso

Model 1 5% 0.4913 (0.0027) 0.9838 (0.0006) 0.6705 (0.0036) 0.5301 (0.0024)
p=500 10% 0.5335 (0.0020) 0.9851 (0.0005) 0.7613 (0.0031) 0.5779 (0.0019)

15% 0.5681 (0.0016) 0.9870 (0.0004) 0.7781 (0.0013) 0.6200 (0.0015)

Model 2 5% 0.8356 (0.0020) 0.9518 (0.0009) 0.8018 (0.0012) 0.7958 (0.0017)
p=1000 10% 0.8376 (0.0016) 0.9537 (0.0007) 0.8061 (0.0002) 0.7990 (0.0013)

15% 0.8405 (0.0014) 0.9562 (0.0006) 0.8494 (0.0080) 0.8035 (0.0011)

Model 3 5% 1.0018 (0.0009) 0.9943 (0.0005) 0.9722 (0.0013) 0.9663 (0.0010)
p=496 10% 1.0028 (0.0007) 0.9948 (0.0004) 0.9776 (0.0010) 0.9680 (0.0007)

15% 1.0036 (0.0006) 0.9948 (0.0003) 0.9834 (0.0010) 0.9691 (0.0007)

Model 4 5% 0.3487 (0.0016) 0.7839 (0.0020) 0.4075 (0.0016) 0.4011 (0.0016)
p=500 10% 0.3721 (0.0014) 0.7929 (0.0015) 0.4211 (0.0012) 0.4139 (0.0013)

15% 0.3960 (0.0011) 0.8045 (0.0014) 0.4369 (0.0012) 0.4292 (0.0014)

Table 2: Average (SE) NRMSE of KnnImpute, SoftImpute, MissGLasso and MissPALasso
with different degrees of missingness in the high-dimensional models.

• Lymphoma: This data set, presented in Alizadeh et al. (2000), contains gene expres-
sion levels of 42 samples of diffuse large B-cell lymphoma, 9 observations of follicular
lymphoma, and 11 cases of chronic lymphocytic leukemia. The total sample size is
n = 62 and p = 1332 complete measured expression profiles are documented.

• Yeast cell-cycle: The data set, described in Spellman et al. (1998), monitors expres-
sions of 6178 genes. The data consists of four parts, which are relevant to alpha factor
(18 samples), elutriation (14 samples), cdc15 (24 samples), and cdc28 (17 samples).
The total sample size is n = 73. We use the p = 573 complete profiles in our study.

For all data sets we standardize the columns (genes) to zero mean and variance one. In
order to compare the performance of the different imputation methods we randomly delete
values to obtain an overall missing rate of 5%, 10% and 15%. Table 3 shows the results for
50 simulation runs, where in each run another random set of values is deleted.

MissPALasso exhibits in all setups the lowest averaged NRMSE. MissGLasso performs
nearly as well as MissPALasso on the Arabidopsis data. However, its R implementation
cannot cope with large values of p. If we were to restrict our analysis to the 100 variables
exhibiting the most variance we would see that MissGLasso performs slightly less well than
MissPALasso (results not included). Compared to KnnImpute, SoftImpute works well for
all data sets. Interestingly, for all data sets, KnnImpute performance was very inferior
compared to MissPALasso. In light of the simulation results of Section 4.1.1, a reason for
the poor performance could be that KnnImpute has difficulties with the inhomogeneous
correlation structure between different genes which plausibly could be present in real data
sets.

To investigate the effect of already missing values on the imputation performance of the
compared methods we use the original lymphoma and yeast cell-cycle data sets which al-
ready have “real” missing values. We only consider the 100 most variable genes in these
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KnnImpute SoftImpute MissGLasso MissPALasso

Arabidopsis 5% 0.7732 (0.0086) 0.7076 (0.0065) 0.7107 (0.0076) 0.7029 (0.0077)
n=118 10% 0.7723 (0.0073) 0.7222 (0.0052) 0.7237 (0.0064) 0.7158 (0.0060)
p=39 15% 0.7918 (0.0050) 0.7369 (0.0041) 0.7415 (0.0053) 0.7337 (0.0050)

Colon cancer 5% 0.4884 (0.0011) 0.4921 (0.0011) - 0.4490 (0.0011)
n=62 10% 0.4948 (0.0008) 0.4973 (0.0006) - 0.4510 (0.0006)
p=2000 15% 0.5015 (0.0007) 0.5067 (0.0006) - 0.4562 (0.0007)

Lymphoma 5% 0.7357 (0.0014) 0.6969 (0.0008) - 0.6247 (0.0012)
n=62 10% 0.7418 (0.0009) 0.7100 (0.0006) - 0.6384 (0.0009)
p=1332 15% 0.7480 (0.0007) 0.7192 (0.0005) - 0.6525 (0.0008)

Yeast cell-cycle 5% 0.8083 (0.0018) 0.6969 (0.0012) - 0.6582 (0.0016)
n=73 10% 0.8156 (0.0011) 0.7265 (0.0010) - 0.7057 (0.0013)
p=573 15% 0.8240 (0.0009) 0.7488 (0.0007) - 0.7499 (0.0011)

Table 3: Average (SE) NRMSE of KnnImpute, SoftImpute, MissGLasso and MissPALasso
for different real data sets from genomics. The R implementation of MissGLasso
is not able to handle real data sets of such high dimensionality.

data sets to be able to compare all four methods with each other. From the left panel of
Figures 1 and 2 we can read off how many values are missing for each of the 100 variables.
In the right panel of Figures 1 and 2 we show how well the different methods are able to
estimate 2%, 4%, 6% . . . , 16% of additionally deleted entries.

4.2 Computational Efficiency

We first compare the computational efficiency of MissPA (Algorithm 1) with the standard
EM for missing values described for example in Schafer (1997). A key attribute of MissPA
is that the computational cost of one cycle through all patterns is the same as the cost of a
single standard EM-iteration. The reason why our algorithm takes less time to converge is
that the latent distribution is updated much more frequently. We emphasize the big contrast
of MissPA to the incremental EM, mostly applied to finite mixtures (Thiesson et al., 2001;
Ng and McLachlan, 2003), where there is a trade-off between the additional computation
time per cycle, or “scan” in the language of Ng and McLachlan (2003), and the fewer number
of “scans” required because of the more frequent updating after each partial E-Step. The
speed of convergence of the standard EM and MissPA for three data sets are shown in
Figure 3, in which the log-likelihood is plotted as a function of the number of iterations
(cycles). The left panel corresponds to the subset of the lymphoma data set when only the
ten genes with highest missing rate are used. This results in a 62 × 10 data matrix with
22.85% missing values. For the middle panel we draw a random sample of size 62× 10 from
N10(0,Σ), Σj,j′ = 0.9|j−j

′|, and delete the same entries which are missing in the reduced
lymphoma data. For the right panel we draw from the multivariate t-model with one degree
of freedom and again with the same values deleted. As can be seen, MissPA converges after
fewer cycles. A very extreme example is obtained with the multivariate t-model where the
standard EM reaches the log-likelihood level of MissPA about 400 iterations later. We note
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Figure 1: Lymphoma data set. Left panel: Barplots which count the number of missing val-
ues for each of the 100 genes. Right panel: NRMSE for KnnImpute, SoftImpute,
MissGLasso and MissPALasso if we introduce additional 2%, 4%, 6%, . . . , 16%
missing values.
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Figure 2: Yeast cell-cycle data set. Left panel: Barplots which count the number of
missing values for each of the 100 genes. Right panel: NRMSE for Kn-
nImpute, SoftImpute, MissGLasso and MissPALasso if we introduce additional
2%, 4%, 6%, . . . , 16% missing values.
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here, that the results shown in the middle and right panels highly depend on the realized
random sample. With other realizations, we get less and more extreme results than the one
shown in Figure 3.
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Figure 3: Log-likelihood as a function of the number of iterations (cycles) for standard EM
and MissPA. Left panel: subset of the lymphoma data (n = 62, p = 10 and 22.85%
missing values). Middle panel: random sample of size 62×10 from the multivariate
normal model with the same missing entries as in the reduced lymphoma data.
Right panel: random sample of the size 62 × 10 from the multivariate t-model
again with the same missing values.

We end this section by illustrating the computational timings of MissPALasso and Miss-
GLasso implemented with the statistical computing language R. We consider two settings.
Firstly, model 4 of Section 4.1.1 with n = 50 and a growing number of variables p ranging
from 10 to 500. Secondly, the colon cancer data set from Section 4.1.2 with n = 62 and
also a growing number of variables where we sorted the variables according to the empirical
variance. For each p we delete 10% of the data, run MissPALasso and MissGLasso ten times
on a decreasing grid (on the log-scale) of λ values with thirty grid points. For a fixed λ we
stop the algorithm if the relative change in imputation satisfies,

‖X̂(r+1) − X̂(r)‖2

‖X̂(r+1)‖2
≤ 10−5.

In Figure 4 the CPU times in seconds are plotted for various values of p in the two
settings. As shown, with MissPALasso we are typically able to solve a problem of size
p = 100 in about 9 seconds and a problem of size p = 500 in about 400 seconds. For
MissGLasso these times are highly increased to 27 and 4300 seconds respectively. Further-
more, we can see that MissPALasso has much smaller variability in runtimes. The com-
putational complexity of MissGLasso is O

(
p3 +

∑s
k=1(max{|mk|, |ok|}|mk|2) + np2

)
: the
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graphical Lasso algorithm costs O(p3), calculating the coefficients needed in the E-Step in-
volves O(

∑s
k=1 max{|mk|, |ok|}|mk|2) operations and updating the sufficient statistic costs

O(np2). In contrast, in a sparse setting, the complexity of MissPALasso is considerably
smaller: MissPALasso costs O

(∑s
k=1

(
max{|mk|, |ok|}

∑
j∈mk

qj
)

+ np2
)

operations where

qj denotes the average number of nonzero elements in B
(r)
j|ok .
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Figure 4: CPU times (filled points, left axis) and NRMSE (hollow points, right axis) vs.
problem size p of MissPALasso (circles) and MissGLasso (triangles) in simulation
model 4 (left panel) and the colon cancer data (right panel). MissPALasso and
MissGLasso are applied on a grid of thirty λ values. The shaded area shows
the full range of CPU times over 10 simulation runs. Measurements of NRMSE
include standard error bars which are due to their small size (∼ 10−3) mostly not
visible except for MissGLasso in the real data example.

5. Theory

A key characteristic of pattern alternating maximization (MissPA, Algorithm 1 in Sec-
tion 3.2) is that the E-Step is only performed on those samples belonging to a single
pattern. We already mentioned the close connection to the incremental EM introduced
by Neal and Hinton (1998). In fact, if the density of Xk, k ∈ {1, . . . , s}, is denoted by
PΣ(Xk) =

∏
i∈Ik p(xi; Σ), then the negative variational free energy (Neal and Hinton, 1998;

Jordan et al., 1999) equals

F [Σ‖Ψ1, . . . ,Ψs] =
s∑

k=1

(
EΨk

[log PΣ(Xk)|Xk
ok

] +Hk[Ψk]
)
. (10)
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Here, Ψk =
(
Bk,mk|ok ,Σk,mk|ok

)
denotes the regression parameter of the latent distribution

PΨk
(Xk

mk
|Xk

ok
) =

∏
i∈Ik

p(xi,mk
|xi,ok ;Bk,mk|ok ,Σk,mk|ok)

and Hk[Ψk] = −EΨk
[log PΨk

(Xk
mk
|Xk

ok
)|Xk

ok
] is the entropy. An iterative procedure alter-

nating between maximization of F with respect to Σ,

Σ̂ = arg max
Σ

F [Σ‖Ψ1, . . . ,Ψs]

=
1

n

s∑
k=1

EΨk
[tXkXk|Xk

ok
] =:

1

n
T ,

and maximizing F with respect to Ψk,

(B̂k,mk|ok , Σ̂k,mk|ok) = arg max
Ψk

F [Σ̂‖Ψ1, . . . ,Ψs]

= arg max
Ψk

EΨk
[log PΣ̂(Xk)|Xk

ok
] +Hk[Ψk]

=

(
Tmk,okT

−1
ok,ok

,
1

n
(Tmk,mk

− Tmk,okT
−1
ok,ok
Tok,mk

)

)
,

is equivalent to Algorithm 1 with T −k replaced by T (see M-Step2 in Section 3.2). Alter-
nating maximization of (10) is a GAM procedure in the sense of Gunawardana and Byrne
(2005) for which convergence to a stationary point of the observed log-likelihood can be
established easily.

Unfortunately, MissPA does not quite fit into the GAM formulation as it extends the stan-
dard EM in an additional manner, namely by using for each pattern a different complete
data space (for each pattern k only those samples are augmented which do not belong to
pattern k). From this point of view MissPA is related to the SAGE procedure (Fessler
and Hero, 1994). To see this, consider Σ in the parameterization θ =

(
Σok , Bmk|ok ,Σmk|ok

)
introduced in Section 2. From

Pθ(Xobs,X
−k) = Pθ(Xobs|X−k)Pθ(X−k)

and observing that Pθ(Xobs|X−k) = PΣok
(Xok) we conclude that X−k is an admissible

hidden-data space with respect to (Bmk|ok ,Σmk|ok) in the sense of Fessler and Hero (1994).
The M-Step of MissPA then maximizes a conditional expectation of the log-likelihood
log Pθ(X

−k) with respect to the parameters (Bmk|ok ,Σmk|ok). Different from SAGE is the
conditional distribution involved in the expectation: after each M-Step, our algorithm up-
dates only the conditional distribution for a single pattern, consequently we do not need to
compute estimates for Σok .

In summary, MissPA has similarities with GAM and SAGE. However, neither of these
frameworks fit our purpose. In the next section we provide theory which justifies alternating
between complete data spaces and incrementally performing the E-Step. In particular, we
prove convergence to a stationary point of the observed log-likelihood.
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5.1 Convergence Analysis of Missingness Pattern Alternating Maximization

In this section we study the numerical properties of MissPA.

5.1.1 Pattern-Depending Lower Bounds

Denote the density of Xk, k ∈ {1, . . . , s}, by PΣ(Xk) =
∏
i∈Ik p(xi; Σ) and define for

k, l ∈ {1, . . . , s}

PΣ(Xl
ok

) =
∏
i∈Il

p(xi,ok ; Σok) and

PΣ(Xl
mk
|Xl

ok
) =

∏
i∈Il

p(xi,mk
|xi,ok ;Bmk|ok ,Σmk|ok).

Set {Σl}l 6=k = (Σ1, . . . ,Σk−1,Σk+1, . . . ,Σs) and consider for k = 1, . . . , s

Fk[Σk||{Σl}l 6=k] = log PΣk
(Xk

ok
) +

∑
l 6=k

(
EΣl

[log PΣk
(Xl)|Xl

ol
] +Hl[Σl]

)
.

Here Hl[Σ̃] = −EΣ̃[log PΣ̃(Xl
ml
|Xl

ol
)|Xl

ol
] denotes the entropy. Note that Fk is defined for

fixed observed data Xobs. The subscript k highlights the dependence on the pattern k.
Furthermore, for fixed Xobs and fixed k, Fk is a function in the parameters (Σ1, . . . ,Σs).
As a further tool we write the Kullback-Leibler divergence in the following form:

Dl[Σ̃||Σ] = EΣ̃[− log
(
PΣ(Xl

ml
|Xl

ol
)/PΣ̃(Xl

ml
|Xl

ol
)
)
|Xl

ol
]. (11)

An important property of the Kullback-Leibler divergence is its non-negativity:

Dl[Σ̃||Σ] ≥ 0, with equality if and only if

PΣ̃(Xl
ml
|Xl

ol
) = PΣ(Xl

ml
|Xl

ol
).

A simple calculation shows that

EΣ̃[log PΣ(Xl)|Xl
ol

] +Hl[Σ̃] = −Dl[Σ̃||Σ] + log PΣ(Xl
ol

) (12)

and that Fk[Σk||{Σl}l 6=k] can be written as

Fk[Σk||{Σl}l 6=k] = `(Σk; Xobs)−
∑
l 6=k
Dl[Σl||Σk]. (13)

In particular, for fixed values of {Σl}l 6=k, Fk[ · ||{Σl}l 6=k] lower bounds the observed log-
likelihood `( · ; Xobs) due to the non-negativity of the Kullback-Leibler divergence.

5.1.2 Optimization Transfer to Pattern-Depending Lower Bounds

We give now an alternative description of the MissPA algorithm. In cycle r+ 1 through all

patterns, generate (Σ
(r+1)
1 , . . . ,Σ

(r+1)
s ) given (Σ

(r)
1 , . . . ,Σ

(r)
s ) according to

Σ
(r+1)
k = arg max

Σ
Fk[Σ||Z

(r+1)
k ], k = 1, . . . , s, (14)

1920



Pattern Alternating Maximization Algorithms for Missing Data

with Z
(r+1)
k = (Σ

(r+1)
1 , . . . ,Σ

(r+1)
k−1 ,Σ

(r)
k+1, . . . ,Σ

(r)
s ).

We have

Fk[Σ||Z
(r+1)
k ] = log PΣ(Xk

ok
) +

∑
l<k

(
E

Σ
(r+1)
l

[log PΣ(Xl)|Xl
ol

] +Hl[Σ
(r+1)
l ]

)
+
∑
l>k

(
E

Σ
(r)
l

[log PΣ(Xl)|Xl
ol

] +Hl[Σ
(r)
l ]
)
.

The entropy terms do not depend on the optimization parameter Σ, therefore,

Fk[Σ||Z
(r+1)
k ] = const + log PΣ(Xk

ok
) +

∑
l<k

E
Σ

(r+1)
l

[log PΣ(Xl)|Xl
ol

]

+
∑
l>k

E
Σ

(r)
l

[log PΣ(Xl)|Xl
ol

].

Using the factorization log PΣ(Xl) = log P(Xl
ok

; Σok) + log P(Xl
mk
|Xl

ok
;Bmk|ok ,Σmk|ok) (for

all l 6= k), and separate maximization with respect to Σok and (Bmk|ok ,Σmk|ok) we end up
with the expressions from the M-Step of MissPA. Summarizing the above, we have recovered

the M-Step as a maximization of Fk[Σ||Z
(r+1)
k ] which is a lower bound of the observed log-

likelihood. Or in the language of Lange et al. (2000), optimization of `( · ; Xobs) is transferred

to the surrogate objective Fk[ · ||Z
(r+1)
k ].

There is still an important piece missing: In M-Step k of cycle r + 1 we are maximizing

Fk[ · ||Z
(r+1)
k ] whereas in the following M-Step (k + 1) we optimize Fk+1[ · ||Z(r+1)

k+1 ]. In

order for the algorithm to make progress, it is essential that Fk+1[ · ||Z(r+1)
k+1 ] attains higher

values than its predecessor Fk[ · ||Z
(r+1)
k ]. In this sense the following proposition is crucial.

Proposition 1 For r = 0, 1, 2, . . . we have that

Fs[Σ(r)
s ||Z(r)

s ] ≤ F1[Σ(r)
s ||Z

(r+1)
1 ], and

Fk[Σ
(r+1)
k ||Z(r+1)

k ] ≤ Fk+1[Σ
(r+1)
k ||Z(r+1)

k+1 ] for k = 1, . . . , s− 1.

Proof. We have,

Fk[Σ
(r+1)
k ||Z(r+1)

k ] = log P
Σ

(r+1)
k

(Xk
ok

) + E
Σ

(r)
k+1

[log P
Σ

(r+1)
k

(Xk+1)|Xk+1
ok+1

] +Hk+1[Σ
(r)
k+1] + A

and

Fk+1[Σ
(r+1)
k ||Z(r+1)

k+1 ] = log P
Σ

(r+1)
k

(Xk+1
ok+1

) + E
Σ

(r+1)
k

[log P
Σ

(r+1)
k

(Xk)|Xk
ok

] +Hk[Σ
(r+1)
k ] + A

where

A =
∑
l<k

E
Σ

(r+1)
l

[log P
Σ

(r+1)
k

(Xl)|Xl
ol

]+Hl[Σ
(r+1)
l ]+

∑
l>k+1

E
Σ

(r)
l

[log P
Σ

(r+1)
k

(Xl)|Xl
ol

]+Hl[Σ
(r)
l ].

Furthermore, using (12) and noting that Dk[Σ
(r+1)
k ||Σ(r+1)

k ] = 0, we obtain
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Fk[Σ
(r+1)
k ||Z(r+1)

k ]−Fk+1[Σ
(r+1)
k ||Z(r+1)

k+1 ] = Dk[Σ
(r+1)
k ||Σ(r+1)

k ]−Dk+1[Σ
(r)
k+1||Σ

(r+1)
k ]

= −Dk+1[Σ
(r)
k+1||Σ

(r+1)
k ] ≤ 0.

Note that equality holds if and only if P
Σ

(r+1)
k

(Xk+1
mk+1
|Xk+1

ok+1
) = P

Σ
(r)
k+1

(Xk+1
mk+1
|Xk+1

ok+1
). �

In light of Proposition 1 it is clear that (14) generates a monotonically increasing sequence
of the form:

Fs[Σ(0)
s ||Z(0)

s ] ≤ F1[Σ(0)
s ||Z

(1)
1 ] ≤ F1[Σ

(1)
1 ||Z

(1)
1 ] ≤ F2[Σ

(1)
1 ||Z

(1)
2 ] ≤ F2[Σ

(1)
2 ||Z

(1)
2 ] ≤ · · ·

· · · ≤ Fk[Σ
(r+1)
k ||Z(r+1)

k ] ≤ Fk+1[Σ
(r+1)
k ||Z(r+1)

k+1 ] ≤ Fk+1[Σ
(r+1)
k+1 ||Z

(r+1)
k+1 ] ≤ · · ·

For example, we can deduce that {Fs[Σ(r)
s ||Z(r)

s ]}r=0,1,2,... is a monotone increasing sequence
in r.

5.1.3 Convergence to Stationary Points

Ideally we would like to show that a limit point of the sequence generated by MissPA is
a global maximum of `(·; Xobs). Unfortunately, this is too ambitious because for general
missing data patterns the observed log-likelihood is a non-concave function with several
local maxima. Thus, the most we can expect is that our algorithm converges to a stationary
point. This is ensured by the following theorem which we prove in the Appendix.

Theorem 2 Assume that K = {(Σ1, . . . ,Σs) : Fs[Σs||Σ1, . . . ,Σs−1] ≥ Fs[Σ(0)
s ||Z(0)

s ]} is

compact. Then every limit point Σ̄s of {Σ(r)
s }r=0,1,2,... is a stationary point of `( · ; Xobs).

6. Discussion and Extensions

We presented a novel methodology for maximizing the observed log-likelihood for a multi-
variate normal data matrix with missing values. Simplified, our algorithm iteratively cycles
through the different missingness patterns, performs multivariate regressions of the missing
on the observed variables and uses the regression coefficients for partial imputation of the
missing values. We argued theoretically and gave numerical examples showing that our pro-
cedure is computationally more efficient than the standard EM algorithm. Furthermore, we
analyzed the numerical properties using non-standard arguments and proved that solutions
of our algorithm converge to stationary points of the observed log-likelihood.

In a high-dimensional setup regularization is achieved by replacing least squares regressions
with Lasso analogues. Our proposed algorithm, MissPALasso, is built upon coordinate
descent approximation of the corresponding Lasso problem in order to gain speed. On
simulated and four real data sets (all from genomics) we demonstrated that MissPALasso
outperforms other imputation techniques such as k-nearest neighbors imputation, nuclear
norm minimization or a penalized likelihood approach with an `1-penalty on the inverse
covariance matrix.
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MissPALasso is a “heuristic” motivated by the aim of having sparse regression coefficients
for imputation. It is unclear which objective function is optimized by MissPALasso. The
comments of two referees on this point made us think of another way of imposing sparsity
in the regression coefficients: Consider the penalized variational free energy

−F [Σ‖Ψ1, . . . ,Ψs] + Pen(Σ,Ψ1, . . . ,Ψs), (15)

with F [Σ‖Ψ1, . . . ,Ψs] defined in equation (10) and Pen(Σ,Ψ1, . . . ,Ψs) some penalty func-
tion. If we take

Pen(Σ,Ψ1, . . . ,Ψs) = λ

s∑
k=1

‖Bk,mk|ok‖1,

then, alternating minimization of (15) with respect to Σ and Ψk leads to an algorithm
with sparse regression coefficients. This algorithm is different from MissPALasso, in fact,
minimizing (15) with respect to Σk,mk|ok and Bk,mk|ok gives Σk,mk|ok = Σ̂mk|ok and B̂k,mk|ok
satisfies the subgradient equation

0 =
(

Ωmk,mk
B̂k,mk|ok − Ωmk,ok

)
tXk

ok
Xk
ok

+ λΓ(B̂k,mk|ok),

where Ω = Σ−1 and Γ(x) is the subgradient of |x|, applied componentwise to the elements
of a matrix. We do not currently have knowledge of the theoretical or empirical properties
of such an algorithm.

In this manuscript we only considered applications to microarray data sets. Our approach is
not specifically designed for microarrays and is potentially very useful for many other high-
dimensional applications: examples include mass spectrometry-based proteomics, climate
field reconstructions and image analysis in cosmology (Karpievitch et al., 2009; Schneider,
2001; Starck and Bobin, 2010). We note that different imputation methods can be beneficial
depending on the application context. For example estimating missing entries in gene
expression data is a separate problem from dealing with missing values in recommender
systems: the Netflix data set (Bennett and Lanning, 2007) involves “large n and large p”
(480’000 customers, 17’000 movies) with about 98% of the movie ratings missing, in contrast,
microarrays have the typical “large p, small n” form and have a much smaller fraction of the
values missing. We think that the formulation (15) of our pattern alternating maximization
framework is very compelling and can motivate new and efficient algorithms for missing
data imputation with application-specific regularization strategies.
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Appendix A.

In this appendix we prove Theorem 2. First, note that the sequence {(Σ(r)
1 , . . . ,Σ

(r)
s )}r=0,1,2,...

lies in the compact set K. Now, let Σ
(rj)
s be a subsequence converging to Σ̄s as j →∞. By
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invoking compactness, we can assume w.l.o.g (by restricting to a subsequence) that

(Σ
(rj)
1 , . . . ,Σ

(rj)
s )→ (Σ̄1, . . . , Σ̄s).

As a direct consequence of the monotonicity of the sequence {Fs[Σ(r)
s ||Z(r)

s ]}r=0,1,2,... we
obtain

lim
r
Fs[Σ(r)

s ||Z(r)
s ] = Fs[Σ̄s||Σ̄1, . . . , Σ̄s−1] =: F̄ .

From (14) and Proposition 1, for k = 1, . . . , s − 1 and r = 0, 1, 2, . . . , the following
“sandwich”-formulae hold:

Fs[Σ(r)
s ||Z(r)

s ] ≤ F1[Σ(r)
s ||Z

(r+1)
1 ] ≤ F1[Σ

(r+1)
1 ||Z(r+1)

1 ] ≤ Fs[Σ(r+1)
s ||Z(r+1)

s ],

Fs[Σ(r)
s ||Z(r)

s ] ≤ Fk+1[Σ
(r+1)
k ||Z(r+1)

k+1 ] ≤ Fk+1[Σ
(r+1)
k+1 ||Z

(r+1)
k+1 ] ≤ Fs[Σ(r+1)

s ||Z(r+1)
s ].

As a consequence we have for k = 1, . . . , s− 1

lim
r
F1[Σ

(r)
s ||Z(r+1)

1 ] = lim
r
F1[Σ

(r+1)
1 ||Z(r+1)

1 ] = F̄ (16)

and

lim
r
Fk+1[Σ

(r+1)
k ||Z(r+1)

k+1 ] = lim
r
Fk+1[Σ

(r+1)
k+1 ||Z

(r+1)
k+1 ] = F̄ . (17)

Now consider the sequence (Σ
(rj+1)
1 , . . . ,Σ

(rj+1)
s ). By compactness of K this sequence con-

verges w.l.o.g to some (Σ∗1, . . . ,Σ
∗
s). We now show by induction that

Σ̄s = Σ∗1 = . . . = Σ∗s.

From the 1st M-Step of cycle rj + 1 we have

F1[Σ
(rj+1)
1 ||Z(rj+1)

1 ] ≥ F1[Σ||Z(rj+1)
1 ] for all Σ.

Taking the limit j →∞ we get:

F1[Σ∗1||{Σ̄l}l>1] ≥ F1[Σ||{Σ̄l}l>1] for all Σ.

In particular, Σ∗1 is the (unique) maximizer of F1[ · ||{Σ̄l}l>1]. Assuming Σ∗1 6= Σ̄s would
imply

F1[Σ∗1||{Σ̄l}l>1] > F1[Σ̄s||{Σ̄l}l>1].

But this contradicts F1[Σ∗1||{Σ̄l}l>1] = F1[Σ̄s||{Σ̄l}l>1] = F̄ , which holds by (16). Therefore
we obtain Σ∗1 = Σ̄s.

Assume that we have proven Σ∗1 = . . . = Σ∗k = Σ̄s. We will show that Σ∗k+1 = Σ̄s. From the
k+1st M-Step in cycle rj + 1:

Fk+1[Σ
(rj+1)
k+1 ||Z(rj+1)

k+1 ] ≥ Fk+1[Σ||Z(rj+1)
k+1 ] for all Σ.
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Taking the limit for j →∞, we conclude that Σ∗k+1 is the (unique) maximizer of

Fk+1[ · ||{Σ∗l }l<k+1, {Σ̄l}l>k+1].

From (17),

Fk+1[Σ∗k+1||{Σ∗l }l<k+1, {Σ̄l}l>k+1] = Fk+1[Σ∗k||{Σ∗l }l<k+1, {Σ̄l}l>k+1] = F̄ ,

and therefore Σ∗k+1 must be equal to Σ∗k. By induction we have Σ∗k = Σ̄s and we have proven
that Σ∗k+1 = Σ̄s holds.

Finally, we show stationarity of Σ̄s. Invoking (13) we can write

Fs[Σ||Σ̄s, . . . , Σ̄s] = `(Σ; Xobs)−
s−1∑
l=1

Dl[Σ̄s||Σ].

Note that
∂

∂Σ
Dl[Σ̄s||Σ]

∣∣∣∣
Σ̄s

= 0.

Furthermore, as Σ
(rj+1)
s maximizes Fs[Σ||Σ

(rj+1)
1 , . . . ,Σ

(rj+1)
s−1 ], we get in the limit as j →∞

∂

∂Σ
Fs[Σ||Σ̄s, . . . , Σ̄s]

∣∣∣∣
Σ̄s

=
∂

∂Σ
Fs[Σ||Σ∗1, . . . ,Σ∗s−1]

∣∣∣∣
Σ∗s

= 0.

Therefore, we conclude that ∂
∂Σ`(Σ; Xobs)

∣∣∣
Σ̄s

= 0. �
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Abstract

Deep neural nets with a large number of parameters are very powerful machine learning
systems. However, overfitting is a serious problem in such networks. Large networks are also
slow to use, making it difficult to deal with overfitting by combining the predictions of many
different large neural nets at test time. Dropout is a technique for addressing this problem.
The key idea is to randomly drop units (along with their connections) from the neural
network during training. This prevents units from co-adapting too much. During training,
dropout samples from an exponential number of different “thinned” networks. At test time,
it is easy to approximate the effect of averaging the predictions of all these thinned networks
by simply using a single unthinned network that has smaller weights. This significantly
reduces overfitting and gives major improvements over other regularization methods. We
show that dropout improves the performance of neural networks on supervised learning
tasks in vision, speech recognition, document classification and computational biology,
obtaining state-of-the-art results on many benchmark data sets.

Keywords: neural networks, regularization, model combination, deep learning

1. Introduction

Deep neural networks contain multiple non-linear hidden layers and this makes them very
expressive models that can learn very complicated relationships between their inputs and
outputs. With limited training data, however, many of these complicated relationships
will be the result of sampling noise, so they will exist in the training set but not in real
test data even if it is drawn from the same distribution. This leads to overfitting and many
methods have been developed for reducing it. These include stopping the training as soon as
performance on a validation set starts to get worse, introducing weight penalties of various
kinds such as L1 and L2 regularization and soft weight sharing (Nowlan and Hinton, 1992).

With unlimited computation, the best way to “regularize” a fixed-sized model is to
average the predictions of all possible settings of the parameters, weighting each setting by

c©2014 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever and Ruslan Salakhutdinov.
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(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are different from each other and in order to make
neural net models different, they should either have different architectures or be trained
on different data. Training many different architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train different networks on
different subsets of the data. Even if one was able to train many different large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many different neural network
architectures efficiently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.
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Present with

probability p

w

-

(a) At training time

Always

present

pw

-

(b) At test time

Figure 2: Left: A unit at training time that is present with probability p and is connected to units
in the next layer with weights w. Right: At test time, the unit is always present and
the weights are multiplied by p. The output at test time is same as the expected output
at training time.

Applying dropout to a neural network amounts to sampling a “thinned” network from
it. The thinned network consists of all the units that survived dropout (Figure 1b). A
neural net with n units, can be seen as a collection of 2n possible thinned neural networks.
These networks all share weights so that the total number of parameters is still O(n2), or
less. For each presentation of each training case, a new thinned network is sampled and
trained. So training a neural network with dropout can be seen as training a collection of 2n

thinned networks with extensive weight sharing, where each thinned network gets trained
very rarely, if at all.

At test time, it is not feasible to explicitly average the predictions from exponentially
many thinned models. However, a very simple approximate averaging method works well in
practice. The idea is to use a single neural net at test time without dropout. The weights
of this network are scaled-down versions of the trained weights. If a unit is retained with
probability p during training, the outgoing weights of that unit are multiplied by p at test
time as shown in Figure 2. This ensures that for any hidden unit the expected output (under
the distribution used to drop units at training time) is the same as the actual output at
test time. By doing this scaling, 2n networks with shared weights can be combined into
a single neural network to be used at test time. We found that training a network with
dropout and using this approximate averaging method at test time leads to significantly
lower generalization error on a wide variety of classification problems compared to training
with other regularization methods.

The idea of dropout is not limited to feed-forward neural nets. It can be more generally
applied to graphical models such as Boltzmann Machines. In this paper, we introduce
the dropout Restricted Boltzmann Machine model and compare it to standard Restricted
Boltzmann Machines (RBM). Our experiments show that dropout RBMs are better than
standard RBMs in certain respects.

This paper is structured as follows. Section 2 describes the motivation for this idea.
Section 3 describes relevant previous work. Section 4 formally describes the dropout model.
Section 5 gives an algorithm for training dropout networks. In Section 6, we present our
experimental results where we apply dropout to problems in different domains and compare
it with other forms of regularization and model combination. Section 7 analyzes the effect of
dropout on different properties of a neural network and describes how dropout interacts with
the network’s hyperparameters. Section 8 describes the Dropout RBM model. In Section 9
we explore the idea of marginalizing dropout. In Appendix A we present a practical guide
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for training dropout nets. This includes a detailed analysis of the practical considerations
involved in choosing hyperparameters when training dropout networks.

2. Motivation

A motivation for dropout comes from a theory of the role of sex in evolution (Livnat et al.,
2010). Sexual reproduction involves taking half the genes of one parent and half of the
other, adding a very small amount of random mutation, and combining them to produce an
offspring. The asexual alternative is to create an offspring with a slightly mutated copy of
the parent’s genes. It seems plausible that asexual reproduction should be a better way to
optimize individual fitness because a good set of genes that have come to work well together
can be passed on directly to the offspring. On the other hand, sexual reproduction is likely
to break up these co-adapted sets of genes, especially if these sets are large and, intuitively,
this should decrease the fitness of organisms that have already evolved complicated co-
adaptations. However, sexual reproduction is the way most advanced organisms evolved.

One possible explanation for the superiority of sexual reproduction is that, over the long
term, the criterion for natural selection may not be individual fitness but rather mix-ability
of genes. The ability of a set of genes to be able to work well with another random set of
genes makes them more robust. Since a gene cannot rely on a large set of partners to be
present at all times, it must learn to do something useful on its own or in collaboration with
a small number of other genes. According to this theory, the role of sexual reproduction
is not just to allow useful new genes to spread throughout the population, but also to
facilitate this process by reducing complex co-adaptations that would reduce the chance of
a new gene improving the fitness of an individual. Similarly, each hidden unit in a neural
network trained with dropout must learn to work with a randomly chosen sample of other
units. This should make each hidden unit more robust and drive it towards creating useful
features on its own without relying on other hidden units to correct its mistakes. However,
the hidden units within a layer will still learn to do different things from each other. One
might imagine that the net would become robust against dropout by making many copies
of each hidden unit, but this is a poor solution for exactly the same reason as replica codes
are a poor way to deal with a noisy channel.

A closely related, but slightly different motivation for dropout comes from thinking
about successful conspiracies. Ten conspiracies each involving five people is probably a
better way to create havoc than one big conspiracy that requires fifty people to all play
their parts correctly. If conditions do not change and there is plenty of time for rehearsal, a
big conspiracy can work well, but with non-stationary conditions, the smaller the conspiracy
the greater its chance of still working. Complex co-adaptations can be trained to work well
on a training set, but on novel test data they are far more likely to fail than multiple simpler
co-adaptations that achieve the same thing.

3. Related Work

Dropout can be interpreted as a way of regularizing a neural network by adding noise to
its hidden units. The idea of adding noise to the states of units has previously been used in
the context of Denoising Autoencoders (DAEs) by Vincent et al. (2008, 2010) where noise
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is added to the input units of an autoencoder and the network is trained to reconstruct the
noise-free input. Our work extends this idea by showing that dropout can be effectively
applied in the hidden layers as well and that it can be interpreted as a form of model
averaging. We also show that adding noise is not only useful for unsupervised feature
learning but can also be extended to supervised learning problems. In fact, our method can
be applied to other neuron-based architectures, for example, Boltzmann Machines. While
5% noise typically works best for DAEs, we found that our weight scaling procedure applied
at test time enables us to use much higher noise levels. Dropping out 20% of the input units
and 50% of the hidden units was often found to be optimal.

Since dropout can be seen as a stochastic regularization technique, it is natural to
consider its deterministic counterpart which is obtained by marginalizing out the noise. In
this paper, we show that, in simple cases, dropout can be analytically marginalized out
to obtain deterministic regularization methods. Recently, van der Maaten et al. (2013)
also explored deterministic regularizers corresponding to different exponential-family noise
distributions, including dropout (which they refer to as “blankout noise”). However, they
apply noise to the inputs and only explore models with no hidden layers. Wang and Manning
(2013) proposed a method for speeding up dropout by marginalizing dropout noise. Chen
et al. (2012) explored marginalization in the context of denoising autoencoders.

In dropout, we minimize the loss function stochastically under a noise distribution.
This can be seen as minimizing an expected loss function. Previous work of Globerson and
Roweis (2006); Dekel et al. (2010) explored an alternate setting where the loss is minimized
when an adversary gets to pick which units to drop. Here, instead of a noise distribution,
the maximum number of units that can be dropped is fixed. However, this work also does
not explore models with hidden units.

4. Model Description

This section describes the dropout neural network model. Consider a neural network with
L hidden layers. Let l ∈ {1, . . . , L} index the hidden layers of the network. Let z(l) denote
the vector of inputs into layer l, y(l) denote the vector of outputs from layer l (y(0) = x is
the input). W (l) and b(l) are the weights and biases at layer l. The feed-forward operation
of a standard neural network (Figure 3a) can be described as (for l ∈ {0, . . . , L − 1} and
any hidden unit i)

z
(l+1)
i = w

(l+1)
i yl + b

(l+1)
i ,

y
(l+1)
i = f(z

(l+1)
i ),

where f is any activation function, for example, f(x) = 1/ (1 + exp(−x)).
With dropout, the feed-forward operation becomes (Figure 3b)

r
(l)
j ∼ Bernoulli(p),

ỹ(l) = r(l) ∗ y(l),

z
(l+1)
i = w

(l+1)
i ỹl + b

(l+1)
i ,

y
(l+1)
i = f(z

(l+1)
i ).
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Figure 3: Comparison of the basic operations of a standard and dropout network.

Here ∗ denotes an element-wise product. For any layer l, r(l) is a vector of independent
Bernoulli random variables each of which has probability p of being 1. This vector is
sampled and multiplied element-wise with the outputs of that layer, y(l), to create the
thinned outputs ỹ(l). The thinned outputs are then used as input to the next layer. This
process is applied at each layer. This amounts to sampling a sub-network from a larger
network. For learning, the derivatives of the loss function are backpropagated through the

sub-network. At test time, the weights are scaled as W
(l)
test = pW (l) as shown in Figure 2.

The resulting neural network is used without dropout.

5. Learning Dropout Nets

This section describes a procedure for training dropout neural nets.

5.1 Backpropagation
Dropout neural networks can be trained using stochastic gradient descent in a manner simi-
lar to standard neural nets. The only difference is that for each training case in a mini-batch,
we sample a thinned network by dropping out units. Forward and backpropagation for that
training case are done only on this thinned network. The gradients for each parameter are
averaged over the training cases in each mini-batch. Any training case which does not use a
parameter contributes a gradient of zero for that parameter. Many methods have been used
to improve stochastic gradient descent such as momentum, annealed learning rates and L2
weight decay. Those were found to be useful for dropout neural networks as well.

One particular form of regularization was found to be especially useful for dropout—
constraining the norm of the incoming weight vector at each hidden unit to be upper
bounded by a fixed constant c. In other words, if w represents the vector of weights incident
on any hidden unit, the neural network was optimized under the constraint ||w||2 ≤ c. This
constraint was imposed during optimization by projecting w onto the surface of a ball of
radius c, whenever w went out of it. This is also called max-norm regularization since it
implies that the maximum value that the norm of any weight can take is c. The constant
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c is a tunable hyperparameter, which is determined using a validation set. Max-norm
regularization has been previously used in the context of collaborative filtering (Srebro and
Shraibman, 2005). It typically improves the performance of stochastic gradient descent
training of deep neural nets, even when no dropout is used.

Although dropout alone gives significant improvements, using dropout along with max-
norm regularization, large decaying learning rates and high momentum provides a significant
boost over just using dropout. A possible justification is that constraining weight vectors
to lie inside a ball of fixed radius makes it possible to use a huge learning rate without the
possibility of weights blowing up. The noise provided by dropout then allows the optimiza-
tion process to explore different regions of the weight space that would have otherwise been
difficult to reach. As the learning rate decays, the optimization takes shorter steps, thereby
doing less exploration and eventually settles into a minimum.

5.2 Unsupervised Pretraining

Neural networks can be pretrained using stacks of RBMs (Hinton and Salakhutdinov, 2006),
autoencoders (Vincent et al., 2010) or Deep Boltzmann Machines (Salakhutdinov and Hin-
ton, 2009). Pretraining is an effective way of making use of unlabeled data. Pretraining
followed by finetuning with backpropagation has been shown to give significant performance
boosts over finetuning from random initializations in certain cases.

Dropout can be applied to finetune nets that have been pretrained using these tech-
niques. The pretraining procedure stays the same. The weights obtained from pretraining
should be scaled up by a factor of 1/p. This makes sure that for each unit, the expected
output from it under random dropout will be the same as the output during pretraining.
We were initially concerned that the stochastic nature of dropout might wipe out the in-
formation in the pretrained weights. This did happen when the learning rates used during
finetuning were comparable to the best learning rates for randomly initialized nets. How-
ever, when the learning rates were chosen to be smaller, the information in the pretrained
weights seemed to be retained and we were able to get improvements in terms of the final
generalization error compared to not using dropout when finetuning.

6. Experimental Results

We trained dropout neural networks for classification problems on data sets in different
domains. We found that dropout improved generalization performance on all data sets
compared to neural networks that did not use dropout. Table 1 gives a brief description of
the data sets. The data sets are

• MNIST : A standard toy data set of handwritten digits.

• TIMIT : A standard speech benchmark for clean speech recognition.

• CIFAR-10 and CIFAR-100 : Tiny natural images (Krizhevsky, 2009).

• Street View House Numbers data set (SVHN) : Images of house numbers collected by
Google Street View (Netzer et al., 2011).

• ImageNet : A large collection of natural images.

• Reuters-RCV1 : A collection of Reuters newswire articles.
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• Alternative Splicing data set: RNA features for predicting alternative gene splicing
(Xiong et al., 2011).

We chose a diverse set of data sets to demonstrate that dropout is a general technique
for improving neural nets and is not specific to any particular application domain. In this
section, we present some key results that show the effectiveness of dropout. A more detailed
description of all the experiments and data sets is provided in Appendix B.

Data Set Domain Dimensionality Training Set Test Set

MNIST Vision 784 (28 × 28 grayscale) 60K 10K
SVHN Vision 3072 (32 × 32 color) 600K 26K
CIFAR-10/100 Vision 3072 (32 × 32 color) 60K 10K
ImageNet (ILSVRC-2012) Vision 65536 (256 × 256 color) 1.2M 150K
TIMIT Speech 2520 (120-dim, 21 frames) 1.1M frames 58K frames
Reuters-RCV1 Text 2000 200K 200K
Alternative Splicing Genetics 1014 2932 733

Table 1: Overview of the data sets used in this paper.

6.1 Results on Image Data Sets

We used five image data sets to evaluate dropout—MNIST, SVHN, CIFAR-10, CIFAR-100
and ImageNet. These data sets include different image types and training set sizes. Models
which achieve state-of-the-art results on all of these data sets use dropout.

6.1.1 MNIST

Method
Unit
Type

Architecture
Error

%

Standard Neural Net (Simard et al., 2003) Logistic 2 layers, 800 units 1.60
SVM Gaussian kernel NA NA 1.40
Dropout NN Logistic 3 layers, 1024 units 1.35
Dropout NN ReLU 3 layers, 1024 units 1.25
Dropout NN + max-norm constraint ReLU 3 layers, 1024 units 1.06
Dropout NN + max-norm constraint ReLU 3 layers, 2048 units 1.04
Dropout NN + max-norm constraint ReLU 2 layers, 4096 units 1.01
Dropout NN + max-norm constraint ReLU 2 layers, 8192 units 0.95
Dropout NN + max-norm constraint (Goodfellow
et al., 2013)

Maxout
2 layers, (5 × 240)

units
0.94

DBN + finetuning (Hinton and Salakhutdinov, 2006) Logistic 500-500-2000 1.18
DBM + finetuning (Salakhutdinov and Hinton, 2009) Logistic 500-500-2000 0.96
DBN + dropout finetuning Logistic 500-500-2000 0.92
DBM + dropout finetuning Logistic 500-500-2000 0.79

Table 2: Comparison of different models on MNIST.

The MNIST data set consists of 28 × 28 pixel handwritten digit images. The task is
to classify the images into 10 digit classes. Table 2 compares the performance of dropout
with other techniques. The best performing neural networks for the permutation invariant
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setting that do not use dropout or unsupervised pretraining achieve an error of about
1.60% (Simard et al., 2003). With dropout the error reduces to 1.35%. Replacing logistic
units with rectified linear units (ReLUs) (Jarrett et al., 2009) further reduces the error to
1.25%. Adding max-norm regularization again reduces it to 1.06%. Increasing the size of
the network leads to better results. A neural net with 2 layers and 8192 units per layer
gets down to 0.95% error. Note that this network has more than 65 million parameters and
is being trained on a data set of size 60,000. Training a network of this size to give good
generalization error is very hard with standard regularization methods and early stopping.
Dropout, on the other hand, prevents overfitting, even in this case. It does not even need
early stopping. Goodfellow et al. (2013) showed that results can be further improved to
0.94% by replacing ReLU units with maxout units. All dropout nets use p = 0.5 for hidden
units and p = 0.8 for input units. More experimental details can be found in Appendix B.1.

Dropout nets pretrained with stacks of RBMs and Deep Boltzmann Machines also give
improvements as shown in Table 2. DBM—pretrained dropout nets achieve a test error of
0.79% which is the best performance ever reported for the permutation invariant setting.
We note that it possible to obtain better results by using 2-D spatial information and
augmenting the training set with distorted versions of images from the standard training
set. We demonstrate the effectiveness of dropout in that setting on more interesting data
sets.
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Figure 4: Test error for different architectures
with and without dropout. The net-
works have 2 to 4 hidden layers each
with 1024 to 2048 units.

In order to test the robustness of
dropout, classification experiments were
done with networks of many different ar-
chitectures keeping all hyperparameters, in-
cluding p, fixed. Figure 4 shows the test
error rates obtained for these different ar-
chitectures as training progresses. The
same architectures trained with and with-
out dropout have drastically different test
errors as seen as by the two separate clus-
ters of trajectories. Dropout gives a huge
improvement across all architectures, with-
out using hyperparameters that were tuned
specifically for each architecture.

6.1.2 Street View House Numbers

The Street View House Numbers (SVHN)
Data Set (Netzer et al., 2011) consists of
color images of house numbers collected by
Google Street View. Figure 5a shows some examples of images from this data set. The
part of the data set that we use in our experiments consists of 32× 32 color images roughly
centered on a digit in a house number. The task is to identify that digit.

For this data set, we applied dropout to convolutional neural networks (LeCun et al.,
1989). The best architecture that we found has three convolutional layers followed by 2
fully connected hidden layers. All hidden units were ReLUs. Each convolutional layer was
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Method Error %

Binary Features (WDCH) (Netzer et al., 2011) 36.7
HOG (Netzer et al., 2011) 15.0
Stacked Sparse Autoencoders (Netzer et al., 2011) 10.3
KMeans (Netzer et al., 2011) 9.4
Multi-stage Conv Net with average pooling (Sermanet et al., 2012) 9.06
Multi-stage Conv Net + L2 pooling (Sermanet et al., 2012) 5.36
Multi-stage Conv Net + L4 pooling + padding (Sermanet et al., 2012) 4.90
Conv Net + max-pooling 3.95
Conv Net + max pooling + dropout in fully connected layers 3.02
Conv Net + stochastic pooling (Zeiler and Fergus, 2013) 2.80
Conv Net + max pooling + dropout in all layers 2.55
Conv Net + maxout (Goodfellow et al., 2013) 2.47

Human Performance 2.0

Table 3: Results on the Street View House Numbers data set.

followed by a max-pooling layer. Appendix B.2 describes the architecture in more detail.
Dropout was applied to all the layers of the network with the probability of retaining a hid-
den unit being p = (0.9, 0.75, 0.75, 0.5, 0.5, 0.5) for the different layers of the network (going
from input to convolutional layers to fully connected layers). Max-norm regularization was
used for weights in both convolutional and fully connected layers. Table 3 compares the
results obtained by different methods. We find that convolutional nets outperform other
methods. The best performing convolutional nets that do not use dropout achieve an error
rate of 3.95%. Adding dropout only to the fully connected layers reduces the error to 3.02%.
Adding dropout to the convolutional layers as well further reduces the error to 2.55%. Even
more gains can be obtained by using maxout units.

The additional gain in performance obtained by adding dropout in the convolutional
layers (3.02% to 2.55%) is worth noting. One may have presumed that since the convo-
lutional layers don’t have a lot of parameters, overfitting is not a problem and therefore
dropout would not have much effect. However, dropout in the lower layers still helps be-
cause it provides noisy inputs for the higher fully connected layers which prevents them
from overfitting.

6.1.3 CIFAR-10 and CIFAR-100

The CIFAR-10 and CIFAR-100 data sets consist of 32 × 32 color images drawn from 10
and 100 categories respectively. Figure 5b shows some examples of images from this data
set. A detailed description of the data sets, input preprocessing, network architectures and
other experimental details is given in Appendix B.3. Table 4 shows the error rate obtained
by different methods on these data sets. Without any data augmentation, Snoek et al.
(2012) used Bayesian hyperparameter optimization to obtained an error rate of 14.98% on
CIFAR-10. Using dropout in the fully connected layers reduces that to 14.32% and adding
dropout in every layer further reduces the error to 12.61%. Goodfellow et al. (2013) showed
that the error is further reduced to 11.68% by replacing ReLU units with maxout units. On
CIFAR-100, dropout reduces the error from 43.48% to 37.20% which is a huge improvement.
No data augmentation was used for either data set (apart from the input dropout).
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(a) Street View House Numbers (SVHN) (b) CIFAR-10

Figure 5: Samples from image data sets. Each row corresponds to a different category.

Method CIFAR-10 CIFAR-100

Conv Net + max pooling (hand tuned) 15.60 43.48
Conv Net + stochastic pooling (Zeiler and Fergus, 2013) 15.13 42.51
Conv Net + max pooling (Snoek et al., 2012) 14.98 -
Conv Net + max pooling + dropout fully connected layers 14.32 41.26
Conv Net + max pooling + dropout in all layers 12.61 37.20
Conv Net + maxout (Goodfellow et al., 2013) 11.68 38.57

Table 4: Error rates on CIFAR-10 and CIFAR-100.

6.1.4 ImageNet

ImageNet is a data set of over 15 million labeled high-resolution images belonging to roughly
22,000 categories. Starting in 2010, as part of the Pascal Visual Object Challenge, an annual
competition called the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) has
been held. A subset of ImageNet with roughly 1000 images in each of 1000 categories is
used in this challenge. Since the number of categories is rather large, it is conventional to
report two error rates: top-1 and top-5, where the top-5 error rate is the fraction of test
images for which the correct label is not among the five labels considered most probable by
the model. Figure 6 shows some predictions made by our model on a few test images.

ILSVRC-2010 is the only version of ILSVRC for which the test set labels are available, so
most of our experiments were performed on this data set. Table 5 compares the performance
of different methods. Convolutional nets with dropout outperform other methods by a large
margin. The architecture and implementation details are described in detail in Krizhevsky
et al. (2012).
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Figure 6: Some ImageNet test cases with the 4 most probable labels as predicted by our model.
The length of the horizontal bars is proportional to the probability assigned to the labels
by the model. Pink indicates ground truth.

Model Top-1 Top-5

Sparse Coding (Lin et al., 2010) 47.1 28.2
SIFT + Fisher Vectors (Sanchez and Perronnin, 2011) 45.7 25.7
Conv Net + dropout (Krizhevsky et al., 2012) 37.5 17.0

Table 5: Results on the ILSVRC-2010 test set.

Model
Top-1
(val)

Top-5
(val)

Top-5
(test)

SVM on Fisher Vectors of Dense SIFT and Color Statistics - - 27.3
Avg of classifiers over FVs of SIFT, LBP, GIST and CSIFT - - 26.2
Conv Net + dropout (Krizhevsky et al., 2012) 40.7 18.2 -
Avg of 5 Conv Nets + dropout (Krizhevsky et al., 2012) 38.1 16.4 16.4

Table 6: Results on the ILSVRC-2012 validation/test set.

Our model based on convolutional nets and dropout won the ILSVRC-2012 competition.
Since the labels for the test set are not available, we report our results on the test set for
the final submission and include the validation set results for different variations of our
model. Table 6 shows the results from the competition. While the best methods based on
standard vision features achieve a top-5 error rate of about 26%, convolutional nets with
dropout achieve a test error of about 16% which is a staggering difference. Figure 6 shows
some examples of predictions made by our model. We can see that the model makes very
reasonable predictions, even when its best guess is not correct.

6.2 Results on TIMIT

Next, we applied dropout to a speech recognition task. We use the TIMIT data set which
consists of recordings from 680 speakers covering 8 major dialects of American English
reading ten phonetically-rich sentences in a controlled noise-free environment. Dropout
neural networks were trained on windows of 21 log-filter bank frames to predict the label
of the central frame. No speaker dependent operations were performed. Appendix B.4
describes the data preprocessing and training details. Table 7 compares dropout neural
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nets with other models. A 6-layer net gives a phone error rate of 23.4%. Dropout further
improves it to 21.8%. We also trained dropout nets starting from pretrained weights. A
4-layer net pretrained with a stack of RBMs get a phone error rate of 22.7%. With dropout,
this reduces to 19.7%. Similarly, for an 8-layer net the error reduces from 20.5% to 19.7%.

Method Phone Error Rate%

NN (6 layers) (Mohamed et al., 2010) 23.4
Dropout NN (6 layers) 21.8

DBN-pretrained NN (4 layers) 22.7
DBN-pretrained NN (6 layers) (Mohamed et al., 2010) 22.4
DBN-pretrained NN (8 layers) (Mohamed et al., 2010) 20.7
mcRBM-DBN-pretrained NN (5 layers) (Dahl et al., 2010) 20.5
DBN-pretrained NN (4 layers) + dropout 19.7
DBN-pretrained NN (8 layers) + dropout 19.7

Table 7: Phone error rate on the TIMIT core test set.

6.3 Results on a Text Data Set

To test the usefulness of dropout in the text domain, we used dropout networks to train a
document classifier. We used a subset of the Reuters-RCV1 data set which is a collection of
over 800,000 newswire articles from Reuters. These articles cover a variety of topics. The
task is to take a bag of words representation of a document and classify it into 50 disjoint
topics. Appendix B.5 describes the setup in more detail. Our best neural net which did
not use dropout obtained an error rate of 31.05%. Adding dropout reduced the error to
29.62%. We found that the improvement was much smaller compared to that for the vision
and speech data sets.

6.4 Comparison with Bayesian Neural Networks

Dropout can be seen as a way of doing an equally-weighted averaging of exponentially many
models with shared weights. On the other hand, Bayesian neural networks (Neal, 1996) are
the proper way of doing model averaging over the space of neural network structures and
parameters. In dropout, each model is weighted equally, whereas in a Bayesian neural
network each model is weighted taking into account the prior and how well the model fits
the data, which is the more correct approach. Bayesian neural nets are extremely useful for
solving problems in domains where data is scarce such as medical diagnosis, genetics, drug
discovery and other computational biology applications. However, Bayesian neural nets are
slow to train and difficult to scale to very large network sizes. Besides, it is expensive to
get predictions from many large nets at test time. On the other hand, dropout neural nets
are much faster to train and use at test time. In this section, we report experiments that
compare Bayesian neural nets with dropout neural nets on a small data set where Bayesian
neural networks are known to perform well and obtain state-of-the-art results. The aim is
to analyze how much does dropout lose compared to Bayesian neural nets.

The data set that we use (Xiong et al., 2011) comes from the domain of genetics. The
task is to predict the occurrence of alternative splicing based on RNA features. Alternative
splicing is a significant cause of cellular diversity in mammalian tissues. Predicting the
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Method Code Quality (bits)

Neural Network (early stopping) (Xiong et al., 2011) 440
Regression, PCA (Xiong et al., 2011) 463
SVM, PCA (Xiong et al., 2011) 487
Neural Network with dropout 567
Bayesian Neural Network (Xiong et al., 2011) 623

Table 8: Results on the Alternative Splicing Data Set.

occurrence of alternate splicing in certain tissues under different conditions is important for
understanding many human diseases. Given the RNA features, the task is to predict the
probability of three splicing related events that biologists care about. The evaluation metric
is Code Quality which is a measure of the negative KL divergence between the target and
the predicted probability distributions (higher is better). Appendix B.6 includes a detailed
description of the data set and this performance metric.

Table 8 summarizes the performance of different models on this data set. Xiong et al.
(2011) used Bayesian neural nets for this task. As expected, we found that Bayesian neural
nets perform better than dropout. However, we see that dropout improves significantly
upon the performance of standard neural nets and outperforms all other methods. The
challenge in this data set is to prevent overfitting since the size of the training set is small.
One way to prevent overfitting is to reduce the input dimensionality using PCA. Thereafter,
standard techniques such as SVMs or logistic regression can be used. However, with dropout
we were able to prevent overfitting without the need to do dimensionality reduction. The
dropout nets are very large (1000s of hidden units) compared to a few tens of units in the
Bayesian network. This shows that dropout has a strong regularizing effect.

6.5 Comparison with Standard Regularizers

Several regularization methods have been proposed for preventing overfitting in neural net-
works. These include L2 weight decay (more generally Tikhonov regularization (Tikhonov,
1943)), lasso (Tibshirani, 1996), KL-sparsity and max-norm regularization. Dropout can
be seen as another way of regularizing neural networks. In this section we compare dropout
with some of these regularization methods using the MNIST data set.

The same network architecture (784-1024-1024-2048-10) with ReLUs was trained us-
ing stochastic gradient descent with different regularizations. Table 9 shows the results.
The values of different hyperparameters associated with each kind of regularization (decay
constants, target sparsity, dropout rate, max-norm upper bound) were obtained using a
validation set. We found that dropout combined with max-norm regularization gives the
lowest generalization error.

7. Salient Features

The experiments described in the previous section provide strong evidence that dropout
is a useful technique for improving neural networks. In this section, we closely examine
how dropout affects a neural network. We analyze the effect of dropout on the quality of
features produced. We see how dropout affects the sparsity of hidden unit activations. We
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Method Test Classification error %

L2 1.62
L2 + L1 applied towards the end of training 1.60
L2 + KL-sparsity 1.55
Max-norm 1.35
Dropout + L2 1.25
Dropout + Max-norm 1.05

Table 9: Comparison of different regularization methods on MNIST.

also see how the advantages obtained from dropout vary with the probability of retaining
units, size of the network and the size of the training set. These observations give some
insight into why dropout works so well.

7.1 Effect on Features

(a) Without dropout (b) Dropout with p = 0.5.

Figure 7: Features learned on MNIST with one hidden layer autoencoders having 256 rectified
linear units.

In a standard neural network, the derivative received by each parameter tells it how it
should change so the final loss function is reduced, given what all other units are doing.
Therefore, units may change in a way that they fix up the mistakes of the other units.
This may lead to complex co-adaptations. This in turn leads to overfitting because these
co-adaptations do not generalize to unseen data. We hypothesize that for each hidden unit,
dropout prevents co-adaptation by making the presence of other hidden units unreliable.
Therefore, a hidden unit cannot rely on other specific units to correct its mistakes. It must
perform well in a wide variety of different contexts provided by the other hidden units. To
observe this effect directly, we look at the first level features learned by neural networks
trained on visual tasks with and without dropout.
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Figure 7a shows features learned by an autoencoder on MNIST with a single hidden
layer of 256 rectified linear units without dropout. Figure 7b shows the features learned by
an identical autoencoder which used dropout in the hidden layer with p = 0.5. Both au-
toencoders had similar test reconstruction errors. However, it is apparent that the features
shown in Figure 7a have co-adapted in order to produce good reconstructions. Each hidden
unit on its own does not seem to be detecting a meaningful feature. On the other hand, in
Figure 7b, the hidden units seem to detect edges, strokes and spots in different parts of the
image. This shows that dropout does break up co-adaptations, which is probably the main
reason why it leads to lower generalization errors.

7.2 Effect on Sparsity

(a) Without dropout (b) Dropout with p = 0.5.

Figure 8: Effect of dropout on sparsity. ReLUs were used for both models. Left: The histogram
of mean activations shows that most units have a mean activation of about 2.0. The
histogram of activations shows a huge mode away from zero. Clearly, a large fraction of
units have high activation. Right: The histogram of mean activations shows that most
units have a smaller mean mean activation of about 0.7. The histogram of activations
shows a sharp peak at zero. Very few units have high activation.

We found that as a side-effect of doing dropout, the activations of the hidden units
become sparse, even when no sparsity inducing regularizers are present. Thus, dropout au-
tomatically leads to sparse representations. To observe this effect, we take the autoencoders
trained in the previous section and look at the sparsity of hidden unit activations on a ran-
dom mini-batch taken from the test set. Figure 8a and Figure 8b compare the sparsity for
the two models. In a good sparse model, there should only be a few highly activated units
for any data case. Moreover, the average activation of any unit across data cases should
be low. To assess both of these qualities, we plot two histograms for each model. For each
model, the histogram on the left shows the distribution of mean activations of hidden units
across the minibatch. The histogram on the right shows the distribution of activations of
the hidden units.

Comparing the histograms of activations we can see that fewer hidden units have high
activations in Figure 8b compared to Figure 8a, as seen by the significant mass away from
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zero for the net that does not use dropout. The mean activations are also smaller for the
dropout net. The overall mean activation of hidden units is close to 2.0 for the autoencoder
without dropout but drops to around 0.7 when dropout is used.

7.3 Effect of Dropout Rate

Dropout has a tunable hyperparameter p (the probability of retaining a unit in the network).
In this section, we explore the effect of varying this hyperparameter. The comparison is
done in two situations.

1. The number of hidden units is held constant.

2. The number of hidden units is changed so that the expected number of hidden units
that will be retained after dropout is held constant.

In the first case, we train the same network architecture with different amounts of
dropout. We use a 784-2048-2048-2048-10 architecture. No input dropout was used. Fig-
ure 9a shows the test error obtained as a function of p. If the architecture is held constant,
having a small p means very few units will turn on during training. It can be seen that this
has led to underfitting since the training error is also high. We see that as p increases, the
error goes down. It becomes flat when 0.4 ≤ p ≤ 0.8 and then increases as p becomes close
to 1.

0.0 0.2 0.4 0.6 0.8 1.0
Probability of retaining a unit (p)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
la

ss
if
ic

at
io

n
 E

rr
or

 %

Test Error

Training Error

(a) Keeping n fixed.

0.0 0.2 0.4 0.6 0.8 1.0
Probability of retaining a unit (p)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
la

ss
if
ic

at
io

n
 E

rr
or

 %

Test Error

Training Error

(b) Keeping pn fixed.

Figure 9: Effect of changing dropout rates on MNIST.

Another interesting setting is the second case in which the quantity pn is held constant
where n is the number of hidden units in any particular layer. This means that networks
that have small p will have a large number of hidden units. Therefore, after applying
dropout, the expected number of units that are present will be the same across different
architectures. However, the test networks will be of different sizes. In our experiments,
we set pn = 256 for the first two hidden layers and pn = 512 for the last hidden layer.
Figure 9b shows the test error obtained as a function of p. We notice that the magnitude
of errors for small values of p has reduced by a lot compared to Figure 9a (for p = 0.1 it fell
from 2.7% to 1.7%). Values of p that are close to 0.6 seem to perform best for this choice
of pn but our usual default value of 0.5 is close to optimal.
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7.4 Effect of Data Set Size

One test of a good regularizer is that it should make it possible to get good generalization
error from models with a large number of parameters trained on small data sets. This
section explores the effect of changing the data set size when dropout is used with feed-
forward networks. Huge neural networks trained in the standard way overfit massively on
small data sets. To see if dropout can help, we run classification experiments on MNIST
and vary the amount of data given to the network.
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Figure 10: Effect of varying data set size.

The results of these experiments are
shown in Figure 10. The network was given
data sets of size 100, 500, 1K, 5K, 10K
and 50K chosen randomly from the MNIST
training set. The same network architec-
ture (784-1024-1024-2048-10) was used for
all data sets. Dropout with p = 0.5 was per-
formed at all the hidden layers and p = 0.8
at the input layer. It can be observed that
for extremely small data sets (100, 500)
dropout does not give any improvements.
The model has enough parameters that it
can overfit on the training data, even with
all the noise coming from dropout. As the
size of the data set is increased, the gain
from doing dropout increases up to a point and then declines. This suggests that for any
given architecture and dropout rate, there is a “sweet spot” corresponding to some amount
of data that is large enough to not be memorized in spite of the noise but not so large that
overfitting is not a problem anyways.

7.5 Monte-Carlo Model Averaging vs. Weight Scaling
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Figure 11: Monte-Carlo model averaging vs.
weight scaling.

The efficient test time procedure that we
propose is to do an approximate model com-
bination by scaling down the weights of the
trained neural network. An expensive but
more correct way of averaging the models
is to sample k neural nets using dropout for
each test case and average their predictions.
As k →∞, this Monte-Carlo model average
gets close to the true model average. It is in-
teresting to see empirically how many sam-
ples k are needed to match the performance
of the approximate averaging method. By
computing the error for different values of k
we can see how quickly the error rate of the
finite-sample average approaches the error
rate of the true model average.
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We again use the MNIST data set and do classification by averaging the predictions
of k randomly sampled neural networks. Figure 11 shows the test error rate obtained for
different values of k. This is compared with the error obtained using the weight scaling
method (shown as a horizontal line). It can be seen that around k = 50, the Monte-Carlo
method becomes as good as the approximate method. Thereafter, the Monte-Carlo method
is slightly better than the approximate method but well within one standard deviation of
it. This suggests that the weight scaling method is a fairly good approximation of the true
model average.

8. Dropout Restricted Boltzmann Machines

Besides feed-forward neural networks, dropout can also be applied to Restricted Boltzmann
Machines (RBM). In this section, we formally describe this model and show some results
to illustrate its key properties.

8.1 Model Description

Consider an RBM with visible units v ∈ {0, 1}D and hidden units h ∈ {0, 1}F . It defines
the following probability distribution

P (h,v; θ) =
1

Z(θ)
exp(v>Wh + a>h + b>v).

Where θ = {W,a,b} represents the model parameters and Z is the partition function.

Dropout RBMs are RBMs augmented with a vector of binary random variables r ∈
{0, 1}F . Each random variable rj takes the value 1 with probability p, independent of
others. If rj takes the value 1, the hidden unit hj is retained, otherwise it is dropped from
the model. The joint distribution defined by a Dropout RBM can be expressed as

P (r,h,v; p, θ) = P (r; p)P (h,v|r; θ),

P (r; p) =

F∏

j=1

prj (1− p)1−rj ,

P (h,v|r; θ) =
1

Z ′(θ, r)
exp(v>Wh + a>h + b>v)

F∏

j=1

g(hj , rj),

g(hj , rj) = 1(rj = 1) + 1(rj = 0)1(hj = 0).

Z ′(θ, r) is the normalization constant. g(hj , rj) imposes the constraint that if rj = 0,
hj must be 0. The distribution over h, conditioned on v and r is factorial

P (h|r,v) =
F∏

j=1

P (hj |rj ,v),

P (hj = 1|rj ,v) = 1(rj = 1)σ

(
bj +

∑

i

Wijvi

)
.
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(a) Without dropout (b) Dropout with p = 0.5.

Figure 12: Features learned on MNIST by 256 hidden unit RBMs. The features are ordered by L2
norm.

The distribution over v conditioned on h is same as that of an RBM

P (v|h) =

D∏

i=1

P (vi|h),

P (vi = 1|h) = σ


ai +

∑

j

Wijhj


 .

Conditioned on r, the distribution over {v,h} is same as the distribution that an RBM
would impose, except that the units for which rj = 0 are dropped from h. Therefore, the
Dropout RBM model can be seen as a mixture of exponentially many RBMs with shared
weights each using a different subset of h.

8.2 Learning Dropout RBMs

Learning algorithms developed for RBMs such as Contrastive Divergence (Hinton et al.,
2006) can be directly applied for learning Dropout RBMs. The only difference is that r is
first sampled and only the hidden units that are retained are used for training. Similar to
dropout neural networks, a different r is sampled for each training case in every minibatch.
In our experiments, we use CD-1 for training dropout RBMs.

8.3 Effect on Features

Dropout in feed-forward networks improved the quality of features by reducing co-adaptations.
This section explores whether this effect transfers to Dropout RBMs as well.

Figure 12a shows features learned by a binary RBM with 256 hidden units. Figure 12b
shows features learned by a dropout RBM with the same number of hidden units. Features
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(a) Without dropout (b) Dropout with p = 0.5.

Figure 13: Effect of dropout on sparsity. Left: The activation histogram shows that a large num-
ber of units have activations away from zero. Right: A large number of units have
activations close to zero and very few units have high activation.

learned by the dropout RBM appear qualitatively different in the sense that they seem to
capture features that are coarser compared to the sharply defined stroke-like features in the
standard RBM. There seem to be very few dead units in the dropout RBM relative to the
standard RBM.

8.4 Effect on Sparsity

Next, we investigate the effect of dropout RBM training on sparsity of the hidden unit
activations. Figure 13a shows the histograms of hidden unit activations and their means on
a test mini-batch after training an RBM. Figure 13b shows the same for dropout RBMs.
The histograms clearly indicate that the dropout RBMs learn much sparser representations
than standard RBMs even when no additional sparsity inducing regularizer is present.

9. Marginalizing Dropout

Dropout can be seen as a way of adding noise to the states of hidden units in a neural
network. In this section, we explore the class of models that arise as a result of marginalizing
this noise. These models can be seen as deterministic versions of dropout. In contrast to
standard (“Monte-Carlo”) dropout, these models do not need random bits and it is possible
to get gradients for the marginalized loss functions. In this section, we briefly explore these
models.

Deterministic algorithms have been proposed that try to learn models that are robust to
feature deletion at test time (Globerson and Roweis, 2006). Marginalization in the context
of denoising autoencoders has been explored previously (Chen et al., 2012). The marginal-
ization of dropout noise in the context of linear regression was discussed in Srivastava (2013).
Wang and Manning (2013) further explored the idea of marginalizing dropout to speed-up
training. van der Maaten et al. (2013) investigated different input noise distributions and
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the regularizers obtained by marginalizing this noise. Wager et al. (2013) describes how
dropout can be seen as an adaptive regularizer.

9.1 Linear Regression

First we explore a very simple case of applying dropout to the classical problem of linear
regression. Let X ∈ RN×D be a data matrix of N data points. y ∈ RN be a vector of
targets. Linear regression tries to find a w ∈ RD that minimizes

||y −Xw||2.

When the input X is dropped out such that any input dimension is retained with
probability p, the input can be expressed as R∗X where R ∈ {0, 1}N×D is a random matrix
with Rij ∼ Bernoulli(p) and ∗ denotes an element-wise product. Marginalizing the noise,
the objective function becomes

minimize
w

ER∼Bernoulli(p)

[
||y − (R ∗X)w||2

]
.

This reduces to

minimize
w

||y − pXw||2 + p(1− p)||Γw||2,

where Γ = (diag(X>X))1/2. Therefore, dropout with linear regression is equivalent, in
expectation, to ridge regression with a particular form for Γ. This form of Γ essentially
scales the weight cost for weight wi by the standard deviation of the ith dimension of the
data. If a particular data dimension varies a lot, the regularizer tries to squeeze its weight
more.

Another interesting way to look at this objective is to absorb the factor of p into w.
This leads to the following form

minimize
w

||y −Xw̃||2 +
1− p
p
||Γw̃||2,

where w̃ = pw. This makes the dependence of the regularization constant on p explicit.
For p close to 1, all the inputs are retained and the regularization constant is small. As
more dropout is done (by decreasing p), the regularization constant grows larger.

9.2 Logistic Regression and Deep Networks

For logistic regression and deep neural nets, it is hard to obtain a closed form marginalized
model. However, Wang and Manning (2013) showed that in the context of dropout applied
to logistic regression, the corresponding marginalized model can be trained approximately.
Under reasonable assumptions, the distributions over the inputs to the logistic unit and over
the gradients of the marginalized model are Gaussian. Their means and variances can be
computed efficiently. This approximate marginalization outperforms Monte-Carlo dropout
in terms of training time and generalization performance.

However, the assumptions involved in this technique become successively weaker as more
layers are added. Therefore, the results are not directly applicable to deep networks.
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Data Set Architecture Bernoulli dropout Gaussian dropout

MNIST 2 layers, 1024 units each 1.08 ± 0.04 0.95 ± 0.04
CIFAR-10 3 conv + 2 fully connected layers 12.6 ± 0.1 12.5 ± 0.1

Table 10: Comparison of classification error % with Bernoulli and Gaussian dropout. For MNIST,
the Bernoulli model uses p = 0.5 for the hidden units and p = 0.8 for the input units.
For CIFAR-10, we use p = (0.9, 0.75, 0.75, 0.5, 0.5, 0.5) going from the input layer to the

top. The value of σ for the Gaussian dropout models was set to be
√

1−p
p . Results were

averaged over 10 different random seeds.

10. Multiplicative Gaussian Noise

Dropout involves multiplying hidden activations by Bernoulli distributed random variables
which take the value 1 with probability p and 0 otherwise. This idea can be generalized
by multiplying the activations with random variables drawn from other distributions. We
recently discovered that multiplying by a random variable drawn from N (1, 1) works just
as well, or perhaps better than using Bernoulli noise. This new form of dropout amounts
to adding a Gaussian distributed random variable with zero mean and standard deviation
equal to the activation of the unit. That is, each hidden activation hi is perturbed to
hi + hir where r ∼ N (0, 1), or equivalently hir

′ where r′ ∼ N (1, 1). We can generalize
this to r′ ∼ N (1, σ2) where σ becomes an additional hyperparameter to tune, just like p
was in the standard (Bernoulli) dropout. The expected value of the activations remains
unchanged, therefore no weight scaling is required at test time.

In this paper, we described dropout as a method where we retain units with probability p
at training time and scale down the weights by multiplying them by a factor of p at test time.
Another way to achieve the same effect is to scale up the retained activations by multiplying
by 1/p at training time and not modifying the weights at test time. These methods are
equivalent with appropriate scaling of the learning rate and weight initializations at each
layer.

Therefore, dropout can be seen as multiplying hi by a Bernoulli random variable rb that
takes the value 1/p with probability p and 0 otherwise. E[rb] = 1 and V ar[rb] = (1− p)/p.
For the Gaussian multiplicative noise, if we set σ2 = (1 − p)/p, we end up multiplying
hi by a random variable rg, where E[rg] = 1 and V ar[rg] = (1 − p)/p. Therefore, both
forms of dropout can be set up so that the random variable being multiplied by has the
same mean and variance. However, given these first and second order moments, rg has the
highest entropy and rb has the lowest. Both these extremes work well, although preliminary
experimental results shown in Table 10 suggest that the high entropy case might work

slightly better. For each layer, the value of σ in the Gaussian model was set to be
√

1−p
p

using the p from the corresponding layer in the Bernoulli model.

11. Conclusion

Dropout is a technique for improving neural networks by reducing overfitting. Standard
backpropagation learning builds up brittle co-adaptations that work for the training data
but do not generalize to unseen data. Random dropout breaks up these co-adaptations by
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making the presence of any particular hidden unit unreliable. This technique was found
to improve the performance of neural nets in a wide variety of application domains includ-
ing object classification, digit recognition, speech recognition, document classification and
analysis of computational biology data. This suggests that dropout is a general technique
and is not specific to any domain. Methods that use dropout achieve state-of-the-art re-
sults on SVHN, ImageNet, CIFAR-100 and MNIST. Dropout considerably improved the
performance of standard neural nets on other data sets as well.

This idea can be extended to Restricted Boltzmann Machines and other graphical mod-
els. The central idea of dropout is to take a large model that overfits easily and repeatedly
sample and train smaller sub-models from it. RBMs easily fit into this framework. We de-
veloped Dropout RBMs and empirically showed that they have certain desirable properties.

One of the drawbacks of dropout is that it increases training time. A dropout network
typically takes 2-3 times longer to train than a standard neural network of the same ar-
chitecture. A major cause of this increase is that the parameter updates are very noisy.
Each training case effectively tries to train a different random architecture. Therefore, the
gradients that are being computed are not gradients of the final architecture that will be
used at test time. Therefore, it is not surprising that training takes a long time. However,
it is likely that this stochasticity prevents overfitting. This creates a trade-off between over-
fitting and training time. With more training time, one can use high dropout and suffer less
overfitting. However, one way to obtain some of the benefits of dropout without stochas-
ticity is to marginalize the noise to obtain a regularizer that does the same thing as the
dropout procedure, in expectation. We showed that for linear regression this regularizer is
a modified form of L2 regularization. For more complicated models, it is not obvious how to
obtain an equivalent regularizer. Speeding up dropout is an interesting direction for future
work.
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Appendix A. A Practical Guide for Training Dropout Networks

Neural networks are infamous for requiring extensive hyperparameter tuning. Dropout
networks are no exception. In this section, we describe heuristics that might be useful for
applying dropout.

A.1 Network Size

It is to be expected that dropping units will reduce the capacity of a neural network. If
n is the number of hidden units in any layer and p is the probability of retaining a unit,
then instead of n hidden units, only pn units will be present after dropout, in expectation.
Moreover, this set of pn units will be different each time and the units are not allowed to
build co-adaptations freely. Therefore, if an n-sized layer is optimal for a standard neural
net on any given task, a good dropout net should have at least n/p units. We found this to
be a useful heuristic for setting the number of hidden units in both convolutional and fully
connected networks.
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A.2 Learning Rate and Momentum

Dropout introduces a significant amount of noise in the gradients compared to standard
stochastic gradient descent. Therefore, a lot of gradients tend to cancel each other. In
order to make up for this, a dropout net should typically use 10-100 times the learning rate
that was optimal for a standard neural net. Another way to reduce the effect the noise is
to use a high momentum. While momentum values of 0.9 are common for standard nets,
with dropout we found that values around 0.95 to 0.99 work quite a lot better. Using high
learning rate and/or momentum significantly speed up learning.

A.3 Max-norm Regularization

Though large momentum and learning rate speed up learning, they sometimes cause the
network weights to grow very large. To prevent this, we can use max-norm regularization.
This constrains the norm of the vector of incoming weights at each hidden unit to be bound
by a constant c. Typical values of c range from 3 to 4.

A.4 Dropout Rate

Dropout introduces an extra hyperparameter—the probability of retaining a unit p. This
hyperparameter controls the intensity of dropout. p = 1, implies no dropout and low values
of p mean more dropout. Typical values of p for hidden units are in the range 0.5 to 0.8.
For input layers, the choice depends on the kind of input. For real-valued inputs (image
patches or speech frames), a typical value is 0.8. For hidden layers, the choice of p is coupled
with the choice of number of hidden units n. Smaller p requires big n which slows down
the training and leads to underfitting. Large p may not produce enough dropout to prevent
overfitting.

Appendix B. Detailed Description of Experiments and Data Sets

.

This section describes the network architectures and training details for the experimental
results reported in this paper. The code for reproducing these results can be obtained from
http://www.cs.toronto.edu/~nitish/dropout. The implementation is GPU-based. We
used the excellent CUDA libraries—cudamat (Mnih, 2009) and cuda-convnet (Krizhevsky
et al., 2012) to implement our networks.

B.1 MNIST

The MNIST data set consists of 60,000 training and 10,000 test examples each representing
a 28×28 digit image. We held out 10,000 random training images for validation. Hyperpa-
rameters were tuned on the validation set such that the best validation error was produced
after 1 million weight updates. The validation set was then combined with the training set
and training was done for 1 million weight updates. This net was used to evaluate the per-
formance on the test set. This way of using the validation set was chosen because we found
that it was easy to set up hyperparameters so that early stopping was not required at all.
Therefore, once the hyperparameters were fixed, it made sense to combine the validation
and training sets and train for a very long time.
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The architectures shown in Figure 4 include all combinations of 2, 3, and 4 layer networks
with 1024 and 2048 units in each layer. Thus, there are six architectures in all. For all the
architectures (including the ones reported in Table 2), we used p = 0.5 in all hidden layers
and p = 0.8 in the input layer. A final momentum of 0.95 and weight constraints with c = 2
was used in all the layers.

To test the limits of dropout’s regularization power, we also experimented with 2 and 3
layer nets having 4096 and 8192 units. 2 layer nets gave improvements as shown in Table 2.
However, the three layer nets performed slightly worse than 2 layer ones with the same
level of dropout. When we increased dropout, performance improved but not enough to
outperform the 2 layer nets.

B.2 SVHN

The SVHN data set consists of approximately 600,000 training images and 26,000 test
images. The training set consists of two parts—A standard labeled training set and another
set of labeled examples that are easy. A validation set was constructed by taking examples
from both the parts. Two-thirds of it were taken from the standard set (400 per class) and
one-third from the extra set (200 per class), a total of 6000 samples. This same process
is used by Sermanet et al. (2012). The inputs were RGB pixels normalized to have zero
mean and unit variance. Other preprocessing techniques such as global or local contrast
normalization or ZCA whitening did not give any noticeable improvements.

The best architecture that we found uses three convolutional layers each followed by
a max-pooling layer. The convolutional layers have 96, 128 and 256 filters respectively.
Each convolutional layer has a 5 × 5 receptive field applied with a stride of 1 pixel. Each
max pooling layer pools 3 × 3 regions at strides of 2 pixels. The convolutional layers are
followed by two fully connected hidden layers having 2048 units each. All units use the
rectified linear activation function. Dropout was applied to all the layers of the network
with the probability of retaining the unit being p = (0.9, 0.75, 0.75, 0.5, 0.5, 0.5) for the
different layers of the network (going from input to convolutional layers to fully connected
layers). In addition, the max-norm constraint with c = 4 was used for all the weights. A
momentum of 0.95 was used in all the layers. These hyperparameters were tuned using a
validation set. Since the training set was quite large, we did not combine the validation
set with the training set for final training. We reported test error of the model that had
smallest validation error.

B.3 CIFAR-10 and CIFAR-100

The CIFAR-10 and CIFAR-100 data sets consists of 50,000 training and 10,000 test images
each. They have 10 and 100 image categories respectively. These are 32 × 32 color images.
We used 5,000 of the training images for validation. We followed the procedure similar
to MNIST, where we found the best hyperparameters using the validation set and then
combined it with the training set. The images were preprocessed by doing global contrast
normalization in each color channel followed by ZCA whitening. Global contrast normal-
ization means that for image and each color channel in that image, we compute the mean
of the pixel intensities and subtract it from the channel. ZCA whitening means that we
mean center the data, rotate it onto its principle components, normalize each component
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and then rotate it back. The network architecture and dropout rates are same as that for
SVHN, except the learning rates for the input layer which had to be set to smaller values.

B.4 TIMIT
The open source Kaldi toolkit (Povey et al., 2011) was used to preprocess the data into log-
filter banks. A monophone system was trained to do a forced alignment and to get labels for
speech frames. Dropout neural networks were trained on windows of 21 consecutive frames
to predict the label of the central frame. No speaker dependent operations were performed.
The inputs were mean centered and normalized to have unit variance.

We used probability of retention p = 0.8 in the input layers and 0.5 in the hidden layers.
Max-norm constraint with c = 4 was used in all the layers. A momentum of 0.95 with a
high learning rate of 0.1 was used. The learning rate was decayed as ε0(1 + t/T )−1. For
DBN pretraining, we trained RBMs using CD-1. The variance of each input unit for the
Gaussian RBM was fixed to 1. For finetuning the DBN with dropout, we found that in
order to get the best results it was important to use a smaller learning rate (about 0.01).
Adding max-norm constraints did not give any improvements.

B.5 Reuters
The Reuters RCV1 corpus contains more than 800,000 documents categorized into 103
classes. These classes are arranged in a tree hierarchy. We created a subset of this data set
consisting of 402,738 articles and a vocabulary of 2000 words comprising of 50 categories
in which each document belongs to exactly one class. The data was split into equal sized
training and test sets. We tried many network architectures and found that dropout gave
improvements in classification accuracy over all of them. However, the improvement was
not as significant as that for the image and speech data sets. This might be explained by
the fact that this data set is quite big (more than 200,000 training examples) and overfitting
is not a very serious problem.

B.6 Alternative Splicing
The alternative splicing data set consists of data for 3665 cassette exons, 1014 RNA features
and 4 tissue types derived from 27 mouse tissues. For each input, the target consists of 4
softmax units (one for tissue type). Each softmax unit has 3 states (inc, exc, nc) which are
of the biological importance. For each softmax unit, the aim is to predict a distribution over
these 3 states that matches the observed distribution from wet lab experiments as closely
as possible. The evaluation metric is Code Quality which is defined as

|data points|∑

i=1

∑

t∈tissue types

∑

s∈{inc, exc, nc}

psi,t log(
qst (ri)

p̄s
),

where, psi,t is the target probability for state s and tissue type t in input i; qst (ri) is the
predicted probability for state s in tissue type t for input ri and p̄s is the average of psi,t
over i and t.

A two layer dropout network with 1024 units in each layer was trained on this data set.
A value of p = 0.5 was used for the hidden layer and p = 0.7 for the input layer. Max-norm
regularization with high decaying learning rates was used. Results were averaged across the
same 5 folds used by Xiong et al. (2011).

1955



Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

References

M. Chen, Z. Xu, K. Weinberger, and F. Sha. Marginalized denoising autoencoders for
domain adaptation. In Proceedings of the 29th International Conference on Machine
Learning, pages 767–774. ACM, 2012.

G. E. Dahl, M. Ranzato, A. Mohamed, and G. E. Hinton. Phone recognition with the mean-
covariance restricted Boltzmann machine. In Advances in Neural Information Processing
Systems 23, pages 469–477, 2010.

O. Dekel, O. Shamir, and L. Xiao. Learning to classify with missing and corrupted features.
Machine Learning, 81(2):149–178, 2010.

A. Globerson and S. Roweis. Nightmare at test time: robust learning by feature deletion. In
Proceedings of the 23rd International Conference on Machine Learning, pages 353–360.
ACM, 2006.

I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks.
In Proceedings of the 30th International Conference on Machine Learning, pages 1319–
1327. ACM, 2013.

G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313(5786):504 – 507, 2006.

G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets.
Neural Computation, 18:1527–1554, 2006.

K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage
architecture for object recognition? In Proceedings of the International Conference on
Computer Vision (ICCV’09). IEEE, 2009.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in Neural Information Processing Systems 25, pages
1106–1114, 2012.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computa-
tion, 1(4):541–551, 1989.

Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, Z. Li, M.-H. Tsai, X. Zhou,
T. Huang, and T. Zhang. Imagenet classification: fast descriptor coding and large-scale
svm training. Large scale visual recognition challenge, 2010.

A. Livnat, C. Papadimitriou, N. Pippenger, and M. W. Feldman. Sex, mixability, and
modularity. Proceedings of the National Academy of Sciences, 107(4):1452–1457, 2010.

V. Mnih. CUDAMat: a CUDA-based matrix class for Python. Technical Report UTML
TR 2009-004, Department of Computer Science, University of Toronto, November 2009.

1956



Dropout

A. Mohamed, G. E. Dahl, and G. E. Hinton. Acoustic modeling using deep belief networks.
IEEE Transactions on Audio, Speech, and Language Processing, 2010.

R. M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag New York, Inc., 1996.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in
natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning 2011, 2011.

S. J. Nowlan and G. E. Hinton. Simplifying neural networks by soft weight-sharing. Neural
Computation, 4(4), 1992.

D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hannemann,
P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, and K. Vesely. The Kaldi
Speech Recognition Toolkit. In IEEE 2011 Workshop on Automatic Speech Recognition
and Understanding. IEEE Signal Processing Society, 2011.

R. Salakhutdinov and G. Hinton. Deep Boltzmann machines. In Proceedings of the Inter-
national Conference on Artificial Intelligence and Statistics, volume 5, pages 448–455,
2009.

R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using Markov
chain Monte Carlo. In Proceedings of the 25th International Conference on Machine
Learning. ACM, 2008.

J. Sanchez and F. Perronnin. High-dimensional signature compression for large-scale image
classification. In Proceedings of the 2011 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1665–1672, 2011.

P. Sermanet, S. Chintala, and Y. LeCun. Convolutional neural networks applied to house
numbers digit classification. In International Conference on Pattern Recognition (ICPR
2012), 2012.

P. Simard, D. Steinkraus, and J. Platt. Best practices for convolutional neural networks ap-
plied to visual document analysis. In Proceedings of the Seventh International Conference
on Document Analysis and Recognition, volume 2, pages 958–962, 2003.

J. Snoek, H. Larochelle, and R. Adams. Practical Bayesian optimization of machine learning
algorithms. In Advances in Neural Information Processing Systems 25, pages 2960–2968,
2012.

N. Srebro and A. Shraibman. Rank, trace-norm and max-norm. In Proceedings of the 18th
annual conference on Learning Theory, COLT’05, pages 545–560. Springer-Verlag, 2005.

N. Srivastava. Improving Neural Networks with Dropout. Master’s thesis, University of
Toronto, January 2013.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B. Methodological, 58(1):267–288, 1996.

1957



Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

A. N. Tikhonov. On the stability of inverse problems. Doklady Akademii Nauk SSSR, 39(5):
195–198, 1943.

L. van der Maaten, M. Chen, S. Tyree, and K. Q. Weinberger. Learning with marginalized
corrupted features. In Proceedings of the 30th International Conference on Machine
Learning, pages 410–418. ACM, 2013.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust
features with denoising autoencoders. In Proceedings of the 25th International Conference
on Machine Learning, pages 1096–1103. ACM, 2008.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising
criterion. In Proceedings of the 27th International Conference on Machine Learning, pages
3371–3408. ACM, 2010.

S. Wager, S. Wang, and P. Liang. Dropout training as adaptive regularization. In Advances
in Neural Information Processing Systems 26, pages 351–359, 2013.

S. Wang and C. D. Manning. Fast dropout training. In Proceedings of the 30th International
Conference on Machine Learning, pages 118–126. ACM, 2013.

H. Y. Xiong, Y. Barash, and B. J. Frey. Bayesian prediction of tissue-regulated splicing
using RNA sequence and cellular context. Bioinformatics, 27(18):2554–2562, 2011.

M. D. Zeiler and R. Fergus. Stochastic pooling for regularization of deep convolutional
neural networks. CoRR, abs/1301.3557, 2013.

1958



Journal of Machine Learning Research 15 (2014) 1959-2008 Submitted 10/12; Revised 7/13; Published 6/14

Sparse Factor Analysis for Learning and Content Analytics

Andrew S. Lan∗ mr.lan@sparfa.com
Andrew E. Waters waters@sparfa.com
Dept. Electrical and Computer Engineering
Rice University
Houston, TX 77005, USA
Christoph Studer studer@sparfa.com
School of Electrical and Computer Engineering
Cornell University
Ithaca, NY 14853, USA
Richard G. Baraniuk richb@sparfa.com
Dept. Electrical and Computer Engineering
Rice University
Houston, TX 77005, USA

Editor: Francis Bach

Abstract
We develop a new model and algorithms for machine learning-based learning analytics,
which estimate a learner’s knowledge of the concepts underlying a domain, and content
analytics, which estimate the relationships among a collection of questions and those con-
cepts. Our model represents the probability that a learner provides the correct response to
a question in terms of three factors: their understanding of a set of underlying concepts,
the concepts involved in each question, and each question’s intrinsic difficulty. We estimate
these factors given the graded responses to a collection of questions. The underlying esti-
mation problem is ill-posed in general, especially when only a subset of the questions are
answered. The key observation that enables a well-posed solution is the fact that typical
educational domains of interest involve only a small number of key concepts. Leveraging
this observation, we develop both a bi-convex maximum-likelihood-based solution and a
Bayesian solution to the resulting SPARse Factor Analysis (SPARFA) problem. We also
incorporate user-defined tags on questions to facilitate the interpretability of the estimated
factors. Experiments with synthetic and real-world data demonstrate the efficacy of our
approach. Finally, we make a connection between SPARFA and noisy, binary-valued (1-bit)
dictionary learning that is of independent interest.
Keywords: factor analysis, sparse probit regression, sparse logistic regression, Bayesian
latent factor analysis, personalized learning

1. Introduction

Textbooks, lectures, and homework assignments were the answer to the main educational
challenges of the 19th century, but they are the main bottleneck of the 21st century. To-
day’s textbooks are static, linearly organized, time-consuming to develop, soon out-of-date,
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and expensive. Lectures remain a primarily passive experience of copying down what an
instructor says and writes on a board (or projects on a screen). Homework assignments that
are not graded for weeks provide poor feedback to learners (e.g., students) on their learning
progress. Even more importantly, today’s courses provide only a “one-size-fits-all” learning
experience that does not cater to the background, interests, and goals of individual learners.

1.1 The Promise of Personalized Learning

We envision a world where access to high-quality, personally tailored educational experi-
ences is affordable to all of the world’s learners. The key to reaching this goal is to integrate
textbooks, lectures, and homework assignments into a personalized learning system (PLS)
that closes the learning feedback loop by (i) continuously monitoring and analyzing learner
interactions with learning resources in order to assess their learning progress and (ii) pro-
viding timely remediation, enrichment, or practice based on that analysis. See Linden and
Glas (2000), Murray et al. (2004), Stamper et al. (2007), Rafferty et al. (2011), Li et al.
(2011), and Knewton (2012) for various visions and examples.

Some progress has been made over the past few decades on personalized learning; see,
for example, the sizable literature on intelligent tutoring systems discussed in Psotka et al.
(1988). To date, the lion’s share of fielded, intelligent tutors have been rule-based systems
that are hard-coded by domain experts to give learners feedback for pre-defined scenarios
(e.g., Koedinger et al. 1997, Brusilovsky and Peylo 2003, VanLehn et al. 2005, and Butz
et al. 2006). The specificity of such systems is counterbalanced by their high development
cost in terms of both time and money, which has limited their scalability and impact in
practice.

In a fresh direction, recent progress has been made on applying machine learning algo-
rithms to mine learner interaction data and educational content (see the overview articles by
Romero and Ventura 2007 and Baker and Yacef 2009). In contrast to rule-based approaches,
machine learning-based PLSs promise to be rapid and inexpensive to deploy, which will en-
hance their scalability and impact. Indeed, the dawning age of “big data” provides new
opportunities to build PLSs based on data rather than rules. We conceptualize the archi-
tecture of a generic machine learning-based PLS to have three interlocking components:

• Learning analytics: Algorithms that estimate what each learner does and does not
understand based on data obtained from tracking their interactions with learning con-
tent.

• Content analytics: Algorithms that organize learning content such as text, video,
simulations, questions, and feedback hints.

• Scheduling : Algorithms that use the results of learning and content analytics to suggest
to each learner at each moment what they should be doing in order to maximize their
learning outcomes, in effect closing the learning feedback loop.

1.2 Sparse Factor Analysis (SPARFA)

In this paper, we develop a new model and a suite of algorithms for joint machine learning-
based learning analytics and content analytics. Our model (developed in Section 2) rep-
resents the probability that a learner provides the correct response to a given question in
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(a) Graded learner–question responses. (b) Inferred question–concept association graph.

Figure 1: (a) The SPARFA framework processes a (potentially incomplete) binary-valued
data set of graded learner–question responses to (b) estimate the underlying
questions-concept association graph and the abstract conceptual knowledge of
each learner (illustrated here by smiley faces for learner j = 3, the column in (a)
selected by the red dashed box).

terms of three factors: their knowledge of the underlying concepts, the concepts involved in
each question, and each question’s intrinsic difficulty.

Figure 1 provides a graphical depiction of our approach. As shown in Figure 1(a), we
are provided with data related to the correctness of the learners’ responses to a collection
of questions. We encode these graded responses in a “gradebook,” a source of information
commonly used in the context of classical test theory (Norvick 1966). Specifically, the
“gradebook” is a matrix with entry Yi,j = 1 or 0 depending on whether learner j answers
question i correctly or incorrectly, respectively. Question marks correspond to incomplete
data due to unanswered or unassigned questions. Working left-to-right in Figure 1(b), we
assume that the collection of questions (rectangles) is related to a small number of abstract
concepts (circles) by a bipartite graph, where the edge weight Wi,k indicates the degree to
which question i involves concept k. We also assume that question i has intrinsic difficulty µi.
Denoting learner j’s knowledge of concept k by Ck,j , we calculate the probabilities that the
learners answer the questions correctly in terms of WC + M, where W and C are matrix
versions of Wi,k and Ck,j , respectively, and M is a matrix containing the intrinsic question
difficulty µi on row i. We transform the probability of a correct answer to an actual 1/0
correctness via a standard probit or logit link function (see Rasmussen and Williams 2006).

Armed with this model and given incomplete observations of the graded learner–question
responses Yi,j , our goal is to estimate the factors W, C, and M. Such a factor-analysis
problem is ill-posed in general, especially when each learner answers only a small subset of
the collection of questions (see Harman 1976 for a factor analysis overview). Our first key
observation that enables a well-posed solution is the fact that typical educational domains of
interest involve only a small number of key concepts (i.e., we have K � N,Q in Figure 1).
Consequently, W becomes a tall, narrow Q × K matrix that relates the questions to a
small set of abstract concepts, while C becomes a short, wide K × N matrix that relates
learner knowledge to that same small set of abstract concepts. Note that the concepts are
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“abstract” in that they will be estimated from the data rather than dictated by a subject
matter expert. Our second key observation is that each question involves only a small subset
of the abstract concepts. Consequently, the matrix W is sparsely populated. Our third
observation is that the entries of W should be non-negative, since we postulate that having
strong concept knowledge should never hurt a learner’s chances to answer questions correctly.
This constraint on W ensures that large positive values in C represent strong knowledge of
the associated abstract concepts, which is crucial for a PLS to generate human-interpretable
feedback to learners on their strengths and weaknesses.

Leveraging these observations, we propose a suite of new algorithms for solving the
SPARse Factor Analysis (SPARFA) problem. Section 3 develops SPARFA-M, a matrix
factorization method which uses an efficient bi-convex optimization approach to produce
point estimates of the factors. Section 4 develops SPARFA-B, a Bayesian factor analysis
method to produce posterior distributions of the factors. SPARFA-M is computationally
efficient and scales to large-scale applications, while SPARFA-B is more computationally
intensive but also provide richer statistical information on the latent factors. Since the
concepts are abstract mathematical quantities estimated by the SPARFA algorithms, we
develop a post-processing step in Section 5 to facilitate interpretation of the estimated latent
concepts by associating user-defined tags for each question with each abstract concept.

In Section 6, we report on a range of experiments with a variety of synthetic and real-
world data that demonstrate the wealth of information provided by the estimates of W, C
and M. As an example, Figure 2 provides the results for a data set collected from learners
using STEMscopes (2012), a science curriculum platform. The data set consists of 145
Grade 8 learners from a single school district answering a manually tagged set of 80 questions
on Earth science; only 13.5% of all graded learner–question responses were observed. We
applied the SPARFA-B algorithm to retrieve the factors W, C, and M using 5 latent
concepts. The resulting sparse matrix W is displayed as a bipartite graph in Figure 2(a);
circles denote the abstract concepts and boxes denote questions. Each question box is labeled
with its estimated intrinsic difficulty µi, with large positive values denoting easy questions.
Links between the concept and question nodes represent the active (non-zero) entries of W,
with thicker links denoting larger values Wi,k. Unconnected questions are those for which
no concept explained the learners’ answer pattern; such questions typically have either very
low or very high intrinsic difficulty, resulting in nearly all learners answering them correctly
or incorrectly. The tags provided in Figure 2(b) enable human-readable interpretability of
the estimated abstract concepts.

We envision a range of potential learning and content analytics applications for the
SPARFA framework that go far beyond the standard practice of merely forming column
sums of the “gradebook” matrix (with entries Yi,j) to arrive at a final scalar numerical
score for each learner (which is then often further quantized to a letter grade on a 5-point
scale). Each column of the estimated C matrix can be interpreted as a measure of the
corresponding learner’s knowledge about the abstract concepts. Low values indicate concepts
ripe for remediation, while high values indicate concepts ripe for enrichment. The sparse
graph stemming from the estimated W matrix automatically groups questions into similar
types based on their concept association; this graph makes it straightforward to find a set
of questions similar to a given target question. Finally, the estimated M matrix (with
entries µi on each row) provides an estimate of each question’s intrinsic difficulty. This
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(a) Inferred question–concept association graph.

Concept 1 Concept 2 Concept 3

Changes to land (45%) Evidence of the past (74%) Alternative energy (76%)
Properties of soil (28%) Mixtures and solutions (14%) Environmental changes (19%)
Uses of energy (27%) Environmental changes (12%) Changes from heat (5%)

Concept 4 Concept 5

Properties of soil (77%) Formulation of fossil fuels (54%)
Environmental changes (17%) Mixtures and solutions (28%)
Classifying matter (6%) Uses of energy (18%)

(b) Most important tags and relative weights for the estimated concepts.

Figure 2: (a) Sparse question–concept association graph and (b) most important tags as-
sociated with each concept for Grade 8 Earth science with N = 135 learners
answering Q = 80 questions. Only 13.5% of all graded learner–question responses
were observed.
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property enables an instructor to assign questions in an orderly fashion as well as to prune
out potentially problematic questions that are either too hard, too easy, too confusing, or
unrelated to the concepts underlying the collection of questions.

In Section 7, we provide an overview of related work on machine learning-based person-
alized learning, and we conclude in Section 8. All proofs are relegated to three Appendices.

2. Statistical Model for Learning and Content Analytics

Our approach to learning and content analytics is based on a new statistical model that
encodes the probability that a learner will answer a given question correctly in terms of
three factors: (i) the learner’s knowledge of a set of latent, abstract concepts, (ii) how the
question is related to each concept, and (iii) the intrinsic difficulty of the question.

2.1 Model for Graded Learner Response Data

Let N denote the total number of learners, Q the total number of questions, and K the
number of latent abstract concepts. We define Ck,j as the concept knowledge of learner j
on concept k, with large positive values of Ck,j corresponding to a better chance of success
on questions related to concept k. Stack these values into the column vector cj ∈ RK ,
j ∈ {1, . . . , N} and the K × N matrix C = [ c1, . . . , cN ]. We further define Wi,k as the
question–concept association of question i with respect to concept k, with larger values
denoting stronger involvement of the concept. Stack these values into the column vector
w̄i ∈ RK , i ∈ {1, . . . , Q} and the Q × K matrix W = [ w̄1, . . . , w̄Q ]T . Finally, we define
the scalar µi ∈ R as the intrinsic difficulty of question i, with larger values representing
easier questions. Stack these values into the column vector µ and form the Q × N matrix
M = µ11×N as the product of µ = [µ1, . . . , µQ ]T with the N -dimensional all-ones row
vector 11×N .

Given these definitions, we propose the following model for the binary-valued graded
response variable Yi,j ∈ {0, 1} for learner j on question i, with 1 representing a correct
response and 0 an incorrect response:

Zi,j = w̄T
i cj + µi, ∀i, j,

Yi,j ∼ Ber(Φ(Zi,j)), (i, j) ∈ Ωobs. (1)

Here, Ber(z) designates a Bernoulli distribution with success probability z, and Φ(z) denotes
an inverse link function1 that maps a real value z to the success probability of a binary
random variable. Thus, the slack variable Φ(Zi,j) ∈ [0, 1] governs the probability of learner j
answering question i correctly.

The set Ωobs ⊆ {1, . . . , Q} × {1, . . . , N} in (1) contains the indices associated with the
observed graded learner response data. Hence, our framework is able to handle the case of
incomplete or missing data (e.g., when the learners do not answer all of the questions).2

1. Inverse link functions are often called response functions in the generalized linear models literature (see,
e.g., Guisan et al. 2002).

2. Two common situations lead to missing learner response data. First, a learner might not attempt a
question because it was not assigned or available to them. In this case, we simply exclude their response
from Ωobs. Second, a learner might not attempt a question because it was assigned to them but was too
difficult. In this case, we treat their response as incorrect, as is typical in standard testing settings.
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Stack the values Yi,j and Zi,j into the Q × N matrices Y and Z, respectively. We can
conveniently rewrite (1) in matrix form as

Yi,j ∼ Ber(Φ(Zi,j)), (i, j) ∈ Ωobs with Z = WC + M. (2)

In this paper, we focus on the two most commonly used link functions in the machine
learning literature. The inverse probit function is defined as

Φpro(x) =

∫ x

−∞
N (t) dt =

1√
2π

∫ x

−∞
e−t

2/2 dt, (3)

where N (t) = 1√
2π
e−t

2/2 is the probability density function (PDF) of the standard normal
distribution (with mean zero and variance one). The inverse logit link function is defined as

Φlog(x) =
1

1 + e−x
. (4)

As noted in the Introduction, C, W, and µ (or equivalently, M) have natural inter-
pretations in real education settings. Column j of C can be interpreted as a measure of
learner j’s knowledge about the abstract concepts, with larger Ck,j values implying more
knowledge. The non-zero entries in W can be used to visualize the connectivity between
concepts and questions (see Figure 1(b) for an example), with larger Wi,k values implying
stronger ties between question i and concept k. The values of µ contains estimates of each
question’s intrinsic difficulty.

2.2 Joint Estimation of Concept Knowledge and Question–Concept Association

Given a (possibly partially observed) matrix of graded learner response data Y, we aim
to estimate the learner concept knowledge matrix C, the question–concept association ma-
trix W, and the question intrinsic difficulty vector µ. In practice, the latent factors W
and C, and the vector µ will contain many more unknowns than we have observations in Y;
hence, estimating W, C, and µ is, in general, an ill-posed inverse problem. The situation
is further exacerbated if many entries in Y are unobserved.

To regularize this inverse problem, prevent over-fitting, improve identifiability,3 and
enhance interpretability of the entries in C and W, we appeal to the following three obser-
vations regarding education that are reasonable for typical exam, homework, and practice
questions at all levels. We will exploit these observations extensively in the sequel as fun-
damental assumptions:

(A1) Low-dimensionality : The number of latent, abstract concepts K is small relative to
both the number of learners N and the number of questions Q. This implies that
the questions are redundant and that the learners’ graded responses live in a low-
dimensional space. The parameter K dictates the concept granularity. Small K ex-
tracts just a few general, broad concepts, whereas large K extracts more specific and
detailed concepts.4

3. If Z = WC, then for any orthonormal matrix H with HTH = I, we have Z = WHTHC = W̃C̃. Hence,
the estimation of W and C is, in general, non-unique up to a unitary matrix rotation.

4. Standard techniques like cross-validation (Hastie et al. 2010) can be used to select K. We provide the
corresponding details in Section 6.3.
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(A2) Sparsity : Each question should be associated with only a small subset of the concepts
in the domain of the course/assessment. In other words, we assume that the matrix W
is sparsely populated, i.e., contains mostly zero entries.

(A3) Non-negativity : A learner’s knowledge of a given concept does not negatively affect
their probability of correctly answering a given question, i.e., knowledge of a concept
is not “harmful.” In other words, the entries of W are non-negative, which provides a
natural interpretation for the entries in C: Large values Ck,j indicate strong knowledge
of the corresponding concept, whereas negative values indicate weak knowledge.

In practice, N can be larger than Q and vice versa, and hence, we do not impose any
additional assumptions on their values. Assumptions (A2) and (A3) impose sparsity and
non-negativity constraints on W. Since these assumptions are likely to be violated under
arbitrary unitary transforms of the factors, they help alleviate several well-known identifia-
bility problems that arise in factor analysis.

We will refer to the problem of estimating W, C, and µ, given the observations Y,
under the assumptions (A1)–(A3) as the SPARse Factor Analysis (SPARFA) problem. We
now develop two complementary algorithms to solve the SPARFA problem. Next, we detail
SPARFA-M and SPARFA-B, a matrix-factorization approach and a Bayesian approach to
estimate the quantities of interest.

3. SPARFA-M: Maximum Likelihood-based Sparse Factor Analysis

Our first algorithm, SPARFA-M, solves the SPARFA problem using maximum-likelihood-
based probit or logistic regression.

3.1 Problem Formulation

To estimate W, C, and µ, we maximize the likelihood of the observed data Yi,j , (i, j) ∈ Ωobs

p(Yi,j |w̄i, cj) = Φ
(
w̄T
i cj
)Yi,j (1− Φ(w̄T

i cj)
)1−Yi,j

given W, C, and µ and subject to the assumptions (A1), (A2), and (A3) from Section 2.2.
This likelihood yields the following optimization problem:

(P∗)

{
maximize

W,C

∑
(i,j)∈Ωobs

log p(Yi,j |w̄i, cj)

subject to ‖w̄i‖0 ≤ s ∀i, ‖w̄i‖2 ≤ κ ∀i, Wi,k ≥ 0 ∀i, k, ‖C‖F = ξ.

Let us take a quick tour of the problem (P∗) and its constraints. The intrinsic difficulty
vector µ is incorporated as an additional column of W, and C is augmented with an all-ones
row accordingly. We impose sparsity on each vector w̄i to comply with (A2) by limiting its
maximum number of nonzero coefficients using the constraint ‖w̄i‖0 ≤ s; here ‖a‖0 counts
the number of non-zero entries in the vector a. The `2-norm constraint on each vector w̄i

with κ > 0 is required for our convergence proof below. We enforce non-negativity on each
entry Wi,k to comply with (A3). Finally, we normalize the Frobenius norm of the concept
knowledge matrix C to a given ξ > 0 to suppress arbitrary scalings between the entries in
both matrices W and C.
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Unfortunately, optimizing over the sparsity constraints ‖w̄i‖0 ≤ s requires a combina-
torial search over all K-dimensional support sets having no more than s non-zero entries.
Hence, (P∗) cannot be solved efficiently in practice for the typically large problem sizes
of interest. In order to arrive at an optimization problem that can be solved with a rea-
sonable computational complexity, we relax the sparsity constraints ‖w̄i‖0 ≤ s in (P∗) to
`1-norm constraints as in Chen et al. (1998) and move them, the `2-norm constraints, and
the Frobenius norm constraint, into the objective function via Lagrange multipliers:

(P) minimize
W,C :Wi,k≥0 ∀i,k

∑
(i,j)∈Ωobs

− log p(Yi,j |w̄i, cj) + λ
∑

i ‖w̄i‖1 + µ
2

∑
i ‖w̄i‖22 + γ

2‖C‖
2
F .

The first regularization term λ
∑

i‖w̄i‖1 induces sparsity on each vector w̄i, with the sin-
gle parameter λ > 0 controlling the sparsity level. Since one can arbitrarily increase the
scale of the vectors w̄i while decreasing the scale of the vectors cj accordingly (and vice
versa) without changing the likelihood, we gauge these vectors using the second and third
regularization terms µ

2

∑
i‖w̄i‖22 and γ

2‖C‖
2
F with the regularization parameters µ > 0 and

γ > 0, respectively.5 We emphasize that since ‖C‖2F =
∑

j‖cj‖
2
2, we can impose a regularizer

on each column rather than the entire matrix C, which facilitates the development of the
efficient algorithm detailed below.

3.2 The SPARFA-M Algorithm

Since the first negative log-likelihood term in the objective function of (P) is convex in
the product WC for both the probit and the logit functions (see, e.g., Hastie et al. 2010),
and since the rest of the regularization terms are convex in either W or C while the non-
negativity constraints onWi,k are with respect to a convex set, the problem (P) is biconvex in
the individual factorsW andC. More importantly, with respect to blocks of variables w̄i, cj ,
the problem (P) is block multi-convex in the sense of Xu and Yin (2012).

SPARFA-M is an alternating optimization approach to (approximately) solve (P) that
proceeds as follows. We initializeW andC with random entries and then iteratively optimize
the objective function of (P) for both factors in an alternating fashion. Each outer iteration
involves solving two kinds of inner subproblems. In the first subproblem, we holdW constant
and separately optimize each block of variables in cj ; in the second subproblem, we hold C
constant and separately optimize each block of variables w̄i. Each subproblem is solved
using an iterative method; see Section 3.3 for the respective algorithms. The outer loop
is terminated whenever a maximum number of outer iterations Imax is reached, or if the
decrease in the objective function of (P) is smaller than a certain threshold.

The two subproblems constituting the inner iterations of SPARFA-M correspond to the
following convex `1/`2-norm and `2-norm regularized regression (RR) problems:

(RR+
1 ) minimize

w̄i :Wi,k≥0 ∀k

∑
j : (i,j)∈Ωobs

− log p(Yi,j |w̄i, cj) + λ‖w̄i‖1 + µ
2‖w̄i‖22 ,

(RR2) minimize
cj

∑
i : (i,j)∈Ωobs

− log p(Yi,j |w̄i, cj) + γ
2‖cj‖

2
2 .

5. The first `1-norm regularization term in (RR+
1 ) already gauges the norm of the w̄i. The `2-norm

regularizer µ
2

∑
i‖w̄i‖22 is included only to aid in establishing the convergence results for SPARFA-M as

detailed in Section 3.4.
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We develop two novel first-order methods that efficiently solve (RR+
1 ) and (RR2) for both

probit and logistic regression. These methods scale well to high-dimensional problems, in
contrast to existing second-order methods. In addition, the probit link function makes
the explicit computation of the Hessian difficult, which is only required for second-order
methods. Therefore, we build our algorithm on the fast iterative soft-thresholding algorithm
(FISTA) framework developed in Beck and Teboulle (2009), which enables the development
of efficient first-order methods with accelerated convergence.

3.3 Accelerated First-Order Methods for Regularized Probit/Logistic
Regression

The FISTA framework (Beck and Teboulle 2009) iteratively solves optimization problems
whose objective function is given by f(·) + g(·), where f(·) is a continuously differentiable
convex function and g(·) is convex but potentially non-smooth. This approach is particularly
well-suited to the inner subproblem (RR+

1 ) due to the presence of the non-smooth `1-norm
regularizer and the non-negativity constraint. Concretely, we associate the log-likelihood
function plus the `2-norm regularizer µ

2‖w̄i‖22 with f(·) and the `1-norm regularization term
with g(·). For the inner subproblem (RR2), we associate the log-likelihood function with f(·)
and the `2-norm regularization term with g(·).6

Each FISTA iteration consists of two steps: (i) a gradient-descent step in f(·) and (ii) a
shrinkage step determined by g(·). For simplicity of exposition, we consider the case where
all entries in Y are observed, i.e., Ωobs = {1, . . . , Q}× {1, . . . , N}; the extension to the case
with missing entries in Y is straightforward. We will derive the algorithm for the case of
probit regression first and then point out the departures for logistic regression.

For (RR+
1 ), the gradients of f(w̄i) with respect to the ith block of regression coeffi-

cients w̄i are given by

∇f ipro = ∇pro
w̄i (−

∑
j log ppro(Yi,j |w̄i, cj) + µ

2‖w̄i‖22) = −CDi(ȳi − pipro) + µw̄i, (5)

where ȳi is an N × 1 column vector corresponding to the transpose of the ith row of Y.
pipro is an N × 1 vector whose jth element equals the probability of Yi,j being 1; that is,
ppro(Yi,j = 1|w̄i, cj) = Φpro(w̄

T
i cj). The entries of the N ×N diagonal matrix D are given

by

Di
j,j =

N (w̄T
i cj)

Φpro(w̄T
i cj)(1− Φpro(w̄T

i cj))
.

The gradient step in each FISTA iteration ` = 1, 2, . . . corresponds to

ˆ̄w`+1
i ← w̄`

i − t`∇f ipro, (6)

where t` is a suitable step-size. To comply with (A3), the shrinkage step in (RR+
1 ) corre-

sponds to a non-negative soft-thresholding operation

w̄`+1
i ← max{ ˆ̄w`+1

i − λt`, 0}. (7)

6. Of course, both f(·) and g(·) are smooth for (RR2). Hence, we could also apply an accelerated gradient-
descent approach instead, e.g., as described in Nesterov (2007).
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For (RR2), the gradient step becomes

ĉ`+1
j ← c`j − t`∇f ipro,

which is the same as (5) and (6) after replacing C with WT and µ with γ. The shrinkage
step for (RR2) is the simple re-scaling

c`+1
j ← 1

1 + γt`
ĉ`+1
j . (8)

In the logistic regression case, the steps (6), (7), and (8) remain the same but the gradient
changes to

∇f ilog = ∇log
w̄i (−

∑
j log plog(Yi,j |w̄i, cj) + µ

2‖w̄i‖22) = −C(ȳi − pilog) + µw̄i, (9)

where the N × 1 vector pilog has elements plog(Yi,j = 1|w̄i, cj) = Φlog(w̄
T
i cj).

The above steps require a suitable step-size t` to ensure convergence to the optimal so-
lution. A common approach that guarantees convergence is to set t` = 1/L, where L is
the Lipschitz constant of f(·) (see Beck and Teboulle 2009 for the details). The Lipschitz
constants for both the probit and logit cases are analyzed in Theorem 1 below. Alterna-
tively, one can also perform backtracking, which—under certain circumstances—can be more
efficient; see (Beck and Teboulle, 2009, p. 194) for more details.

3.4 Convergence Analysis of SPARFA-M

While the SPARFA-M objective function is guaranteed to be non-increasing over the outer
iterations (Boyd and Vandenberghe 2004), the factors W and C do not necessarily converge
to a global or local optimum due to its biconvex (or more generally, block multi-convex)
nature. It is difficult, in general, to develop rigorous statements for the convergence behavior
of block multi-convex problems. Nevertheless, we can establish the global convergence of
SPARFA-M from any starting point to a critical point of the objective function using recent
results developed in Xu and Yin (2012). The convergence results below appear to be novel
for both sparse matrix factorization as well as dictionary learning.

3.4.1 Convergence Analysis of Regularized Regression using FISTA

In order to establish the SPARFA-M convergence result, we first adapt the convergence
results for FISTA in Beck and Teboulle (2009) to prove convergence on the two subprob-
lems (RR+

1 ) and (RR2). The following theorem is a consequence of (Beck and Teboulle,
2009, Thm. 4.4) combined with Lemmata 4 and 5 in Appendix A. If back-tracking is used
to select step-size t` (Beck and Teboulle, 2009, p. 194), then let α correspond to the back-
tracking parameter. Otherwise set α = 1 and for (RR+

1 ) let t` = 1/L1 and for (RR2) let
t` = 1/L2. In Lemma 5, we compute that L1 = σ2

max(C) + µ and L2 = σ2
max(W) for the

probit case, and L1 = 1
4σ

2
max(C) + µ and L2 = 1

4σ
2
max(W) for the logit case.

Theorem 1 (Linear convergence of RR using FISTA) Given i and j, let

F1(w̄i) =
∑

j : (i,j)∈Ωobs
− log p(Yi,j |w̄i, cj) + λ‖w̄i‖1 +

µ

2
‖w̄i‖22 , Wi,k ≥ 0 ∀k,

F2(cj) =
∑

i : (i,j)∈Ωobs
− log p(Yi,j |w̄i, cj) +

γ

2
‖cj‖22
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be the cost functions of (RR+
1 ) and (RR2), respectively. Then, we have

F1(w̄`
i)− F1(w̄∗i ) ≤

2αL1‖w̄0
i − w̄∗i ‖2

(`+ 1)2
,

F2(c`j)− F2(c∗j ) ≤
2αL2‖c0

j − c∗j‖2

(`+ 1)2
,

where w̄0
i and c0

j are the initialization points of (RR+
1 ) and (RR2), w̄`

i and c`j designate the
solution estimates at the `th inner iteration, and w̄∗i and c∗j denote the optimal solutions.

In addition to establishing convergence, Theorem 1 reveals that the difference between
the cost functions at the current estimates and the optimal solution points, F1(w̄`

i)−F1(w̄∗i )
and F2(c`j)− F2(c∗j ), decrease as O(`−2).

3.4.2 Convergence Analysis of SPARFA-M

We are now ready to establish global convergence of SPARFA-M to a critical point. To this
end, we first define x = [w̄T

1 , . . . , w̄
T
Q, c

T
1 , . . . , c

T
N ]T ∈ R(N+Q)K and rewrite the objective

function (P) of SPARFA-M as follows:

F (x) =
∑

(i,j)∈Ωobs

− log p(Yi,j |w̄i, cj) +
µ

2

∑
i

‖w̄i‖22 + λ
∑
i

‖w̄i‖1 +
∑
i,k

δ(Wi,k<0) +
γ

2

∑
j

‖cj‖22

with the indicator function δ(z < 0) = ∞ if z < 0 and 0 otherwise. Note that we have
re-formulated the non-negativity constraint as a set indicator function and added it to the
objective function of (P). Since minimizing F (x) is equivalent to solving (P), we can now
use the results developed in Xu and Yin (2012) to establish the following convergence result
for the SPARFA-M algorithm. The proof can be found in Appendix B.

Theorem 2 (Global convergence of SPARFA-M) From any starting point x0, let {xt}
be the sequence of estimates generated by the SPARFA-M algorithm with t = 1, 2, . . . as the
outer iteration number. Then, the sequence {xt} converges to the finite limit point x̂, which
is a critical point of (P). Moreover, if the starting point x0 is within a close neighborhood of
a global optimum of (P), then SPARFA-M converges to this global optimum.

Since the problem (P) is bi-convex in nature, we cannot guarantee that SPARFA-M al-
ways converges to a global optimum from an arbitrary starting point. Nevertheless, the
use of multiple randomized initialization points can be used to increase the chance of be-
ing in the close vicinity of a global optimum, which improves the (empirical) performance
of SPARFA-M (see Section 3.5 for details). Note that we do not provide the convergence
rate of SPARFA-M, since the associated parameters in (Xu and Yin, 2012, Thm. 2.9) are
difficult to determine for the model at hand; a detailed analysis of the convergence rate for
SPARFA-M is part of ongoing work.

3.5 Algorithmic Details and Improvements for SPARFA-M

In this section, we outline a toolbox of techniques that improve the empirical performance
of SPARFA-M and provide guidelines for choosing the key algorithm parameters.
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3.5.1 Reducing Computational Complexity in Practice

To reduce the computational complexity of SPARFA-M in practice, we can improve the
convergence rates of (RR+

1 ) and (RR2). In particular, the regularizer µ
2‖w̄i‖22 in (RR+

1 ) has
been added to (P) to facilitate the proof for Theorem 2. This term, however, typically slows
down the (empirical) convergence of FISTA, especially for large values of µ. We therefore
set µ to a small positive value (e.g., µ = 10−4), which leads to fast convergence of (RR+

1 )
while still guaranteeing convergence of SPARFA-M.

Selecting the appropriate (i.e., preferably large) step-sizes t` in (6), (7), and (8) is also
crucial for fast convergence. In Lemmata 4 and 5, we derive the Lipschitz constants L
for (RR+

1 ) and (RR2), which enables us to set the step-sizes t` to the constant value t = 1/L.
In all of our experiments below, we exclusively use constant step-sizes, since we observed
that backtracking (Beck and Teboulle 2009, p. 194) provided no advantage in terms of
computational complexity for SPARFA-M.

To further reduce the computational complexity of SPARFA-M without degrading its
empirical performance noticeably, we have found that instead of running the large number of
inner iterations it typically takes to converge, we can run just a few (e.g., 10) inner iterations
per outer iteration.

3.5.2 Reducing the Chance of Getting Stuck in Local Minima

The performance of SPARFA-M strongly depends on the initialization of W and C, due to
the bi-convex nature of (P). We have found that running SPARFA-M multiple times with
different starting points and picking the solution with the smallest overall objective function
delivers excellent performance. In addition, we can deploy the standard heuristics used in
the dictionary-learning literature (Aharon et al., 2006, Section IV-E) to further improve
the convergence towards a global optimum. For example, every few outer iterations, we
can evaluate the current W and C. If two rows of C are similar (as measured by the
absolute value of the inner product between them), then we re-initialize one of them as an
i.i.d. Gaussian vector. Moreover, if some columns in W contain only zero entries, then we
re-initialize them with i.i.d. Gaussian vectors. Note that the convergence proof in Section 3.4
does not apply to implementations employing such trickery.

3.5.3 Parameter Selection

The input parameters to SPARFA-M include the number of concepts K and the regulariza-
tion parameters γ and λ. The number of concepts K is a user-specified value. In practice,
cross-validation can be used to select K if the task is to predict missing entries of Y, (see
Section 6.3). The sparsity parameter λ and the `2-norm penalty parameter γ strongly affect
the output of SPARFA-M; they can be selected using any of a number of criteria, including
the Bayesian information criterion (BIC) or cross-validation, as detailed in Hastie et al.
(2010). Both criteria resulted in similar performance in all of the experiments reported in
Section 6.
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3.6 Related Work on Maximum Likelihood-based Sparse Factor Analysis

Sparse logistic factor analysis has previously been studied in Lee et al. (2010) in the context
of principal components analysis. There are three major differences with the SPARFA
framework. First, Lee et al. (2010) do not impose the non-negativity constraint on W
that is critical for the interpretation of the estimated factors. Second, they impose an
orthonormality constraint on C that does not make sense in educational scenarios. Third,
they optimize an upper bound on the negative log-likelihood function in each outer iteration,
in contrast to SPARFA-M, which optimizes the exact cost functions in (RR+

1 ) and (RR2).
The problem (P) shares some similarities with the method for missing data imputation

outlined in (Mohamed et al., 2012, Eq. 7). However, the problem (P) studied here includes
an additional non-negativity constraint on W and the regularization term µ

2

∑
i‖w̄i‖22 that

are important for the interpretation of the estimated factors and the convergence analysis.
Moreover, SPARFA-M utilizes the accelerated FISTA framework as opposed to the more
straightforward but less efficient gradient descent method in Mohamed et al. (2012).

SPARFA-M is capable of handling both the inverse logit and inverse probit link functions.
For the inverse logit link function, one could solve (RR+

1 ) and (RR2) using an iteratively
reweighted second-order algorithm as in Hastie et al. (2010), Minka (2003), Lee et al. (2006),
Park and Hastie (2008), or an interior-point method as in Koh et al. (2007). However, none
of these techniques extend naturally to the inverse probit link function, which is essential
for some applications, e.g., in noisy compressive sensing recovery from 1-bit measurements
(e.g., Jacques et al. 2013 or Plan and Vershynin 2012, submitted). Moreover, second-order
techniques typically do not scale well to high-dimensional problems due to the necessary
computation of the Hessian. In contrast, SPARFA-M scales favorably due to the fact that it
utilizes the accelerated first-order FISTA method, avoiding the computation of the Hessian.

4. SPARFA-B: Bayesian Sparse Factor Analysis

Our second algorithm, SPARFA-B, solves the SPARFA problem using a Bayesian method
based on Markov chain Monte-Carlo (MCMC) sampling. In contrast to SPARFA-M, which
computes point estimates for each of the parameters of interest, SPARFA-B computes full
posterior distributions for W,C, and µ.

While SPARFA-B has a higher computational complexity than SPARFA-M, it has several
notable benefits in the context of learning and content analytics. First, the full posterior
distributions enable the computation of informative quantities such as credible intervals and
posterior modes for all parameters of interest. Second, since MCMC methods explore the full
posterior space, they are not subject to being trapped indefinitely in local minima, which is
possible with SPARFA-M. Third, the hyperparameters used in Bayesian methods generally
have intuitive meanings, in contrary to the regularization parameters of optimization-based
methods like SPARFA-M. These hyperparameters can also be specially chosen to incorporate
additional prior information about the problem.

4.1 Problem Formulation

As discussed in Section 2.2, we require the matrix W to be both sparse (A2) and non-
negative (A3). We enforce these assumptions through the following prior distributions that
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are a variant of the well-studied spike-slab model (West, 2003; Ishwaran and Rao, 2005)
adapted for non-negative factor loadings:

Wi,k ∼ rk Exp(λk) + (1− rk) δ0, λk ∼ Ga(α, β), and rk ∼ Beta(e, f). (10)

Here, Exp(x|λ) ∼ λe−λx, x ≥ 0, and Ga(x|α, β) ∼ βαxα−1e−βx

Γ(α) , x ≥ 0, δ0 is the Dirac
delta function, and α, β, e, f are hyperparameters. The model (10) uses the latent random
variable rk to control the sparsity via the hyperparameters e and f . This set of priors induces
a conjugate form on the posterior that enables efficient sampling. We note that both the
exponential rate parameters λk as well as the inclusion probabilities rk are grouped per
factor. The remaining priors used in the proposed Bayesian model are summarized as

cj ∼ N (0,V), V ∼ IW(V0, h), and µi ∼ N (µ0, vµ), (11)

where V0, h, µ0, and vµ are hyperparameters.

4.2 The SPARFA-B Algorithm

We obtain posterior distribution estimates for the parameters of interest through an MCMC
method based on the Gibbs’ sampler. To implement this, we must derive the conditional
posteriors for each of the parameters of interest. We note again that the graded learner-
response matrix Y will not be fully observed, in general. Thus, our sampling method must
be equipped to handle missing data.

The majority of the posterior distributions follow from standard results in Bayesian
analysis and will not be derived in detail here. The exception is the posterior distribu-
tion of Wi,k ∀i, k. The spike-slab model that enforces sparsity in W requires first sam-
pling Wi,k 6= 0|Z,C,µ and then sampling Wi,k|Z,C,µ, for all Wi,k 6= 0. These posterior
distributions differ from previous results in the literature due to our assumption of an ex-
ponential (rather than a normal) prior on Wi,k. We next derive these two results in detail.

4.2.1 Derivation of Posterior Distribution of Wi,k

We seek both the probability that an entry Wi,k is active (non-zero) and the distribution of
Wi,k when active given our observations. The following theorem states the final sampling
results; the proof is given in Appendix C.

Theorem 3 (Posterior distributions for W) For all i = 1, . . . , Q and all k = 1, . . . ,K,
the posterior sampling results for Wi,k = 0|Z,C,µ and Wi,k|Z,C,µ,Wi,k 6= 0 are given by

R̂i,k = p(Wi,k = 0|Z,C,µ) =

Nr(0|M̂i,k,Ŝi,k,λk)

Exp(0|λk)
(1−rk)

Nr(0|M̂i,k,Ŝi,k,λk)

Exp(0|λk)
(1−rk)+rk

,

Wi,k|Z,C,µ,Wi,k 6= 0 ∼ N r(M̂i,k, Ŝi,k, λk),

M̂i,k =

∑
{j:(i,j)∈Ωobs}

(
(Zi,j − µi)−

∑
k′ 6=kWi,k′Ck′,j

)
Ck,j∑

{j:(i,j)∈Ωobs}C
2
k,j

,

Ŝi,k =
(∑

{j:(i,j)∈Ωobs}C
2
k,j

)−1
,
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where N r(x|m, s, λ) = eλm−λ
2s/2

√
2πsΦ

(
m−λs√

s

)e−(x−m)2/2s−λm represents a rectified normal distribu-

tion (see Schmidt et al. 2009).

4.2.2 Sampling Methodology

SPARFA-B carries out the following MCMC steps to compute posterior distributions for all
parameters of interest:

1. For all (i, j) ∈ Ωobs, draw Zi,j ∼ N
(
(WC)i,j + µi, 1

)
, truncating above 0 if Yi,j = 1,

and truncating below 0 if Yi,j = 0.

2. For all i = 1, . . . , Q, draw µi ∼ N (mi, v) with v = (v−1
µ + n′)−1, mi = µ0 +

v
∑
{j:(i,j)∈Ωobs}

(
Zi,j − w̄T

i cj
)
, and n′ the number of learners responding to question i.

3. For all j = 1, . . . , N , draw cj ∼ N (mj ,Mj) with Mj = (V−1 + W̃TW̃)−1, and
mj = MjW̃

T (z̃j− µ̃). The notation (̃·) denotes the restriction of the vector or matrix
to the set of rows i : (i, j) ∈ Ωobs.

4. Draw V ∼ IW(V0 + CCT , N + h).

5. For all i = 1, . . . , Q and k = 1, . . . ,K, draw Wi,k ∼ R̂i,kN r(M̂i,k, Ŝi,k) + (1− R̂i,k)δ0,
where R̂i,k, M̂i,k, and Ŝi,k are as stated in Theorem 3.

6. For all k = 1, . . . ,K, let bk define the number of active (i.e., non-zero) entries of w̄k.
Draw λk ∼ Ga(α+ bk, β +

∑Q
i=1Wi,k).

7. For all k = 1, . . . ,K, draw rk ∼ Beta(e+ bk, f +Q− bk), with bk defined as in Step 6.

4.3 Algorithmic Details and Improvements for SPARFA-B

Here we discuss some several practical issues for efficiently implementing SPARFA-B, select-
ing the hyperparameters, and techniques for easy visualization of the SPARFA-B results.

4.3.1 Improving Computational Efficiency

The Gibbs sampling scheme of SPARFA-B enables efficient implementation in several ways.
First, draws from the truncated normal in Step 1 of Section 4.2.2 are decoupled from one
another, allowing them to be performed independently and, potentially, in parallel. Second,
sampling of the elements in each column of W can be carried out in parallel by computing
the relevant factors of Step 5 in matrix form. Since K � Q,N by assumption (A1), the
relevant parameters are recomputed only a relatively small number of times. One taxing
computation is the calculation of the covariance matrix Mj for each j = 1, . . . , N in Step 3.
This computation is necessary, since we do not constrain each learner to answer the same
set of questions which, in turn, changes the nature of the covariance calculation for each
individual learner. For data sets where all learners answer the same set of questions, this
covariance matrix is the same for all learners and, hence, can be carried out once per MCMC
iteration.
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4.3.2 Parameter Selection

The selection of the hyperparameters is performed at the discretion of the user. As is typical
for Bayesian methods, non-informative (broad) hyperparameters can be used to avoid biasing
results and to allow for adequate exploration of the posterior space. Tighter hyperparameters
can be used when additional side information is available. For example, prior information
from subject matter experts might indicate which concepts are related to which questions
or might indicate the intrinsic difficulty of the questions.

Since SPARFA-M has a substantial speed advantage over SPARFA-B, it may be ad-
vantageous to first run SPARFA-M and then use its output to help in determining the
hyperparameters or to initialize the SPARFA-B variables directly.

4.3.3 Post-Processing for Data Visualization

As discussed above, the generation of posterior statistics is one of the primary advantages of
SPARFA-B. However, for many tasks, such as visualization of the retrieved knowledge base,
it is often convenient to post-process the output of SPARFA-B to obtain point estimates
for each parameter. For many Bayesian methods, simply computing the posterior mean is
often sufficient. This is the case for most parameters computed by SPARFA-B, including C
and µ. The posterior mean of W, however, is generally non-sparse, since the MCMC will
generally explore the possibility of including each entry of W. Nevertheless, we can easily
generate a sparse W by examining the posterior mean of the inclusion statistics contained
in R̂i,k, ∀i, k. Concretely, if the posterior mean of R̂i,k is small, then we set the corresponding
entry of Wi,k to zero. Otherwise, we set Wi,k to its posterior mean. We will make use of
this method throughout the experiments presented in Section 6.

4.4 Related Work on Bayesian Sparse Factor Analysis

Sparsity models for Bayesian factor analysis have been well-explored in the statistical lit-
erature (West, 2003; Tipping, 2001; Ishwaran and Rao, 2005). One popular avenue for
promoting sparsity is to place a prior on the variance of each component in W (see, e.g.,
Tipping 2001, Fokoue 2004, and Pournara and Wernisch 2007). In such a model, large
variance values indicate active components, while small variance values indicate inactive
components. Another approach is to model active and inactive components directly using
a form of a spike-slab model due to West (2003) and used in Goodfellow et al. (2012),
Mohamed et al. (2012), and Hahn et al. (2012):

Wi,k ∼ rkN (0, vk) + (1− rk) δ0, vk ∼ IG(α, β), and rk ∼ Beta(e, f).

The approach employed in (10) utilizes a spike-slab prior with an exponential distribution,
rather than a normal distribution, for the active components of W. We chose this prior for
several reasons. First, it enforces the non-negativity assumption (A3). Second, it induces
a posterior distribution that can be both computed in closed form and sampled efficiently.
Third, its tail is slightly heavier than that of a standard normal distribution, which improves
the exploration of quantities further away from zero.

A sparse factor analysis model with non-negativity constraints that is related to the one
proposed here was discussed in Meng et al. (2010), although their methodology is quite
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different from ours. Specifically, they impose non-negativity on the (dense) matrix C rather
than on the sparse factor loading matrix W. Furthermore, they enforce non-negativity using
a truncated normal7 rather than an exponential prior.

5. Tag Analysis: Post-Processing to Interpret the Estimated Concepts

So far we have developed SPARFA-M and SPARFA-B to estimate W, C, and µ (or equiv-
alently, M) in (2) given the partial binary observations in Y. Both W and C encode a
small number of latent concepts. As we initially noted, the concepts are “abstract” in that
they are estimated from the data rather than dictated by a subject matter expert. In this
section we develop a principled post-processing approach to interpret the meaning of the
abstract concepts after they have been estimated from learner responses, which is important
if our results are to be usable for learning analytics and content analytics in practice. Our
approach applies when the questions come with a set of user-generated “tags” or “labels”
that describe in a free-form manner what ideas underlie each question.

We develop a post-processing algorithm for the estimated matrices W and C that es-
timates the association between the latent concepts and the user-generated tags, enabling
concepts to be interpreted as a “bag of tags.” Additionally, we show how to extract a per-
sonalized tag knowledge profile for each learner. The efficacy of our tag-analysis framework
will be demonstrated in the real-world experiments in Section 6.2.

5.1 Incorporating Question–Tag Information

Suppose that a set of tags has been generated for each question that represent the topic(s)
or theme(s) of each question. The tags could be generated by the course instructors, subject
matter experts, learners, or, more broadly, by crowd-sourcing. In general, the tags provide
a redundant representation of the true knowledge components, i.e., concepts are associated
to a “bag of tags.”

Assume that there is a total number of M tags associated with the Q questions. We
form a Q×M matrix T, where each column of T is associated to one of the M pre-defined
tags. We set Ti,m = 1 if tag m ∈ {1, . . . ,M} is present in question i and 0 otherwise. Now,
we postulate that the question association matrix W extracted by SPARFA can be further
factorized as W = TA, where A is an M × K matrix representing the tags-to-concept
mapping. This leads to the following additional assumptions:

(A4) Non-negativity: The matrix A is non-negative. This increases the interpretability of
the result, since concepts should not be negatively correlated with any tags, in general.

(A5) Sparsity: Each column of A is sparse. This ensures that the estimated concepts relate
to only a few tags.

7. One could alternatively employ a truncated normal distribution on the support [0,∞) for the active
entries in W. In experiments with this model, we found a slight, though noticeable, improvement in
prediction performance on real-data experiments using the exponential prior.
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5.2 Estimating the Concept–Tag Associations and Learner–Tag Knowledge

The assumptions (A4) and (A5) enable us to extract A using `1-norm regularized non-
negative least-squares as described in Hastie et al. (2010) and Chen et al. (1998). Specifically,
to obtain each column ak of A, k = 1, . . . ,K, we solve the following convex optimization
problem, a non-negative variant of basis pursuit denoising:

(BPDN+) minimize
ak :Am,k≥0 ∀m

1
2‖wk −Tak‖22 + η‖ak‖1 .

Here, wk represents the kth column of W, and the parameter η controls the sparsity level
of the solution ak.

We propose a first-order method derived from the FISTA framework in Beck and Teboulle
(2009) to solve (BPDN+). The algorithm consists of two steps: A gradient step with respect
to the `2-norm penalty function, and a projection step with respect to the `1-norm regularizer
subject to the non-negative constraints on ak. By solving (BPDN+) for k = 1, . . . ,K, and
building A = [a1, . . . ,aK ], we can (i) assign tags to each concept based on the non-zero
entries in A and (ii) estimate a tag-knowledge profile for each learner.

5.2.1 Associating Tags to Each Concept

Using the concept–tag association matrix A we can directly associate tags to each concept
estimated by the SPARFA algorithms. We first normalize the entries in ak such that they
sum to one. With this normalization, we can then calculate percentages that show the
proportion of each tag that contributes to concept k corresponding to the non-zero entries
of ak. This concept tagging method typically will assign multiple tags to each concept, thus,
enabling one to identify the coarse meaning of each concept (see Section 6.2 for examples
using real-world data).

5.2.2 Learner Tag Knowledge Profiles

Using the concept–tag association matrix A, we can assess each learner’s knowledge of each
tag. To this end, we form an M × N matrix U = AC, where the Um,j characterizes the
knowledge of learner j of tag m. This information could be used, for example, by a PLS to
automatically inform each learner which tags they have strong knowledge of and which tags
they do not. Course instructors can use the information contained in U to extract measures
representing the knowledge of all learners on a given tag, e.g., to identify the tags for which
the entire class lacks strong knowledge. This information would enable the course instructor
to select future learning content that deals with those specific tags. A real-world example
demonstrating the efficacy of this framework is shown below in Section 6.2.1.

6. Experiments

In this section, we validate SPARFA-M and SPARFA-B on both synthetic and real-world
educational data sets. First, using synthetic data, we validate that both algorithms can
accurately estimate the underlying factors from binary-valued observations and characterize
their performance under different circumstances. Specifically, we benchmark the factor esti-
mation performance of SPARFA-M and SPARFA-B against a variant of the well-established
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K-SVD algorithm (Aharon et al. 2006) used in dictionary-learning applications. Second, us-
ing real-world graded learner-response data we demonstrate the efficacy SPARFA-M (both
probit and logit variants) and of SPARFA-B for learning and content analytics. Specifically,
we showcase how the estimated learner concept knowledge, question–concept association,
and intrinsic question difficulty can support machine learning-based personalized learning.
Finally, we compare SPARFA-M against the recently proposed binary-valued collaborative
filtering algorithm CF-IRT (Bergner et al. 2012) that predicts unobserved learner responses.

6.1 Synthetic Data Experiments

We first characterize the estimation performance of SPARFA-M and SPARFA-B using
synthetic test data generated from a known ground truth model. We generate instances
of W, C, and µ under pre-defined distributions and then generate the binary-valued obser-
vations Y according to (2).

Our report on the synthetic experiments is organized as follows. In Section 6.1.1, we
outline K-SVD+, a variant of the well-established K-SVD dictionary-learning (DL) algorithm
originally proposed in Aharon et al. (2006); we use it as a baseline method for comparison
to both SPARFA algorithms. In Section 6.1.2 we detail the performance metrics. We
compare SPARFA-M, SPARFA-B, and K-SVD+ as we vary the problem size and number of
concepts (Section 6.1.3), observation incompleteness (Section 6.1.4), and the sparsity of W
(Section 6.1.5). In the above-referenced experiments, we simulate the observation matrix Y
via the inverse probit link function and use only the probit variant of SPARFA-M in order
to make a fair comparison with SPARFA-B. In a real-world situation, however, the link
function is generally unknown. In Section 6.1.6 we conduct model-mismatch experiments,
where we generate data from one link function but analyze assuming the other.

In all synthetic experiments, we average the results of all performance measures over 25
Monte-Carlo trials, limited primarily by the computational complexity of SPARFA-B, for
each instance of the model parameters we control.

6.1.1 Baseline Algorithm: K-SVD+

Since we are not aware of any existing algorithms to solve (2) subject to the assumptions
(A1)–(A3), we deploy a novel baseline algorithm based on the well-known K-SVD algorithm
of Aharon et al. (2006), which is widely used in various dictionary learning settings but
ignores the inverse probit or logit link functions. Since the standard K-SVD algorithm also
ignores the non-negativity constraint used in the SPARFA model, we develop a variant
of the non-negative K-SVD algorithm proposed in Aharon et al. (2005) that we refer to
as K-SVD+. In the sparse coding stage of K-SVD+, we use the non-negative variant of
orthogonal matching pursuit (OMP) outlined in Bruckstein et al. (2008); that is, we enforce
the non-negativity constraint by iteratively picking the entry corresponding to the maximum
inner product without taking its absolute value. We also solve a non-negative least-squares
problem to determine the residual error for the next iteration. In the dictionary update
stage of K-SVD+, we use a variant of the rank-one approximation algorithm detailed in
(Aharon et al., 2005, Figure 4), where we impose non-negativity on the elements in W but
not on the elements of C.
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K-SVD+ has as input parameters the sparsity level of each row of W. In what follows,
we provide K-SVD+ with the known ground truth for the number of non-zero components in
order to obtain its best-possible performance. This will favor K-SVD+ over both SPARFA
algorithms, since, in practice, such oracle information is not available.

6.1.2 Performance Measures

In each simulation, we evaluate the performance of SPARFA-M, SPARFA-B, and K-SVD+

by comparing the fidelity of the estimates Ŵ, Ĉ, and µ̂ to the ground truth W, C, and µ.
Performance evaluation is complicated by the facts that (i) SPARFA-B outputs posterior
distributions rather than simple point estimates of the parameters and (ii) factor-analysis
methods are generally susceptible to permutation of the latent factors. We address the first
concern by post-processing the output of SPARFA-B to obtain point estimates for W, C,
and µ as detailed in Section 4.3.3 using R̂i,k < 0.35 for the threshold value. We address the
second concern by normalizing the columns of W, Ŵ and the rows of C, Ĉ to unit `2-norm,
permuting the columns of Ŵ and Ĉ to best match the ground truth, and then compare
W and C with the estimates Ŵ and Ĉ. We also compute the Hamming distance between
the support set of W and that of the (column-permuted) estimate Ŵ. To summarize, the
performance measures used in the sequel are

EW = ‖W − Ŵ‖2F /‖W‖2F , EC = ‖C− Ĉ‖2F /‖C‖2F ,

Eµ = ‖µ− µ̂‖22/‖µ‖22, EH = ‖H− Ĥ‖2F /‖H‖2F ,

where H ∈ {0, 1}Q×K with Hi,k = 1 if Wi,k > 0 and Hi,k = 0 otherwise. The Q × K

matrix Ĥ is defined analogously using Ŵ.

6.1.3 Impact of Problem Size and Number of Concepts

In this experiment, we study the performance of SPARFA vs. KSVD+ as we vary the number
of learners N , the number of questions Q, and the number of concepts K.
Experimental setup We vary the number of learners N and the number of questions Q ∈
{50, 100, 200}, and the number of concepts K ∈ {5, 10}. For each combination of (N,Q,K),
we generate W, C, µ, and Y according to (10) and (11) with vµ = 1, λk = 2/3 ∀k, and
V0 = IK . For each instance, we choose the number of non-zero entries in each row of W as
DU(1, 3) where DU(a, b) denotes the discrete uniform distribution in the range a to b. For
each trial, we run the probit version of SPARFA-M, SPARFA-B, and K-SVD+ to obtain the
estimates Ŵ, Ĉ, µ̂, and calculate Ĥ. For all of the synthetic experiments with SPARFA-M,
we set the regularization parameters γ = 0.1 and select λ using the BIC (Hastie et al. 2010).
For SPARFA-B, we set the hyperparameters to h = K + 1, vµ = 1, α = 1, β = 1.5, e = 1,
and f = 1.5; moreover, we burn-in the MCMC for 30,000 iterations and take output samples
over the next 30,000 iterations.
Results and discussion Figure 3 shows box-and-whisker plots for the three algorithms and
the four performance measures. We observe that the performance of all of the algorithms
generally improves as the problem size increases. Moreover, SPARFA-B has superior per-
formance for EW, EC, and Eµ. We furthermore see that both SPARFA-B and SPARFA-M
outperform K-SVD+ on EW, EC, and especially Eµ. K-SVD+ performs very well in terms of
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EH (slightly better than both SPARFA-M and SPARFA-B) due to the fact that we provide
it with the oracle sparsity level, which is, of course, not available in practice. SPARFA-B’s
improved estimation accuracy over SPARFA-M comes at the price of significantly higher
computational complexity. For example, for N = Q = 200 and K = 5, SPARFA-B requires
roughly 10 minutes on a 3.2GHz quad-core desktop PC, while SPARFA-M and K-SVD+

require only 6 s.

In summary, SPARFA-B is well-suited to small problems where solution accuracy or
the need for confidence statistics are the key factors; SPARFA-M, in contrast, is destined
for analyzing large-scale problems where low computational complexity (e.g., to generate
immediate learner feedback) is important.

6.1.4 Impact of the Number of Incomplete Observations

In this experiment, we study the impact of the number of observations in Y on the perfor-
mance of the probit version of SPARFA-M, SPARFA-B, and K-SVD+.

Experimental setup We set N = Q = 100, K = 5, and all other parameters as in Sec-
tion 6.1.3. We then vary the percentage Pobs of entries in Y that are observed as 100%,
80%, 60%, 40%, and 20%. The locations of missing entries are generated i.i.d. and uniformly
over the entire matrix.

Results and discussion Figure 4 shows that the estimation performance of all methods
degrades gracefully as the percentage of missing observations increases. Again, SPARFA-B
outperforms the other algorithms on EW, EC, and Eµ. K-SVD+ performs worse than both
SPARFA algorithms except on EH, where it achieves comparable performance. We conclude
that SPARFA-M and SPARFA-B can both reliably estimate the underlying factors, even in
cases of highly incomplete data.

6.1.5 Impact of Sparsity Level

In this experiment, we study the impact of the sparsity level in W on the performance of
the probit version of SPARFA-M, SPARFA-B, and K-SVD+.

Experimental setup We choose the active entries of W i.i.d. Ber(q) and vary q ∈
{0.2, 0.4, 0.6, 0.8} to control the number of non-zero entries in each row of W. All other
parameters are set as in Section 6.1.3. This data-generation method allows for scenarios in
which some rows of W contain no active entries, as well as scenarios with all active entries.
We set the hyperparameters for SPARFA-B to h = K + 1 = 6, vµ = 1, and e = 1, and
f = 1.5. For q = 0.2 we set α = 2 and β = 5. For q = 0.8 we set α = 5 and β = 2. For all
other cases, we set α = β = 2.

Results and discussion Figure 5 shows that sparser W lead to lower estimation errors.
This demonstrates that the SPARFA algorithms are well-suited to applications where the
underlying factors have a high level of sparsity. SPARFA-B outperforms SPARFA-M across
all metrics. The performance of K-SVD+ is worse than both SPARFA algorithms except
on the support estimation error EH, which is due to the fact that K-SVD+ is aware of the
oracle sparsity level.
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Figure 3: Performance comparison of SPARFA-M, SPARFA-B, and K-SVD+ for different
problem sizes Q × N and number of concepts K. The performance naturally
improves as the problem size increases, while both SPARFA algorithms outperform
K-SVD+. M denotes SPARFA-M, B denotes SPARFA-B, and K denotes KSVD+.
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Figure 4: Performance comparison of SPARFA-M, SPARFA-B, and K-SVD+ for different
percentages of observed entries in Y. The performance degrades gracefully as
the number of observations decreases, while the SPARFA algorithms outperform
K-SVD+.
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Figure 5: Performance comparison of SPARFA-M, SPARFA-B, and K-SVD+ for different
sparsity levels in the rows in W. The performance degrades gracefully as the
sparsity level increases, while the SPARFA algorithms outperform K-SVD+.

6.1.6 Impact of Model Mismatch

In this experiment, we examine the impact of model mismatch by using a link function for
estimation that does not match the true link function from which the data is generated.
Experimental setup We fix N = Q = 100 and K = 5, and set all other parameters as in
Section 6.1.3. Then, for each generated instance of W, C and µ, we generate Ypro and
Ylog according to both the inverse probit link and the inverse logit link, respectively. We
then run SPARFA-M (both the probit and logit variants), SPARFA-B (which uses only the
probit link function), and K-SVD+ on both Ypro and Ylog.
Results and discussion Figure 6 shows that model mismatch does not severely affect EW,
EC, and EH for both SPARFA-M and SPARFA-B. However, due to the difference in the
functional forms between the probit and logit link functions, model mismatch does lead to
an increase in Eµ for both SPARFA algorithms. We also see that K-SVD+ performs worse
than both SPARFA methods, because it ignores the link function.

6.2 Real Data Experiments

We next test the SPARFA algorithms on three real-world educational data sets. Since all
variants of SPARFA-M and SPARFA-B obtained similar results in the synthetic data ex-
periments in Section 6.1, for the sake of brevity, we will show the results for only one of
the algorithms for each data set. In what follows, we select the sparsity penalty param-
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Figure 6: Performance comparison of SPARFA-M, SPARFA-B, and K-SVD+ with pro-
bit/logit model mismatch; MP and ML indicate probit and logit SPARFA-M,
respectively. In the left/right halves of each box plot, we generate Y accord-
ing to the inverse probit/logit link functions. The performance degrades only
slightly with mismatch, while both SPARFA algorithms outperform K-SVD+.

eter λ in SPARFA-M using the BIC as described in Hastie et al. (2010) and choose the
hyperparameters for SPARFA-B to be largely non-informative.

6.2.1 Undergraduate DSP Course

Data set We analyze a very small data set consisting of N = 15 learners answering Q = 44
questions taken from the final exam of an introductory course on digital signal processing
(DSP) taught at Rice University in Fall 2011 (ELEC 301, Rice University 2011). There is
no missing data in the matrix Y.
Analysis We estimate W, C, and µ from Y using the logit version of SPARFA-M assuming
K = 5 concepts to achieve a concept granularity that matches the complexity of the analyzed
data set. Since the questions had been manually tagged by the course instructor, we deploy
the tag-analysis approach proposed in Section 5. Specifically, we form a 44 × 12 matrix T
using the M = 12 available tags and estimate the 12× 5 concept–tag association matrix A
in order to interpret the meaning of each retrieved concept. For each concept, we only show
the top 3 tags and their relative contributions. We also compute the 12 × 15 learner tag
knowledge profile matrix U.
Results and discussion Figure 7(a) visualizes the estimated question–concept association
matrix Ŵ as a bipartite graph consisting of question and concept nodes.8 In the graph,
circles represent the estimated concepts and squares represent questions, with thicker edges
indicating stronger question–concept associations (i.e., larger entries Ŵi,k). Questions are
also labeled with their estimated intrinsic difficulty µi, with larger positive values of µi
indicating easier questions. Note that ten questions are not linked to any concept. All
Q = 15 learners answered these questions correctly; as a result nothing can be estimated
about their underlying concept structure. Figure 7(b) provides the concept–tag association
(top 3 tags) for each of the 5 estimated concepts.

Table 1 provides Learner 1’s knowledge of the various tags relative to other learners.
Large positive values mean that Learner 1 has strong knowledge of the tag, while large
negative values indicate a deficiency in knowledge of the tag. Table 2 shows the average tag

8. To avoid the scaling identifiability problem that is typical in factor analysis, we normalize each row of C
to unit `2-norm and scale each column of W accordingly prior to visualizing the bipartite graph. This
enables us to compare the strength of question–concept associations across different concepts.
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(a) Question–concept association graph. Circles correspond to concepts and rectangles to
questions; the values in each rectangle corresponds to that question’s intrinsic difficulty.

Concept 1 Concept 2 Concept 3

Frequency response (46%) Fourier transform (40%) z-transform (66%)
Sampling rate (23%) Laplace transform (36%) Pole/zero plot (22%)
Aliasing (21%) z-transform (24%) Laplace transform (12%)

Concept 4 Concept 5

Fourier transform (43%) Impulse response (74%)
Systems/circuits (31%) Transfer function (15%)
Transfer function (26%) Fourier transform (11%)

(b) Most important tags and relative weights for the estimated concepts.

Figure 7: (a) Question–concept association graph and (b) most important tags associated
with each concept for an undergraduate DSP course with N = 15 learners an-
swering Q = 44 questions.
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z-transform Impulse response Transfer function Fourier transform Laplace transform

1.09 −1.80 −0.50 0.99 −0.77

Table 1: Selected tag knowledge of Learner 1.

z-transform Impulse response Transfer function Fourier transform Laplace transform

0.04 −0.03 −0.10 0.11 0.03

Table 2: Average tag knowledge of all learners.

knowledge of the entire class, computed by averaging the entries of each row in the learner
tag knowledge matrix U as described in Section 5.2.2. Table 1 indicates that Learner 1 has
particularly weak knowledge of the tag “Impulse response.” Armed with this information,
a PLS could automatically suggest remediation about this concept to Learner 1. Table 2
indicates that the entire class has (on average) weak knowledge of the tag “Transfer func-
tion.” With this information, a PLS could suggest to the class instructor that they provide
remediation about this concept to the entire class.

6.2.2 Grade 8 Science Course

Data set The STEMscopes data set was introduced in Section 1.2. There is substantial
missing data in the matrix Y, with only 13.5% of its entries observed.
Analysis We compare the results of SPARFA-M and SPARFA-B on this data set to highlight
the pros and cons of each approach. For both algorithms, we select K = 5 concepts. For
SPARFA-B, we fix reasonably broad (non-informative) values for all hyperparameters. For
µ0 we calculate the average rate of correct answers ps on observed graded responses of
all learners to all questions and use µ0 = Φ−1

pro(ps). The variance vµ is left sufficiently
broad to enable adequate exploration of the intrinsic difficulty for each questions. Point
estimates of W, C and µ are generated from the SPARFA-B posterior distributions using
the methods described in Section 4.3.3. Specifically, an entry Ŵi,k that has a corresponding
active probability R̂i,k < 0.55 is thresholded to 0. Otherwise, we set Ŵi,k to its posterior
mean. On a 3.2GHz quad-core desktop PC, SPARFA-M converged to its final estimates in
4 s, while SPARFA-B required 10 minutes.
Results and discussion Both SPARFA-M and SPARFA-B deliver comparable factorizations.
The estimated question–concept association graph for SPARFA-B is shown in Figure 2(a),
with the accompanying concept–tag association in Figure 2(b). Again we see a sparse rela-
tionship between questions and concepts. The few outlier questions that are not associated
with any concept are generally those questions with very low intrinsic difficulty or those
questions with very few responses.

One advantage of SPARFA-B over SPARFA-M is its ability to provide not only point
estimates of the parameters of interest but also reliability information for those estimates.
This reliability information can be useful for decision making, since it enables one to tailor
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Figure 8: Concept 5 knowledge estimates generated by SPARFA-B for the STEMscopes
data for a randomly selected subset of learners. The box-whisker plot shows the
posterior variance of the MCMC samples, with each box-whisker plot correspond-
ing to a different learner in the data set. Anonymized learner IDs are shown
on the bottom, while the number of relevant questions answered by each learner
answered is indicated on the top of the plot.

actions according to the associated uncertainty. If there is considerable uncertainty regarding
learner mastery of a particular concept, for example, it may be a more appropriate use of
time of the learner to ask additional questions that reduce the uncertainty, rather than
assigning new material for which the learner may not be adequately prepared.

We demonstrate the utility of SPARFA-B’s posterior distribution information on the
learner concept knowledge matrix C. Figure 8 shows box-whisker plots of the MCMC
output samples over 30,000 iterations (after a burn-in period of 30,000 iterations) for a set
of learners for Concept 5. Each box-whisker plot corresponds to the posterior distribution for
a different learner. These plots enable us to visualize both the posterior mean and variance
associated with the concept knowledge estimates ĉj . As one would expect, the estimation
variance tends to decrease as the number of answered questions increases (shown in the top
portion of Figure 8).

The exact set of questions answered by a learner also affects the posterior variance of our
estimate, as different questions convey different levels of information regarding a learner’s
concept mastery. An example of this phenomenon is observed by comparing Learners 7
and 28. Each of these two learners answered 20 questions and had a nearly equal number
of correct answers (16 and 17, respectively). A conventional analysis that looked only at
the percentage of correct answers would conclude that both learners have similar concept
mastery. However, the actual set of questions answered by each learner is not the same, due
to their respective instructors assigning different questions. While SPARFA-B finds a similar
posterior mean for Learner 7 and Learner 28, it finds very different posterior variances,
with considerably more variance for Learner 28. The SPARFA-B posterior samples shed
additional light on the situation at hand. Most of the questions answered by Learner 28
are deemed easy (defined as having intrinsic difficulties µ̂i larger than one). Moreover, the
remaining, more difficult questions answered by Learner 28 show stronger affinity to concepts
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C1 C2 C3 C4 C5

Q3 (27 responses) M Yes No No No Yes
B 94% 36% 48% 18% 80%

Q56 (5 responses) M No No No No No
B 30% 30% 26% 31% 31%

Q72 (6 responses) M No No No No Yes
B 61% 34% 29% 36% 58%

Table 3: Comparison of SPARFA-M and SPARFA-B for three selected questions and the
K = 5 estimated concepts in the STEMscopes data set. For SPARFA-M, the labels
“Yes” and “No” indicate whether a particular concept was detected in the question.
For SPARFA-B, we show the posterior inclusion probability (in percent), which
indicates the percentage of iterations in which a particular concept was sampled.

other than Concept 5. In contrast, roughly half of the questions answered by Learner 7
are deemed hard and all of these questions have stronger affinity to Concept 5. Thus,
the questions answered by Learner 28 convey only weak information about the knowledge
of Concept 5, while those answered by Learner 7 convey strong information. Thus, we
cannot determine from Learner 28’s responses whether they have mastered Concept 5 well
or not. Such SPARFA-B posterior data would enable a PLS to quickly assess this scenario
and tailor the presentation of future questions to Learner 28—in this case, presenting more
difficult questions related to Concept 5 would reduce the estimation variance on their concept
knowledge and allow a PLS to better plan future educational tasks for this particular learner.

Second, we demonstrate the utility of SPARFA-B’s posterior distribution information
on the question–concept association matrix W. Accurate estimation of W enables course
instructors and content authors to validate the extent to which problems measure knowledge
across various concepts. In general, there is a strong degree of commonality between the
results of SPARFA-M and SPARFA-B, especially as the number of learners answering a
question grow. We present some illustrative examples of support estimation on W for both
SPARFA algorithms in Table 3. We use the labels “Yes”/“No” to indicate inclusion of a
concept by SPARFA-M and show the posterior inclusion probabilities for each concept by
SPARFA-B. Here, both SPARFA-M and SPARFA-B agree strongly on both Question 3 and
Question 56. Question 72 is answered by only 6 learners, and SPARFA-M discovers a link
between this question and Concept 5. SPARFA-B proposes Concept 5 in 58% of all MCMC
iterations, but also Concept 1 in 60% of all MCMC iterations. Furthermore, the proposals
of Concept 1 and Concept 5 are nearly mutually exclusive; in most iterations only one of
the two concepts is proposed, but both are rarely proposed jointly. This behavior implies
that SPARFA-B has found two competing models that explain the data associated with
Question 72. To resolve this ambiguity, a PLS would need to gather more learner responses.
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6.2.3 Algebra Test Administered on Amazon Mechanical Turk

For a final demonstration of the capabilities the SPARFA algorithms, we analyze a data
set from a high school algebra test carried out by Daniel Calderón of Rice University on
Amazon Mechanical Turk, a crowd-sourcing marketplace (Amazon Mechanical Turk 2012).
Data set The data set consists of N = 99 learners answering Q = 34 questions covering
topics such as geometry, equation solving, and visualizing function graphs. Calderón manu-
ally labeled the questions from a set of M = 10 tags. The data set is fully populated, with
no missing entries.
Analysis We estimate W, C, and µ from the fully populated 34× 99 binary-valued matrix
Y using the logit version of SPARFA-M assuming K = 5 concepts. We deploy the tag-
analysis approach proposed in Section 5 to interpret each concept. Additionally, we calculate
the likelihoods of the responses using (1) and the estimates Ŵ, Ĉ and µ̂. The results
from SPARFA-M are summarized in Figure 9. We detail the results of our analysis for
Questions 19–26 in Table 4 and for Learner 1 in Table 5.
Results and discussion With the aid of SPARFA, we can analyze the strengths and weak-
nesses of each learner’s concept knowledge both individually and relative to other users. We
can also detect outlier responses that are due to guessing, cheating, or carelessness. The val-
ues in the estimated concept knowledge matrix Ĉ measure each learner’s concept knowledge
relative to all other learners. The estimated intrinsic difficulties of the questions µ̂ provide
a relative measure that summarizes how all users perform on each question.

Let us now consider an example in detail; see Table 4 and Table 5. Learner 1 incor-
rectly answered Questions 21 and 26 (see Table 4), which involve Concepts 1 and 2. Their
knowledge of these concepts is not heavily penalized, however (see Table 5), due to the high
intrinsic difficulty of these two questions, which means that most other users also incor-
rectly answered them. User 1 also incorrectly answered Questions 24 and 25, which involve
Concepts 2 and 4. Their knowledge of these concepts is penalized, due to the low intrin-
sic difficulty of these two questions, which means that most other users correctly answered
them. Finally, Learner 1 correctly answered Questions 19 and 20, which involve Concepts 1
and 5. Their knowledge of these concepts is boosted, due to the high intrinsic difficulty of
these two questions.

SPARFA can also be used to identify each user’s individual strengths and weaknesses.
Continuing the example, Learner 1 needs to improve their knowledge of Concept 4 (as-
sociated with the tags “Simplifying expressions”, “Trigonometry,” and “Plotting functions”)
significantly, while their deficiencies on Concepts 2 and 3 are relatively minor.

Finally, by investigating the likelihoods of the graded responses, we can detect outlier
responses, which would enables a PLS to detect guessing and cheating. By inspecting
the concept knowledge of Learner 1 in Table 5, we can identify insufficient knowledge of
Concept 4. Hence, Learner 1’s correct answer to Question 22 is likely due to a random guess,
since the predicted likelihood of providing the correct answer is estimated at only 0.21.
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(a) Question–concept association graph.

Concept 1 Concept 2 Concept 3

Fractions (57%) Plotting functions (64%) Geometry (63%)
Solving equations (42%) System of equations (27%) Simplifying expressions (27%)
Arithmetic (1%) Simplifying expressions (9%) Trigonometry (10%)

Concept 4 Concept 5

Simplifying expressions (64%) Trigonometry (53%)
Trigonometry (21%) Slope (40%)
Plotting Functions (15%) Solving equations (7%)

(b) Most important tags and relative weights for the estimated concepts.

Figure 9: (a) Question–concept association graph and (b) most important tags associated
with each concept for a high-school algebra test carried out on Amazon Mechanical
Turk with N = 99 users answering Q = 34 questions.
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Question number 19 20 21 22 23 24 25 26

Learner’s graded response Yi,j 1 1 0 1 1 0 0 0
Correct answer likelihood 0.79 0.71 0.11 0.21 0.93 0.23 0.43 0.00
p(Yi,j = 1|w̄i, cj , µi)

Underlying concepts 1 1, 5 1 2, 3, 4 3, 5 2, 4 1, 4 2, 4
Intrinsic difficulty µi −1.42 −0.46 −0.67 0.27 0.79 0.56 1.40 −0.81

Table 4: Graded responses and their underlying concepts for Learner 1 (1 designates a cor-
rect response and 0 an incorrect response).

Concept number 1 2 3 4 5

Concept knowledge 0.46 −0.35 0.72 −1.67 0.61

Table 5: Estimated concept knowledge for Learner 1.

6.3 Predicting Unobserved Learner Responses

We now compare SPARFA-M against the recently proposed binary-valued collaborative
filtering algorithm CF-IRT (Bergner et al. 2012) in an experiment to predict unobserved
learner responses.
Data set and experimental setup In this section, we study both the Mechanical Turk alge-
bra test data set and a portion of the ASSISTment data set (Pardos and Heffernan 2010).
The ASSISTment data set consists of N = 403 learners answering Q = 219 questions,
with 25% of the responses observed (see Vats et al. 2013 for additional details on the data
set). In each of the 25 trials we run for both data sets, we hold out 20% of the observed
learner responses as a test set, and train both the logistic variant of SPARFA-M9 and
CF-IRT on the rest. The regularization parameters of both algorithms are selected using
4-fold cross-validation on the training set. We use two performance metrics to evaluate
the performance of these algorithms, namely (i) the prediction accuracy, which corresponds
to the percentage of correctly predicted unobserved responses, and (ii) the average predic-
tion likelihood 1

|Ω̄obs|
∑

i,j:(i,j)∈Ω̄obs
p(Yi,j |w̄i, cj) of the unobserved responses, as proposed in

González-Brenes and Mostow (2012), for example.

Results and discussion Figure 10 shows the prediction accuracy and prediction likelihood
for both the Mechanical Turk algebra test data set and the ASSISTment data set. We see
that SPARFA-M delivers comparable (sometimes slightly superior) prediction performance
to CF-IRT in predicting unobserved learner responses.

9. In order to arrive at a fair comparison, we choose to use the logistic variant of SPARFA-M, since CF-IRT
also relies on a logistic model.
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(b) Average prediction likelihood for the Mechan-
ical Turk algebra test data set.
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(c) Prediction accuracy for the ASSISTment data
set.
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(d) Average prediction likelihood for the ASSIST-
ment data set.

Figure 10: Performance comparison of SPARFA-M and CF-IRT on (a) prediction accu-
racy and (b) average prediction likelihood for the Mechanical Turk algebra test
data set, (c) prediction accuracy and (d) average prediction likelihood for the
ASSISTment data set. SPARFA-M achieves comparable or better performance
than CF-IRT while enabling interpretability of the estimated latent concepts

Furthermore, we see from Figure 10 that the prediction performance varies little over
different values of K, meaning that the specific choice of K has little influence on the
prediction performance within a certain range. This phenomenon agrees with other collab-
orative filtering results (see, e.g., Koren et al. 2009; Koren and Sill 2011). Consequently,
the choice of K essentially dictates the granularity of the abstract concepts we wish to esti-
mate. We choose K = 5 in the real data experiments of Section 6.2 when we visualize the
question–concept associations as bi-partite graphs, as it provides a desirable granularity of
the estimated concepts in the data sets. We emphasize that SPARFA-M is able to provide
interpretable estimated factors while achieving comparable (or slightly superior) prediction
performance than that achieved by CF-IRT, which does not provide interpretability. This
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feature of SPARFA is key for the development of PLSs, as it enables an automated way of
generating interpretable feedback to learners in a purely data-driven fashion.

7. Related Work on Machine Learning-based Personalized Learning

A range of different machine learning algorithms have been applied in educational contexts.
Bayesian belief networks have been successfully used to probabilistically model and analyze
learner response data (e.g., Krudysz et al. 2006; Woolf 2008; Krudysz and McClellan 2011).
Such models, however, rely on predefined question–concept dependencies (that are not nec-
essarily the true dependencies governing learner responses) and primarily only work for a
single concept. In contrast, SPARFA discovers question–concept dependencies from solely
the graded learner responses to questions and naturally estimates multi-concept question
dependencies.

Modeling question–concept associations has been studied in Barnes (2005), Thai-Nghe
et al. (2011a), Thai-Nghe et al. (2011b), and Desmarais (2011). The approach in Barnes
(2005) characterizes the underlying question–concept associations using binary values, which
ignore the relative strengths of the question–concept associations. In contrast, SPARFA dif-
ferentiates between strong and weak relationships through the real-valued weights Wi,k.
The matrix and tensor factorization methods proposed in Barnes (2005), Thai-Nghe et al.
(2011a), and Thai-Nghe et al. (2011b) treat graded learner responses as real but deter-
ministic values. In contrast, the probabilistic framework underlying SPARFA provides a
statistically principled model for graded responses; the likelihood of the observed graded
responses provides even more explanatory power.

Existing intelligent tutoring systems capable of modeling question–concept relations
probabilistically include Khan Academy (Dijksman and Khan 2011; Hu 2011) and the sys-
tem of Bachrach et al. (2012). Both approaches, however, are limited to dealing with a
single concept. In contrast, SPARFA is built from the ground up to deal with multiple
latent concepts.

A probit model for graded learner responses is used in Desmarais (2011) without exploit-
ing the idea of low-dimensional latent concepts. In contrast, SPARFA leverages multiple
latent concepts and therefore can create learner concept knowledge profiles for personalized
feedback. Moreover, SPARFA-M is compatible with the popular logit model.

The recent results developed in Beheshti et al. (2012) and Bergner et al. (2012) address
the problem of predicting the missing entries in a binary-valued graded learner response
matrix. Both papers use low-dimensional latent factor techniques specifically developed for
collaborative filtering, as, e.g., discussed in Linden et al. (2003) and Herlocker et al. (2004).
While predicting missing correctness values is an important task, these methods do not take
into account the sparsity and non-negativity of the matrixW; this inhibits the interpretation
of the relationships among questions and concepts. In contrast, SPARFA accounts for both
the sparsity and non-negativity of W, which enables the interpretation of the value Ck,j as
learner j’s knowledge of concept k.

There is a large body of work on item response theory (IRT), which uses statistical
models to analyze and score graded question response data (see, e.g., Lord 1980, Baker
and Kim 2004, and Reckase 2009 for overview articles). The main body of the IRT liter-
ature builds on the model developed by Rasch (1993) and has been applied mainly in the
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context of adaptive testing, e.g., in the graduate record examination (GRE) and graduate
management (GMAT) tests (Chang and Ying 2009, Thompson 2009, and Linacre 1999).
While the SPARFA model shares some similarity to the model in Rasch (1993) by modeling
question–concept association strengths and intrinsic difficulties of questions, it also models
each learner in terms of a multi-dimensional concept knowledge vector. This capability of
SPARFA is in stark contrast to the Rasch model, where each learner is characterized by a
single, scalar ability parameter. Consequently, the SPARFA framework is able to provide
stronger explanatory power in the estimated factors compared to that of the conventional
Rasch model. We finally note that multi-dimensional variants of IRT have been proposed in
McDonald (2000), Yao (2003), and Reckase (2009). We emphasize, however, that the design
of these algorithms leads to poor interpretability of the resulting parameter estimates.

8. Conclusions

In this paper, we have formulated a new approach to learning and content analytics, which
is based on a new statistical model that encodes the probability that a learner will answer
a given question correctly in terms of three factors: (i) the learner’s knowledge of a set of
latent concepts, (ii) how the question relates to each concept, and (iii) the intrinsic difficulty
of the question. We have proposed two algorithms, SPARFA-M and SPARFA-B, to estimate
the above three factors given incomplete observations of graded learner question responses.
SPARFA-M uses an efficient Maximum Likelihood-based bi-convex optimization approach
to produce point estimates of the factors, while SPARFA-B uses Bayesian factor analysis
to produce posterior distributions of the factors. In practice, SPARFA-M is beneficial in
applications where timely results are required; SPARFA-B is favored in situations where
posterior statistics are required. We have also introduced a novel method for incorporating
user-defined tags on questions to facilitate the interpretability of the estimated factors.
Experiments with both synthetic and real world education data sets have demonstrated
both the efficacy and robustness of the SPARFA algorithms.

The quantities estimated by SPARFA can be used directly in a range of PLS functions.
For instance, we can identify the knowledge level of learners on particular concepts and
diagnose why a given learner has incorrectly answered a particular question or type of
question. Moreover, we can discover the hidden relationships among questions and latent
concepts, which is useful for identifying questions that do and do not aid in measuring
a learner’s conceptual knowledge. Outlier responses that are either due to guessing or
cheating can also be detected. In concert, these functions can enable a PLS to generate
personalized feedback and recommendation of study materials, thereby enhancing overall
learning efficiency.

Various extensions and refinements to the SPARFA framework developed here have been
proposed recently. Most of these results aim at improving interpretability of the SPARFA
model parameters. In particular, a variant of SPARFA-M that analyzes ordinal rather than
binary-valued responses and directly utilizes tag information in the probabilistic model has
been detailed in Lan et al. (2013a). Another variant of SPARFA-M that further improves the
interpretability of the underlying concepts via the joint analysis of graded learner responses
and question/response text has been proposed in Lan et al. (2013b). A nonparametric
Bayesian variant of SPARFA-B that estimates both the number of concepts K as well as the
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reliability of each learner from data has been developed in Fronczyk et al. (2013, submitted).
The results of this nonparametric method confirm our choice of K = 5 concepts for the real-
world educational data sets considered in Section 6.2.

Before closing, we would like to point out a connection between SPARFA and dictionary
learning that is of independent interest. This connection can be seen by noting that (2) for
both the probit and inverse logit functions is statistically equivalent to (see Rasmussen and
Williams 2006):

Yi,j = [sign(WC + M + N)]i,j , (i, j) ∈ Ωobs,

where sign(·) denotes the entry-wise sign function and the entries of N are i.i.d. and drawn
from either a standard Gaussian or standard logistic distribution. Hence, estimating W, C,
and M (or equivalently, µ) is equivalent to learning a (possibly overcomplete) dictionary
from the data Y. The key departures from the dictionary-learning literature (Aharon et al.
2006; Mairal et al. 2010) and algorithm variants capable of handling missing observations
(Studer and Baraniuk 2012) are the binary-valued observations and the non-negativity con-
straint on W. Note that the algorithms developed in Section 3 to solve the sub-problems
by holding one of the factors W or C fixed and solving for the other variable can be used to
solve noisy binary-valued (or 1-bit) compressive sensing or sparse signal recovery problems,
e.g., as studied in Boufounos and Baraniuk (2008), Jacques et al. (2013), and Plan and
Vershynin (2012, submitted). Thus, the proposed SPARFA algorithms can be applied to a
wide range of applications beyond education, including the analysis of survey data, voting
patterns, gene expression, and signal recovery from noisy 1-bit compressive measurements.

Acknowledgments

Thanks to Wotao Yin and Yangyang Xu for helpful discussions on the convergence proof of
SPARFA-M, Genevera Allen for insights into probit regression, Marina Vannucci for helpful
discussions regarding Bayesian factor analysis, Daniel Calderón for organizing and adminis-
tering the Amazon Mechanical Turk experiments in Section 6.2.3, and Carlos Monroy and
Reid Whitaker for providing the STEMscopes data. We furthermore thank the anonymous
reviewers for their valuable comments which improved the exposition of our results.

This work was supported by the National Science Foundation under Cyberlearning grant
IIS-1124535, the Air Force Office of Scientific Research under grant FA9550-09-1-0432, the
Google Faculty Research Award program.

Please see our website www.sparfa.com, where you can learn more about the project
and purchase SPARFA t-shirts and other merchandise.

Appendix A. Proof of Theorem 1

We now establish the convergence of the FISTA algorithms that solve the SPARFA-M sub-
problems (RR)+

1 and (RR)2. We start by deriving the relevant Lipschitz constants.

Lemma 4 (Scalar Lipschitz constants) Let gpro(x) =
Φ′pro(x)

Φpro(x) and glog(x) =
Φ′log(x)

Φlog(x) ,
x ∈ R, where Φpro(x) and Φlog(x) are the inverse probit and logit link functions defined
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in (3) and (4), respectively. Then, for y, z ∈ R we have

|gpro(y)− gpro(z)| ≤ Lpro|y − z| , (12)
|glog(y)− glog(z)| ≤ Llog|y − z| , (13)

with the constants Lpro = 1 for the probit case and Llog = 1/4 for the logit case.

Proof For simplicity of exposition, we omit the subscripts designating the probit and logit
cases in what follows. We first derive Lpro for the probit case by computing the derivative
of g(x) and bounding its derivative from below and above. The derivative of g(x) is given
by

g′(x) = −N (x)

Φ(x)

(
x+
N (x)

Φ(x)

)
. (14)

where N (t) = 1√
2π
e−t

2/2 is the PDF of the standard normal distribution.
We first bound this derivative for x ≤ 0. To this end, we individually bound the first

and second factor in (14) using the following bounds listed in Olver (2010):

−x
2

+

√
x2

4
+

2

π
≤ N (x)

Φ(x)
≤ −x

2
+

√
x2

4
+ 1, x ≤ 0

and

x

2
+

√
x2

4
+

2

π
≤ x+

N (x)

Φ(x)
≤ x

2
+

√
x2

4
+ 1, x ≤ 0.

Multiplying the above inequalities leads to the bounds

−1 ≤ g′(x) ≤ − 2

π
, x ≤ 0. (15)

We next bound the derivative of (14) for x > 0. For x > 0, N (x) is a positive decreasing
function and Φ(x) is a positive increasing function; hence N (x)

Φ(x) is a decreasing function and
N (x)
Φ(x) ≤

N (0)
Φ(0) =

√
2/π. Thus, we arrive at

g′(x) = −N (x)

Φ(x)

(
x+
N (x)

Φ(x)

)
≥ −N (x)

Φ(x)

(
x+

√
2/π

)
,

where we have used the facts that Φ(x) ≥ 1/2 and N (x) ≤ 1√
2π

for x > 0. According to (3)
and the bound of Chu (1955), we have

Φ(x) =
1

2
+

∫ x

0
N (t | 0, 1)dt ≥ 1

2
+

1

2

√
1− e−x2/2 ≥ 1− 1

2
e−x

2/2, (16)

where the second inequality follows from the fact that (1 − e−x2/2) ∈ [0, 1]. Using (16) we
can further bound g′(x) from below as

g′(x) ≥ − N (x)

1− 1
2e
−x2/2

(
x+

√
2/π

)
.
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Let us now assume that

− N (x)

1− 1
2e
−x2/2

(
x+

√
2/π

)
≥ −1.

In order to prove that this assumption is true, we rearrange terms to obtain(
x√
2π

+ (1/π + 1/2)

)
e−x

2/2 ≤ 1. (17)

Now we find the maximum of the LHS of (17) for x > 0. To this end, we observe that
x√
2π

+ (1/π + 1/2) is monotonically increasing and that e−x2/2 monotonically decreasing for
x > 0; hence, this function has a unique maximum in this region. By taking its derivative
and setting it to zero, we obtain

x2 +
√

2/π +
√
π/2− 1 = 0

Substituting the result of this equation, i.e., x̂ ≈ 0.4068, into (17) leads to(
x̂√
2π

+ (1/π + 1/2)

)
e−x̂

2/2 ≈ 0.9027 ≤ 1,

which certifies our assumption. Hence, we have

−1 ≤ g′(x) ≤ 0, x > 0.

Combining this result with the one for x ≤ 0 in (15) yields

−1 ≤ g′(x) ≤ 0, x ∈ R.

We finally obtain the following bound on the scalar Lipschitz constant (12):

|gpro(y)− gpro(z)| ≤
∣∣∣∣∫ z

y

∣∣g′pro(x)
∣∣ dx∣∣∣∣ ≤ ∣∣∣∣∫ z

y
1 dx

∣∣∣∣ = |y − z| ,

which concludes the proof for the probit case.
We now develop the bound Llog for the logit case. To this end, we bound the derivative

of glog(x) = 1
1+ex as follows:

0 ≥ g′log(x) = − ex

(1 + ex)2
= − 1

ex + e−x + 2
≥ −1

4
.

where we used the inequality of arithmetic and geometric means. Consequently, we have
the following bound on the scalar Lipschitz constant (13):

|glog(y)− glog(z)| ≤
∣∣∣∣∫ z

y

∣∣g′log(x)
∣∣ dx∣∣∣∣ ≤ |∫ z

y

1

4
dx| = 1

4
|y − z|,

which concludes the proof for the logit case.

The following lemma establishes a bound on the (vector) Lipschitz constants for the
individual regularized regression problems (RR+

1 ) and (RR2) for both the probit and the
logit case, using the results in Lemma 4. We work out in detail the analysis of (RR+

1 ) for
w̄i, i.e., the transpose of the ith row of W. The proofs for the remaining subproblems for
other rows of W and all columns of C follow analogously.
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Lemma 5 (Lipschitz constants) For a given i and j, let

fw(w̄i)=−
∑
j

log p(Yi,j |w̄i, cj)+
µ

2
‖w̄i‖22 = −

∑
j

log Φ((2Yi,j − 1)w̄T
i cj) +

µ

2
‖w̄i‖22 ,

fc(cj)=−
∑
i

log p(Yi,j |w̄i, cj)= −
∑
i

log Φ((2Yi,j − 1)w̄T
i cj),

where Yi,j, w̄i, and cj are defined as in Section 2.1. Here, Φ(x) designates the inverse link
function, which can either be (3) or (4). Then, for any x,y ∈ RK , we have

‖∇fw(x)−∇fw(y)‖2 ≤ (Lσ2
max(C) + µ)‖x− y‖2,

‖∇fc(x)−∇fc(y)‖2 ≤ Lσ2
max(W)‖x− y‖2,

where L = Lpro = 1 and L = Llog = 1/4 are the scalar Lipschitz constants for the probit and
logit cases from Lemma 4, respectively.

Proof For the sake of brevity, we only show the proof for fw(x) in the probit case. The
logit cases and the cases for fc(x) follow analogously. In what follows, the PDF N (x) and
CDF Φ(x) of the standard normal density (the inverse probit link function) defined in (3)
are assumed to operate element-wise on the vector x ∈ RK .

In order to simplify the derivation of the proof, we define the following effective matrix
associated to w̄i as

Ceff,i = [ (2Yi,1 − 1)c1, . . . , (2Yi,N − 1)cN ],

which is equivalent to a right-multiplicationC = [c1, . . . , cN ] with a diagonal matrix contain-
ing the binary-valued response variables (2Yi,j−1) ∈ {−1,+1} ∀j. We can now establish an
upper bound of the `2-norm of the difference between the gradients at two arbitrary points x
and y as follows:

‖∇fw(x)−∇fw(y)‖2 =

∥∥∥∥∥Ceff,i
N (CT

eff,ix)

Φ(CT
eff,ix)

−Ceff,i
N (CT

eff,iy)

Φ(CT
eff,iy)

+ µx− µy

∥∥∥∥∥
2

≤ σmax(Ceff,i)

∥∥∥∥∥N (CT
eff,ix)

Φ(CT
eff,ix)

−
N (CT

eff,iy)

Φ(CT
eff,iy)

∥∥∥∥∥
2

+ µ‖x− y‖2 (18)

≤ Lσmax(Ceff,i)‖CT
eff,ix−CT

eff,iy‖2 + µ‖x− y‖2 (19)

≤ Lσ2
max(Ceff,i)‖x− y‖2 + µ‖x− y‖2 (20)

= (Lσ2
max(C) + µ)‖x− y‖2. (21)

Here, (18) uses the triangle inequality and the Rayleigh-Ritz theorem of Horn and Johnson
(1991), where σmax(Ceff,i) denotes the principal singular value of Ceff,i. The bound (19)
follows from Lemma 4, and (20) is, once more, a consequence of the Rayleigh-Ritz theorem.
The final equality (21) follows from the fact that flipping the signs of the columns of a matrix
(as we did to arrive at Ceff,i) does not affect its singular values, which concludes the proof.
Note that the proof for fc(·) follows by omitting µ and substitute C by W in (21).
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Note that in all of the above proofs we only considered the case where the observation
matrix Y is fully populated. Our proofs easily adapt to the case of missing entries in Y, by
replacing the matrix C to CI , where CI corresponds to the matrix containing the columns
of C corresponding to the observed entries indexed by the set I = {j : (i, j) ∈ Ωobs}. We
omit the details for the sake of brevity.

Appendix B. Proof of Theorem 2

Minimizing F (x) as defined in Theorem 2 using SPARFA-M corresponds to a multi-block
coordinate descent problem, where the subproblems (RR)+

1 and (RR)2 correspond to (Xu
and Yin, 2012, Problem. 1.2b and 1.2a), respectively. Hence, we can use the results of (Xu
and Yin, 2012, Lemma 2.6, Corrollary 2.7, and Theorem 2.8) to establish global conver-
gence of SPARFA-M. To this end, we must verify that the problem (P) satisfies all of the
assumptions in (Xu and Yin, 2012, Assumption 1, Assumption 2, and Lemma 2.6).

B.1 Prerequisites

We first show that the smooth part of the cost function in (P), i.e., the negative log-
likelihood plus both `2-norm regularization terms, is Lipschitz continuous on any bounded
set in R(N+Q)K . Then, we show that the probit log-likelihood function is real analytic.
Note that the logit log-likelihood function is real analytic as shown in (Xu and Yin, 2012,
Section 2.3). Finally, we combine both results to prove Theorem 2, which establishes the
global convergence of SPARFA-M.

Lemma 6 (Lipschitz continuity) Define x = [w̄T
1 , . . . , w̄

T
Q, c

T
1 , . . . , c

T
N ]T , and let

f(x) = −
∑

(i,j)∈Ωobs

log p(Yi,j |w̄i, cj) +
µ

2

∑
i

‖w̄i‖22 +
γ

2

∑
j

‖cj‖22.

Then, f(x) is Lipschitz continuous on any bounded set D = {x : ‖x‖2 ≤ D}.

Proof Let y, z ∈ D, recall the notation of Lemma 5, and let w̄y
i , w̄

z
i , c

y
j , and czj denote the

blocks of variables w̄i and cj in y and z, respectively. We now have

‖∇f(y)−∇f(z)‖2 =
(∑
i,j

(
(∇fw(w̄y

i )−∇fw(w̄z
i ))

2
+(∇fc(cyj )−∇fc(c

z
j ))

2 + γ2‖cyj−c
z
j‖22
)) 1

2

≤
(∑

i,j

((
Lσ2

max(C)+µ
)2 ‖w̄y

i −w̄
z
i ‖

2
2 +

(
L2σ4

max(W)+γ2
)
‖cyj−c

z
j‖22
)) 1

2

(22)

≤
(
L
(
‖W‖2F + ‖C‖2F

)
+ max{µ, γ}

)
‖y − z‖2 (23)

≤
(
LD2 + max{µ, γ}

)
‖y − z‖2,

where (22) follows from Lemma 5, and (23) follows from the fact that the maximum singular
value of a matrix is no greater than its Frobenius norm (Horn and Johnson 1991), which is
bounded by D for y, z ∈ D. We furthermore have L = 1 for the probit case and L = 1/4
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for the logit case, shown in Lemma 4. Thus, f(x) is Lipschitz continuous on any bounded
set.

Lemma 7 (Real analyticity) Define x = [w̄T
1 , . . . , w̄

T
Q, c

T
1 , . . . , c

T
N ]T , and let

g(x) = −
∑

(i,j)∈Ωobs

log p(Yi,j |w̄i, cj) = −
∑

(i,j)∈Ωobs

log Φpro((2Yi,j − 1)w̄T
i cj),

where Φpro(·) is the inverse probit link function defined in (3). Then, g(x) is real analytic.

Proof Recall the important property established by Krantz and Parks (2002) that compo-
sitions of real analytic functions are real analytic. Therefore, the standard normal density
N (x) is real analytic, since the exponential function and x2 are both real analytical func-

tions. Consequently, let N (k)(x) denote the kth derivative of N (x), then
(
N (k)(x)

k!

) 1
k is

bounded for all k, according to the definition of real analytic functions.
Now we show that Φpro(x) =

∫ x
−∞N (t)dt is also real analytic. Its kth derivative is given

by Φ
(k)
pro(x) = N (k−1)(x), and therefore

(
Φ

(k)
pro(x)
k!

) 1
k

is obviously bounded for all k, since(
N (k)(x)

k!

) 1
k is bounded for all k as we have just shown. Thus, Φpro(x) is real analytic.

Given that Φpro(x) is real-analytic, it follows that the negative log-probit-likelihood
−logΦpro(x) is real analytic, since both the logarithm function and the inverse probit link
function are real analytic. Finally, extending the proof from scalar functions to vector func-
tions preserves analyticity according to (Xu and Yin, 2012, Section 2.2).

B.2 Proof of Theorem 2

We are finally armed to prove Theorem 2. We begin by showing that our problem (P) meets
(Xu and Yin, 2012, Assumptions 1 and 2). Then, we show that (P) meets all the additional
assumptions needed for the convergence results in (Xu and Yin, 2012, Lemma 2.6), through
which we can establish convergence of the sequence {xt} from certain starting points to
some finite limit point. Finally, we use (Xu and Yin, 2012, Theorem 2.8) to show global
convergence of SPARFA-M from any starting point.

B.2.1 Assumption 1

We start by showing that (P) meets (Xu and Yin, 2012, Assumption 1). Since every term
in our objective function in (P) is non-negative, we have F (x) > −∞. It is easy to verify
that (P) is also block multi-convex in the variable x, with the rows of W and columns of C
forming the blocks. Consequently, the problem (P) has at least one critical point, since F (x)
is lower bounded by 0. Therefore, Assumption 1 is met.

1999



Lan, Waters, Studer, and Baraniuk

B.2.2 Assumption 2

Problem (P) also meets (Xu and Yin, 2012, Assumption 2) regarding the strong convexity of
the individual subproblems. Due to the presence of the quadratic terms µ

2‖w̄i‖22 and γ
2‖cj‖

2
2,

the smooth part of the objective functions of the individual subproblems (RR+
1 ) and (RR2)

are strongly convex with parameters µ and γ, respectively. Consequently, Assumption 2 is
satisfied.

B.2.3 Assumptions in (Xu and Yin, 2012, Lem. 2.6)

Problem (P) also meets the assumptions in (Xu and Yin, 2012, Lem. 2.6) regarding the
Lipschitz continuity of the subproblems and the Kurdyka-Łojasiewicz inequality. Lemma 6
shows that f(x) = −

∑
(i,j)∈Ωobs

log p(Yi,j |w̄i, cj) + µ
2

∑
i ‖w̄i‖22 + γ

2

∑
j ‖cj‖22, satisfies the

Lipschitz continuous requirement in (Xu and Yin, 2012, Lemma 2.6). As shown in Lemma 7
for the probit case and as shown in (Xu and Yin, 2012, Section 2.2) for the logit case,
the negative log-likelihood term in (P) is real analytic, therefore also sub-analytic. All
the regularizer functions in F (x) defined in Theorem 2 are semi-algebraic and therefore
sub-analytic, a consequence of (Bolte et al., 2006, Section 2.1) and (Xu and Yin, 2012,
Section 2.2). Using (Fischer, 2008, Theorems 1.1 and 1.2), the objective function F (x) is
also sub-analytic, since all of its parts are sub-analytic and bounded below (non-negative),
therefore satisfying the Kurdyka-Łojasiewicz inequality at any point x, as shown in (Bolte
et al., 2006, Theorem 3.1). Finally, the SPARFA-M algorithm uses ωk−1

i ≡ 0 and ` =
min{µ, γ} where ωk−1

i and ` as defined in (Xu and Yin, 2012, Lemma 2.6).
Up to this point, we have shown that (P) satisfies all assumptions and requirements in

(Xu and Yin, 2012, Lemma 2.6). Now, SPARFA-M follows (Xu and Yin, 2012, Lemma 2.6)
in the sense that, if x0 is sufficiently close to some critical point x̂ of (P), (more specifically,
x0 ∈ B for some B ⊂ U where U is a neighborhood of x̂ in which Kurdyka-Łojasiewicz
inequality holds), then {xt} converges to a point in B. This establishes the convergence of
SPARFA-M to a local minimum point from certain starting points.

B.2.4 Global Convergence

Finally, we can use (Xu and Yin, 2012, Lemma 2.6) to establish global convergence of
SPARFA-M. It is obvious that the objective function (P) is bounded on any bounded set.
Hence, the sequence {xk} will always have a finite limit point and meet the assumptions in
(Xu and Yin, 2012, Theorem 2.8). The final statement of Theorem 2 now directly follows
from (Xu and Yin, 2012, Theorem 2.8). Moreover, if the starting point is in close proximity
to a global minimum, then SPARFA-M is guaranteed to converge to a global minimum.
This is a consequence of (Xu and Yin, 2012, Corollary 2.7).

Appendix C. Proof of Theorem 3

Proof To prove Theorem 3, we first define some notation. LetN (x|m, s) = 1√
2πs

e−(x−m)2/2s

define the normal PDF with mean m and variance s. Furthermore, let Exp(m|λ) = λe−λm,
m ≥ 0 define the PDF of the exponential distribution with rate parameter λ.

We are ultimately concerned with identifying whether the factor Wi,k is active given
our current beliefs about all other parameters in the model. Given the probit model, this
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is equivalent to determining whether or not an exponential random variable is present in
Gaussian noise. Let x|m, s ∼ N (0|m, s) with m ∼ rExp(m|λ) + (1− r) δ0 and δ0 the Dirac
delta function located at 0. The posterior distribution p(m = 0|x) can be derived via Bayes’
rule as follows:

p(m = 0|x) =
N (x|m = 0, s)(1− r)

N (x|m = 0, s)(1− r) + r
∫
N (x|m, s)Exp(m|λ)dm

,

=

N (x|0,s)∫
N (x|m,s) Exp(m|λ)dm

(1− r)
N (x|0,s)∫

N (x|m,s) Exp(m|λ)dm(1− r) + r
,

=

Exp(0|λ)N (x|0,s)∫
N (x|m,s) Exp(m|λ)dm(1− r)

Exp(0|λ)N (x|0,s)∫
N (x|m,s) Exp(m|λ)dm(1− r) + rExp(0|λ)

. (24)

Here, it is important to recognize that Exp(m|λ)N (x|m,s)∫
N (x|m,s) Exp(m|λ)dm

denotes the posterior under the
continuous portion of the prior (i.e., m 6= 0). Since the exponential prior we have chosen is
not conjugate to the normal likelihood, we must compute this distribution in closed form.
To this end, let N r(x|m, s, λ) ∝ N (x|m, s)Exp(m|λ) = C0e

−(x−m)2/2s−λm denote a rectified
normal distribution with normalization constant C0. Completing the square and carrying
out the integration, we find C0 = eλm−λ

2s/2

√
2πsΦ

(
m−λs√

s

) , which leads to

N r(x|m, s, λ) =
eλm−λ

2s/2

√
2πsΦ

(
m−λs√

s

)e−(x−m)2/2s−λm.

We can now rewrite (24) as

p(m = 0|x) =

N r(0|m̂,ŝ,λ)
Exp(0|λ) (1− r)

N r(0|m̂,ŝ,λ)
Exp(0|λ) (1− r) + r

or, alternatively, as

r̂ = p(m 6= 0|x) = 1− p(m = 0|x) =

Exp(0|λ)
N r(0|m̂,ŝ,λ)

Exp(0|λ)
N r(0|m̂,ŝ,λ) + 1−r

r

. (25)

All that remains now is to determine m̂ and ŝ in (25) for our full factor analysis sce-
nario. Recall that our probabilistic model corresponds to Z = WC + M. Further recall our
definition of the observation set Ωobs = {(i, j) : Yi,j is observed}. We can now calculate the
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posterior on each coefficient Wi,k 6= 0 as follows:

p(Wi,k|Z,C,µ)∝ p(Wi,k) p(Z|W−(i,k),C,µ)

∝ e−λWi,k e
− 1

2σ2

∑
{j:(i,j)∈Ωobs}((Zi,j−µi)−

∑K
k=1 Wi,kCk,j)

2

= e−λWi,k e
− 1

2σ2

∑
{j:(i,j)∈Ωobs}((Zi,j−µi)−

∑
k′ 6=kWi,k′Ck′,j−Wi,kCk,j)

2

∝ e−λWi,k e
− 1

2σ2

∑
{j:(i,j)∈Ωobs}(W

2
i,kC

2
k,j−2((Zi,j−µi)−

∑
k′ 6=kWi,k′Ck′,j)Wi,kCk,j)

∝ e−λWi,ke
−

∑
{j:(i,j)∈Ωobs}

C2
k,j

2σ2

(
Wi,k−

∑
{j:(i,j)∈Ωobs}

(
(Zi,j−µi)−

∑
k′ 6=kWi,k′Ck′,j

)
Ck,j∑

{j:(i,j)∈Ωobs}
C2
k,j

)2

,

(26)

where the last step is obtained by completing the square in Wi,k.
The final result in (26) implies that Wi,k ∼ N r(m̂, ŝ, λ), where

m̂ =

∑
{j:(i,j)∈Ωobs}

(
(Zi,j − µi)−

∑
k′ 6=kWi,k′Ck′,j

)
Ck,j∑

{j:(i,j)∈Ωobs}C
2
k,j

and ŝ = σ2∑
{j:(i,j)∈Ωobs}

C2
k,j

. Combining the results of (25) and (26), recognizing that σ2 = 1

in the standard probit model, and adopting the notation R̂i,k, M̂i,k and Ŝi,k for the values
of r̂, m̂ and ŝ corresponding to each Ŵi,k, furnishes the final sampling result.
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Abstract

We consider the problem of learning causal directed acyclic graphs from an observational
joint distribution. One can use these graphs to predict the outcome of interventional ex-
periments, from which data are often not available. We show that if the observational
distribution follows a structural equation model with an additive noise structure, the di-
rected acyclic graph becomes identifiable from the distribution under mild conditions. This
constitutes an interesting alternative to traditional methods that assume faithfulness and
identify only the Markov equivalence class of the graph, thus leaving some edges undirected.
We provide practical algorithms for finitely many samples, RESIT (regression with sub-
sequent independence test) and two methods based on an independence score. We prove
that RESIT is correct in the population setting and provide an empirical evaluation.

Keywords: causal inference, structural equation models, additive noise, identifiability,
causal minimality, Bayesian networks

1. Introduction

Many scientific questions deal with the causal structure of a data-generating process. E.g.,
if we know the reasons why an individual is more susceptible to a disease than others, we
can hope to develop new drugs in order to cure this disease or prevent its outbreak. Recent
results indicate that knowing the causal structure is also useful for classical machine learning
tasks. In the two variable case, for example, knowing which is cause and which is effect has

∗. Part of this work was done while JP and JMM were with the MPI Tübingen.
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implications for semi-supervised learning and covariate shift adaptation (Schölkopf et al.,
2012).

We consider a p-dimensional random vector X = (X1, . . . , Xp) with a joint distribution
L(X) and assume that there is a true acyclic causal graph G that describes the data gen-
erating process (see Section 1.3). In this work we address the following problem of causal
inference: given the distribution L(X) we try to infer the graph G. A priori, the causal
graph contains information about the physical process that cannot be found in properties
of the joint distribution. One therefore requires assumptions connecting these two worlds.
While traditional methods like PC, FCI (Spirtes et al., 2000) or score-based approaches
(e.g. Chickering, 2002), that are explained in more detail in Section 2, make assumptions
that enable us to recover the graph up to the Markov equivalence class, we investigate a
different set of assumptions. If the data have been generated by an additive noise model
(see Section 3), we will generically be able to recover the correct graph from the joint
distribution.

In the remainder of this section we set up the required notation and definitions for
graphs (Section 1.1), briefly introduce Judea Pearl’s do-notation (Section 1.2) and use it
to define our object of interest, a true causal graph (Section 1.3). We introduce structural
equation models (SEMs) in Section 1.4. After discussing existing methods in Section 2, we
provide the main results of this work in Section 3. We prove that for restricted additive noise
models, a special class of SEMs, one can identify the graph from the joint distribution. This
is possible not only for additive noise models (ANMs) but for all classes of SEMs that are
able to identify graphs from a bivariate distribution, meaning they can distinguish between
cause and effect. Section 4 proposes algorithms that can be used in practice, when instead
of the joint distribution, we are only given i.i.d. samples. These algorithms are tested in
Section 5.

This paper builds on the conference papers of Hoyer et al. (2009), Peters et al. (2011b)
and Mooij et al. (2009)1 but extends the material in several aspects. All deliberations
in Section 1.3 about the true causal graph and Example 10 are novel. The presentation
of the theoretical results in Section 3 is improved. In particular, we added the motivating
Example 26 and Propositions 4 and 29. Example 25 provides a non-identifiable case different
from the linear Gaussian example. Proposition 23 is based on Zhang and Hyvärinen (2009)
and contains important necessary conditions for the failure of identifiability. In Corollary 31
we present a novel identifiability result for a class of nonlinear functions and Gaussian
noise variables. Proposition 17 proves that causal minimality is satisfied if the structural
equations do not contain constant functions. Section 3.3 contains results that guarantee to
find the set of correct topological orderings when the assumption of causal minimality is
dropped. Theorem 34 proves a conjecture from Mooij et al. (2009) by showing that given a
regression and independence oracle the algorithm provided in Mooij et al. (2009) is correct.
We propose a new score function for estimating the true directed acyclic graph in Section 4.2
and present two corresponding score-based methods. We provide an extended section on
simulation experiments and discuss experiments on real data.

1. Parts of Sections 1 and 2 have been taken and modified from the PhD thesis of Peters (2012).
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1.1 Directed Acyclic Graphs

We start with some basic notation for graphs. Consider a finite family of random variables
X = (X1, . . . , Xp) with index set V := {1, . . . , p} (we use capital letters for random variables
and bold letters for sets and vectors). We denote their joint distribution by L(X). We write
pX1(x) or simply p(x) for the Radon-Nikodym derivative of L(X1) either with respect to
the Lebesgue or the counting measure and (sometimes implicitly) assume its existence. A
graph G = (V, E) consists of nodes V and edges E ⊆ V2 with (v, v) 6∈ E for any v ∈ V. In
a slight abuse of notation we identify the nodes (or vertices) j ∈ V with the variables Xj ,
the context should clarify the meaning. We also consider sets of variables S ⊆ X as a single
multivariate variable. We now introduce graph terminology that we require later. Most of
the definitions can be found in Spirtes et al. (2000); Koller and Friedman (2009); Lauritzen
(1996), for example.

Let G = (V, E) be a graph with V := {1, . . . , p} and corresponding random variables
X = (X1, . . . , Xp). A graph G1 = (V1, E1) is called a subgraph of G if V1 = V and E1 ⊆ E ;
we then write G1 ≤ G. If additionally, E1 6= E , we call G1 a proper subgraph of G.

A node i is called a parent of j if (i, j) ∈ E and a child if (j, i) ∈ E . The set of parents
of j is denoted by PAGj , the set of its children by CHGj . Two nodes i and j are adjacent if
either (i, j) ∈ E or (j, i) ∈ E . We call G fully connected if all pairs of nodes are adjacent.
We say that there is an undirected edge between two adjacent nodes i and j if (i, j) ∈ E
and (j, i) ∈ E . An edge between two adjacent nodes is directed if it is not undirected. We
then write i→ j for (i, j) ∈ E . Three nodes are called an immorality or a v-structure if
one node is a child of the two others that themselves are not adjacent. The skeleton of G
is the set of all edges without taking the direction into account, that is all (i, j), such that
(i, j) ∈ E or (j, i) ∈ E .

A path in G is a sequence of (at least two) distinct vertices i1, . . . , in, such that there
is an edge between ik and ik+1 for all k = 1, . . . , n − 1. If ik → ik+1 for all k we speak of
a directed path from i1 to in and call in a descendant of i1. We denote all descendants
of i by DEGi and all non-descendants of i, excluding i, by NDGi . In this work, i is neither
a descendant nor a non-descendant of itself. If ik−1 → ik and ik+1 → ik, ik is called a
collider on this path. G is called a partially directed acyclic graph (PDAG) if there
is no directed cycle, i.e., if there is no pair (j, k) such that there are directed paths from j
to k and from k to j. G is called a directed acyclic graph (DAG) if it is a PDAG and
all edges are directed.

In a DAG, a path between i1 and in is blocked by a set S (with neither i1 nor in
in this set) whenever there is a node ik, such that one of the following two possibilities
hold: 1. ik ∈ S and ik−1 → ik → ik+1 or ik−1 ← ik ← ik+1 or ik−1 ← ik → ik+1 Or 2.,
ik−1 → ik ← ik+1 and neither ik nor any of its descendants is in S. We say that two disjoint
subsets of vertices A and B are d-separated by a third (also disjoint) subset S if every path
between nodes in A and B is blocked by S. Throughout this work, ⊥⊥ denotes (conditional)
independence. The joint distribution L(X) is said to be Markov with respect to the
DAG G if

A,B d-sep. by C ⇒ A ⊥⊥ B |C
for all disjoint sets A,B,C. L(X) is said to be faithful to the DAG G if

A,B d-sep. by C ⇐ A ⊥⊥ B |C
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Figure 1: After fine-tuning the parameters for the two graphs, both models generate the
same joint distribution.

for all disjoint sets A,B,C. A distribution satisfies causal minimality with respect
to G if it is Markov with respect to G, but not to any proper subgraph of G. We de-
note by M(G) the set of distributions that are Markov with respect to G: M(G) :=
{L(X) : L(X) is Markov w.r.t. G} . Two DAGs G1 and G2 are Markov equivalent if
M(G1) = M(G2). This is the case if and only if G1 and G2 satisfy the same set of d-
separations, that means the Markov condition entails the same set of (conditional) inde-
pendence conditions. The set of all DAGs that are Markov equivalent to some DAG (a
so-called Markov equivalence class) can be represented by a completed PDAG. This
graph satisfies (i, j) ∈ E if and only if one member of the Markov equivalence class does.
Verma and Pearl (1991) showed that:

Lemma 1 Two DAGs are Markov equivalent if and only if they have the same skeleton
and the same immoralities.

Faithfulness is not very intuitive at first glance. We now give an example of a distribution
that is Markov but not faithful with respect to some DAG G1. This is achieved by making
two paths cancel each other and creating an independence that is not implied by the graph
structure.

Example 2 Consider the two graphs in Figure 1. Corresponding to the left graph we
generate a joint distribution by the following equations. X = NX , Y = aX + NY , Z =
bY + cX +NZ , with normally distributed noise variables NX ∼ N (0, σ2X), NY ∼ N (0, σ2Y )
and NZ ∼ N (0, σ2Z) that are jointly independent. This is an example of a linear Gaussian
structural equation model with graph G1 that we formally define in Section 1.4. Now, if
a · b+ c = 0, the distribution is not faithful with respect to G1 since we obtain X ⊥⊥ Z; more
precisely, it is not triangle-faithful (Zhang and Spirtes, 2008).

Correspondingly, we generate a distribution related to graph G2: X = ÑX , Y = ãX +
b̃Z + ÑY , Z = ÑZ , with all Ñ· ∼ N (0, τ2· ) jointly independent. If we choose τ2X = σ2X ,
ã = a, τ2Z = b2σ2Y + σ2Z , b̃ = (bσ2Y )/(b2σ2Y + σ2Z) and τ2Y = σ2Y − (b2σ4Y )/(b2σ2Y + σ2Z), both
models lead to the covariance matrix

Σ =

 σ2X aσ2X 0
aσ2X a2σ2X + σ2Y bσ2Y

0 bσ2Y b2σ2Y + σ2Z


and thus to the same distribution. It can be checked that the distribution is faithful with
respect to G2 if ã, b̃ 6= 0 and all τ̃· > 0.
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The distribution from Example 2 is faithful with respect to G2, but not with respect to
G1. Nevertheless, for both models, causal minimality is satisfied if none of the parameters
vanishes: the distribution is not Markov to any proper subgraph of G1 or G2 since removing
an arrow would correspond to a new (conditional) independence that does not hold in the
distribution. Note that G2 is not a proper subgraph of G1. In general, causal minimality is
weaker than faithfulness:

Remark 3 If L(X) is faithful with respect to G, then causal minimality is satisfied.

This is due to the fact that any two nodes that are not directly connected by an edge can
be d-separated. Another, equivalent formulation of causal minimality reads as follows:

Proposition 4 Consider the random vector X = (X1, . . . , Xp) and assume that the joint
distribution has a density with respect to a product measure. Suppose that L(X) is Markov
with respect to G. Then L(X) satisfies causal minimality with respect to G if and only if
∀Xj ∀Y ∈ PAGj we have that Xj 6⊥⊥ Y |PAGj \ {Y }.

Proof See Appendix A.1.

1.2 Intervention Distributions2

Given a directed acyclic graph (DAG) G, Pearl (2009) introduces the do-notation as a
mathematical description of interventional experiments. More precisely, do(Xj = p̃(xj))
stands for setting the variable Xj randomly according to the distribution p̃(xj), irrespective
of its parents, while not interfering with any other variable. Formally:

Definition 5 Let X = (X1, . . . , Xp) be a collection of variables with joint distribution L(X)
that we assume to be absolutely continuous with respect to the Lebesgue measure or the
counting measure (i.e., there exists a probability density function or a probability mass
function). Given a DAG G over X, we define the intervention distribution do(Xj = p̃(xj))
of X1, . . . , Xp by

p
(
x1, . . . , xp | do(Xj = p̃(xj))

)
:=

p∏
i 6=j

p(xi|xPAi
) · p̃(xj)

if p(x1, . . . , xp) > 0 and zero otherwise. Here p̃(xj) is either a probability density function
or a probability mass function. Similarly, we can intervene at different nodes at the same
time by defining the intervention distribution do(Xj = p̃(xj), j ∈ J) for J ⊆ V as

p
(
x1, . . . , xp | do(Xj = p̃(xj), j ∈ J)

)
:=
∏
i/∈J

p(xi|xPAi
) ·
∏
j∈J

p̃(xj)

if p(x1, . . . , xp) > 0 and zero otherwise.

2. Sections 1.2 and 1.3 are not essential for understanding the rest of the paper and can be skipped on first
reading.
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Here, xPAi
denotes the tuple of all xj for Xj being a parent of Xi in G. Pearl (2009)

introduces Definition 5 with the special case of p̃(xj) = δxj ,x̃j , where δxj ,x̃j = 1 if xj = x̃j
and δxj ,x̃j = 0 otherwise; this corresponds to a point mass at x̃j . For more details on soft
interventions, see Eberhardt and Scheines (2007). Note that in general:

p(x1, . . . , xp | do(Xj = x̃j)) 6= p(x1, . . . , xp |Xj = x̃j) .

The expression p
(
x1, . . . , xp | do(Xj = x̃j , j ∈ J)

)
yields a distribution over X1, . . . , Xp. If

we are only interested in computing the marginal p
(
xi | do(Xj = x̃j)), where Xi is not a

parent of Xj , we can use the parent adjustment formula (Pearl, 2009, Theorem 3.2.2)

p(xi | do(Xj = x̃j)) =
∑
xPA

j

p(xi | x̃j , xPAj
) p(xPAj

) . (1)

1.3 True Causal Graphs2

In this section we clarify what we mean by a true causal graph Gc. In short, we use this
term if the results of randomized studies are determined by Gc and the observational joint
distribution. This means that the graph and the observational joint distribution lead to
causal effects that one observes in practice. Two important restrictive assumptions that we
make throughout this work are acyclicity (the absence of directed cycles, in other words, no
causal feedback loops are allowed) and causal sufficiency (the absence of hidden variables
that are a common cause of at least two observed variables).

Definition 6 Assume we are given a distribution L(X) over X1, . . . , Xp and distributions
Ldo(Xj=p̃(xj),j∈J)(X) for all J ⊆ V = {1, . . . , p} (think of the variables Xj having been
randomized). We then call the graph Gc a true causal graph for these distributions if
• Gc is a directed acyclic graph;

• the distribution L(X) is Markov with respect to Gc;
• for all J ⊆ V and p̃(xj) with j ∈ J the distribution Ldo(Xj=p̃(xj),j∈J)(X) coincides with

p
(
x1, . . . , xp | do(Xj = p̃(xj), j ∈ J)

)
, computed from Gc as in Definition 5.

Definition 6 is purely mathematical if one considers Ldo(Xj=p̃(xj),j∈J)(X) as an abstract
family of given distributions. But it is a small step to make the relation to the “real
world”. We call Gc the true causal graph of a data generating process if it is the true causal
graph for the distributions L(X) and Ldo(Xj=p̃(xj),j∈J)(X), where the latter are obtained by
randomizing Xj according to p̃(xj). In some situations, the precise design of a randomized
experiment may not be obvious. While most people would agree on how to randomize
over medical treatment procedures, there is probably less agreement how to randomize over
the tolerance of a person (does this include other changes of his personality, too?). Only
sometimes, this problem can be resolved by including more variables and taking a less
coarse-grained point of view. We do not go into further detail since we believe that this
would require philosophical deliberations, which lie beyond the scope of this work. Instead,
we may explicitly add the requirement that “most people agree on what a randomized
experiment should look like in this context”.

In general, there can be more than one true causal DAG. If one requires causal mini-
mality, the true causal DAG is unique.
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Proposition 7 Assume L(X1, . . . , Xp) has a density and consider all true causal DAGs
G := {Gc,1, . . . ,Gc,m} of X1, . . . , Xp. Then there is a partial order on G using the subgraph
property ≤ as an ordering. This ordering has a least element Gc, i.e., Gc ≤ Gc,i for all i.
This element Gc is the unique true causal DAG such that L(X) satisfies causal minimality
with respect to Gc.

Proof See Appendix A.2

We now briefly comment on a true causal graph’s behavior when some of the variables
from the joint distribution are marginalized out.

Example 8 (i) If X ← Z → Y is the only true causal graph for X,Y and Z, there is
no true causal graph for the variables X and Y (the do-statements do not coincide).

(ii) Assume that the graph X → Y → Z with additional X → Z is the only true causal
graph for X,Y and Z and assume that L(X,Y, Z) is faithful with respect to this graph.
Then, the only true causal graph for the variables X and Z is X → Z.

(iii) If the situation is the same as in (ii) with the difference that X ⊥⊥ Z (i.e., L(X,Y, Z)
is not faithful with respect to the true causal graph), the empty graph and Z ← X are
also true causal graphs for X and Z.

Latent projections (Verma and Pearl, 1991) provide a formal way to obtain a true causal
graph for marginalization. Cases (ii) and (iii) show that there are no purely graphical
criteria that provide the minimal true causal graph described in Proposition 7.

The results presented in the remainder of this paper can be understood without causal
interpretation. Using these techniques to infer a true causal graph, however, requires the
assumption that such a true causal DAG Gc for the observed distribution of X1, . . . , Xp

exists. This includes the assumption that all “relevant” variables have been observed,
sometimes called causal sufficiency, and that there are no feedback loops.

Richardson and Spirtes (2002) introduce a representation of graphs (so-called Maximal
Ancestral Graphs, or MAGs) with hidden variables that is closed under marginalization
and conditioning. The FCI algorithm (Spirtes et al., 2000) exploits the conditional in-
dependences in the data to partially reconstruct the graph. Other work concentrates on
hidden variables in structural equation models (e.g., Hoyer et al., 2008; Janzing et al., 2009;
Silva and Ghahramani, 2009).

1.4 Structural Equation Models

A structural equation model (SEM) (also called a functional model) is defined as a tuple
(S,L(N)), where S = (S1, . . . , Sp) is a collection of p equations

Sj : Xj = fj(PAj , Nj) , j = 1, . . . , p (2)

and L(N) = L(N1, . . . , Np) is the joint distribution of the noise variables, which we require
to be jointly independent, i.e., L(N) is a product distribution. We consider SEMs only
for real-valued random variables X1, . . . , Xp. The graph of a structural equation model is
obtained simply by drawing direct edges from each parent to its direct effects, i.e., from
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each variable Xk occurring on the right-hand side of equation (2) to Xj . We henceforth
assume this graph to be acyclic. According to the notation defined in Section 1.1, PAj are
the parents of Xj .

The PAj can be considered as the direct causes of Xj . An SEM specifies how the PAj

affect Xj . Note that in physics (chemistry, biology, . . . ), we would usually expect that
such causal relationships occur in time, and are governed by sets of coupled differential
equations. Under certain assumptions such as stable equilibria, one can derive an SEM
that describes how the equilibrium states of such a dynamical system will react to physical
interventions on the observables involved (Mooij et al., 2013). We do not deal with these
issues in the present paper but take the SEM as our starting point instead. We formulate
the identifiability results without the notion of causality.

Pearl (2009) shows in Theorem 1.4.1 that the law L(X) generated by an SEM is Markov
with respect to its graph. Reversely, there always exists an SEM that models a given
distribution.3

Proposition 9 Consider X1, . . . , Xp and let L(X) have a strictly positive density with
respect to the Lebesgue measure and assume it is Markov with respect to G. Then there
exists an SEM (S,L(N)) with graph G that generates the distribution L(X).

Proof See Appendix A.3.

Structural equation models contain strictly more information than their corresponding
graph and law and hence also more information than the family of all intervention dis-
tributions together with the observational distribution. This information sometimes helps
to answer counterfactual questions, as shown in the following example.

Example 10 Let N1, N2 ∼ Ber(0.5) and N3 ∼ U({0, 1, 2}), such that the three variables
are jointly independent. That is, N1, N2 have a Bernoulli distribution with parameter 0.5
and N3 is uniformly distributed on {0, 1, 2}. We define two different SEMs, first consider:

SA =


X1 = N1

X2 = N2

X3 = (1N3>0 ·X1 + 1N3=0 ·X2) · 1X1 6=X2 +N3 · 1X1=X2 .

If X1 and X2 have different values, depending on N3 we either choose X3 = X1 or X3 = X2.
Otherwise X3 = N3. Now, SB differs from SA only in the latter case:

SB =


X1 = N1

X2 = N2

X3 = (1N3>0 ·X1 + 1N3=0 ·X2) · 1X1 6=X2 + (2−N3) · 1X1=X2 .

It can be checked that both SEMs generate the same observational distribution, which sat-
isfies causal minimality with respect to the graph X1 → X3 ← X2. They also generate the
same intervention distributions, for any possible intervention. But the two models differ in
a counterfactual statement.4 Suppose, we have seen a sample (X1, X2, X3) = (1, 0, 0) and

3. A similar but weaker statement than Proposition 9 can be found in Druzdzel and van Leijen (2001);
Janzing and Schölkopf (2010).

4. Here, we make use of Judea Pearl’s definition of counterfactuals (Pearl, 2009).
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we are interested in the counterfactual question, what X3 would have been if X1 had been
0. From both SA and SB it follows that N3 = 0, and thus the two SEMs “predict” different
values for X3 under a counterfactual change of X1.

If we want to use an estimated SEM to predict counterfactual questions, this example
shows that we require assumptions that let us distinguish between SA or SB. In this work
we exploit the additive noise assumption to infer the structure of an SEM. We do not claim
that we can predict counterfactual statements.

Structural equation models have been used for a long time in fields like agriculture or
social sciences (e.g., Wright, 1921; Bollen, 1989). Model selection, for example, was done
by fitting different structures that were considered as reasonable given the prior knowledge
about the system. These candidate structures were then compared using goodness of fit
tests. In this work we instead consider the question of identifiability, which has not been
addressed until more recently.

Problem 11 (population case) We are given a distribution L(X) = L(X1, . . . , Xp) that
has been generated by an (unknown) structural equation model with graph G0; in particular,
L(X) is Markov with respect to G0. Can the (observational) distribution L(X) be generated
by a structural equation model with a different graph G 6= G0? If not, we call G0 identifiable
from L(X).

In general, G0 is not identifiable from L(X): the joint distribution L(X) is certainly Markov
with respect to a lot of different graphs, e.g., to all fully connected acyclic graphs. Propo-
sition 9 states the existence of corresponding SEMs. What can be done to overcome this
indeterminacy? The hope is that by using additional assumptions one obtains restricted
models, in which we can identify the graph from the joint distribution. Considering graph-
ical models, we see in Section 2.1 how the assumption that L(X) is Markov and faithful
with respect to G0 leads to identifiability of the Markov equivalence class of G0. Considering
SEMs, we see in Section 3 that additive noise models as a special case of restricted SEMs
even lead to identifiability of the correct DAG. Also Section 2.3 contains such a restriction
based on SEMs.

2. Alternative Methods

We briefly describe some existing methods and provide references for more details.

2.1 Estimating the Markov Equivalence Class: Independence-Based Methods

Conditional independence-based methods like the PC algorithm and the FCI algorithm
(Spirtes et al., 2000) assume that L(X) is Markov and faithful with respect to the correct
graph G0 (that means all conditional independences in the joint distribution are entailed by
the Markov condition, cf. Section 1.1). Since both assumptions put restrictions only on the
conditional independences in the joint distribution, these methods are not able to distinguish
between two graphs that entail exactly the same set of (conditional) independences, i.e.,
between Markov equivalent graphs. Since many Markov equivalence classes contain more
than one graph, conditional independence-based methods thus usually leave some arrows
undirected and cannot uniquely identify the correct graph.
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The first step of the PC algorithm determines the variables that are adjacent. One
therefore has to test whether two variables are dependent given any other subset of variables.
The PC algorithm exploits a very clever procedure to reduce the size of the condition
set. In the worst case, however, one has to perform conditional independence tests with
conditioning sets of up to p− 2 variables (where p is the number of variables in the graph).
Although there is recent work on kernel-based conditional independence tests (Fukumizu
et al., 2008; Zhang et al., 2011), such tests are difficult to perform in practice if one does not
restrict the variables to follow a Gaussian distribution, for example (e.g., Bergsma, 2004).

To prove consistency of the PC algorithm one does not only require faithfulness, but
strong faithfulness (Zhang and Spirtes, 2003; Kalisch and Bühlmann, 2007). Uhler et al.
(2013) argue that this is a restrictive condition. Since parts of faithfulness can be tested
given the data (Zhang and Spirtes, 2008), the condition may be weakened.

From our perspective independence-based methods face the following challenges: (1)
We can identify the correct DAG only up to Markov equivalence classes. (2) Conditional
independence testing, especially with a large conditioning set, is difficult in practice. (3)
Simulation experiments suggest, that in many cases, the distribution is close to unfaithful-
ness. In these cases there is no guarantee that the inferred graph(s) will be close to the
original one.

2.2 Estimating the Markov Equivalence Class: Score-Based Methods

Although the roots for score-based methods for causal inference may date back even further,
we mainly refer to Geiger and Heckerman (1994), Heckerman (1997) and Chickering (2002)
and references therein. Given the data D from a vector X of variables, i.e., n i.i.d. samples,
the idea is to assign a score S(D,G) to each graph G and search over the space of DAGs for
the best scoring graph:

Ĝ := argmax
G DAG over X

S(D,G) . (3)

There are several possibilities to define such a scoring function. Often a parametric model
is assumed (e.g., linear Gaussian equations or multinomial distributions), which introduces
a set of parameters θ ∈ Θ.

From a Bayesian point of view, we may define priors ppr(G) and ppr(θ) over DAGs and
parameters and consider the log posterior as a score function, or equivalently (note that
p(D) is constant over all DAGs):

S(D,G) := log ppr(G) + log p(D|G) ,

where p(D|G) is the marginal likelihood

p(D|G) =

∫
Θ
p(D|G, θ) · ppr(θ) dθ.

In this case, Ĝ defined in (3) is the mode of the posterior distribution, which is usually called
the maximum a posteriori (or MAP) estimator. Instead of a MAP estimator, one may be
interested in the full posterior distribution over DAGs. This distribution can subsequently
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be averaged over all graphs to get a posterior of the hypothesis about the existence of a
specific edge, for example.

In the case of parametric models, we call two graphs G1 and G2 distribution equivalent
if for each parameter θ1 ∈ Θ1 there is a corresponding parameter θ2 ∈ Θ2, such that
the distribution obtained from G1 in combination with θ1 is the same as the distribution
obtained from graph G2 with θ2, and vice versa. It is known that in the linear Gaussian case
(or for unconstrained multinomial distributions) two graphs are distribution-equivalent if
and only if they are Markov equivalent. One may therefore argue that p(D|G1) and p(D|G2)
should be the same for Markov equivalent graphs G1 and G2. Heckerman and Geiger (1995)
discuss how to choose the prior over parameters accordingly.

Instead, we may consider the maximum likelihood estimator θ̂ in each graph and define
a score function by using a penalty, e.g., the Bayesian Information Criterion (BIC):

S(D,G) = log p(D|θ̂,G)− d

2
log n ,

where n is the sample size and d the dimensionality of the parameter θ.
Since the search space of all DAGs is growing super-exponentially in the number of vari-

ables (e.g., Chickering, 2002), greedy search algorithms are applied to solve equation (3):
at each step there is a candidate graph and a set of neighboring graphs. For all these neigh-
bors one computes the score and considers the best-scoring graph as the new candidate. If
none of the neighbors obtains a better score, the search procedure terminates (not knowing
whether one obtained only a local optimum). Clearly, one therefore has to define a neigh-
borhood relation. Starting from a graph G, we may define all graphs as neighbors from G
that can be obtained by removing, adding or reversing one edge. In the linear Gaussian
case, for example, one cannot distinguish between Markov equivalent graphs. It turns out
that in those cases it is beneficial to change the search space to Markov equivalence classes
instead of DAGs. The greedy equivalence search (GES) (Meek, 1997; Chickering, 2002)
starts with the empty graph and consists of two-phases. In the first phase, edges are added
until a local maximum is reached; in the second phase, edges are removed until a local
maximum is reached, which is then given as an output of the algorithm. Chickering (2002)
proves consistency of this method by using consistency of the BIC (Haughton, 1988).

2.3 Estimating the DAG: LiNGAM

Kano and Shimizu (2003) and Shimizu et al. (2006) propose an inspiring method exploiting
non-Gaussianity of the data.5 Although their work covers the general case, the idea is
maybe best understood in the case of two variables:

Example 12 Suppose
Y = φX +N, N ⊥⊥ X ,

where X and N are normally distributed. It is easy to check that

X = φ̃Y + Ñ , Ñ ⊥⊥ Y .

with φ̃ = φvar(X)
φ2var(X)+σ2 6= 1

φ and Ñ = X − φ̃Y .

5. A more detailed tutorial can be found on http://www.ar.sanken.osaka-u.ac.jp/~sshimizu/papers/

Shimizu13BHMK.pdf.
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If we consider non-Gaussian noise, however, the structural equation model becomes identi-
fiable.

Proposition 13 Let X and Y be two random variables, for which

Y = φX +N, N ⊥⊥ X, φ 6= 0

holds. Then we can reverse the process, i.e., there exists ψ ∈ R and a noise Ñ , such that

X = ψY + Ñ , Ñ ⊥⊥ Y ,

if and only if X and N are Gaussian distributed.

Shimizu et al. (2006) were the first to report this result. They prove it even for more than
two variables using Independent Component Analysis (ICA) (Comon, 1994, Theorem 11),
which itself is proved using the Darmois-Skitovič theorem (Skitovič, 1954, 1962; Darmois,
1953). Alternatively, Proposition 13 can be proved directly using the Darmois-Skitovič
theorem (e.g., Peters, 2008, Theorem 2.10).

Theorem 14 (Shimizu et al., 2006) Assume a linear SEM with graph G0

Xj =
∑

k∈PA
G0
j

βjkXk +Nj , j = 1, . . . , p , (4)

where all Nj are jointly independent and non-Gaussian distributed. Additionally, for each
j ∈ {1, . . . , p} we require βjk 6= 0 for all k ∈ PAG0j . Then, the graph G0 is identifiable from
the joint distribution.

The authors call this model a linear non-Gaussian acyclic model (LiNGAM) and provide
a practical method based on ICA that can be applied to a finite amount of data. Later,
improved versions of this method have been proposed in Shimizu et al. (2011); Hyvärinen
and Smith (2013).

2.4 Estimating the DAG: Gaussian SEMs with Equal Error Variances

There is another deviation from linear Gaussian SEMs that makes the graph identifiable.
Peters and Bühlmann (2014) show that restricting the noise variables to have the same
variance is sufficient to recover the graph structure.

Theorem 15 (Peters and Bühlmann, 2014) Assume an SEM with graph G0

Xj =
∑

k∈PA
G0
j

βjkXk +Nj , j = 1, . . . , p , (5)

where all Nj are i.i.d. and follow a Gaussian distribution. Additionally, for each j ∈
{1, . . . , p} we require βjk 6= 0 for all k ∈ PAG0j . Then, the graph G0 is identifiable from the
joint distribution.
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For estimating the coefficients βjk and the error variance σ2, Peters and Bühlmann (2014)
propose to use a penalized maximum likelihood method (BIC). For optimization they pro-
pose a greedy search algorithm in the space of DAGs. Rescaling the variables changes the
variance of the error terms. Therefore, in many applications model (5) cannot be sensibly
applied. The BIC criterion, however, always allows us to compare the method’s score with
the score of a linear Gaussian SEM that uses more parameters and does not make the
assumption of equal error variances.

3. Identifiability of Continuous Additive Noise Models

Recall that equation (2) defines the general form of an SEM: Xj = fj(PAj , Nj) , j = 1, . . . , p
with jointly independent variables Ni. We have seen that these models are too general to
identify the graph (Proposition 9). It turns out, however, that constraining the function
class leads to identifiability. As a first step we restrict the form of the function to be additive
with respect to the noise variable. (Throughout this section we assume that all random
variables are absolutely continuous with respect to the Lebesgue measure. Peters et al.
(2011a) provide an extension for variables that are absolutely continuous with respect to
the counting measure.)

Definition 16 We define a continuous additive noise model (ANM) as a tuple (S,L(N)),
where S = (S1, . . . , Sp) is a collection of p equations

Sj : Xj = fj(PAj) +Nj , j = 1, . . . , p , (6)

where the PAj correspond to the direct parents of Xj, and the noise variables Nj have a
strictly positive density (with respect to the Lebesgue measure) and are jointly independent.
Furthermore, we assume that the corresponding graph is acyclic.

For these models causal minimality reduces to the condition that each function fj is not
constant in any of its arguments:

Proposition 17 Consider a distribution generated by a model (6) and assume that the
functions fj are not constant in any of its arguments, i.e., for all j and i ∈ PAj there are
some xPAj\{i} and some xi 6= x′i such that

fj(xPAj\{i}, xi) 6= fj(xPAj\{i}, x
′
i) .

Then the joint distribution satisfies causal minimality with respect to the corresponding
graph. Conversely, if there is a j and i such that fj(xPAj\{i}, ·) is constant, causal mini-
mality is violated.

Proof See Appendix A.4

Linear functions and Gaussian variables identify only the correct Markov equivalence class
and not necessarily the correct graph. In the remainder of this section we establish re-
sults showing that this is an exceptional case. We develop conditions that guarantee the
identifiability of the DAG. Proposition 21 indicates that this condition is rather weak.
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3.1 Bivariate Additive Noise Models

We now add another assumption about the form of the structural equations.

Definition 18 Consider an additive noise model (6) with two variables, i.e., the two equa-
tions Xi = Ni and Xj = fj(Xi) +Nj with {i, j} = {1, 2}. We call this SEM an identifiable
bivariate additive noise model if the triple (fj ,L(Xi),L(Nj)) satisfies Condition 19.

Condition 19 The triple (fj ,L(Xi),L(Nj)) does not solve the following differential equa-
tion for all xi, xj with ν ′′(xj − f(xi))f

′(xi) 6= 0:

ξ′′′ = ξ′′
(
−ν
′′′f ′

ν ′′
+
f ′′

f ′

)
− 2ν ′′f ′′f ′ + ν ′f ′′′ +

ν ′ν ′′′f ′′f ′

ν ′′
− ν ′(f ′′)2

f ′
, (7)

Here, f := fj, and ξ := log pXi and ν := log pNj are the logarithms of the strictly positive
densities. To improve readability, we have skipped the arguments xj − f(xi), xi, and xi for
ν, ξ, and f and their derivatives, respectively.

Zhang and Hyvärinen (2009) even allow for a bijective transformation of the data, i.e.,
Xj = gj(fj(Xi) + Nj) and obtain a similar differential equation as (7). As the name in
Definition 18 already suggests, we have identifiability for this class of SEMs.

Theorem 20 Let L(X) = L(X1, X2) be generated by an identifiable bivariate additive noise
model with graph G0 and assume causal minimality, i.e., a non-constant function fj (Propo-
sition 17). Then, G0 is identifiable from the joint distribution.

Proof The proof of Hoyer et al. (2009) is reproduced in Appendix A.5.

Intuitively speaking, we expect a “generic” triple (fj ,L(Xi),L(Nj)) to satisfy Condition 19.
The following proposition presents one possible formalization. After fixing (fj ,L(Nj)) we
consider the space of all distributions L(Xi) such that Condition 19 is violated. This space is
contained in a three dimensional space. Since the space of continuous distributions is infinite
dimensional, we can therefore say that Condition 19 is satisfied for “most distributions”
L(Xi).

Proposition 21 If for a fixed pair (fj ,L(Nj)) there exists xj ∈ R such that ν ′′(xj −
f(xi))f

′(xi) 6= 0 for all but a countable set of points xi ∈ R, the set of all L(Xi) for which
(fj ,L(Xi),L(Nj)) does not satisfy Condition 19 is contained in a 3-dimensional space.

Proof See Appendix A.6.

The condition ν ′′(xj − f(xi))f
′(xi) 6= 0 holds for all xi if there is no interval where f is

constant and the logarithm of the noise density is not linear, for example. In the case
of Gaussian variables, the differential equation (7) simplifies. We thus have the following
result.

Corollary 22 If Xi and Nj follow a Gaussian distribution and (fj ,L(Xi),L(Nj)) does not
satisfy Condition 19, then fj is linear.
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Proof See Appendix A.7.

Although non-identifiable cases are rare, the question remains when identifiability is vi-
olated. Zhang and Hyvärinen (2009) prove that non-identifiable additive noise models
necessarily fall into one out of five classes.

Proposition 23 (Zhang and Hyvärinen, 2009) Consider Xj = fj(Xi) +Nj with fully
supported noise variable Nj that is independent of Xi and three times differentiable function

fj. Let further d
dxi
fj(xi)

d2

dx2j
log pNj (xj) = 0 only at finitely many points (xi, xj). If there is

a backward model, i.e., we can write Xi = gi(Xj) + Mi with Mi independent of Xj, then
one of the following must hold.

I. Xi is Gaussian, Nj is Gaussian and fj is linear.

II. Xi is log-mix-lin-exp, Nj is log-mix-lin-exp and fj is linear.

III. Xi is log-mix-lin-exp, Nj is one-sided asymptotically exponential and fj is strictly
monotonic with f ′j(xi)→ 0 as xi →∞ or as xi → −∞.

IV. Xi is log-mix-lin-exp, Nj is generalized mixture of two exponentials and fj is strictly
monotonic with f ′j(xi)→ 0 as xi →∞ or as xi → −∞.

V. Xi is generalized mixture of two exponentials, Nj is two-sided asymptotically exponen-
tial and fj is strictly monotonic with f ′j(xi)→ 0 as xi →∞ or as xi → −∞.

Precise definitions can be found in Appendix A.8. In particular, we obtain identifiability
whenever the function fj is not injective. Proposition 23 states that belonging to one of
these classes is a necessary condition for non-identifiability. We now show sufficiency for
two classes. The linear Gaussian case is well-known and easy to prove.

Example 24 Let X2 = aX1+N2 with independent N2 ∼ N (0, σ2) and X1 ∼ N (0, τ2). We
can then consider all variables in L2 and project X1 onto X2. This leads to an orthogonal
decomposition X1 = ãX2+Ñ1. Since for jointly Gaussian variables uncorrelatedness implies
independence, we obtain a backward additive noise model. Figure 2 (left) shows the joint
density and the functions for the forward and backward model.

We also give an example of a nonidentifiable additive noise model with non-Gaussian dis-
tributions; the forward model is described by case II, and the backward model by case IV:

Example 25 Let X2 = aX1 + b+N2 with independent log-mix-lin-exp N2 and X1, i.e., we
have the log-densities

ξ(x) = log pX1(x) = c1 exp(c2x) + c3x+ c4

and
ν(n) = log pN2(n) = γ1 exp(γ2n) + γ3n+ γ4 .

Then X2 is a generalized mixture of exponential distributions. If and only if c2 = −aγ2
and c3 6= aγ3 we obtain a valid backward model X1 = f̃1(X2) + Ñ1 with log-mix-lin-exp
Ñ1. Again, Figure 2 (right) shows the joint distribution over X1 and X2 and forward and
backward functions.
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Figure 2: Joint density over X1 and X2 for two non-identifiable examples. The left panel
shows Example 24 (linear Gaussian case) and the right panel shows Example 25
(the latter plot is based on kernel density estimation). The blue function corre-
sponds to the forward model X2 = f2(X1)+N2, the red function to the backward
model X1 = f̃1(X2) + Ñ1.

Proof See Appendix A.9.

Example 25 shows how parameters of function, input and noise distribution have to be
“fine-tuned” to yield non-identifiability (Janzing and Steudel, 2010).

It can be shown that bivariate identifiability even holds generically when feedback is
allowed (i.e., if both X → Y and Y → X), at least when assuming noise and input
distributions to be Gaussian (Mooij et al., 2011).

3.2 From Bivariate to Multivariate Models

It turns out that Condition 19 also suffices to prove identifiability in the multivariate case.
Assume we are given p structural equations Xj = fj(PAj) + Nj as in (6). If we fix all
arguments of the functions fj except for one parent and the noise variable, we obtain a
bivariate model. One may expect that it suffices to put restrictions like Condition 19 on
this triple of function, input and noise distribution. This is not the case.

Example 26 Consider the following SEM

X1 = N1, X2 = f2(X1) +N2, X3 = f3(X1) + a ·X2 +N3

with N1 ∼ tν=3, N2 ∼ N (0, σ22) and N3 ∼ N (0, σ23), i.e., N1 is t-distributed with 3 degrees
of freedom and N2 and N3 are normally distributed. X2 and X3 are non-Gaussian but

X3 |X1=x1 = c+ a ·X2 |X1=x1 +N3

is a linear Gaussian equation for all x1. We can revert this equation and obtain the same
joint distribution by an SEM of the form

X1 = M1, X2 = g2(X1) + b ·X3 +M2, X3 = g3(X1) +M3 ,
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for some g1, g2 and M1 ∼ tν=3, M2 ∼ N (0, σ̃22) and M3 ∼ N (0, σ̃23). Thus, the DAG is not
identifiable from the joint distribution.

Instead, we need to put restrictions on conditional distributions.

Definition 27 Consider an additive noise model (6) with p variables. We call this SEM
a restricted additive noise model if for all j ∈ V, i ∈ PAj and all sets S ⊆ V with
PAj \ {i} ⊆ S ⊆ NDj \ {i, j}, there is an xS with pS(xS) > 0, s.t.(

fj(xPAj\{i}, ·︸︷︷︸
Xi

),L(Xi |XS = xS),L(Nj)
)

satisfies Condition 19. Here, the underbrace indicates the input component of fj for variable
Xi. In particular, we require the noise variables to have non-vanishing densities and the
functions fj to be continuous and three times continuously differentiable.

Assuming causal minimality, we can identify the structure of the SEM from the distribution.

Theorem 28 Let L(X) = L(X1, . . . , Xp) be generated by a restricted additive noise model
with graph G0 and let L(X) satisfy causal minimality with respect to G0, i.e., the functions
fj are not constant (Proposition 17). Then, G0 is identifiable from the joint distribution.

Proof See Appendix A.11.

Our proof of Theorem 28 contains a graphical statement that turns out to be a main
argument for proving identifiability for Gaussian models with equal error variances (Peters
and Bühlmann, 2014). We thus state it explicitly as a proposition.

Proposition 29 Let G and G′ be two different DAGs over variables X.

(i) Assume that L(X) has a strictly positive density and satisfies the Markov condition
and causal minimality with respect to G and G′. Then there are variables L, Y ∈ X
such that for the sets Q := PAGL \ {Y }, R := PAG

′

Y \ {L} and S := Q ∪R we have

• Y → L in G and L→ Y in G′

• S ⊆ NDGL \ {Y } and S ⊆ NDG
′

Y \ {L}

(ii) In particular, if L(X) is Markov and faithful with respect to G and G′ (i.e., both graphs
belong to the same Markov equivalence class), there are variables L, Y such that

• Y → L in G and L→ Y in G′

• PAGL \ {Y } = PAG
′

Y \ {L}

Proof See Appendix A.12.

If the distribution is Markov and faithful with respect to the underlying graph it is known
that we can recover the correct Markov equivalence class. Chickering (1995) proves that
two graphs within this Markov equivalence class can be transformed into each other by a
sequence of so-called covered edge reversals. This result implies part (ii) of the proposition.
Part (i) establishes a similar statement when replacing faithfulness by causal minimality.

Although Theorem 28 is stated for additive noise models, it can be seen as an example
of a more general principle.
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Remark 30 Theorem 28 is not limited to restricted additive noise models. Whenever we
have a restriction like Condition 19 that ensures identifiability in the bivariate case (The-
orem 20), the multivariate version (Theorem 28) remains valid. The proof we provide in
the appendix stays exactly the same. The algorithms in Section 4, however, use standard
regression methods and therefore rely on the additive noise assumption.

The result can therefore be used to prove identifiability of SEMs that are restricted to
discrete additive noise models (Peters et al., 2011a) or post-nonlinear additive noise models
(Zhang and Hyvärinen, 2009). In the latter model class we allow a bijective nonlinear
distortion: Xj = gj

(
fj(PAj) + Nj

)
. These models allow for more complicated functional

relationships but are harder to fit from empirical data than the additive noise models
considered in this work.

We now state a specific identifiability result for Gaussian noise that we believe to consti-
tute an important model class for applications. Tamada et al. (2011b) have already used this
result for structure learning without giving an identifiability result (see also Tamada et al.,
2011a). More recently, Bühlmann et al. (2013) investigate model (8) in a high-dimensional
context. A bivariate version of the following corollary can be found as Lemma 6 in Zhang
and Hyvärinen (2009).

Corollary 31 (i) Let L(X) = L(X1, . . . , Xp) be generated by an SEM with

Xj = fj(PAj) +Nj ,

with normally distributed noise variables Nj ∼ N (0, σ2j ) and three times differentiable
functions fj that are not linear in any component: denote the parents PAj of Xj

by Xk1 , . . . , Xk`, then the function fj(xk1 , . . . , xka−1 , ·, xka+1 , . . . , xk`) is assumed to be
nonlinear for all a and some xk1 , . . . , xka−1 , xka+1 , . . . , xk` ∈ R`−1.

(ii) As a special case, let L(X) = L(X1, . . . , Xp) be generated by an SEM with

Xj =
∑

k∈PAj

fj,k(Xk) +Nj , (8)

with normally distributed noise variables Nj ∼ N (0, σ2j ) and three times differentiable,
nonlinear functions fj,k.

In both cases (i) and (ii), we can identify the corresponding graph G0 from the distribution
L(X). The statements remain true if the noise distributions for source nodes, i.e., nodes
with no parents, are allowed to have a non-Gaussian density with full support on the real
line R (the proof remains identical).

Proof See Appendix A.13.

Additive noise models as in (8), for which the structural equations are additive in the
parents (but the noise does not need to be Gaussian) are called causal additive models
(CAMs), see Bühlmann et al. (2013).

Theorem 28 requires the positivity of densities in order to make use of the intersection
property of conditional independence. Peters (2014) shows that the intersection property
still holds under weaker assumptions and discusses fundamental limits of causal inference
when positivity is violated.
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3.3 Estimating the Topological Order

We now investigate the case when we drop the assumption of causal minimality. Assume
therefore that we are given a distribution L(X) from an additive noise model with graph G0.
We cannot recover the correct graph G0 because we can always add edges i→ j or remove
edges that “do not have any effect” without changing the distribution. This is formalized
by the following lemma. (This lemma may be useful in more general contexts, other than
additive noise models, too.)

Lemma 32 Let L(X) be generated by an additive noise model with graph G0.

(a) For each supergraph G ≥ G0 there is an additive noise model that leads to the distri-
bution L(X).

(b) For each subgraph G ≤ G0 such that L(X) is Markov with respect to G there is an
additive noise model that leads to the distribution L(X). Furthermore, there is an
additive noise model with unique graph Gmin

0 ≤ G0 that leads to L(X) and satisfies
causal minimality.

Proof See Appendix A.14.

Despite this indeterminacy we can still recover the correct order of the variables. Given a
permutation π ∈ Sp on {1, . . . , p} we therefore define the fully connected DAG Gfullπ by the
DAG that contains all edges π(i)→ π(j) for i < j.

As a direct consequence of Theorem 28 and Lemma 32 we have the following result.

Corollary 33 Let L(X) = L(X1, . . . , Xp) be generated by an additive noise model with
graph G0. Assume that the SEM corresponding to the minimal graph Gmin

0 defined as in
Lemma 32 (b) is a restricted additive noise model. Consider an ordering π and a restricted

ANM with corresponding graph Gfull, min
π (Lemma 32 (b)) that generates the distribution

L(X). Theorem 28 implies that Gfull, min
π = Gmin

0 . In this sense the set of true orderings

Π0 := {π ∈ Sp | Gfullπ ≥ Gmin
0 }

is identifiable from L(X).

This result is useful, for example, if the search over structures is performed in the space of
permutations rather than in the space of DAGs (e.g. Friedman and Koller, 2003; Teyssier
and Koller, 2005; Bühlmann et al., 2013).

4. Algorithms

The theoretical results do not imply an algorithm for finitely many data that is either
computationally or statistically efficient. In this section we propose an algorithm called
RESIT that is based on independence-tests and two simple algorithms that make use of an
independence score. We prove correctness of RESIT in the population case.
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4.1 Regression with Subsequent Independence Test (RESIT)

In practice, we are given i.i.d. data from the joint distribution and try to estimate the
corresponding DAG. The following method is based on the fact that for each node Xi the
corresponding noise variable Ni is independent of all non-descendants of Xi. In particular,
for each sink node Xi we have that Ni is independent of X \ {Xi}. We therefore propose
an iterative procedure: in each step we identify and disregard a sink node. This is done by
regressing each of the remaining variables on all other remaining variables and measuring
the independence between the residuals and those other variables. The variable leading to
the least dependent residuals is considered the sink node (Algorithm 1, lines 4− 13). This
first phase of the procedure yields a topological ordering or a fully connected DAG (see
Section 3.3). In the second phase we visit every node and eliminate incoming edges until
the residuals are not independent anymore, see Algorithm 1, lines 15− 22.

The procedure can make use of any regression method and dependence measure, in
this work we choose the p-value of the HSIC independence test (Gretton et al., 2008) as a
dependence measure. Under independence, Gretton et al. (2008) provide an asymptotically
correct null distribution for the test statistic times sample size. (We use moment matching
to approximate this distribution by a gamma distribution.) Since under dependence the test
statistic is guaranteed to converge to a value different from zero, we know that the p-value
converges to zero only for dependence. As a regression method we choose linear regression,
gam regression (R package mgcv) or Gaussian process regression (R package gptk).

Algorithm 1 is a slightly modified version of the one proposed in Mooij et al. (2009). In
this work, we always want to obtain a graph estimate; we thus consider the node with the
least dependent residuals as being the sink node, instead of stopping the search when no
independence hypothesis is accepted as in Mooij et al. (2009).

Given that we have infinite data, a consistent non-parametric regression method and a
perfect independence test (“independence oracle”), RESIT is correct.

Theorem 34 Assume L(X) = L(X1, . . . , Xp) is generated by a restricted additive noise
model with graph G0 and assume that L(X) satisfies causal minimality with respect to G0.
Then, RESIT used with a consistent non-parametric regression method and an independence
oracle is guaranteed to find the correct graph G0 from the joint distribution L(X).

Proof See Appendix A.15

RESIT performs O(p2) independence tests, which is polynomial in the number of nodes.
In phase 2 of the algorithm, the removal of superfluous edges costs O(p). Both the inde-
pendence test and the variable selection method may scale with the sample size, of course.
RESIT’s polynomial behavior in p may come as a surprise since problems in Bayesian net-
work learning are often NP-hard (e.g. Chickering, 1996).

Despite this theoretical guarantee, RESIT does not scale well to a high number of
nodes. Since we cannot make use of an independence oracle in practice, we have to detect
dependence between a random variable and a random vector from finitely many data. The
order in which the independence tests are performed (phase 2, line 16 in Algorithm 1) may
lead to different results. Also, type one errors in phase 2 lead to superfluous edges in the
output of the method. If the significance level of the independence test is independent
of the number of variables (in the experiments we choose 5%), this effect may lead to a
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Algorithm 1 Regression with subsequent independence test (RESIT)

1: Input: I.i.d. samples of a p-dimensional distribution on (X1, . . . , Xp)
2: S := {1, . . . , p}, π := [ ]

3: PHASE 1: Determine topological order.
4: repeat
5: for k ∈ S do
6: Regress Xk on {Xi}i∈S\{k}.
7: Measure dependence between residuals and {Xi}i∈S\{k}.
8: end for
9: Let k∗ be the k with the weakest dependence.

10: S := S \ {k∗}
11: pa(k∗) := S
12: π := [k∗, π] (π will be the topological order, its last component being a sink)
13: until #S = 0

14: PHASE 2: Remove superfluous edges.
15: for k ∈ {2, . . . , p} do
16: for ` ∈ pa(π(k)) do
17: Regress Xπ(k) on {Xi}i∈pa(π(k))\{`}.
18: if residuals are independent of {Xi}i∈{π(1),...,π(k−1)} then
19: pa(π(k)) := pa(π(k)) \ {`}
20: end if
21: end for
22: end for
23: Output: (pa(1), . . . ,pa(p))

high structural Hamming distance between true and estimated graph for a large number of
variables. Furthermore, we have to perform nonparametric regression with possibly many
covariates. For high dimensions, these are both statistically hard problems that require
huge sample sizes.

4.2 Independence-Based Score

Searching for sink nodes makes the method described in Section 4.1 inherently asymmetric.
Mistakes made in the first iterations propagate through the whole procedure. We therefore
investigate the performance of independence-based score methods. Theorem 28 ensures
that if the data come from a restricted additive noise model we can fit only one (minimal)
structure to the data. In order to estimate the graph structure we can test all possible
DAGs and determine which DAG yields the most independent residuals. But even in the
limit of infinitely many data we may find more than one DAG satisfying this constraint,
some of which may not satisfy causal minimality. We therefore propose to take a penalized
independence score

Ĝ = argmin
G

p∑
i=1

DM(resG,RM
i , resG,RM

−i ) + λ#(edges) . (9)

2029



Peters, Mooij, Janzing and Schölkopf

Here, resi are the residuals of node Xi, when regressing it on its parents; they depend on
the graph G and on the regression method RM. We denote the residuals of all variables
except for Xi by res−i and DM denotes a measure of dependence. Note that variables
N = (N1, . . . , Np) are jointly independent if and only if each Ni is independent of N\{Ni},
i = 1, . . . , p. We do not prove (or claim) that the minimizer of (9) is a consistent estimator
for the correct DAG; we expect this to depend on the choice of DM and RM and λ.

As dependence measure we use minus the logarithm of the p-values of an indepen-
dence test based on the Hilbert Schmidt Independence Criterion HSIC (Gretton et al.,
2008). As regression methods we use linear regression, generalized additive models (gam)
or Gaussian process regression. For the regularization parameter λ we propose to use
log(0.05)− log(0.01). This is a heuristic choice based on the following idea: we only allow
for an additional edge if it allows the p-value to increase from 0.01 to 0.05 or, equivalently,
by a factor of five. In practice, p-values estimated by bootstrap techniques or p-values that
are smaller than computer precision can become zero and the logarithm becomes minus
infinity. We therefore always consider the maximum of the computed p-value and 10−350.
Although our choices seem to work well in practice, we do not claim that they are optimal.

4.2.1 Brute-Force

For small graphs, we can solve equation (9) by computing the score for all possible DAGs and
choose the DAG with the lowest score. Since the number of DAGs grows hyper-exponentially
in the number of nodes, this method becomes quickly computationally intractable; e.g., for
p = 7, there are 1, 138, 779, 265 DAGs (OEIS Foundation Inc., 2011). Nevertheless, we use
this algorithm up to p = 4 for comparison.

4.2.2 Greedy DAG Search (GDS)

A strategy to circumvent the computational complexity of equation (9) is to use greedy
search algorithms (e.g., Chickering, 2002). At each step we are given a current DAG and
score neighboring DAGs that are arranged in some order (see below). Here, all DAGs are
called neighbors that can be reached by an edge reversal, addition or removal. Whenever
a DAG has a better score than the current DAG, we stop scoring other neighbors and
exchange the latter by the former. To obtain “better” steps, in each step we consider at
least p neighbors. In order to reduce the running time of the algorithm, we do not score
neighboring DAGs in a completely random order but start by adding or removing edges into
nodes whose residuals are highly dependent on the other residuals instead. More precisely,
we are randomly sorting the nodes, choosing each node one by one with a probability
proportional to the reciprocal dependence measure of its residuals. If all neighboring DAGs
have a worse score than the current graph G, we nevertheless consider the best neighbor H.
If H has a neighbor with a better score than G, we continue with this graph. Otherwise we
stop and output G as the optimal graph. This is a simple version of tabu search (e.g. Koller
and Friedman, 2009) that is used to avoid local optima. This method is not guaranteed to
find the best scoring graph.

Code for the proposed methods is provided on the first and second author’s homepage.
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5. Experiments

The following subsections report some empirical performance of the described methods.

5.1 Experiments on Synthetic Data

For varying sample size n and number of variables p we compare the described methods.
Given a value of p, we randomly choose an ordering of the variables with respect to the
uniform distribution and include each of the p(p − 1)/2 possible edges with a probability
of 2/(p − 1). This results in an expected number of p edges and can be considered as a
(modestly) sparse setting. For a linear and a nonlinear setting we report the average struc-
tural Hamming distance (Acid and de Campos, 2003; Tsamardinos et al., 2006) to the true
directed acyclic graph and to the true completed partially directed acyclic graph over 100
simulations. The structural Hamming distance (SHD) between two partially directed acyclic
graphs counts how many edge types do not coincide. Estimating a non-edge or a directed
edge instead of an undirected edge, for example, contributes an error of one to the overall
distance. We also report analogous results for the structural intervention distance (SID),
which has recently been proposed (Peters and Bühlmann, 2013). Given the estimated graph
we can infer the intervention distribution p(Xj | do(Xi = xi)) by parent adjustment (1). We
call a pair of nodes (Xi, Xj) good if the intervention distribution p(Xj | do(Xi = xi)) inferred
from the estimated DAG using (1) coincides with the intervention distribution inferred from
the correct DAG for all observational distributions L(X). The SID counts the number of
pairs that are not good. Some methods output a Markov equivalence class instead of a
single DAG. Different DAGs within such a class lead to different intervention distribution
and thus different SIDs. In that case, we therefore provide the smallest and largest SID
attained by members within the Markov equivalence class. As the SHD, the SID is a purely
structural measure that is independent of any distribution. The rationale behind the new
measure is that a reversed edge in the estimated DAG leads to more false causal effects
than an additional edge does. The SHD, however, weights both errors equally.

We compare the greedy DAG search (GDS), brute-force (BF), regression with subse-
quent independence test (RESIT), linear non-Gaussian additive models (LINGAM), the PC
algorithm (PC) with partial correlation and significance level 0.01 and greedy equivalence
search (GES), see Sections 4.2.2, 4.2.1, 4.1, 2.3, 2.1 and 2.2, respectively. We also compare
them with the conservative PC algorithm (CPC), suggested by Ramsey et al. (2006), and
random guessing (RAND). The latter chooses a random DAG with edge inclusion proba-
bility uniformly chosen between zero and one. Its estimate does not depend on the data.

5.1.1 Linear Structural Equation Models

We first consider a linear setting as in equation (4), where the coefficients βjk are uniformly
chosen from [−2,−0.1]∪ [0.1, 2] and the noise variables Nj are independent and distributed

according to Kj ·sign(Mj) · |Mj |αj with Mj
iid∼ N (0, 1), Kj

iid∼ U([0.1, 0.5]) and αj
iid∼ U([2, 4]).

The top box plot in Figure 3 compares the SHD of the estimated structure to the correct
DAG for p = 4 and n = 100. All methods make use of the linear structure of the data, e.g.,
by performing linear regression. The brute-force method performs best, which indicates
that the score function in equation (9) is a sensible choice for small graphs. Greedy DAG
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search performs almost equally well, it does not encounter many local optima in this setting.
The constraint-based methods and greedy equivalent search perform worse. Comparing SID
leads to the same conclusion (Figure 3, bottom).
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Figure 3: Box plots of the SHD between the estimated structure (either DAG or CPDAG)
and the correct DAG for p = 4 and n = 100 for linear non-Gaussian SEMs (top).
The SID is computed between the correct DAG and the estimated DAG (bottom).
Some methods estimate only the Markov equivalence class. We then compute the
SID to the “best” and to the “worst” DAG within the equivalence class; therefore
a lower and an upper bound are shown.

Tables 1 and 2 provide summaries for p ∈ {4, 15} and n ∈ {100, 500}. We additionally
show distances of the estimated CPDAGs to the true CPDAGs. Therefore, if methods
output a DAG instead of a CPDAG, this DAG is transformed into the CPDAG of the
corresponding Markov equivalence class. For p = 4 and n = 500, GDS and brute force find
almost always the correct graph (86 and 90 out of 100). RESIT and LiNGAM still perform
much better than the PC methods and GES. For p = 15, the performance of RESIT (and
GES) in relation to the other methods seems to be better when evaluating SID compared
to evaluating the SHD. This indicates that the pruning (and penalization of the number
of edges) does not work perfectly. Especially for RESIT with high sample size and fixed
significance level, making mistakes in phase 1 leads to many edges that cannot be removed
in phase 2 (and thus a large SHD). The brute-force method is not applicable to p = 15.
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Table 1: Linear SEMs: SHD between the estimated structure and the correct DAG and
SHD between the estimated CPDAG to the correct CPDAG; for both the average
and the standard deviation over 100 experiments are shown (best averages are
highlighted).

GDS BF RESIT LiNGAM PC CPC GES RAND

p = 4, n = 100
DAG 0.7± 0.9 0.6± 0.8 1.2± 1.3 1.9± 1.2 3.5± 1.5 3.6± 1.4 3.1± 1.7 4.4± 1.0

CPDAG 1.1± 1.5 0.9± 1.4 1.5± 1.7 2.4± 1.5 2.4± 1.7 2.3± 1.6 2.0± 2.0 4.3± 1.4

p = 4, n = 500
DAG 0.2± 0.6 0.1± 0.3 0.6± 0.8 0.5± 0.8 3.1± 1.4 3.2± 1.4 2.9± 1.6 4.1± 1.2

CPDAG 0.3± 0.9 0.2± 0.5 0.9± 1.3 0.8± 1.2 1.9± 1.8 1.6± 1.7 1.6± 1.9 3.9± 1.4

p = 15, n = 100
DAG 12.2± 5.3 − 25.2± 8.3 11.1± 3.7 13.0± 3.6 13.7± 3.7 12.7± 4.2 57.4± 26.4

CPDAG 13.2± 5.4 − 27.0± 8.5 12.4± 3.9 10.7± 3.5 10.8± 3.8 12.4± 4.9 58.5± 27.1

p = 15, n = 500
DAG 6.1± 6.4 − 51.2± 17.8 3.4± 2.8 10.2± 3.8 10.8± 4.2 8.7± 4.6 57.6± 24.2

CPDAG 6.8± 6.9 − 54.5± 18.5 4.5± 3.8 8.2± 4.6 7.5± 4.4 7.1± 5.6 58.9± 25.0

Table 2: Linear SEMs: SID to the correct DAG; the table shows average and standard
deviation over 100 experiments.

GDS BF RESIT LiNGAM PC CPC GES RAND

p = 4, n = 100

1.0± 1.5 1.5± 2.2 3.3± 2.1
3.4± 2.9 3.2± 2.7 2.9± 3.3

7.0± 2.80.8± 1.4
8.0± 3.2 8.5± 3.2 7.2± 3.5

p = 4, n = 500

0.2± 0.7 0.3± 1.0 0.9± 1.4
2.8± 3.1 2.3± 2.7 2.1± 2.9

6.3± 2.80.1± 0.4
7.4± 3.4 7.6± 3.3 6.9± 3.6

p = 15, n = 100

− 35.3± 21.2 45.1± 24.1
36.5± 21.3 32.5± 20.2 26.5± 18.3

55.6± 27.132.3± 24.1
63.7± 30.3 66.4± 31.5 37.6± 20.6

p = 15, n = 500

− 18.1± 13.8 14.2± 14.6
33.6± 29.5 23.2± 19.8 18.1± 21.4

57.5± 34.112.6± 16.3
55.0± 32.9 55.6± 32.4 31.6± 22.2

5.1.2 Nonlinear Structural Equation Models

We also sample data from nonlinear SEMs. We choose an additive structure as in equa-
tion (8) and sample the functions from a Gaussian process with bandwidth one. The noise
variables Nj are independent and normally distributed with a uniformly chosen variance.
Tables 3 and 4 show summaries for p ∈ {4, 15} and n ∈ {100, 500}. We cannot run the
brute-force method on data sets with p = 15. For p = 4, we have a similar situation as
in Figure 3 with GDS and the BF method outperforming all others (RESIT performing a
bit worse). Remarkably, for p = 15 and n = 100, a lot of the methods do not perform
much better than random guessing when comparing the SID. The estimated CPDAG of
the constraint-based methods can have very different lower and upper bounds for SID. This
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Table 3: Nonlinear SEMs: SHD between the estimated structure and the correct DAG and
SHD between the estimated CPDAG to the correct CPDAG; for both the average
and the standard deviation over 100 experiments are shown.

GDS BF RESIT LiNGAM PC CPC GES RAND

p = 4, n = 100
DAG 1.5± 1.4 1.0± 1.0 1.7± 1.3 3.5± 1.2 3.5± 1.5 3.8± 1.4 3.5± 1.3 4.0± 1.3

CPDAG 1.7± 1.7 1.2± 1.4 2.0± 1.6 3.0± 1.4 2.9± 1.5 2.7± 1.4 3.4± 1.7 3.9± 1.4

p = 4, n = 500
DAG 0.5± 0.9 0.3± 0.5 0.8± 0.9 3.7± 1.2 3.5± 1.5 3.8± 1.5 3.3± 1.5 4.1± 1.2

CPDAG 0.6± 1.1 0.6± 1.0 1.0± 1.3 3.0± 1.7 3.1± 1.9 2.8± 1.8 3.4± 1.9 3.8± 1.6

p = 15, n = 100
DAG 14.3± 4.9 − 15.4± 5.7 15.4± 3.6 14.2± 3.5 15.5± 3.6 24.8± 6.3 56.8± 24.1

CPDAG 15.1± 5.4 − 16.5± 5.9 15.3± 4.0 13.3± 3.6 13.3± 4.0 26.4± 6.5 58.0± 24.7

p = 15, n = 500
DAG 13.0± 8.4 − 10.1± 5.7 21.4± 6.9 13.9± 4.5 15.1± 4.8 26.8± 8.5 56.1± 26.8

CPDAG 14.2± 9.2 − 11.3± 6.3 21.1± 7.3 13.7± 4.9 13.4± 5.1 28.6± 8.8 57.0± 27.3

Table 4: Nonlinear SEMs: SID to the correct DAG; the table shows average and standard
deviation over 100 experiments.

GDS BF RESIT LiNGAM PC CPC GES RAND

p = 4, n = 100

2.0± 2.5 2.0± 1.9 8.2± 2.8
4.7± 3.2 4.3± 2.7 4.7± 3.2

6.3± 3.11.4± 1.7
7.8± 3.4 8.5± 3.2 7.2± 3.2

p = 4, n = 500

0.6± 1.8 0.9± 1.3 8.0± 2.8
4.3± 3.7 3.7± 3.3 3.6± 3.0

6.6± 3.40.2± 0.8
7.3± 3.2 8.1± 3.2 6.5± 3.3

p = 15, n = 100

50.6± 25.3 − 65.0± 28.3
49.7± 24.6 40.4± 21.6 49.0± 27.3

60.0± 29.944.4± 23.9
68.6± 31.5 76.7± 32.8 53.6± 28.9

p = 15, n = 500

35.9± 26.8 − 67.3± 28.1
49.9± 29.0 36.4± 22.1 40.2± 23.3

58.9± 27.824.6± 18.6
60.3± 31.0 70.3± 34.6 44.6± 24.0

means that some DAGs within the equivalence class perform much better than others. (The
methods do not propose any particular DAG, they treat all DAGs within the class equally.)

Figure 4 shows box plots of SHD and SID for the special case p = 15 and n = 500.
This time, RESIT perform slightly better than all other methods. It makes use of the
nonlinearity of the structural equations. Again, the high SHD for GES indicates that the
estimate probably contains too many edges (since its SID is better than the one for the PC
methods).

In conclusion, for p = 4, the brute force method works best for both linear and nonlinear
data. Roughly speaking, for p = 15, LiNGAM and GDS work best in the linear non-
Gaussian setting and RESIT works best for nonlinear data. If one does not know whether
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Figure 4: Similar to Figure 3: box plots of the SHD between estimated structure and correct
DAG (top) and box plots of the SID to the correct DAG (bottom) for p = 15,
n = 500 and nonlinear Gaussian SEMs.

the data are linear or nonlinear, GDS provides an alternative that works reasonably well in
both settings.

5.2 Altitude, Temperature and Duration of Sunshine

We consider recordings of average temperature T , average duration of sunshine DS and the
altitude A at 349 German weather stations (Deutscher Wetterdienst, 2008). Figure 5 shows
scatter plots of all pairs. LiNGAM estimates T → A, PC and CPC estimate T → A← DS,
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Figure 5: Scatter plots of the three pairs, altitude, temperature and duration of sunshine.
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GES estimates a fully connected DAG. The brute-force estimate with linear regression
obtains a score of 103.6. Since we are taking the logarithm to base 10 in equation (9), we
see that the model does not fit the data well. More sensible seems the gam regression, for
which both GDS and brute-force output the DAG T ← A → DS and T → DS, which
receives a score of 5.9. Also RESIT outputs this DAG. Although there might be a feedback
between duration of sunshine and temperature through the generation of clouds, we believe
that the link from sunshine to temperature should be stronger. In fact, the corresponding
DAG T ← A → DS with T ← DS receives the second best score. Furthermore, these
data may be confounded by geographical location. Together with the possible feedback
loop and a possible deviation from additive noise models this might be the reason why
we do not obtain clear independence of the residuals: the HSIC between the residuals of
temperature and the two others leads to a p-value of 0.012 (the other two p-values are both
about 0.12). In practice, we often expect some violations of the model assumptions. This
example, however, indicates that it may still possible to obtain reasonable estimates of the
underlying causal structure if the violations are not too strong.

5.3 Cause-Effect Pairs

We have tested the performance of additive noise models on a collection of various cause-
effect pairs, an extended version of the “Cause-effect pairs” data set described in Mooij and
Janzing (2010). We used version 0.8 of this data set, which consists of observations of 86
different pairs of variables from various domains. The task is to infer which variable is the
cause and which variable the effect, for each of the pairs. For example, one of the pairs
consists of 349 measurements of altitude and temperature taken at different weather stations
in Germany (Deutscher Wetterdienst, 2008), the same data as considered in the previous
subsection. It should be obvious that here the altitude is the cause, and the temperature
is the effect. The complete data set and a more detailed description of each pair can be
obtained from http://webdav.tuebingen.mpg.de/cause-effect.

For each pair of variables (Xi, Yi), with i = 1, . . . , 86, we test the two possible additive
noise models that correspond with the two different possible causal directions, Xi → Yi
and Yi → Xi. For both directions, we estimate the functional relationship by performing
Gaussian Process regression using the GPML toolbox (Rasmussen and Nickisch, 2010). We
use the expected value of the Gaussian Process given the observations as an estimate of
the functional dependence between the cause and the effect. The goodness-of-fit is then
evaluated by testing independence of the residuals and the inputs. Here, we use the HSIC
as an independence test and approximate the null distribution with a gamma distribution
in order to obtain p-values (Gretton et al., 2005). We thus obtain two p-values for each pair,
one for each possible causal direction (where a high p-value corresponds to not rejecting
independence, i.e., not rejecting the causal model). We then rank the pairs according to
the highest of the two p-values of the pair. Using this ranking, we can make decisions for
only a subset of the pairs, starting with the pair for which the highest of the two p-values
is the largest among all pairs (we say these pairs have a high rank). In this way we trade
off accuracy, i.e., percentage of correct decisions, versus the amount of decisions taken.

Five of the pairs have multivariate Xi or Yi, and we did not include those in the analysis
for convenience. Furthermore, not all the pairs are independent; for example, life expectancy

2036

http://webdav.tuebingen.mpg.de/cause-effect


Causal Discovery with Continuous Additive Noise Models

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Decision rate (%)

A
c
c
u

ra
c
y
 (

%
)

 

 

AN

Figure 6: Results of the additive noise method on version 0.8 of the cause-effect pairs data
set. After weighting, effectively 68 out of 86 pairs remained. The plot shows
estimated accuracy, 68% and 95% confidence intervals for each decision rate.

versus latitude occurs more than once, but measurements were done in different years and for
different gender. We therefore assigned weights to the cause-effect pairs to compensate for
this when calculating the accuracy and decision rate. For example, the pair life expectancy
versus latitude appears eight times (for different combinations of gender and year), hence
each of these pairs is weighted down with the factor 1/8; on the other hand, the pair altitude
vs. temperature at weather stations occurs only once, and therefore gets weight 1. Denoting
the weight of each pair with wi, the “effective” number of pairs becomes

∑86
i=1wi = 68. The

five pairs with multivariate Xi or Yi were given zero weight. If the set of highest-ranked
pairs is denoted I, and the set of correct decisions is denoted C, then the accuracy (fraction
of correct decisions) and and the decision rate (fraction of decisions taken) are defined as

accuracy =

∑
i∈I∩C wi∑
i∈I wi

, decision rate =

∑
i∈I wi∑86
i=1wi

.

The results are plotted in Figure 6. It shows the accuracy (dark blue line) as a function
of the decision rate, together with confidence intervals (light blue regions). The amount
of cause-effect pairs from which the accuracy can be estimated decreases proportionally
to the decision rate; the accuracies reported for low decision rates therefore have higher
uncertainty than the accuracies reported for high decision rates. For each decision rate, we
have plotted the 68% and 95% confidence intervals for the estimated success probability
assuming a binomial distribution using the Clopper-Pearson method. If for a given decision
rate, the 95% confidence region lies above the line at 50%, the method performs significantly
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better than random guessing (for that decision rate). For example, if we take a decision for
all pairs, 72± 6% of the decisions are correct, significantly more than random guessing. If
we only take the 20% most confident decisions, all of them are correct, again significantly
more than random guessing.

6. Discussion and Future Work

Apart from a few exceptions we can identify the directed acyclic graph from a bivariate
distribution that has been generated by a structural equation model with continuous addi-
tive noise. Such an identifiability in the bivariate case generalizes under mild assumptions
to identifiability in the multivariate case (i.e., graphs with more than two variables). This
can be beneficial for the field of causal inference: if the true data generating process can be
represented by a restricted structural equation model like additive noise models, the causal
graph can be inferred from the joint distribution. We believe that formulating the problem
using structural equation models rather than graphical models made it easier to state and
exploit the assumption of additive noise. While the language of graphical models allow us
to define some notion connecting a graph to the distribution (e.g., faithfulness), SEMs allow
us to impose specific restrictions on the possible functional relationships between nodes and
its children. This is closer in spirit to a machine learning approach where properties of func-
tion classes play a crucial role in the estimation. Both artificial and real data sets indicate
that methods based on restricted structural equation models can outperform traditional
constraint-based methods.

We have proposed two methods for estimating the graph from finitely many data. RE-
SIT iteratively identifies sink nodes. Another method optimizes a score that reflects the
independence of residuals. Although the score seems to be suitable to detect the correct
graph structure, it remains unclear how to find the best scoring DAG when an exhaus-
tive search is infeasible. We investigated the possibility to search this space by greedily
choosing best-scoring neighbors (GDS). Multiple random initializations may decrease the
chance that the greedy DAG search gets stuck in local optima by the additional cost of
computational complexity. We further believe that the proposed score may benefit from
an extended version of HSIC that is able to estimate mutual independence instead of pair-
wise independence. Recently, Nowzohour and Bühlmann (2013) have suggested a penalized
likelihood based score for bivariate models. They estimate the noise distribution and use
the BIC for penalization. In principle this idea can again be combined with a brute-force
search as in Section 4.2.1 or a greedy DAG search as in Section 4.2.2.

Making the methods applicable to larger graphs (p > 20) remains a major challenge.
Also, studying the statistical properties of the methods (for example, establishing consis-
tency) is an important task for future research.
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Appendix A. Proofs

We now provide all proofs that have been omitted in the main text.

A.1 Proof of Proposition 4

Proof “if”: Assume that causal minimality is not satisfied. Then, there is an Xj and a
Y ∈ PAGj , such that L(X) is also Markov with respect to the graph obtained when removing
the edge Y → Xj from G.
“only if”: If L(X) has a density, the Markov condition is equivalent to the Markov factor-
ization (Lauritzen, 1996, Theorem 3.27). Assume that Y ∈ PAGj and Xj ⊥⊥ Y |PAGj \ {Y }.
Then P (X) = P (Xj |PAGj \ {Y })

∏
k 6=j P (Xk|PAGk ), which implies that L(X) is Markov

w.r.t. G without Y → Xj .

A.2 Proof of Proposition 7

Proof We will prove that for all G1 and G2 in G there is DAG G ∈ G such that G ≤ G1 and
G ≤ G2. This implies the existence of a least element since the set G is finite. Consider any
node Xi and denote the G1-parents by Xj1 , . . . , Xjr , Xkr+1 , . . . , Xkr+s and the G2-parents by
Xj1 , . . . , Xjr , X`r+1 , . . . , X`r+t , such that {kr+1, . . . , kr+s} and {`r+1, . . . , `r+t} are disjoint
sets. Here, Xj1 , . . . , Xjr are the joint parents in G1 and G2. We have for all xj1 , . . . , xjr ,
xkr+1 , . . . , xkr+s and x`r+1 , . . . , x`r+t (at which the density p is strictly positive) that

p(Xi |Xj1 = xj1 , . . . , Xjr = xjr , Xkr+1 = xkr+1 , . . . , Xkr+s = xkr+s)

= p
(
Xi | do(Xj1 = xj1 , . . . , Xjr = xjr , Xkr+1 = xkr+1 , . . . , Xkr+s = xkr+s ,

X`r+1 = x`r+1 , . . . , X`r+t = x`r+t)
)

= p(Xi |Xj1 = xj1 , . . . , Xjr = xjr , X`r+1 = x`r+1 , . . . , X`r+t = x`r+t) =: (∗) .

This implies

(∗) = p(Xi |Xj1 = xj1 , . . . , Xjr = xjr) .

Set the variables Xj1 , . . . , Xjr to be the G-parents of node Xi and repeat for all nodes Xi.
The distribution L(X) is Markov w.r.t. graph G by its construction. Note that all proper
subgraphs of a true causal DAG with respect to which L(X) is Markov are again true causal
DAGs. This proves the statement about causal minimality.
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A.3 Proof of Proposition 9

Proof Let N1, · · · , Np be independent and uniformly distributed between 0 and 1. We
then define Xj = fj(PAj , Nj) with

fj(xPAj
, nj) = F−1Xj |PAj=xPA

j

(nj) ,

where F−1Xj |PAj=xPA
j

is the inverse cdf of Xj given PAj = xPAj
.

A.4 Proof of Proposition 17

Proof Assume causal minimality is not satisfied. We can then find a j and i ∈ PAj with
Xj = fj(XPAj\{i}, Xi)+Nj that does not depend on Xi if we condition on all other parents

PAj \ {i} (Proposition 4). Let us denote PAj \ {Xi} by XA. For the function fj it follows
that fj(xA, xi) = cxA for L(XA, Xi)-almost all (xA, xi). Indeed, assume without loss of
generality that ENj = 0, take the mean of Xj |PAG0j = (xA, xi) and use e.g. (2b) from
Dawid (1979). The continuity of fj implies that fj is constant in its last argument.

The converse statement follows from Proposition 4, too.

A.5 Proof of Theorem 20

Proof To simplify notation we write X := Xi and Y := Xj (see Definition 18). If G0 is the
empty graph, X ⊥⊥ Y . On the other hand, if the graph is not empty, X ⊥⊥ Y would be a
violation of causal minimality. We can therefore now assume that the graph is not empty
and X 6⊥⊥ Y . Let us assume that the graph is not identifiable and we have

pn(y − f(x))px(x) = p(x, y) = pñ(x− g(y))py(y) . (10)

Set
π(x, y) := log p(x, y) = ν(y − f(x)) + ξ(x) , (11)

and ν̃ := log pñ, η := log py. From the r.h.s. of Equation (10) we find π(x, y) = ν̃(x−g(y))+
η(y), implying

∂2π

∂x∂y
= −ν̃ ′′(x− g(y))g′(y) and

∂2π

∂x2
= ν̃ ′′(x− g(y)) .

We conclude
∂

∂x

(
∂2π/∂x2

∂2π/(∂x∂y)

)
= 0 . (12)

Using Equation (11) we obtain

∂2π

∂x∂y
= −ν ′′(y − f(x))f ′(x) , (13)

and
∂2π

∂x2
=

∂

∂x

(
−ν ′(y − f(x))f ′(x) + ξ′(x)

)
= ν ′′(f ′)2 − ν ′f ′′ + ξ′′ , (14)
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where we have dropped the arguments for convenience. Combining Equations (13) and (14)
yields

∂

∂x

(
∂2π
∂x2

∂2π
∂x∂y

)
=− 2f ′′ +

ν ′f ′′′

ν ′′f ′
− ξ′′′ 1

ν ′′f ′
+
ν ′ν ′′′f ′′

(ν ′′)2
− ν ′(f ′′)2

ν ′′(f ′)2
− ξ′′ ν

′′′

(ν ′′)2
+ ξ′′

f ′′

ν ′′(f ′)2
.

Due to equation (12) this expression must vanish and we obtain the differential equation (7)

ξ′′′ = ξ′′
(
−ν
′′′f ′

ν ′′
+
f ′′

f ′

)
− 2ν ′′f ′′f ′ + ν ′f ′′′ +

ν ′ν ′′′f ′′f ′

ν ′′
− ν ′(f ′′)2

f ′

by term reordering. This contradicts the assumption that the distribution is generated by
an identifiable bivariate additive noise model, see Condition 19.

A.6 Proof of Proposition 21

Proof Let the notation be as in Theorem 20 and let y be fixed such that ν ′′(y−f(x))f ′(x) 6=
0 holds for all but countably many x. Given f, ν, we obtain a linear inhomogeneous differ-
ential equation (DE) for ξ:

ξ′′′(x) = ξ′′(x)G(x, y) +H(x, y) , (15)

where G and H are defined by

G := −ν
′′′f ′

ν ′′
+
f ′′

f ′

and

H := −2ν ′′f ′′f ′ + ν ′f ′′′ +
ν ′ν ′′′f ′′f ′

ν ′′
− ν ′(f ′′)2

f ′
,

see proof of Theorem 20. Setting z := ξ′′ we have z′(x) = z(x)G(x, y) + H(x, y) . Given
that such a function z exists, it is given by

z(x) = z(x0)e
∫ x
x0
G(x̃,y)dx̃

+

∫ x

x0

e
∫ x
x̂ G(x̃,y)dx̃H(x̂, y)dx̂ . (16)

Then z is determined by z(x0) since we can extend Equation (16) to the remaining points.
The set of all functions ξ satisfying the linear inhomogenous DE (15) is a 3-dimensional
affine space: Once we have fixed ξ(x0), ξ

′(x0), ξ
′′(x0) for some arbitrary point x0, ξ is com-

pletely determined. Given fixed f and ν, the set of all ξ admitting a backward model is
contained in this subspace.

A.7 Proof of Corollary 22

Proof Similarly to how (12) was derived, under the assumption of the existence of a reverse
model one can derive

∂2π

∂x∂y
· ∂
∂x

(
∂2π

∂x2

)
=
∂2π

∂x2
· ∂
∂x

(
∂2π

∂x∂y

)
.

2041



Peters, Mooij, Janzing and Schölkopf

Now using (13) and (14), we obtain

(−ν ′′f ′)· ∂
∂x

(
ν ′′(f ′)2 − ν ′f ′′ + ξ′′

)
= (ν ′′(f ′)2 − ν ′f ′′ + ξ′′) · ∂

∂x

(
−ν ′′f ′

)
,

which reduces to

−2(ν ′′f ′)2f ′′ + ν ′′f ′ν ′f ′′′ − ν ′′f ′ξ′′′ = −ν ′f ′′ν ′′′(f ′)2 + ξ′′ν ′′′(f ′)2 + ν ′′ν ′(f ′′)2 − ν ′′f ′′ξ′′ .

Substituting the assumptions ξ′′′ = 0 and ν ′′′ = 0 (and hence ν ′′ = C everywhere with
C 6= 0 since otherwise ν cannot be a proper log-density) yields

ν ′
(
y − f(x)

)
·
(
f ′f ′′′ − (f ′′)2

)
= 2C(f ′)2f ′′ − f ′′ξ′′ .

Since C 6= 0 there exists an α such that ν ′(α) = 0. Then, restricting ourselves to the
submanifold {(x, y) ∈ R2 : y − f(x) = α} on which ν ′ = 0, we have

0 = f ′′(2C(f ′)2 − ξ′′) .

Therefore, for all x in the open set [f ′′ 6= 0], we have (f ′(x))2 = ξ′′/(2C), which is a con-
stant, so f ′′ = 0 on [f ′′ 6= 0]: a contradiction. Therefore, f ′′ = 0 everywhere.

A.8 Definitions of Proposition 23

Definition 35 (Zhang and Hyvärinen, 2009) A one-dimensional distribution that is abso-
lutely continuous with respect to the Lebesgue measure and has positive density p is called:

• log-mix-lin-exp if there are c1, c2, c3, c4 with c1 < 0 and c2c3 > 0 such that

log p(x) = c1 exp(c2x) + c3x+ c4 ,

• one-sided asymptotically exponential if there is c 6= 0 such that

d

dx
log p(x)→ c

as x→ −∞ or x→∞,

• two-sided asymptotically exponential if there are c1 6= 0 and c2 6= 0 such that

d

dx
log p(x)→ c1

as x→ −∞ and
d

dx
log p(x)→ c2

as x→∞

• and a generalized mixture of two exponentials if there are d1, d2, d3, d4, d5, d6 with
d4 > 0, d3 > 0, d1d5 > 0 and d2 < −d1

d5
such that

log p(x) = d1x+ d2 log(d3 + d4 exp(d5x)) + d6 .

2042



Causal Discovery with Continuous Additive Noise Models

A.9 Proof of Example 25

Proof Our starting point is the assumption of nonidentifiability. In other words, we can
describe the joint distribution of x and y both as an additive noise model where X causes Y ,
and as an additive noise model where Y causes X. Using the same notation as in Theorem
20, this means that:

ξ(x) + ν
(
y − f(x)

)
= η(y) + ν̃

(
x− g(y)

)
∀x, y ∈ R . (17)

Case II in Proposition 23 (reproduced from Table 1 in Zhang and Hyvärinen, 2009)
states that if both ξ and ν are log-mix-lin-exp and f is affine, then there could be an
unidentifiable model. Let us verify whether that is indeed the case. We take

ξ(x) = c1 exp(c2x) + c3x+ c4

ν(n) = γ1 exp(γ2n) + γ3n+ γ4

f(x) = ax+ b

with a 6= 0 (a = 0 is the degenerate case with X and Y independent).
We can rewrite (17) as follows, by substituting x with x+ g(y):

c1e
c2(x+g(y))+c3(x+g(y))+c4+γ1e

γ2(y−ax−ag(y)−b)+γ3(y−ax−ag(y)−b)+γ4 = η(y)+ν̃(x) .
(18)

Differentiating with respect to x yields

c1c2e
c2(x+g(y)) + c3 − aγ1γ2eγ2(y−ax−ag(y)−b) − γ3a = ν̃ ′(x) . (19)

Differentiating with respect to y yields

c1c
2
2e
c2(x+g(y))g′(y)− aγ1γ22eγ2(y−ax−ag(y)−b)(1− ag′(y)) = 0 .

This can only be satisfied for all x if c2 = −aγ2. In that case:

−ac1g′(y) + γ1e
γ2(y−b)(1− ag′(y)) = 0 .

Rewriting:

ag′(y) =
γ1e

γ2(y−b)

c1 + γ1eγ2(y−b)
.

Integrating:

g(y) = − 1

c2
ln(−c1 − γ1eγ2(y−b)) +

C

c2
.

Note that

ec2g(y) = − 1

c1 + γ1eγ2(y−b)
e−C .

Substituting into (19) yields

−c2e−Cec2x + c3 − γ3a = ν̃ ′(x) .

Integrating yields
−e−Cec2x + (c3 − γ3a)x+ δ4 = ν̃(x) ,
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which is also log-mix-lin-exp with parameters δ1 = −e−C , δ2 = c2, δ3 = c3 − γ3a, δ4.
Substituting into (18):

g(y)(c3 − γ3a) + γ3y + c4 − γ3b+ γ4 − δ4 = η(y) ,

i.e.,

η(y) =

(
− 1

c2
ln(−c1 − γ1eγ2(y−b)) +

C

c2

)
(c3 − γ3a) + γ3y + c4 − γ3b+ γ4 − δ4 .

This gives an inequality constraint: c3 6= aγ3. η(y) is a generalized mixture of exponentials
distribution with parameters d1 = γ3, d2 = − c3−aγ3

c2
, d3 = −c1, d4 = −γ1e−γ2b, d5 = γ2,

d6 = C c3−aγ3
c2

+ c4 − γ3b+ γ4 − δ4. One can check that all constraints on the parameters of
the generalized mixture of exponentials are satisfied. Choosing C appropriately allows for
normalizing the log-density. One can also easily verify that with these choices of ν̃(x) and
η(y), equation (17) holds, and therefore this gives an example of a nonidentifiable additive
noise model.

A.10 Some Lemmata

The following four statements are all plausible and their proof is mostly about technicalities.
The reader may skip to the next section and use the lemmata whenever needed. For random
variables A and B we use A |B=b to denote the random variable A after conditioning on
B = b (assuming densities exist and B has positive density at b).

Lemma 36 Let Y ∈ Y, N ∈ N ,Q ∈ Q,R ∈ R be random variables whose joint distribution
is absolutely continuous with respect to some product measure (Q and R can be multivariate)
and with density pY,Q,R,N (y,q, r, n). Let f : Y ×Q×N → R be a measurable function. If
N ⊥⊥ (Y,Q,R) then for all q ∈ Q, r ∈ R with pQ,R(q, r) > 0:

f(Y,Q, N) |Q=q,R=r
L
= f(Y |Q=q,R=r,q, N) .

A formal proof of this statement can be found in Peters et al. (2011b, Lemma 2).

Lemma 37 Let L(X) be generated according to a SEM as in (2) with corresponding DAG
G and consider a variable X ∈ X. If S ⊆ NDGX then NX ⊥⊥ S.

Proof Write S = {S1, . . . , Sk}. Then

S =
(
fS1(PAGS1

, NS1), . . . , fSk
(PAGSk

, NSk
)
)
.

Again, one can substitute the parents of Si by the corresponding functional equations and
proceed recursively. After finitely many steps one obtains S = f(NT1 , . . . , NTl), where
{T1, . . . , Tl} is the set of all ancestors of nodes in S, which does not contain X. Since all
noise variables are jointly independent we have NX ⊥⊥ S.

With the intersection property of conditional independence (e.g., 1.1.5 in Pearl, 2009),
Proposition 4 has the following corollary that we formalize as a lemma.
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Lemma 38 Consider the random vector X and assume that the joint distribution has a
(strictly) positive density. Then L(X) satisfies causal minimality with respect to G if and
only if ∀B ∈ X ∀A ∈ PAGB and ∀S ⊂ X with PAGB \ {A} ⊆ S ⊆ NDGB \ {A} we have that

B 6⊥⊥ A | S .

Proof The “if” part is immediate. For the “only if” let us denote P := PAGB \ {A} and
Q := S \ (PAGB \ {A}), such that S = P ∪Q. Observe that B 6⊥⊥ A |P (see Proposition 4)
implies B 6⊥⊥ ({A} ∪Q) |P. From the Markov condition we have B ⊥⊥ Q | (P ∪ {A}). The
intersection property of conditional independence yields B 6⊥⊥ A | (P ∪Q).

A.11 Proof of Theorem 28

Proof We assume that there are two restricted additive noise models (see Definition 27)
that both induce L(X), one with graph G, the other with graph G′. We will show that G = G′.
Consider the variables L, Y from Proposition 29 (i) and define the sets Q := PAGL \ {Y },
R := PAG

′

Y \{L} and S := Q∪R. At first, we consider any s = (q, r) and write L∗ := L | S=s

and Y ∗ := Y | S=s. Lemma 37 gives us NL ⊥⊥ (Y,S) and NY ⊥⊥ (L,S) and we can thus apply
Lemma 36. From G we find

L∗ = fL(q, Y ∗) +NL, NL ⊥⊥ Y ∗

and from G′ we have

Y ∗ = gY (r, L∗) +NY , NY ⊥⊥ L∗ .

This contradicts Theorem 20 since according to Definition 27 we can choose s = (q, r) such
that (fL(q, ·),L(Y ∗),L(NL)) and (gY (r, ·),L(L∗),L(NY )) satisfy Condition 19.

A.12 Proof of Proposition 29

Proof Since DAGs do not contain any cycles, we always find nodes that have no descendants
(start a directed path at some node: after at most #X− 1 steps we reach a node without
a child). Eliminating such a node from the graph leads to a DAG, again; we can discard
further nodes without children in the new graph. We repeat this process for all nodes that
have no children in both G and G′ and have the same parents in both graphs. If we end
up with no nodes left, the two graphs are identical which violates the assumption of the
proposition. Otherwise, we end up with a smaller set of variables that we again call X, two
smaller graphs that we again call G and G′ and a node L that has no children in G and either
PAGL 6= PAG

′

L or CHG
′

L 6= ∅. We will show that this leads to a contradiction. Importantly,
because of the Markov property of the distribution with respect to G, all other nodes are
independent of L given PAGL:

L ⊥⊥ X \ (PAGL ∪ {L}) | PAGL . (20)
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To make the arguments easier to understand, we introduce the following notation (see
also Fig. 7): we partition G-parents of L into Y,Z and W. Here, Z are also G′-parents
of L, Y are G′-children of L and W are not adjacent to L in G′. We denote with D the
G′-parents of L that are not adjacent to L in G and by E the G′-children of L that are not
adjacent to L in G. Thus: PAGL = Y ∪ Z ∪W, CHGL = ∅, PAG

′

L = Z ∪D, CHG
′

L = Y ∪E.

L

W Y Z

part of G

L

D Z

EY

part of G′

Figure 7: Nodes adjacent to L in G and G′

Consider T := W ∪Y. We distinguish two cases:

Case (i): T = ∅.
Then there must be a node D ∈ D or a node E ∈ E, otherwise L would have been discarded.

1. If there is a D ∈ D then (20) implies L ⊥⊥ D |S for S := Z∪D\{D}, which contradicts
Lemma 38 (applied to G′).

2. If D = ∅ and there is E ∈ E then E ⊥⊥ L |S holds for S := Z∪PAG
′

E \ {L} (see graph

G), which also contradicts Lemma 38 (note that Z ⊆ NDG
′

E to avoid cycles).

Case (ii): T 6= ∅.
Then T contains a “G′-youngest” node with the property that there is no directed G′-path
from this node to any other node in T. This node may not be unique.

1. Suppose that some W ∈W is such a youngest node. Consider the DAG G̃′ that equals
G′ with additional edges Y →W and W ′ →W for all Y ∈ Y and W ′ ∈W \ {W}. In
G̃′, L and W are not adjacent. Thus we find a set S̃ such that S̃ d-separates L and

W in G̃′; indeed, one can take S̃ = PAG̃
′

L if W /∈ DEG̃
′

L and S̃ := PAG̃
′

W if L /∈ DEG̃
′

W .

Then also S = S̃ ∪ {Y,Z,W \ {W}} d-separates L and W in G̃′.

Indeed, all Y ∈ Y are already in S̃ in order to block L→ Y →W . Suppose there is
a G̃′-path that is blocked by S̃ and unblocked if we add Z and W ′ nodes to S̃. How
can we unblock a path by including more nodes? The path (L · · ·V1 · · ·U1 · · ·W in
Fig. 8) must contain a collider V1 that is an ancestor of a Z with V1, . . . , Vm, Z /∈ S̃
and corresponding nodes Ui for a W ′ node. Choose V1 and U1 on the given path
so close to each other such that there is no such collider in between. If there is no
V1, choose U1 closest to L, if there is no U1, choose V1 closest to W . Now the path
L ← Z · · ·V1 · · ·U1 · · ·W ′ → W is unblocked given S̃, which is a contradiction to
the assumption that S̃ d-separates L and W .

But then S d-separates L and W in G′, too (there are less paths), and we have
L ⊥⊥W | S, which contradicts Lemma 38 (applied to G).
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L WV1

V2

Vm

Z

U1

U2

Ur

W ′

L L L L

L

L

L

L

L L

Figure 8: Assume the path L · · ·V1 · · ·U1 · · ·W is blocked by S̃, but unblocked if we include
Z and W ′. Then the dashed path is unblocked given S̃.

2. Therefore, the G′-youngest node in T must be some Y ∈ Y.
Define Q := PAGL \ {Y }, R := PAG

′

Y \ {L} and S := Q∪R. Clearly, S ⊆ NDGL \ {Y }
since L does not have any descendants in G. Further, S ⊆ NDG

′

Y \{L} because Y is the
G′-youngest under all W and Y \ {Y } by construction and any directed path from Y
to Z ∈ Z would introduce a cycle in G′. Ergo, {Y }∪S ⊆ NDGL and {L}∪S ⊆ NDG

′

Y .

The variables L and Y and the sets Q,R and S satisfy the conditions required in statement
(i) of Proposition 29.

Statement (ii) follows as a special case since for Markov equivalent graphs, W,D and E
are all empty. Consider the G′-youngest node Y . In order to avoid v-structures appearing
in G and not in G′ all nodes Z ∈ Z are directly connected to the G′-youngest Y . And to
avoid cycles, those nodes Z ∈ Z are G′-parents of Y . The node Y cannot have other parents
except for the ones in Y and Z since this would introduce v-structures in G′ (with collider
Y ) that do not appear in G.

A.13 Proof of Corollary 31

Proof We only prove (i) since (ii) is a special case. Causal minimality is satisfied because
of Proposition 17. We can then assume that the statement is false and apply the same
argument as in Theorem 28. This yields the two equations

L∗ = fL(q, Y ∗) +NL, NL ⊥⊥ Y ∗ and

Y ∗ = gY (r, L∗) +NY , NY ⊥⊥ L∗ .

Let us define f := fL(q, ·) and g := gY (r, ·). Because of independence of NY and L∗ we
have

0 =
∂2 log p(`∗, ny)

∂ny ∂`∗
=
∂2 log p(y∗, n`)

∂ny ∂`∗
=
∂2 log p(y∗) + ∂2 log p(n`)

∂ny ∂`∗
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with y∗ = g(`∗) + ny and n` = `∗ − f(g(`∗) + ny). Ergo, for all `∗ and y∗ we have

0 =
∂2 log pY ∗(y

∗)

(∂y∗)2
g′(`∗)− 1

σ2NL

f ′(y∗)2g′(`∗) +
1

σ2NL

f ′(y∗) +
`∗ − f(y∗)

σ2NL

f ′′(y∗)g′(`∗) . (21)

If there is a `∗ with g′(`∗) = 0, (21) implies that f ′ is constantly zero which is not the case.
Exchanging the role of L∗ and Y ∗ yields f ′(y∗) 6= 0. Since NL is Gaussian, Proposition 23
implies that f is linear. This contradicts the assumption of nonlinearity. For completeness,
however, we give a direct proof that is similar to Lemma 6 in Zhang and Hyvärinen (2009).
Dividing (21) by g′(`∗)f ′(y∗) yields

0 =
∂2 log pY ∗(y

∗)

(∂y∗)2
1

f ′(y∗)
− 1

σ2NL

f ′(y∗) +
1

σ2NL

1

g′(`∗)
+
`∗ − f(y∗)

σ2NL

f ′′(y∗)

f ′(y∗)

and therefore (take the derivative with respect to `∗) f ′′(y∗)
f ′(y∗) ≡ a1 which means f ′(y∗) =

a2 exp(a1y
∗) with a1, a2 6= 0 because f is nonlinear. But then 1

g′(`∗) + a1`
∗ ≡ a3 is constant

and using a1f(y∗) = f ′(y∗) + a4 for some a4 we have

∂2 log pY ∗(y
∗)

(∂y∗)2
− 2

σ2NL

f ′(y∗)2 +
a3 − a4
σ2NL

f ′(y∗) = 0 ,

which implies log pY ∗(y
∗)→∞ for either y∗ →∞ or y∗ → −∞. Obviously, this cannot be

the case. This proves the corollary.

A.14 Proof of Lemma 32

Proof For (a) suppose that G has an additional edge from Xi to Xj compared to G0. We
can then change the corresponding structural equation Xj = fj(PAG0j ) + Nj into Xj =

f̃j(PAG0j , Xi) +Nj where f̃j equals fj in the first #PAG0j components and f̃j is constant in
the last component.

We now prove statement (b). Let G ≤ G0 such that L(X) is Markov with respect to G.
Suppose i ∈ G with PAGi ( PAG0i . Denote XB = PAG0i \ PAGi . Since PAG0i ⊆ NDG0i ⊆
NDGi , we have from the Markov property that Xi ⊥⊥ XB |PAGi . Analogously to the proof
of Proposition 17 this implies that the (continuous) function fi in the corresponding struc-
tural equation Xi = fi(PAG0i ) + Ni must be constant in XB. We can therefore define the
corresponding structural equation in G to be Xi = fi(PAGi , xB) +Ni for some arbitrary xB.
Structural equations for variables with identical parent sets do not need to be changed. Now
suppose G1 ≤ G0 and G2 ≤ G0. Then there is an additive noise model with graph G12 ≤ G0
that leads to L(X), where G12 has precisely the edges that appear in both G1 and G2. This
follows by noting that the intersection property implies that Xi ⊥⊥ (PAG0i \PAG12i ) |PAG12i ,

and hence fi is constant in (PAG0i \PAG12i ). (This step is not necessarily true for densities
that are not strictly positive.) The partial ordering ≤ defined by the subgraph property
therefore has a unique least element Gmin0 , which satisfies causal minimality by Proposi-
tion 17.
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A.15 Proof of Theorem 34

Proof For the correct graph, we know that Ni is independent of all ancestor variables
Xj since the latter can be expressed in terms of noise variables without Ni. The correct
sink nodes therefore lead to independence in step 7 of Algorithm 1. We will now show
that “wrong sinks”, that is nodes who are not sinks in the correct graph G0 do not lead
to independent residuals in the first iteration of Phase 1. It follows by induction that this
is true for any later iteration, too. Suppose that node Y is not a sink in G0 but leads to
independent residuals (step 7). Since Y is not a sink in G0, Y has children in G0. Call Z the
G0-youngest child, that is there is no directed path from Z to any other child of Y . Disregard
all descendants of Z and denote the remaining set of variables S := X \ {Y,Z,DEG0Z }. It
therefore follows that

DEG0Z ⊥⊥ Y |S ∪ {Z} . (22)

Because Y leads to independent residuals we can think of a graph G in which all variables
are parents of Y . From Equation (22) it follows that Y = gY (S, Z)+ÑY with ÑY ⊥⊥ (S, Z).
We then proceed similarly as in the proof of Theorem 28 and find from G0 that

Z | S=s = fZ(s
PA
G0
Z

, Y | S=s) +NZ .

From G we conclude that
Y | S=s = gY (s, Z | S=s) + ÑY .

Again, this contradicts Theorem 20. The correctness of Phase 2 follows from causal mini-
mality and Lemma 38.
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Abstract

Structured prediction methods have become a central tool for many machine learning ap-
plications. While more and more algorithms are developed, only very few implementations
are available.

PyStruct aims at providing a general purpose implementation of standard structured
prediction methods, both for practitioners and as a baseline for researchers. It is written in
Python and adapts paradigms and types from the scientific Python community for seamless
integration with other projects.

Keywords: structured prediction, structural support vector machines, conditional ran-
dom fields, Python

1. Introduction

In recent years there has been a wealth of research in methods for learning structured
prediction, as well as in their application in areas such as natural language processing and
computer vision. Unfortunately only few implementations are publicly available—many
applications are based on the non-free implementation of Joachims et al. (2009).

PyStruct aims at providing a high-quality implementation with an easy-to-use inter-
face, in the high-level Python language. This allows practitioners to efficiently test a range
of models, as well as allowing researchers to compare to baseline methods much more easily
than this is possible with current implementations. PyStruct is BSD-licensed, allowing
modification and redistribution of the code, as well as use in commercial applications. By
embracing paradigms established in the scientific Python community and reusing the in-
terface of the widely-used scikit-learn library (Pedregosa et al., 2011), PyStruct can
be used in existing projects, replacing standard classifiers. The online documentation and
examples help new users understand the somewhat abstract ideas behind structured pre-
diction.

2. Structured Prediction and Casting it into Software

Structured prediction can be defined as making a prediction f(x) by maximizing a compati-
bility function between an input x and the possible labels y (Nowozin and Lampert, 2011).
Most current approaches use linear functions, leading to:

f(x) = arg max
y∈Y

θTΨ(x, y). (1)
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Here, y is a structured label, Ψ is a joint feature function of x and y, and θ are parameters
of the model. Structured means that y is more complicated than a single output class, for
example a label for each word in a sentence or a label for each pixel in an image. Learning
structured prediction means learning the parameters θ from training data.

Using the above formulation, learning can be broken down into three sub-problems:

1. Optimizing the objective with respect to θ.
2. Encoding the structure of the problem in a joint feature function Ψ.
3. Solving the maximization problem in Equation 1.

The later two problems are usually tightly coupled, as the maximization in Equation 1 is
usually only feasible by exploiting the structure of Ψ, while the first is treated as inde-
pendent. In fact, when 3. can not be done exactly, learning θ strongly depends on the
quality of the approximation. However, treating approximate inference and learning as
a joint optimization problem is currently out of the scope of the package, and we imple-
ment a more modular setup. PyStruct takes an object-oriented approach to decouple the
task-dependent implementation of 2. and 3. from the general algorithms used to solve 1.

Estimating θ is done in learner classes, which currently support cutting plane algo-
rithms for structural support vector machines (SSVMs Joachims et al. (2009)), subgradient
methods for SSVMs Ratliff et al. (2007), Block-coordinate Frank-Wolfe (BCFW) (Lacoste-
Julien et al., 2012), the structured perceptron and latent variable SSVMs (Yu and Joachims,
2009). The cutting plane implementation uses the cvxopt package (Andersen et al., 2012)
for quadratic optimization. Encoding the structure of the problem is done using model

classes, which compute Ψ and encode the structure of the problem. The structure of Ψ
determines the hardness of the maximization in Equation (1) and is a crucial factor in
learning. PyStruct implements models (corresponding to particular forms of Ψ) for many
common cases, such as multi-class and multi-label classification, conditional random fields
with constant or data-dependent pairwise potentials, and several latent variable models.
The maximization for finding y in Equation 1 is carried out using external libraries, such
as OpenGM (Kappes et al., 2013), LibDAI (Mooij, 2010) and others. This allows the user
to choose from a wide range of optimization algorithms, including (loopy) belief propaga-
tion, graph-cuts, QPBO, dual subgradient, MPBP, TRWs, LP and many other algorithms.
For problems where exact inference is infeasible, PyStruct allows the use of linear pro-
gramming relaxations, and provides modified loss and feature functions to work with the
continuous labels. This approach, which was outlined in Finley and Joachims (2008) allows
for principled learning when exact inference is intractable. When using approximate integral
solvers, learning may finish prematurely and results in this case depend on the inference
scheme and learning algorithm used.

Table 1 lists algorithms and models that are implemented in PyStruct and compares
them to other public structured prediction libraries: Dlib (King, 2009), SVMstruct (Joachims
et al., 2009) and CRFsuite (Okazaki, 2007). We also give the programming language and
the project license.
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Package Language License Algorithms Models

CP SG BCFW LV ML Chain Graph LDCRF

PyStruct Python BSD1 X1 X X X × X X X
SVMstruct C++ non-free X × × X × × × ×
Dlib C++ boost X × × × × X X ×
CRFsuite C++ BSD × × × × X X × ×

Table 1: Comparison of structured prediction software packages. CP stands for cutting
plane optimization of SSVMs, SG for online subgradient optimization of SSVMs,
LV for latent variable SSVMs, ML for maximum likelihood learning, Chain for
chain-structured models with pairwise interactions, Graph for arbitrary graphs
with pairwise interactions, and LDCRF for latent dynamic CRF (Morency et al.,
2007). 1PyStruct itself is BSD licensed, but uses the GPL-licensed package cvxopt for cutting-

plane learning.

3. Usage Example: Semantic Image Segmentation

Conditional random fields are an important tool for semantic image segmentation. We
demonstrate how to learn an n-slack support vector machine (Tsochantaridis et al., 2006) on
a superpixel-based CRF on the popular Pascal data set. We use unary potentials generated
using TextonBoost from Krähenbühl and Koltun (2012). The superpixels are generated
using SLIC (Achanta et al., 2012).1 Each sample (corresponding on one entry of the list X)
is represented as a tuple consisting of input features and a graph representation.

1 model = crfs.EdgeFeatureGraphCRF(

2 class_weight=inverse_frequency, symmetric_edge_features=[0, 1],

3 antisymmetric_edge_features=[2], inference_method=’qpbo’)

4
5 ssvm = learners.NSlackSSVM(model, C=0.01, n_jobs=-1)

6 ssvm.fit(X, Y)

Listing 1: Example of defining and learning a CRF model.

The source code is shown in Listing 1. Lines 1-3 declare a model using parametric edge
potentials for arbitrary graphs. Here class weight re-weights the hamming loss according
to inverse class frequencies. The parametric pairwise interactions have three features: a
constant feature, color similarity, and relative vertical position. The first two are declared
to be symmetric with respect to the direction of an edge, the last is antisymmetric. The
inference method used is QPBO-fusion moves. Line 5 creates a learner object that will
learn the parameters for the given model using the n-slack cutting plane method, and line
6 performs the actual learning. Using this simple setup, we achieve an accuracy of 30.3
on the validation set following the protocol of Krähenbühl and Koltun (2012), who report
30.2 using a more complex approach. Training the structured model takes approximately
30 minutes using a single i7 core.

1. The preprocessed data can be downloaded at http://www.ais.uni-bonn.de/download/datasets.html.
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Figure 1: Runtime comparison of PyStruct and SVMstruct for multi-class classification.

4. Experiments

While PyStruct focuses on usability and covers a wide range of applications, it is also
important that the implemented learning algorithms run in acceptable time. In this section,
we compare our implementation of the 1-slack cutting plane algorithm (Joachims et al.,
2009) with the implementation in SVMstruct. We compare performance of the Crammer-
Singer multi-class SVM with respect to learning time and accuracy on the MNIST data
set of handwritten digits. While multi-class classification is not very interesting from a
structured prediction point of view, this problem is well-suited to benchmark the cutting
plane solvers with respect to accuracy and speed.

Results are shown in Figure 1. We report learning times and accuracy for varying
regularization parameter C. The MNIST data set has 60 000 training examples, 784 features
and 10 classes.2 The figure indicates that PyStruct has competitive performance, while
using a high-level interface in a dynamic programming language.

5. Conclusion

This paper introduced PyStruct, a modular structured learning and prediction library in
Python. PyStruct is geared towards ease of use, while providing efficient implementa-
tions. PyStruct integrates itself into the scientific Python eco-system, making it easy to
use with existing libraries and applications. Currently, PyStruct focuses on max-margin
and perceptron-based approaches. In the future, we plan to integrate other paradigms,
such as sampling-based learning (Wick et al., 2011), surrogate objectives (for example
pseudo-likelihood), and approaches that allow for a better integration of inference and
learning (Meshi et al., 2010).
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Abstract

Recent results have shown that Gaussian mixture models (GMMs) are remarkably good at
density modeling of natural image patches, especially given their simplicity. In terms of
log likelihood on real-valued data they are comparable with the best performing techniques
published, easily outperforming more advanced ones, such as deep belief networks. They
can be applied to various image processing tasks, such as image denoising, deblurring and
inpainting, where they improve on other generic prior methods, such as sparse coding
and field of experts. Based on this we propose the use of another, even richer mixture
model based image prior: the Student-t mixture model (STM). We demonstrate that it
convincingly surpasses GMMs in terms of log likelihood, achieving performance competitive
with the state of the art in image patch modeling. We apply both the GMM and STM to
the task of lossy and lossless image compression, and propose efficient coding schemes that
can easily be extended to other unsupervised machine learning models. Finally, we show
that the suggested techniques outperform JPEG, with results comparable to or better than
JPEG 2000.

Keywords: image compression, mixture models, GMM, density modeling, unsupervised
learning

1. Introduction

Recently, there has been a growing interest in generative models for unsupervised learning.
Especially latent variable models such as sparse coding, energy-based learning and deep
learning techniques have received a lot of attention (Wright et al., 2010; Bengio, 2009).
The research in this domain was for some time largely stimulated by the success of the
models for discriminative feature extraction and unsupervised pre-training (Erhan et al.,
2010). Although some of these techniques were advertised as better generative models, no
experimental results could support these claims (Theis et al., 2011). Furthermore recent
work (Theis et al., 2011; Tang et al., 2013) showed that many of these models, such as
restricted Boltzmann machines and deep belief networks are outperformed by more basic
models such as the Gaussian Mixture model (GMM) in terms of log likelihood on real-valued
data.

Although arguably not as useful for the extraction of discriminative features, for the
use of unsupervised pre-training, Gaussian mixture models have been shown to be very
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successful in various image processing tasks, such as denoising, deblurring and inpainting
(Zoran and Weiss, 2011; Yu et al., 2012). Good density models are essential for these
tasks, and the log likelihood measure of these models has shown to be a good proxy for
their performance. Apart from being simple and efficient, GMMs are easily interpretable
methods which allow us to learn more about the nature of images (Zoran and Weiss, 2012).

In this paper we suggest the use of a similar, simple model for modeling natural im-
age patches: the Student-t mixture model (STM). The STM uses multivariate Student-t
distributed components instead of normally distributed components. We will show that a
Student-t distribution, although having only one additional variable (the number of degrees
of freedom), is able to model stronger dependencies than solely the linear covariance of the
normal distribution, resulting in a large increase in log likelihood. Although a GMM is a
universal approximator for continuous densities (Titterington et al., 1985), we will see that
the gap in performance between the STM and GMM remains substantial, as the number of
components increases.

Apart from comparing these methods with other published techniques for natural image
modeling in terms of log likelihood, we will also apply them to image compression by
proposing efficient coding schemes based on these models. Like other traditional image
processing applications, it is a challenging task to improve upon the well-established existing
techniques. Especially in data compression, which is one of the older, more advanced
branches of computer science, research has been going on for more than 30 years. Most
modern image compression techniques are therefore largely the result of designing data-
transformation techniques, such as as the discrete cosine transform (DCT) and the discrete
wavelet transform (DWT), and combining them with advanced engineered entropy coding
schemes (Wallace, 1991; Skodras et al., 2001).

We will demonstrate that simple unsupervised machine learning techniques such as
the GMM and STM are able to perform quite well on image compression, compared with
conventional techniques such as JPEG and JPEG 2000. Because we want to measure the
density-modeling capabilities of these models, the amount of domain-specific knowledge
induced in the proposed coding schemes is kept to a minimum. This also makes it relevant
from a machine learning perspective as we can more easily apply the same ideas to other
types of data such as audio, video, medical data, or more specific kinds of images, such as
satellite, 3D and medical images.

In Section 2 we review some work on compression, in which related techniques were
used. In Section 3 we give the necessary background for this paper on the GMM and STM
and the expectation-maximization (EM) steps for training them. We will also elaborate on
their differences and the more theoretical aspects of their ability to model the distribution
of natural image patches. In Section 4 we present the steps for encoding/decoding images
with the use of these mixture models for both lossy and lossless compression. The results
and their discussion follow in Section 5. We conclude in Section 6.

2. Related Work

In this section we will review related work on image compression and density modeling.

2062



The STM as a Natural Image Patch Prior

2.1 Image Compression

The coding schemes (see section 4) we use to compare the GMM and STM, can be related
with other published techniques in image compression, in the way they are designed. Al-
though little research has been done on the subject we briefly review work based on vector
quantization, sparse coding and subspace clustering. The lossy coding scheme we describe
in this paper is based on a preliminary version that appeared in our previous work (van den
Oord et al., 2013).

In vector quantization (VQ) literature, GMMs have been proposed for the modeling of
low-dimensional speech signal parameters (Hedelin and Skoglund, 2000). In this setting,
the GMMs’ probability density function is suggested to be used to fit a large codebook
of VQ centroids on (e.g., with a technique similar to k-means), instead of on the original
data set. They were introduced to help against overfitting, which is a common problem
with the design of vector quantizers when the training set is relatively small compared
to the size of the codebook. The same idea has also been suggested for image compres-
sion (Aiyer et al., 2005). In contrast to these approaches we will apply a (learned) data
transformation in combination with simple scalar uniform quantization, which reduces the
complexity considerably given the relatively high dimensionality of image patches. This idea
called transform coding (Goyal, 2001) is widely applied in most common image compression
schemes, which use designed data-transforms such as the DCT and DWT.

By some authors (Hong et al., 2005) image compression has been suggested based on
a subspace clustering model. The main contribution was a piecewise linear transformation
for compression, which was also extended to a multiscale method. This is by some means
similar to our lossy compression scheme as we also apply a piecewise linear transform, but
based on the GMM/STM instead of a subspace clustering technique. They did not suggest
quantization or entropy coding steps, and therefore only evaluated their approach in terms
of energy compaction instead of rate-distortion.

Image compression based on sparse coding has been proposed (Horev et al., 2012) for
images in general (Bryt and Elad, 2008; Zepeda et al., 2011) and for a specific class of facial
images. Aside from being another unsupervised learning technique, sparse coding has been
related with GMM in another way: Some authors (Yu et al., 2012; Zoran and Weiss, 2011)
have suggested the interpretation of a GMM as a structured sparse coding model. This idea
is based on the observation that data can often be represented well by one of the N Gaussian
mixture components, thus when combining all the eigenvectors of their covariance matrices
as an overcomplete dictionary, the sparsity is 1

N . The main results in Horev et al. (2012)
show that sparse coding outperforms JPEG, but it does not reach JPEG 2000 performance
for a general class of images.

2.2 Models of Image Patches

Sparse coding approaches (Olshausen and Field, 1997) have also been successfully applied
as an image prior on various image reconstruction tasks, such as denoising and demosaicing
(Elad and Aharon, 2006; Mairal et al., 2009). These models have recently been shown to
be outperformed by the GMM in both image denoising (Zoran and Weiss, 2011) as density
modeling (Zoran and Weiss, 2012).
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The Fields of Experts (FoE) framework is another approach for learning priors that can
be used for image processing applications (Roth and Black, 2005; Weiss and Freeman, 2007).
In a FoE, the linear filters of a Markov random field (MRF) are trained to maximize the
log-likelihood of whole images in the training set. This optimization is done approximately
with contrastive divergence, as computing the log likelihood itself is intractable. The po-
tential functions that are used in the MRF are represented by a product of experts (PoE)
(Hinton, 2002). The FoE is commonly used for image restoration tasks such as denoising
and inpainting, but was also recently outperformed by GMMs with the expected patch log
likelihood framework (EPLL) (Zoran and Weiss, 2012).

Recently similar models to the GMM have been proposed for image modeling, such as
the Deep mixture of Factor analyzers (Deep MFA) (Tang et al., 2012). This technique is
a deep generalization of the Mixture of Factor Analyzers model, which is similar to the
GMM. The deep MFA has a tree structure in which every node is a factor analyzer, which
inherits the low-dimensional latent factors from its parent.

Another model related to the GMM and STM is the Mixture of Gaussian scale mixtures
(MoGSM) (Theis et al., 2011, 2012). Instead of a Gaussian, every mixture component is a
Gaussian scale mixture distribution. The MoGSM has been used for learning multi-scale
image representations, by modeling each level conditioned on the higher levels.

RNADE, a new deep density estimation technique for real valued data has a very dif-
ferent structure (Uria et al., 2013b,a). RNADE is an extension of the NADE technique
for real-valued data, where the likelihood function is factored into a product of conditional
likelihood functions. Each conditional distribution is fitted with a neural mixture density
network, where one variable is estimated, given the other ones. Recently a new training
method has allowed a factorial number of RNADE’s to be trained at once within one model.
It is currently one of the few deep learning methods with good density estimation results
on real-valued data and is the current state of the art on image patch modeling.

3. Mixture Models as Image Patch Priors

Mixture models are among the most widely accepted methods for clustering and probability
density estimation. Especially GMMs are well known and have widespread applications in
different domains. However depending on the data used, other mixture models might be
more suitable.

In this work we will denote the mixture component distribution as fk and the mixture
distribution as

f (x) =

K∑
k=1

πkfk (x) ,

where πk, k = 1 . . .K are the mixing weights. The two component distributions we study
here are the multivariate normal distribution:

fk (x) = N (x|µk,Σk) = (2π)−
p
2 |Σk|−

1
2 e−

1
2

(x−µk)T Σ−1
k (x−µk),

and the multivariate Student-t distribution, see Equation 1. In these equations, p is the
dimensionality of x. We will train the GMM with the EM-algorithm: an iterative algorithm
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for finding the maximum likelihood estimate of the parameters. For completeness we sum-
marize the expectation and maximization steps for training a GMM with EM.
E-step:

γnk =
πkN (xn|µk,Σk)
K∑
j=1

πjN (xn|µj ,Σj)

.

M-step:

πk =
1

N

N∑
n=1

γnk, µk =

N∑
n=1

γnkxn

N∑
n=1

γnk

,

Σk =

N∑
n=1

γnk (xn − µk) (xn − µk)T

N∑
n=1

γnk

.

One of the important reasons GMMs excel at modeling image patches is that the distri-
bution of image patches has a multimodal landscape. A unimodal distribution such as the
multivariate normal distribution is not able to capture this. When using a mixture however,
each component can represent a different aspect or texture of the whole distribution. We
can observe this by looking at the individual mixture components of a trained GMM model,
see Figure 1.

Next to modeling different textures, the GMM also captures differences in contrast. It
has been shown (Zoran and Weiss, 2012) that multiple components in the GMM describe
a similar structure in the image, but each with a different level of contrast. The STM,
however, can model different ratios of contrast within a single mixture component.

A multivariate Student-t distribution has the following density function (Kotz and
Nadarajah, 2004):

T (x|ν, µ,Σ) =
Γ
(
ν+p

2

)
Γ
(
ν
2

)
ν
p
2 π

p
2 |Σ|1/2

[
1 +

1

ν
(x− µ)

T
Σ−1 (x− µ)

]− ν+p2

. (1)

ν is an additional parameter which represents the number of degrees of freedom. Note that
for ν →∞ the Student-t distribution converges to the normal distribution. It is interesting
to see how this distribution is constructed:
If Y is a multivariate normal random vector with mean 0 and covariance Σ, and if νT is a
chi-squared random variable with degrees of freedom ν, independent of Y, and

X =
Y√
T

+ µ,

then X has a multivariate Student-t distribution with degrees of freedom ν, mean µ, and
covariance matrix Σ. This also means X|T = τ is normally distributed with mean µ and
covariance Σ

τ . In the setting of modeling image patches, T can be interpreted to model the
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The first 64 eigenvectors of the component’s covariance matrix.

Patches generated by sampling from the component distribution.

Examples from the train set that are best represented by this component.

The first 64 eigenvectors of the component’s covariance matrix.

Patches generated by sampling from the component distribution.

Examples from the train set that are best represented by this component.

Figure 1: Six mixture components of the GMM are visualized here (the STM gives similar
texture patterns). We first show the eigenvectors of the covariance matrix of
each component, which show the structure of the image patches that the mixture
component learns. These eigenvectors are sorted by their respective eigenvalues
from large to small (left to right and top to bottom). Only the first 64 of 192
are shown. Next we show some samples that are generated by each component,
and some examples from the train set that are best represented with this com-
ponent (clustered with the GMM). Note that every component has specialized in
a different aspect or texture, and that the samples generated by the component
distributions are very similar to the real image patches. This figure is best viewed
in color on the electronic version.2066
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variety of contrast, for a given texture. The distribution of T is visualized in Figure 2(a),
for different values of ν. If ν is small for a given component (texture), this means that the
texture appears in natural images in a wide range of contrast. For ν →∞ we get a Gaussian
distribution and its contrast is more constrained. To obtain the same capacity with a GMM,
one would need multiple components having scaled versions of the same covariance matrix.

In Figure 2(b) the value of ν is visualized for different components of a trained STM.
This value differs substantially for each component, ranging from almost zero to 15. This
means some component-distributions are very long-tailed (with small ν) and some are more
normally distributed (higher ν). This means that some texture patterns appear in a wider
range of contrast than others. However, in our experiments we saw that the STM does not
learn significantly different structures compared to the GMM. The texture patterns learned
by the STM were also very similar to those shown in Figure 1. This means the STM is
better at generalizing to image patches with different levels of contrast, but might not be
better at generalizing to different unseen texture patterns.
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(a) The distribution of T in Equation 2, for different
values of ν. As ν increases the distribution becomes
more peaked and converges to a Dirac delta at 1.
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(b) The value of νk for each component k of a trained
STM with 128 components, sorted from low to high.

Figure 2: The distribution of T for different ν and the value of ν for different mixture
components.

Given the fact that a GMM is universal approximator for continuous densities, the
question that remains is if a STM still has the advantage over the GMM when the number
of components increases. To this end we have trained a GMM and STM on a set of image
patches for different numbers of mixture components and computed their log likelihood
scores on a validation set, see Figure 3(a). Notice that the performance of a single Student-
t is much better than that of a single Gaussian, and close to that of a GMM with K=4. This
is in agreement with previously reported findings (Zoran and Weiss, 2012), which suggest
that a GMM with a small number of components mainly learns contrast. Next we see that
as N increases the gap in performance between the STM and GMM remains substantial.
The most plausible explanation for this behavior is that the GMM needs more mixture
components than the STM to have the same contrast modeling capabilities. However,
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with more mixture components the risk of overfitting also increases. If one would tie the
parameters of some of these components together, so that they have scaled versions of the
same covariance matrix, the risk of overfitting would decrease. This is exploited in the
mixture of Gaussian scale mixtures (MoGSM) (Theis et al., 2012).

The idea of explicitly sharing covariance parameters between mixture components has
also been applied to mixtures of factor analyzers, with the deep MFA model (Tang et al.,
2012). They proposed a hierarchical structure in which the mixture components partially
inherit the covariance structure of their parent in the hierarchy.

The Student-t has previously been used for modeling image patches in the PoE frame-
work (Welling et al., 2002), where each expert models a differently linearly filtered version
of the input with a univariate Student-t distribution.
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Figure 3: The average patch log likelihood for the Gaussian mixture model (GMM) and
Student-t mixture model (STM) in function of its number of mixture compo-
nents (a) and number of training samples (b). The models were trained on 8x8
normalized gray scale image patches, extracted from the Berkeley data set (see
Section 5.1.1).

We also train the STM with the EM algorithm (Peel and McLachlan, 2000; Dempster
et al., 1977):
E-step:

γnk =
πkT (xn|νk, µk,Σk)
K∑
j=1

πjT (xn|νj , µj ,Σj)

, wnk = νk+p

νk+(xn−µk)T Σ−1
k (xn−µk)

.

M-step:

πk =
1

N

N∑
n=1

γnk, µk =

N∑
n=1

γnkwnkxn

N∑
n=1

γnkwnk

.
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Σk =

N∑
n=1

γnkwnk (xn − µk) (xn − µk)T

N∑
n=1

γnk

.

For the degrees of freedom, there is no closed form update rule. Instead νk gets updated as
the solution of:

− ψ
(νk

2

)
+ log

(νk
2

)
+ 1 +

1

αk

N∑
n=1

γnk (log (wnk)− wnk)

+ ψ

(
ν̃k + p

2

)
− log

(
ν̃k + p

2

)
= 0,

where ν̃k is the value of the current νk, αk =
∑N

n=1 γnk and ψ is the digamma function.
This scalar non-linear equation can be solved quickly with a root finding algorithm, such
as Brent’s method (Brent, 1973).

Note that the expectation and maximization steps are quite similar to those of the
GMM. In our experiments, it did not take substantially longer to train a STM than a
GMM. Typically 100 iterations were enough to train the STM or GMM, even though the
log likelihood does keep improving a little bit after that (even after 500 iterations). For a
big mixture model of 256 components, trained on 500.000 samples of 8x8 gray scale patches,
this took about 20 hours on a standard desktop computer with four cores. For the STM, it
took 21 hours. On this scale, the CPU time is linear in both the number of training samples
and the number of components. Training on image patches proved to be quite stable: no
components needed to be reinitialized during training.

The code for training a Student-t mixture is included in the supplementary material of
this paper.

4. Compression with Mixture Models

Both the lossy and lossless algorithms we propose are patch/block based. This means they
will encode each patch of an image separately. During training we randomly sample a large
set of image patches from the training images. These are used to fit the GMM and STM
models. Once training is finished, these density models can be used to encode the test
images. Each test image is viewed as a grid of non-overlapping patches. The encoder loops
over all patches, which are extracted, flattened and encoded one by one.

To speed up the algorithms, each patch will be encoded using the distribution and
parameters of only one of the mixture components. We choose the mixture component
which represents the given patch with the highest likelihood:

β = arg max
k

fk (xn) .

This will only slightly reduce the performance, because the “overlap” between the individual
mixture components is relatively small. We can easily validate this with a simple intermedi-
ate experiment. In Table 1 we have computed the log likelihood for a trained GMM and STM
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GMM STM

Log likelihood 152.86 154.51

Highest mixture component log likelihood 152.66 154.15

Table 1: Average patch log likelihood compared with the average highest component patch
log likelihood: How well can a sample be represented by using a single mixture
component? (See text)

on a validation set. We have also computed the average log likelihood when only one of the
mixture components is used for each example: 1

N

∑N
n=1 log (maxk (πkfk (xn))). Note that

this is strictly lower than the actual average log likelihood: 1
N

∑N
n=1 log

(∑K
k=1 πkfk (xn)

)
.

But as can be seen from Table 1, the difference is small.

4.1 Arithmetic Coding

Most commonplace image compression schemes follow three main steps: transformation,
quantization and entropy coding (Goyal, 2001). Transformation decorrelates the data, quan-
tization maps the values of the decorrelated continuous variables onto discrete values from a
relatively small set of symbols (such as integers) and entropy coding encodes these discrete
quantized values into a bit sequence. In this paper, transformation and quantization will
only be used for lossy compression and not for lossless compression. However, in both cases
we employ arithmetic coding (AC) for the entropy coding step.

Entropy coding is a family of algorithms that take as input a sequence of discrete values,
and give as output the encoded binary sequence. Based on the statistical properties of the
input, the goal is to minimize the expected length of the bit sequence (e.g., by assigning
more bits to a rare symbol and less bits to a common symbol). The theoretical limit of
the encoding scheme is bounded by the entropy of the input signal, which explains the
name entropy coding. Arithmetic coding is a form of entropy coding, which requires a
list of probabilities αi, i = 1 . . . N that describe the discrete distribution P (sj) = αj of
a symbol sj occurring in an input sequence. Based on these probabilities, the algorithm
will on average spend fewer bits on common symbols, than on rare ones. However, with
AC it is also possible to use different probabilities for each time step t in the sequence:

P
(
s

(t)
j

)
= αjt, and even adapt them during the encoding/decoding based on the values of

the previously encoded symbols. This is also called adaptive arithmetic coding.

4.2 Lossless Compression

In lossless compression, the image should be preserved perfectly so that after decompression
the output image is identical to the input image. Because we have a probabilistic model
for an image patch, the most natural way to approach this task is to use lossless predictive
coding (Pearlman and Said, 2011). The idea is to predict the value (integer) of each sample
within an image patch, using the values of its neighboring samples that are already encoded,
based on the correlations between them. In this case, the prediction will actually consist of
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a discrete probability distribution over the possible values of the current sample, which can
directly be used to perform arithmetic coding.

To carry out arithmetic coding on a patch xi, one needs to compute a list of probabilities
(probability table) for each of its elements xi,j : P (xi,j = l) for l = 0 . . . L. More specifically,
because arithmetic coding can adapt the probability tables to the information of the previous
symbols xi,1 . . . xi,j−1 it is possible to encode every symbol conditionally with respect to the
ones already encoded: P (xi,j = l|xi,1 . . . xi,j−1). As the image patches are modeled by
continuous probability densities, this can computed as follows:

P (xi,j = l|xi,1 . . . xi,j−1) =

∫ l+ 1
2

l− 1
2

f (xi,j |xi,1 . . . xi,j−1) dxi,j . (2)

This scheme for performing lossless image compression can be used in combination with
any density model, provided that we can compute Equation 2. This way arithmetic coding
can be applied to the image using the statistics of the trained model. Algorithm 1 gives a
summary for lossless compression with a mixture model.

As already mentioned, when using an mixture model, it is more efficient to use a single
component for the encoding of a patch than the whole mixture. For both normally and
Student-t distributed variables, the expressions for Equation 2 can be derived from their
conditional distributions.
For the normal distribution this becomes:∫ l+ 1

2

l− 1
2

N (xi,j |xi,1 . . . xi,j−1) dxi,j = Fn

(
l +

1

2
|µ̃j , σ̃j2

)
− Fn

(
l − 1

2
|µ̃j , σ̃j2

)
,

with Fn the cumulative distribution function (CDF) of the univariate normal distribution,
and where

µ̃j = µj + Σj,1:j−1Σ−1
1:j−1,1:j−1 (x1:j−1 − µ1:j−1) ,

σ̃j
2 = Σj,j − Σj,1:j−1Σ−1

1:j−1,1:j−1Σ1:j−1,j .

For the multivariate Student-t distribution the equations are similar:∫ l+ 1
2

l− 1
2

T (xi,j |xi,1 . . . xi,j−1) dxi,j = Ft

(
l +

1

2
|ν̃j , µ̃j , s̃j2

)
− Ft

(
l − 1

2
|ν̃j , µ̃j , s̃j2

)
,

with Fn the CDF of the non-standardized univariate Student-t distribution (which has a
location and scale parameter), and where

ν̃j = νj + j − 1,

µ̃j = µj + Σj,1:j−1Σ−1
1:j−1,1:j−1 (x1:j−1 − µ1:j−1) ,

s̃j
2 =

(
ν + xT1:j−1Σ−1

1:j−1,1:j−1x1:j−1

ν + j − 1

)(
Σj,j − Σj,1:j−1Σ−1

1:j−1,1:j−1Σ1:j−1,j

)
.

When using a form of entropy coding, such as arithmetic coding, the theoretical optimal
code length for a symbol i is dependent on the probability Pi of it occurring: − log (Pi).
Therefore, the lower bound on the expected rate (bits per symbol) is: − 1

N

∑N
i=1 Pi log (Pi).

Because Pi is calculated by a density model (Equation 2), the log likelihood score of this
model is a good indication for how well it performs on lossless compression.
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Algorithm 1: Lossless image compression with a mixture model. [AC] stands for
arithmetic coding.

Encoder:

for each patch xi in image do
β = arg maxk fk(xi)
[AC] Encode symbol β with probability table π (mixing weights)
for each xij , j = 1 . . . p do

Use Equation 2 to compute: αi,j,l = Pβ(xi,j = l|zi,1 . . . xi,j−1)
[AC] Encode symbol xij with probability table αi,j

end

end

Decoder:

while not at end of bit stream do
[AC] Decode symbol β with probability table π (mixing weights)
initialize xi
for j = 1 . . . p do

Use Equation 2 to compute: αi,j,l = Pβ(xi,j = l|zi,1 . . . xi,j−1)
[AC] Decode symbol xij with probability table αi,j

end

end
Reconstruct image from patches xi, i = 1 . . . N .
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4.3 Lossy Compression

For lossy compression, the image reconstruction after decompression does not have to be
identical to the original, but should match it very closely. The strength of compression
should be as high as possible, given a certain tolerable amount of distortion. This freedom
evidently allows stronger compression than with lossless algorithms.

Lossy image compression algorithms typically use quantization to reduce the amount of
information that needs to be entropy coded. Quantization decreases the number of states
of the data variables to a smaller discrete set. As mentioned above we will use simple scalar
quantization as the number of variables in a patch is relatively high and vector quantization
would simply be impractical. Instead of VQ, we will combine scalar quantization with a
data transform step, as is done in most image compression schemes.

The main reason of a data transform step in compression schemes is to decorrelate the
input, so that the different coefficients can be handled more independently afterwards. Es-
pecially when using scalar quantization it is important to use a form of transformation first,
as this reduces the amount of redundancy in the data that has to be encoded. Moreover,
if one would quantize the image in the original pixel domain, the reconstruction artifacts
would be very obtrusive. Because a Gaussian or Student-t mixture component already
models covariance, decorrelation is fairly straightforward. The transform step is as follows:

yi = W T (xi − µ) , (3)

where W is the eigenvector matrix of the covariance matrix Σ of the Gaussian/Student-t
mixture component: WJW T = Σ. J is the diagonal eigenvalue matrix of Σ. Subsequently,
the transformed values are quantized with a uniform quantizer:

zi = round
(yi
λ

)
. (4)

The strength of the quantization only depends on λ. When it is high, the quality of the
encoded image will be low, but the compression ratio will be high.

Once quantization is done, arithmetic coding is carried out in a similar fashion as with
lossless compression: we have to be able to compute Equation 2. Because the data is
transformed (Equation 3), the mean of y becomes 0: µy = 0 and the covariance matrix
reduces to: Σy = J . The equations for calculating the conditional probabilities from before
can now be simplified.
For the normal distribution:

P (zi,j = l|zi,1, . . . , zi,j−1) =

∫ λ(l+ 1
2)

λ(l− 1
2)
N (yi,j |ỹi,1 . . . ỹi,j−1) dyi,j (5)

= Fn

(
λ

(
l +

1

2

)
|0, Jj

)
− Fn

(
λ

(
l − 1

2

)
|0, Jj

)
,

with Fn the cumulative distribution function (CDF) of the univariate normal distribution,
and ỹi,∗ is the reconstruction of yi,∗ (as we will discuss later).
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For the Student-t distribution:

P (zi,j = l|zi,1, . . . , zi,j−1) =

∫ λ(l+ 1
2)

λ(l− 1
2)
T (yi,j |ỹi,1 . . . ỹi,j−1) dyi,j (6)

= Ft

(
λ

(
l +

1

2

)
|ν̃j , 0, s̃j2

)
− Ft

(
λ

(
l − 1

2

)
|ν̃j , 0, s̃j2

)
,

with Ft the CDF of the non-standardized univariate Student-t distribution (which has a
location and scale parameter), and where

ν̃j = νj + j − 1,

s̃j =

νj +
∑j−1

m=1

ỹ2i,m
Jm

νj + j − 1

 Jj .

Because of the two additional steps (Transformation and Quantization) during compres-
sion, the decoder has to dequantize and subsequently detransform the data after arithmetic
coding.
Dequantization:

ỹi = λzi. (7)

Inverse transform:
x̃i = Wỹi + µ. (8)

4.3.1 Uniform Threshold Quantization

It is important to note that Equation 7 might not be the best choice for reconstruction. It
is indeed possible to increase the quality of dequantization by using prior knowledge of the
scalar input distribution. This concept is called uniform threshold quantization (Pearlman
and Said, 2011). Figure 4 shows the difference with regular uniform quantization.

Depending on the assumed distribution of the source it is possible to minimize the
expected distortion: (ỹi,j − yi,j)2 (other measures of distortion can also be used). This
comes down to solving the following optimization problem:

ỹi,j = arg min
y

∫ λ(zi,j+ 1
2)

λ(zi,j− 1
2)
‖y − x‖2 f(x) dx,

which can be simplified to:

ỹi,j =

∫ λ(zi,j+ 1
2)

λ(zi,j− 1
2)
xf(x) dx∫ λ(zi,j+ 1

2)
λ(zi,j− 1

2)
f(x) dx

.

This is actually nothing more than the centroid in that region (see Figure 4). Because we
are using a probabilistic method, this improved reconstruction almost comes for free: The
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Algorithm 2: Lossy image compression with a mixture model. [AC] stands for arith-
metic coding.

Encoder:

for each patch xi in image do
β = arg maxk fk(xi)
[AC] Encode symbol β with probability table π (mixing weights)
Transform xi with Equation 3 using the β-th component
Quantize xi with Equation 4
for each xij , j = 1 . . . p do

Use Equation 5 or 6 to compute: αi,j,l = Pβ(xi,j = l|xi,1 . . . xi,j−1)
[AC] Encode symbol xij with probability table αi,j

end

end

Decoder:

while not at end of bitstream do
[AC] Decode symbol β with probability table π (mixing weights)
initialize xi
for j = 1 . . . p do

Use Equation 5 or 6 to compute: αi,j,l = Pβ(xi,j = l|xi,1 . . . xi,j−1)
[AC] Decode symbol xij with probability table αi,j

end
Dequantize xi with Equation 7 or 9
Inverse transform xi with Equation 8

end
Reconstruct image from patches xi, i = 1 . . . N .
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Figure 4: Uniform quantization versus uniform threshold quantization. During dequantiza-
tion, UQ will reconstruct the input with the centers of the quantization intervals.
UTQ uses the centroids instead.

compression scheme remains the same, only the decompression is improved. For a normally
distributed variable the reconstruction is

ỹi,j =

√
Jj
2π

[
exp

(
−λ2(zi,j− 1

2)
2

2Jj

)
− exp

(
−λ2(zi,j+ 1

2)
2

2Jj

)]
Fn
(
λ
(
zi,j + 1

2

)
|0, Jj

)
− Fn

(
λ
(
zi,j − 1

2

)
|0, Jj

) ,

and for a Student-t distributed variable it is

ỹi,j =

Γ
(
ν̃j+1

2

)
√
πΓ

(
ν̃j
2

) s̃ν̃jj ν̃j
ν̃j
2

ν̃j−1

[(
ν̃j s̃

2
j + λ2

(
zi,j − 1

2

)2) 1−ν̃j
2 −

(
ν̃j s̃

2
j + λ2

(
zi,j + 1

2

)2) 1−ν̃j
2

]
Ft
(
λ
(
zi,j + 1

2

)
|ν̃j , 0, s̃j2

)
− Ft

(
λ
(
zi,j − 1

2

)
|ν̃j , 0, s̃j2

) .

5. Results and Discussion

In this section we will discuss the experimental results of the STM on density modelling
and image compression tasks.

5.1 Data Sets and Methods

We will first introduce the data sets that we used for our experiments and also discuss
the image compression standards (JPEG, JPEG 2000) which will be used to compare the
compression results with.

5.1.1 Berkeley Segmentation Data Set

The Berkeley Segmentation Data set (Martin et al., 2001) consists of 200 training and 100
test JPEG-encoded images, originally intended to be used as a segmentation benchmark.
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Some samples can be seen on Figure 5. This data set has been used by several authors
to measure the unsupervised learning performance of their model on image patches (Zoran
and Weiss, 2011; Tang et al., 2013; Uria et al., 2013a). We adopt the use of this data set for
measuring density modeling performance, but not for image compression, as these images
were already encoded with JPEG and will already contain some quantization noise.

5.1.2 UCID Data Set

Although images are abundant on the world wide web, large data sets containing losslessly
encoded images are rather hard to find. In image processing most authors have grown to rely
on a particular set of standard images, such as Lena, Baboon, Peppers, etc. 1 to measure
their algorithms’ performance. Although each of these images have specific features that
make them interesting to test a new method on, results on this small set likely will not
generalize to a wide range of images. Furthermore, because there is no clear distinction
between a training and test set for these images, there is a high risk of overfitting (even
when engineering a compression scheme). Finally most of these images are relatively old
and noisy, so they are hardly representative for images of modern photography.

On of the few publicly available data sets is UCID (Schaefer and Stich, 2003) (Uncom-
pressed Colour Image Data set). The UCID database consists of 1338 TIFF images on a
variety of topics including natural scenes and man-made objects, both indoors and out-
doors. The camera settings were all set to automatic as this resembles what the average
user would do. All the images have sizes 512x384 or 384x512. The images are in true color
(24-bit RGB, each color channel having 256 possible values per pixel). Some sample UCID
images can be seen on Figure 6.

As the images are not in random order, we have included every 10th image (10, 20, 30,
. . ., 1330) of the data set in our test set, and the others were used for training. This results
in 1205 images for training and 133 images for testing. We randomly sample a large set of
image patches (two million) for training the mixture models. We then encode every test
image with a number of different quantization strengths (only for lossy compression), and
measure their compression performance and the distortion of their reconstruction.

5.1.3 JPEG and JPEG 2000

For comparison we added two image compression standards as benchmark: JPEG (Wallace,
1991) and JPEG 2000 (Skodras et al., 2001).

JPEG is a patch based compression standard which uses the DCT as its transform, with
quantization and entropy coding optimized for this transform. For the JPEG standard, we
employed the widely used libjpeg implementation (ijg.org). Optimization of the JPEG
entropy encoding parameters was enabled for better performance. The quality parameter
was swept from 0 (worst) to 100 (best) in steps of 5.

JPEG 2000 is a wavelet-based compression standard and because of its multiresolution
decomposition structure, it is able to exploit wider spatial correlations than JPEG and
our method (which are patch based). For JPEG 2000, the kakadu implementation was

1. Most of these standard images can be found here: http://sipi.usc.edu/database/database.php?

volume=misc
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used (kakadusoftware.com). To make a fair comparison, command line parameters were
enabled to optimize the PSNR instead of perceptual error measures.

For both methods we did not take the meta information of the header into account when
measuring the performance of compression.

Figure 5: Sample images from the Berkeley Segmentation Data set.

Figure 6: Sample images from the UCID data set (Uncompressed Colour Image Data set).

5.2 Average Patch Log Likelihood Comparison

Two million 8x8 patches were extracted from the training images, and 50,000 were extracted
from the testing images (Berkeley data set). For every sample the mean was subtracted
(DC component). Because the test patches we extracted could differ from those used by
other authors, we report the mean and standard deviation across 10 randomly sampled sets
of 50,000 patches. The results are listed in Table 2. The GMM and STM had 200 mixture
components. As expected our GMM has a comparable result to that reported in literature.
The proposed method STM significantly outperforms other methods.

We also compare our result with the recently proposed RNADE model (Uria et al.,
2013b,a). Because the authors preprocess the gray scale patches differently, the results are
not comparable to the ones reported in Table 2. Before subtracting the sample mean, small
uniform noise (between 0 and 1) is added to the pixel values (between 0 and 255), which
are then normalized by dividing by 256. Afterwards, they remove the last pixel, so that
the number of variables of each datapoint equals 63. For this task we used four million
patches during training and evaluated on one million patches from the test set. The results
are shown in Table 3. The STM outperforms the deep RNADE model of 6 layers, but is on
its turn outperformed by the ensemble of RNADE models (EoRNADE).

5.3 Lossless Compression

Because JPEG does not natively support lossless compression we excluded this benchmark
for this test. For our methods we used patch size 8x8 and 128 mixture components. The
results are listed in Table 4. As explained above (see Section 4.2), there is a connection
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Indp. Pixel ICA GRBM DBN MFA

78.3 135.7 137.8 144.4 166.5

Deep MFA MTA GMM GMM STM

169.3 158.2 167.2 166.97 ± 0.36 172.13 ± 0.42

Table 2: Average log-likelihood (higher is better). Own results are marked in bold. The
results of other methods are taken from Zoran and Weiss (2011); Tang et al. (2013).
ICA: independent component analysis, GRBM: Gaussian restricted Boltzmann
machine, DBN: Deep belief network, MFA: mixture of factor analyzers, MTA:
Mixture of Tensor analyzers.

RNADE:

1hl, 2hl, 3hl 143.2, 149,2, 152.0

4hl, 5hl, 6hl 153.6, 154.7, 155.2

EoRNADE (6hl) 157.0

GMM 153.7

STM 155.3

Table 3: Average log-likelihood comparison with RNADE (Uria et al., 2013a) in function
of the number of hidden layers (hl). Our results are marked in bold. These results
are obtained from differently processed patches than those in Table 2 (see text).
EoRNADE stands for an ensemble of RNADE’s.

between average log likelihood and the expected lossless compression strength. The STM
also outperforms the GMM on this task, and both methods outperform JPEG 2000.

5.4 Lossy Compression

We will first analyze the influence of the patch size on the lossy compression performance.
The results are visualized in Figure 7. All mixture models were trained for 500 iterations
and consist of 128 components. The reconstruction quality of an image is measured in peak
signal-to-noise ratio: PSNR = 10 log10

R2

MSE , with R being the largest possible pixel value
(255 in this case) and MSE being the average mean squared error.

Bigger patch sizes show better results for low bit rates and vice versa. This can be
explained by the fact that when using larger patch sizes, covariance between more pixels

JPEG 2000 GMM STM

12.40 12.07 11.83

Table 4: Lossless compression rate (in bits per pixel - lower is better). Naive encoding
would result in 24 bits per pixel (true color images).
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can be modeled simultaneously. This way the transform has the ability to decorrelate better,
which is important for low bit rates. For higher bit rates, we approach a near-lossless region,
where the log likelihood performance of the model is crucial. When modeling smaller patch
sizes, the algorithm is less prone to overfit, resulting in better performance. We can see that
these high-rate effects are most apparent for the GMM. The STM, which is more robust to
overfitting, is able to model larger patch sizes.

Because the 8x8 patch size has a good performance in general for both methods, our
final experiments are computed with this setting. Note that JPEG also uses 8x8 patches for
its compression scheme. For different compression strengths we have computed the average
PSNR of the reconstructed images. For some images, JPEG or JPEG 2000 was unable to
encode them at a given rate (1, 2 and 10 images for 3, 4 and 5 bpp respectively), so these
images where not taken into account at those rates.

The final results are shown on Figure 8. For all compression rates, JPEG is outperformed
by the other methods. The proposed compression schemes are competitive with JPEG
2000, and relatively to JPEG they score quite similar. In all experiments uniform threshold
quantization improves on standard uniform quantization. The GMM is always outperformed
by the STM, and the difference increases for larger bit rates. JPEG 2000 slightly exceeds
the performance of the GMM in all experiments, but is in turn surpassed by the STM, with
the exception of the lowest bit rate. At low bit rates, correlations on a more global scale
become more important, which is why the multiresolution wavelet transform of JPEG 2000
achieves a better performance than our patch-based approach in this setting. Extending
our approach to a multiscale technique might therefore be a promising direction of future
research.

In Figure 9 we have visualized some reconstructed images after compression with JPEG,
JPEG 2000 and the proposed method (GMM and STM), for varying levels of compression
strength: 1, 2.5 and 5 bits per pixel (bpp). This Figure is best viewed on the electronic
version by zooming in on the different images. Because JPEG and the proposed method
are block based, they have blocking artifacts that JPEG 2000 does not. The latter has
more blurring artifacts. The proposed method seems to have the strongest visual artifacts
in low-frequency regions, but performs well in high-frequency regions such as trees and
leaves. This can be attributed to the fact that the compression method does not take into
account the properties of human visual perception and therefore quantizes both high as
low frequency regions equally strongly. One could improve the visual results by adding
prior knowledge about the perceptual system, using a deblocking filter (or using an image
reconstruction algorithm based on GMM/STMs with the expected patch log likelihood
(EPLL) framework), extending the model so that it works with overlapping blocks (with
the MDCT transform for example) or by making it multi-scale. However, these extensions
are outside the scope of this work.

6. Conclusion and Future Work

The presented work consists of two main contributions: the introduction and analysis of
the Student-t mixture as an image patch modeling technique, and the proposal of lossless
and lossy image compression techniques based on mixture models.
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Figure 7: Average patch Quality (PSNR) - Rate (bpp) curves for different patch-sizes
(GMM left, STM right). This Figure is best viewed in color.
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Figure 8: Results for lossy compression of colored images. Average quality (PSNR) in
function of average rate (bits per pixel). Methods marked with a asterisk (*) use
uniform threshold quantization, and thus have a better reconstruction error.
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In the first part we have proposed the STM as an image patch prior. This method
significantly outperformed the GMM for density modeling of image patches, with results
competitive to the state-of-the-art on this task. This performance could largely be at-
tributed to the fact that a Student-t mixture is able to model contrast in addition to linear
dependencies within a single mixture component. For future work it would also be very
interesting to see how it matches up with other methods on other types of data. Another
possibility would be to study the Student-t mixture model for the use of image reconstruc-
tion applications (denoising, deblurring, inpainting), as was recently proposed with GMMs
(Zoran and Weiss, 2011).

In the second part both the GMM and STM have been examined in this paper for
the task of image compression. Lossless and lossy coding schemes were presented, which
could easily be adapted for other unsupervised learning techniques. For lossy compression,
experimental results demonstrated that the proposed techniques consistently outperform
JPEG, with results similar to those of JPEG 2000. With the exception of the lowest bit
rate, the STM has the advantage over JPEG 2000 in terms of rate-distortion. In lossless
compression both the GMM and STM outperform JPEG 2000, which is mainly due to the
fact that this task is even more connected with density estimation. In future work, even
more advanced techniques will be considered. Moving beyond the 8x8 patch size, with for
example multiscale techniques, is an especially promising direction.

One of the most important conclusions we can draw here is that relatively simple machine
learning techniques can perform quite well on the task of image compression. We saw that
their performance could largely be attributed to their density modeling capabilities. It
would therefore be interesting to apply machine learning to compression of different types
of data, such as audio, video, EEG, etc. and more specific types of data such as facial or
satellite images. We also propose for compression to be used more in machine learning as a
benchmark to compare models. Given the recent progress in unsupervised machine learning
we expect that even better results will follow.
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Abstract

Probabilistic models are conceptually powerful tools for finding structure in data, but
their practical effectiveness is often limited by our ability to perform inference in them.
Exact inference is frequently intractable, so approximate inference is often performed using
Markov chain Monte Carlo (MCMC). To achieve the best possible results from MCMC, we
want to efficiently simulate many steps of a rapidly mixing Markov chain which leaves the
target distribution invariant. Of particular interest in this regard is how to take advantage
of multi-core computing to speed up MCMC-based inference, both to improve mixing and to
distribute the computational load. In this paper, we present a parallelizable Markov chain
Monte Carlo algorithm for efficiently sampling from continuous probability distributions
that can take advantage of hundreds of cores. This method shares information between
parallel Markov chains to build a scale-location mixture of Gaussians approximation to
the density function of the target distribution. We combine this approximation with a
recently developed method known as elliptical slice sampling to create a Markov chain
with no step-size parameters that can mix rapidly without requiring gradient or curvature
computations.

Keywords: Markov chain Monte Carlo, parallelism, slice sampling, elliptical slice sam-
pling, approximate inference

1. Introduction

Probabilistic models are fundamental tools for machine learning, providing a coherent frame-
work for finding structure in data. In the Bayesian formulation, learning is performed by
computing a representation of the posterior distribution implied by the data. Unobserved
quantities of interest can then be estimated as expectations of various functions under this
posterior distribution.
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These expectations typically correspond to high-dimensional integrals and sums, which
are usually intractable for rich models. There is therefore significant interest in efficient
methods for approximate inference that can rapidly estimate these expectations. In this
paper, we examine Markov chain Monte Carlo (MCMC) methods for approximate inference,
which estimate these quantities by simulating a Markov chain with the posterior as its
equilibrium distribution. MCMC is often seen as a principled “gold standard” for inference,
because (under mild conditions) its answers will be correct in the limit of the simulation.
However, in practice, MCMC often converges slowly and requires expert tuning. In this
paper, we propose a new method to address these issues for continuous parameter spaces.
We generalize the method of elliptical slice sampling (Murray et al., 2010) to build a new
efficient method that: 1) mixes well in the presence of strong dependence, 2) does not
require hand tuning, and 3) can take advantage of multiple computational cores operating
in parallel. We discuss each of these in more detail below.

Many posterior distributions arising from real-world data have strong dependencies be-
tween variables. These dependencies can arise from correlations induced by the likelihood
function, redundancy in the parameterization, or directly from the prior. One of the pri-
mary challenges for efficient Markov chain Monte Carlo is making large moves in directions
that reflect the dependence structure. For example, if we imagine a long, thin region of
high density, it is necessary to explore the length in order to reach equilibrium; however,
random-walk methods such as Metropolis–Hastings (MH) with spherical proposals can only
diffuse as fast as the narrowest direction allows (Neal, 1995). More efficient methods such as
Hamiltonian Monte Carlo (Duane et al., 1987; Neal, 2011; Girolami and Calderhead, 2011)
avoid random walk behavior by introducing auxiliary “momentum” variables. Hamiltonian
methods require differentiable density functions and gradient computations.

In this work, we are able to make efficient long-range moves—even in the presence of
dependence—by building an approximation to the target density that can be exploited by
elliptical slice sampling. This approximation enables the algorithm to consider the general
shape of the distribution without requiring gradient or curvature information. In other
words, it encodes and allows us to make use of global information about the distribution
as opposed to the local information used by Hamiltonian Monte Carlo. We construct the
algorithm such that it is valid regardless of the quality of the approximation, preserving the
guarantees of approximate inference by MCMC.

One of the limitations of MCMC in practice is that it is often difficult for non-experts to
apply. This difficulty stems from the fact that it can be challenging to tune Markov transi-
tion operators so that they mix well. For example, in Metropolis–Hastings, one must come
up with appropriate proposal distributions. In Hamiltonian Monte Carlo, one must choose
the number of steps and the step size in the simulation of the dynamics. For probabilis-
tic machine learning methods to be widely applicable, it is necessary to develop black-box
methods for approximate inference that do not require extensive hand tuning. Some recent
attempts have been made in the area of adaptive MCMC (Roberts and Rosenthal, 2006;
Haario et al., 2005), but these are only theoretically understood for a relatively narrow class
of transition operators (for example, not Hamiltonian Monte Carlo). Here we propose a
method based on slice sampling (Neal, 2003), which uses a local search to find an acceptable
point, and avoid potential issues with convergence under adaptation.
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In all aspects of machine learning, a significant challenge is exploiting a computational
landscape that is evolving toward parallelism over single-core speed. When considering
parallel approaches to MCMC, we can readily identify two ends of a spectrum of possible
solutions. At one extreme, we could run a large number of independent Markov chains
in parallel (Rosenthal, 2000; Bradford and Thomas, 1996). This will have the benefit of
providing more samples and increasing the accuracy of the end result, however it will do
nothing to speed up the convergence or the mixing of each individual chain. The parallel
algorithm will run up against the same limitations faced by the non-parallel version. At
another extreme, we could develop a single-chain MCMC algorithm which parallelizes the
individual Markov transitions in a problem-specific way. For instance, if the likelihood is
expensive and consists of many factors, the factors can potentially be computed in parallel.
See Suchard et al. (2010); Tarlow et al. (2012) for examples. Alternatively, some Markov
chain transition operators can make use of multiple parallel proposals to increase their
efficiency, such as multiple-try Metropolis–Hastings (Liu et al., 2000).

We propose an intermediate algorithm to make effective use of parallelism. By sharing
information between the chains, our method is able to mix faster than the näıve approach of
running independent chains. However, we do not require fine-grained control over parallel
execution, as would be necessary for the single-chain method. Nevertheless, if such local
parallelism is possible, our sampler can take advantage of it. Our general objective is a
black-box approach that mixes well with multiple cores but does not require the user to
build in parallelism at a low level.

The structure of the paper is as follows. In Section 2, we review slice sampling (Neal,
2003) and elliptical slice sampling (Murray et al., 2010). In Section 3, we show how an
elliptical approximation to the target distribution enables us to generalize elliptical slice
sampling to continuous distributions. In Section 4, we describe a natural way to use paral-
lelism to dynamically construct the desired approximation. In Section 5, we discuss related
work. In Section 6, we evaluate our new approach against other comparable methods on
several typical modeling problems.

2. Background

Throughout this paper, we will use N (x;µ,Σ) to denote the density function of a Gaussian
with mean µ and covariance Σ evaluated at a point x ∈ RD. We will use N (µ,Σ) to
refer to the distribution itself. Analogous notation will be used for other distributions.
Throughout, we shall assume that we wish to draw samples from a probability distribution
over RD whose density function is π. We sometimes refer to the distribution itself as π.

The objective of Markov chain Monte Carlo is to formulate transition operators that
can be easily simulated, that leave π invariant, and that are ergodic. Classical examples of
MCMC algorithms are Metropolis–Hastings (Metropolis et al., 1953; Hastings, 1970) and
Gibbs Sampling (Geman and Geman, 1984). For general overviews of MCMC, see Tierney
(1994); Andrieu et al. (2003); Brooks et al. (2011). Simulating such a transition operator
will, in the limit, produce samples from π, and these can be used to compute expectations
under π. Typically, we only have access to an unnormalized version of π. However, none
of the algorithms that we describe require access to the normalization constant, and so we
will abuse notation somewhat and refer to the unnormalized density as π.
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2.1 Slice Sampling

Slice sampling (Neal, 2003) is a Markov chain Monte Carlo algorithm with an adaptive step
size. It is an auxiliary-variable method, which relies on the observation that sampling π is
equivalent to sampling the uniform distribution over the set S = {(x, y) : 0 ≤ y ≤ π(x)}
and marginalizing out the y coordinate (which in this case is accomplished simply by dis-
regarding the y coordinate). Slice sampling accomplishes this by alternately updating x
and y so as to leave invariant the distributions p(x | y) and p(y |x) respectively. The key
insight of slice sampling is that sampling from these conditionals (which correspond to uni-
form “slices” under the density function) is potentially much easier than sampling directly
from π.

Updating y according to p(y |x) is trivial. The new value of y is drawn uniformly from
the interval (0, π(x)). There are different ways of updating x. The objective is to draw
uniformly from among the “slice” {x : π(x) ≥ y}. Typically, this is done by defining a
transition operator that leaves the uniform distribution on the slice invariant. Neal (2003)
describes such a transition operator: first, choose a direction in which to search, then place
an interval around the current state, expand it as necessary, and shrink it until an acceptable
point is found. Several procedures have been proposed for the expansion and contraction
phases.

Less clear is how to choose an efficient direction in which to search. There are two
approaches that are widely used. First, one could choose a direction uniformly at random
from all possible directions (MacKay, 2003). Second, one could choose a direction uniformly
at random from the D coordinate directions. We consider both of these implementations
later, and we refer to them as random-direction slice sampling (RDSS) and coordinate-wise
slice sampling (CWSS), respectively. In principle, any distribution over directions can be
used as long as detailed balance is satisfied, but it is unclear what form this distribution
should take. The choice of direction has a significant impact on how rapidly mixing occurs.
In the remainder of the paper, we describe how slice sampling can be modified so that
candidate points are chosen to reflect the structure of the target distribution.

2.2 Elliptical Slice Sampling

Elliptical slice sampling (Murray et al., 2010) is an MCMC algorithm designed to sample
from posteriors over latent variables of the form

π(x) ∝ L(x)N (x;µ,Σ), (1)

where L is a likelihood function, andN (µ,Σ) is a multivariate Gaussian prior. Such models,
often called latent Gaussian models, arise frequently from Gaussian processes and Gaussian
Markov random fields. Elliptical slice sampling takes advantage of the structure induced
by the Gaussian prior to mix rapidly even when the covariance induces strong dependence.
The method is easier to apply than most MCMC algorithms because it has no free tuning
parameters.

Elliptical slice sampling takes advantage of a convenient invariance property of the
multivariate Gaussian. Namely, if x and ν are independent draws from N (µ,Σ), then the
linear combination

x′ = (x− µ) cos θ + (ν − µ) sin θ + µ (2)
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is also (marginally) distributed according to N (µ,Σ) for any θ ∈ [0, 2π]. Note that x′ is
nevertheless correlated with x and ν. This correlation has been previously used to make
perturbative Metropolis–Hastings proposals in latent Gaussian models (Neal, 1998; Adams
et al., 2009), but elliptical slice sampling uses it as the basis for a rejection-free method.

The elliptical slice sampling transition operator considers the locus of points defined
by varying θ in Equation (2). This locus is an ellipse which passes through the current
state x as well as through the auxiliary variable ν. Given a random ellipse induced by ν,
we can slice sample θ ∈ [0, 2π] to choose the next point based purely on the likelihood term.
The advantage of this procedure is that the ellipses will necessarily reflect the dependence
induced by strong Gaussian priors and that the user does not have to choose a step size.

More specifically, elliptical slice sampling updates the current state x as follows. First,
the auxiliary variable ν ∼ N (µ,Σ) is sampled to define an ellipse via Equation (2), and
the value u ∼ Uniform[0, 1] is sampled to define a likelihood threshold. Then, a sequence
of angles {θk} are chosen according to a slice-sampling procedure described in Algorithm 1.
These angles specify a corresponding sequence of proposal points {x′k}. We update the
current state x by setting it equal to the first proposal point x′k satisfying the slice-sampling
condition L(x′k) > uL(x). The proof of the validity of this algorithm is given in Murray
et al. (2010). Intuitively, the pair (x,ν) is updated to a pair (x′,ν ′) with the same joint
prior probability, and so slice sampling only needs to compare likelihood ratios. The new
point x′ is given by Equation (2), while ν ′ = (ν −µ) cos θ− (x−µ) sin θ+ µ is never used
and need not be computed.

Figure 1 depicts random ellipses produced by elliptical slice sampling superimposed on
background points from some target distribution. This diagram illustrates the idea that the
ellipses produced by elliptical slice sampling reflect the structure of the distribution. The
full algorithm is shown in Algorithm 1.

Algorithm 1 Elliptical Slice Sampling Update

Input: Current state x, Gaussian parameters µ and Σ, log-likelihood function logL
Output: New state x′, with stationary distribution proportional to N (x;µ,Σ)L(x)
1: ν ∼ N (µ,Σ) . Choose ellipse
2: u ∼ Uniform[0, 1]
3: log y ← logL(x) + log u . Set log-likelihood threshold
4: θ ∼ Uniform[0, 2π] . Draw an initial proposal
5: [θmin, θmax]← [θ − 2π, θ] . Define a bracket
6: x′ ← (x− µ) cos θ + (ν − µ) sin θ + µ
7: if logL(x′) > log y then
8: return x′ . Accept
9: else . Shrink the bracket and try a new point

10: if θ < 0 then
11: θmin ← θ
12: else
13: θmax ← θ

14: θ ∼ Uniform[θmin, θmax]
15: goto 6
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(a) Ellipses from ESS (b) Corresponding values of x and ν

Figure 1: Background points are drawn independently from a probability distribution, and
five ellipses are created by elliptical slice sampling. The distribution in question is
a two-dimensional multivariate Gaussian. In this example, the same distribution
is used as the prior for elliptical slice sampling. (a) Shows the ellipses created
by elliptical slice sampling. (b) Shows the values of x (depicted as ◦) and ν
(depicted as +) corresponding to each elliptical slice sampling update. The values
of x and ν with a given color correspond to the ellipse of the same color in (a).

3. Generalized Elliptical Slice Sampling

In this section, we generalize elliptical slice sampling to handle arbitrary continuous distri-
butions. We refer to this algorithm as generalized elliptical slice sampling (GESS). In this
section, our target distribution will be a continuous distribution over RD with density π.
In practice, π need not be normalized.

Our objective is to reframe our target distribution so that it can be efficiently sampled
with elliptical slice sampling. One possible approach is to put π in the form of Equation (1)
by choosing some approximation N (µ,Σ) to π and writing

π(x) = R(x)N (x;µ,Σ),

where

R(x) =
π(x)

N (x;µ,Σ)

is the residual error of our approximation to the target density. Note that N (x;µ,Σ) is an
approximation rather than a prior and that R is not a likelihood function, but since the
equation has the correct form, this representation enables us to use elliptical slice sampling.

Applying elliptical slice sampling in this manner will produce a correct algorithm, but
it may mix slowly in practice. Difficulties arise when the target distribution has much
heavier tails than does the approximation. In such a situation, R(x) will increase rapidly
as x moves away from the mean of the approximation. To illustrate this phenomenon, we
use this approach with different approximations to draw samples from a Gaussian in one
dimension with zero mean and unit variance. Trace plots are shown in Figure 2. The
subplot corresponding to variance 0.01 illustrates the problem. Since R explodes as |x| gets
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Figure 2: Samples are drawn from a Gaussian with zero mean and unit variance using
elliptical slice sampling with various Gaussian approximations. These trace plots
show how sampling behavior depends on how heavy the tails of the approximation
are relative to how heavy the tails of the target distribution are. We plot one of
every ten samples.
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large, the Markov chain is unlikely to move back toward the origin. On the other hand,
the size of the ellipse is limited by a draw from the Gaussian approximation, which has low
variance in this case, so the Markov chain is also unlikely to move away from the origin.
The result is that the Markov chain sometimes gets stuck. In the subplot corresponding to
variance 0.01, this occurs between iterations 400 and 630.

In order to resolve this pathology and extend elliptical slice sampling to continuous
distributions, we broaden the class of allowed approximations. To begin with, we express
the density of the target distribution in the more general form

π(x) ∝ R(x)

∫
N (x;µ(s),Σ(s))φ(ds), (3)

where the integral represents a scale-location mixture of Gaussians (which serves as an
approximation to π), and where φ is a measure over the auxiliary parameter s. As before, R
is the residual error of the approximation. Here, φ can be chosen in a problem-specific way,
and any residual error between π and the approximation will be compensated for by R.
Equation (3) is quite flexible. Below, we will choose the measure φ so as to make the
approximation a multivariate t distribution, but there are many other possibilities. For
instance, taking φ to be a combination of point masses will make the approximation a
discrete mixture of Gaussians.

Through Equation (3), we can view π(x) as the marginal density of an augmented
joint distribution over x and s. Using λ to denote the density of φ with respect to the
base measure over s (this is fully general because we have control over the choice of base
measure), we can write

p(x, s) = R(x)N (x;µ(s),Σ(s))λ(s).

Therefore, to sample π, it suffices to sample x and s jointly and then to marginalize out the s
coordinate (by simply dropping the s coordinate). We update these components alternately
so as to leave invariant the distributions

p(x | s) ∝ R(x)N (x;µ(s),Σ(s)) (4)

and
p(s |x) ∝ N (x;µ(s),Σ(s))λ(s). (5)

Equation (4) has the correct form for elliptical slice sampling and can be updated according
to Algorithm 1. Equation (5) can be updated using any valid Markov transition operator.

We now focus on a particular case in which the update corresponding to Equation (5) is
easy to simulate and in which we can make the tails as heavy as we desire, so as to control
the behavior of R. A simple and convenient choice is for the scale-location mixture to yield
a multivariate t distribution with degrees-of-freedom parameter ν:

Tν(x;µ,Σ) =

∫ ∞
0

IG(s; ν2 ,
ν
2 )N (x;µ, sΣ) ds,

where λ becomes the density function of an inverse-gamma distribution:

IG(s;α, β) =
βα

Γ(α)
s−α−1e−β/s.

2094



Parallel MCMC with Elliptical Slice Sampling

Here s is a positive real-valued scale parameter. Now, in the update p(s |x), we observe
that the inverse-gamma distribution acts as a conjugate prior (whose “prior” parameters
are α = ν

2 and β = ν
2 ), so

p(s |x) = IG(s;α′, β′)

with parameters

α′ =
D + ν

2
and (6)

β′ =
1

2
(ν + (x− µ)TΣ−1(x− µ)). (7)

We can draw independent samples from this distribution (Devroye, 1986).

Combining these update steps, we define the transition operator S(x→ x′; ν,µ,Σ) to be
the one which draws s ∼ IG(s;α′, β′), with α′ and β′ as described in Equations (6) and (7),
and then uses elliptical slice sampling to update x so as to leave invariant the distribution
defined in Equation (4), where µ(s) = µ and Σ(s) = sΣ. From the above discussion, it
follows that the stationary distribution of S(x → x′; ν,µ,Σ) is π. Figure 3 illustrates this
transition operator.

Algorithm 2 Generalized Elliptical Slice Sampling Update

Input: Current state x, multivariate t parameters ν,µ,Σ, dimension D, a routine ESS
that performs an elliptical slice sampling update

Output: New state x′

1: α′ ← D+ν
2

2: β′ ← 1
2(ν + (x− µ)TΣ−1(x− µ))

3: s ∼ IG(α′, β′)
4: logL← log π − log T . T is the density of a multivariate t with parameters ν,µ,Σ
5: x′ ← ESS(x,µ, sΣ, logL)

4. Building the Approximation with Parallelism

Up to this point, we have not described how to choose the multivariate t parameters ν, µ,
and Σ. These choices can be made in many ways. For instance, we may choose the
maximum likelihood parameters given samples collected during a burn in period, we may
build a Laplace approximation to the mode of the distribution, or we may use variational
approaches. Note that this algorithm is valid regardless of the particular choice we make
here. In this section, we discuss a convenient way to use parallelism to dynamically choose
these parameters without requiring tuning runs or exploratory analysis of the distribution.
This method creates a large number of parallel chains, each producing samples from π, and it
divides them into two groups. The need for two groups of Markov chains is not immediately
obvious, so we motivate our approach by first discussing two simpler algorithms that fail in
different ways.
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Figure 3: The gray points were drawn independently from a two-dimensional Gaussian to
show the mode and shape of the corresponding density function. (a) Shows the
contours of a multivariate t approximation to this distribution. (b) Shows a
sample update step using the transition operator S(x → x′; ν,µ,Σ). The blue
point represents the current state. The yellow point defines an ellipse and is
drawn from the Gaussian distribution corresponding to the scale s drawn from
the appropriate inverse-gamma distribution. The red point corresponds to the
new state and is sampled from the given ellipse.

4.1 Näıve Approaches

We begin with a collection of K parallel chains. Let X = {x1, . . . ,xK} denote the current
states of the chains. We observe that X may contain a lot of information about the shape
of the target distribution. We would like to define a transition operator Q(X → X ′) that
uses this information to intelligently choose the multivariate t parameters ν, µ, and Σ
and then uses these parameters to update each xk via generalized elliptical slice sampling.
Additionally, we would like Q to have two properties. First, each xk should have the
marginal stationary distribution π. Second, we should be able to parallelize the update
of X over K cores.

Here we describe two simple approaches for parallelizing generalized elliptical slice sam-
pling, each of which lacks one of the desired properties. The first approach begins with K
parallel Markov chains, and it requires a procedure for choosing the multivariate t param-
eters given X (for example, maximum likelihood estimation). In this setup, Q uses this
procedure to determine the multivariate t parameters νX , µX , ΣX from X and then ap-
plies S(x → x′; νX ,µX ,ΣX ) to each xk individually. These updates can be performed in
parallel, but the variables xk no longer have the correct marginal distributions because
of the coupling between the chains introduced by the approximation (this update violates
detailed balance).
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A second approach creates a valid MCMC method by including the multivariate t pa-
rameters in a joint distribution

p(X , ν,µ,Σ) = p(ν,µ,Σ | X )

[
K∏
k=1

π(xk)

]
. (8)

Note that in Equation (8), each xk has marginal distribution π. We can sample this joint
distribution by alternately updating the variables and the multivariate t parameters so as
to leave invariant the conditional distributions p(X | ν,µ,Σ) and p(ν,µ,Σ | X ). Ideally, we
would like to update the collection X by updating each xk in parallel. However, we cannot
easily parallelize the update in this formulation because of the factor of p(ν,µ,Σ | X ), which
nontrivially couples the chains.

4.2 The Two-Group Approach

Our proposed method creates a transition operator Q that satisfies both of the desired
properties. That is, each xk has marginal distribution π, and the update can be efficiently
parallelized. This method circumvents the problems of the previous approaches by maintain-
ing two groups of Markov chains and using each group to choose multivariate t parameters
to update the other group. Let X = {x1, . . . ,xK1} and Y = {y1, . . . ,yK2} denote the states
of the Markov chains in these two groups (in practice, we set K1 = K2 = K, where K is
the number of available cores). The stationary distribution of the collection is

Π(X ,Y) = Π1(X )Π2(Y) =

[
K1∏
k=1

π(xk)

][
K2∏
k=1

π(yk)

]
.

By simulating a Markov chain which leaves this product distribution invariant, this method
generates samples from the target distribution. Our Markov chain is based on a transition
operator, Q, defined in two parts. The first part of the transition operator, Q1, uses Y to
determine parameters νY , µY , and ΣY . It then uses these parameters to update X . The
second part of the transition operator, Q2, uses X to determine parameters νX , µX , and ΣX .
It then uses these parameters to update Y. The transition operator Q is the composition
of Q1 and Q2. The idea of maintaining a group of Markov chains and updating the states
of some Markov chains based on the states of other Markov chains has been discussed in
the literature before. For example, see Zhang and Sutton (2011); Gilks et al. (1994).

In order to make these descriptions more precise, we define Q1 as follows. First, we
specify a procedure for choosing the multivariate t parameters given the population Y.
We use an extension of the expectation-maximization algorithm (Liu and Rubin, 1995) to
choose the maximum-likelihood multivariate t parameters given the data Y. The details of
this algorithm are described in Algorithm 4 in the Appendix. More concretely, we choose

νY ,µY ,ΣY = arg max
ν,µ,Σ

K2∏
k=1

Tν(yk ; µ,Σ).

After choosing νY , µY , and ΣY in this manner, we update X by applying the transition
operator S(x → x′; νY ,µY ,ΣY) to each xk ∈ X in parallel. The operator Q2 is defined
analogously.
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Algorithm 3 Building the Approximation Using Parallelism

Input: Two groups of states X = {x1, . . . ,xK1} and Y = {y1, . . . ,yK2}, a subrou-
tine FIT-MVT which takes data and returns the maximum-likelihood t parameters,
a subroutine GESS which performs a generalized elliptical slice sampling update

Output: Updated groups X ′ and Y ′
1: ν,µ,Σ← FIT-MVT(Y)
2: for all xk ∈ X do
3: x′k = GESS(xk, ν,µ,Σ)

4: X ′ ← {x′1, . . . ,x′K1
}

5: ν,µ,Σ← FIT-MVT(X ′)
6: for all yk ∈ Y do
7: y′k = GESS(yk, ν,µ,Σ)

8: Y ′ ← {y′1, . . . ,y′K2
}

In the case where the number of chains in the collection Y is less than or close to the
dimension of the distribution, the particular algorithm that we use to choose the parameters
(Liu and Rubin, 1995) may not converge quickly (or at all). Suppose we are in the setting
where K < 2D. In this situation, we can perform a regularized estimate of the parameters.
We describe this procedure below. The choice K < 2D probably overestimates the regime
in which the algorithm for fitting the parameters performs poorly. The particular algorithm
that we use appears to work well as long as K ≥ D.

Let ȳ be the mean of Y, and let {v1, . . . ,vJ} be the first J principal components of
the set {y1 − ȳ, . . . ,yK − ȳ}, where J = bK2 c, and let V = span(v1, . . . ,vJ). Let A be
the D × J matrix defined by Aej = vj , where ej is the jth standard basis vector in RJ .
This map identifies RJ with V .

Let the set Ŷ consist of the projections of the elements of Y onto RJ by ŷk = ATyk.
Using the algorithm from Liu and Rubin (1995), fit the multivariate t parameters νŶ , µŶ
and, ΣŶ to Ŷ. At this point, we have constructed a J-dimensional multivariate t distri-
bution, but we would like a D-dimensional one. We construct the desired distribution by
rotating back to the original space. Concretely, we can set

νY = νŶ
µY = AµŶ + ȳ

ΣY = A ΣŶ AT + ε ID,

where ID is the D×D identity matrix and ε is the median entry on the diagonal of ΣŶ . We
add a scaled identity matrix to the covariance parameter to avoid producing a degenerate
distribution. The choice of ε is based on intuition about typical values of the variance of π
in the directions orthogonal to V .

We emphasize that the nature of the procedure for fitting a multivariate t distribution
to some points is not important to our algorithm. One could devise more sophisticated
approaches drawing on ideas from the literature on high-dimensional covariance estima-
tion, see Ravikumar et al. (2011) for instance, but we merely choose a simple idea that
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seems to work in practice. Since our default choice (if there are at least 2D chains, then
choose the maximum-likelihood parameters, otherwise project to a lower dimension, choose
the maximum-likelihood parameters, and then pad the diagonal of the covariance param-
eter) works well, the fact that one could design a more sophisticated procedure does not
compromise the tuning-free nature of our algorithm.

4.3 Correctness

To establish the correctness of our algorithm, we treat the collection of chains as a single
aggregate Markov chain, and we show that this aggregate Markov chain with transition
operator Q correctly samples from the product distribution Π.

We wish to show that Q1 and Q2 preserve the invariant distributions Π1 and Π2 respec-
tively. As the two cases are identical, we consider only the first. We have∫

Π1(X )Q1(X → X ′) dX =

∫
Π1(X )Q1(X → X ′ | νY ,µY ,ΣY) dX

=

K1∏
k=1

[∫
π(xk)S(xk → x′k; νY ,µY ,ΣY) dxk

]
= Π1(X ′).

The last equality uses the fact that π is the stationary distribution of S(x→ x′; νY ,µY ,ΣY),
so we see that Q leaves the desired product distribution invariant.

Within a single chain, elliptical slice sampling has a nonzero probability of transitioning
to any region that has nonzero probability under the posterior, as described by Murray et al.
(2010). The transition operator Q updates the chains in a given group independently of
one another. Therefore Q has a nonzero probability of transitioning to any region that has
nonzero probability under the product distribution. It follows that the transition operator is
both irreducible and aperiodic. These conditions together ensure that this Markov transition
operator has a unique invariant distribution, namely Π, and that the distribution over the
state of the Markov chain created from this transition operator will converge to this invariant
distribution (Roberts and Rosenthal, 2004). It follows that, in the limit, samples derived
from the repeated application of Q will be drawn from the desired distribution.

4.4 Cost and Complexity

There is a cost to the construction of the multivariate t approximation. Although the user
has some flexibility in the choice of t parameters, we fit them with the iterative algorithm
described by Liu and Rubin (1995) and in Algorithm 4 of the Appendix. Let D be the
dimension of the distribution and let K be the number of parallel chains. Then the com-
plexity of each iteration is O(D3K), which comes from the fact that we invert a D × D
matrix for each of the K chains. Empirically, Algorithm 4 appears to converge in a small
number of iterations when the number of parallel Markov chains in each group exceeds the
dimension of the distribution. As described in the next section, this cost can be amortized
by reusing the same approximation for multiple updates. On the challenging distributions
that most interest us, the cost of constructing the approximation (when amortized in this
manner), will be negligible compared to the cost of evaluating the density function.
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An additional concern is the overhead from sharing information between chains. The
chains must communicate in order to build a multivariate t approximation, and so the
updates must be synchronized. Since elliptical slice sampling requires a variable amount
of time, updating the different chains will take different amounts of time, and the faster
chains may end up waiting for the slower ones. We can mitigate this cost by performing
multiple updates between such periods of information sharing. In this manner, we can
perform as much computation as we want between synchronizations without compromising
the validity of the algorithm. As we increase the number of updates performed between
synchronizations, the fraction of time spent waiting will diminish.

The time measured in our experiments is wall-clock time, which includes the overhead
from constructing the approximation and from synchronizing the chains.

4.5 Reusing the Approximation

Here we explain that reusing the same approximation is valid. To illustrate this point, let the
transition operators Q1 and Q2 be defined as before. In our description of the algorithm,
we defined the transition operator Q as the composition Q = Q2Q1. However, both Q1

and Q2 preserve the desired product distribution, so we may use any transition operator of
the form Q = Qr22 Q

r1
1 , where this notation indicates that we first apply Q1 for r1 rounds and

then we apply Q2 for r2 rounds. As long as r2, r1 ≥ 1, the composite transition operator
is ergodic. When we apply Q1 multiple times in a row, the states Y do not change, so
if Q1 computes νY , µY , and ΣY deterministically from Y, then we need only compute these
values once. Reusing the approximation works even if Q1 samples νY , µY , and ΣY from
some distribution. In this case, we can model the randomness by introducing a separate
variable rY in the Markov chain, and letting Q1 compute νY , µY , and ΣY deterministically
from Y and rY .

Our algorithm maintains two collections of Markov chains, one of which will always be
idle. Therefore, each collection can take advantage of all available cores. Given K cores, it
makes sense to use two collections of K Markov chains. In general, it seems to be a good
idea to sample equally from both collections so that the chains in both collections burn in.

To motivate reusing the approximation, we demonstrate the effect of reusing the approx-
imation for different numbers of iterations on a Gaussian distribution in 100 dimensions (the
same one that we use in Section 6.2). For each value of i from 1 to 4, we sample this distri-
bution for 104 iterations and we reuse each approximation for 10i iterations. We show plots
of the running time of GESS and the convergence of the approximation for different values
of i. Figure 4 shows how the amount of time required by GESS changes as we vary i, and
how the covariance matrix parameter of the fitted multivariate t approximation changes
over time for the different values of i. We summarize the covariance matrix parameter by
its trace tr(Σ). The figure shows that increasing the number of iterations for which we
reuse the approximation can dramatically reduce the amount of time required by GESS. It
also shows that if we rebuild the approximation frequently, the approximation will settle on
a reasonable approximation in fewer iterations. However, there is little difference between
rebuilding the approximation every 10 iterations versus every 100 iterations (in terms of the
number of iterations required), while there is a dramatic difference in the time required.
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Figure 4: We used GESS to sample a multivariate Gaussian distribution in 100 dimensions
for 104 iterations. We repeated this procedure four times, reusing the approxima-
tion for 101, 102, 103, and 104 iterations. (a) Shows the durations (in seconds)
of the sampling procedures as we varied the number of iterations for which we
reused the approximation. (b) Shows how tr(Σ) changes over time in the four
different settings.

5. Related Work

Our work uses updates on a product distribution in the style of Adaptive Direction Sampling
(Gilks et al., 1994), which has inspired a large literature of related methods. The closest
research to our work makes use of slice-sampling based updates of product distributions
along straight-line directions chosen by sampling pairs of points (MacKay, 2003; Ter Braak,
2006). The work on elliptical slice sampling suggests that in high dimensions larger steps
can be taken along curved trajectories, given an appropriate Gaussian fit. Using closed
ellipses also removes the need to set an initial step size or to build a bracket.

The recent affine invariant ensemble sampler (Goodman and Weare, 2010) also uses
Gaussian fits to a population, in that case to make Metropolis proposals. Our work differs
by using a scale-mixture of Gaussians and elliptical slice sampling to perform updates on a
variety of scales with self-adjusting step-sizes. Rather than updating each member of the
population in sequence, our approach splits the population into two groups and allows the
members of each group to be updated in parallel.

Population MCMC with parallel tempering (Friel and Pettitt, 2008) is another parallel
sampling approach that involves sampling from a product distribution. It uses separate
chains to sample a sequence of distributions interpolating between the target distribution
and a simpler distribution. The different chains regularly swap states to encourage mixing.
In this setting, samples are generated only from a single chain, and all of the others are
auxiliary. However, some tasks such as computing model evidence can make use of samples
from all of the chains (Friel and Pettitt, 2008).

Recent work on Hamiltonian Monte Carlo has attempted to reduce the tuning burden
(Hoffman and Gelman, 2014). A user friendly tool that combines this work with a software
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stack supporting automatic differentiation is under development (Stan Development Team,
2012). We feel that this alternative line of work demonstrates the interest in more practical
MCMC algorithms applicable to a variety of continuous-valued parameter spaces and is very
promising. Our complementary approach introduces simpler algorithms with fewer technical
software requirements. In addition, our two-population approach to parallelization could
be applied with whichever methods become dominant in the future.

6. Experiments

In this section, we compare Algorithm 3 with other parallel MCMC algorithms by mea-
suring how quickly the Markov chains mix on a number of different distributions. Second,
we compare how the performance of Algorithm 3 scales with the dimension of the target
distribution, the number of cores used, and the number of chains used per core.

These experiments were run on an EC2 cluster with 5 nodes, each with two eight-core
Intel Xeon E5-2670 CPUs. We implement all algorithms in Python, using the IPython
environment (Pérez and Granger, 2007) for parallelism.

6.1 Comparing Mixing

We empirically compare the mixing of the parallel MCMC samplers on seven distributions.
We quantify their mixing by comparing the effective number of samples produced by each
method. This quantity can be approximated as the product of the number of chains with
the effective number of samples from the product distribution. We estimate the effective
number of samples from the product distribution by computing the effective number of
samples from its sequence of log likelihoods. We compute effective sample size using R-
CODA (Plummer et al., 2006), and we compare the results using two metrics: effective
samples per second and effective samples per density function evaluation (in the case of
Hamiltonian Monte Carlo, we count gradient evaluations as density function evaluations).

In each experiment, we run each algorithm with 100 parallel chains. Unless otherwise
noted, we burn in for 104 iterations and sample for 105 iterations. We run five trials for
each experiment to estimate variability.

Figure 5 shows the average effective number of samples, with error bars, according to the
two different metrics. Bars are omitted where the sequence of aggregate log likelihoods did
not converge according to the Geweke convergence diagnostic (Geweke, 1992). We diagnose
this using the tool from R-CODA (Plummer et al., 2006).

6.1.1 Samplers Considered

We compare generalized elliptical slice sampling (GESS) with parallel versions of several
different sampling algorithms.

First, we consider random-direction slice sampling (RDSS) (MacKay, 2003) and coordinate-
wise slice sampling (CWSS) (Neal, 2003). These are variants of slice sampling which differ
in their choice of direction (a random direction versus a random axis-aligned direction) in
which to sample. RDSS is rotation invariant like GESS, but CWSS is not.

In addition, we compare to a simple Metropolis–Hastings (MH) (Metropolis et al., 1953)
algorithm whose proposal distribution is a spherical Gaussian centered on the current state.
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A tuning period is used to adjust the MH step size so that the acceptance ratio is as close
as possible to the value 0.234, which is optimal in some settings (Roberts and Rosenthal,
1998). This tuning is done independently for each chain. We also compare to an adaptive
MCMC (AMH) algorithm following the approach in Roberts and Rosenthal (2006) in which
the covariance of a Metropolis–Hastings proposal is adapted to the history of the “Markov”
chain.

We also compare to the No-U-Turn sampler (Hoffman and Gelman, 2014), which is an
implementation of Hamiltonian Monte Carlo (HMC) combined with procedures to auto-
matically tune the step size parameter and the number of steps parameter. Due to the
large number of function evaluations per sample required by HMC, we run HMC for a
factor of 10 or 100 fewer iterations in order to make the algorithms roughly comparable
in terms of wall-clock time. Though we include the comparisons, we do not view HMC as
a perfectly comparable algorithm due to its requirement that the density function of the
target distribution be differentiable. Though the target distribution is often differentiable
in principle, there are many practical situations in which the gradient is difficult to access,
either by manual computation or by automatic differentiation, possibly because evaluating
the density function requires running a complicated black-box subroutine. For instance,
in computer vision problems, evaluating the likelihood function may require rendering an
image or running graph cuts. See Tarlow and Adams (2012) or Lang and Hogg (2012) for
examples.

We compare to parallel tempering (PT) (Friel and Pettitt, 2008), using each Markov
chain to sample the distribution at a different temperature (if the target distribution has
density π(x), then the distribution “at temperature t” has density proportional to π(x)1/t)
and swapping states between the Markov chains at regular intervals. Samples from the
target distribution are produced by only one of the chains. Using PT requires the practi-
tioner to pick a temperature schedule, and doing so often requires a significant amount of
experimentation (Neal, 2001). We follow the practice of Friel and Pettitt (2008) and use a
geometric temperature schedule. As with HMC, we do not view PT as entirely compara-
ble in the absence of an automatic and principled way to choose the temperatures of the
different Markov chains. One of the main goals of GESS is to provide a black-box MCMC
algorithm that imposes as few restrictions on the target distribution as possible and that
requires no expertise or experimentation on the part of the user.

6.1.2 Distributions

In this section, we describe the different distributions that we use to compare the mixing
of our samplers.

Funnel: A ten-dimensional funnel-shaped distribution described in Neal (2003). The
first coordinate is distributed normally with mean zero and variance nine. Conditioned
on the first coordinate v, the remaining coordinates are independent identically-distributed
normal random variables with mean zero and variance ev. In this experiment, we initialize
each Markov chain from a spherical multivariate Gaussian centered on the origin.

Gaussian Mixture: An eight-component mixture of Gaussians in eight dimensions. Each
component is a spherical Gaussian with unit variance. The components are distributed
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uniformly at random within a hypercube of edge length four. In this experiment, we initialize
each Markov chain from a spherical multivariate Gaussian centered on the origin.

Breast Cancer: The posterior density of a linear logistic regression model for a binary
classification problem with thirty explanatory variables (thirty-one dimensions) using the
Breast Cancer Wisconsin data set (Street et al., 1993). The data set consists of 569 data
points. We scale the data so that each coordinate has unit variance, and we place zero-mean
Gaussian priors with variance 100 on each of the regression coefficients. In this experiment,
we initialize each Markov chain from a spherical multivariate Gaussian centered on the
origin.

German Credit: The posterior density of a linear logistic regression model for a binary
classification problem with twenty-four explanatory variables (twenty-five dimensions) from
the UCI repository (Frank and Asuncion, 2010). The data set consists of 1000 data points.
We scale the data so that each coordinate has unit variance, and we place zero-mean Gaus-
sian priors with variance 100 on each of the regression coefficients. In this experiment, we
initialize each Markov chain from a spherical multivariate Gaussian centered on the origin.

Stochastic Volatility: The posterior density of a simple stochastic volatility model fit to
synthetic data in fifty-one dimensions. This distribution is a smaller version of a distribution
described in Hoffman and Gelman (2014). In this experiment, we burn-in for 105 iterations
and sample for 105 iterations. We initialize each Markov chain from a spherical multivariate
Gaussian centered on the origin and we take the absolute value of the first parameter, which
is constrained to be positive.

Ionosphere: The posterior density on covariance hyperparameters for Gaussian process
regression applied to the Ionosphere data set (Sigillito et al., 1989). We use a squared expo-
nential kernel with thirty-four length-scale hyperparameters and 100 data points. We place
exponential priors with rate 0.1 on the length-scale hyperparameters. In this experiment,
we burn-in for 104 iterations and sample for 104 iterations. We initialize each Markov chain
from a spherical multivariate Gaussian centered on the vector (1, . . . , 1)T.

SNP Covariates: The posterior density of the parameters of a generative model for
gene expression levels simulated in thirty-eight dimensions using actual genomic sequences
from 480 individuals for covariate data (Engelhardt and Adams, 2014). In this experiment,
we burn-in for 2000 iterations and sample for 104 iterations. We initialize each Markov chain
from a spherical multivariate Gaussian centered on the origin and we take the absolute value
of the first three parameters, which are constrained to be positive.

6.1.3 Mixing Results

The results of the mixing experiments are shown in Figure 5. For the most part, GESS
sampled more effectively than the other algorithms according to both metrics. The poor
performance of PT can be attributed to the fact that PT only produces samples from one
of its chains, unlike the other algorithms, which produce samples from 100 chains. HMC
also performed well, although it failed to converge on the SNP Covariates distribution. The
density function of this particular distribution is only piecewise continuous, with the dis-
continuities arising from thresholding in the model. In this case, the gradient and curvature
largely reflect the prior, whereas the likelihood mostly manifests itself in the discontinuities
of the distribution.
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Figure 5: The results of experimental comparisons of seven parallel MCMC methods on
seven distributions. Each figure shows seven groups of bars, (one for each distri-
bution) and the vertical axis shows the effective number of samples per unit cost.
Error bars are included. Bars are omitted where the method failed to converge
according to the Geweke diagnostic (Geweke, 1992). The costs are per second
(left) and per density function evaluation (right). Mean and standard error for
five runs are shown. Each group of bars has been rescaled for readability: the
number beneath each group gives the effective samples corresponding to CWSS,
which always has height one.

One reason for the rapid mixing of GESS is that GESS performs well even on highly-
skewed distributions. RDSS, CWSS, MH, and PT propose steps in uninformed directions,
the vast majority of which lead away from the region of high density. As a result, these
algorithms take very small steps, causing successive states to be highly correlated. In the
case of GESS, the multivariate t approximation builds information about the global shape
of the distribution (including skew) into the transition operator. As a consequence, the
Markov chain can take long steps along the length of the distribution, allowing the Markov
chain to mix much more rapidly. Skewed distributions can arise as a result of the user not
knowing the relative length scales of the parameters or as a result of redundancy in the
parameterization. Therefore, the ability to perform well on such distributions is frequently
relevant.

These results show that a multivariate t approximation to the target distribution pro-
vides enough information to greatly speed up the mixing of the sampler and that this
information can be used to improve the convergence of the sampler. These improvements
occur on top of the performance gain from using parallelism.

6.2 Scaling the Number of Cores

We wish to explore the performance of GESS as a function of the dimension D of the target
distribution, the number C of cores available, and the number K of parallel chains. In this
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D = 50 K = C K = 2C K = 3C K = 4C K = 5C

C = 20 10−0.5±10−0.4 10−1.2±10−1.5 10−1.5±10−1.8 10−1.7±10−1.8 10−1.6±10−1.6

C = 40 10−0.8±10−0.9 10−2.6±10−2.6 10−1.9±10−1.9 10−1.8±10−1.8 10−2.4±10−2.6

C = 60 10−1.6±10−1.5 10−1.6±10−1.7 10−2.1±10−2.2 10−2.1±10−2.2 10−2.2±10−2.4

C = 80 10−1.3±10−1.1 10−2.4±10−2.8 10−2.4±10−2.4 10−2.1±10−2.4 10−2.3±10−2.5

C = 100 10−1.6±10−1.7 10−1.7±10−1.7 10−2.0±10−2.0 10−2.2±10−2.4 10−2.5±10−2.3

D = 100 K = C K = 2C K = 3C K = 4C K = 5C

C = 20 10+0.3±10+0.2 10−1.3±10−2.2 10−1.7±10−2.1 10−1.9±10−2.2 10−2.4±10−3.5

C = 40 10−1.1±10−1.1 10−1.9±10−2.1 10−2.5±10−3.2 10−2.5±10−2.6 10−2.7±10−3.0

C = 60 10−1.7±10−2.0 10−2.5±10−2.8 10−2.8±10−3.0 10−2.9±10−3.4 10−2.9±10−3.1

C = 80 10−2.1±10−2.7 10−2.7±10−2.8 10−2.7±10−3.0 10−2.9±10−3.2 10−3.1±10−4.0

C = 100 10−2.4±10−2.6 10−2.8±10−3.3 10−3.0±10−3.5 10−3.0±10−3.6 10−2.9±10−3.0

D = 150 K = C K = 2C K = 3C K = 4C K = 5C

C = 20 10+2.3±10+1.4 10+2.3±10+1.7 10+1.4±10+1.0 10+0.5±10+0.2 10−0.7±10−1.0

C = 40 10+2.1±10+1.6 10−0.1±10−0.0 10−1.1±10−1.2 10−1.4±10−1.4 10−1.8±10−1.7

C = 60 10+1.3±10+0.7 10−1.2±10−1.2 10−1.6±10−1.5 10−1.9±10−2.0 10−1.7±10−1.6

C = 80 10−0.0±10−0.0 10−1.7±10−1.8 10−2.2±10−2.3 10−1.9±10−2.0 10−2.1±10−2.6

C = 100 10−0.7±10−1.0 10−1.8±10−2.1 10−1.9±10−2.1 10−2.0±10−2.1 10−2.3±10−2.3

D = 200 K = C K = 2C K = 3C K = 4C K = 5C

C = 20 10+2.8±10+2.5 10+3.0±10+2.4 10+3.1±10+2.1 10+3.1±10+1.9 10+3.0±10+1.5

C = 40 10+3.1±10+1.6 10+3.1±10+1.7 10+2.7±10+1.6 10+1.1±10+0.6 10−1.4±10−1.6

C = 60 10+3.1±10+1.6 10+2.6±10+1.8 10−0.6±10−0.8 10−1.7±10−2.0 10−2.0±10−2.8

C = 80 10+3.1±10+1.7 10+0.7±10+0.1 10−1.7±10−2.3 10−1.9±10−1.9 10−2.1±10−2.5

C = 100 10+3.0±10+2.1 10−1.4±10−1.6 10−2.3±10−2.8 10−2.0±10−2.6 10−2.3±10−2.9

D = 250 K = C K = 2C K = 3C K = 4C K = 5C

C = 20 10+3.5±10+2.0 10+3.5±10+1.5 10+3.5±10+1.7 10+3.5±10+1.4 10+3.5±10+1.6

C = 40 10+3.5±10+2.3 10+3.5±10+1.3 10+3.5±10+1.6 10+3.5±10+2.1 10+3.6±10+1.8

C = 60 10+3.5±10+2.0 10+3.5±10+1.6 10+3.6±10+2.1 10+3.6±10+2.4 10+2.3±10+1.9

C = 80 10+3.5±10+1.6 10+3.5±10+1.9 10+3.5±10+2.2 10+1.1±10+0.8 10−0.8±10−0.9

C = 100 10+3.5±10+1.8 10+3.6±10+2.0 10+2.2±10+1.7 10+0.3±10+0.2 10−0.1±10−0.2

Figure 6: For each choice of D, C, and K, we run GESS, estimate σ, and report the squared
error averaged over 5 trials along with error bars. Smaller numbers are better.
Average errors less than 1 are shown in blue.
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experiment, we consider all 125 triples (D,C,K) such that

D ∈ {50, 100, 150, 200, 250}
C ∈ {20, 40, 60, 80, 100}
K ∈ {C, 2C, 3C, 4C, 5C}.

It makes sense to let K be an integer multiple of C so that each core will be tasked with
updating the same number of chains (the experiments in Section 6.1 set K equal to C).

For each triple (D,C,K), we sample a D-dimensional multivariate Gaussian distribution
centered on the origin whose precision matrix was generated from a Wishart distribution
with identity scale matrix and D degrees of freedom. The distributions used in this experi-
ment were modeled off of one of the distributions considered in Hoffman and Gelman (2014).
We initialize GESS from a broad spherical Gaussian distribution centered on the origin, and
we run GESS for 500 seconds. The first half of the resulting samples are discarded, and
the second half of the resulting samples are used to estimate the vector σ = (σ1, . . . , σD),
where σd is the marginal standard deviation of the dth coordinate. For each triple (D,C,K),
we run five trials. Figure 6 shows the resulting average squared error in the empirical esti-
mate of σ after 500 seconds. Error bars are included as well.

When aggregating samples from K independent Markov chains, we would expect the
squared error of our estimator to decrease at the rate 1/K. However, in the setting of GESS,
additional chains not only provide additional samples, but may enable the construction of
a more accurate approximation to the target distribution thereby enabling the other chains
to sample more effectively. In some situations, the presence of additional chains can even
enable the sampler to converge in situations where it otherwise would not.

We can see this effect in Figure 6. Singling out the column corresponding to D = 200
and K = 3C, we notice that using either 20 or 40 cores, GESS fails to estimate σ, indeed the
Markov chain fails to burn in during the allotted time (the average squared errors are 103.1

and 102.7 respectively). However, once we increase the number of cores to 60, 80, and 100,
GESS provides an accurate estimate of σ (the average squared errors are 10−0.6, 10−1.7,
and 10−2.3 respectively). In this case, increasing the number of cores enabled our estima-
tor to converge. This property contrasts sharply with many other approaches to parallel
sampling. If a single Markov chain running MH will not converge, then one-hundred chains
running MH will not converge either.

7. Discussion

In this paper, we generalized elliptical slice sampling to handle arbitrary continuous dis-
tributions using a scale mixture of Gaussians to approximate the target distribution. We
then showed that parallelism can be used to dynamically choose the parameters of the scale
mixture of Gaussians in a way that encodes information about the shape of the target dis-
tribution in the transition operator. The result is Markov chain Monte Carlo algorithm
with a number of desirable properties. In particular, it mixes well in the presence of strong
dependence, it does not require hand tuning, and it can be parallelized over hundreds of
cores.

We compared our algorithm to several other parallel MCMC algorithms in a variety of
settings. We found that generalized elliptical slice sampling (GESS) mixed more rapidly
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than the other algorithms on a variety of distributions, and we found evidence that the
performance of GESS can scale superlinearly in the number of available cores.

One possible area of future work is reducing the overhead from the information sharing.
In Section 4.5 we remarked that the synchronization requirement leads to faster chains
waiting for slower chains. There are a number of factors which contribute to the difference
in speed from chain to chain. Most obviously, some chains may be running on faster
machines. More subtly, the slice sampling procedure performs a variable number of function
evaluations per update, and the average number of required updates may be a function of
location. For instance, Markov chains whose current states lie in narrow portions of the
distribution may require more function evaluations per update. In each situation, the chains
with the rapid updates end up waiting for the chains with the slower updates, leaving some
processors idle. We imagine that a cleverly-engineered system would be able to account for
the potentially different update speeds, perhaps by sending the chains in the narrower parts
of the distribution to the faster machines or by allowing the slower chains to spawn multiple
threads. Properly done, the performance gain in wall-clock time due to using GESS should
approach the gain as measured by function evaluations.

In addition to using parallelism to distribute the computational load of MCMC, we
saw that our algorithm was able to use information from the parallel chains to speed up
mixing. One area of future work is extending the algorithm to take advantage of a greater
number of cores. The magnitude of this performance gain depends on the accuracy of our
multivariate t approximation, which will increase, to a point, as the number of available cores
grows. However, there is a limit to how well a multivariate t distribution can approximate
an arbitrary distribution. We chose to use the multivariate t distribution because it has
the flexibility to capture the general allocation of probability mass of a given distribution,
but it is too coarse to capture more complex features such as the locations of multiple
modes. After some point, the approximation will not significantly improve. A more general
approach would be to use a scale-location mixture of Gaussians, which could accurately
approximate a much larger class of distributions. The idea of approximating the target
distribution with a mixture of Gaussians has been explored by Ji and Schmidler (2010) in
the context of adaptive Metropolis–Hastings. We leave it to future work to explore this
more general setting.
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Appendix A

In Algorithm 4, we detail the algorithm for estimating the maximum likelihood multivari-
ate t parameters ν, µ, Σ from Liu and Rubin (1995).
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Algorithm 4 Computing the maximum likelihood multivariate t parameters

Input: I points xi (each D dimensional)
Output: Maximum likelihood multivariate t parameters ν, µ, Σ
1: t← 0
2: Initialize ν(0), µ(0), and Σ(0)

3: while |ν(t) − ν(t−1)| < ε do
4: Compute the distances from each point xi to µ(t) with respect to Σ(t)

δ
(t)
i =

(
xi − µ(t)

)T (
Σ(t)

)−1 (
xi − µ(t)

)
5: Set

w
(t+1)
i =

ν(t) +D

ν(t) + δ
(t)
i

6: Update the mean and covariance parameters via

µ(t+1) =

∑I
i=1w

(t+1)
i xi∑I

i=1w
(t+1)
i

Σ(t+1) =
1

I

I∑
i=1

w
(t+1)
i

(
xi − µ(t)

)(
xi − µ(t)

)T
7: Using the updated mean and covariance parameters, recompute the distance

δ
(t+1)
i =

(
xi − µ(t+1)

)T (
Σ(t+1)

)−1 (
xi − µ(t+1)

)
8: Let ψ be the digamma function, and let

wi =
ν +D

ν + δ
(t+1)
i

9: Set ν(t+1) by solving for ν in the equation

−ψ
(ν

2

)
+ log

(ν
2

)
+

1

I

I∑
i=1

(log (wi)− wi) + ψ

(
ν +D

2

)
− log

(
ν +D

2

)
= −1

10: t← t+ 1

11: return ν(t), µ(t), and Σ(t)
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Abstract

Machine learning algorithms have successfully entered industry through many real-world
applications (e.g. , search engines and product recommendations). In these applications,
the test-time CPU cost must be budgeted and accounted for. In this paper, we examine
two main components of the test-time CPU cost, classifier evaluation cost and feature
extraction cost, and show how to balance these costs with the classifier accuracy. Since the
computation required for feature extraction dominates the test-time cost of a classifier in
these settings, we develop two algorithms to efficiently balance the performance with the
test-time cost. Our first contribution describes how to construct and optimize a tree of
classifiers, through which test inputs traverse along individual paths. Each path extracts
different features and is optimized for a specific sub-partition of the input space. Our
second contribution is a natural reduction of the tree of classifiers into a cascade. The
cascade is particularly useful for class-imbalanced data sets as the majority of instances
can be early-exited out of the cascade when the algorithm is sufficiently confident in its
prediction. Because both approaches only compute features for inputs that benefit from
them the most, we find our trained classifiers lead to high accuracies at a small fraction of
the computational cost.

Keywords: budgeted learning, resource efficient machine learning, feature cost sensitive
learning, web-search ranking, tree of classifiers

1. Introduction

In real-world machine learning applications, such as email-spam (Weinberger et al., 2009),
adult content filtering (Fleck et al., 1996), and web-search engines (Zheng et al., 2008;
Chapelle et al., 2011), managing the CPU cost at test-time becomes increasingly important.
In applications of such large scale, computation must be budgeted and accounted for.
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Figure 1: An illustration of two different techniques for learning under a test-time budget.
Circular nodes represent classifiers (with parameters β) and black squares pre-
dictions. The color of a classifier node indicates the number of inputs passing
through it (darker means more). Left: CSCC, a classifier cascade that optimizes
the average cost by rejecting easier inputs early. Right: CSTC, a tree that trains
expert leaf classifiers specialized on subsets of the input space.

Two main components contribute to the test-time cost. The time required to evaluate
a classifier and the time to extract features used by that classifier. Since the features
are often heterogeneous, extraction time for different features is highly variable. Imagine
introducing a new feature to a product recommendation system that requires 1 second to
extract per recommendation. If a web-service provides 100 million recommendations a day
(which is not uncommon), it would require 1200 extra CPU days to extract just this feature.
While this additional feature may increase the accuracy of the recommendation system, the
cost of computing it for every recommendation is prohibitive. This introduces the problem
of balancing the test-time cost and the classifier accuracy. Addressing this trade-off in a
principled manner is crucial for the applicability of machine learning.

A key observation for minimizing test-time cost is that not all inputs require the same
amount of computation to obtain a confident prediction. One celebrated example is face
detection in images, where the majority of all image regions do not contain faces and can
often be easily rejected based on the response of a few simple Haar features (Viola and Jones,
2004). A variety of algorithms utilize this insight by constructing a cascade of classifiers
(Viola and Jones, 2004; Lefakis and Fleuret, 2010; Saberian and Vasconcelos, 2010; Pujara
et al., 2011; Chen et al., 2012; Trapeznikov et al., 2013b). Each stage in the cascade can
reject an input or pass it on to a subsequent stage. These algorithms significantly reduce
the test-time complexity, particularly when the data is class-imbalanced, and few features
are needed to classify instances into a certain class, as in face detection.

Another observation is that it is not only possible that many inputs can be classified
correctly using a small subset of all features, but also, such subsets are likely to vary across
inputs. Particularly for the case in which data is not class-imbalanced it may be possible to
further lower the test-time cost by extracting fewer, more specialized features per input than
the features that would be extracted using a cascade of classifiers. In this paper, we provide
a detailed analysis of a new algorithm, Cost-Sensitive Tree of Classifiers (CSTC) (Xu et al.,
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2013a) that is derived based on this observation. CSTC minimizes an approximation of the
exact expected test-time cost required to predict an instance. An illustration of a CSTC
tree is shown in the right plot of Figure 1. Because the input space is partitioned by the
tree, different features are only extracted where they are most beneficial, and therefore,
the average test-time cost is reduced. Unlike prior approaches, which reduce the total cost
for every input (Efron et al., 2004) or which combine feature cost with mutual information
to select features (Dredze et al., 2007), a CSTC tree incorporates input-dependent feature
selection into training and dynamically allocates higher feature budgets for infrequently
traveled tree-paths.

CSTC incorporates two novelties: 1. it relaxes the expected per-instance test-time cost
into a well-behaved optimization; and 2. it is a generalization of cascades to trees. Full trees,
however, are not always necessary. In data scenarios with highly skewed class imbalance,
cascades might be a better model by rejecting many instances using a small number of
features. We therefore apply the same test-time cost derivation to a stage-wise classifier for
cascades. The resulting algorithm, Cost-Sensitive Cascade of Classifiers (CSCC), is shown
in the left plot of Figure 1. This algorithm supersedes an approach previously proposed,
Cronus (Chen et al., 2012), which is not derived through a formal relaxation of the test-
time cost, but performs a clever weighting scheme. We compare and contrast Cronus with
CSCC.

Two earlier short papers already introduce CSTC (Xu et al., 2013a) and Cronus (Chen
et al., 2012) algorithms, however the present manuscript provides significantly more de-
tailed analysis, experimental results and insightful discussion—and it introduces CSCC,
which combines insights from all prior work. The paper is organized as follows. Section 2
introduces and defines the test-time cost learning setting. Section 3 presents the tree of clas-
sifiers approach, CSTC. In Section 4 we lay out CSCC and relate it to prior work, Cronus,
(Chen et al., 2012). Section 5 introduces non-linear extensions to CSTC and CSCC. Sec-
tion 6 presents the experimental results on several data sets and discusses the performance
differences. Section 7 reviews the prior and related contributions that inspires our work.
We conclude in Section 8 by summarizing our contributions and proposing a few future
directions.

2. Test-Time Cost

There are several key aspects towards learning under test-time cost budgets that need to
be considered: 1. feature extraction cost is relevant and varies significantly across features;
2. features are extracted on-demand rather than prior to evaluation; 3. different features
can be extracted for different inputs; 4. the test cost is evaluated in average rather than
in absolute (/worst-case) terms (i.e. , several cheap classifications can free up budget for
an expensive classification). In this section we focus on learning a single cost-sensitive
classifier. We will combine these classifiers to form our tree and cascade algorithms in later
sections. We first introduce notation and our general setup, and then provide details on
how we address these specific aspects.

Let the data consist of inputs D = {x1, . . . ,xn} ⊂ Rd with corresponding class labels
{y1, . . . , yn} ⊆ Y, where Y = R in the case of regression (Y could also be a finite set of
categorical labels). We summarize all notation in Table 1.
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xi Input instance i
yi Input label i
H Set of all weak learner t
H Linear classifier on input
β Parameters of linear classifier H
` Non-negative loss function over input
ρ Coefficient for regularization
λ Accuracy/cost trade-off parameter
cα Feature extraction cost of feature α
vk Classifier node k
θk Splitting threshold of node vk

pki Traversal probability to node vk of input xi
πl Set of classifier node along the path from root to vl

Table 1: Notation used throughout this manuscript.

2.1 Cost-Sensitive Loss Minimization

We learn a classifier H : Rd → Y, parameterized by β, to minimize a continuous, non-
negative loss function ` over D,

1

n
min
β

n∑
i=1

`(H(xi;β), yi).

We assume that H is a linear classifier, H(x;β) = β>x. To avoid overfitting, we deploy a
standard l1 regularization term, |β| to control model complexity. This regularization term
has the known side-effect to keep β sparse (Tibshirani, 1996), which requires us to only
evaluate a subset of all features. In addition, to balance the test-time cost incurred by the
classifier, we also incorporate the cost term c(β) described in the following section. The
combined test-time cost-sensitive optimization becomes

min
β

∑
i

`(x>i β, yi) + ρ|β|︸ ︷︷ ︸
regularized loss

+ λ c(β)︸︷︷︸
test-cost

, (1)

where λ is the accuracy/cost trade-off parameter, and ρ controls the strength of the regu-
larization.

2.2 Test-Time Cost

The test-time cost of H is regulated by the features extracted for that classifier. Different
from traditional settings, where all features are computed prior to the application of H, we
assume that features are computed on demand the first time they are used.

We denote the extraction cost for feature α as cα. The cost cα ≥ 0 is suffered at most
once, only for the initial extraction, as feature values can be cached for future use. For a
classifier H, parameterized by β, we can record the features used:

‖βα‖0 =

{
1 if feature α is used in H
0 otherwise.

(2)
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Here, ‖ · ‖0 denotes the l0 norm with ‖a‖0 = 1 if a 6= 0 and ‖a‖0 = 0 otherwise. With
this notation, we can formulate the total test-time cost required to evaluate a test input x
with classifier H (and parameters β) as

c(β) =
d∑

α=1

cα‖βα‖0. (3)

The equation (3) can be in any units of cost. For example in medical applications, the
feature extraction cost may be in units of “patient agony” or in “examination cost”. The
current formulation (1) with cost term (3) still extracts the same features for all inputs and
is NP-hard to optimize (Korte and Vygen, 2012, Chapter 15). We will address these issues
in the following sections.

3. Cost-Sensitive Tree of Classifiers

We introduce an algorithm that is inspired by the observation that many inputs could be
classified correctly based on only a small subset of all features, and this subset may vary
across inputs. Our algorithm employs a tree structure to extract particular features for
particular inputs, and we refer to it as the Cost-Sensitive Tree of Classifiers (CSTC ). We
begin by introducing foundational concepts regarding the CSTC tree and derive a global
cost term that extends (3) to trees of classifiers and then we relax the resulting loss function
into a well-behaved optimization problem.

3.1 CSTC Nodes

The fundamental building block of the CSTC tree is a CSTC node—a linear classifier as
described in Section 2.1. Our classifier design is based on the assumption that instances
with similar labels tend to have similar features. Thus, we design our tree algorithm to
partition the input space based on classifier predictions. Intermediate classifiers determine
the path of instances through the tree and leaf classifiers become experts for a small subset
of the input space.

Correspondingly, there are two different nodes in a CSTC tree (depicted in Figure 2):
classifier nodes (white circles) and terminal elements (black squares). Each classifier node
vk is associated with a weight vector βk and a threshold θk. These classifier nodes branch
inputs by their threshold θk, sending inputs to their upper child if x>i β

k > θk, and to
their lower child otherwise. Terminal elements are “dummy” structures and are not real
classifiers. They return the predictions of their direct parent classifier nodes—essentially
functioning as a placeholder for an exit out of the tree. The tree structure may be a full
balanced binary tree of some depth (e.g., Figure 2), or can be pruned based on a validation
set. For simplicity, we assume at this point that nodes with terminal element children must
be leaf nodes (as depicted in the figure)—an assumption that we will relax later on.

During test-time, inputs traverse through the tree, starting from the root node v0. The
root node produces predictions x>i β

0 and sends the input xi along one of two different paths,
depending on whether x>i β

0>θ0. By repeatedly branching the test inputs, classifier nodes
sitting deeper in the tree only handle a small subset of all inputs and become specialized
towards that subset of the input space.
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Figure 2: A schematic layout of a CSTC tree. Each node vk is associated with a weight
vector βk for prediction and a threshold θk to send instances to different parts
of the tree. We solve for βk and θk that best balance the accuracy/cost trade-off
for the whole tree. All paths of a CSTC tree are shown in color.

3.2 CSTC Loss

In this section, we discuss the loss and test-time cost of a CSTC tree. We then derive a
single global loss function over all nodes in the CSTC tree.

3.2.1 Soft Tree Traversal

As we described before, inputs are partitioned at each node during test-time, and we use
a hard threshold to achieve this partitioning. However, modeling a CSTC tree with hard
thresholds leads to a combinatorial optimization problem that is NP-hard (Korte and Vygen,
2012, Chapter 15). As a remedy, during training, we softly partition the inputs and assign
traversal probabilities p(vk|xi) to denote the likelihood of input xi traversing through node
vk. Every input xi traverses through the root, so we define p(v0|xi)=1 for all i. We define a
“sigmoidal” soft belief that an input xi will transition from classifier node vk with threshold
θk to its upper child vu as

p(vu|xi, vk) =
1

1 + exp(−(x>i β
k−θk))

. (4)

Let vk be a node with upper child vu and lower child vl. We can express the probabilities
of reaching nodes vu and vl recursively as p(vu|xi) = p(vu|xi, vk)p(vk|xi) and p(vl|xi) =[
1− p(vu|xi, vk)

]
p(vk|xi) respectively. Note that it follows immediately, that if Vd contains
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all nodes at tree-depth d, we have ∑
v∈Vd

p(v|x) = 1. (5)

In the following paragraphs we incorporate this probabilistic framework into the loss and
cost terms of (1) to obtain the corresponding expected tree loss and tree cost.

3.2.2 Expected Tree Loss

To obtain the expected tree loss, we sum over all nodes V in a CSTC tree and all inputs and
weight the loss `(·) of input xi at each node vk by the probability that the input reaches
vk, pki =p(vk|xi),

1

n

n∑
i=1

∑
vk∈V

pki `(x
>
i β

k, yi). (6)

This has two effects: 1. the local loss for each node focuses more on likely inputs; 2. the
global objective attributes more weight to classifiers that serve many inputs. Technically,
the prediction of the CSTC tree is made entirely by the terminal nodes (i.e. , the leaves),
and an obvious suggestion may be to only minimize their classification losses and leave the
interior nodes as “gates” without any predictive abilities. However, such a setup creates
local minima that send all inputs to the terminal node with the lowest initial error rate.
These local minima are hard to escape from and therefore we found it to be important
to minimize the loss for all nodes. Effectively, this forces a structure onto the tree that
similarly labeled inputs leave through similar leaves and achieves robustness by assigning
high loss to such pathological solutions.

3.2.3 Expected Tree Costs

The cost of a test input is the cumulative cost across all classifiers along its path through
the CSTC tree. Figure 2 illustrates an example of a CSTC tree with all paths highlighted
in color. Every test input must follow along exactly one of the paths from the root to a
terminal element. Let L denote the set of all terminal elements (e.g., in Figure 2 we have
L={v7, v8, v9, v10}), and for any vl∈L let πl denote the set of all classifier nodes along the
unique path from the root v0 before terminal element vl (e.g., π9 ={v0, v2, v5}).

For an input x, exiting through terminal node vl, a feature α needs to be extracted if
and only if at least one classifier along the path πl uses this feature. We extend the indicator
function defined in (2) accordingly:∥∥∥∥∥∥

∑
vj∈πl

∣∣βjα∣∣
∥∥∥∥∥∥

0

=

{
1 if feature α is used along path to terminal node vl

0 otherwise.
(7)

We can extend the cost term in (3) to capture the traversal cost from root to node vl as

cl=
∑
α

cα

∥∥∥∥∥ ∑
vj∈πl

|βjα|
∥∥∥∥∥

0

. (8)
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Given an input xi, the expected cost is then E[cl|xi] =
∑

l∈L p(v
l|xi)cl. To approximate

the data distribution, we sample uniformly at random from our training set, i.e. , we set
p(xi) ≈ 1

n , and obtain the unconditional expected cost

E[cost] =

n∑
i=1

p(xi)
∑
l∈L

p(vl|xi)cl ≈
∑
l∈L

cl
n∑
i=1

p(vl|xi)
1

n︸ ︷︷ ︸
:=pl

=
∑
l∈L

clpl. (9)

Here, pl denotes the probability that a randomly picked training input exits the CSTC
tree through terminal node vl. We can combine (8), (9) with (6) and obtain the objective
function,

∑
vk∈V

(
1

n

n∑
i=1

pki `
k
i +ρ|βk|

)
︸ ︷︷ ︸

regularized loss

+λ
∑
vl∈L

pl

∑
α

cα

∥∥∥∥∥ ∑
vj∈πl

|βjα|
∥∥∥∥∥

0


︸ ︷︷ ︸

test-time cost

, (10)

where we use the abbreviations pki = p(vk|xi) and `ki = `(x>i β
k, yi).

3.3 Test-Cost Relaxation

The cost penalties in (10) are exact but difficult to optimize due to the discontinuity and
non-differentiability of the l0 norm. As a solution, throughout this paper we use the mixed-
norm relaxation of the l0 norm over sums,

∑
j

∥∥∥∥∥∑
i

|Aij |
∥∥∥∥∥

0

→
∑
j

√∑
i

(Aij)2, (11)

described by Kowalski (2009). Note that for a vector, this relaxes the l0 norm to the l1
norm, i.e. ,

∑
j ‖aj‖0→

∑
j

√
(aj)2 =

∑
j |aj |, recovering the commonly used approximation

to encourage sparsity. For matrices A, the mixed norm applies the l1 norm over rows and
the l2 norm over columns, thus encouraging a whole row to be all-zero or non-sparse. In
our case this has the natural interpretation to encourage re-use of features that are already
extracted along a path. Using the relaxation in (11) on the l0 norm in (10) gives the final
optimization problem:

min
β0,θ0,...,β|V |,θ|V |

∑
vk∈V

(
1

n

n∑
i=1

pki `
k
i +ρ|βk|

)
︸ ︷︷ ︸

regularized loss

+λ
∑
vl∈L

pl

[∑
α

cα

√∑
vj∈πl

(βjα)2

]
︸ ︷︷ ︸

test-time cost penalty

(12)

We can illustrate the fact that the mixed-norm encourages re-use of features with a simple
example. If two classifiers vk 6= vk

′
along a path πl use different features with identical

weight, i.e. , βkt = ε = βk
′
s and t 6= s, the test-time cost penalty along πl is

√
ε2 +
√
ε2 = 2ε.

However, if the two classifiers re-use the same feature, i.e. , t = s, the test-time cost penalty
reduces to

√
ε2 + ε2 =

√
2ε.
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3.4 Optimization

There are many techniques to minimize the objective in (12). We use block coordinate
descent, optimizing with respect to the parameters of a single classifier node vk at a time,
keeping all other parameters fixed. We perform a level order tree traversal, optimizing each
node in order: v1, v2, . . . , v|V |. To minimize (12) (up to a local minimum) with respect
to parameters βk, θk we use the lemma below to overcome the non-differentiability of the
square-root term (and l1 norm, which we can rewrite as |a| =

√
a2) resulting from the

l0-relaxation (11).

Lemma 1. Given a positive function g(x), the following holds:

√
g(x) = inf

z>0

1

2

[
g(x)

z
+ z

]
. (13)

It is straight-forward to see that z =
√
g(x) minimizes the function on the right hand side

and satisfies the equality, which leads to the proof of the lemma.

For each square-root or l1 term we 1) introduce an auxiliary variable (i.e., z above), 2)
substitute in (13), and 3) alternate between minimizing the objective in (12) with respect to
βk, θk and solving for the auxiliary variables. The former minimization is performed with
conjugate gradient descent and the latter can be computed efficiently in closed form. This
pattern of block-coordinate descent followed by a closed form minimization is repeated until
convergence. Note that the objective is guaranteed to converge to a fixed point because each
iteration decreases the objective function, which is bounded below by zero. In the following
subsection, we detail the block coordinate descent optimization technique. Lemma 1 is only
defined for strictly positive functions g(x). As we are performing function minimization, we
can reach cases where g(x) = 0 and Lemma 1 is ill defined. Thus, as a practical work-around,
we clamp values to zero once they are below a small threshold (10−4).

3.4.1 Optimization Details

For reproducibility, we describe the optimization in more detail. Readers not interested in
the exact procedure may skip to Section 3.5. As terminal nodes are only placeholders and
do not have their own parameters, we only focus on classifier nodes, which are depicted as
round circles in Figure 2.

Leaf Nodes. The optimization of leaf nodes (e.g. , v3, v4, v5, v6 in Fig. 2) is simpler
because there are no downstream dependencies. Let vk be such a classifier node with only a
single “dummy” terminal node vk

′
. During optimization of (12), we fix all other parameters

βj , θj of other nodes vj and the respective terms become constants. Therefore, we remove
all other paths, and only minimize over the path πk

′
from the root to terminal node vk

′
.

Even along the path πk
′

most terms become constant and the only non-constant parameter
is βk (the branching parameter θk can be set to −∞ because vk has only one child). We
color non-constant terms in the remaining function in blue below,

∑
i

pki `(φ(xi)
>βk, yi)+ρ|βk|+ λ pk

′

∑
α

cα

√
(βkα)2 +

∑
vj∈πk′\vk

(βjα)2

 , (14)
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where S\b contain all of the elements in S except b. After identifying the non-constant terms,
we can apply Lemma 1, making (14) differentiable with respect to βkα. Let us define auxiliary
variables γα and ηα for 1 ≤ α ≤ d for the l1-regularization term and the test-time cost term.
Further, let us collect the constants in the test-time cost term ctest-time =

∑
vj∈πk′\vk(βjα)2.

Applying Lemma 1 results in the following substitutions:

∑
α

ρ|βkα| =
∑
α

ρ
√

(βkα)2 −→
∑
α

ρ
1

2

(
(βkα)2

γα
+ γα

)
,

∑
α

cα

√
(βkα)2 + ctest-time −→

∑
α

cα
1

2

(
(βkα)2 + ctest-time

ηα
+ ηα

)
. (15)

As a result, we obtain a differentiable objective function after making the above substitu-
tions. We can solve βk by alternately minimizing the obtained differentiable function w.r.t.
βk with γα, ηα fixed, and minimizing γα, ηα with βk fixed (i.e., minimizing ηα is equivalent
to setting ηα =

√
(βkα)2+ctest-time ). Recall that θk does not require optimization as vk does

not further branch inputs.
It is straight-forward to show (Boyd and Vandenberghe, 2004, page 72), that the right

hand side of Lemma 1 is jointly convex in x and z, so as long as g(x) is a quadratic
function of x. Thus, if `(x>i β

k, yi) is the squared loss, the substituted objective function is
jointly convex in βk and in γα, ηα and therefore we can obtain a globally-optimal solution.
Moreover, we can solve βk in closed form. Let us define three design matrices

Xiα= [xi]α, Ωii= pki , Γαα=
ρ

γα
+ λ

(pkcα
ηα

)
,

where Ω and Γ are both diagonal and [xi]α is the α feature of instance xi. The closed-form
solution for βk is as follows,

βk = (X>ΩX + Γ)−1X>Ωy. (16)

Intermediate Nodes. We further generalize this approach to all classifier nodes. As
before, we optimize one node at a time, fixing the parameters of all other nodes. However,
optimizing the parameters βk, θk of an internal node vk, which has two children affects the
parameters of descendant nodes. This affects the optimization of the regularized classifier
loss and the test-time cost separately. We state how these terms in the global objective (12)
are affected, and then show how to minimize it.

Let S be the set containing all descendant nodes of vk. Changes to the parameters βk, θk

will affect the traversal probabilities pji for all vj ∈ S and therefore enter the downstream loss
functions. We first state the regularized loss part of (12) and once again color non-constant
parameters in blue,

1

n

∑
i

pki `(x
>
i β

k, yi) +
1

n

∑
vj∈S

∑
i

pji `(x
>
i β

j , yi) + ρ|βk|. (17)

For the cost terms in (12), recall that the cost of each path πl is weighted by the
probability pl of traversing that path. Changes to βk, θk affect the probability of any path
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Algorithm 1 CSTC global optimization

Input: data {xi, yi} ∈ Rd ×R, initialized CSTC tree
repeat

for k = 1 to N = # CSTC nodes do
repeat

Solve for γ, η (fix βk, θk) using left hand side of (15)
Solve for βk, θk (fix γ, η) with conjugate gradient descent, or in closed-form

until objective changes less than ε
end for

until objective changes less than ε

that passes through vk and its corresponding probability pl. Let P be the terminal elements
associated with paths passing through vk. We state the cost function with non-constant
parameters in blue,

∑
vl∈P

pl

∑
α

cα

√√√√( ∑
vj∈πl\vk

(βjα)2 + (βkα)2

)
︸ ︷︷ ︸

test-time cost

(18)

Adding (17) and (18), with the latter weighted by λ, gives the internal node loss.
To make the combined objective function differentiable we apply Lemma 1 to the l1-
regularization, and test-time cost terms and introduce auxiliary variables γα, ηα as in (15).
Similar to the leaf node case, we solve βk, θk by alternately minimizing the new objective
w.r.t. βk, θk with γα, ηα fixed, and minimizing γα, ηα with fixed βk, θk. Unlike leaf nodes,
optimizing the objective function w.r.t. βk, θk cannot be expressed in closed form even
with squared loss. Therefore, we optimize it with conjugate gradient descent. Algorithm 1
describes how the entire CSTC tree is optimized.

3.4.2 Node Initialization

The minimization of (12) is non-convex and is therefore initialization dependent. However,
minimizing (12) with respect to the parameters of leaf classifiers is convex. We therefore
initialize the tree top-to-bottom, starting at v0, and optimizing over βk by minimizing (12)
while considering all descendant nodes of vk as “cut-off” (thus pretending node vk is a leaf).
This initialization is also very fast in the case of a quadratic loss, as it can be solved for in
closed form.

3.5 Fine-Tuning

The original test-time cost term in (3) sums over the cost of all features that are extracted
during test-time. The relaxation in (11) makes the exact l0 cost differentiable and is still well
suited to select which features to extract. However, the mixed-norm does also impact the
performance of the classifiers, because (different from the l0 norm) larger weights in β incur
larger cost penalties. We therefore introduce a post-processing step to correct the classifiers
from this unwanted regularization effect. We re-optimize the loss of all leaf classifiers (i.e.

2123



Xu, Kusner, Weinberger, Chen and Chapelle

0

-0.05

-0.06

2
3

1

0

best
potential

node

classifier
node

potential
node

change in
NDCG

         

iteration
Finish

Start

+0.11

+0.02

+0.67

Figure 3: A schematic layout of the greedy tree building algorithm. Each iteration we add
the best performing potential node (dashed, above) to the tree. Each potential
node is annotated by the improvement in validation-NDCG, obtained with its
inclusion (number inside the circle). In this example, after two iterations no more
nodes improve the NDCG and the algorithm terminates, converting all remaining
potential nodes into terminal elements (black boxes).

, classifiers that make final predictions), while clamping all features with zero-weight to
strictly remain zero.

min
β̄
k

∑
i

pki `(x
>
i β̄

k
, yi) + ρ|β̄k|

subject to: β̄kt = 0 if βkt = 0.

Here, we do not include the cost-term, because the decision regarding which features to use

is already made. The final CSTC tree uses these re-optimized weight vectors β̄
k

for all leaf
classifier nodes vk.

3.6 Determining the Tree Structure

As the CSTC tree does not need to be balanced, its structure is an implicit parameter of
the algorithm. We learn and fix the tree structure prior to the optimization and fine-tuning
steps in Sections 3.4 and 3.5. We discuss two approaches to determine the structure of
the tree in the absence of prior knowledge, the first prunes a balanced tree bottom-up, the
second adds nodes top-down, only when necessary. In practice, both techniques produce
similar results and we settled on using the pruning technique for all of our experiments.

3.6.1 Tree Pruning

We build a full (balanced) CSTC tree of depth d and initialize all nodes. To obtain a more
compact model and to avoid over-fitting, the CSTC tree can be pruned with the help of
a validation set. We compute the validation error of the initialized CSTC tree at each
node. Starting with the leaf nodes, we then prune away nodes that, upon removal, do not
decrease the validation performance (in the case of ranking data, we even can use validation
NDCG (Järvelin and Kekäläinen, 2002) as our pruning criterion). After pruning, the tree
structure is fixed and all nodes are optimized with the procedure described in Section 3.4.1.
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3.6.2 Greedy Tree Building

In contrast to the bottom-up pruning, we can also use a top-down approach to construct
the tree structure. Figure 3 illustrates our greedy heuristic for CSTC tree construction. In
each iteration, we add the child node that improves the validation criteria (e.g., NDCG)
the most on the validation set.

More formally, we distinguish between CSTC classifier nodes and potential nodes. Po-
tential nodes (dotted circles in Figure 3) can turn into classifier nodes or terminal elements.
Each potential node is initially a trained classifier and annotated with the NDCG value
that the CSTC tree would reach on validation with its inclusion. At iteration 0 we learn a
single CSTC node by minimizing (12) for the root node v0, and make it a potential node. At
iteration i > 0 we pick the potential node whose inclusion improves the validation NDCG
the most (depicted as the dotted green circle) and add it to the tree. Then we create two
new potential nodes as its children, and initialize their classifiers by minimizing (12) with all
other weight-vectors and thresholds fixed. The splitting threshold θk is set to move 50% of
the validation inputs to the upper child (the thresholds will be re-optimized subsequently).
This procedure continues until no more potential nodes improve the validation NDCG, and
we convert all remaining potential nodes into terminal elements.

4. Cost-Sensitive Cascade of Classifiers

Many real world applications have data distributions with high class imbalance. One exam-
ple is face detection, where the vast majority of all image patches does not contain faces;
another example is web-search ranking, where almost all web-pages are irrelevant to a given
query. Often, a few features may suffice to detect that an image does not contain a face
or that a web-page is irrelevant. Further, in applications such as web-search ranking, the
accuracy of bottom ranked instances is irrelevant as long as they are not retrieved at the
top (and therefore are not displayed to the end user).

In these settings, the entire focus of the algorithm should be on the most confident
positive samples. Sub-trees that lead to only negative predictions, can be pruned effectively
as there is no value in providing fine-grained differentiation between negative samples. This
further reduces the average feature cost, as negative inputs traverse through shorter paths
and require fewer features to be extracted. Previous work obtains these unbalanced trees
by explicitly learning cascade structured classifiers (Viola and Jones, 2004; Dundar and
Bi, 2007; Lefakis and Fleuret, 2010; Saberian and Vasconcelos, 2010; Chen et al., 2012;
Trapeznikov et al., 2013b; Trapeznikov and Saligrama, 2013a). CSTC can incorporate
cascades naturally as a special case, in which the tree of classifiers has only a single node
per level of depth. However, further modifications can be made to accommodate the specifics
of these settings. We introduce two changes to the learning algorithm:

• Inputs of different classes are re-weighted to account for the severe class imbalance.

• Every classifier node vk has a terminal element as child and is weighted by the prob-
ability of exiting rather than the probability of traversing through node vk.

We refer to the modified algorithm as Cost-Sensitive Cascade of Classifiers (CSCC). An
example cascade is illustrated in Figure 4. A CSCC with K-stages is defined by a set of

2125



Xu, Kusner, Weinberger, Chen and Chapelle

Cost-sensitive Cascade (CSCC)
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x�β0 ≤ θ0

x�β0 > θ0

Figure 4: Schematic layout of our classifier cascade with four classifier nodes. All paths are
colored in different colors.

weight vectors βk and thresholds θk, C = {(β1, θ1), (β2, θ2), · · · , (βK ,−)}. An input is
early-exited from the cascade at node vk if x>βk <θk and is sent to its terminal element
vk+1. Otherwise, the input is sent to the next classifier node. At the final node vK a
prediction is made for all remaining inputs via x>βK .

In CSTC, most classifier nodes are internal and branch inputs. As such, the predictions
need to be similarly accurate for all inputs to ensure that they are passed on to the correct
part of the tree. In CSCC, each classifier node early-exits a fraction of its inputs, providing
their final prediction. As mistakes of such exiting inputs are irreversible, the classifier needs
to ensure particularly low error rates for this fraction of inputs. All other inputs are passed
down the chain to later nodes. This key insight inspires us to modify the loss function of
CSCC from the original CSTC formulation in (6). Instead of weighting the contribution
of classifier loss `(x>i β

k, yi) by pki , the probability of input xi traversing through node vk,
we weight it with pk+1

i , the probability of exiting through terminal node vk+1. As a second
modification, we introduce an optional class-weight wyi > 0 which absorbs some of the
impact of the class imbalance. The resulting loss becomes:

1

n

n∑
i=1

∑
vk∈V

wyip
k+1
i `(x>i β

k, yi).

The cost term is unchanged and the combined cost-sensitive loss function of CSCC becomes

∑
vk∈V

1

n

(
n∑
i=1

wyip
k+1
i `ki

)
+ ρ|βk|︸ ︷︷ ︸

regularized loss

+λ
∑
vl∈L

pl

 d∑
α=1

cα

√∑
vj∈πl

(βjα)2


︸ ︷︷ ︸

feature cost penalty

. (19)

We optimize (19) using the same block coordinate descent optimization described in Sec-
tion 3.4. Similar as before, we initialize the cascade from left to right, while assuming the
currently initialized node is the last node.
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4.1 Cronus

CSCC supersedes previous work on cost sensitive learning of cascades by the same authors,
Chen et al. (2012). The previous algorithm, named Cronus, shares the same loss terms as
CSCC, however the feature and evaluation cost of each node is weighted by the expected
number of inputs, pk, within the mixed-norm (highlighted in color):

∑
vk∈V

1

n

(
n∑
i=1

wyip
k+1
i `ki

)
+ ρ|βk|︸ ︷︷ ︸

regularized loss

+λ
d∑

α=1

cα

√∑
vk∈V

(pkβkα)2

︸ ︷︷ ︸
feature cost penalty

.

In contrast, CSCC in (19) sums over the weighted cost of all exit paths. The two formu-
lations are similar, but CSCC may be considered more principled as it is derived from the
exact expected cost of the cascade. As we show in Section 6, this does translate into better
empirical accuracy/cost trade-offs.

5. Extension to Non-Linear Classifiers

Although CSTC’s decision boundary may be non-linear, each individual node classifier is
linear. For many problems this may be too restrictive and insufficient to divide the input
space effectively. In order to allow non-linear decision boundaries we map the input into a
more expressive feature space with the “boosting trick” (Friedman, 2001; Chapelle et al.,
2011), prior to our optimization. In particular, we first train gradient boosted regression
trees with a squared loss penalty for T iterations and obtain a classifier H ′(xi)=

∑T
t=1 ht(xi),

where each function ht(·) is a limited-depth CART tree (Breiman, 1984). We then define
the mapping φ(xi) = [h1(xi), . . . , hT (xi)]

> and apply it to all inputs. The boosting trick
is particularly well suited for our feature cost sensitive setting, as each CART tree only
uses a small number of features. Nevertheless, this pre-processing step does affect the loss
function in two ways: 1. the feature extraction now happens within the CART trees; and
2. the evaluation time of the CART trees needs to be taken into account.

5.1 Feature Cost After the Boosting Trick

After the transformation xi → φ(xi), each input is T−dimensional and consequently, we
have the weight vectors β ∈ RT . To incorporate the feature extraction cost into our loss,
we define an auxiliary matrix F∈ {0, 1}d×T with Fαt = 1 if and only if the CART tree ht
uses feature fα. With this notation, we can incorporate the CART-trees into the original
feature extraction cost term for a weight vector β, as stated in (3). The new formulation
and its relaxed version, following the mixed-norm relaxation as stated in (11), are then:

d∑
α=1

cα

∥∥∥∥∥
T∑
t=1

|Fαtβt|
∥∥∥∥∥

0

−→
d∑

α=1

cα

√√√√ T∑
t=1

(Fαtβt)2.

The non-negative sum inside the l0 norm is non-zero if and only if feature α is used by at
least one tree with non-zero weight, i.e. , |βt| > 0. Similar to a single classifier, we can also
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adapt the feature extraction cost of the path through a CSTC tree, originally defined in
(8), which becomes:

d∑
α=1

cα

∥∥∥∥∥ ∑
vj∈πl

T∑
t=1

|Fαtβjt |
∥∥∥∥∥

0

−→
d∑

α=1

cα

√√√√∑
vj∈πl

T∑
t=1

(Fαtβ
j
t )

2. (20)

5.2 CART Evaluation Cost

The evaluation of a CART tree may be non-trivial or comparable to the cost of feature
extraction and its cost must be accounted for. We define a constant et ≥ 0, which captures
the cost of the evaluation of the tth CART tree. We can express this evaluation cost for
a single classifier with weight vector β in terms of the l0 norm and again apply the mixed
norm relaxation (11). The exact (left term) and relaxed evaluation cost penalty (right term)
can be stated as follows:

T∑
t=1

et‖βt‖0 −→
T∑
t=1

et|βt|

The left term incurs a cost of et for each tree ht if and only if it is assigned a non-zero
weight by the classifier, i.e. , βt 6= 0. Similar to feature values, we assume that CART tree
evaluations can be cached and only incur a cost once (the first time they are computed).
With this assumption, we can express the exact and relaxed CART evaluation cost along a
path πl in a CSTC tree as

T∑
t=1

et

∥∥∥∥ ∑
vj∈πl

|βjt |
∥∥∥∥

0

−→
T∑
t=1

et

√∑
vj∈πl

(βjt )
2. (21)

It is worth pointing out, that (21) is analogous to the feature extraction cost with linear
classifiers (8) and its relaxation, as stated in (12).

5.3 CSTC and CSCC with Non-Linear Classifiers

We can integrate the two CART tree aware cost terms (20) and (21) into the optimization
problem in (12). The final objective of the CSTC tree after the “boosting trick” becomes
then

∑
vk∈V

(
1

n

n∑
i=1

pki `
k
i +ρ|βk|

)
︸ ︷︷ ︸

regularized loss

+λ
∑
vl∈L

pl

[ ∑
t

et

√∑
vj∈πl

(βjt )
2

︸ ︷︷ ︸
CART evaluation cost penalty

+

d∑
α=1

cα

√√√√∑
vj∈πl

T∑
t=1

(Fαtβ
j
t )

2

︸ ︷︷ ︸
feature cost penalty

]
. (22)

The objective in (22) can be optimized with the same block coordinate descent algorithm,
as described in Section 3.4. Similarly, the CSCC loss function with non-linear classifiers
becomes

∑
vk∈V

1

n

(
n∑
i=1

wyip
k+1
i `ki

)
+ ρ|βk|︸ ︷︷ ︸

regularized loss

+λ
∑
vl∈L

pl

[∑
t

et

√∑
vj∈πl

(βjt )
2

︸ ︷︷ ︸
evaluation cost

+

d∑
α=1

cα

√√√√∑
vj∈πl

T∑
t=1

(Fαtβ
j
t )

2

︸ ︷︷ ︸
feature cost

]
.
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In the same way, Cronus may be adapted for non-linear classification (see: Chen et al., 2012).
To avoid over-fitting, we use validation set to perform early-stopping during optimizing
objective function 22.

6. Results

In this section, we evaluate CSTC on a synthetic cost-sensitive learning task and compare
it with competing algorithms on two large-scale, real world benchmark problems. Addi-
tionally, we discuss the differences between our models for several learning settings. We
provide further insight by analyzing the features extracted on a these data sets and looking
at how CSTC tree partitions the input space. We judge the effect of the cost-sensitive
regularization by looking at how removing terms and varying parameters affects CSTC on
real world data sets. We also present detailed results of CSTC on a cost-sensitive version
of the MNIST data set, demonstrating that it extracts intelligent per-instance features. We
end by proposing a criterion that is designed to judge if CSTC will perform well on a data
set.

6.1 Synthetic Data

We construct a synthetic regression data set consisting of points sampled from the four
quadrants of the X,Z-plane, where X=Z∈ [−1, 1]. The features belong to two categories:
cheap features: sign(x), sign(z) with cost c=1, which can be used to identify the quadrant
of an input; and expensive features: z++, z+−, z−+, z−− with cost c= 10, which equal the
exact label of an input if it is from the corresponding quadrant (or a random number
otherwise). Since in this synthetic data set we do not transform the feature space, we have
φ(x) = x, and F (the weak learner feature-usage variable) is the 6×6 identity matrix. By
design, a perfect classifier can use the two cheap features to identify the sub-region of an
instance and then extract the correct expensive feature to make a perfect prediction. The
minimum feature cost of such a perfect classifier is exactly c=12 per instance. We construct
the data set to be a regression problem, with labels sampled from Gaussian distributions
with quadrant-specific means µ++, µ−+, µ+−, µ−− and variance 1. The individual values
for the label means are picked to satisfy the CSTC assumption, i.e. , that the prediction of
similar labels requires similar features. In particular, as can be seen in Figure 5 (top left),
label means from quadrants with negative z−coordinates (µ+−, µ−−) are higher than those
with positive z−coordinates (µ++, µ−+).

Figure 5 shows the raw data (top left) and a CSTC tree trained on this data with its
predictions of test inputs made by each node. The semi-transparent gray hyperplane shows
the values of thresholds, θ, and vertical gray lines show the difference between predicted
label and true label, for each instance. In general, in every path along the tree, the first two
classifiers split on the two cheap features and identify the correct sub-region of the input.
The leaf classifiers extract a single expensive feature to predict the labels. As such, the
mean squared error of the training and testing data both approach 0 (and the gray lines
vanish) at optimal cost c = 12.
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Figure 5: CSTC on synthetic data. The box at left describes the data set. The rest of
the figure shows the trained CSTC tree. At each node we show a plot of the
predictions made by that classifier and the feature weight vector. The tree obtains
a perfect (0%) test-error at the optimal cost of 12 units.

6.2 Yahoo! Learning to Rank

To evaluate the performance of CSTC on real-world tasks, we test it on the Yahoo! Learning
to Rank Challenge (LTR) data set. The set contains 19,944 queries and 473,134 documents.
Each query-document pair xi consists of 519 features. An extraction cost, which takes on
a value in the set {1, 5, 20, 50, 100, 150, 200}, is associated with each feature.1 The unit of
these values turns out to be approximately the number of weak learner evaluations ht(·)
that can be performed while the feature is being extracted. The label yi ∈ {4, 3, 2, 1, 0}
denotes the relevancy of a document to its corresponding query, with 4 indicating a perfect
match. We measure the performance using normalized discounted cumulative gain at the
5th position (NDCG@5) (Järvelin and Kekäläinen, 2002), a preferred ranking metric when
multiple levels of relevance are available. Let π be an ordering of all inputs associated with
a particular query (π(r) is the index of the rth ranked document and yπ(r) is its relevance
label), then the NDCG of π at position P is defined as

NDCG@P (π) =
DCG@P (π)

DCG@P (π∗)
with DCG@P (π) =

P∑
r=1

2yπ(r) − 1

log2(r + 1)
,

where π∗ is an optimal ranking (i.e. , documents are sorted in decreasing order of relevance).
To introduce non-linearity, we transform the input features into a non-linear feature space
x → φ(x) with the boosting trick (see Section 5) with T = 3000 iterations of gradient
boosting and CART trees of maximum depth 4. Unless otherwise stated, we determine the
CSTC depth by validation performance (with a maximum depth of 10).

1. The extraction costs were provided by a Yahoo! employee.
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Figure 6: The test ranking accuracy (NDCG@5) and cost of various cost-sensitive classifiers.
CSTC maintains its high retrieval accuracy significantly longer as the cost-budget
is reduced.

Figure 6 shows a comparison of CSTC with several recent algorithms for test-time
budgeted learning. We show NDCG versus cost (in units of weak learner evaluations). We
obtain the curves of CSTC by varying the accuracy/cost trade-off parameter λ (and perform
early stopping based on the validation data, for fine-tuning). For CSTC we evaluate eight
settings, λ = {1

3 ,
1
2 , 1, 2, 3, 4, 5, 6}. In the case of stage-wise regression, which is not cost-

sensitive, the curve is simply a function of boosting iterations. We include CSTC with and
without fine-tuning. The comparison shows that there is a small but consistent benefit to
fine-tuning the weights as described in Section 3.5.

For competing algorithms, we include Early exit (Cambazoglu et al., 2010) which im-
proves upon stage-wise regression by short-circuiting the evaluation of unpromising docu-
ments at test-time, reducing the overall test-time cost. The authors propose several criteria
for rejecting inputs early and we use the best-performing method “early exits using proxim-
ity threshold”, where at the ith early-exit, we remove all test-inputs that have a score that is
at least 300−i

299 s lower than the fifth best input, and s determines the power of the early-exit.
The single cost-sensitive classifier is a trivial CSTC tree consisting of only the root node
i.e. , a cost-sensitive classifier without the tree structure. We also include Cronus, which
is described in Section 4. We set the maximum number of Cronus nodes to 10, and set all
other parameters (e.g., keep ratio, discount, early-stopping) based on a validation set. As
shown in the graph, both Cronus and CSTC improve the cost/accuracy trade-off curve over
all other algorithms. The power of Early exit is limited in this case as the test-time cost is
dominated by feature extraction, rather than the evaluation cost. Compared with Cronus,
CSTC has the ability to identify features that are most beneficial to different groups of in-
puts. It is this ability, which allows CSTC to maintain the high NDCG significantly longer
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Figure 7: The test ranking accuracy (Precision@5) and cost of various budgeted cascade
classifiers on the Skew-LTR data set with high class imbalance. CSCC outper-
forms similar techniques, requiring less cost to achieve the same performance.

as the cost-budget is reduced. It is interesting to observe that the single cost-sensitive clas-
sifier outperforms stage-wise regression (due to the cost sensitive regularization) but obtains
much worse cost/accuracy trade offs than the full CSTC tree. This demonstrates that the
tree structure is indeed an important part of the high cost effectiveness of CSTC.

6.3 Yahoo! Learning to Rank: Skewed, Binary

To evaluate the performance of our cascade approach CSCC, we construct a highly class-
skewed binary data set using the Yahoo! LTR data set. We define inputs having labels
yi ≥ 3 as ‘relevant’ and label the rest as ‘irrelevant’, binarizing the data in this way. We
also replicate each negative, irrelevant example 10 times to simulate the scenario where
only a few documents are highly relevant, out of many candidate documents. After these
modifications, the inputs have one of two labels {−1, 1}, and the ratio of +1 to −1 is
1/100. We call this data set LTR-Skewed. This simulates an important setting, as in many
time-sensitive real life applications the class distributions are often very skewed.

For the binary case, we use the ranking metric Precision@5 (the fraction of top 5 doc-
uments retrieved that are relevant to a query). It best reflects the capability of a classifier
to precisely retrieve a small number of relevant instances within a large set of irrelevant
documents. Figure 7 compares CSCC and Cronus with several recent algorithms for binary
budgeted learning. We show Precision@5 versus cost (in units of weak learner evaluations).
Similar to CSTC, we obtain the curves of CSCC by varying the accuracy/cost trade-off
parameter λ. For CSCC we evaluate eight settings, λ={1

3 ,
1
2 , 1, 2, 3, 4, 5, 6}.

For competing algorithms, in addition to Early exit (Cambazoglu et al., 2010) described
above, we also include AND-OR proposed by Dundar and Bi (2007), which is designed
specifically for binary budgeted learning. They formulate a global optimization of a cas-
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Figure 8: Left: The pruned CSTC tree, trained on the Yahoo! LTR data set. The ratio of
features, grouped by cost, are shown for CSTC (center) and Cronus (right). The
number of features in each cost group is indicated in parentheses in the legend.
More expensive features (c ≥ 20) are gradually extracted deeper in the structure
of each algorithm.

cade of classifiers and employ an AND-OR scheme with the loss function that treats negative
inputs and positive inputs separately. This setup is based on the insight that positive in-
puts are carried all the way through the cascade (i.e. , each classifier must classify them
as positive), whereas negative inputs can be rejected at any time (i.e. , it is sufficient if a
single classifier classifies them as negative). The loss for positive inputs is the maximum
loss across all stages, which corresponds to the AND operation, and encourages all classi-
fiers to make correct predictions. For negative inputs the loss is the minimum loss of all
classifiers, which corresponds to the OR operation, and which enforces that at least one
classifier makes a correct prediction. Different from our approach, their algorithm requires
pre-assigning features to each node. We therefore use five nodes in total, assigning fea-
tures of cost ≤ 5,≤ 20,≤ 50,≤ 150,≤ 200. The curve is generated by varying a loss/cost
trade-off parameter (similar to λ). Finally, we also compare with the cost sensitive ver-
sion of AdaboostRS (Reyzin, 2011). This algorithm resamples decision trees, learned with
AdaBoost (Freund et al., 1999), inversely proportional to a tree’s feature cost. As this algo-
rithm involves random sampling, we averaged over 10 runs and show the standard deviations
in both precision and cost.

As shown in the graph, AdaBoostRS obtains lower precision than other algorithms. This
may be due to the known sensitivity of AdaBoost towards noisy data, (Melville et al., 2004).
AND-OR also under-performs. It requires pre-assigning features prior to training, which
makes it impossible to obtain high precision at a low cost. On the other hand, Cronus,
CSCC, and CSTC have the ability to cherry pick good but expensive features at an early
node, which in turn can reduce the overall cost while improving performance over other
algorithms. We take a closer look at this effect in the following section. Cronus and CSCC
in general outperform CSTC because they can exit a large portion of the data set early
on. As mentioned before, CSCC outperforms Cronus a little bit, which we attribute to the
more principled optimization.
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Figure 9: The ratio of features, grouped by cost, that are extracted at different depths of
CSCC (left), AND-OR (center) and Cronus (right). The number of features in
each cost group is indicated in parentheses in the legend.

6.4 Feature Extraction

Based on the LTR and LTR-Skewed data sets, we investigate the features extracted by
various algorithms in each scenario. We fist show the features retrieved in the regular
balanced class data set (LTR). Figure 8 (left) shows the pruned CSTC tree learned on the
LTR data set. The plot in the center demonstrates the fraction of features, with a particular
cost, extracted at different depths of the CSTC tree. The rightmost plot shows the features
extracted at different nodes of Cronus. We observe a general trend that for both CSTC and
Cronus, as depth increases, more features are being used. However, cheap features (c ≤ 5)
are all extracted early-on, whereas expensive features (c ≥ 20) are extracted by classifiers
sitting deeper in the tree. Here, individual classifiers only cope with a small subset of
inputs and the expensive features are used to classify these subsets more precisely. The
only feature that has cost 200 is extracted at all depths—which seems essential to obtain
high NDCG (Chen et al., 2012). Although Cronus has larger depth than CSTC (10 vs 4),
most nodes in Cronus are basically dummy nodes (as can be seen by the flat parts of the
feature usage curve). For these nodes all weights are zeros, and the threshold is a very small
negative number, allowing all inputs to pass through.

In the second scenario, where the class-labels are binarized and are highly skewed (LTR-
Skewed), we compare the features extracted by CSCC, Cronus and AND-OR. For a fair
comparison, we set the trade-off parameter λ for each algorithm to achieve similar precision
0.135 ± 0.001. We also set the maximum number of nodes of CSCC and Cronus to 10.
Figure 9 (left) shows the fraction of features, with a particular cost, extracted at different
nodes of the CSCC. The center plot illustrates the features used by AND-OR, and the right
plot shows the features extracted at different nodes of Cronus. Note that while the features
are pre-assigned in the AND-OR algorithm, it still has the ability to only use some of the
assigned features at each node. In general, all algorithms use more features as the depth
increases. However, compared to AND-OR, both Cronus and CSCC can cherry pick some
good but expensive features early-on to achieve high accuracy at a low cost. Some of the
expensive features (e.g., c = 100, 150) are extracted from the very first node in CSCC and
Cronus, whereas in AND-OR, they are only available at the fourth node. This ability is
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Figure 10: (Left) The pruned CSTC-tree generated from the Yahoo! Learning to Rank data
set. (Right) Jaccard similarity coefficient between classifiers within the learned
CSTC tree.

one of the reasons that CSCC and Cronus achieve better performance over existing cascade
algorithms.

6.5 Input Space Partition

CSTC has the ability to split the input space and learn more specialized classifiers sitting
deeper in the tree. Figure 10 (left) shows a pruned CSTC tree (λ= 4) for the LTR data
set. The number above each node indicates the average label of the testing inputs passing
through that node. We can observe that different branches aim at different parts of the
input domain. In general, the upper branches focus on correctly classifying higher-ranked
documents, while the lower branches target low-rank documents. Figure 10 (right) shows the
Jaccard matrix of the leaf classifiers (v3, v4, v5, v6, v14) from this CSTC tree. The number
in field i, j indicates the fraction of shared features between vi and vj . The matrix shows
a clear trend that the Jaccard coefficients decrease monotonically away from the diagonal.
This indicates that classifiers share fewer features in common if their average labels are
further apart—the most different classifiers v3 and v14 have only 64% of their features
in common—and validates that classifiers in the CSTC tree extract different features in
different regions of the tree.
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6.6 CSTC Sensitivity

Recall the CSTC objective function with non-linear classifiers,
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In order to judge the effect of different terms in the cost-sensitive regularization we ex-
periment with removing the CART evaluation cost penalty (or simply ‘evaluation cost’)
and/or the feature cost penalty. Figure 11 (Left) shows the performance of CSTC and the
less cost-sensitive variants, after removing one or both of the penalty terms, on the Yahoo!
LTR data set. As we suspected, the feature cost term seems to contribute most to the
performance of CSTC. Indeed, only taking into account evaluation cost severely impairs
the model. Without considering cost, CSTC seems to overfit even though the remaining
l1-regularization prevents the model from extracting all possible features.
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Figure 11: Two plots showing the sensitivity of CSTC to different cost regularization and
hyperparameters. Left: The test ranking accuracy (NDCG@5) and cost of differ-
ent CSTC cost-sensitive variants. Right: The performance of CSTC for different
values of hyperparameter ρ ∈ [0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5].

We are also interested in judging the effect of the l1-regularization hyperparameter
ρ on the performance of CSTC. Figure 11 (Right) shows for λ = 1 different settings of
ρ ∈ [0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5] and the resulting change in cost and NDCG. The result
shows that varying ρ does follow the CSTC NDCG/cost trade-off for a little bit, however
ultimately leads to a reduction in accuracy. This supports our hypothesis that the cost
term is crucial to obtain low cost classifiers.

6.7 Cost-Sensitive MNIST

We created a cost-sensitive binary MNIST data set by first extracting all images of digits 3
and 8. We resized them to four different resolutions: 4× 4, 8× 8, 16× 16, and 28× 28 (the
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original size), and concatenated all features, resulting in d = 1120 features. We assigned
each feature a cost c = 1. To obtain a baseline error rate for the data set we trained a support
vector machine (SVM) with a radial basis function (RBF) kernel. To select hyperparameters
C (SVM cost) and γ (kernel width) we used 100 rounds of Bayesian optimization on a
validation set (we found C = 753.1768, γ = 0.0198). An RBF-SVM trained with these
hyperparameters achieves a test error of 0.005 for cost c = 1120. Figure 12 shows error
versus cost for different values of the trade-off parameter λ. We note that CSTC smoothly
trades off feature cost for error, quickly reducing error initially at small increases in cost.

Figure 13 shows the features extracted and trees built for different values of λ for the
cost-sensitive MNIST data set. For each value, we show the paths of one randomly selected
3-instance (lower paths) and one 8-instance (upper paths). For each node in each path we
show the features extracted at each of the four resolutions in boxes (red indicates a feature
was not extracted). In general, as λ is decreased, more features are extracted. Additionally,
for a single λ, nodes along a path tend to use the same features. Finally, even when the
algorithm is restricted to use very little cost (i.e., the λ1 tree) it is still able to find features
that distinguish the classes in the data set, sending the 3 and 8-instances along different
paths in the tree.

6.8 CSTC Criterion

CSTC implicitly assumes that similarly-labeled inputs can be classified using similar features
by sending instances with different predictions to different classifiers. Since not all data sets
have such a property, we propose a simple test which indicates if a data set satisfies this
assumption. We train binary classifiers with l1-regularization for neighboring pairs of labels.
As an example, the LTR data set contains five labels {0, 1, 2, 3, 4}, so we train four binary
classifiers, (0 vs. 1, 1 vs. 2, etc.). We then compute the Jaccard coefficient matrix J between
the sparse (because of the l1-regularizer) feature vectors β of all classifiers, where an element
Jij indicates the percentage of overlapping features selected by classifiers i and j. Figure 14
shows this Jaccard matrix on the LTR data set. The figure shows a clear trend that the
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Jaccard coefficients decrease monotonically away from the diagonal. This indicates that
classifiers share fewer features in common if the average label of their training data sets are
further apart—a good indication that on this data set CSTC will perform well.

7. Related Work

In the following we review different methods for budgeting the computational cost during
test-time starting with simply reducing the feature space via l1-regularization up to recent
work in budgeted learning.

7.1 l1 Norm Regularization

A related approach to control test-time cost is feature selection with l1 norm regulariza-
tion (Efron et al., 2004),

min
β
`(H(x;β),y) + λ|β|,

where λ ≥ 0 controls the magnitude of regularization. The l1-norm regularization results in
a sparse feature set (Schölkopf and Smola, 2001), and can significantly reduce the feature
cost during test-time (as unused features are never computed). Individual feature cost can
be incorporated with feature specific regularization trade-offs, λα. The downside of this
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indicates that classifiers share fewer features in common if the average label of
their training data sets are further apart—an indication that CSTC will perform
well.

approach is that it extracts a feature for all inputs or none, which makes it uncompetitive
with more flexible cascade or tree models.

7.2 Feature Selection

Another approach, extending l1-regularization, is to select features using some external
criterion that naturally limits the number of features used. Cesa-Bianchi et al. (2011)
construct a linear classifier given a budget by selecting one instance at a time, then using
the current parameters to select a useful feature. This process is repeated until the budget
is met. Globerson and Roweis (2006) formulate feature selection as an adversarial game
and use minimax to develop a worst-case strategy, assuming feature removal at test-time.
These approaches, however, are unaware of the test-time cost in (3), and fail to pick the
optimal feature set that best trades-off loss and cost. Dredze et al. (2007) gets closer to
directly balancing this trade-off by combining the cost to select a feature with the mutual
information of that feature to build a decision tree that reduces the feature extraction
cost. This work, though, does not directly minimize the total test-time cost vs. accuracy
trade-off of the classifier. Most recently, Xu et al. (2013b) proposed to learn a new feature
representation entirely using selected features.

7.3 Linear Cascades

Grubb and Bagnell (2012) and Xu et al. (2012) focus on training a classifier that explicitly
trades-off the test-time cost with the loss. Grubb and Bagnell (2012) introduce SpeedBoost,
a generalization of functional gradient descent for anytime predictions (Zilberstein, 1996),
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which incorporates the prediction cost during training. The resulting algorithms obtain
good approximations at very low cost and refine their predictions if more resources are
available. Both algorithms learn classifier cascades that schedule the computational budget
and can terminate prematurely if easy inputs reach confident predictions early, to save
overall CPU budget for more difficult inputs. This schedule is identical for all inputs,
whereas CSTC decides to send inputs along different paths within the tree of classifiers to
potentially extract fundamentally different features.

Based on the earlier observation that not all inputs require the same amount of com-
putation to obtain a confident prediction, there is much previous work that addresses this
by building classifier cascades (mostly for binary classification) (Viola and Jones, 2004;
Dundar and Bi, 2007; Lefakis and Fleuret, 2010; Saberian and Vasconcelos, 2010; Pujara
et al., 2011; Chen et al., 2012; Reyzin, 2011; Trapeznikov et al., 2013b). They chain several
classifiers into a sequence of stages. Each classifier can either early-exit inputs (predicting
them), or pass them on to the next stage. This decision is made based on the prediction
of each instance. Different from CSCC, these algorithms typically do not take into account
feature cost and implement more ad hoc rules to trade-off accuracy and cost.

7.4 Dynamic Feature Selection During Test-Time

For learning tasks with balanced classes and specialized features, the linear cascade model
is less well-suited. Because all inputs follow exactly the same linear path, it cannot capture
the scenario in which different subsets of inputs require different expert features. Chai
et al. (2004) introduce the value of unextracted features, where the value of a feature is the
increase (gain) in expected classification accuracy minus the cost of including that feature.
During test-time, each iteration, their algorithm picks the feature that has the highest
value and retrains a classifier with the new feature. The algorithm stops when there is no
increase in expected classification rate, or all features are included. Because they employ
a naive Bayes classifier, retraining incurs very little cost. Similarly, Gao and Koller (2011)
use locally weighted regression during test-time to predict the information gain of unknown
features.

Most recently, Karayev et al. (2012) use reinforcement learning during test-time to dy-
namically select object detectors for a particular image. He et al. (2013) use imitation
learning to select instance-specific features for graph-based dependency parsing. Our ap-
proach shares the same idea that different inputs require different features. However, instead
of learning the best feature for each input during test-time, which introduces an additional
cost, we learn and fix a tree structure in training. Each branch of the tree only handles
a subset of the input space and, as such, the classifiers in a given branch become special-
ized for those inputs. Moreover, because we learn a fixed tree structure, it has a test-time
complexity that is constant with respect to the training set size.

7.5 Budgeted Tree-Structured Classifiers

Concurrently, there has been work (Deng et al., 2011) to speed up the training and evalu-
ation of tree-structured classifiers (specifically label trees: Bengio et al., 2010), by avoiding
many binary one-vs-all classifier evaluations. In many real world data sets the test-time cost
is largely composed of feature extraction time and so our aim is different from their work.
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Another model (Beygelzimer et al., 2009) learns a tree of classifiers online for estimating the
conditional probability of an input label. Their aim is also different from ours as they only
consider reducing the training time necessary for the estimation problem. Goetschalckx and
Driessens also introduces parsimonious linear model tree to control test-time cost. Possibly
most similar to our work is Busa-Fekete et al. (2012), who apply a Markov decision process
to learn a directed acyclic graph. At each step, they select features for different instances.
Although similar in motivation, their algorithmic framework is very different and can be
regarded complementary to ours.

It is worth mentioning that, although Hierarchical Mixture of Experts (HME) (Jordan
and Jacobs, 1994) also builds tree-structured classifiers, it does not consider reducing the
test-time cost and thus results in fundamentally different models. In contrast, we train
each classifier with the test-time cost in mind and each test input only traverses a single
path from the root down to a terminal element, accumulating path-specific costs. In HME,
all test inputs traverse all paths and all leaf-classifiers contribute to the final prediction,
incurring the same cost for all test inputs.

8. Conclusions

In this paper, we systematically investigate the trade off between test-time CPU cost and
accuracy in real-world applications. We formulate this trade off mathematically for a tree
of classifiers and relax it into a well-behaved optimization problem. Our algorithm, Cost-
Sensitive Tree of Classifiers (CSTC), partitions the input space into sub-regions and identi-
fies the most cost-effective features for each one of these regions—allowing it to match the
high accuracy of the state-of-the-art at a small fraction of the cost. This cost function can
be minimized while learning the parameters of all classifiers in the tree jointly.

As the use of machine learning algorithms becomes more and more wide spread, ad-
dressing the CPU test-time cost becomes a problem of ever increasing importance. CSTC
is one solution but there are still many unanswered questions. Future work will investi-
gate learning theoretical guarantees for test-time budgeted learning, worst-case scenarios
(in contrast to average cost), other learning frameworks (e.g. , SVM classifiers: Cortes and
Vapnik, 1995) and the incorporation of hardware architectures constraints (e.g. , clusters,
GPUs and shared memory machines). We consider the principled approach of CSTC an
important step towards the ultimate goal of fully integrating test-time budgets into machine
learning.
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Abstract

Particle Markov chain Monte Carlo (PMCMC) is a systematic way of combining the two
main tools used for Monte Carlo statistical inference: sequential Monte Carlo (SMC) and
Markov chain Monte Carlo (MCMC). We present a new PMCMC algorithm that we refer
to as particle Gibbs with ancestor sampling (PGAS). PGAS provides the data analyst
with an off-the-shelf class of Markov kernels that can be used to simulate, for instance,
the typically high-dimensional and highly autocorrelated state trajectory in a state-space
model. The ancestor sampling procedure enables fast mixing of the PGAS kernel even
when using seemingly few particles in the underlying SMC sampler. This is important
as it can significantly reduce the computational burden that is typically associated with
using SMC. PGAS is conceptually similar to the existing PG with backward simulation
(PGBS) procedure. Instead of using separate forward and backward sweeps as in PGBS,
however, we achieve the same effect in a single forward sweep. This makes PGAS well
suited for addressing inference problems not only in state-space models, but also in models
with more complex dependencies, such as non-Markovian, Bayesian nonparametric, and
general probabilistic graphical models.

Keywords: particle Markov chain Monte Carlo, sequential Monte Carlo, Bayesian infer-
ence, non-Markovian models, state-space models

1. Introduction

Monte Carlo methods are one of the standard tools for inference in statistical models as
they, among other things, provide a systematic approach to the problem of computing
Bayesian posterior probabilities. Sequential Monte Carlo (SMC, see, e.g., Doucet and Jo-
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hansen, 2011; Del Moral et al., 2006) and Markov chain Monte Carlo (MCMC, see, e.g.,
Robert and Casella, 2004; Liu, 2001) methods in particular have found application to a wide
range of data analysis problems involving complex, high-dimensional models. These include
state-space models (SSMs) which are used in the context of time series and dynamical sys-
tems modeling in a wide range of scientific fields. The strong assumptions of linearity and
Gaussianity that were originally invoked for SSMs have indeed been weakened by decades
of research on SMC and MCMC. These methods have not, however, led to a substan-
tial weakening of a further strong assumption, that of Markovianity. It remains a major
challenge to develop efficient inference algorithms for models containing a latent stochastic
process which, in contrast with the state process in an SSM, is non-Markovian. Such non-
Markovian latent variable models arise in various settings, either from direct modeling or
via a transformation or marginalization of an SSM. We discuss this further in Section 6;
see also Lindsten and Schön (2013, Section 4).

In this paper we present a new tool in the family of Monte Carlo methods which is par-
ticularly useful for inference in SSMs and, importantly, in non-Markovian latent variable
models. However, the proposed method is by no means limited to these model classes. We
work within the framework of particle MCMC (PMCMC, Andrieu et al., 2010) which is
a systematic way of combining SMC and MCMC, exploiting the strengths of both tech-
niques. More specifically, PMCMC samplers make use of SMC to construct efficient, high-
dimensional MCMC kernels. These kernels can then be used as off-the-shelf components
in MCMC algorithms and other inference strategies relying on Markov kernels. PMCMC
has in a relatively short period of time found many applications in areas such as hydrology
(Vrugt et al., 2013), finance (Pitt et al., 2012), systems biology (Golightly and Wilkinson,
2011), and epidemiology (Rasmussen et al., 2011), to mention a few.

Our method builds on the particle Gibbs (PG) sampler proposed by Andrieu et al.
(2010). In PG, the aforementioned Markov kernel is constructed by running an SMC
sampler in which one particle trajectory is set deterministically to a reference trajectory
that is specified a priori. After a complete run of the SMC algorithm, a new trajectory
is obtained by selecting one of the particle trajectories with probabilities given by their
importance weights. The effect of the reference trajectory is that the resulting Markov
kernel leaves its target distribution invariant, regardless of the number of particles used in
the underlying SMC algorithm.

However, PG suffers from a serious drawback, which is that the mixing of the Markov
kernel can be very poor when there is path degeneracy in the underlying SMC sampler (Lind-
sten and Schön, 2013; Chopin and Singh, 2014). Unfortunately, path degeneracy is in-
evitable for high-dimensional problems, which significantly reduces the applicability of PG.
This problem has been addressed in the generic setting of SSMs by adding a backward sim-
ulation step to the PG sampler, yielding a method denoted as PG with backward simulation
(PGBS, Whiteley, 2010; Whiteley et al., 2010; Lindsten and Schön, 2012). It has been
found that this considerably improves mixing, making the method much more robust to a
small number of particles as well as growth in the size of the data (Lindsten and Schön,
2013; Chopin and Singh, 2014; Whiteley et al., 2010; Lindsten and Schön, 2012).

Unfortunately, however, the application of backward simulation is problematic for mod-
els with more intricate dependencies than in SSMs, such as non-Markovian latent variable
models. The reason is that we need to consider complete trajectories of the latent process
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during the backward simulation pass (see Section 6.2 for details). The method proposed in
this paper, which we refer to as particle Gibbs with ancestor sampling (PGAS), is geared
toward this issue. PGAS alleviates the problem with path degeneracy by modifying the
original PG kernel with a so-called ancestor sampling (AS) step, thereby achieving the
same effect as backward sampling, but without an explicit backward pass.

After giving some background on SMC in Section 2, the PGAS Markov kernel is con-
structed and analyzed theoretically in Sections 3 and 4, respectively. This extends the
preliminary work that we have previously published (Lindsten et al., 2012) with a more
straightforward construction, a more complete proof of invariance, and a new uniform er-
godicity result. We then show specifically how PGAS can be used for inference and learning
of SSMs and of non-Markovian latent variable models in Sections 5 and 6, respectively.
As part of our development, we also propose a truncation strategy specifically for non-
Markovian models. This is a generic method that is also applicable to PGBS, but, as we
show in a simulation study in Section 7, the effect of the truncation error is much less
severe for PGAS than for PGBS. Indeed, we obtain up to an order-of-magnitude increase
in accuracy in using PGAS when compared to PGBS in this study. We also evaluate PGAS
on a stochastic volatility SSM and on an epidemiological model. Finally, in Section 8 we
conclude and point out possible directions for future work.

2. Sequential Monte Carlo

Let γθ,t(x1:t), for t = 1, . . . , T , be a sequence of unnormalized densities1 on the measurable
space (Xt,X t), parameterized by θ ∈ Θ. Let γ̄θ,t(x1:t) be the corresponding normalized
probability densities:

γ̄θ,t(x1:t) =
γθ,t(x1:t)

Zθ,t
,

where Zθ,t =
∫
γθ,t(x1:t) dx1:t and where it is assumed that Zθ,t > 0, ∀θ ∈ Θ. For instance,

in the (important) special case of an SSM we have γ̄θ,t(x1:t) = pθ(x1:t | y1:t), γθ,t(x1:t) =
pθ(x1:t, y1:t), and Zθ,t = pθ(y1:t). We discuss this special case in more detail in Section 5.

To make inference about the latent variables x1:T , as well as to enable learning of
the model parameter θ, a useful approach is to construct a Monte Carlo algorithm to
draw samples from γ̄θ,T (x1:T ). The sequential nature of the problem suggests the use of
SMC methods; in particular, particle filters (PFs); see, e.g., Doucet and Johansen (2011);
Del Moral et al. (2006); Pitt and Shephard (1999).

We start by reviewing a standard SMC sampler, which will be used to construct the
PGAS algorithm in the consecutive section. We will refer to the index variable t as time,
but in general it might not have any temporal meaning. Let {xi1:t−1, w

i
t−1}Ni=1 be a weighted

particle system targeting γ̄θ,t−1(x1:t−1). That is, the weighted particles define an empirical
point-mass approximation of the target distribution given by

γ̂Nθ,t−1(dx1:t−1) =
N∑
i=1

wit−1∑
l w

l
t−1

δxi1:t−1
(dx1:t−1).

1. The dominating measure is denoted simply as dx1:t.
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This particle system is propagated to time t by sampling {ait, xit}Ni=1 independently, condi-
tionally on the particles generated up to time t− 1, from a proposal kernel,

Mθ,t(at, xt) =
watt−1∑
l w

l
t−1

rθ,t(xt | xat1:t−1). (1)

Note that Mθ,t depends on the complete particle system up to time t− 1, {xi1:t−1, w
i
t−1}Ni=1,

but for notational convenience we shall not make that dependence explicit. Here, ait is the
index of the ancestor particle of xit. In this formulation, the resampling step is implicit
and corresponds to sampling these ancestor indices. When we write xi1:t we refer to the
ancestral path of particle xit. That is, the particle trajectory is defined recursively as

xi1:t = (x
ait
1:t−1, x

i
t).

Once we have generated N ancestor indices and particles from the proposal kernel (1), the
particles are weighted according to wit = Wθ,t(x

i
1:t) where the weight function is given by

Wθ,t(x1:t) =
γθ,t(x1:t)

γθ,t−1(x1:t−1)rθ,t(xt | x1:t−1)
, (2)

for t ≥ 2. The procedure is initialized by sampling from a proposal density xi1 ∼ rθ,1(x1)
and assigning importance weights wi1 = Wθ,1(xi1) with Wθ,1(x1) = γθ,1(x1)/rθ,1(x1). The
SMC sampler is summarized in Algorithm 1.

Algorithm 1 Sequential Monte Carlo (each step is for i = 1, . . . , N)

1: Draw xi1 ∼ rθ,1(x1).
2: Set wi1 = Wθ,1(xi1).
3: for t = 2 to T do
4: Draw {ait, xit} ∼Mθ,t(at, xt).

5: Set xi1:t = (x
ait
1:t−1, x

i
t).

6: Set wit = Wθ,t(x
i
1:t).

7: end for

It is interesting to note that the joint law of all the random variables generated by
Algorithm 1 can be written down explicitly. Let

xt = {x1
t , . . . , x

N
t } and at = {a1

t , . . . , a
N
t },

refer to all the particles and ancestor indices, respectively, generated at time t of the
algorithm. It follows that the SMC sampler generates a collection of random variables
{x1:T ,a2:T } ∈ XNT ×{1, . . . , N}N(T−1). Furthermore, {ait, xit}Ni=1 are drawn independently
(conditionally on the particle system generated up to time t− 1) from the proposal kernel
Mθ,t, and similarly at time t = 1. Hence, the joint probability density function (with respect
to a natural product of dx and counting measure) of these variables is given by

ψθ(x1:T ,a2:T ) ,
N∏
i=1

rθ,1(xi1)

T∏
t=2

N∏
i=1

Mθ,t(a
i
t, x

i
t).
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3. The PGAS Kernel

We now turn to the construction of PGAS, a class of Markov kernels on the space of
trajectories (XT ,X T ). We will provide an algorithm for generating samples from these
Markov kernels, which are thus defined implicitly by the algorithm.

3.1 Particle Gibbs

Before stating the PGAS algorithm, we review the main ideas of the PG algorithm of
Andrieu et al. (2010) and we then turn to our proposed modification of this algorithm via
the introduction of an ancestor sampling step.

PG is based on an SMC sampler, akin to a standard PF, but with the difference that one
particle trajectory is specified a priori. This path, denoted as x′1:T = (x′1, . . . , x

′
T ), serves

as a reference trajectory. Informally, it can be thought of as guiding the simulated particles
to a relevant region of the state space. After a complete pass of the SMC algorithm, a
trajectory x?1:T is sampled from among the particle trajectories. That is, we draw x?1:T with
P(x?1:T = xi1:T ) ∝ wiT . This procedure thus maps x′1:T to a probability distribution on X T ,
implicitly defining a Markov kernel on (XT ,X T ).

In a standard PF, the samples {ait, xit} are drawn independently from the proposal kernel
(1) for i = 1, . . . , N . When sampling from the PG kernel, however, we condition on the
event that the reference trajectory x′1:T is retained throughout the sampling procedure. To
accomplish this, we sample according to (1) only for i = 1, . . . , N − 1. The Nth particle
and its ancestor index are then set deterministically as xNt = x′t and aNt = N , respectively.
This implies that after a complete pass of the algorithm, the Nth particle path coincides
with the reference trajectory, i.e., xN1:T = x′1:T .

The fact that x′1:T is used as a reference trajectory in the SMC sampler implies an
invariance property of the PG kernel which is of key relevance. More precisely, as shown by
Andrieu et al. (2010, Theorem 5), for any number of particles N ≥ 1 and for any θ ∈ Θ, the
PG kernel leaves the exact target distribution γ̄θ,T invariant. We return to this invariance
property below, when it is shown to hold also for the proposed PGAS kernel.

3.2 Ancestor Sampling

As noted above, the PG algorithm keeps the reference trajectory x′1:T intact throughout the
sampling procedure. While this results in a Markov kernel which leaves γ̄θ,T invariant, it
has been recognized that the mixing properties of this kernel can be very poor due to path
degeneracy (Lindsten and Schön, 2013; Chopin and Singh, 2014).

To address this fundamental problem we now turn to our new procedure, PGAS. The
idea is to sample a new value for the index variable aNt in an ancestor sampling step.
While this is a small modification of the algorithm, the improvement in mixing can be quite
considerable; see Section 3.3 and the numerical evaluation in Section 7. The AS step is
implemented as follows.

At time t ≥ 2, we consider the part of the reference trajectory x′t:T ranging from the
current time t to the final time point T . The task is to artificially assign a history to this
partial path. This is done by connecting x′t:T to one of the particles {xi1:t−1}Ni=1. Recall that
the ancestry of a particle is encoded via the corresponding ancestor index. Hence, we can
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connect the partial reference path to one of the particles {xi1:t−1}Ni=1 by assigning a value
to the variable aNt ∈ {1, . . . , N}. To do this, first we compute the weights

w̃it−1|T , w
i
t−1

γθ,T ((xi1:t−1, x
′
t:T ))

γθ,t−1(xi1:t−1)
(3)

for i = 1, . . . , N . Here, (xi1:t−1, x
′
t:T ) refers to the point in XT formed by concatenating the

two partial trajectories. Then, we sample aNt with P(aNt = i) ∝ w̃it−1|T . The expression
above can be understood as an application of Bayes’ theorem, where the importance weight
wit−1 is the prior probability of the particle xi1:t−1 and the ratio between the target densities
in (3) can be seen as the likelihood that x′t:T originated from xi1:t−1. A formal argument for
why (3) provides the correct AS distribution, in order to retain the invariance properties of
the kernel, is detailed in the proof of Theorem 1 in Section 4.

The sampling procedure outlined above is summarized in Algorithm 2 and the class of
PGAS kernels is formally defined below. Note that the only difference between PG and
PGAS is on line 8 of Algorithm 2 (where, for PG, we would simply set aNt = N). However,
as we shall see, the effect of this small modification on the mixing of the kernel is quite
significant.

Definition 1 (PGAS kernels). For any N ≥ 1 and any θ ∈ Θ, Algorithm 2 maps x′1:T

stochastically into x?1:T , thus implicitly defining a Markov kernel PNθ on (XT ,X T ). The
class of Markov kernels {PNθ : θ ∈ Θ}, indexed by N ≥ 1, is referred to as the PGAS class
of kernels.

Algorithm 2 PGAS Markov kernel

Input: Reference trajectory x′1:T ∈ XT and parameter θ ∈ Θ.
Output: Sample x?1:T ∼ PNθ (x′1:T , ·) from the PGAS Markov kernel.

1: Draw xi1 ∼ rθ,1(x1) for i = 1, . . . , N − 1.
2: Set xN1 = x′1.
3: Set wi1 = Wθ,1(xi1) for i = 1, . . . , N .
4: for t = 2 to T do
5: Draw {ait, xit} ∼Mθ,t(at, xt) for i = 1, . . . , N − 1.
6: Set xNt = x′t.
7: Compute {w̃it−1|T }

N
i=1 according to (3).

8: Draw aNt with P(aNt = i) ∝ w̃it−1|T .

9: Set xi1:t = (x
ait
1:t−1, x

i
t) for i = 1, . . . , N .

10: Set wit = Wθ,t(x
i
1:t) for i = 1, . . . , N .

11: end for
12: Draw k with P(k = i) ∝ wiT .
13: return x?1:T = xk1:T .

3.3 The Effect of Path Degeneracy on PG and on PGAS

We have argued that AS can considerably improve the mixing of PG. To illustrate this effect
and to provide an explanation of its cause, we consider a simple numerical example. Further
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Figure 1: Update rates for xt versus t ∈ {1, . . . , 400} for PG (left) and for PGAS (right).
The dashed lines correspond to the ideal rates (N − 1)/N . (This figure is best
viewed in color.)

empirical evaluation of PGAS is provided in Section 7. Consider the one-dimensional linear
Gaussian state-space (LGSS) model,

xt+1 = axt + vt, vt ∼ N (0, σ2
v),

yt = xt + et et ∼ N (0, σ2
e),

where the state process {xt}t≥1 is latent and observations are made only via the measure-
ment process {yt}t≥1. For simplicity, the parameters θ = (a, σv, σe) = (0.9, 0.32, 1) are
assumed to be known. A batch of T = 400 observations are simulated from the system.
Given these, we seek the joint smoothing density p(x1:T | y1:T ). To generate samples from
this density we employ both PG and PGAS with varying number of particles ranging from
N = 5 to N = 1 000. We simulate sample paths of length 1 000 for each algorithm. To
compare the mixing, we look at the update rate of xt versus t, which is defined as the
proportion of iterations where xt changes value. The results are reported in Figure 1, which
reveals that AS significantly increases the probability of updating xt for t far from T .

The poor update rates for PG is a manifestation of the well-known path degeneracy
problem of SMC samplers (see, e.g., Doucet and Johansen 2011). Consider the process
of sampling from the PG kernel for a fixed reference trajectory x′1:T . A particle system
generated by the PG algorithm (corresponding to Algorithm 2, but with line 8 replaced
with aNt = N) is shown in Figure 2 (left). For clarity of illustration, we have used a small
number of particles and time steps, N = 20 and T = 50, respectively. By construction,
the reference trajectory (shown by a thick blue line) is retained throughout the sampling
procedure. As a consequence, the particle system degenerates toward this trajectory which
implies that x?1:T (shown as a red line) to a large extent will be identical to x′1:T .

What is, perhaps, more surprising is that PGAS is so much more insensitive to the
degeneracy issue. To understand why this is the case, we analyze the procedure for sampling
from the PGAS kernel PNθ (x′1:T , ·) for the same reference trajectory x′1:T as above. The
particle system generated by Algorithm 2 (with AS) is shown in Figure 2 (right). The thick
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Figure 2: Particle systems generated by the PG algorithm (left) and by the PGAS algorithm
(right), for the same reference trajectory x′1:T (shown as a thick blue line in the left
panel, partly underneath the red line). The gray dots show the particle positions
and the thin black lines show the ancestral dependencies of the particles. The
extracted trajectory x?1:T is illustrated with a red line. In the right panel, AS
has the effect of breaking the reference trajectory into pieces, causing the particle
system to degenerate toward something different than x′1:T . (This figure is best
viewed in color.)

blue lines are again used to illustrate the reference particles, but now with updated ancestor

indices. That is, the blue line segments are drawn between x
aNt
t−1 and x′t for t ≥ 2. It can

be seen that the effect of AS is that, informally, the reference trajectory is broken into
pieces. It is worth pointing out that the particle system still collapses; AS does not prevent
path degeneracy. However, it causes the particle system to degenerate toward something
different than the reference trajectory. As a consequence, x?1:T (shown as a red line in the
figure) will with high probability be substantially different from x′1:T , enabling high update
rates and thereby much faster mixing.

4. Theoretical Justification

In this section we investigate the invariance and ergodicity properties of the PGAS kernel.

4.1 Stationary Distribution

We begin by stating a theorem, whose proof is provided later in this section, which shows
that the invariance property of PG is not violated by the AS step.

Theorem 1. For any N ≥ 1 and θ ∈ Θ, the PGAS kernel PNθ leaves γ̄θ,T invariant:

γ̄θ,T (B) =

∫
PNθ (x′1:T , B)γ̄θ,T (dx′1:T ), ∀B ∈ X T .
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An apparent difficulty in establishing this result is that it is not possible to write down
a simple, closed-form expression for PNθ . In fact, the PGAS kernel is given by

PNθ (x′1:T , B) = Eθ,x′1:T
[
1B(xk1:T )

]
, (4)

where 1B is the indicator function for the set B ∈ X T and where Eθ,x′1:T denotes expectation
with respect to all the random variables generated by Algorithm 2, i.e., all the particles
x1:T and ancestor indices a2:T , as well as the index k. Computing this expectation is not
possible in general. Instead of working directly with (4), however, we can adopt the strategy
employed by Andrieu et al. (2010). That is, we treat all the random variables generated by
Algorithm 2, {x1:T ,a2:T , k}, as auxiliary variables, thus avoiding an intractable integration.
In the following, it is convenient to view xNt as a random variable with distribution δx′t .

Recall that the particle trajectory xk1:T is the ancestral path of the particle xkT . That is,
we can write

xk1:T = xb1:T1:T , (xb11 , . . . , x
bT
T ),

where the indices b1:T are given recursively by the ancestor indices: bT = k and bt = a
bt+1

t+1 .

Let Ω , XNT × {1, . . . , N}N(T−1)+1 be the space of all random variables generated by
Algorithm 2. Following Andrieu et al. (2010), we then define a probability density function
φθ : Ω 7→ R as follows:

φθ(x1:T ,a2:T , k) = φθ(x
b1:T
1:T , b1:T )φθ(x

−b1:T
1:T ,a−b2:T2:T | xb1:T1:T , b1:T )

,
γ̄θ,T (xb1:T1:T )

NT

︸ ︷︷ ︸
marginal

N∏
i=1
i 6=b1

rθ,1(xi1)
T∏
t=2

N∏
i=1
i 6=bt

Mθ,t(a
i
t, x

i
t)

︸ ︷︷ ︸
conditional

, (5)

where we have introduced the notation

x−it = {x1
t , . . . , x

i−1
t , xi+1

t , . . . , xNt }, x−b1:T1:T = {x−b11 , . . . , x−bTT },

and similarly for the ancestor indices. By construction, φθ is nonnegative and integrates to
one, i.e., φθ is indeed a probability density function on Ω. We refer to this density as the
extended target density.

The factorization into a marginal and a conditional density is intended to reveal some
of the structure inherent in the extended target density. In particular, the marginal density
of the variables {xb1:T1:T , b1:T } is defined to be equal to the original target density γ̄θ,T (xb1:T1:T ),
up to a factor N−T corresponding to a uniform distribution over the index variables b1:T .
This has the important implication that if {x1:T ,a2:T , k} are distributed according to φθ,
then, by construction, the marginal distribution of xb1:T1:T is γ̄θ,T .

By constructing an MCMC kernel with invariant distribution φθ, we will thus obtain
a kernel with invariant distribution γ̄θ,T (the PGAS kernel) as a byproduct. To prove
Theorem 1 we will reinterpret all the steps of the PGAS algorithm as partially collapsed
Gibbs steps for φθ. The meaning of partial collapsing will be made precise in the proof

2153



Lindsten, Jordan and Schön

of Lemma 2 below, but basically it refers to the process of marginalizing out some of the
variables of the model in the individual steps of the Gibbs sampler. This is done in such
a way that it does not violate the invariance property of the Gibbs kernel, i.e., each such
Gibbs step will leave the extended target distribution invariant. As a consequence, the
invariance property of the PGAS kernel follows. First we show that the PGAS algorithm
in fact implements the following sequence of partially collapsed Gibbs steps for φθ.

Procedure 1 (Instrumental reformulation of PGAS). Given x
′,b′1:T
1:T ∈ XT and b′1:T ∈

{1, . . . , N}T :

(i) Draw x
−b′1
1 ∼ φθ( · | x

′,b′1:T
1:T , b′1:T ) and, for t = 2 to T , draw:

{x−btt ,a−btt } ∼ φθ( · | x
−b′1:t−1

1:t−1 ,a2:t−1, x
′,b′1:T
1:T , b′t−1:T ),

abtt ∼ φθ( · | x
−b′1:t−1

1:t−1 ,a2:t−1, x
′,b′1:T
1:T , b′t:T ),

(ii) Draw k ∼ φθ( · | x−b1:T1:T ,a2:T , x
′,b′1:T
1:T ).

Lemma 1. Algorithm 2 is equivalent to the partially collapsed Gibbs sampler of Procedure 1,

conditionally on x
′,b′1:T
1:T = x′1:T and b′1:T = (N, . . . , N).

Proof. From (5) we have, by construction,

φθ(x
−b1:T
1:T ,a−b2:T2:T | xb1:T1:T , b1:T ) =

N∏
i=1
i 6=b1

rθ,1(xi1)
T∏
t=2

N∏
i=1
i 6=bt

Mθ,t(a
i
t, x

i
t).

By marginalizing this expression over {x−bt+1:T

t+1:T ,a
−bt+1:T

t+1:T } we get

φθ(x
−b1:t
1:t ,a−b2:t2:t | xb1:T1:T , b1:T ) =

N∏
i=1
i 6=b1

rθ,1(xi1)

t∏
s=2

N∏
i=1
i 6=bs

Mθ,s(a
i
s, x

i
s),

It follows that

φθ(x
−b1
1 | xb1:T1:T , b1:T ) =

N∏
i=1
i 6=b1

rθ,1(xi1), (6a)

and, for t = 2, . . . , T ,

φθ(x
−bt
t ,a−btt | x−b1:t−1

1:t−1 ,a
−b2:t−1

2:t−1 , xb1:T1:T , b1:T )

=
φθ(x

−b1:t
1:t ,a−b2:t2:t | xb1:T1:T , b1:T )

φθ(x
−b1:t−1

1:t−1 ,a
−b2:t−1

2:t−1 | xb1:T1:T , b1:T )
=

N∏
i=1
i 6=bt

Mθ,t(a
i
t, x

i
t). (6b)

Hence, we can sample from (6a) and (6b) by drawing xi1 ∼ rθ,1(·) for i ∈ {1, . . . , N} \ b1
and {ait, xit} ∼ Mθ,t(·) for i ∈ {1, . . . , N} \ bt, respectively. Consequently, with the choice
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bt = N for t = 1, . . . , T , the initialization at line 1 and the particle propagation at line 5
of Algorithm 2 correspond to sampling from (6a) and (6b), respectively.

Next, we consider the AS step. Recall that abtt identifies to bt−1. We can thus write

φθ(a
bt
t | x1:t−1,a2:t−1, x

bt:T
t:T , bt:T ) ∝ φθ(x1:t−1,a2:t−1, x

bt:T
t:T , bt−1:T )

= φθ(x
b1:T
1:T , b1:T )φθ(x

−b1:t−1

1:t−1 ,a
−b2:t−1

2:t−1 | xb1:T1:T , b1:T )

=
γθ,T (xb1:T1:T )

γθ,t−1(x
b1:t−1

1:t−1 )

γθ,t−1(x
b1:t−1

1:t−1 )

Zθ,TNT

N∏
i=1
i 6=b1

rθ,1(xi1)

t−1∏
s=2

N∏
i=1
i 6=bs

Mθ,s(a
i
s, x

i
s). (7)

To simplify this expression, note first that we can write

γθ,t−1(x1:t−1) = γθ,1(x1)
t−1∏
s=2

γθ,s(x1:s)

γθ,s−1(x1:s−1)
.

By using the definition of the weight function (2), this expression can be expanded according
to

γθ,t−1(x1:t−1) = Wθ,1(x1)rθ,1(x1)
t−1∏
s=2

Wθ,s(x1:s)rθ,s(xs | x1:s−1).

Plugging the trajectory x
b1:t−1

1:t−1 into the above expression, we get

γθ,t−1(x
b1:t−1

1:t−1 ) = wb11 rθ,1(xb11 )

t−1∏
s=2

wbss rθ,s(x
bs
s | x

b1:s−1

1:s−1 )

=

(
t−1∏
s=1

N∑
l=1

wls

)
wb11∑
l w

l
1

rθ,1(xb11 )

t−1∏
s=2

wbss∑
l w

l
s

rθ,s(x
bs
s | x

b1:s−1

1:s−1 )

=
w
bt−1

t−1∑
l w

l
t−1

(
t−1∏
s=1

N∑
l=1

wls

)
rθ,1(xb11 )

t−1∏
s=2

Mθ,s(a
bs
s , x

bs
s ). (8)

Expanding the numerator in (7) according to (8) results in

φθ(a
bt
t | x1:t−1,a2:t−1, x

bt:T
t:T , bt:T )

∝
γθ,T (xb1:T1:T )

γθ,t−1(x
b1:t−1

1:t−1 )

w
bt−1

t−1∑
l w

l
t−1

(∏t−1
s=1

∑
l w

l
s

)
Zθ,TNT

N∏
i=1

rθ,1(xi1)

t−1∏
s=2

N∏
i=1

Mθ,s(a
i
s, x

i
s)

∝ wbt−1

t−1

γθ,T ((x
b1:t−1

1:t−1 , x
bt:T
t:T ))

γθ,t−1(x
b1:t−1

1:t−1 )
. (9)

Consequently, with bt = N and xbt:Tt:T = x′t:T , sampling from (9) corresponds to the AS step
of line 8 of Algorithm 2. Finally, analogously to (9), it follows that φθ(k | x1:T ,a2:T ) ∝ wkT ,
which corresponds to line 12 of Algorithm 2. �
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Next, we show that Procedure 1 leaves φθ invariant. This is done by concluding that the
procedure is a properly collapsed Gibbs sampler; see Dyk and Park (2008). Marginalization,
or collapsing, is commonly used within Gibbs sampling to improve the mixing and/or to
simplify the sampling procedure. However, it is crucial that the collapsing is carried out in
the correct order to respect the dependencies between the variables of the model.

Lemma 2. The Gibbs sampler of Procedure 1 is properly collapsed and thus leaves φθ
invariant.

Proof. Consider the following sequence of complete Gibbs steps:

(i) Draw {x−b
′
1

1 ,x
−b′2:T
2:T ,a

−b′2:T
2:T } ∼ φθ( · | x

′,b′1:T
1:T , b′1:T ) and, for t = 2 to T , draw:

{x−btt ,at,x
−b′t+1:T

t+1:T ,a
−b′t+1:T

t+1:T } ∼ φθ( · | x
−b′1:t−1

1:t−1 ,a2:t−1, x
′,b′1:T
1:T , b′t:T ).

(ii) Draw k ∼ φθ( · | x
−b′1:T
1:T ,a2:T , x

′,b′1:T
1:T ).

In the above, all the samples are drawn from conditionals under the full joint density
φθ(x1:T ,a2:T , k). Hence, it is clear that the above procedure will leave φθ invariant. Note
that some of the variables above have been marked by an underline. It can be seen that
these variables are in fact never conditioned upon in any subsequent step of the procedure.
That is, the underlined variables are never used. Therefore, to obtain a valid sampler
it is sufficient to sample all the non-underlined variables from their respective marginals.
Furthermore, from (6b) it can be seen that {x−btt ,a−btt } are conditionally independent of abtt ,
i.e., it follows that the complete Gibbs sweep above is equivalent to the partially collapsed
Gibbs sweep of Procedure 1. Hence, the Gibbs sampler is properly collapsed and it will
therefore leave φθ invariant. �

Proof (Theorem 1). Let L(dx
−b′1:T
1:T , da2:T , dk | x′1:T , b

′
1:T ) denote the law of the random

variables generated by Procedure 1, conditionally on x
′,b′1:T
1:T = x′1:T and on b′1:T . Using

Lemma 2 and recalling that φθ(x
b1:T
1:T , b1:T ) = N−T γ̄θ,T (xb1:T1:T ) we have

γ̄θ,T (B) =

∫
1B(xk1:T )L(dx

−b′1:T
1:T , da2:T , dk | x′1:T , b

′
1:T )

× δx′1(dx
b′1
1 ) · · · δx′T (dx

b′T
T )

γ̄θ,T (x′1:T )

NT
dx′1:Tdb

′
1:T , ∀B ∈ X T . (10)

By Lemma 1 we know that Algorithm 2, which implicitly defines PNθ , is equivalent to

Procedure 1 conditionally on x
′,b′1:T
1:T = x′1:T and b′1:T = (N, . . . , N). That is to say,

PNθ (x′1:T , B) =

∫
1B(xk1:T )L(dx

−(N, ..., N)
1:T , da2:T , dk | x′1:T , (N, . . . , N))

× δx′1(dxN1 ) · · · δx′T (dxNT ),

However, the law of x?1:T in Algorithm 2 is invariant to permutations of the particle indices.
That is, it does not matter if we place the reference particles on the Nth positions, or on
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some other positions, when enumerating the particles.2 This implies that for any b′1:T ∈
{1, . . . , N}T ,

PNθ (x′1:T , B) =

∫
1B(xk1:T )L(dx

−b′1:T
1:T , da2:T , dk | x′1:T , b

′
1:T )δx′1(dx

b′1
1 ) · · · δx′T (dx

b′T
T ). (11)

Plugging (11) into (10) gives the desired result,

γ̄θ,T (B) =

∫
PNθ (x′1:T , B)γ̄θ,T (x′1:T )

∑
b′1:T

1

NT


︸ ︷︷ ︸

=1

dx′1:T , ∀B ∈ X T .

�

4.2 Ergodicity

To show ergodicity of the PGAS kernel we need to characterize the support of the target
and the proposal densities. Let,

Sθ,t = {x1:t ∈ Xt : γ̄θ,t(x1:t) > 0},
Qθ,t = {x1:t ∈ Xt : rθ,t(xt | x1:t−1)γ̄θ,t−1(x1:t−1) > 0},

with obvious modifications for t = 1. The following is a minimal assumption.

(A1) For any θ ∈ Θ and t ∈ {1, . . . , T} we have Sθt ⊆ Qθt .

Assumption (A1) basically states that the support of the proposal density should cover
the support of the target density. Ergodicity of PG under Assumption (A1) has been
established by Andrieu et al. (2010). The same argument can be applied also to PGAS.

Theorem 2 (Andrieu et al. (2010, Theorem 5)). Assume (A1). Then, for any N ≥ 2 and
θ ∈ Θ, PNθ is γ̄θ,T -irreducible and aperiodic. Consequently,

lim
n→∞

‖(PNθ )n(x′1:T , ·)− γ̄θ,T (·)‖TV = 0, γ̄θ,T -a.a. x′1:T .

To strengthen the ergodicity results for the PGAS kernel, we use a boundedness con-
dition for the importance weights, given in assumption (A2) below. Such a condition is
typical also in classical importance sampling and is, basically, a stronger version of assump-
tion (A1).

(A2) For any θ ∈ Θ and t ∈ {1, . . . , T}, there exists a constant κθ < ∞ such that
‖Wθ,t‖∞ ≤ κθ.

Theorem 3. Assume (A2). Then, for any N ≥ 2 and θ ∈ Θ, PNθ is uniformly ergodic.
That is, there exist constants Rθ <∞ and ρθ ∈ [0, 1) such that

‖(PNθ )n(x′1:T , ·)− γ̄θ,T (·)‖TV ≤ Rθρnθ , ∀x′1:T ∈ XT .

2. A formal proof of this statement is given for the PG sampler by Chopin and Singh (2014). The same
argument can be used also for PGAS.
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Proof. We show that PNθ satisfies a Doeblin condition,

PNθ (x′1:T , B) ≥ εθγ̄θ,T (B), ∀x′1:T ∈ XT ,∀B ∈ X T , (12)

for some constant εθ > 0. Uniform ergodicity then follows from Tierney (1994, Proposi-
tion 2). To prove (12) we use the representation of the PGAS kernel in (4),

PNθ (x′1:T , B) = Eθ,x′1:T
[
1B(xk1:T )

]
=

N∑
j=1

Eθ,x′1:T

[
wjT∑
l w

l
T

1B(xj1:T )

]

≥ 1

Nκθ

N−1∑
j=1

Eθ,x′1:T
[
wjT1B(xj1:T )

]
=
N − 1

Nκθ
Eθ,x′1:T

[
Wθ,T (x1

1:T )1B(x1
1:T )

]
. (13)

Here, the inequality follows from bounding the weights in the normalization by κθ and by
simply discarding the Nth term of the sum (which is clearly nonnegative). The last equality
follows from the fact that the particle trajectories {xi1:T }

N−1
i=1 are equally distributed under

Algorithm 2. Let hθ,t : Xt 7→ R+ and consider

Eθ,x′1:T
[
hθ,t(x

1
1:t)
]

= Eθ,x′1:T
[
Eθ,x′1:T

[
hθ,t(x

1
1:t) | x1:t−1,a2:t−1

]]
= Eθ,x′1:T

 N∑
j=1

∫
hθ,t((x

j
1:t−1, xt))

wjt−1∑
l w

l
t−1

rθ,t(xt | xj1:t−1) dxt


≥ N − 1

Nκθ
Eθ,x′1:T

[∫
hθ,t((x

1
1:t−1, xt))Wθ,t−1(x1

1:t−1)rθ,t(xt | x1
1:t−1) dxt

]
, (14)

where the inequality follows analogously to (13). Now, let

hθ,T (x1:T ) = Wθ,T (x1:T )1B(x1:T ),

hθ,t−1(x1:t−1) =

∫
hθ,t(x1:t)Wθ,t−1(x1:t−1)rθ,t(xt | x1:t−1) dxt, t ≤ T.

Then, by iteratively making use of (14) and changing the order of integration, we can bound
(13) according to(

N − 1

Nκθ

)−T
PNθ (x′1:T , B) ≥ Eθ,x′1:T

[
hθ,1(x1

1)
]

=

∫
Wθ,1(x1)rθ,1(x1)

T∏
t=2

(Wθ,t(x1:t)rθ,t(xt | x1:t−1))1B(x1:T ) dx1:T

=

∫
γθ,1(x1)

T∏
t=2

(
γθ,t(x1:t)

γθ,t−1(x1:t−1)

)
1B(x1:T ) dx1:T

=

∫
γθ,T (x1:T )1B(x1:T ) dx1:T = Zθ,T γ̄θ,T (B).

With N ≥ 2 and since Zθ,T > 0 the result follows. �
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5. PGAS for State-Space Models

SSMs comprise an important special case of the model class treated above. In this section,
we illustrate how PGAS can be used for inference and learning of these models.

5.1 Sampling from the Joint Smoothing Distribution with PGAS

Consider the (possibly) nonlinear/non-Gaussian SSM

xt+1 ∼ fθ(xt+1 | xt), (15a)

yt ∼ gθ(yt | xt), (15b)

and x1 ∼ µθ(x1), where θ ∈ Θ is a static parameter, xt is the latent state and yt is the
observation at time t, respectively. Given a batch of measurements y1:T , we wish to make
inferences about θ and/or about the latent states x1:T . In the subsequent section we will
provide both a Bayesian and a frequentist learning algorithm based on the PGAS kernel.
However, we start by discussing how to implement the PGAS algorithm for this specific
model.

For an SSM the target distribution of interest is typically the joint smoothing distri-
bution pθ(x1:T | y1:T ). Consequently, since pθ(x1:T | y1:T ) ∝ pθ(x1:T , y1:T ), the sequence of
unnormalized target densities is given by

γθ,t(x1:t) = pθ(x1:t, y1:t), t = 1, . . . , T. (16)

As we have previously discussed, the process of sampling from the PGAS kernel is similar to
running a PF. The only non-standard (and nontrivial) operation is the AS step. By plugging
the specific choice of unnormalized target densities (16) into the general expression for the
AS weights (3), we get

w̃it−1|T = wit−1

pθ((x
i
1:t−1, x

′
t:T ), y1:T )

p(xi1:t−1, y1:t−1)
= wit−1pθ(x

′
t:T , yt:T | xit−1) ∝ wit−1fθ(x

′
t | xit−1). (17)

This expression can be understood as an application of Bayes’ theorem. Recall that we
want to assign an ancestor at time t−1 to the reference particle x′t. The importance weight
wit−1 is the prior probability of the particle xit−1 and the factor fθ(x

′
t | xit−1) is the likelihood

of moving from xit−1 to x′t. The product of these two factors is thus proportional to the
posterior probability that x′t originated from xit−1, which gives us the AS probability.

Expression (17) can also be recognized as the backward sampling weights in a backward
simulator; see Godsill et al. (2004); Lindsten and Schön (2013). Consequently, the AS
step corresponds to a one-step backward simulation, which highlights the close relationship
between PGAS and PGBS for SSMs. The latter method is conceptually similar to PGAS,
but it makes use of an explicit backward simulation pass; see Whiteley (2010); Whiteley
et al. (2010) or Lindsten and Schön (2013, Section 5.4). We discuss this relationship in
more detail in Appendix A. In particular, we show that PGAS and PGBS are in fact
probabilistically equivalent under certain conditions when applied to SSMs. Note, however,
that this equivalence does not hold in general for models outside the class of SSMs. In
particular, for the class of non-Markovian models, discussed in the subsequent section, we
have found that PGAS and PGBS have quite different properties.
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For concreteness we provide a restatement of the PGAS algorithm, specifically for the
case of SSMs, in Algorithm 3. To highlight the similarities between PGAS and a standard
PF, we have chosen to present Algorithm 3 using a notation and nomenclature that is com-
mon in the particle filtering literature, but that differs slightly from our previous notation.
However, we emphasize that Algorithm 3 is completely equivalent to Algorithm 2 when the
target distributions are given by (16). Note that the computational cost of the AS step
is O(N) per time step, i.e., of the same order as the PF. Consequently, for an SSM, the
computational complexity of PGAS is the same as for PG, in total O(NT ).

Algorithm 3 PGAS Markov kernel for the joint smoothing distribution pθ(x1:T | y1:T )

Input: Reference trajectory x′1:T ∈ XT and parameter θ ∈ Θ.
Output: Sample x?1:T ∼ PNθ (x′1:T , ·) from the PGAS Markov kernel.

1: Draw xi1 ∼ rθ,1(x1 | y1) for i = 1, . . . , N − 1.
2: Set xN1 = x′1.
3: Set wi1 = gθ(y1 | xi1)µθ(x

i
1)/rθ,1(xi1 | y1) for i = 1, . . . , N .

4: for t = 2 to T do
/* Resampling and ancestor sampling */

5: Generate {x̃i1:t−1}
N−1
i=1 by sampling N − 1 times with replacement from {xi1:t−1}Ni=1

with probabilities proportional to the importance weights {wit−1}Ni=1.
6: Draw J with

P(J = i) =
wit−1fθ(x

′
t | xit−1)∑

l=1w
l
t−1fθ(x

′
t | xlt−1)

, i =1, . . . , N

and set x̃N1:t−1 = xJ1:t−1.

/* Particle propagation */
7: Simulate xit ∼ rθ,t(xt | x̃it−1, yt) for i = 1, . . . , N − 1.
8: Set xNt = x′t.
9: Set xi1:t = (x̃i1:t−1, x

i
t) for i = 1, . . . , N .

/* Weighting */
10: Set wit = gθ(yt | xit)fθ(xit | x̃it−1)/rθ,t(x

i
t | x̃it−1, yt) for i = 1, . . . , N .

11: end for
12: Draw k with P(k = i) ∝ wiT .
13: return x?1:T = xk1:T .

5.2 Learning Algorithms for State-Space Models

We now turn to the problem of learning the model parameter θ in the SSM (15), given a
batch of observations y1:T . Consider first the Bayesian setting where a prior distribution
π(θ) is assigned to θ. We seek the parameter posterior p(θ | y1:T ) or, more generally, the joint
state and parameter posterior p(θ, x1:T | y1:T ). Gibbs sampling can be used to simulate from
this distribution by sampling the state variables {xt} one at a time and the parameters θ
from their respective conditionals. However, it has been recognized that this can result in
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Algorithm 4 PGAS for Bayesian learning of SSMs

1: Set θ[0] and x1:T [0] arbitrarily.
2: for n ≥ 1 do
3: Draw x1:T [n] ∼ PNθ[n−1](x1:T [n− 1], ·). /* By running Algorithm 3 */

4: Draw θ[n] ∼ p(θ | x1:T [n], y1:T ).
5: end for

poor mixing, due to the often high autocorrelation of the state sequence. The PGAS kernel
offers a different approach, namely to sample the complete state trajectory x1:T in one
block. This can considerably improve the mixing of the sampler (de Jong and Shephard,
1995). Due to the invariance and ergodicity properties of the kernel (Theorems 1– 3), the
validity of the Gibbs sampler is not violated. We summarize the procedure in Algorithm 4.

PGAS is also useful for maximum-likelihood-based learning of SSMs. A popular strategy
for computing the maximum likelihood estimator

θ̂ML = arg max
θ∈Θ

log pθ(y1:T )

is to use the expectation maximization (EM) algorithm (Dempster et al., 1977; McLachlan
and Krishnan, 2008). EM is an iterative method, which maximizes log pθ(y1:T ) by iteratively
maximizing an auxiliary quantity: θ[n] = arg maxθ∈ΘQ(θ, θ[n− 1]), where

Q(θ, θ[n− 1]) =

∫
log pθ(x1:T , y1:T )pθ[n−1](x1:T | y1:T ) dx1:T .

When the above integral is intractable to compute, one can use a Monte Carlo approximation
or a stochastic approximation of the intermediate quantity, leading to the MCEM (Wei
and Tanner, 1990) and the SAEM (Delyon et al., 1999) algorithms, respectively. When
the underlying Monte Carlo simulation is computationally involved, SAEM is particularly
useful since it makes efficient use of the simulated values. The SAEM approximation of the
auxiliary quantity is given by

Q̂n(θ) = (1− αn)Q̂n−1(θ) + αn log pθ(x1:T [n], y1:T ), (18)

where αn is the step size and, in the vanilla form of SAEM, x1:T [n] is drawn from the joint
smoothing density pθ[n−1](x1:T | y1:T ). In practice, the stochastic approximation update
(18) is typically made on some sufficient statistic for the complete data log-likelihood; see
Delyon et al. (1999) for details. While the joint smoothing density is intractable for a
general nonlinear/non-Gaussian SSM, it has been recognized that it is sufficient to sample
from a uniformly ergodic Markov kernel, leaving the joint smoothing distribution invariant
(Benveniste et al., 1990; Andrieu et al., 2005). A practical approach is therefore to compute
the auxiliary quantity according to the stochastic approximation (18), but where x1:T [n]
is simulated from the PGAS kernel PNθ[n−1](x1:T [n − 1], ·). This particle SAEM algorithm,

previously presented by Lindsten (2013), is summarized in Algorithm 5.

6. Beyond State-Space Models

For SSMs, the Markovianity implies a simple expression for the AS weights, depending
only of the one-step transition density according to (17). For models with more intricate
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Algorithm 5 PGAS for frequentist learning of SSMs

1: Set θ[0] and x1:T [0] arbitrarily. Set Q̂0(θ) ≡ 0.
2: for n ≥ 1 do
3: Draw x1:T [n] ∼ PNθ[n−1](x1:T [n− 1], ·). /* By running Algorithm 3 */

4: Compute Q̂n(θ) according to (18).
5: Compute θ[n] = arg maxθ∈Θ Q̂n(θ).
6: if convergence criterion is met then
7: return θ[n].
8: end if
9: end for

dependencies between the latent variables, however, this is not the case and the general
expression (3) needs to be used. In this section we consider the computational aspects
of the AS step, first in a very general setting and then specifically for the class of non-
Markovian latent variable models.

6.1 Modifications and Mixed Strategies

The interpretation of the PGAS algorithm as a standard MCMC sampler on an extended
space opens up for straightforward modifications of the algorithm while still making sure
that it retains its desirable theoretical properties. In particular, for models where the
computation of the AS weights in (3) is costly—that is, when evaluating the unnormalized
joint target density γθ,T is computationally involved—it can be beneficial to modify the AS
step to reduce the overall computational cost of the algorithm. Let

ρ(i) =
w̃it−1|T∑N
l=1 w̃

l
t−1|T

, i = 1, . . . , N, (19)

denote the law of the ancestor index aNt , sampled at line 8 of Algorithm 2. From Lemma 1,
we know that this step of the algorithm in fact corresponds to a Gibbs step for the extended
target distribution (5). To retain the correct limiting distribution of the PGAS kernel, it is
therefore sufficient that aNt is sampled from a Markov kernel leaving (19) invariant (resulting
in a standard combination of MCMC kernels; see, e.g., Tierney 1994).

A simple modification is to carry out the AS step only for a fraction of the time steps.
For instance, we can generate the ancestor index aNt according to:{

With probability 1− η, set aNt = N ,

Otherwise, simulate aNt with P(aNt = i) = ρ(i),
(20)

where η ∈ [0, 1] is a user specified parameter, controlling the probability of executing the AS
step. This strategy results in a mix between PG and PGAS; for η = 0 we recover the original
PG algorithm and for η = 1 we obtain the basic PGAS algorithm. For complex models,
this modification can be quite useful. In fact, there is no immediate gain in changing the
ancestry of the reference trajectory as long as the particle trajectories have not degenerated.
That is, it is sufficient to carry out the AS step “once in a while” to obtain high update
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rates for the complete trajectory (cf. Figure 1 where we get high update rates for PG for
the last few time steps, even when using a small number of particles). We illustrate this
empirically in the simulation study in Section 7.3.

Another modification, that can be used either on its own or in conjunction with (20), is
to use MH to simulate from (19). Let q(i′ | i) be an MH proposal kernel on {1, . . . , N}. We
can thus propose a move for the ancestor index aNt , from N to i′, by simulating i′ ∼ q( · | N).
With probability

1 ∧
w̃i
′

t−1|T

w̃Nt−1|T

q(N | i′)
q(i′ | N)

(21)

the sample is accepted and we set aNt = i′, otherwise we keep the ancestry aNt = N . Using
this approach, we avoid computing the normalizing constant in (19), i.e., we only need to
evaluate the AS weights for the proposed values. This will reduce the computational cost of
the AS step by, roughly, a factor N which can be very useful whenever N is moderately large.
Since the variable aNt is discrete-valued, it is recommended to use a forced move proposal
in the spirit of Liu (1996). That is, q is constructed so that q(i | i) = 0, ∀i, ensuring that
the current state of the chain is not proposed anew, which would be a wasteful operation.

6.2 Non-Markovian Latent Variable Models

A very useful generalization of SSMs is the class of non-Markovian latent variable models,

xt+1 ∼ fθ(xt+1 | x1:t),

yt ∼ gθ(yt | x1:t).

Similarly to the SSM (15), this model is characterized by a latent process xt ∈ X and an
observed process yt ∈ Y. However, it does not share the conditional independence properties
that are central to SSMs. Instead, both the transition density fθ and the measurement
density gθ may depend on the entire past history of the latent process. Below we discuss
the AS step of the PGAS algorithm specifically for these non-Markovian models and derive a
truncation strategy for the AS weights. First, however, to motivate the present development
we review some application areas in which this type of models arise.

In Bayesian nonparametrics (Hjort et al., 2010) the latent random variables of the
classical Bayesian model are replaced by latent stochastic processes, which are typically
non-Markovian. This includes popular models based on the Dirichlet process, e.g., Teh et al.
(2006); Escobar and West (1995), and Gaussian process regression and classification models
(Rasmussen and Williams, 2006). These processes are also commonly used as components
in hierarchical Bayesian models, which then inherit their non-Markovianity. An example
is the Gaussian process SSM (Turner and Deisenroth, 2010; Frigola et al., 2013), a flexible
nonlinear dynamical systems model, for which PGAS has been successfully applied (Frigola
et al., 2013).

Another typical source of non-Markovianity is by marginalization over part of the state
vector, i.e., Rao-Blackwellization, (Chen and Liu, 2000; Whiteley et al., 2010; Lindsten et al.,
2013) or by a change of variables in an SSM. This type of operation typically results in a
loss of the Markov property, but can, however, be very useful. For instance, by expressing
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an SSM in terms of its “innovations” (i.e., the driving noise of the state process), it is
possible to use backward and ancestor sampling in models for which the state transition
density is not available. This includes many models for which the transition is implicitly
given by a simulator (Gander and Stephens, 2007; Fearnhead et al., 2008; Golightly and
Wilkinson, 2008; Murray et al., 2013) or degenerate models where the transition density
does not even exist (Ristic et al., 2004; Gustafsson et al., 2002). We illustrate these ideas
in Section 7. See also Lindsten and Schön (2013, Section 4) for a more in-depth discussion
on reformulations of SSMs as non-Markovian models.

Finally, it is worth to point out that many statistical models which are not sequential
“by nature” can be conveniently viewed as non-Markovian latent variable models. This
includes, among others, probabilistic graphical models such as Markov random fields; see
Lindsten and Schön (2013, Section 4).

To employ PGAS, or in fact any backward-simulation-based method (see Lindsten and
Schön 2013), we need to evaluate the AS weights (3) which depend on the ratio

γθ,T (x1:T )

γθ,t−1(x1:t−1)
=

pθ(x1:T , y1:T )

pθ(x1:t−1, y1:t−1)
=

T∏
s=t

gθ(ys | x1:s)fθ(xs | x1:s−1). (22)

Assuming that gθ and fθ can both be evaluated in constant time, the computational cost
of computing the backward sampling weights (3) will thus be O(NT ). This implies that
the overall computational complexity of the PGAS kernel will scale quadratically with T
which can be prohibitive in some cases. The general strategies discussed in Section 6.1, i.e.,
using AS sporadically and/or using MH within PGAS, can of course be used to mitigate
this issue. Nonetheless, the AS step can easily become the computational bottleneck when
applying the PGAS algorithm to a non-Markovian model.

To make further progress we consider non-Markovian models in which there is a decay
in the influence of the past on the present, akin to that in Markovian models but without
the strong Markovian assumption. Hence, it is possible to obtain a useful approximation of
the AS weights by truncating the product (22) to a smaller number of factors, say `. We
can thus replace (3) with the approximation

w̃`,it−1|T , w
i
t−1

γθ,t−1+`((x
i
1:t−1, x

′
t:t−1+`))

γθ,t−1(xi1:t−1)

= wit−1

t−1+`∏
s=t

gθ(ys | xi1:t−1, x
′
t:s)fθ(x

′
s | xi1:t−1, x

′
t:s−1). (23)

Let ρ̂`(k) be the probability distribution defined by the truncated AS weights (23), analo-
gously to (19). The following proposition formalizes our assumption.

Proposition 1. Let hs(k) = gθ(yt−1+s | xk1:t−1, x
′
t:t−1+s)fθ(x

′
t−1+s | xk1:t−1, x

′
t:t−1+s) and

assume that maxk,l (hs(k)/hs(l)− 1) ≤ A exp(−cs), for some constants A and c > 0. Then,
DKLD(ρ‖ρ̂`) ≤ C exp(−c`) for some constant C, where DKLD is the Kullback-Leibler (KL)
divergence.

Proof. See Appendix B. �
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Figure 3: Probability under ρ̂` as a function of the truncation level ` for two different
systems; one 5-dimensional (left) and one 20-dimensional (right). The N = 5
dotted lines correspond to ρ̂`(k) for k ∈ {1, . . . , N}, respectively (N.B. two of
the lines overlap in the left figure). The dashed vertical lines show the value of
the truncation level `adpt., resulting from the adaption scheme with υ = 0.1 and
τ = 10−2. See Section 7.2 for details on the experiments.

Using the approximation given by (23), the AS weights can be computed in constant
time within the PGAS framework. The resulting approximation can be quite useful; indeed,
in our experiments we have seen that even ` = 1 can lead to very accurate inferential results.
In general, however, it will not be known a priori how to set the truncation level `. To
address this problem, we propose to use an adaptive strategy. Since the approximative
weights (23) can be evaluated sequentially, the idea is to start with ` = 1 and then increase
` until the weights have, in some sense, converged. In particular, in our experimental work,
we have used the following simple approach.

Let ε` = DTV(ρ̂`, ρ̂`−1) be the total variation (TV) distance between the approximative
AS distributions for two consecutive truncation levels. We then compute the exponentially
decaying moving average of the sequence ε`, with forgetting factor υ ∈ [0, 1], and stop when
this falls below some threshold τ ∈ [0, 1]. This adaption scheme removes the requirement
to specify ` directly, but instead introduces the design parameters υ and τ . However, these
parameters are much easier to reason about—a small value for υ gives a rapid response to
changes in ε` whereas a large value gives a more conservative stopping rule, improving the
accuracy of the approximation at the cost of higher computational complexity. A similar
tradeoff holds for the threshold τ as well. Most importantly, we have found that the same
values for υ and τ can be used for a wide range of models, with very different mixing
properties.

To illustrate the effect of the adaption rule, and how the distribution ρ̂` typically evolves
as we increase `, we provide two examples in Figure 3. These examples are taken from the
simulation study provided in Section 7.2. Note that the untruncated distribution ρ is given
for the maximal value of `, i.e., furthest to the right in the figures. By using the adaptive
truncation, we can stop the evaluation of the weights at a much earlier stage, and still
obtain an accurate approximation of ρ.
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The approximation (23) can be used in a few different ways. First, as discussed above,
we can simply replace ρ with ρ̂` in the PGAS algorithm, resulting in a total computational
cost of O(NT`). This is the approach that we have favored, owing to its simplicity and the
fact that we have found the truncation to lead to very accurate approximations. Another
approach, however, is to use ρ̂` as an efficient proposal distribution for the MH algorithm
suggested in Section 6.1, leading to an O(NT` + T 2) complexity. The MH accept/reject
decision will then compensate for the approximation error caused by the truncation. A
third approach is to use the MH algorithm, but to make use of the approximation (23) when
evaluating the acceptance probability (21). By doing so, the algorithm can be implemented
with O(NT + T`) computational complexity.

7. Numerical Evaluation

In this section we illustrate the properties of PGAS in a simulation study. First, in Sec-
tion 7.1 we consider a stochastic volatility SSM and investigate the improvement in mixing
offered by AS when PGAS is compared with PG. We do not consider PGBS in this example
since, as we show in Proposition 2 in Appendix A, PGAS and PGBS are probabilistically
equivalent in this scenario. The conditions of Proposition 2 imply that the weight function
in the PF is independent of the ancestor indices. When applied to non-Markovian models,
however, Proposition 2 does not apply, since the weight function then will depend on the
complete history of the particles. PGAS and PGBS will then have different properties as
is illustrated empirically in Section 7.2 where we consider inference in degenerate SSMs
reformulated as non-Markovian models. Finally, in Section 7.3 we use a similar reformu-
lation and apply PGAS for identification of an epidemiological model for which the state
transition kernel is not available.

7.1 Stochastic Volatility Model with Leverage

Stochastic volatility (SV) models are commonly used to model the variation (or volatility)
of a financial asset; see, e.g., Kim et al. (1998); Shephard (2005). Let rt be the price of
an asset at time t and let yt = log(rt/rt−1) denote the so-called log-returns. A typical SV
model is then given by the SSM:

xt+1 = µ(1− ϕ) + ϕxt + σvt,

yt = exp(−1
2xt)et,

(
vt
et

)
∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])
. (24)

The correlation between the process noise and the observation noise allows for a leverage
effect by letting the price of the asset influence the future volatility. Assuming stationarity,
the distribution of the initial state is given by µθ(x1) = N (x1;µ, σ2/(1−ϕ2)). The unknown
parameters of the model are θ = (µ, ϕ, σ2, ρ).

This system is used as a proof of concept, primarily to illustrate the superior mixing of
PGAS when compared to PG. However, we also compare PGAS with the particle marginal
MH (PMMH) algorithm by Andrieu et al. (2010), which has previously been used to cali-
brate SV models on the form (24) (Hallgren and Koski, 2014; Pitt et al., 2010). We analyze
the Standard and Poor’s (S&P) 500 data from 3/April/2006 to 31/March/2014, consisting

2166



Particle Gibbs with Ancestor Sampling

0 50 100 150 200 250 300 350 400

0

0.2

0.4

0.6

0.8

1

Lag

A
C
F

PG, T = 102

 

 
N = 5
N = 10
N = 100
N = 500
N = 1000

0 50 100 150 200 250 300 350 400

0

0.2

0.4

0.6

0.8

1

Lag

A
C
F

PGAS, T = 102

 

 
N = 5
N = 10
N = 100
N = 500
N = 1000

0 50 100 150 200 250 300 350 400

0

0.2

0.4

0.6

0.8

1

Lag

A
C
F

PG, T = 2011

 

 
N = 5
N = 10
N = 100
N = 500
N = 1000

0 50 100 150 200 250 300 350 400

0

0.2

0.4

0.6

0.8

1

Lag

A
C
F

PGAS, T = 2011

 

 
N = 5
N = 10
N = 100
N = 500
N = 1000

Figure 4: ACFs the parameter σ2 for PG (left column) and for PGAS (right column) for
the S&P 500 data consisting of T = 102 (top row) and T = 2 011 (bottom
row) observations, respectively. The results are reported for different number of
particles N . (This figure is best viewed in color.)

of T = 2 011 observations.3 We consider the the PGAS sampler (Algorithm 4) as well as
the PG and PMMH samplers by Andrieu et al. (2010), all for a range of different number
of particles, N ∈ {5, 10, 100, 500, 1 000}. All methods are simulated for 50 000 iterations,
whereafter the first 10 000 samples are discarded as burn-in. For updating θ, PG and PGAS
simulate the parameters one at a time from their respective conditionals, whereas PMMH
uses a Gaussian random walk tuned according to an initial trial run. Additional details on
the experiments are given in Appendix C.

To evaluate the mixing of the samplers, we compute the autocorrelation functions
(ACFs) for the sequences θ[n] − E[θ | y1:T ].4 We start by considering the simpler problem
of analyzing a small subset of the data, consisting of T = 102 samples (1/November/2013–
31/March/2014). The results for PG and PGAS for the parameter σ2 are reported in the
top row of Figure 4. Similar results hold for the other parameters as well. We see that the
PG sampler requires a fairly large N to obtain good mixing and using N ≤ 10 causes the
sampler to get completely stuck. For PGAS, on the other hand, the ACF is much more
robust to the choice of N . Indeed, we obtain comparable mixing rates for any number of
particles N ≥ 5. This suggests that the sampler in fact performs very closely to a fictive

3. The data was acquired from the Yahoo Finance web page https://finance.yahoo.com/q/hp?s=

%5EGSPC&a=03&b=3&c=2006&d=02&e=31&f=2014&g=d

4. The “true” posterior mean is computed from a long (500 000 samples) run of PMMH.
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w/o sub-sampling w sub-sampling

PGAS PMMH PGAS PMMH

N = 5 111.7 > 104 24.6 3 923.3
N = 10 96.6 > 104 20.7 6 187.0
N = 100 71.3 4 796.1 21.1 1 146.8
N = 500 73.3 59.2 47.8 33.5
N = 1 000 72.6 31.5 80.9 31.5

Table 1: Average inefficiencies for the SV model.

“ideal” Gibbs sampler, i.e., a sampler that simulates x1:T from the true joint smoothing
distribution.

Next, we rerun the methods on the whole data set with T = 2 011 observations. The
results are shown in the bottom row of Figure 4. The effect can be seen even more clearly
in this more challenging scenario. Again, we find PGAS to perform very closely to an ideal
Gibbs sampler for any N ≥ 5. In other words, for this model it is the mixing of the ideal
Gibbs sampler, not the intrinsic particle approximation, that is the limitation of PGAS.
The big difference in mixing between PG and PGAS can be understood as a manifestation
of how they are affected by path degeneracy. These results are in agreement with the
discussion in Section 3.3.

We now turn to a comparison between PGAS and PMMH. However, in doing so it
is important to realize that these two methods, while both being instances of PMCMC,
have quite different properties. In particular, just as PGAS can be thought of as an ap-
proximation of an ideal Gibbs sampler, PMMH can be viewed as an approximation of an
ideal marginal MH sampler. Consequently, their respective performances depend on the
properties of these ideal samplers and the preference for one method over the other heavily
depends on the specific problem under study. Nevertheless, we apply both methods to the
S&P 500 data (with T = 2 011). To evaluate the mixing, we compute5 the inefficiencies:

IF , 1 + 2
∞∑
j=1

ACF(j)

for the four parameters of the model, where ACF(j) is the ACF at lag j. The interpretation
of the inefficiency is that we need n× IF draws from the Markov chain to obtain the same
precision as using n i.i.d. draws from the posterior. The average inefficiencies for the four
parameters for PGAS and PMMH are reported in Table 1.

In the two columns to the left, the inefficiencies for PGAS and PMMH, respectively,
are given without taking the computational cost of the algorithms into account. As above
we find that PGAS is quite insensitive to the number of particles N , with only a minor
increase in inefficiency as we reduce N from 1 000 to 5. PMMH requires a larger number
of particles to mix well—this is in agreement with previous analyzes and empirical studies
(Doucet et al., 2014; Andrieu et al., 2010). Using too few particles with PMMH causes the
method to get stuck, hence the very large inefficiency values. For large N , however, PMMH

5. We use the initial monotone sequence estimator by Geyer (1992) to estimate the inefficiencies.
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outperforms PGAS. The reason for this is that the limiting behavior (as we increase N) of
PMMH is that of an ideal marginal MH sampler. For the model under study, it is apparent
that this marginal MH sampler has better mixing properties than the ideal Gibbs sampler.

Finally, in the rightmost two columns of Table 1 we report the average inefficiencies for
the two samplers when we have matched their computational costs. We use PMMH with
N = 1 000 as the base algorithm. We then match the computational times (as measured by
the tic/toc commands in Matlab) of the algorithms and modify the inefficiencies accord-
ingly. This corresponds to sub-sampled versions of the algorithms, such that each iteration
of any method take the same amount of time as one iteration of PMMH with N = 1 000.
In this comparison, we obtain the best overall performance for PGAS with N = 10.

While the computational complexities of both algorithms scale like O(N), it is worth
to note that the computational overhead is quite substantial (we use a vectorized imple-
mentation of the particle filters in Matlab). In fact, when reducing N from 1 000 to 5, the
reduction in computational time is closer to a factor 5 than to a factor 200. Of course,
the computational overhead will be less noticeable in more difficult scenarios where it is re-
quired to use N � 1 000 for PMMH to mix well. Nevertheless, this effect needs to be taken
into account when comparing algorithms with very different computational properties, such
as PGAS and PMMH, and increasingly so when considering implementations on parallel
computer architectures. That is, matching the algorithms “particle by particle” would be
overly favorable for PGAS. We discuss this further in Section 8.

7.2 Degenerate LGSS Models

Many dynamical systems are most naturally modeled as degenerate in the sense that the
transition kernel of the state-process does not admit any density with respect to a dominat-
ing measure. It is problematic to use (particle-filter-based) backward sampling methods for
these models, owing to the fact that the backward kernel of the state process will also be
degenerate. As a consequence, it is not possible to approximate the backward kernel using
the forward filter particles.

To illustrate how this difficulty can be remedied by a change of variables, consider an
LGSS model of the form(

xt+1

zt+1

)
=

(
A11 A12

A21 A22

)(
xt
zt

)
+

(
vt
0

)
, vt ∼ N (0, Q), (25a)

yt = C

(
xt
zt

)
+ et, et ∼ N (0, R). (25b)

Since the Gaussian process noise enters only on the first part of the state vector (or, equiv-
alently, the process noise covariance matrix is rank deficient) the state transition kernel is
degenerate. However, for the same reason, the state component zt is σ(x1:t)-measurable
and we can write zt = zt(x1:t). Therefore, it is possible to rephrase (25) as a non-Markovian
model with latent process given by {xt}t≥1.

As a first illustration, we simulate T = 200 samples from a four-dimensional, single
output system with poles6 at −0.65, −0.12, and 0.22 ± 0.10i. We let dim(xt) = 1 and

6. The poles of a linear system are given by the eigenvalues of the matrix A and they encode the frequency
response of the system.
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Figure 5: Running RMSEs for x1:T for five independent runs of PGAS (•) and PGBS (◦),
respectively. The truncation level is set to ` = 1. The thick gray line corresponds
to a run of an untruncated FFBS particle smoother.

Q = R = 0.1. For simplicity, we assume that the system parameters are known and
seek the joint smoothing distribution p(x1:T | y1:T ). In the non-Markovian formulation
it is possible to apply backward-simulation-based methods, such as PGAS and PGBS, as
described in Section 6.2. The problem, however, is that the non-Markovianity gives rise
to an O(T 2) computational complexity. To obtain more practical inference algorithms we
employ the weight truncation strategy (23).

First, we consider the coarse approximation ` = 1. We run PGAS and PGBS, both with
N = 5 particles for 10 000 iterations (with the first 1 000 discarded as burn-in). We then
compute running means of the latent variables x1:T and, from these, we compute the running
root-mean-squared errors (RMSEs) εn relative to the true posterior means (computed with
a modified Bryson-Frazier smoother, Bierman, 1973). Hence, if no approximation would
have been made, we would expect εn → 0, so any static error can be seen as the effect of the
truncation. The results for five independent runs are shown in Figure 5. First, we note that
both methods give accurate results. Still, the error for PGAS is significantly lower than
for PGBS. For further comparison, we also run an untruncated forward filter/backward
simulator (FFBS) particle smoother (Godsill et al., 2004), using N = 10 000 particles and
M = 1 000 backward trajectories, with a computational cost of O(NMT 2). The resulting
RMSE value is shown as a thick gray line in Figure 5. This result suggest that PGAS
can be a serious competitor to more “classical” particle smoothers, even when there are no
unknown parameters of the model. Already with ` = 1, PGAS outperforms FFBS in terms
of accuracy and, due to the fact that AS allows us to use as few as N = 5 particles at each
iteration, at a much lower computational cost.

To see how the samplers are affected by the choice of truncation level ` and by the
mixing properties of the system, we consider randomly generated systems of the form (25)
of different orders (i.e., with different state dimensions d). We generate 150 random systems,
using the Matlab function drss from the Control Systems Toolbox, with model orders 2, 5
and 20 (50 systems for each model order). The number of outputs are taken as 1, 2 and
4 for the different model orders, respectively. We consider different fixed truncation levels
(` ∈ {1, 2, 3} for 2nd order systems and ` ∈ {1, 5, 10} for 5th and 20th order systems), as
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Figure 6: Box plots of the RMSE errors for PGAS (black) and PGBS (gray), for 150 ran-
dom systems of different dimensions d (left, d = 2; middle, d = 5; right, d = 20).
Different values for the truncation level ` are considered. The rightmost boxes
correspond to an adaptive truncation and the values in parentheses are the aver-
age truncation levels over all systems and MCMC iterations (the same for both
methods). The dots within the boxes show the median errors.

well as an adaptive level with υ = 0.1 and τ = 10−2 (see Section 6.2). All other settings
are as above.

Again, we compute the posterior means of x1:T (discarding 1 000 samples) and RMSE
values relative to the true posterior mean. Box plots over the different systems are shown
in Figure 6. Since the process noise only enters on one of the state components, the mixing
tends to deteriorate as we increase the model order. Figure 3 shows how the probability
distributions on {1, . . . , N} change as we increase the truncation level, in two representative
cases for a 5th and a 20th order system, respectively. By using an adaptive level, we can
obtain accurate results for systems of different dimensions, without having to change any
settings between the runs.

7.3 Epidemiological Model

As a final numerical illustration, we consider identification of an epidemiological model
using PGAS. Seasonal influenza epidemics each year cause millions of severe illnesses and
hundreds of thousands of deaths world-wide (Ginsberg et al., 2009). Furthermore, new
strains of influenza viruses can possibly cause pandemics with very severe effects on the
public health. The ability to accurately predict disease activity can enable early response
to such epidemics, which in turn can reduce their impact.

We consider a susceptible/infected/recovered (SIR) model with environmental noise and
seasonal fluctuations (Keeling and Rohani, 2007; Rasmussen et al., 2011). The model, spec-
ified by a stochastic differential equation, is discretized according to the Euler-Maruyama
method, yielding

St+dt = St + µPdt− µStdt− (1 + Fvt)βtStP−1Itdt, (26a)

It+dt = It − (γ + µ)Itdt+ (1 + Fvt)βtStP−1Itdt, (26b)

Rt+dt = Rt + γItdt− µRtdt, (26c)
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where vt ∼ N (0, 1/
√
dt) and dt is the sampling time. Here, St, It and Rt represent the num-

ber of susceptible, infected and recovered individuals at time t (months), respectively. The
total population size P = 106 and the host birth/death rate µ = 0.0012 are assumed known.
The seasonally varying transmission rate is given by βt = R0(γ+µ)(1+α sin(2πt/12)) where
R0 is the basic reproductive ratio, γ is the rate of recovery and α is the strength of season-
ality.

Furthermore, we consider an observation model which is inspired by the Google Flu
Trends project (Ginsberg et al., 2009). The idea is to use the frequency of influenza-related
search engine queries to infer knowledge of the dynamics of the epidemic. Let Qk be
the proportion of influenza-related queries counted during a time interval (∆(k − 1),∆k].
Following Ginsberg et al. (2009), we use a linear relationship between the log-odds of the
relative query counts and the log-odds of the proportion of infected individuals,

yk , logit(Qk) = ρ logit(Īk/P) + ek, ek ∼ N (0, σ2), (27)

where Īk is the mean value of It during the time interval (∆(k − 1),∆k] and logit(p) =
log(p/(1−p)). As in Ginsberg et al. (2009) we consider weekly query counts, i.e., ∆ = 7/30
(assuming for simplicity that we have 30 days in each month). Using this value of ∆ as
sampling time will, however, result in overly large discretization errors. Instead, we sample
the model (26) m = 7 times per week: dt = ∆/m.

Rasmussen et al. (2011) use the PMMH sampler (Andrieu et al., 2010) to identify a
similar SIR model, though with a different observation model. A different Monte Carlo
strategy, based on a particle filter with an augmented state space, for identification of an
SIR model is proposed by Skvortsov and Ristic (2012). We investigate the possibility of
using PGAS for joint state and parameter inference in the model (26)–(27). However,
there are two difficulties in applying PGAS directly to this model. Firstly, the transition
kernel of the state process, as defined between consecutive observation time points ∆(k−1)
and ∆k, is not available in closed form. Secondly, since the state is three-dimensional,
whereas the driving noise vt is scalar, the transition kernel is degenerate. To cope with
these difficulties we (again) suggest collapsing the model to the driving noise variables.

Let Vk =
(
v∆(k−1) v∆(k−1)+dt · · · v∆k−dt

)T
. It follows that the model (26)–(27) can be

equivalently expressed as the non-Markovian latent variable model,

Vk ∼ N (0, Im/
√
dt), (28a)

yk ∼ gθ(yk | V1:k), (28b)

for some likelihood function gθ; see (29). A further motivation for using this reformulation
is that the latent variables Vk are a priori independent of the model parameters θ. This
can result in a significant improvement in mixing of the Gibbs sampler, in particular when
there are strong dependencies between the system state and the parameters (Golightly and
Wilkinson, 2008; Papaspiliopoulos et al., 2003).

The parameters of the model are θ = (γ,R0, α, F, ρ, σ), with the true values given by
γ = 3, R0 = 10, α = 0.16, F = 0.03 , ρ = 1.1 and σ = 0.224. We use an improper
flat prior on R6

+ for θ. We generate eight years of data with weekly observations. The
number of infected individuals It over this time period is shown in Figure 7. The first
half of the data batch is used for estimation of the model parameters using PGAS. It is
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Figure 7: Disease activity (number of infected individuals It) over an eight year period.
The first four years are used as estimation data, to find the unknown parameters
of the model. For the consecutive four years, one-month-ahead predictions are
computed using the estimated model.

worth pointing out that while the sampler effectively targets the collapsed model (28), it
is most straightforwardly implemented using the original state variables from (26). With
xk = (S∆k, I∆k, R∆k)

T we can simulate xk+1 given xk according to (26) which is used in the
underlying particle filter. The innovation variables Vk need only be taken into account for
the AS step. Let V ′1:T be the reference innovation trajectory. To compute the AS weights
(3) we need to evaluate the ratios,

pθ((V
i

1:k−1, V
′
k:T ), y1:T )

pθ(V
i

1:k−1, y1:k−1)
∝

T∏
`=k

gθ(y` | V i
1:k−1, V

′
k:`).

Using (27), the observation likelihood can be written as

gθ(y` | V i
1:k−1, V

′
k:`) = N (y` | ρ logit(Ī`{xik−1, V

′
k:`}/P), σ2), (29)

where I`{xik−1, V
′
k:`} is obtained by simulating the system (26) from time ∆(k − 1) to time

∆`, initialized at xik−1 and using the innovation sequence V ′k:`.

We run PGAS with N = 10 particles for 50 000 iterations (discarding the first 10 000).
For sampling θ, we use MH steps with a Gaussian random walk proposal, tuned according
to an initial trial run. The innovation variables V1:T are sampled from the PGAS kernel
by Algorithm 2. Since the latter step is the computational bottleneck of the algorithm,
we execute ten MH steps for θ, for each draw from the PGAS kernel. No truncation is
used for the AS weights; instead we investigate the effect of using the strategy proposed
in (20). That is, to reduce the computational cost we execute the AS step only with some
probability η, otherwise we keep the current ancestry of the reference trajectory.

In Figure 8 we report the ACFs for the six parameters of the model, for η ranging from
0 to 1. As a comparison, we also provide the results for a run of the PMMH algorithm
with N = 1 000 particles and a random walk proposal distribution tuned according to an
initial trial run. For most parameters, PMMH achieves better mixing than PGAS (however,
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Figure 8: ACFs for PGAS with N = 10 and η ranging from 0 to 1. As comparison, we also
show the ACF for PMMH with N = 1 000. (This figure is best viewed in color.)

requiring a much larger N) which can be accredited to the fact that the ideal marginal MH
sampler mixes better than the ideal Gibbs sampler.

Note that for η = 0, PGAS reduces to the standard PG algorithm. Since we use only
N = 10 particles this sampler mixes very poorly, in agreement with our previous findings.
However, interestingly, increasing the probability of ancestor sampling to as little as η = 0.01
results in a large improvement in mixing and with η = 0.1 we get results that are comparable
to η = 1. This suggests that, in cases when the AS step is the computational bottleneck of
the algorithm, it can indeed be a good idea to carry out this step only sporadically.

To further investigate the effect of η, we plot the update rates for the trajectory V1:T in
Figure 9 (cf. Figure 1). As expected, the update rate deteriorates as we decrease η, but the
relationship is clearly nonlinear. Specifically, for small values of η we get an average update
rate which is larger than η; for instance η = 0.1 gives an average update rate of 0.31. The
reason for this is that any ancestor index update will result in an update, not only for the
corresponding latent variable, but also for a collection of neighboring latent variables. The
number of variables that will be affected by changing one of the ancestor indices depends
on how quickly the PF degenerates. Consequently, there is an inverse relationship between
η and N ; by increasing the number of particles we can get away with a smaller η and still
obtain high update rates for the entire trajectory.

In Figure 10 we show histograms representing the estimated posterior parameter distri-
butions, reported for PGAS with η = 0.1 and for PMMH. As can be seen, the true system
parameters fall well within the credible regions. Finally, the identified model, based on
PGAS with η = 0.1, is used to make one-month-ahead predictions of the disease activity for
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Figure 9: Update rates for V1:T for PGAS with N = 10 and with η ranging from 0 to 1. As
a comparison, the PMMH sampler with N = 1 000 particles attains an average
acceptance probability of 0.19. (This figure is best viewed in color.)
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Figure 10: Posterior densities for the parameters of model (26)–(27) for PGAS; N = 10,
η = 0.1 (gray bars) and for PMMH; N = 1 000 (black dots). The true values
are marked by vertical dashed lines.

the subsequent four years, as shown in Figure 7. The predictions are made by sub-sampling
the Markov chain and, for each sample, running a particle filter on the validation data using
100 particles. As can be seen, we obtain an accurate prediction of the disease activity, which
falls within the estimated 95 % credibility intervals, one month in advance.

8. Discussion

PGAS is a novel approach to PMCMC that provides the statistician with an off-the-shelf
class of Markov kernels which can be used to simulate, for instance, the typically high-
dimensional and highly autocorrelated state trajectory in a state-space model. This opens
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up the possibility of using PGAS as a key component in different inference algorithms, en-
abling both Bayesian and frequentist parameter inference as well as state inference. How-
ever, PGAS is by no means limited to inference in state-space models. Indeed, we believe
that the method can be particularly useful for models with more complex dependencies,
such as non-Markovian, nonparametric, and graphical models.

The PGAS Markov kernels are built upon two main ideas. First, by conditioning the
underlying SMC sampler on a reference trajectory the correct stationary distribution of
the kernel is enforced. Second, ancestor sampling enables movement around the reference
trajectory which drastically improves the mixing of the sampler. In particular, we have
shown empirically that ancestor sampling makes the mixing of the PGAS kernels robust to
a small number of particles as well as to large data records.

Ancestor sampling is basically a way of exploiting backward simulation ideas without
needing an explicit backward pass. Compared to PGBS, a conceptually similar method
that does require an explicit backward pass, PGAS has several advantages, most notably for
inference in non-Markovian models. When using the proposed truncation of the backward
weights, we have found PGAS to be more robust to the approximation error than PGBS,
yielding up to an order-of-magnitude improvement in accuracy. An interesting topic for
future work is to further investigate the effect on these samplers by errors in the backward
weights, whether these errors arise from a truncation or some other approximation of the
transition density function. It is also worth pointing out that for non-Markovian models
PGAS is simpler to implement than PGBS as it requires less bookkeeping. It can also be
more memory efficient; by using the techniques proposed by Jacob et al. (2013), it is possible
to store the paths of the particle filter in PGAS with an expected memory cost bounded by
T +CN logN for some constant C. This is in contrast with PGBS, which requires storage
of all NT intermediate particles.

The aforementioned samplers—PG, PGAS, and PGBS—share the same interpretation
of being PMCMC-versions of an ideal Gibbs sampler. A different type of PMCMC, however,
is the PMMH sampler by Andrieu et al. (2010). To comprehensively compare PGAS with
PMMH is nontrivial, since the two samplers have quite different properties. However, some
of the most important differences are that, (i) in the limit N → ∞, PMMH approaches a
marginal sampler for θ, whereas PGAS approaches an ideal Gibbs sampler for θ and x1:T ,
(ii) empirically, PGAS is more robust to small N/large T than PMMH, and (iii) PGAS
defines a Markov kernel on the space of trajectories, which is not the case for PMMH,
making it more suitable to use as a component in composite sampling schemes. Due to
these differences—(i) being in favor for PMMH and (ii)–(iii) for PGAS—the preference
for one sampler over the other depends heavily on the specific properties of the problem at
hand.

Another important difference is that PMMH readily allows for parallelization over the
particles. While this is of course possible also for PGAS, the fact that the sampler typically
requires only a small number of particles limits the computational benefits of doing so. To
enable PGAS to make better use of modern computational architectures, other approaches
might therefore prove to be more fruitful. This includes, for instance, to couple PGAS with
parallel MCMC methods (see, e.g., VanDerwerken and Schmidler 2013; Wilkinson 2005)
or to use the PGAS Markov kernels together with SMC samplers (Del Moral et al., 2006)
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instead of with classical MCMC. The practical usefulness of these approaches is a topic
that requires further investigation.

Other directions for future work include further analysis of the ergodicity of PGAS.
While the established uniform ergodicity result is encouraging, it does not provide infor-
mation about how fast the mixing rate improves with the number of particles. Finding
informative rates with an explicit dependence on N is an interesting, though challenging,
topic for future work. It would also be interesting to further investigate empirically the con-
vergence rate of PGAS for different settings, such as the number of particles, the amount
of data, and the dimension of the latent process.
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Appendix A. The Relationship between PGAS and PGBS for SSMs

As pointed out in Section 5, there is a close relationship between PGAS and PGBS, in
particular when considering the special case of SSMs. PGBS is conceptually similar to
PGAS, but it makes use of an explicit backward simulation pass; see Whiteley (2010);
Whiteley et al. (2010) or Lindsten and Schön (2013, Section 5.4). More precisely, to generate
a draw from the PGBS kernel, we first run a particle filter with reference trajectory x′1:T

without AS (i.e., in Algorithm 2, we replace line 8 with aNt = N , as in the basic PG sampler).
Thereafter, we extract a new trajectory by running a backward simulator. That is, we draw
j1:T with P(jT = i) ∝ wiT and then, for t = T − 1 to 1,

P(jt = i | jt+1) ∝ witfθ(x
jt+1

t+1 | x
i
t), (30)

and take x?1:T = xj1:T1:T as the output from the algorithm. In the above, the conditioning on
the forward particle system {x1:T ,a2:T } is implicit.

Let the Markov kernel on (XT ,X T ) defined by this procedure be denoted as PNBS,θ. An

interesting question to ask is whether or not the PGAS kernel PNθ and the PGBS kernel
PNBS,θ are probabilistically equivalent. In the specific setting when both methods use the
bootstrap proposal kernel in the internal particle filters, it turns out that this is indeed
the case. We formalize this is Proposition 2 below. The analysis builds upon Olsson and
Rydén (2011, Proposition 5), where the equivalence between a (standard) bootstrap PF and
a backward simulator is established. Below, we adapt their argument to handle the case
with conditioning on a reference trajectory and the AS step. For improved readability we
provide the complete proof, though it should be noted that the main part is due to Olsson
and Rydén (2011).
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Proposition 2. Assume that PGAS and PGBS both target the joint smoothing distribution
for an SSM and that both methods use the bootstrap proposal kernel in the internal particle
filters, i.e., rθ,t(xt | x1:t−1) = fθ(xt | xt−1). Then, for any x′1:T ∈ XT and B ∈ X T ,
PNθ (x′1:T , B) = PNBS,θ(x

′
1:T , B).

Proof. For ease of notation, we write E for Eθ,x′1:T . First, note that for a bootstrap proposal
kernel, the weight function (2) is given by Wθ,t(xt) = gθ(yt | xt), i.e., it depends only on
the current state and not on its ancestor. As a consequence, the law of the forward particle
system is independent of the ancestor variables {aNt }Tt=2, meaning that the particle systems,
excluding {aNt }Tt=2, are equally distributed for PGAS and for PGBS.

Let B ∈ X T be a measurable rectangle: B = ×Tt=1Bt with Bt ∈ X for t = 1, . . . , T .
Then,

PNθ (x′1:T , B) = E

[
T∏
t=1

1Bt(x
bt
t )

]
, and PNBS,θ(x

′
1:T , B) = E

[
T∏
t=1

1Bt(x
jt
t )

]
.

Since the measurable rectangles form a π-system generating X T , it is by the π-λ theorem
sufficient to show that E[h(xb1:T1:T )] = E[h(xj1:T1:T )] for all bounded, multiplicative functionals,

h(x1:T ) =
∏T
t=1 ht(xt). As Olsson and Rydén (2011), we establish this result by induction.

Hence, for t < T , assume that

E

[
T∏

s=t+1

hs(x
bs
s )

]
= E

[
T∏

s=t+1

hs(x
js
s )

]
.

For t = T − 1, the induction hypothesis holds since bT and jT are equally distributed (both
are drawn from the discrete distribution induced by the weights {wiT }Ni=1). Let

Λt(x
jt+1

t+1 , h) , E
[
h(xjtt ) | xjt+1

t+1

]
= E

[
E
[
h(xjtt ) | xt, xjt+1

t+1

]
| xjt+1

t+1

]
= E

[
N∑
i=1

h(xit)
witfθ(x

jt+1

t+1 | xit)∑
l w

l
tfθ(x

jt+1

t+1 | xlt)
| xjt+1

t+1

]
,

where we recall that wit = Wθ,t(x
i
t) and where the last equality follows from (30). Consider,

E

[
T∏
s=t

hs(x
bs
s )

]
= E

[
E
[
ht(x

bt
t ) | xbt+1:T

t+1:T , bt+1:T

] T∏
s=t+1

hs(x
bs
s )

]
. (31)

Using the Markov property of the generated particle system and the tower property of
conditional expectation, we have

E
[
ht(x

bt
t ) | xbt+1:T

t+1:T , bt+1:T

]
= E

[
E
[
ht(x

bt
t ) | xt, xbt+1

t+1 , bt+1

]
| xbt+1

t+1 , bt+1

]
. (32)

Recall that bt = a
bt+1

t+1 . Consider first the case bt+1 < N . From (1), we have that

P(bt = i | xt) ∝ wit and x
bt+1

t+1 | x
bt
t ∼ fθ( · | xbtt ). If follows from Bayes’ theorem that
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P(bt = i | xt, x
bt+1

t+1 ) ∝ witfθ(x
bt+1

t+1 | x
bt
t ). However, by the AS procedure (Algorithm 2,

line 8), the same expression holds also for bt+1 = N . We can thus write (32) as

E
[
ht(x

bt
t ) | xbt+1:T

t+1:T , bt+1:T

]
= E

[
N∑
i=1

ht(x
i
t)

witfθ(x
bt+1

t+1 | xit)∑
l w

l
tfθ(x

bt+1

t+1 | xlt)
| xbt+1

t+1 , bt+1

]
= Λt(x

bt+1

t+1 , ht),

Hence, since the function xt+1 7→ Λt(xt+1, ht) is bounded, we can use the induction hypoth-
esis to write (31) as

E

[
T∏
s=t

hs(x
bs
s )

]
= E

[
Λt(x

bt+1

t+1 , ht)
T∏

s=t+1

hs(x
bs
s )

]
= E

[
Λt(x

jt+1

t+1 , ht)
T∏

s=t+1

hs(x
js
s )

]

= E

[
E
[
ht(x

jt
t ) | xjt+1:T

t+1:T , jt+1:T

] T∏
s=t+1

hs(x
js
s )

]
= E

[
T∏
s=t

hs(x
js
s )

]
.

�

Appendix B. Proof of Proposition 1

With M = T − t+ 1 and w(k) = wkt−1, the distributions of interest are given by

ρ(k) =
w(k)

∏M
s=1 hs(k)∑

l w(l)
∏M
s=1 hs(l)

and ρ̂`(k) =
w(k)

∏`
s=1 hs(k)∑

l w(l)
∏`
s=1 hs(l)

,

respectively. Let εs , maxk,l (hs(k)/hs(l)− 1) ≤ A exp(−cs) and consider(∑
l

w(l)
∏̀
s=1

hs(l)

)
M∏

s=`+1

hs(k) ≤
∑
l

(
w(l)

∏̀
s=1

hs(l)
M∏

s=`+1

hs(l)(1 + εs)

)

=

(∑
l

w(l)

M∏
s=1

hs(l)

)
M∏

s=`+1

(1 + εs).

It follows that the KL divergence is bounded according to,

DKLD(ρ‖ρ̂`) =
∑
k

ρ(k) log
ρ(k)

ρ̂`(k)
=
∑
k

ρ(k) log

∏M
s=`+1 hs(k)

(∑
l w(l)

∏`
s=1 hs(l)

)
∑

l w(l)
∏M
s=1 hs(l)


≤
∑
k

ρ(k)
M∑

s=`+1

log(1 + εs) ≤
M∑

s=`+1

εs ≤ A
M∑

s=`+1

exp(−cs) = A
e−c(`+1) − e−c(M+1)

1− e−c
.

�

Appendix C. Details on the Experiment in Section 7.1

The parameters of the SV model (24) are θ = (µ, ϕ, σ2, ρ). For µ and ϕ, we use the
priors proposed by Kim et al. (1998) (who consider inference in an SV model without the
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correlation parameter ρ), namely µ ∼ N (0, 10) and ϕ = 2ϕ?−1 where ϕ? is beta distributed;
ϕ? ∼ B(20, 1.5). Consequently, ϕ is supported on (−1, 1) with a prior mean of 0.86. This
choice is made to ensure stationarity and identifiability of the model. We also use the
efficient rejection sampler proposed by Kim et al. (1998) to simulate ϕ from its posterior
conditional distribution. For σ2 and ρ, we note that the model (24) can be written as

xt+1 = µ(1− ϕ) + ϕxt + σρyt exp(−1
2xt) + σ

√
1− ρ2v?t ,

yt = exp(−1
2xt)et,

where v?t and et are mutually independent standard normal. To obtain an efficient updating
formula for (σ2, ρ), we assume a conjugate normal-inverse-gamma prior for the pair (ϑ, ς2) ,
(σρ, σ2(1−ρ2)), with ϑ | ς2 ∼ N (0, ς2/0.05) and ς2 ∼ IG(5/2, 0.05/2). We also investigated
the possibility of letting σ2 and ρ be a priori independent with an inverse gamma and a
uniform prior, respectively, but we did not experience any notable differences in the posterior
distributions.

In the experiments, all the samplers are initialized at θ[0] = (0, 0.975, 0.05, 0). For
PMMH, we tune the covariance matrix of the random walk proposal distribution according
to the posterior distribution obtained from an initial trial run, using PGAS with N = 20
for 10 000 iterations.
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Abstract

The ramp loss is a robust but non-convex loss for classification. Compared with other
non-convex losses, a local minimum of the ramp loss can be effectively found. The effec-
tiveness of local search comes from the piecewise linearity of the ramp loss. Motivated by
the fact that the `1-penalty is piecewise linear as well, the `1-penalty is applied for the
ramp loss, resulting in a ramp loss linear programming support vector machine (ramp-
LPSVM). The proposed ramp-LPSVM is a piecewise linear minimization problem and the
related optimization techniques are applicable. Moreover, the `1-penalty can enhance the
sparsity. In this paper, the corresponding misclassification error and convergence behavior
are discussed. Generally, the ramp loss is a truncated hinge loss. Therefore ramp-LPSVM
possesses some similar properties as hinge loss SVMs. A local minimization algorithm and
a global search strategy are discussed. The good optimization capability of the proposed
algorithms makes ramp-LPSVM perform well in numerical experiments: the result of ramp-
LPSVM is more robust than that of hinge SVMs and is sparser than that of ramp-SVM,
which consists of the ‖ · ‖K-penalty and the ramp loss.

Keywords: support vector machine, ramp loss, `1-regularization, generalization error
analysis, global optimization

1. Introduction

In a binary classification problem, the input space is a compact subset X ⊂ Rn and the
output space Y = {−1, 1} represents two classes. Classification algorithms produce binary
classifiers C : X → Y induced by real-valued functions f : X → R as C = sgn(f), where the
sign function is defined by sgn(f(x)) = 1 if f(x) ≥ 0 and sgn(f(x)) = −1 otherwise. Since
proposed by Cortes and Vapnik (1995), the support vector machine (SVM) has become a
popular classification method, because of its good statistical property and generalization
capability. SVM is usually based on a Mercer kernel K to produce non-linear classifiers.
Such a kernel is a continuous, symmetric, and positive semi-definite function defined on
X × X. Given training data z = {xi, yi}mi=1 with xi ∈ X, yi ∈ Y and a loss function
L : R → R+, in the functional analysis setting, SVM can be formulated as the following

c©2014 Xiaolin Huang, Lei Shi, and Johan A.K. Suykens.
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optimization problem

min
f∈HK,b∈R

µ

2
‖f‖2K +

1

m

m∑
i=1

L(1− yi(f(xi) + b)), (1)

where HK is the Reproducing Kernel Hilbert Space (RKHS) induced by the Mercer kernel
K with the norm ‖ · ‖K (Aronszajn, 1950) and µ > 0 is a trade-off parameter. The constant
term b is called offset, which leads to much flexibility. The corresponding binary classifier
is evaluated based on the optima of (1) by its sign function. Traditionally, the hinge loss
Lhinge(u) = max{u, 0} is used. Besides, the squared hinge loss (Vapnik, 1998) and the least
squares loss (Suykens and Vandewalle, 1999; Suykens et al., 2002) also have been widely
applied. In classification and the related methodologies, robustness to outliers is always
an important issue. The influence function (see, e.g., Steinwart and Christmann, 2008; De
Brabanter et al., 2009) related to the hinge loss is bounded, which means that the effect of
outliers on the result of minimizing the hinge loss is bounded. Though the effect is bounded,
it can be significantly large since the penalty given to the outliers by the hinge loss is quite
huge. In fact, any convex loss is unbounded. To remove the effect of outliers, researchers
turn to some non-convex losses, such as the hard-margin loss, the normalized sigmoid loss
(Mason et al., 2000), the ψ-learning loss (Shen et al., 2003), and the ramp loss (Collobert
et al., 2006a,b). The ramp loss is defined as follows,

Lramp(u) =

{
Lhinge(u), u ≤ 1,
1, u > 1,

which is also called a truncated hinge loss in Wu and Liu (2007). The plots of the mentioned
losses are illustrated in Figure 1, showing the robustness of these non-convex losses.
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Figure 1: Plots of losses used for classification: (a) convex losses: the hinge loss (dash-
dotted line), the squared hinge loss (solid line), and the least squares loss (dashed
line); (b) robust but non-convex losses: the hard margin loss (blue dash-dotted
line), the ψ-learning loss (green dashed line), the normalized sigmoid loss (blue
solid line), and the ramp loss (red dashed line).
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Among the mentioned robust but non-convex losses, the ramp loss is an attractive one.
Using the ramp loss in (1), one obtains a ramp loss support vector machine (ramp-SVM).
Because the ramp loss can be easily written as a difference of convex functions (DC),
algorithms based on DC programming are applicable for ramp-SVM. The discussion about
DC programming can be found in An et al. (1996), Horst and Thoai (1999), and An and
Tao (2005). To apply DC programming in the ramp loss, we first observe the identity

Lramp(u) = min{max{u, 0}, 1} = max{u, 0} −max{u− 1, 0}. (2)

Therefore, SVM (1) with L = Lramp can be decomposed into the convex part µ
2‖f‖

2
K +

1
m

∑m
i=1 max{1 − yi(f(xi) + b), 0} and the concave part − 1

m

∑m
i=1 max{−yi(f(xi) + b), 0}.

Hence DC programming can be used for finding a local minimizer of this problem, which
has been applied by Collobert et al. (2006a), Wu and Liu (2007). DC programming for
ramp-SVM is also referred to as a concave-convex procedure by Yuille and Rangarajan
(2003). Besides the continuous optimization methods, ramp-SVM has been formulated as
a mixed integer optimization problem by Brooks (2011) as below,

min
f∈HK,b∈R,ω

µ
2‖f‖

2
K + 1

m

∑m
i=1(ei + ωi)

s.t. ωi ∈ {0, 1},
0 ≤ ei ≤ 1, i = 1, · · · ,m,
yi(f(xi) + b) ≥ 1− ei, if ωi = 0.

(3)

The optimization problem (3) should be solved over all possible binary vectors ω = [ω1, . . . ,
ωm]T ∈ {0, 1}m. Once the binary vector ω is given, this problem can be solved by quadratic
programming. Consequently, when the size of the problem grows, the computation time
explodes.

It is worth noting the case of taking L = Lhinge in (1). It corresponds to the well-known
C-SVM. One can solve C-SVM by its dual form, then the output function is represented as∑m

i=1 ν
∗
i yiK(x, xi) + b∗, where [ν∗1 , · · · , ν∗m]T is the optimal solution of

min
νi∈R

1
2

∑m
i,j=1 νiνjyiyjK(xi, xj)−

∑m
i=1 νi

s.t.
∑m

i=1 νiyi = 0,
0 ≤ νi ≤ 1

µm , i = 1, · · · ,m.

The optimal offset b∗ can be computed from the Karush-Kuhn-Tucker (KKT) conditions
after {ν∗i }mi=1 is found (see, e.g., Suykens et al., 2002). From the dual form of C-SVM, we
find that though we search the function f in a rather large space HK, the optimal solution
actually belongs to a finite-dimensional subspace given by H+

K,z with

H+
K,z =

{∑m

i=1
αiyiK(x, xi), ∀α = [α1, . . . , αm]T � 0

}
.

Here the notation � 0 means all the elements of the vector being non-negative.
To enhance the sparsity in the output function, the linear programming support vector

machine (LPSVM) directly minimizes the data fitting term 1
m

∑m
i=1 Lhinge(1−yi(f(xi)+b))

with a `1-penalty term (see Vapnik, 1998; Smola et al., 1999). Given f ∈ H+
K,z, the `1-

penalty is defined as

Ω(f) =

m∑
i=1

αi, for f =
m∑
i=1

αiyiK(x, xi), (4)
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which is the `1-penalty of the combinatorial coefficients of f . Then LPSVM can be formu-
lated as follows,

min
f∈H+

K,b∈R
µΩ(f) +

1

m

m∑
i=1

Lhinge(1− yi(f(xi) + b)). (5)

LPSVM is also related to 1-norm SVM proposed by Zhu et al. (2004), which searches a
linear combination of basis functions and does not consider the non-negative constraint.
The properties of LPSVM have been demonstrated in the literature (e.g., Bradley and
Mangasarian, 2000; Kecman and Hadzic, 2000). Generalization error analysis for LPSVM
can be found in Wu and Zhou (2005).

For problem (1), one can choose different penalty terms and different loss functions.
For example, using ‖f‖K together with the hinge loss, we obtain C-SVM. The property of
C-SVM can be observed from the properties of ‖f‖K and the hinge loss: since ‖f‖K is a
quadratic function and the hinge loss is piecewise linear (pwl), the objective function of C-
SVM is piecewise quadratic (pwq) and can be solved by constrained quadratic programming.
For LPSVM, which consists of the `1-penalty and the hinge loss, the objective function is
convex piecewise linear and hence can be minimized by linear programming. In Table 1, we
summarize the properties of several penalties and losses.

squared least ψ- normalized
‖f‖K Ω(f) hinge hinge squares learning sigmoid ramp

function type quadratic pwl pwl pwq quadratic discontinuous log pwl
convexity

√ √ √ √ √ × × ×
continuity

√ √ √ √ √ × √ √
smoothness

√ × × √ √ × √ ×
sparsity × √ √ √ × √ × √
bounded
influence fun. — —

√ × × √ √ √
bounded
penalty value — — × × × √ √ √

∗ “pwl” stands for piecewise linear; “pwq” stands for piecewise quadratic.

Table 1: Properties of Different Penalties and Losses

The ramp loss gives a constant penalty for any large outlier and it is obviously robust.
From Table 1, we observe that both Ω(f) and the ramp loss are continuous piecewise linear.
It follows that if we choose Ω(f) and the ramp loss, the objective function of (1) is continuous
piecewise linear and can be minimized by linear programming. Besides, minimizing Ω(f)
enhances the sparsity. Motivated by this observation, in this paper we study the binary
classifiers generated by minimizing the ramp loss and the `1-penalty, which is called a ramp
loss linear programming support vector machine (ramp-LPSVM). The ramp-LPSVM has
the following formulation,

(f∗z,µ, b
∗
z,µ) = argmin

f∈H+
K,z,b∈R

µΩ(f) +
1

m

m∑
i=1

Lramp(1− yi(f(xi) + b)), (6)
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where Ω(·) is the `1-penalty defined by (4). And the induced classifier is given by sgn(f∗z,µ+
b∗z,µ). We call (6) ramp-LPSVM, which implies that the algorithm proposed later involves
linear programming problems. Similarly to ramp-SVM, the proposed ramp-LPSVM enjoys
robustness. Moreover, it can give a sparser solution. In addition to enhancing the sparsity,
replacing the ‖ · ‖K-penalty in ramp-SVM by the `1-penalty is mainly motivated by the fact
that both the ramp loss and the `1-penalty are piecewise linear, which helps developing
more efficient algorithms.

Resulting from the identity (2), the problem related to ramp-LPSVM leads to a polyhe-
dral concave problem, which minimizes a concave function on one polyhedron. A polyhedral
concave problem is easier to handle than a regular non-convex problem and some efficient
methods were reviewed by Horst and Hoang (1996). Moreover, ramp-LPSVM (6) has a
piecewise linear objective function. For such kind of problems, a hill detouring technique
proposed by Huang et al. (2012a) has shown good global search capability. As the name sug-
gests, the hill detouring method searches on the level set to escape from a local optimum.
One contribution of this paper is that we establish algorithms for solving ramp-LPSVM
(6), including DC programming for local minimization and hill detouring for global search.
Additionally, we investigate the asymptotic performance of ramp-LPSVM under the frame-
work of statistical learning theory. Our analysis implies that ramp-LPSVM has a similar
misclassification error bound and similar convergence behavior as C-SVM. Moreover, one
can expect that the output binary classifier of algorithm (6) is robust, due to the ramp loss,
and has a sparse representation, due to the `1-penalty.

The remainder of the paper is organized as follows: some statistical properties for the
proposed ramp-LPSVM are discussed in Section 2. In Section 3, we establish problem-
solving algorithms including DC programming for local minimization, and hill detouring
for escaping from local optima. The proposed algorithms are tested then on numerical
experiments in Section 4. Section 5 ends the paper with concluding remarks.

2. Theoretical Properties

In this section, we establish the theoretical analysis for ramp-LPSVM under the framework
of statistical learning theory. In the following, we first show that the ramp loss is classifica-
tion calibrated; see Proposition 1. In other works, we prove that minimizing the ramp loss
results in the Bayes classifier. After that, an inequality is presented in Theorem 2 to bound
the difference between the risk of the Bayes classifier and that of the classifier induced from
minimizing the ramp loss. Finally, we obtain the convergence behavior of ramp-LPSVM,
which is given in Theorem 5. To prove Theorem 5, error decomposition theorems for ramp-
SVM and ramp-LPSVM are discussed. The analysis on the ramp loss is closely related to
the properties of the hinge loss, because the ramp loss can be regarded as a truncated hinge
loss. In our analysis, the global minimizer of the ramp loss plays an important role, which
motivates us to establish a global search strategy in the next section.

To this end, we assume that the sample z = {xi, yi}mi=1 is independently drawn from a
probability measure ρ on X×Y . The misclassification error for a binary classifier C : X → Y
is defined as the probability of the event C(x) 6= y:

R(C) =

∫
X×Y

Iy 6=C(x)dρ =

∫
X
ρ(y 6= C(x)|x)dρX ,
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where I is the indicator function, ρX is the marginal distribution of ρ on X, and ρ(y|x)
is the conditional distribution of ρ at given x. It should be pointed out that ρ(y|x) is a
binary distribution, which is given by Prob(y = 1|x) and Prob(y = −1|x). The classifier
that minimizes the misclassification error is the Bayes rule fc, which is defined as,

fc = arg min
C:X→Y

R(C).

The Bayes rule can be evaluated as

fc(x) =

{
1, if Prob(y = 1|x) ≥ Prob(y = −1|x),
−1, if Prob(y = 1|x) < Prob(y = −1|x).

The performance of a binary classifier induced by a real-valued function f is measured by
the excess misclassification error R(sgn(f))−R(fc). Let fz,µ = f∗z,µ + b∗z,µ with (f∗z,µ, b

∗
z,µ)

being the global minimizer of ramp-LPSVM (6). The purpose of the theoretical analysis is
to estimate R(sgn(fz,µ))−R(fc) as the sample size m tends to infinity. Convergence rates
will be derived under the choice of the parameter µ and conditions on the distribution ρ.

As an important ingredient in classification algorithms, the loss function L is used
to model the target function of interest. Concretely, the target function denoted as fL,ρ
minimizes the expected L-risk

RL,ρ(f) =

∫
X×Y

L(1− yf(x))dρ

over all possible functions f : X → R and can be defined pointwisely as below,

fL,ρ(x) = arg min
t∈R

∫
Y
L (1− yt) dρ(y|x), ∀x ∈ X.

The basic idea on designing algorithms is to replace the unknown true risk RL,ρ by the
empirical L-risk

RL,z(f) =
1

m

m∑
i=1

L(1− yif(xi)), (7)

and to minimize this empirical risk (or its penalized version) over a suitable function class.
When the hard margin loss, which counts the number of misclassification,

Lmis(u) =

{
0, u ≥ 0,
1, u < 0,

is used, one can check that for any binary classifier C : X → Y , there holds R(C) =
RLmis,ρ(C). Therefore, the excess misclassification error can be written as

RLmis,ρ(sgn(f))−RLmis,ρ(fc).

However, the empirical algorithms based on Lmis will lead to NP-hard optimization prob-
lems, and thus it is not computationally realizable. One way to resolve this issue is to
use surrogate loss functions as discussed in Section 1, and then to minimize the empirical
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risk associated with the used surrogate loss. Among these losses, the hinge loss plays an
important role, since one has fLhinge,ρ = fc.

Now we investigate the ramp loss. For a given x ∈ X, a simple calculation shows that∫
Y
Lramp (1− yt) dρ(y|x)

= Lramp(1− t)Prob(y = 1|x) + Lramp(1 + t)Prob(y = −1|x)

=


Prob(y = 1|x), t ≤ −1,
Prob(y = 1|x) + (1 + t)Prob(y = −1|x), −1 < t ≤ 0,
(1− t)Prob(y = 1|x) + Prob(y = −1|x), 0 ≤ t < 1,
Prob(y = −1|x), t ≥ 1.

Obviously, when Prob(y = 1|x) > Prob(y = −1|x), the minimal value is Prob(y = −1|x),
which is achieved by t = 1. When Prob(y = 1|x) < P(y = −1|x), the minimal value is
Prob(y = 1|x), which is achieved by t = −1. Therefore, the corresponding target function
fLramp,ρ that minimizes the expected Lramp-risk is the Bayes rule. The discussion above can
be concluded in the following proposition.

Proposition 1 For any measurable function f : X → R, there holds

RLramp,ρ(f) ≥ RLramp,ρ(fc).

That is, the Bayes rule fc is a minimizer of the expected Lramp-risk.

Next, for a real-valued function f : X → R, we consider bounding the excess misclas-
sification error by the generalization error RLramp,ρ(f) − RLramp,ρ(fLramp,ρ). Such kind of
bound plays an essential role in error analysis of classification algorithms. When the loss
function is convex and satisfies some regularity conditions, the corresponding bound is the
so-called self-calibration inequality and has been established by Bartlett et al. (2006) and
Steinwart (2007). For example, a typical result presented in Cucker and Zhou (2007) claims
that, if a general loss function satisfies the following conditions:

• L(1− u) is convex with respect to u;

• L(1− u) is differentiable at u = 0 and dL(1−u)
du |u=0 < 0;

• min{u : L(1− u) = 0} = 1;

• d2L(1−u)
du2

|u=1 > 0,

then there exists a constant cL > 0 such that for any measurable function f : X → R,

RLmis,ρ(sgn(f))−RLmis,ρ(fc) ≤ cL
√
RL,ρ(f)−RL,ρ(fL,ρ). (8)
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This inequality holds for many loss functions, such as the hinge loss, the squared hinge loss,
and the least squares loss. For the hinge loss Lhinge, Zhang (2004) gave a tighter bound by
the following inequality,

RLmis,ρ(sgn(f))−RLmis,ρ(fc) ≤ RLhinge,ρ(f)−RLhinge,ρ(fLhinge,ρ).

The improvement is mainly due to the property that RLhinge,ρ(fLhinge,ρ) = RLhinge,ρ(fc).
For the ramp loss Lramp, we cannot directly use the conclusion given by (8), since the loss

is not convex. However, as Lramp can be considered as a truncated hinge loss and maintains
the same property due to Proposition 1, one thus can establish a similar inequality for the
ramp loss.

Theorem 2 For any probability measure ρ and any measurable function f : X → R,

RLmis,ρ(sgn(f))−RLmis,ρ(fc) ≤ RLramp,ρ(f)−RLramp,ρ(fLramp,ρ). (9)

Proof By Proposition 1, we have RLramp,ρ(fLramp,ρ) = RLramp,ρ(fc). Since y and fc(x)
belong to {−1, 1}, 1−yfc(x) takes value of 0 or 2. We hence haveRLmis,ρ(fc) = RLramp,ρ(fc),
which comes from the fact that

Lmis(0) = Lramp(0) and Lmis(2) = Lramp(2).

Thus, to prove (9), we need to show that

RLmis,ρ(sgn(f)) ≤ RLramp,ρ(f), (10)

which is equivalent to∫
X×Y

Lmis

(
1− ysgn(f(x))

)
− Lramp

(
1− yf(x)

)
dρ ≤ 0.

For any y and f(x), if yf(x) ≤ 0, then ysgn(f(x)) ≤ 0, which follows that Lmis(1 −
ysgn(f(x))) = Lramp(1 − yf(x)) = 1. If yf(x) > 0, then we have ysgn(f(x)) = 1 and
Lmis(1− ysgn(f(x))) = 0. Since Lramp(1− yf(x)) is always nonnegative, we have Lmis(1−
ysgn(f(x)))− Lramp(1− yf(x)) ≤ 0 for this case.

Summarizing the above discussion, we prove (10) and then Theorem 2.

From Theorem 2, in order to estimate RLmis,ρ(sgn(fz,µ))−RLmis,ρ(fc), we turn to bound
RLramp,ρ(fz,µ) − RLramp,ρ(fc). We thus need an error decomposition for the latter. This
decomposition process is well-developed in the literature for RKHS-based regularization
schemes (see, e.g., Cucker and Zhou, 2007; Steinwart and Christmann, 2008). To explain
the details, we take ramp-SVM below as an example. For z = {xi, yi}mi=1 and λ > 0, let
f̃z,λ = f̃∗z,λ + b̃∗z,λ, where

(f̃∗z,λ, b̃
∗
z,λ) = argmin

f∈HK,b∈R

λ

2
‖f‖2K +

1

m

m∑
i=1

Lramp(1− yi(f(xi) + b)). (11)
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Then the following decomposition holds true:

RLramp,ρ(f̃z,λ)−RLramp,ρ(fc) ≤
{
RLramp,ρ(f̃z,λ)−RLramp,z(f̃z,λ)

}
+
{
RLramp,z(fλ)−RLramp,ρ(fλ)

}
+A(λ),

where RLramp,z(f) is the empirical Lramp-risk given by (7). The function fλ depends on λ
and is defined by the data-free limit of (11), that is fλ = f∗λ + b∗λ with

(f∗λ , b
∗
λ) = argmin

f∈HK,b∈R

λ

2
‖f‖2K +Rramp,ρ(f + b). (12)

The term A(λ) measures the approximation power of the system (K, ρ) and is defined by

A(λ) = inf
f∈HK,b∈R

λ

2
‖f‖2K +Rramp,ρ(f + b)−Rramp,ρ(fc), ∀λ > 0. (13)

It is easy to establish such kind of decomposition if one notices the fact that both f̃z,λ and
fλ lie in the same function space. However, it is not the case for ramp-LPSVM. The data-
dependent nature of H+

K,z leads to an essential difficulty in the error analysis. Motivated by
Wu and Zhou (2005), we shall establish the error decomposition for ramp-LPSVM (6) with
the aid of f̃z,λ. To this end, we first show some properties of f̃z,λ, which play an important
role in our analysis.

Proposition 3 For any λ > 0, (f̃∗z,λ, b̃
∗
z,λ) is given by (11) and f̃z,λ = f̃∗z,λ + b̃∗z,λ. Then

f̃∗z,λ ∈ H
+
K,z and

Ω(f̃∗z,λ) ≤ λ−1RLramp,z(f̃z,λ) + ‖f̃∗z,λ‖2K. (14)

Proof Following the idea of Brooks (2011), one can formulate the minimization problem
(11) as a mixed integer optimization problem, which is given by (3) with µ = λ. We first
show that if the binary vector ω∗ = [ω∗1, · · · , ω∗m]T ∈ {0, 1}m is optimal for the optimization
problem (3), then the global minimizer of (11) can be obtained by solving the following
minimization problem

min
f∈HK,ei,b∈R

λ
2‖f‖

2
K + 1

m

∑m
i=1 ei

s.t. ei ≥ 0, i = 1, · · · ,m,
yi(f(xi) + b) ≥ 1− ei, if ω∗i = 0.

(15)

In fact, when the optimal ω∗ is given, the global minimizer of (11) can be solved by the
optimization problem (3), which is reduced to

min
f∈HK,ei,b∈R

λ
2‖f‖

2
K + 1

m

∑m
i=1 ei

s.t. 0 ≤ ei ≤ 1, i = 1, · · · ,m,
yi(f(xi) + b) ≥ 1− ei, if ω∗i = 0.

(16)

Let e∗ = [e∗1, · · · , e∗m]T be the optimal slack variables in the above minimization problem.
Then the triple (f̃∗z,λ, b̃

∗
z,λ, e

∗) is the optimal solution of minimization problem (16). Cor-

respondingly, denote (f̃1z,λ, b̃
1
z,λ, e

∗1) as the optimal solution of minimization problem (15)
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with e∗1 = [e∗11 , · · · , e∗1m ]T . As the constraints in problem (16) is a subset of that in problem
(15), we thus have

λ

2
‖f̃1z,λ‖2K +

1

m

m∑
i=1

e∗1i ≤
λ

2
‖f̃∗z,λ‖2K +

1

m

m∑
i=1

e∗i .

To prove our claim, we just need to verify that 0 ≤ e∗1i ≤ 1 for i = 1, · · · ,m. For ω∗i = 1,
it is easy to see that e∗1i = 0. Next we prove the conclusion for the case ω∗i = 0. Define
an index set as I := {i ∈ {1, · · · ,m} : ω∗i = 0 and e∗1i > 1}. If I is an non-empty set, we
further define a binary vector ω′ with ω′i = 1 for i ∈ I and ω′i = ω∗i otherwise. As ωi = 1
implies the corresponding optimal ei should equal 0, we then define e′i as e′i = 0 if ω′i = 1
and e′i = e∗1i otherwise. One can check that

λ

2
‖f̃1z,λ‖2K +

1

m

m∑
i=1

(e′i + ω′i) <
λ

2
‖f̃1z,λ‖2K +

1

m

m∑
i=1

(e∗1i + ω∗i ) ≤
λ

2
‖f̃∗z,λ‖2K +

1

m

m∑
i=1

(e∗i + ω∗i ).

We thus derive a contradiction to the assumption that (f̃∗z,λ, b̃
∗
z,λ, e

∗, ω∗) is a global optimal
solution for problem (3) and the conclusion follows.

Now we can prove our desired result based on the optimization problem (15). Let
I0 = {i : ω∗i = 0} and I1 = {i : ω∗i = 1}. Since the triple (f̃∗z,λ, b̃

∗
z,λ, e

∗) is the optimal
solution of problem (15), from the KKT condition, there exist constants {α̃∗i }i∈I0 , such that

f̃∗z,λ(x) =
∑
i∈I0

α̃∗i yiK(xi, x) with 0 ≤ α̃∗i ≤
1

λm
,

∑
i∈I0

α̃∗i yi = 0,

1− yi(f̃∗z,λ(xi) + b̃∗z,λ) ≤ 0, if i ∈ I0 and α̃∗i = 0,

0 ≤ e∗i = 1− yi(f̃∗z,λ(xi) + b̃∗z,λ) ≤ 1, if i ∈ I0 and α̃∗i 6= 0.

We also have e∗i = 0, if i ∈ I1. Moreover, by the same argument used in the proof about
the equivalence of problems (15) and (16), one can find that when i ∈ I1, we must have
1− yi(f̃∗z,λ(xi) + b̃∗z,λ) > 1 or 1− yi(f̃∗z,λ(xi) + b̃∗z,λ) < 0 due to the optimality of ω∗.

From the expression of f̃∗z,λ, we can write f̃∗z,λ as
∑m

i=1 α
∗
i yiK(xi, x) with α∗i = α̃∗i if

i ∈ I0 and α∗i = 0 otherwise. Then f̃∗z,λ ∈ H
+
K,z. Furthermore, the relation

∑
i∈I0 α̃

∗
i yi = 0

implies
∑

i∈I0 α̃
∗
i yib̃

∗
z,λ = 0. Then we have

Ω(f̃∗z,λ) =
∑
i∈I0

α̃∗i =
∑
i∈I0

α̃∗i (1− yi(f̃∗z,λ(xi) + b̃∗z,λ)) +
∑
i∈I0

α̃∗i yif̃
∗
z,λ(xi).

Note that f̃∗z,λ(x) =
∑

i∈I0 α̃
∗
i yiK(xi, x). By the definition of ‖ · ‖K-norm, it follows that∑

i∈I0

α̃∗i yif̃
∗
z,λ(xi) =

∑
i,j∈I0

α̃∗i yiα̃
∗
jyjK(xi, xj) = ‖f̃∗z,λ‖2K.
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Additionally, based on our analysis, we also have∑
i∈I0

α̃∗i (1− yi(f̃∗z,λ(xi) + b̃∗z,λ)) =
∑
i∈I0

α̃∗iLramp(yi(f̃
∗
z,λ(xi) + b̃∗z,λ)) ≤ λ−1RLramp,z(f̃z,λ).

Hence the bound for Ω(f̃∗z,λ) follows.

Now we are in the position to make an error decomposition for ramp-LPSVM.

Theorem 4 For 0 < µ ≤ λ ≤ 1, let η = µ
λ . Recall that fz,µ = f∗z,µ + b∗z,µ where (f∗z,µ, b

∗
z,µ)

is a global minimizer of ramp-LPSVM (6) and fλ = f∗λ + b∗λ with (f∗λ , b
∗
λ) given by (12).

Define the sample error S(m,µ, λ) as below,

S(m,µ, λ) =
{
RLramp,ρ(fz,µ)−RLramp,z(fz,µ)

}
+ (1 + η)

{
RLramp,z(fλ)−RLramp,ρ(fλ)

}
.

Then there holds

RLramp,ρ(fz,µ)−Rramp,ρ(fc) + µΩ(f∗z,µ) ≤ ηRLramp,ρ(fc) + S(m,µ, λ) + 2A(λ), (17)

where A(λ) is the approximation error given by (13).

Proof Recall that for any λ > 0, f̃z,λ = f̃∗z,λ + b̃∗z,λ where (f̃∗z,λ, b̃
∗
z,λ) is given by (11). Due

to the definition of fz,µ and the fact f̃∗z,λ ∈ H
+
K,z, we have

RLramp,z(fz,µ) + µΩ(f∗z,µ) ≤ RLramp,z(f̃z,λ) + µΩ(f̃∗z,λ).

Proposition 3 gives

Ω(f̃∗z,λ) ≤ λ−1RLramp,z(f̃z,λ) + ‖f̃∗z,λ‖2K.

Hence,

RLramp,z(fz,µ) + µΩ(f∗z,µ) ≤
(

1 +
µ

λ

)
RLramp,z(f̃z,λ) + µ‖f̃∗z,λ‖2K.

This enables us to bound RLramp,ρ(fz,µ) + µΩ(f∗z,µ) as

RLramp,ρ(fz,µ) + µΩ(f∗z,µ) ≤
{
RLramp,ρ(fz,µ)−RLramp,z(fz,µ)

}
+
(

1 +
µ

λ

)
RLramp,z(f̃z,λ) + µ‖f̃∗z,λ‖2K.

Next we use the definitions of f̃z,λ and fλ to analyze the last two terms of the above bound:(
1 +

µ

λ

)
RLramp,z(f̃z,λ) + µ‖f̃∗z,λ‖2K

≤
(

1 +
µ

λ

)(
RLramp,z(f̃z,λ) + λ‖f̃∗z,λ‖2K

)
≤
(

1 +
µ

λ

) (
RLramp,z(fλ) + λ‖f∗λ‖2K

)
=
(

1 +
µ

λ

) (
RLramp,z(fλ)−RLramp,ρ(fλ) +RLramp,ρ(fλ) + λ‖f∗λ‖2K

)
.
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Combining the above estimates, we find that RLramp,ρ(fz,µ)−Rramp,ρ(fc) +µΩ(f∗z,µ) can be
bounded by{

RLramp,ρ(fz,µ)−RLramp,z(fz,µ)
}

+
(

1 +
µ

λ

){
RLramp,z(fλ)−RLramp,ρ(fλ)

}
+
(

1 +
µ

λ

){
RLramp,ρ(fλ)−RLramp,ρ(fc) + λ‖f∗λ‖2K

}
+
µ

λ
RLramp,ρ(fc).

Recalling the definition of fλ, one has A(λ) = RLramp,ρ(fλ)−RLramp,ρ(fc) +λ‖f∗λ‖2K. Hence
the desired result follows.

With the help of Theorem 4, the generalization error is estimated by bounding S(m,µ, λ)
and A(λ) respectively. As the ramp loss is Lipschitz continuous, one can show that

Rramp,ρ(f)−Rramp,ρ(fc) ≤ ‖f − fc‖L1
ρX
.

Hence the approximation error A(λ) can be estimated by the approximation in a weighted
L1 space with the norm ‖f‖L1

ρX
=
∫
X |f(x)|dρX , as done in Smale and Zhou (2003). The

following assumption is standard in the literature of learning theory (see, e.g., Cucker and
Zhou, 2007; Steinwart and Christmann, 2008).

Assumption 1 For any 0 < β ≤ 1 and cβ > 0, the approximation error satisfies

A(λ) ≤ cβλβ, ∀λ > 0. (18)

We also expect that the sample error S(m,λ, µ) will tend to zero at a certain rate as the
sample size tends to infinity. The asymptotical behaviors of S(m,λ, µ) can be illustrated
by the convergence of the empirical mean 1

m

∑m
i=1 ςi to its expectation Eςi, where {ςi}mi=1

are independent random variables defined as

ςi = Lramp(yif(xi)). (19)

At the end of this section, we present our main theorem to illustrate the convergence
behavior of ramp-LPSVM (6).

Theorem 5 Suppose that Assumption 1 holds with 0 < β ≤ 1. Take µ = m
− β+1

4β+2 and
fz,µ = f∗z,µ + b∗z,µ with (f∗z,µ, b

∗
z,µ) being the global minimizer of ramp-LPSVM (6). Then for

any 0 < δ < 1, with probability at least 1− δ, there holds

RLmis,ρ(sgn(fz,µ))−RLmis,ρ(fc) ≤ c̃
(

log
4

δ

)1/2

m
− β

4β+2 , (20)

where c̃ is a constant independent δ or m.

This theorem will be proved in Appendix by concentration techniques developed by
Bartlett and Mendelson (2003). Based on the decomposition formula (17) established for
ramp-LPSVM, one can also derive sharp convergence results under the framework applied
by Wu and Zhou (2005). Here we use ramp-SVM (11) to conduct an error decomposition
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for ramp-LPSVM (6), so the derived convergence rates of the latter are essentially no worse
than those of ramp-SVM. Actually, also from our discussion in this section, ramp-SVM and
C-SVM should have almost the same error bounds. One thus can expect that ramp-LPSVM
enjoys similar asymptotic behaviors as C-SVM. It also should be pointed that, throughout
our analysis, the global optimality plays an important role. Therefore, to guarantee the
performance of ramp-LPSVM, a global search strategy is necessary.

3. Problem-solving Algorithms

In the previous section, we discussed theoretical properties for ramp-LPSVM. Its robustness
and sparsity can be expected, if a good solution of ramp-LPSVM (6) can be obtained.
However, (6) is non-convex. Therefore, in this paper, we propose a downhill method for
local minimization and a heuristic for escaping a local minimum. Difference of convex
function (DC) programming proposed by An et al. (1996) and An and Tao (2005) has been
applied for ramp loss minimization problems (see Wu and Liu, 2007; Wang et al., 2010).
By Yuille and Rangarajan (2003), Collobert et al. (2006b), Zhao and Sun (2008), this type
of methods is also called a concave-convex procedure. For the proposed ramp-LPSVM, the
DC technique is applicable as well.

Let α = [α1, · · · , αm]T ∈ Rm. Based on the identity (2), ramp-LPSVM (6) can be
written as follows,

min
α�0,b

µ

m∑
i=1

αi +
1

m

m∑
i=1

max

1− yi

 m∑
j=1

αjyjK(xi, xj) + b

 , 0


− 1

m

m∑
i=1

max

−yi
 m∑
j=1

αjyjK(xi, xj) + b

 , 0

 . (21)

We let ζ = [αT , b]T stand for the optimization variable and D(ζ) for the feasible set of
(21). Denote the convex part (the first line of ) as g(ζ), and the concave part (the second
line of (21)) as h(ζ). After that, (21) can be written as minζ∈D(ζ) g(ζ) − h(ζ). Then DC
programming developed by Horst and Thoai (1999) and An and Tao (2005) is applicable.
We give the following algorithm for local minimization for ramp-LPSVM.

Algorithm 1: DC programming for ramp-LPSVM from α̂, b̂

• Set δ > 0, k := 0 and ζ0 := [α̂T , b̂]T ;
repeat
• Select ηk ∈ ∂h(ζk);
• ζk+1 := arg min

ζ∈D(ζ)
g(ζ)−

(
h(ζk) + (ζ − ζk)T ηk

)
;

• Set k := k + 1;
until ‖ζk − ζk−1‖ < δ;
• Algorithm ends and returns ζk.

Since g(ζ) is convex and piecewise linear, Algorithm 1 involves only LP, which can be
effectively solved. One noticeable point is that h(ζ) is not differentiable at some points.
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The non-differentiability of h(ζ) comes from max{u, 0}, of which the sub-gradient at u = 0
is in the interval [0, 1]:

∂max{u, 0}
∂u

∣∣∣
u=0
∈ [0, 1].

In our algorithm, we choose 0.5 as the value of the above sub-gradient and then ηk ∈ ∂h(ζk)
is uniquely defined. The local optimality condition for DC problems has been investi-
gated by An and Tao (2005) and references therein. For a differentiable function, one can
use the gradient information to check whether the solution is locally optimal. However,
ramp-LPSVM is non-smooth and a sub-gradient technique should be considered. The local
minimizer of a non-smooth objective function should meet the local optimality condition
for all vectors in its sub-gradient set. In Algorithm 1, we only consider one value of the
sub-gradient, thus, the result of the above process is not necessarily a local minimum. The
rigorous local optimality condition and the related algorithm can be found in Huang et al.
(2012b). However, because of the effectiveness of DC programming, we suggest Algorithm
1 for ramp-LPSVM in this paper.

As a local search algorithm, DC programming can effectively decrease the objective
value of (21). The main difficulty of solving (21) is that it is non-convex and hence we may
be trapped in a local optimum. To escape from a local optimum, we introduce slack variable
c = [c1, · · · , cm]T and transform (21) into the following concave minimization problem,

min
α,b,c

µ
m∑
i=1

αi +
1

m

m∑
i=1

ci −
1

m

m∑
i=1

max

−yi
 m∑
j=1

αjyjK(xi, xj) + b

 , 0


s.t. ci ≥ 1− yi

(∑m

j=1
αjyjK(xi, xj) + b

)
, i = 1, 2, . . . ,m, (22)

ci ≥ 0, i = 1, 2, . . . ,m,

αi ≥ 0, i = 1, 2, . . . ,m.

This is a concave minimization problem constrained in a polyhedron, which is called a
polyhedral concave problem by Horst and Hoang (1996). Generally, among non-convex
problems, a polyhedral concave problem is relatively easy to deal with. Various techniques,
such as γ-extension, vertex enumeration, partition algorithm, concavity cutting, have been
discussed insightfully in Horst and Hoang (1996) and successfully applied (see, e.g., Porem-
bski, 2004; Mangasarian, 2007; Shu and Karimi, 2009). Moreover, the objective function of
(22) is piecewise linear, which makes the hill detouring method proposed by Huang et al.
(2012a) applicable. In the following, we first introduce the basic idea of the hill detouring
method and then establish a global search algorithm for ramp-LPSVM.

For notational convenience, we use ξ = [αT , b, cT ]T to denote the optimization variable
of (22). The objective function is continuous piecewise linear and is denoted as p(ξ). The
feasible set, which is a polyhedron, can be written as Aξ ≤ q. Then (22) is compactly
represented as the following polyhedral concave problem, of which the objective function is
piecewise linear:

minξ p(ξ), s.t. Aξ ≤ q. (23)

Assume that we are trapped in a local optimum ξ̃ with value p̃ = p(ξ̃) and we are trying to
escape from it. We observe that (in a non-degenerated case): i) the local optimum ξ̃ is a
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vertex of the feasible set; ii) any level set {ξ : p(ξ) = u},∀u is the boundary of a polyhedron.
The first property can be derived from the concavity of the objective function. The second
property comes from the piecewise linearity of p(ξ). These properties imply a new method
searching on the level set to find another feasible solution ξ̂ with the same objective value
p(ξ̂) = p̃. If such ξ̂ is found, we escape from ξ̃ and a downhill method can be used to find
a new local optimum. Otherwise, if such ξ̂ does not exist, one can conclude that ξ̃ is the
optimal solution. Searching on the level set of p(ξ) = p̃ will not decrease neither increase
the objective value and it is hence called hill detouring. In practice, in order to avoid to find
ξ̃ again, we search on {p(ξ) = p̃− ε} with a small positive ε for computational convenience.
If {p(ξ) = p̃ − ε} = ∅, we know that ξ̃ is ε-optimal. The performance of hill detouring is
not sensitive to the ε value, when ε is small (but large enough to distinguish p̃− ε and p̃).
In this paper, we set ε = 10−6.

Hill detouring, which is to solve the feasibility problem

find ξ, s.t. p(ξ) = p̃− ε, Aξ ≤ q, (24)

is a natural idea for global optimization but it is hard to implement for a regular concave
minimization functions. The main difficulty is the nonlinear equation p(ξ) = p̃−ε. In ramp-
LPSVM, the objective function of (22) is continuous and piecewise linear, thus, p(ξ) = p̃−ε
can be transformed into (finite) linear equations. That means (24) can be written as a series
of LP feasibility problems, which makes line search on {ξ : p(ξ) = p̃− ε} possible.

To investigate the property of (23) and the corresponding hill detouring technique,
we consider a 2-dimensional problem. In this intuitive example, the objective function is
p(ξ) = aT0 ξ + b0 −

∑6
i=1 max{0, aTi ξ + bi}, where

a0 =

[
0.05
−0.1

]
a1 =

[
−1
−0.4

]
a2 =

[
1
0

]
a3 =

[
0.5
0.1

]
a4 =

[
−0.9
0.4

]
a5 =

[
−0.6
−1

]
a6 =

[
0.9
0.9

]
b0 = −0.2 b1 = 0.8 b2 = −0.2 b3 = −0.5 b4 = 0.2 b5 = 1 b6 = 0.8.

The feasible domain is an octagon, of which the vertices are [2, 1]T , [1, 2]T , . . . , [1,−2]T . The
plots of p(ξ) and the feasible set are shown in Figure 2, where ξ̃ = [2, 1]T is a local optimum
and the global optimum is ξ? = [−2,−1]T .

Now we try to escape from ξ̃ by hill detouring. In other words, we search on the level
set {ξ : p(ξ) = p̃ − ε} to find a feasible solution. The level set is displayed by the green
dashed line in Figure 3. According to the property that ξ̃ is a vertex of the feasible domain,
we can first search along the corresponding active edges, which are shown by the black solid
lines, to find the γ-extensions. The definition of γ-extension was given by Horst and Hoang
(1996) and is reviewed below.

Definition 6 Suppose f is a concave function, ξ is a given point, γ is a scalar with γ ≤
f(ξ), and θ0 is a positive number large enough. Let d 6= 0 be a direction and θ = min
{θ0, sup{t : f(ξ + td) ≥ γ}}, then ξ + θd is called the γ-extension of f(ξ) from ξ along d.

Set γ = p̃ − ε. γ-extensions from ξ̃ can be easily found by bisection according to the
concavity of p(ξ). For any direction d, we set t1 = 0 and t2 as a large enough positive
number. If p(ξ̃+ t2d) > γ, there is no γ-extension along this direction. Otherwise, after the
following bisection scheme, 1

2(t1 + t2) is the γ-extension from ξ̃ along d,
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Figure 2: Plots of the objective function p(ξ) and the feasible domain Aξ ≤ q, of which
the boundary is shown by the blue solid line. ξ̃ = [2, 1] is a local optimum and
p̃ = p(ξ̃) = −4.5; ξ? = [−2,−1] with p(ξ?) = −8.2 is the global optimum.
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Figure 3: Hill detouring method. From a local optimum ξ̃, we can find v01, which is the
γ-extension along the active edge. Searching in the hyperplane of the level set,
we arrive at v11, v

2
1, and ξ̂, successively. ξ̂ is feasible and has a less objective value

than p(ξ̃), then we successfully escape from the local optimum ξ̃.
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While t2 − t1 > 10−6

If f(ξ̃ + 1
2(t1 + t2)d)) > γ, set t1 = 1

2(t1 + t2); Else set t2 = 1
2(t1 + t2).

For the concerned example, along the edges of the feasible set, which are active at ξ̃, we
find the γ-extensions, denoted by v01 and v02. If the convex hull of v01, v

0
2 and ξ̃ covers the

feasible set, ξ̃ is ε-optimal for (23). Otherwise, these extensions provide good initial points
for hill detouring.

The objective function p(x) is piecewise linear and there exist a finite number of subre-
gions, in each of which, p(ξ) becomes a linear function. Therefore, for any given ξ0, we can
find a subregion, denoted by Dξ0 , such that ξ0 ∈ Dξ0 and there is a corresponding linear
function, denoted by pξ0(ξ), satisfying: p(ξ) = pξ0(ξ), ∀ξ ∈ Dξ0 . Constrained in the region
related to ξ0, the feasibility problem (24) becomes

find ξ

s.t. pξ0(ξ) = p̃− ε, ξ ∈ Dξ0 (25)

Aξ ≤ q.

Since p(ξ) is concave and pξ0(ξ) is essentially the first order Taylor expansion of p(ξ), we
know that p(ξ) ≤ pξ0(ξ), ∀ξ0, ξ, where the equality holds when ξ ∈ Dξ0 . For a solution ξ′

satisfying pξ0(ξ′) = p̃− ε but outside Dξ0 , we have p(ξ′) < p̃− ε. If ξ′ is feasible (Aξ′ ≤ q),
then a better solution is found. Therefore, in hill detouring method, we ignore the constraint
ξ ∈ Dξ0 in (25) and consider the following optimization problem,

min
ξ(1),ξ(2)

‖ξ(1) − ξ(2)‖∞

s.t. pξ0(ξ(1)) = p̃− ε (26)

Aξ(2) ≤ q,

for which ξ(1) = ξ0, ξ
(2) = ξ̃ provides a feasible solution. Notice that after introducing

a slack variable s ∈ R, minimizing ‖ξ(1) − ξ(2)‖∞ is equivalently to minimize s with the
constraint that each component of ξ(1) − ξ(2) is between −s and s. Then (26) is essentially
an LP problem. Starting from v01, we set ξ0 = v01 and solve (26), of which the solution is

denoted by ξ
(1)
0 , ξ

(2)
0 . As displayed in Figure 3, ξ

(1)
0 is the point which is closest to the feasible

domain among all the points in hyperplane pv01 (ξ) = p̃− ε. Heuristically, we search on the

level set towards ξ
(1)
0 : going along the direction d0 = ξ

(1)
0 − ξ0 and finding point v11, where

p(ξ) becomes another linear function. v11 is also a vertex of the level set {ξ : p(ξ) = p̃− ε}.
Then we construct a new linear function pv11 (ξ), which is different to pv01 (ξ). Repeating the

above process, we can get v21. After that, solving (26) for ξ0 = v21 leads to ξ̂, which is feasible
and has a objective value p̃− ε, then we successfully escape from ξ̃ by hill detouring.

We have shown the basic idea of the hill detouring method by one 2-dimensional prob-
lem. For ramp-LPSVM, the hill detouring method for (22) is similar to the above process.
Specifically, the local linear function for a given ξ0 = [αT0 , b0, c

T
0 ]T is below,

pξ0(ξ) = µ

m∑
i=1

αi +
1

m

m∑
i=1

ci +
1

m

∑
i∈Mξ0

yi

 m∑
j=1

αjyjK(xi, xj) + b

 , (27)
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whereMξ0 is a union ofM+
ξ0

and any subset ofM0
ξ0

and the related sets are defined below,

M+
ξ =

{
i : −yi

(∑m

j=1
αjyjK(xi, xj) + b

)
> 0
}
,

M0
ξ =

{
i : −yi

(∑m

j=1
αjyjK(xi, xj) + b

)
= 0
}
.

The above choice meansM+
ξ0
⊆Mξ0 ⊆M

+
ξ0

⋃
M0

ξ0
. For a random ξ,M0

ξ is usually empty.

For a point like v11 in Figure 3, which is a vertex of the level set,M0
v11
6= ∅. In this case, there

are multiple choices for pξ0 and we selectMξ0 which has not been considered. Summarizing
the discussions, we give the following algorithm for ramp-LPSVM (6).

Algorithm 2: Global Search for ramp-LPSVM

initialize
• Set δ (the threshold of convergence for DC programming), ε (the difference
value in hill detouring), Kstep (the maximal number of hill detouring steps)

• Give an initial feasible solution α̂, b̂ ;
repeat

• Use Algorithm 1 from α̂, b̂ to obtain locally optimal solution α̃, b̃;

• Compute c̃i := max
{
−yi

(∑m
j=1 α̃jyjK(xi, xj) + b̃

)
, 0
}

;

• Set ξ̃ := [α̃T , b̃, c̃T ]T , γ := p(ξ̃)− ε, where p(ξ) is the object of (22), and
compute the γ-extensions for edges active at ξ̃. We denote the γ-extensions as
v1, v2, . . . and the distance of vi to the feasible set of (22) as disti;
• Let k := 0 and SM := ∅;
repeat
• Let k := k + 1, select i0 := arg min

i
disti, and set ξ0 := vi0 ;

• Select Mξ0 according to M+
ξ0
,M0

ξ0
such that Mξ0 6∈ SM;

• Set SM := SM
⋃
{Mξ0};

• Construct pξ0(ξ) and solve LP (26), of which the solution is ξ
(1)
0 , ξ

(2)
0 ;

if ξ
(1)
0 = ξ

(2)
0 then

• Set α̂, b̂ according to ξ
(1)
0 and terminate the inner loop;

else

• Let d := ξ
(1)
0 − ξ0 and find θ := max{θ : p(ξ0 + θd) = pξ0(ξ0 + θd)};

• Set vi0 := ξ0 + θd and update disti0 ;
end

until k ≥ Kstep;

until α̃ = α̂, b̃ = b̂;

• Algorithm ends and returns α̃, b̃.

4. Numerical Experiments

In the numerical experiments, we evaluate the performance of ramp-LPSVM (6) and its
problem-solving algorithms. We first report the optimization performance and then discuss
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the robustness and the sparsity compared with C-SVM, LPSVM (5), and ramp-SVM (11).
C-SVM and LPSVM are convex problems, which are solved by the Matlab optimization
toolbox. For ramp-SVM, we apply the algorithm proposed by Collobert et al. (2006a).
The data are downloaded from the UCI Machine Learning Repository given by Frank and
Asuncion (2010). In data sets “Spect”, “Monk1”, “Monk2”, and “Monk3”, the training
and the testing sets are provided. For the others, we randomly partition the data into
two parts: half data are used for training and the remaining data are for testing. In this
paper, we focus on outliers and hence we contaminate the training data set by randomly
selecting some instances in class −1 and changing their labels. Since there are random
factors in sampling and adding outliers, we repeat the above process 10 times for each data
set and report the average accuracy on the testing data. In our experiments, we apply a
Gaussian kernel K(xi, xj) = exp

(
−‖xi − xj‖2/σ2

)
. The training data are normalized to

[0, 1]n and then the regularization coefficient µ and the kernel parameter σ are tuned by
10-fold cross-validation for each method. In the tuning phase, grid search using logarithmic
scale is applied. The range of possible µ value is [10−2, 103] and the range of σ value is
between 10−3 and 102. For ramp-LPSVM, since the global search needs more computation
time, the parameters tuning by cross-validation is conducted based on Algorithm 1. The
experiments are done in Matlab R2011a in Core 2-2.83 GHz, 2.96G RAM.

Intuitively, ramp-LPSVM can provide a sparse and robust result, if a good solution for
(6) can be obtained. Hence, we first consider the optimization performance of the proposed
algorithms. To evaluate them, we set µ = 1/10, σ = 1 and use the four data sets for which
the training data are provided. The result of ramp-LPSVM is sparse, we hence use α̂ = 0,
which is optimal when µ is large sufficiently, as the initial solution. When α̂ = 0, simply
calculating shows that b̂ = 1 is optimal to (6) if there are more training data in class +1
than in class −1 (#{i : yi = 1} ≥ #{i : yi = −1}). Otherwise, we set b̂ = −1. From α̂, b̂, we
apply Algorithm 2 to minimize (6). Basically, Algorithm 2 in turn applies DC programming
for local minimization and hill detouring for escaping local optima. In Table 2, we report
the objective values of the obtained local optima and the corresponding computation time.
The superscript indicates the sequence and f1 is the result of Algorithm 1.

Data f1 f2 f3 f4 f5 f6 GA

Spect objective value 36.59 9.36 7.38 6.41 5.43 5.40 8.78
time (s) 0.298 2.64 2.89 5.46 4.63 19.84 39.6

Monk1 objective value 9.94 8.96 7.11 — — — 10.10
time (s) 4.04 8.14 26.8 — — — 66.34

Monk2 objective value 9.17 8.24 7.31 5.48 — — 12.66
time (s) 12.3 20.9 43.1 43.5 — — 108.1

Monk3 objective value 4.92 4.02 — — — — 11.38
time (s) 3.93 32.7 — — — — 69.21

Table 2: Global Search Performance of Algorithm 2 (δ = 10−6, ε = 10−6,Kstep = 50)

From the reported results, one can see the effectiveness of hill detouring for escaping from
local optima. Another observation is that with the increasing quality of the local optimum,
the hill detouring needs more time for escaping. When the initial point is not good, the
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computation time for hill detouring is also small, which means that the performance of
Algorithm 2 is not sensitive to the initial solution. To evaluate the global search capability,
we also use the Genetic Algorithm (GA) toolbox developed by Chipperfield et al. (1994).
The result of GA is random and we run GA algorithm repeatedly in the similar computing
time of Algorithm 2. Then we select the best one and report it in Table 2. The comparison
illustrates the global search capability of Algorithm 2. The basic elements of Algorithm
1 and Algorithm 2 are both to iteratively solve LPs. For large-scale problems, some fast
methods for LP, especially the techniques designed for LPSVM by Bradley and Mangasarian
(2000), Fung and Mangasarian (2004), and Mangasarian (2006), are applicable to speed up
the solving procedure, which can be potential future work for ramp-LPSVM.

In the experiments above, the proposed algorithms show good minimization capability
for ramp-LPSVM (6). Then one can expect good performance of the proposed model and
algorithms, according to the robustness, sparsity, and other statistical properties discussed
in Section 3. For each training set, we randomly select some data from class −1 and change
their labels to be +1. The ratio of the outliers, denoted by r, is set to be r = 0.0, 0.05, 0.10.
Based on the contaminated training set, we use C-SVM, LPSVM (5), ramp-SVM (11),
and ramp-LPSVM (6) (solved by Algorithm 1 and Algorithm 2, respectively) to train the
classifier and calculate the classification accuracy on the testing data. The above process
is repeated 10 times. The average testing accuracy and the average number of support
vectors (the corresponding |αi| is larger than 10−6) are reported in Table 3, where the data
dimension n and the size of training data m are reported as well. The best results in the
view of classification accuracy are underlined and the sparsest results are given in bold.

From Table 3, we observe that when there are no outliers, C-SVM performs well and
LPSVM also provides good classifiers. The number of support vectors of LPSVM is always
smaller than that of C-SVM, which relates to the property of `1 minimization. With an
increasing number of outliers, the accuracy of C-SVM and LPSVM decreases. In contrast,
the results of ramp-SVM and ramp-LPSVM are more stable, showing the robustness of the
ramp loss. The ramp loss also brings some sparsity, since when yif(xi) ≥ 0, the ramp
loss gives a constant penalty, which corresponds to a zero dual variable. The proposed
ramp-LPSVM consists of the `1-penalty and the ramp loss, both of which can enhance the
sparsity. Hence, the sparsity of the result of ramp-LPSVM is significant. Comparing the
two algorithms for ramp-LPSVM, we find that Algorithm 2, which pursues a global solution,
results in a more robust classifier. But the computation time of Algorithm 2 is significantly
larger, as illustrated in Table 2. Generally, if there are heavy outliers and plenty allowable
computation time, it is worth considering Algorithm 2 to find a good classifier. Otherwise,
solving ramp-LPSVM by Algorithm 1 is a good choice.

5. Conclusion

In this paper, we proposed a robust classification method, called ramp-LPSVM. It consists of
the `1-penalty and the ramp loss, which correspond to sparsity and robustness, respectively.
The consistency and error bound for ramp-LPSVM have been discussed. Ramp-LPSVM
trains a classifier by minimizing the ramp loss together with the `1-penalty, both of which are
piecewise linear. According to the piecewise linearity, a local optimization method using
DC programming and a global search strategy using hill detouring technique have been
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ramp-LPSVM ramp-LPSVM
Data n m r C-SVM LPSVM ramp-SVM (Algorithm 1) (Algorithm 2)

Spect 21 80 0.00 86.03% #80 88.77% #22 88.77% #75 88.77% #22 88.77% #22
21 80 0.05 83.96% #80 86.90% #18 87.70% #76 88.77% #21 88.77% #21
21 80 0.10 84.49% #79 84.33% #20 85.56% #74 87.71% #18 88.37% #18

Monk1 6 124 0.00 85.70% #70 84.68% #44 83.25% #65 83.09% #39 84.40% #38
6 124 0.05 82.70% #72 80.61% #47 81.17% #61 81.92% #36 82.07% #37
6 124 0.10 76.77% #73 73.52% #38 78.66% #57 79.20% #31 79.91% #33

Monk2 6 169 0.00 83.80% #96 81.05% #62 83.80% #86 82.62% #57 82.86% #53
6 169 0.05 77.78% #95 79.05% #59 77.78% #85 80.05% #54 80.24% #61
6 169 0.10 71.76% #96 75.88% #58 74.68% #75 78.53% #52 79.84% #52

Monk3 6 122 0.00 90.15% #55 91.76% #34 91.32% #53 88.73% #29 89.34% #30
6 122 0.05 87.13% #61 88.47% #33 88.68% #47 87.42% #31 86.80% #31
6 122 0.10 81.13% #69 83.49% #34 85.00% #50 84.35% #32 84.94% #30

Breast 10 350 0.00 96.68% #87 95.14% #28 96.78% #73 96.25% #18 96.45% #17
10 350 0.05 95.63% #90 93.41% #25 95.90% #71 96.20% #16 96.07% #16
10 350 0.10 90.43% #84 84.66% #22 91.59% #79 93.54% #16 95.77% #18

Pima 8 385 0.00 76.04% #233 72.53% #47 75.98% #67 75.59% #41 74.22% #39
8 385 0.05 75.78% #230 74.31% #33 75.29% #68 74.56% #40 74.40% #42
8 385 0.10 74.01% #228 74.28% #31 73.26% #69 74.35% #37 74.67% #37

Trans. 4 375 0.00 76.33% #199 75.86% #22 77.01% #32 77.11% #5 77.11% #6
4 375 0.05 74.62% #285 74.97% #19 76.20% #31 76.28% #6 76.69% #7
4 375 0.10 73.06% #274 72.90% #12 76.73% #30 75.28% #8 76.28% #8

Haber. 3 154 0.00 74.77% #86 73.69% #10 74.31% #57 75.05% #5 74.92% #5
3 154 0.05 74.38% #81 73.25% #9 73.26% #68 73.79% #8 73.97% #8
3 154 0.10 71.66% #75 72.54% #11 73.56% #57 73.79% #11 73.86% #11

Ionos. 33 176 0.00 93.81% #93 92.41% #29 93.64% #92 93.10% #32 93.01% #34
33 176 0.05 92.22% #97 89.26% #32 92.89% #95 92.33% #32 93.03% #31
33 176 0.10 90.13% #98 89.41% #32 92.63% #87 92.22% #27 92.94% #28

Table 3: Classification Accuracy on Testing Data and Number of Support Vectors
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proposed. The proposed algorithms have good optimization capability and ramp-LPSVM
has shown robustness and sparsity in numerical experiments.
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Appendix A.

In this appendix, we prove Theorem 5 in Section 2. First, we bound the offset by the
following lemma.

Lemma 7 For any µ > 0, m ∈ N, and z = {xi, yi}mi=1, we can find a solution (f∗z,µ, b
∗
z,µ)

of equation (6) satisfying min1≤i≤m |fz,µ(xi)| ≤ 1, where fz,µ = f∗z,µ + b∗z,µ. Hence, |b∗z,µ| ≤
1 + ‖f∗z,µ‖∞.

Proof Suppose a minimizer fz,µ = f∗z,µ + b∗z,µ of (6) satisfies

r := min
1≤i≤m

|fz,µ(xi)| = |fz,µ(xi0)| > 1.

Then for each i, either yifz,µ(xi) ≥ r > 1 or yifz,µ(xi) ≤ −r < −1. We consider a
function fdz,µ := fz,µ − d with d = (r − 1)sgn(fz,µ(xi0)). Then fdz,µ satisfies |fdz,µ(xi0)| = 1

and |fdz,µ(xi0)| ≥ 1. When yifz,µ(xi) > 1, one can check that yif
d
z,µ(xi) ≥ 1. Similarly,

if yifz,µ(xi) < −1, one still has yif
d
z,µ(xi) ≤ −1. Then Lramp,z(fz,µ) = Lramp,z(fdz,µ).

Therefore, fdz,µ is also a solution of equation (6) and satisfies our requirement.
Now if fz,µ = f∗z,µ + b∗z,µ satisfies

|fz,µ(xi0)| = min
1≤i≤m

|fz,µ(xi)| ≤ 1,

we then have
|b∗z,µ| ≤ 1 + |f∗z,µ(xi0)| ≤ 1 + ‖f∗z,µ‖∞.
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In this way, we complete the proof.

In the following, we shall always choose fz,µ as in lemma 7. According to our proof,
such kind of solutions can be easily constructed even though the obtained ones from the
algorithm do not meet the requirement. Next, we find a function space covering fz,µ when
z runs over all possible samples.

Lemma 8 For every µ > 0, we have f∗z,µ ∈ HK and

‖f∗z,µ‖K ≤ κΩ(f∗z,µ) ≤ κ

µ
,

where κ = supx,y∈X
√
|K(x, y)|.

Proof It is trivial that f∗z,µ ∈ HK. By the reproducing property (see Aronszajn, 1950), for
f∗z,µ =

∑m
i=1 α

∗
i,zyiK(x, xi),

‖f∗z,µ‖K =

 m∑
i,j=1

α∗i,zα
∗
j,zK(xi, xj)

1/2

≤ κ

 m∑
i,j=1

αi,zαj,z

1/2

= κΩ(f∗z,µ).

Due to the definition of f∗z,µ, we have

Rramp,z(fz,µ) + µΩ(f∗z,µ) ≤ Rramp,z(0) + µΩ(0) ≤ 1.

This gives Ω(f∗z,µ) ≤ 1
µ , and completes the proof.

From Lemma 7, Lemma 8 and the relation

‖f‖∞ ≤ κ‖f‖K, ∀f ∈ HK,

we know that fz,µ lies in

Fµ =

{
f = f∗ + b∗ : ‖f∗‖K ≤

κ

µ
and |b∗| ≤ 1 +

κ2

µ

}
. (28)

Now we are in the position to prove the main theorem in Section 2. Our analysis mainly
focus on estimating the sample error S(m,µ, λ).

Proof of Theorem 5. We fist estimate RLramp,z(fλ) − RLramp,ρ(fλ) by considering the
random variable ςi defined by (19) with f = fλ. As Lramp : R → [0, 1], there holds
|ςi−Eςi| ≤ 2. Then by the Hoeffding inequality (see, e.g., Cucker and Zhou, 2007, Corollary
3.6), with probability at least 1− δ/2, we have

RLramp,z(fλ)−RLramp,ρ(fλ) ≤

√
8 log 2

δ

m
. (29)
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For the term RLramp,ρ(fz,µ) − RLramp,z(fz,µ), note that fz,µ varies with samples. In
order to obtain the corresponding upper bound, we shall apply the uniform concentration
inequality to the function set Fµ. One can directly use Theorem 8 in Bartlett and Mendelson
(2003) to deal with this term and find with probability at least 1− δ/2,

RLramp,ρ(fz,µ)−RLramp,z(fz,µ) ≤ EzEσ

[
sup
g∈F̃

∣∣∣∣∣ 2

m

m∑
i=1

σig(xi, yi)

∣∣∣∣∣
]

+

√
8 log 4

δ

m
(30)

where F̃ := {(x, y)→ Lramp(yf(x))− Lramp(0) : f ∈ F} and σ1, · · · , σm are independent
uniform {−1,+1}-valued random variables. As the ramp loss is Lipschitz with constant
1, we further bound the first term in the right-hand side by the result of Bartlett and
Mendelson (2003, Theorem 12) as

EzEσ

[
sup
g∈F̃

∣∣∣∣∣ 2

m

m∑
i=1

σig(xi, yi)

∣∣∣∣∣
]

≤ 2EzEσ

[
sup
f∈F

∣∣∣∣∣ 2

m

m∑
i=1

σif(xi)

∣∣∣∣∣
]

≤ 2EzEσ

[
sup

{f∗∈HK:‖f∗‖K≤κµ}

∣∣∣∣∣ 2

m

m∑
i=1

σif
∗(xi)

∣∣∣∣∣
]

+
2√
m

+
2κ2

µ
√
m

≤ 6κ2

µ
√
m

+
2√
m
.

Here, the last inequality is from Lemma 22 in Bartlett and Mendelson (2003). Combining
the above bound and (29), (30), we then have with probability at least 1− δ,

S(m,µ, λ) ≤ (2 + η)

√
8 log 4

δ

m
+

6κ2

µ
√
m

+
2√
m
.

Finally, we let µ = m
− β+1

4β+2 and λ = m
− 1

4β+2 . Then η = µ
λ = m

− β
4β+2 ≤ 1. Therefore, by

Theorem 2 and Theorem 4, we can derive the bound (20) with c̃ = 15 + 2cβ + 6κ2. This
completes our proof.
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Abstract
This paper considers the problem of clustering a partially observed unweighted graph—i.e., one
where for some node pairs we know there is an edge between them, for some others we know there
is no edge, and for the remaining we do not know whether or not there is an edge. We want to
organize the nodes into disjoint clusters so that there is relatively dense (observed) connectivity
within clusters, and sparse across clusters.

We take a novel yet natural approach to this problem, by focusing on finding the clustering
that minimizes the number of “disagreements”—i.e., the sum of the number of (observed) missing
edges within clusters, and (observed) present edges across clusters. Our algorithm uses convex
optimization; its basis is a reduction of disagreement minimization to the problem of recovering
an (unknown) low-rank matrix and an (unknown) sparse matrix from their partially observed sum.
We evaluate the performance of our algorithm on the classical Planted Partition/Stochastic Block
Model. Our main theorem provides sufficient conditions for the success of our algorithm as a func-
tion of the minimum cluster size, edge density and observation probability; in particular, the results
characterize the tradeoff between the observation probability and the edge density gap. When there
are a constant number of clusters of equal size, our results are optimal up to logarithmic factors.

Keywords: graph clustering, convex optimization, sparse and low-rank decomposition

1. Introduction

This paper is about the following task: given partial observation of an undirected unweighted graph,
partition the nodes into disjoint clusters so that there are dense connections within clusters, and
sparse connections across clusters. By partial observation, we mean that for some node pairs we
know if there is an edge or not, and for the other node pairs we do not know—these pairs are un-
observed. This problem arises in several fields across science and engineering. For example, in
sponsored search, each cluster is a submarket that represents a specific group of advertisers that do
most of their spending on a group of query phrases—see e.g., Yahoo!-Inc (2009) for such a project
at Yahoo. In VLSI and design automation, it is useful in minimizing signaling between compo-
nents (Kernighan and Lin, 1970). In social networks, clusters may represent groups of people with
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similar interest or background; finding clusters enables better recommendations and link predic-
tion (Mishra et al., 2007). In the analysis of document databases, clustering the citation graph is
often an essential and informative first step (Ester et al., 1995). In this paper, we will focus not on
specific application domains, but rather on the basic graph clustering problem itself.

Partially observed graphs appear in many applications. For example, in online social networks
like Facebook, we observe an edge/no edge between two users when they accept each other as a
friend or explicitly decline a friendship suggestion. For the other user pairs, however, we simply
have no friendship information between them, which are thus unobserved. More generally, we have
partial observations whenever obtaining similarity data is difficult or expensive (e.g., because it re-
quires human participation). In these applications, it is often the case that most pairs are unobserved,
which is the regime we are particularly interested in.

As with any clustering problem, we need a precise mathematical definition of the clustering
criterion with potentially a guaranteed performance. There is relatively few existing results with
provable performance guarantees for graph clustering with partially observed node pairs. Many
existing approaches to clustering fully observed graphs either require an additional input (e.g., the
number of clusters k required for spectral or k-means clustering methods), or do not guarantee the
performance of the clustering. We review existing related work in Section 1.2.

1.1 Our Approach

We focus on a natural formulation, one that does not require any other extraneous input besides
the graph itself. It is based on minimizing disagreements, which we now define. Consider any
candidate clustering; this will have (a) observed node pairs that are in different clusters, but have
an edge between them, and (b) observed node pairs that are in the same cluster, but do not have an
edge between them. The total number of node pairs of types (a) and (b) is the number of disagree-
ments between the clustering and the given graph. We focus on the problem of finding the optimal
clustering—one that minimizes the number of disagreements. Note that we do not pre-specify the
number of clusters. For the special case of fully observed graphs, this formulation is exactly the
same as the problem of correlation clustering, first proposed by Bansal et al. (2002). They show
that exact minimization of the above objective is NP-hard in the worst case—we survey and com-
pare with this and other related work in Section 1.2. As we will see, our approach and results are
different.

We aim to achieve the combinatorial disagreement minimization objective using matrix split-
ting via convex optimization. In particular, as we show in Section 2 below, one can represent the
adjacency matrix of the given graph as the sum of an unknown low-rank matrix (corresponding to
“ideal” clusters) and a sparse matrix (corresponding to disagreements from this “ideal” in the given
graph). Our algorithm either returns a clustering, which is guaranteed to be disagreement minimiz-
ing, or returns a “failure”—it never returns a sub-optimal clustering. For our main analytical result,
we evaluate our algorithm’s performance on the natural and classical planted partition/stochastic
block model with partial observations. Our analysis provides stronger guarantees than are current
results on general matrix splitting (Candès et al., 2011; Hsu et al., 2011; Li, 2013; Chen et al.,
2013). The algorithm, model and results are given in Section 2. We prove our theoretical results in
Section 3 and provide empirical results in Section 4.
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1.2 Related Work

Our problem can be interpreted in the general clustering context as one in which the presence of an
edge between two points indicates a “similarity”, and the lack of an edge means “no similarity”. The
general field of clustering is of course vast, and a detailed survey of all methods therein is beyond
our scope here. We focus instead on the three sets of papers most relevant to the problem here:
the work on correlation clustering, on the planted partition/stochastic block model, and on graph
clustering with partial observations.

1.2.1 CORRELATION CLUSTERING

As mentioned, for a completely observed graph, our problem is mathematically precisely the same
as correlation clustering formulated in Bansal et al. (2002); in particular a “+” in correlation cluster-
ing corresponds to an edge in the graph, a “-” to the lack of an edge, and disagreements are defined in
the same way. Thus, this paper can equivalently be considered as an algorithm, and guarantees, for
correlation clustering under partial observations. Since correlation clustering is NP-hard, there has
been much work on devising alternative approximation algorithms (Bansal et al., 2002; Emmanuel
and Fiat, 2003). Approximations using convex optimization, including LP relaxation (Charikar
et al., 2003; Demaine and Immorlica, 2003; Demaine et al., 2006) and SDP relaxation (Swamy,
2004; Mathieu and Schudy, 2010), possibly followed by rounding, have also been developed. We
emphasize that we use a different convex relaxation, and we focus on understanding when our con-
vex program yields an optimal clustering without further rounding.

We note that Mathieu and Schudy (2010) use a convex formulation with constraints enforcing
positive semi-definiteness, triangle inequalities and fixed diagonal entries. For the fully observed
case, their relaxation is at least as tight as ours, and since they add more constraints, it is possible
that there are instances where their convex program works and ours does not. However, this seems
hard to prove/disprove. Indeed, in the full observation setting they consider, their exact recovery
guarantee is no better than ours. Moreover, as we argue in the next section, our guarantees are
order-wise optimal in some important regimes and thus cannot be improved even with a tighter
relaxation. Practically, our method is faster since, to the best of our knowledge, there is no low-
complexity algorithm to deal with the Θ(n3) triangle inequality constraints required by Mathieu
and Schudy (2010). This means that our method can handle large graphs while their result is practi-
cally restricted to small ones (∼ 100 nodes). In summary, their approach has higher computational
complexity, and does not provide significant and characterizable performance gain in terms of exact
cluster recovery.

1.2.2 PLANTED PARTITION MODEL

The planted partition model, also known as the stochastic block-model (Condon and Karp, 2001;
Holland et al., 1983), assumes that the graph is generated with in-cluster edge probability p and
inter-cluster edge probability q (where p > q) and fully observed. The goal is to recover the latent
cluster structure. A class of this model with τ , max{1 − p, q} < 1

2 is often used as benchmark
for average case performance for correlation clustering (see, e.g., Mathieu and Schudy, 2010). Our
theoretical results are applicable to this model and thus directly comparable with existing work
in this area. A detailed comparison is provided in Table 1. For fully observed graphs, our result
matches the previous best bounds in both the minimum cluster size and the difference between
in-cluster/inter-cluster densities. We would like to point out that nuclear norm minimization has
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been used to solve the closely related planted clique problem (Alon et al., 1998; Ames and Vavasis,
2011).

Paper Cluster size K Density difference (1− 2τ)

Boppana (1987) n/2 Ω̃( 1√
n

)

Jerrum and Sorkin (1998) n/2 Ω̃( 1
n1/6−ε )

Condon and Karp (2001) Ω̃(n) Ω̃( 1
n1/2−ε )

Carson and Impagliazzo (2001) n/2 Ω̃( 1√
n

)

Feige and Kilian (2001) n/2 Ω̃( 1√
n

)

McSherry (2001) Ω̃(n2/3) Ω̃(
√

n2

K3 )

Bollobás and Scott (2004) Ω̃(n) Ω̃(
√

1
n)

Giesen and Mitsche (2005) Ω̃(
√
n) Ω̃(

√
n
K )

Shamir and Tsur (2007) Ω̃(
√
n) Ω̃(

√
n
K )

Mathieu and Schudy (2010) Ω̃(
√
n) Ω̃(1)

Rohe et al. (2011) Ω̃(n3/4) Ω̃(n
3/4

K )

Oymak and Hassibi (2011) Ω̃(
√
n) Ω̃(

√
n
K )

Chaudhuri et al. (2012) Ω̃(
√
n) Ω̃(

√
n
K )

This paper Ω̃(
√
n) Ω̃(

√
n
K )

Table 1: Comparison with literature. This table shows the lower-bound requirements on the minimum clus-
ter sizeK and the density difference p−q = 1−2τ that existing literature needs for exact recovery
of the planted partitions, when the graph is fully observed and τ , max{1− p, q} = Θ(1). Some
of the results in the table only guarantee recovering the membership of most, instead of all, nodes.
To compare with these results, we use the soft-Ω notation Ω̃(·), which hides the logarithmic factors
that are necessary for recovering all nodes, which is the goal of this paper.

1.2.3 PARTIALLY OBSERVED GRAPHS

The previous work listed in Table 1, except Oymak and Hassibi (2011), does not handle partial
observations directly. One natural way to proceed is to impute the missing observations with no-
edge, or random edges with symmetric probabilities, and then apply any of the results in Table 1.
This approach, however, leads to sub-optimal results. Indeed, this is done explicitly by Oymak and
Hassibi (2011). They require the probability of observation p0 to satisfy p0 &

√
Kmin
n , where n is

the number of nodes and Kmin is the minimum cluster size; in contrast, our approach only needs
p0 & n

K2
min

(both right hand sides have to be less than 1, requiring Kmin &
√
n, so the right hand

side of our condition is order-wise smaller and thus less restrictive.) Shamir and Tishby (2011) deal
with partial observations directly and shows that p0 & 1

n suffices for recovering two clusters of size
Ω(n). Our result is applicable to much smaller clusters of size Ω̃(

√
n). In addition, a nice feature of
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our result is that it explicitly characterizes the tradeoffs between the three relevant parameters: p0,
τ , and Kmin; theoretical result like this is not available in previous work.

There exists other work that considers partial observations, but under rather different settings.
For example, Balcan and Gupta (2010), Voevodski et al. (2010) and Krishnamurthy et al. (2012)
consider the clustering problem where one samples the rows/columns of the adjacency matrix rather
than its entries. Hunter and Strohmer (2010) consider partial observations in the features rather than
in the similarity graph. Eriksson et al. (2011) show that Ω̃(n) actively selected pairwise similarities
are sufficient for recovering a hierarchical clustering structure. Their results seem to rely on the
hierarchical structure. When disagreements are present, the first split of the cluster tree can recovers
clusters of size Ω(n); our results allow smaller clusters. Moreover, they require active control over
the observation process, while we assume random observations.

2. Main Results

Our setup for the graph clustering problem is as follows. We are given a partially observed graph
of n nodes, whose adjacency matrix is A ∈ Rn×n, which has ai,j = 1 if there is an edge between
nodes i and j, ai,j = 0 if there is no edge, and ai,j =“?” if we do not know. (Here we follow the
convention that ai,i = 0 for all i.) Let Ωobs , {(i, j) : ai,j 6=?} be the set of observed node pairs.
The goal to find the optimal clustering, i.e., the one that has the minimum number of disagreements
(defined in Section 1.1) in Ωobs.

In the rest of this section, we present our algorithm for the above task and analyze its perfor-
mance under the planted partition model with partial observations. We also study the optimality of
the performance of our algorithm by deriving a necessary condition for any algorithm to succeed.

2.1 Algorithm

Our algorithm is based on convex optimization, and either (a) outputs a clustering that is guaranteed
to be the one that minimizes the number of observed disagreements, or (b) declares “failure”. In
particular, it never produces a suboptimal clustering.1 We now briefly present the main idea and
then describe the algorithm.

Consider first the fully observed case, i.e., every ai,j = 0 or 1. Suppose also that the graph is
already ideally clustered—i.e., there is a partition of the nodes such that there is no edge between
clusters, and each cluster is a clique. In this case, the matrix A + I is now a low-rank matrix, with
the rank equal to the number of clusters. This can be seen by noticing that if we re-order the rows
and columns so that clusters appear together, the result would be a block-diagonal matrix, with each
block being an all-ones submatrix—and thus rank one. Of course, this re-ordering does not change
the rank of the matrix, and hence A + I is exactly low-rank.

Consider now any given graph, still fully observed. In light of the above, we are looking for a
decomposition of its A + I into a low-rank part K∗ (of block-diagonal all-ones, one block for each
cluster) and a remaining B∗ (the disagreements), such that the number of non-zero entries in B∗ is
as small as possible; i.e., B∗ is sparse. Finally, the problem we look at is recovery of the best K∗

when we do not observe all entries of A + I. The idea is depicted in Figure 1.

1. In practice, one might be able to use the “failed” output with rounding as an approximate solution. In this paper, we
focus on the performance of the unrounded algorithm.
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Figure 1: The adjacency matrix of a graph drawn from the planted partition model before and after proper
reordering (i.e., clustering) of the nodes. The figure on the right is indicative of the matrix as a
superposition of a sparse matrix and a low-rank block diagonal one.

We propose to perform the matrix splitting using convex optimization (Chandrasekaran et al.,
2011; Candès et al., 2011). Our approach consists of dropping any additional structural require-
ments, and just looking for a decomposition of the given A + I as the sum of a sparse matrix B and
a low-rank matrix K. Recall that Ωobs is the set of observed entries, i.e., the set of elements of A
that are known to be 0 or 1; we use the following convex program:

min
B,K

λ ‖B‖1 + ‖K‖∗

s.t. PΩobs(B + K) = PΩobs(A + I).
(1)

Here, for any matrix M, the term PΩobs(M) keeps all elements of M in Ωobs unchanged, and sets
all other elements to 0; the constraints thus state that the sparse and low-rank matrix should in sum
be consistent with the observed entries of A + I. The term ‖B‖1 =

∑
i,j |bi,j | is the `1 norm of

the entries of the matrix B, which is well-known to be a convex surrogate for the number of non-
zero entries ‖B‖0. The second term ‖K‖∗ =

∑
s σs(K) is the nuclear norm (also known as the

trace norm), defined as the sum of the singular values of K. This has been shown to be the tightest
convex surrogate for the rank function for matrices with unit spectral norm (Fazel, 2002). Thus our
objective function is a convex surrogate for the (natural) combinatorial objective λ‖B‖0 + rank(K).
The optimization problem (1) is, in fact, a semidefinite program (SDP) (Chandrasekaran et al.,
2011).

We remark on the above formulation. (a) This formulation does not require specifying the
number of clusters; this parameter is effectively learned from the data. The tradeoff parameter λ is
artificial and can be easily determined: since any desired K∗ has trace exactly equal to n, we simply
choose the smallest λ such that the trace of the optimal solution is at least n. This can be done
by, e.g., bisection, which is described below. (b) It is possible to obtain tighter convex relaxations
by adding more constraints, such as the diagonal entry constraints ki,i = 1, ∀i, the positive semi-
definite constraint K � 0, or even the triangular inequalities ki,j + kj,k − ki,k ≤ 1. Indeed, this is
done by Mathieu and Schudy (2010). Note that the guarantees for our formulation (to be presented
in the next subsection) automatically imply guarantees for any other tighter relaxations. We choose
to focus on our (looser) formulation for two reasons. First, and most importantly, even with the extra
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constraints, Mathieu and Schudy (2010) do not deliver better exact recovery guarantees (cf. Table 1).
In fact, we show in Section 2.3 that our results are near optimal in some important regimes, so tighter
relaxations do not seem to provide additional benefits in exact recovery. Second, our formulation can
be solved efficiently using existing Augmented Lagrangian Multiplier methods (Lin et al., 2009).
This is no longer the case with the Θ(n3) triangle inequality constraints enforced by Mathieu and
Schudy (2010), and solving it as a standard SDP is only feasible for small graphs.

We are interested in the case when the convex program (1) produces an optimal solution K that
is a block-diagonal matrix and corresponds to an ideal clustering.

Definition 1 (Validity) The convex program (1) is said to produce a valid output if the low-rank
matrix part K of the optimal solution corresponds to a graph of disjoint cliques; i.e., its rows and
columns can be re-ordered to yield a block-diagonal matrix with all ones for each block.

Validity of a given K can be easily checked via elementary re-ordering operations.2 Our first simple
but useful insight is that whenever the convex program (1) yields a valid solution, it is the disagree-
ment minimizer.

Theorem 2 For any λ > 0, if the solution of (1) is valid, then it is the clustering that minimizes the
number of observed disagreements.

Our complete clustering procedure is given as Algorithm 1. It takes the adjacency matrix of the
graph A and outputs either the optimal clustering or declares failure. Setting the parameter λ is
done via binary search. The initial value of λ is not crucial; we use λ = 1

32
√
p̄0n

based on our
theoretical analysis in the next sub-section, where p̄0 is the empirical fraction of observed pairs.
To solve the optimization problem (1), we use the fast algorithm developed by Lin et al. (2009),
which is tailored for matrix splitting and takes advantage of the sparsity of the observations. By
Theorem 2, whenever the algorithm results in a valid K, we have found the optimal clustering.

Algorithm 1 Optimal-Cluster(A)
λ← 1

32
√
p̄0n

while not terminated do
Solve (1) to obtain the solution (B,K)
if K is valid then

Output the clustering in K and EXIT.
else if trace(K) > n then
λ← λ/2

else if trace(K) < n then
λ← 2λ

end if
end while
Declare Failure.

2. If we re-order a valid K such that identical rows and columns appear together, it will become block-diagonal.
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2.2 Performance Analysis

For the main analytical contribution of this paper, we provide conditions under which the above
algorithm will find the clustering that minimizes the number of disagreements among the observed
entries. In particular, we characterize its performance under the standard and classical planted
partition/stochastic block model with partial observations, which we now describe.

Definition 3 (Planted Partition Model with Partial Observations) Suppose that n nodes are par-
titioned into r clusters, each of size at least Kmin. Let K∗ be the low-rank matrix corresponding to
this clustering (as described above). The adjacency matrix A of the graph is generated as follows:
for each pair of nodes (i, j) in the same cluster, ai,j =? with probability 1 − p0, ai,j = 1 with
probability p0p, or aij = 0 otherwise, independent of all others; similarly, for (i, j) in different
clusters, ai,j =? with probability 1− p0, ai,j = 1 with probability p0q, or ai,j = 0 otherwise.

Under the above model, the graph is observed at locations chosen at random with probability p0.
In expectation a fraction of 1 − p of the in-cluster observations are disagreements; similarly, the
fraction of disagreements in the across-cluster observations is q. Let B∗ = PΩobs(A + I − K∗)
be the matrix of observed disagreements for the original clustering; note that the support of B∗

is contained in Ωobs. The following theorem provides a sufficient condition for our algorithm to
recover the original clustering (B∗,K∗) with high probability. Combined with Theorem 2, it also
shows that under the same condition, the original clustering is disagreement minimizing with high
probability.

Theorem 4 Let τ = max{1 − p, q}. There exist universal positive constants c and C such that,
with probability at least 1− cn−10, the original clustering (B∗,K∗) is the unique optimal solution
of (1) with λ = 1

32
√
np0

provided that

p0 (1− 2τ)2 ≥ Cn log2 n

K2
min

. (2)

Note that the quantity τ is (an upper bound of) the probability of having a disagreement, and 1− 2τ
is (a lower bound of) the density gap p− q. The sufficient condition in the theorem is given in terms
of the three parameters that define problem: the minimum cluster sizeKmin, the density gap 1−2τ ,
and the observation probability p0. We remark on these parameters.

• Minimum cluster size Kmin. Since the left hand side of the condition (2) in Theorem 4 is no
more than 1, it imposes a lower-bound Kmin = Ω̃(

√
n) on the cluster sizes. This means that

our method can handle a growing number Õ(
√
n) of clusters. The lower-bound on Kmin is

attained when 1 − 2τ and p0 are both Θ(1), i.e., not decreasing as n grows. Note that all
relevant works require a lower-bound at least as strong as ours (cf. Table 1).

• Density gap 1− 2τ . When p0 = Θ(1), our result allows this gap to be vanishingly small, i.e.,
Ω̃
( √

n
Kmin

)
, where a larger Kmin allows for a smaller gap. As we mentioned in Section 1.2,

this matches the best available results (cf. Table 1), including those in Mathieu and Schudy
(2010) and Oymak and Hassibi (2011), which use tighter convex relaxations that are more
computationally demanding. We note that directly applying existing results in the low-rank-
plus-sparse literature (Candès et al., 2011; Li, 2013) leads to weaker results, where the gap be
bounded below by a constant.
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• Observation probability p0. When 1 − 2τ = Θ(1), our result only requires a vanishing
fraction of observations, i.e., p0 can be as small as Θ̃

(
n

K2
min

)
; a larger Kmin allows for a

smaller p0. As mentioned in Section 1.2, this scaling is better than prior results we know of.

• Tradeoffs. A novel aspect of our result is that it shows an explicit tradeoff between the ob-
servation probability p0 and the density gap 1 − 2τ . The left hand side of (2) is linear in p0

and quadratic in 1 − 2τ . This means if the number of observations is four times larger, then
we can handle a 50% smaller density gap. Moreover, p0 can go to zero quadratically faster
then 1 − 2τ . Consequently, treating missing observations as disagreements would lead to
quadratically weaker results. This agrees with the intuition that handling missing entries with
known locations is easier than correcting disagreements whose locations are unknown.

We would like to point out that our algorithm has the capability to handle outliers. Suppose there
are some isolated nodes which do not belong to any cluster, and they connect to each other and each
node in the clusters with probability at most τ , with τ obeying the condition (2) in Theorem 4. Our
algorithm will classify all these edges as disagreements, and hence automatically reveal the identity
of each outlier. In the output of our algorithm, the low rank part K will have all zeros in the columns
and rows corresponding to outliers—all their edges will appear in the disagreement matrix B.

2.3 Lower Bounds

We now discuss the tightness of Theorem 4. Consider first the case where Kmin = Θ(n), which
means there are a constant number of clusters. We establish a fundamental lower bound on the
density gap 1−2τ and the observation probability p0 that are required for any algorithm to correctly
recover the clusters.

Theorem 5 Under the planted partition model with partial observations, suppose the true clus-
tering is chosen uniformly at random from all possible clusterings with equal cluster size K. If
K = Θ(n) and τ = 1 − p = q > 1/100, then for any algorithm to correctly identify the clusters
with probability at least 3

4 , we need

p0(1− 2τ)2 ≥ C 1

n
,

where C > 0 is an absolute constant.

Theorem 5 generalizes a similar result in Chaudhuri et al. (2012), which does not consider partial
observations. The theorem applies to any algorithm regardless of its computational complexity, and
characterizes the fundamental tradeoff between p0 and 1 − 2τ . It shows that when Kmin = Θ(n),
the requirement for 1− 2τ and p0 in Theorem 4 is optimal up to logarithmic factors, and cannot be
significantly improved by using more complicated methods.

For the general case with Kmin = O(n), only part of the picture is known. Using non-rigorous
arguments, Decelle et al. (2011) show that 1 − 2τ &

√
n

Kmin
is necessary when τ = Θ(1) and the

graph is fully observed; otherwise recovery is impossible or computationally hard. According to
this lower-bound, our requirement on the density gap 1 − 2τ is probably tight (up to log factors)
for all Kmin. However, a rigorous proof of this claim is still lacking, and seems to be a difficult
problem. Similarly, the tightness of our condition on p0 and the tradeoff between p0 and τ is also
unclear in this regime.
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3. Proofs

In this section, we prove Theorems 2 and 4. The proof of Theorem 5 is deferred to Appendix B.

3.1 Proof of Theorem 2

We first prove Theorem 2, which says that if the optimization problem (1) produces a valid matrix,
i.e., one that corresponds to a clustering of the nodes, then this is the disagreement minimizing
clustering. Consider the following non-convex optimization problem

min
B,K

λ ‖B‖1 + ‖K‖∗

s.t. PΩobs(B + K) = PΩobs(I + A),

K is valid,

(3)

and let (B,K) be any feasible solution. Since K represents a valid clustering, it is positive semidef-
inite and has all ones along its diagonal. Therefore, it obeys ‖K‖∗ = trace(K) = n. On the other
hand, because both K−I and A are adjacency matrices, the entries of B = I+A−K in Ωobs must
be equal to −1, 1 or 0 (i.e., it is a disagreement matrix). Clearly any optimal B must have zeros at
the entries in Ωc

obs. Hence ‖B‖1 = ‖PΩobs(B)‖0 when K is valid. We thus conclude that the above
optimization problem (3) is equivalent to minimizing ‖PΩobs(B)‖0 subject to the same constraints.
This is exactly the minimization of the number of disagreements on the observed edges. Now notice
that (1) is a relaxed version of (3). Therefore, if the optimal solution of (1) is valid and thus feasible
to (3), then it is also optimal to (3), the disagreement minimization problem.

3.2 Proof of Theorem 4

We now turn to the proof of Theorem 4, which provides guarantees for when the convex program (1)
recovers the true clustering (B∗,K∗).

3.2.1 PROOF OUTLINE AND PRELIMINARIES

We overview the main steps in the proof of Theorem 4; details are provided in Sections 3.2.2–3.2.4
to follow. We would like to show that the pair (B∗,K∗) corresponding to the true clustering is the
unique optimal solution to our convex program (1). This involves the following three steps.

Step 1: We show that it suffices to consider an equivalent model for the observation and dis-
agreements. This model is easier to handle, especially when the observation probability and density
gap are vanishingly small, which is the regime of interest in this paper.

Step 2: We write down the sub-gradient based first-order sufficient conditions that need to
be satisfied for (B∗,K∗) to be the unique optimum of (1). In our case, this involves showing
the existence of a matrix W—the dual certificate—that satisfies certain properties. This step is
technical—requiring us to deal with the intricacies of sub-gradients since our convex function is not
smooth—but otherwise standard. Luckily for us, this has been done previously (Chandrasekaran
et al., 2011; Candès et al., 2011; Li, 2013).

Step 3: Using the assumptions made on the true clustering K∗ and its disagreements B∗, we
construct a candidate dual certificate W that meets the requirements in step 2, and thus certify
(B∗,K∗) as being the unique optimum.
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The crucial Step 3 is where we go beyond the existing literature on matrix splitting (Chan-
drasekaran et al., 2011; Candès et al., 2011; Li, 2013). These results assume the observation prob-
ability and/or density gap is at least a constant, and hence do not apply to our setting. Here we
provide a refined analysis, which leads to better performance guarantees than those that could be
obtained via a direct application of existing sparse and low-rank matrix splitting results.

Next, we introduce some notations used in the rest of the proof of the theorem. The following
definitions related to K∗ are standard. By symmetry, the SVD of K∗ has the form UΣUT , where
U ∈ Rn×r contains the singular vectors of K∗. We define the subspace

T ,
{
UXT + YUT : X,Y ∈ Rn×r

}
,

which is spanned of all matrices that share either the same column space or the same row space as
K∗. For any matrix M ∈ Rn×n, its orthogonal projection to the space T is given by PT (M) =
UUTM + MUUT −UUTMUUT . The projection onto T ⊥, the complement orthogonal space
of T , is given by PT ⊥(M) = M− PT (M).

The following definitions are related to B∗ and partial observations. Let Ω∗ = {(i, j) : b∗i,j 6=
0} be the set of matrix entries corresponding to the disagreements. Recall that Ωobs is the set of
observed entries. For any matrix M and entry set Ω0, we let PΩ0 (M) ∈ Rn×n be the matrix
obtained from M by setting all entries not in the set Ω0 to zero. We write Ω0 ∼ Ber0(p) if the
entry set Ω0 does not contain the diagonal entries, and each pair (i, j) and (j, i) (i 6= j) is contained
in Ω0 with probability p, independent all others; Ω0 ∼ Ber1(p) is defined similarly except that Ω0

contains all the diagonal entries. Under our partially observed planted partition model, we have
Ωobs ∼ Ber1(p0) and Ω∗ ∼ Ber0(τ).

Several matrix norms are used. ‖M‖ and ‖M‖F represent the spectral and Frobenius norms of
the matrix M, respectively, and ‖M‖∞ , maxi,j |mi,j | is the matrix infinity norm.

3.2.2 STEP 1: EQUIVALENT MODEL FOR OBSERVATIONS AND DISAGREEMENTS

It is easy show that increasing p or decreasing q can only make the probability of success higher,
so without loss of generality we assume 1 − p = q = τ . Observe that the probability of success
is completely determined by the distribution of (Ωobs,B

∗) under the planted partition model with
partial observations. The first step is to show that it suffices to consider an equivalent model for
generating (Ωobs,B

∗), which results in the same distribution but is easier to handle. This is in the
same spirit as Candès et al. (2011, Theorems 2.2 and 2.3) and Li (2013, Section 4.1). In particular,
we consider the following procedure:

1. Let Γ ∼ Ber1 (p0(1− 2τ)), and Ω ∼ Ber0

(
2p0τ

1−p0+2p0τ

)
. Let Ωobs = Γ ∪ Ω.

2. Let S be a symmetric random matrix whose upper-triangular entries are independent and
satisfy P(si,j = 1) = P(si,j = −1) = 1

2 .

3. Define Ω′ ⊆ Ω as Ω′ =
{

(i, j) : (i, j) ∈ Ω, si,j = 1− 2k∗i,j

}
. In other words, Ω′ is the

entries of S whose signs are consistent with a disagreement matrix.

4. Define Ω∗ = Ω′\Γ, and Γ̃ = Ωobs\Ω∗.

5. Let B∗ = PΩ∗(S).
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It is easy to verify that (Ωobs,B
∗) has the same distribution as in the original model. In particular,

we have P[(i, j) ∈ Ωobs] = p0, P[(i, j) ∈ Ω∗, (i, j) ∈ Ωobs] = p0τ and P[(i, j) ∈ Ω∗, (i, j) /∈
Ωobs] = 0, and observe that given K∗, B∗ is completely determined by its support Ω∗.

The advantage of the above model is that Γ and Ω are independent of each other, and S has
random signed entries. This facilitates the construction of the dual certificate, especially in the
regime of vanishing p0 and

(
1
2 − τ

)
considered in this paper. We use this equivalent model in the

rest of the proof.

3.2.3 STEP 2: SUFFICIENT CONDITIONS FOR OPTIMALITY

We state the first-order conditions that guarantee (B∗,K∗) to be the unique optimum of (1) with
high probability. Here and henceforth, by with high probability we mean with probability at least
1− cn−10 for some universal constant c > 0. The following lemma follows from Theorem 4.4 in Li
(2013) and the discussion thereafter.

Lemma 6 (Optimality Condition) Suppose
∥∥∥ 1

(1−2τ)p0
PT PΓPT − PT

∥∥∥ ≤ 1
2 . Then (B∗,K∗) is

the unique optimal solution to (1) with high probability if there exists W ∈ Rn×n such that

1.
∥∥PT (W + λPΩS−UU>)

∥∥
F
≤ λ

n2 ,

2. ‖PT ⊥(W + λPΩS)‖ ≤ 1
4 ,

3. PΓc(W) = 0,

4. ‖PΓ(W)‖∞ ≤
λ
4 .

Lemma 9 in the appendix guarantees that the condition
∥∥∥ 1

(1−2τ)p0
PT PΓPT − PT

∥∥∥ ≤ 1
2 is satisfied

with high probability under the assumption of Theorem 4. It remains to show the existence of a
desired dual certificate W which satisfies the four conditions in Lemma 6 with high probability.

3.2.4 STEP 3: DUAL CERTIFICATE CONSTRUCTION

We use a variant of the so-called golfing scheme (Candès et al., 2011; Gross, 2011) to construct
W. Our application of golfing scheme, as well as its analysis, is different from previous work and
leads to stronger guarantees. In particular, we go beyond existing results by allowing the fraction of
observed entries and the density gap to be vanishing.

By definition in Section 3.2.2, Γ obeys Γ ∼ Ber1(p0(1−2τ)). Observe that Γ may be considered
to be generated by Γ =

⋃
1≤k≤k0 Γk, where the sets Γk ∼ Ber1(t) are independent; here the

parameter t obeys p0(1 − 2τ) = 1 − (1 − t)k0 , and k0 is chosen to be d5 log ne. This implies t ≥
p0(1−2τ)/k0 ≥ C0

n logn
K2

min
for some constantC0, with the last inequality holds under the assumption

of Theorem 4. For any random entry set Ω0 ∼ Ber1(ρ), define the operator RΩ0 : Rn×n 7→ Rn×n
by

RΩ0(M) =

n∑
i=1

mi,ieie
T
i + ρ−1

∑
1≤i<j≤n

δijmi,j

(
eie

T
j + eje

T
i

)
,

where δij is the indicator random variable with δij = 1 if (i, j) ∈ Ω0 and 0 otherwise, and ei is the
i-th standard basis in Rn×n, i.e., the column vector with 1 in its i-th entry and 0 elsewhere.
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We now define our dual certificate. Let W = Wk0 , where Wk0 is defined recursively by setting
W0 = 0 and for all k = 1, 2, . . . , k0,

Wk = Wk−1 +RΓkPT
(
UUT − λPT (PΩ(S))−Wk−1

)
.

Clearly the equality condition in Lemma 6 is satisfied. It remains to show that W also satisfies
the inequality conditions with high probability. The proof makes use of the technical Lemmas 9–
12 given in the appendix. For convenience of notation, we define the quantity ∆k = UUT −
λPT (PΩ(S))− PT (Wk), and use the notation

k∏
i=1

(PT − PTRΓiPT ) = (PT − PTRΓkPT ) · · · (PT − PTRΓ1PT ),

where the order of multiplication is important. Observe that by construction of W, we have

∆k =

k∏
i=1

(PT − PTRΓiPT )(UUT − λPT PΩ(S)), k = 1, . . . , k0, (4)

Wk0 =

k0∑
k=1

RΓk∆k−1. (5)

We are ready to prove that W satisfies inequalities 1, 2 and 4 in Lemma 6.
Inequality 1: Thanks to (4), we have the following geometric convergence :

∥∥∥PT (W + λPΩS−UU>)
∥∥∥
F

= ‖∆k0‖F

≤

(
k0∏
k=1

‖PT − PTRΓkPT ‖

)∥∥UUT − λPT PΩ(S)
∥∥
F

(a)

≤ e−k0(
∥∥UUT

∥∥
F

+ λ ‖PT PΩ(S)‖F )

(b)

≤ n−5(n+ λ · n) ≤ (1 + λ)n−4
(c)

≤ 1

2n2
λ.

Here, the inequality (a) follows Lemma 9 with ε1 = e−1, (b) follows from our choices of λ and k0

and the fact that ‖PT PΩ(S)‖F ≤ ‖PΩ(S)‖F ≤ n, and (c) holds under the assumption λ ≥ 1
32
√
n

in the theorem.
Inequality 4: We have

‖PΓ(W)‖∞ = ‖PΓ(Wk0)‖∞ ≤
k0∑
k=1

‖RΓi∆i−1‖∞ ≤ t
−1

k0∑
k=1

‖∆k−1‖∞ ,
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where the first inequality follows from (5) and the triangle inequality. We proceed to obtain

k0∑
k=1

‖∆k−1‖∞
(a)
=

k0∑
k=1

∥∥∥∥∥
k−1∏
i=1

(PT − PTRΓiPT )(UUT − λPT PΩ(S))

∥∥∥∥∥
∞

(b)

≤
k0∑
k=1

(
1

2

)k ∥∥UUT − λPT PΩ(S)
∥∥
∞

(c)

≤ 1

Kmin
+ λ

√
p0n log n

K2
min

, (6)

where (a) follows from (4), (b) follows from Lemma 11 and (c) follows from Lemma 12. It follows
that

‖PΓ(W)‖∞ ≤
1

t

(
1

Kmin
+
n log n

K2
min

λ

)
≤ k0

p0(1− 2τ)

(
1

Kmin
+ λ

√
p0n log n

K2
min

)
≤ 1

4
λ,

where the last inequality holds under the assumption of Theorem 4
Inequality 2: Observe that by the triangle inequality, we have

‖PT ⊥(W + λPΩ(S))‖ ≤ λ ‖PT ⊥(PΩ(S))‖+ ‖PT ⊥(Wk0)‖ .

For the first term, standard results on the norm of a matrix with i.i.d. entries (e.g., see Vershynin
2010) give

λ ‖PT ⊥(PΩ(S))‖ ≤ λ ‖PΩ(S)‖ ≤ 1

32
√
p0n
· 4
√

2p0τn

1− p0 + 2p0τ
≤ 1

8

It remains to show that the second term is bounded by 1
8 . To this end, we observe that

‖PT ⊥(Wk0)‖ (a)
=

k0∑
k=1

‖PT ⊥ (RΓk∆k−1 −∆k−1)‖

≤
k0∑
k=1

‖(RΓk − I) ∆k−1‖

(b)

≤ C

√
n log n

t

k0∑
k=1

‖∆k−1‖∞

(c)

≤ C

√
k0n log n

p0(1− 2τ)

(
1

Kmin
+ λ

√
p0n log n

K2
min

)
≤ 1

8
,

where in (a) we use (5) and the fact that ∆k ∈ T , (b) follows from Lemma 10, and (c) follows
from (6). This completes the proof of Theorem 4.
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Figure 2: Simulation results verifying the performance of our algorithm as a function of the observation
probability p0 and the graph size n. The left pane shows the probability of successful recovery
under different p0 and n with fixed τ = 0.2 and Kmin = n/4; each point is an average over 5
trials. After proper rescaling of the x-axis, the curves align as shown in the right pane, indicating
a good match with our theoretical results.

4. Experimental Results

We explore via simulation the performance of our algorithm as a function of the values of the model
parameters (n,Kmin, p0, τ). We see that the performance matches well with the theory.

In the experiment, each test case is constructed by generating a graph with n nodes divided into
clusters of equal sizeKmin, and then placing a disagreement on each pair of node with probability τ
independently. Each node pair is then observed with probability p0. We then run Algorithm 1, where
the optimization problem (1) is solved using the fast algorithm in Lin et al. (2009).. We check if the
algorithm successfully outputs a solution that equals to the underlying true clusters. In the first set
of experiments, we fix τ = 0.2 and Kmin = n/4 and vary p0 and n. For each (p0, n), we repeat the
experiment for 5 times and plot the probability of success in the left pane of Figure 2.

One observes that our algorithm has better performance with larger p0 and n, and the success
probability exhibits a phase transition. Theorem 4 predicts that, with τ fixed and Kmin = n/4, the
transition occurs at p0 ∝ n log2 n

K2
min

∝ log2 n
n ; in particular, if we plot the success probability against

the control parameter p0n
log2 n

, all curves should align with each other. Indeed, this is precisely what
we see in the right pane of Figure 2 where we use p0n

logn as the control parameter. This shows that
Theorem 4 gives the correct scaling between p0 and n up to an extra log factor.

In a similar fashion, we run another three sets of experiments with the following settings: (1)
n = 1000 and τ = 0.2 with varying (p0,Kmin); (2) Kmin = n/4 and p0 = 0.2 with varying (τ, n);
(3) n = 1000 and p0 = 0.6 with varying (τ,Kmin). The results are shown in Figures 3, 4 and 5;
note that each x-axis corresponds to a control parameter chosen according to the scaling predicted
by Theorem 4. Again we observe that all the curves roughly align, indicating a good match with the
theory. In particular, by comparing Figures 2 and 4 (or Figures 3 and 5), one verifies the quadratic
tradeoff between observations and disagreements (i.e., p0 vs. 1− 2τ ) as predicted by Theorem 4.

Finally, we compare the performance of our method with spectral clustering, a popular method
for graph clustering. For spectral clustering, we first impute the missing entries of the adjacency
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Figure 3: Simulation results verifying the performance of our algorithm as a function of the observation
probability p0 and the cluster size Kmin, with n = 1000 and τ = 0.2 fixed.
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Figure 4: Simulation results verifying the performance of our algorithm as a function of the disagreement
probability τ and the graph size n, with p0 = 0.2 and Kmin = n/4 fixed.

matrix with either zeros or random 1/0’s. We then compute the first k principal components of the
adjacency matrix, and run k-means clustering on the principal components (von Luxburg, 2007);
here we set k equal to the number of clusters. The adjacency matrix is generated in the same fashion
as before using the parameters n = 2000,Kmin = 200 and τ = 0.1. We vary the observation proba-
bility p0 and plot the success probability in Figure 6. It can be observed that our method outperforms
spectral clustering with both imputation schemes; in particular, it requires fewer observations.

5. Conclusion

We proposed a convex optimization formulation, based on a reduction to decomposing low-rank
and sparse matrices, to address the problem of clustering partially observed graphs. We showed
that under a wide range of parameters of the planted partition model with partial observations, our
method is guaranteed to find the optimal (disagreement-minimizing) clustering. In particular, our
method succeeds under higher levels of noise and/or missing observations than existing methods in
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Figure 5: Simulation results verifying the performance of our algorithm as a function of the disagreement
probability τ and the cluster size Kmin, with n = 1000 and p0 = 0.6 fixed.
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Figure 6: Comparison of our method and spectral clustering under different observation probabilities p0,
with n = 2000, Kmin = 200 and τ = 0.1. For spectral clustering, two imputation schemes
are considered: (a) Spectral (Zero), where the missing entries are imputed with zeros, and (b)
Spectral (Rand), where they are imputed with 0/1 random variables with symmetric probabilities.
The result shows that our method recovers the underlying clusters with fewer observations.

this setting. The effectiveness of the proposed method and the scaling of the theoretical results are
validated by simulation studies.

This work is motivated by graph clustering applications where obtaining similarity data is ex-
pensive and it is desirable to use as few observations as possible. As such, potential directions for
future work include considering different sampling schemes such as active sampling, as well as
dealing with sparse graphs with very few connections.
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Appendix A. Technical Lemmas

In this section, we provide several auxiliary lemmas required in the proof of Theorem 4. We will
make use of the non-commutative Bernstein inequality. The following version is given by Tropp
(2012).

Lemma 7 (Tropp, 2012) Consider a finite sequence {Mi} of independent, random n×n matrices
that satisfy the assumption EMi = 0 and ‖Mi‖ ≤ D almost surely. Let

σ2 = max

{∥∥∥∥∥∑
i

E
[
MiM

>
i

]∥∥∥∥∥ ,
∥∥∥∥∥∑

i

E
[
M>

i Mi

]∥∥∥∥∥
}
.

Then for all θ > 0 we have

P
[∥∥∥∑Mi

∥∥∥ ≥ θ] ≤ 2n exp

(
− θ2

2σ2 + 2Dθ/3

)
.

≤

{
2n exp

(
− 3θ2

8σ2

)
, for θ ≤ σ2

D ;

2n exp
(
− 3θ

8D

)
, for θ ≥ σ2

D .
(7)

Remark 8 When n = 1, this becomes the standard two-sided Bernstein inequality.

We will also make use of the following estimate, which follows from the structure of U.∥∥∥PT (eie
>
j )
∥∥∥2

F
=
∥∥UUT ei

∥∥2
+
∥∥UUT ej

∥∥2 −
∥∥UUT ei

∥∥2 ∥∥UUT ej
∥∥2 ≤ 2n

K2
min

, ∀1 ≤ i, j ≤ n.

The first auxiliary lemma controls the operator norm of certain random operators. A similar
result was given in Candès et al. (2011, Theorem 4.1). Our proof is different from theirs.

Lemma 9 Suppose Ω0 is a set of entries obeying Ω0 ∼ Ber1(ρ). Consider the operator PT −
PTRΩ0PT . For some constant C0 > 0, we have

‖PT − PTRΩ0PT ‖ < ε1

with high probability provided that ρ ≥ C0
n logn
ε21K

2
min

and ε1 ≤ 1.

Proof For each (i, j), define the indicator random variable δij = 1{(i,j)∈Ω0}. We observe that for
any matrix M ∈ T ,

(PTRΩ0PT − PT ) M =
∑

1≤i<j≤n
Sij(M)

,
∑

1≤i<j≤n

(
ρ−1δij − 1

) 〈
PT (eie

>
j ), M

〉
PT (eie

>
j + eje

>
i ).
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Here Sij : Rn×n 7→ Rn×n is a linear self-adjoint operator with E [Sij ] = 0. Using the fact that
PT (eie

>
j ) =

(
PT (eje

>
i )
)> and M is symmetric, we obtain the bounds

‖Sij‖ ≤ ρ−1
∥∥∥PT (eie

>
j )
∥∥∥
F

∥∥∥PT (eie
>
j + eje

>
i )
∥∥∥
F

≤ ρ−1 · 2
∥∥∥PT (eie

>
j )
∥∥∥2

F
≤ 4n

K2
minρ

,

and∥∥∥∥∥∥E
 ∑

1≤i<j≤n
S2
ij(M)

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
∑

1≤i<j≤n
E
[
(ρ−1δ

(k)
ij − 1)2

] 〈
PT (eie

>
j ), M

〉〈
PT (eie

>
j + eje

>
i ), eie

>
j

〉
PT (eie

>
j + eje

>
i )

∥∥∥∥∥∥
F

=
(
ρ−1 − 1

) ∥∥∥∥∥∥
∑

1≤i<j≤n
2
∥∥∥PT (eie

>
j )
∥∥∥2

F
mi,jPT (eie

>
j + eje

>
i )

∥∥∥∥∥∥
F

≤
(
ρ−1 − 1

) ∥∥∥∥∥∥
∑

1≤i<j≤n
2
∥∥∥PT (eie

>
j )
∥∥∥2

F
mi,j(eie

>
j + eje

>
i )

∥∥∥∥∥∥
F

≤
(
ρ−1 − 1

) 4n

K2
min

∥∥∥∥∥∥
∑

1≤i<j≤n
mi,j(eie

>
j + eje

>
i )

∥∥∥∥∥∥
F

=
(
ρ−1 − 1

) 4n

K2
min

‖M‖F ,

which means
∥∥∥E [∑1≤i<j≤n S2

ij

]∥∥∥ ≤ 4n
K2

minρ
. Applying the first inequality in the Bernstein inequal-

ity (7) gives

P
[∥∥∥∑1≤i<j≤n Sij

∥∥∥ ≥ ε1] ≤ 2n2−2β

provided ρ ≥ 64βn logn
3K2

minε
2
1

and ε1 < 1.

The next lemma bounds the spectral norm of certain symmetric random matrices. A related
result for non-symmetric matrices appeared in Candès and Recht (2009, Theorem 6.3).

Lemma 10 Suppose Ω0 is a set of entries obeying Ω0 ∼ Ber1(ρ), and M is a fixed n×n symmetric
matrix. Then for some constant C0 > 0, we have

‖(I −RΩ0)M‖ <

√
C0
n log n

ρ
‖M‖∞,

with high probability provided that ρ ≥ C0
logn
n .
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Proof Define δij as before. Notice that

RΩ0(M)−M =
∑
i<j

Sij ,
∑
i<j

(ρ−1δij − 1)mi,j

(
eie
>
j + eje

>
i

)
.

Here the symmetric matrix Sij ∈ Rn×n satisfies E [Sij ] = 0, ‖Sij‖ ≤ 2ρ−1 ‖M‖∞ and the bound

∥∥∥E [∑i<j S
2
ij

]∥∥∥ =
(
ρ−1 − 1

) ∥∥∥∥∥∥
∑
i<j

m2
i,j

(
eie
>
i + eje

>
j

)∥∥∥∥∥∥
≤
(
ρ−1 − 1

) ∥∥∥∥∥∥diag

∑
j

m2
1,j , . . . ,

∑
j

m2
n,j

∥∥∥∥∥∥
≤
(
ρ−1 − 1

)
n ‖M‖2∞ ≤ 2ρ−1n ‖M‖2∞ .

When ρ ≥ 16β logn
3n , we apply the first inequality in the Bernstein inequality (7) to obtain

P

[∥∥∥∑i<j Sij

∥∥∥ ≥√16βn log n

3ρ
‖M‖∞

]
≤ 2n exp

(
−

3 · 16βn logn
3ρ ‖M‖2∞

8 · 2n
ρ ‖M‖

2
∞

)
≤ 2n1−β.

The conclusion follows by choosing a sufficiently large constant β.

The third lemma bounds the infinity norm of certain random symmetric matrices. A related
result is given in Candès et al. (2011, Lemma 3.1).

Lemma 11 Suppose Ω0 is a set of entries obeying Ω0 ∼ Ber1(ρ), and M ∈ T is a fixed symmetric
n× n matrix. Then for some constant C0 > 0, we have

‖(PT − PTRΩ0PT )M‖∞ < ε3‖M‖∞,

with high probability provided that ρ ≥ C0
n logn
ε23K

2
min

and ε3 ≤ 1.

Proof Define δij as before. Fix an entry index (a, b). Notice that

(PTRΩ0PTM− PTM)a,b =
∑
i<j

ξij ,
∑
i<j

〈
(ρ−1δ

(k)
ij − 1)mi,jPT

(
eie
>
j + eje

>
i

)
, eae

>
b

〉
.

The random variable ξij satisfies E [ξij ] = 0 and obeys the bounds

|ξij | ≤ 2p−1
∥∥∥PT (eie

>
j )
∥∥∥
F

∥∥∥PT (eae
>
b )
∥∥∥
F
|mi,j | ≤

4n

K2
minρ

‖M‖∞
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and ∣∣∣∣∣∣E
∑
i<j

ξ2
ij

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i<j

E
[
(ρ−1δ

(k)
ij − 1)2

]
m2
i,j

〈
PT
(
eie
>
j + eje

>
i

)
, eae

>
b

〉2

∣∣∣∣∣∣
≤
(
ρ−1 − 1

)
‖M‖2∞

∑
i<j

〈
eie
>
j + eje

>
i , PT (eae

>
b )
〉2

≤ 2
(
ρ−1 − 1

)
‖M‖2∞

∥∥∥PT (eae
>
b )
∥∥∥2

F

≤ 2
(
ρ−1 − 1

) 2n

K2
min

‖M‖2∞

≤ 4n

K2
minρ

‖M‖2∞ .

When ρ ≥ 64βn logn
3K2

minε
2
3

and ε3 ≤ 1, we apply the first inequality in the Bernstein inequality (7) with
n = 1 to obtain

P
[∣∣∣(PTRΩ0PTM− PTM)a,b

∣∣∣ ≥ ε3 ‖M‖∞] ≤ 2 exp

− 3ε23 ‖M‖
2
∞

8 4n
K2

minρ
‖M‖2∞

 ≤ 2n−2β.

Applying the union bound then yields

P [‖PTRΩ0PTM− PTM‖∞ ≥ ε3 ‖M‖∞] ≤ 2n2−2β.

The last lemma bounds the matrix infinity norm of PT PΩ(S) for a ±1 random matrix S.

Lemma 12 Suppose Ω ∼ Ber0

(
2p0τ

1−p0+2p0τ

)
and S ∈ Rn×n has i.i.d. symmetric ±1 entries .

Under the assumption of Theorem 4, for some constant C0, we have with high probability

‖PT PΩ(S)‖∞ ≤ C0

√
p0n log n

K2
min

.

Proof By triangle inequality, we have

‖PT PΩ(S)‖∞ ≤
∥∥UUTPΩ(S)

∥∥
∞ +

∥∥PΩ(S)UUT
∥∥
∞ +

∥∥UUTPΩ(S)UUT
∥∥
∞ ,

so it suffices to show that each of these three terms are bounded by C
√

p0n logn
K2

min
w.h.p. for some

constant C. Under the assumption on Ω and S in the lemma statement, each pair of symmetric
entries of PΩ(S) equals ±1 with probability ρ , p0τ

1−p0+2p0τ
and 0 otherwise; notice that ρ ≤ p0

2

since τ ≤ 1
2 . Let

(
s(i)
)T

be the ith row of UUT . From the structure of U, we know that for all i
and j, ∣∣∣s(i)

j

∣∣∣ ≤ 1

Kmin
,
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and for all i,

n∑
j=1

(
s

(i)
j

)2
≤ 1

Kmin
.

We now bound
∥∥UUTPΩ(S)

∥∥
∞. For simplicity, we focus on the (1, 1) entry of UUTPΩ(S) and

denote this random variable asX . We may writeX as X =
∑

i s
(1)
i (PΩ(S))i,1 , for which we have

E
[
s

(1)
i (PΩ(S))i,1

]
= 0,∣∣∣s(1)

i (PΩ(S))i,1

∣∣∣ ≤ ∣∣∣s(1)
i

∣∣∣ ≤ 1

Kmin
, a.s.

Var (X) =
∑

i:(i,1)∈Ω

(s
(1)
i )2 · 2ρ ≤ p0

Kmin
.

Applying the standard Bernstein inequality then gives

P

[
|X| > C

√
p0n log n

K2
min

]
≤ 2 exp

[
−
(
C2 p0n log n

K2
min

)
/

(
2
p0

Kmin
+

2C
√
p0n log n

3K2
min

)]
.

Under the assumption of Theorem 4, the right hand side above is bounded by 2n−12. It follows
from the union bound that

∥∥UUTPΩ(S)
∥∥
∞ ≤ C

√
p0n logn
K2

min
w.h.p. Clearly, the same bound holds

for
∥∥PΩ(S)UUT

∥∥
∞. Finally, let K be the size of the cluster that node j is in. Observe that due to

the structure of UU>, we have(
UUTPΩ(S)UUT

)
i,j

=
∑
l

(
UU>PΩ(S)

)
i,l

(
UU>

)
l,j
≤ 1

K
·K ·

∥∥∥UU>PΩ(S)
∥∥∥
∞
,

which implies
∥∥UUTPΩ(S)UUT

∥∥
∞ ≤

∥∥UU>PΩ(S)
∥∥
∞ . This completes the proof of the lemma.

Appendix B. Proof of Theorem 5

We use a standard information theoretical argument, which improves upon a related proof by Chaud-
huri et al. (2012). Let K be the size of the clusters (which are assumed to have equal size). For
simplicity we assume n/K is an integer. Let F be the set of all possible partition of n nodes into
n/K clusters of equal size K. Using Stirling’s approximation, we have

M , |F| = 1

(n/K)!

(
n

K

)(
n−K
K

)
· · ·
(
K

K

)
≥
( n

3K

)n(1− 1
K

)
≥ c

1
2
n

1 ,

which holds for K = Θ(n).
Suppose the clustering Y is chosen uniformly at random from F , and the graph A is generated

from Y according to the planted partition model with partial observations, where we use aij =? for
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unobserved pairs. We use PA|Y to denote the distribution of A given Y. Let Ŷ be any measurable
function of the observation A. A standard application of Fano’s inequality and the convexity of the
mutual information (Yang and Barron, 1999) gives

sup
Y ∈F

P
[
Ŷ 6= Y|Y

]
≥ 1−

M−2
∑

Y(1),Y(2)∈F D
(
PA|Y(1)‖PA|Y(2)

)
+ log 2

logM
, (8)

where D(·‖·) denotes the KL-divergence. We now upper bound this divergence. Given Y(l), l =
1, 2, the ai,j’s are independent of each other, so we have

D
(
PA|Y(1)‖PA|Y(2)

)
=
∑
i,j

D
(
Pai,j |Y(1)‖Pai,j |Y(2)

)
.

For each pair (i, j), the KL-divergence is zero if y(1)
i,j = y

(2)
i,j , and otherwise satisfies

D
(
Pai,j |Y(1)‖Pai,j |Y(2)

)
≤ p0(1− τ) log

p0(1− τ)

p0τ
+ p0τ log

p0τ

p0(1− τ)
+ (1− p0) log

1− p0

1− p0

= p0(1− 2τ) log
1− τ
τ

≤ p0(1− 2τ)

(
1− τ
τ
− 1

)
≤ c2p0(1− 2τ)2,

where c2 > 0 is a universal constant and the last inequality holds under the assumption τ > 1/100.
Let N be the number of pairs (i, j) such that y(1)

i,j 6= y
(2)
i,j . When K = Θ(n), we have

N ≤ |{(i, j) : y
(1)
i,j = 1} ∪ {(i, j) : y

(2)
i,j = 1}| ≤ n2.

It follows that D
(
PA|Y(1)‖PA|Y(2)

)
≤ N · c2p0(1− 2τ)2 ≤ c2n

2p0(1− 2τ)2. Combining pieces,

for the left hand side of (8) to be less than 1/4, we must have p0(1− 2τ)2 ≥ C 1
n .
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Abstract

Community detection is the task of detecting hidden communities from observed interac-
tions. Guaranteed community detection has so far been mostly limited to models with
non-overlapping communities such as the stochastic block model. In this paper, we remove
this restriction, and provide guaranteed community detection for a family of probabilistic
network models with overlapping communities, termed as the mixed membership Dirichlet
model, first introduced by Airoldi et al. (2008). This model allows for nodes to have frac-
tional memberships in multiple communities and assumes that the community memberships
are drawn from a Dirichlet distribution. Moreover, it contains the stochastic block model
as a special case. We propose a unified approach to learning these models via a tensor
spectral decomposition method. Our estimator is based on low-order moment tensor of the
observed network, consisting of 3-star counts. Our learning method is fast and is based
on simple linear algebraic operations, e.g., singular value decomposition and tensor power
iterations. We provide guaranteed recovery of community memberships and model param-
eters and present a careful finite sample analysis of our learning method. As an important
special case, our results match the best known scaling requirements for the (homogeneous)
stochastic block model.
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1. Introduction

Studying communities forms an integral part of social network analysis. A community
generally refers to a group of individuals with shared interests (e.g., music, sports), or
relationships (e.g., friends, co-workers). Community formation in social networks has been
studied by many sociologists, (e.g., Moreno, 1934; Lazarsfeld et al., 1954; McPherson et al.,
2001; Currarini et al., 2009), starting with the seminal work of Moreno (1934). They posit
various factors such as homophily1 among the individuals to be responsible for community
formation. Various probabilistic and non-probabilistic network models attempt to explain
community formation. In addition, they also attempt to quantify interactions and the
extent of overlap between different communities, relative sizes among the communities, and
various other network properties. Studying such community models are also of interest in
other domains, e.g., in biological networks.

While there exists a vast literature on community models, learning these models is
typically challenging, and various heuristics such as Markov Chain Monte Carlo (MCMC) or
variational expectation maximization (EM) are employed in practice. Such heuristics tend
to scale poorly for large networks. On the other hand, community models with guaranteed
learning methods tend to be restrictive. A popular class of probabilistic models, termed
as stochastic blockmodels, have been widely studied and enjoy strong theoretical learning
guarantees, (e.g., White et al., 1976; Holland et al., 1983; Fienberg et al., 1985; Wang
and Wong, 1987; Snijders and Nowicki, 1997; McSherry, 2001). On the other hand, they
posit that an individual belongs to a single community, which does not hold in most real
settings (Palla et al., 2005).

In this paper, we consider a class of mixed membership community models, originally
introduced by Airoldi et al. (2008), and recently employed by Xing et al. (2010) and Gopalan
et al. (2012). The model has been shown to be effective in many real-world settings, but
so far, no learning approach exists with provable guarantees. In this paper, we provide a
novel learning approach for learning these mixed membership models and prove that these
methods succeed under a set of sufficient conditions.

The mixed membership community model of Airoldi et al. (2008) has a number of
attractive properties. It retains many of the convenient properties of the stochastic block
model. For instance, conditional independence of the edges is assumed, given the community
memberships of the nodes in the network. At the same time, it allows for communities to
overlap, and for every individual to be fractionally involved in different communities. It
includes the stochastic block model as a special case (corresponding to zero overlap among
the different communities). This enables us to compare our learning guarantees with existing
works for stochastic block models and also study how the extent of overlap among different
communities affects the learning performance.

1.1 Summary of Results

We now summarize the main contributions of this paper. We propose a novel approach for
learning mixed membership community models of Airoldi et al. (2008). Our approach is a
method of moments estimator and incorporates tensor spectral decomposition. We provide

1. The term homophily refers to the tendency that individuals belonging to the same community tend to
connect more than individuals in different communities.
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guarantees for our approach under a set of sufficient conditions. Finally, we compare our
results to existing ones for the special case of the stochastic block model, where nodes belong
to a single community.

1.1.1 Learning Mixed Membership Models

We present a tensor-based approach for learning the mixed membership stochastic block
model (MMSB) proposed by Airoldi et al. (2008). In the MMSB model, the community
membership vectors are drawn from the Dirichlet distribution, denoted by Dir(α), where α
is known the Dirichlet concentration vector. Employing the Dirichlet distribution results
in sparse community memberships in certain regimes of α, which is realistic. The extent of
overlap between different communities under the MMSB model is controlled (roughly) via a
single scalar parameter, α0 :=

∑
i αi, where α := [αi] is the Dirichlet concentration vector.

When α0 → 0, the mixed membership model degenerates to a stochastic block model and
we have non-overlapping communities. When αi < 1 (and hence, α0 < k), the generated
vectors tend to be sparse and we focus on this regime in this paper.

We propose a unified tensor-based learning method for the MMSB model and establish
recovery guarantees under a set of sufficient conditions. These conditions are in in terms of
the network size n, the number of communities k, extent of community overlaps (through
α0), and the average edge connectivity across various communities. Below, we present an
overview of our guarantees for the special case of equal sized communities (each of size
n/k) and homogeneous community connectivity: let p be the probability for any intra-
community edge to occur, and q be the probability for any inter-community edge. Let
Π be the community membership matrix, where Π(i) denotes the ith row, which is the
vector of membership weights of the nodes for the ith community. Let P be the community
connectivity matrix such that P (i, i) = p and P (i, j) = q for i 6= j.

Theorem 1 (Main Result) For an MMSB model with network size n, number of com-
munities k, connectivity parameters p, q and community overlap parameter α0, when2

n = Ω̃(k2(α0 + 1)2),
p− q
√
p

= Ω̃

(
(α0 + 1)k

n1/2

)
, (1)

our estimated community membership matrix Π̂ and the edge connectivity matrix P̂ satisfy
with high probability (w.h.p.)

επ,`1
n

:=
1

n
max
i∈[n]
‖Π̂i −Πi‖1 = Õ

(
(α0 + 1)3/2√p

(p− q)
√
n

)
(2)

εP := max
i,j∈[k]

|P̂i,j − Pi,j | = Õ

(
(α0 + 1)3/2k

√
p

√
n

)
. (3)

Further, our support estimates Ŝ satisfy w.h.p.,

Π(i, j) ≥ ξ ⇒ Ŝ(i, j) = 1 and Π(i, j) ≤ ξ

2
⇒ Ŝ(i, j) = 0, ∀i ∈ [k], j ∈ [n], (4)

where Π is the true community membership matrix and the threshold is chosen as ξ = Ω(εP ).

2. The notation Ω̃(·), Õ(·) denotes Ω(·), O(·) up to poly-log factors.
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Remark: Note that the scaling condition in (1) ensures that
επ,`1
n in (2) is decaying, since

we assume that α0 < k (sparse regime). However, if we want the estimation error εP in
(3) to decay, we require a slightly stronger condition with respect to α0 that

n = Ω̃(k2(α0 + 1)3),
p− q
√
p

= Ω̃

(
(α0 + 1)1.5k

n1/2

)
.

The complete details are in Section 4. We first provide some intuitions behind the
sufficient conditions in (1). We require the network size n to be large enough compared
to the number of communities k, and for the separation p − q to be large enough, so that
the learning method can distinguish the different communities. This is natural since a zero
separation (p = q) implies that the communities are indistinguishable. Moreover, we see
that the scaling requirements become more stringent as α0 increases. This is intuitive since
it is harder to learn communities with more overlap, and we quantify this scaling. For the
Dirichlet distribution, it can be shown that the number of “significant” entries is roughly
O(α0) with high probability, and in many settings of practical interest, nodes may have
significant memberships in only a few communities, and thus, α0 is a constant (or growing
slowly) in many instances.

In addition, we quantify the error bounds for estimating various parameters of the mixed
membership model in (2) and (3). These errors decay under the sufficient conditions in (1).
Lastly, we establish zero-error guarantees for support recovery in (4): our learning method
correctly identifies (w.h.p) all the significant memberships of a node and also identifies the
set of communities where a node does not have a strong presence, and we quantify the
threshold ξ in Theorem 1. Further, we present the results for a general (non-homogeneous)
MMSB model in Section 4.2.

1.1.2 Identifiability Result for the MMSB Model

A byproduct of our analysis yields novel identifiability results for the MMSB model based
on low order graph moments. We establish that the MMSB model is identifiable, given
access to third order moments in the form of counts of 3-star subgraphs, i.e., a star subgraph
consisting of three leaves, for each triplet of leaves, when the community connectivity matrix
P is full rank. Our learning approach involves decomposition of this third order tensor.
Previous identifiability results required access to high order moments and were limited to
the stochastic block model setting; see Section 1.3 for details.

1.1.3 Implications on Learning Stochastic Block Models

Our results have implications for learning stochastic block models, which is a special case
of the MMSB model with α0 → 0. In this case, the sufficient conditions in (1) reduce to

n = Ω̃(k2),
p− q
√
p

= Ω̃

(
k

n1/2

)
, (5)
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The scaling requirements in (5) match with the best known bounds3 (up to poly-log factors)
for learning uniform stochastic block models and were previously achieved by Chen et al.
(2012) via convex optimization involving semi-definite programming (SDP). In contrast,
we propose an iterative non-convex approach involving tensor power iterations and linear
algebraic techniques, and obtain similar guarantees. For a detailed comparison of learning
guarantees under various methods for learning (homogeneous) stochastic block models,
see Chen et al. (2012).

Thus, we establish learning guarantees explicitly in terms of the extent of overlap among
the different communities for general MMSB models. Many real-world networks involve
sparse community memberships and the total number of communities is typically much
larger than the extent of membership of a single individual, e.g., hobbies/interests of a
person, university/company networks that a person belongs to, the set of transcription
factors regulating a gene, and so on. Thus, we see that in this regime of practical interest,
where α0 = Θ(1), the scaling requirements in (1) match those for the stochastic block model
in (5) (up to polylog factors) without any degradation in learning performance. Thus, we
establish that learning community models with sparse community memberships is akin to
learning stochastic block models and we present a unified approach and analysis for learning
these models.

To the best of our knowledge, this work is the first to establish polynomial time learning
guarantees for probabilistic network models with overlapping communities and we provide a
fast and an iterative learning approach through linear algebraic techniques and tensor power
iterations. While the results of this paper are mostly limited to a theoretical analysis of
the tensor method for learning overlapping communities, we note recent results which show
that this method (with improvements and modifications) is very accurate in practice on
real datasets from social networks, and is scalable to graphs with millions of nodes (Huang
et al., 2013).

1.2 Overview of Techniques

We now describe the main techniques employed in our learning approach and in establishing
the recovery guarantees.

1.2.1 Method of Moments and Subgraph Counts

We propose an efficient learning algorithm based on low order moments, viz., counts of
small subgraphs. Specifically, we employ a third-order tensor which counts the number of
3-stars in the observed network. A 3-star is a star graph with three leaves (see Figure 1)
and we count the occurrences of such 3-stars across different partitions. We establish that
(an adjusted) 3-star count tensor has a simple relationship with the model parameters,
when the network is drawn from a mixed membership model. We propose a multi-linear
transformation using edge-count matrices (also termed as the process of whitening), which
reduces the problem of learning mixed membership models to the canonical polyadic (CP)
decomposition of an orthogonal symmetric tensor, for which tractable decomposition exists,

3. There are many methods which achieve the best known scaling for n in (5), but have worse scaling for
the separation p − q. This includes variants of the spectral clustering method, (e.g., Chaudhuri et al.,
2012). See Chen et al. (2012) for a detailed comparison.
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as described below. Note that the decomposition of a general tensor into its rank-one
components is referred to as its CP decomposition (Kolda and Bader, 2009) and is in
general NP-hard (Hillar and Lim, 2013). However, the decomposition is tractable in the
special case of an orthogonal symmetric tensor considered here.

1.2.2 Tensor Spectral Decomposition via Power Iterations

Our tensor decomposition method is based on the popular power iterations (see Anandku-
mar et al., 2012a, e.g.,). It is a simple iterative method to compute the stable eigen-pairs
of a tensor. In this paper, we propose various modifications to the basic power method
to strengthen the recovery guarantees under perturbations. For instance, we introduce
adaptive deflation techniques (which involves subtracting out the eigen-pairs previously es-
timated). Moreover, we initialize the tensor power method with (whitened) neighborhood
vectors from the observed network, as opposed to random initialization. In the regime,
where the community overlaps are small, this leads to an improved performance. Addi-
tionally, we incorporate thresholding as a post-processing operation, which again, leads to
improved guarantees for sparse community memberships, i.e., when the overlap among dif-
ferent communities is small. We theoretically establish that all these modifications lead to
improvement in performance guarantees and we discuss comparisons with the basic power
method in Section 4.4.

1.2.3 Sample Analysis

We establish that our learning approach correctly recovers the model parameters and the
community memberships of all nodes under exact moments. We then carry out a care-
ful analysis of the empirical graph moments, computed using the network observations.
We establish tensor concentration bounds and also control the perturbation of the various
quantities used by our learning algorithm via matrix Bernstein’s inequality (Tropp, 2012,
thm. 1.4) and other inequalities. We impose the scaling requirements in (1) for various
concentration bounds to hold.

1.3 Related Work

There is extensive work on modeling communities and various algorithms and heuristics for
discovering them. We mostly limit our focus to works with theoretical guarantees.

1.3.1 Method of Moments

The method of moments approach dates back to Pearson (1894) and has been applied for
learning various community models. Here, the moments correspond to counts of various
subgraphs in the network. They typically consist of aggregate quantities, e.g., number of
star subgraphs, triangles etc. in the network. For instance, Bickel et al. (2011) analyze
the moments of a stochastic block model and establish that the subgraph counts of certain
structures, termed as “wheels” (a family of trees), are sufficient for identifiability under some
natural non-degeneracy conditions. In contrast, we establish that moments up to third order
(corresponding to edge and 3-star counts) are sufficient for identifiability of the stochastic
block model, and also more generally, for the mixed membership Dirichlet model. We
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employ subgraph count tensors, corresponding to the number of subgraphs (such as stars)
over a set of labeled vertices, while the work of Bickel et al. (2011) considers only aggregate
(i.e., scalar) counts. Considering tensor moments allows us to use simple subgraphs (edges
and 3 stars) corresponding to low order moments, rather than more complicated graphs
(e.g., wheels considered by Bickel et al. (2011)) with larger number of nodes, for learning
the community model.

The method of moments is also relevant for the family of random graph models termed as
exponential random graph models (Holland and Leinhardt, 1981; Frank and Strauss, 1986).
Subgraph counts of fixed graphs such as stars and triangles serve as sufficient statistics
for these models. However, parameter estimation given the subgraph counts is in general
NP-hard, due to the normalization constant in the likelihood (the partition function) and
the model suffers from degeneracy issues; see Rinaldo et al. (2009); Chatterjee and Diaconis
(2011) for detailed discussion. In contrast, we establish in this paper that the mixed mem-
bership model is amenable to simple estimation methods through linear algebraic operations
and tensor power iterations using subgraph counts of 3-stars.

1.3.2 Stochastic Block Models

Many algorithms provide learning guarantees for stochastic block models. For a detailed
comparison of these methods, see the recent work by Chen et al. (2012). A popular method is
based on spectral clustering (McSherry, 2001), where community memberships are inferred
through projection onto the spectrum of the Laplacian matrix (or its variants). This method
is fast and easy to implement (via singular value decomposition). There are many variants
of this method, e.g., the work of Chaudhuri et al. (2012) employs normalized Laplacian
matrix to handle degree heterogeneities. In contrast, the work of Chen et al. (2012) uses
convex optimization techniques via semi-definite programming learning block models. For
a detailed comparison of learning guarantees under various methods for learning stochastic
block models, see Chen et al. (2012).

1.3.3 Non-probabilistic Approaches

The classical approach to community detection tries to directly exploit the properties of the
graph to define communities, without assuming a probabilistic model. Girvan and Newman
(2002) use betweenness to remove edges until only communities are left. However, Bickel
and Chen (2009) show that these algorithms are (asymptotically) biased and that using
modularity scores can lead to the discovery of an incorrect community structure, even for
large graphs. Jalali et al. (2011) define community structure as the structure that satisfies
the maximum number of edge constraints (whether two individuals like/dislike each other).
However, these models assume that every individual belongs to a single community.

Recently, some non-probabilistic approaches have been introduced with overlapping
community models by Arora et al. (2012) and Balcan et al. (2012). The analysis of Arora
et al. (2012) is mostly limited to dense graphs (i.e., Θ(n2) edges for a n node graph), while
our analysis provides learning guarantees for much sparser graphs (as seen by the scaling
requirements in (1)). Moreover, the running time of the method of Arora et al. (2012) is
quasipolynomial time (i.e., O(nlogn)) for the general case, and is based on a combinatorial
learning approach. In contrast, our learning approach is based on simple linear algebraic
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techniques and the running time is a low-order polynomial (roughly it is O(n2k) for a n node
network with k communities under a serial computation model and O(n+ k3) under a par-
allel computation model). The work of Balcan et al. (2012) assumes endogenously formed
communities, by constraining the fraction of edges within a community compared to the
outside. They provide a polynomial time algorithm for finding all such “self-determined”
communities and the running time is nO(log 1/α)/α, where α is the fraction of edges within a
self-determined community, and this bound is improved to linear time when α > 1/2. On
the other hand, the running time of our algorithm is mostly independent of the parameters
of the assumed model, (and is roughly O(n2k)). Moreover, both these works are limited to
homophilic models, where there are more edges within each community, than between any
two different communities. However, our learning approach is not limited to this setting and
also does not assume homogeneity in edge connectivity across different communities (but in-
stead it makes probabilistic assumptions on community formation). In addition, we provide
improved guarantees for homophilic models by considering additional post-processing steps
in our algorithm. Recently, Abraham et al. (2012) provide an algorithm for approximating
the parameters of an Euclidean log-linear model in polynomial time. However, there setting
is considerably different than the one in this paper.

1.3.4 Inhomogeneous Random Graphs, Graph Limits and Weak Regularity
Lemma

Inhomogeneous random graphs have been analyzed in a variety of settings (e.g., Bollobás
et al., 2007; Lovász, 2009) and are generalizations of the stochastic block model. Here,
the probability of an edge between any two nodes is characterized by a general function
(rather than by a k × k matrix as in the stochastic block model with k blocks). Note that
the mixed membership model considered in this work is a special instance of this general
framework. These models arise as the limits of convergent (dense) graph sequences and for
this reason, the functions are also termed as “graphons” or graph limits (Lovász, 2009). A
deep result in this context is the regularity lemma and its variants. The weak regularity
lemma proposed by Frieze and Kannan (1999), showed that any convergent dense graph
can be approximated by a stochastic block model. Moreover, they propose an algorithm to
learn such a block model based on the so-called d2 distance. The d2 distance between two
nodes measures similarity with respect to their “two-hop” neighbors and the block model
is obtained by thresholding the d2 distances. However, the method is limited to learning
block models and not overlapping communities.

1.3.5 Learning Latent Variable Models (Topic Models)

The community models considered in this paper are closely related to the probabilistic topic
models (Blei, 2012), employed for text modeling and document categorization. Topic mod-
els posit the occurrence of words in a corpus of documents, through the presence of multiple
latent topics in each document. Latent Dirichlet allocation (LDA) is perhaps the most pop-
ular topic model, where the topic mixtures are assumed to be drawn from the Dirichlet
distribution. In each document, a topic mixture is drawn from the Dirichlet distribution,
and the words are drawn in a conditional independent manner, given the topic mixture.
The mixed membership community model considered in this paper can be interpreted as
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a generalization of the LDA model, where a node in the community model can function
both as a document and a word. For instance, in the directed community model, when the
outgoing links of a node are considered, the node functions as a document, and its outgoing
neighbors can be interpreted as the words occurring in that document. Similarly, when
the incoming links of a node in the network are considered, the node can be interpreted
as a word, and its incoming links, as documents containing that particular word. In par-
ticular, we establish that certain graph moments under the mixed membership model have
similar structure as the observed word moments under the LDA model. This allows us to
leverage the recent developments from Anandkumar et. al. (Anandkumar et al., 2012c,a,b)
for learning topic models, based on the method of moments. These works establish guar-
anteed learning using second- and third-order observed moments through linear algebraic
and tensor-based techniques. In particular, in this paper, we exploit the tensor power it-
eration method of Anandkumar et al. (2012b), and propose additional improvements to
obtain stronger recovery guarantees. Moreover, the sample analysis is quite different (and
more challenging) in the community setting, compared to topic models analyzed in Anand-
kumar et al. (2012c,a,b). We clearly spell out the similarities and differences between the
community model and other latent variable models in Section 4.4.

1.3.6 Lower Bounds

The work of Feldman et al. (2012) provides lower bounds on the complexity of statistical
algorithms, and shows that for cliques of size O(n1/2−δ), for any constant δ > 0, at least
nΩ(log logn) queries are needed to find the cliques. There are works relating the hardness of
finding hidden cliques and the use of higher order moment tensors for this purpose. Frieze
and Kannan (2008) relate the problem of finding a hidden clique to finding the top eigen-
vector of the third order tensor, corresponding to the maximum spectral norm. Charles
and Vempala (2009) extend the result to arbitrary rth-order tensors and the cliques have
to be size Ω(n1/r) to enable recovery from rth-order moment tensors in a n node network.
However, this problem (finding the top eigenvector of a tensor) is known to be NP-hard in
general (Hillar and Lim, 2013). Thus, tensors are useful for finding smaller hidden cliques
in network (albeit by solving a computationally hard problem). In contrast, we consider
tractable tensor decomposition through reduction to orthogonal tensors (under the scaling
requirements of (1)), and our learning method is a fast and an iterative approach based
on tensor power iterations and linear algebraic operations. Mossel et al. (2012) provide
lower bounds on the separation p− q, the edge connectivity between intra-community and
inter-community, for identifiability of communities in stochastic block models in the sparse
regime (when p, q ∼ n−1), when the number of communities is a constant k = O(1). Our
method achieves the lower bounds on separation of edge connectivity up to poly-log factors.

1.3.7 Likelihood-based Approaches to Learning MMSB

Another class of approaches for learning MMSB models are based on optimizing the ob-
served likelihood. Traditional approaches such as Gibbs sampling or expectation maximiza-
tion (EM) can be too expensive apply in practice for MMSB models. Variational approaches
which optimize the so-called evidence lower bound (Hoffman et al., 2012; Gopalan et al.,
2012), which is a lower bound on the marginal likelihood of the observed data (typically by
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applying a mean-field approximation), are efficient for practical implementation. Stochastic
versions of the variational approach provide even further gains in efficiency and are state-
of-art practical learning methods for MMSB models (Gopalan et al., 2012). However, these
methods lack theoretical guarantees; since they optimize a bound on the likelihood, they are
not guaranteed to recover the underlying communities consistently. A recent work (Celisse
et al., 2012) establishes consistency of maximum likelihood and variational estimators for
stochastic block models, which are special cases of the MMSB model. However, it is not
known if the results extend to general MMSB models. Moreover, the framework of Celisse
et al. (2012) assumes a fixed number of communities and growing network size, and pro-
vide only asymptotic consistency guarantees. Thus, they do not allow for high-dimensional
settings, where the parameters of the learning problem also grow as the observed dimen-
sionality grows. In contrast, in this paper, we allow for the number of communities to
grow, and provide precise constraints on the scaling bounds for consistent estimation under
finite samples. It is an open problem to obtain such bounds for maximum likelihood and
variational estimators. On the practical side, a recent work deploying the tensor approach
proposed in this paper by Huang et al. (2013) shows that the tensor approach is more than
an order of magnitude faster in recovering the communities than the variational approach,
is scalable to networks with millions of nodes, and also has better accuracy in recovering
the communities.

2. Community Models and Graph Moments

In the first part of section, we describe the mixed membership community model based on
Dirichlet priors for the community draws by the individuals. Then in Section 2.2, we define
and analyze the graph moments for these models.

2.1 Community Membership Models

We first introduce the special case of the popular stochastic block model, where each node
belongs to a single community.

2.1.1 Notation

We consider networks with n nodes and let [n] := {1, 2, . . . , n}. Let G be the {0, 1} adja-
cency4 matrix for the random network and let GA,B be the submatrix of G corresponding
to rows A ⊆ [n] and columns B ⊆ [n]. We consider models with k underlying (hidden)
communities. For node i, let πi ∈ Rk denote its community membership vector, i.e., the
vector is supported on the communities to which the node belongs. In the special case of
the popular stochastic block model described below, πi is a basis coordinate vector, while
the more general mixed membership model relaxes this assumption and a node can be in
multiple communities with fractional memberships. Define Π := [π1|π2| · · · |πn] ∈ Rk×n.
and let ΠA := [πi : i ∈ A] ∈ Rk×|A| denote the set of column vectors restricted to A ⊆ [n].
For a matrix M , let (M)i and (M)i denote its ith column and row respectively. For a matrix
M with singular value decomposition (SVD) M = UDV >, let (M)k−svd := UD̃V > denote
the k-rank SVD of M , where D̃ is limited to top-k singular values of M . Let M † denote

4. Our analysis can easily be extended to weighted adjacency matrices with bounded entries.
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the MoorePenrose pseudo-inverse of M . Let I(·) be the indicator function. Let Diag(v)
denote a diagonal matrix with diagonal entries given by a vector v. We use the term high
probability to mean with probability 1− n−c for any constant c > 0.

2.1.2 Stochastic Block Model (special case)

In this model, each individual is independently assigned to a single community, chosen at
random: each node i chooses community j independently with probability α̂j , for i ∈ [n], j ∈
[k], and we assign πi = ej in this case, where ej ∈ {0, 1}k is the jth coordinate basis vector.
Given the community assignments Π, every directed5 edge in the network is independently
drawn: if node u is in community i and node v is in community j (and u 6= v), then the
probability of having the edge (u, v) in the network is Pi,j . Here, P ∈ [0, 1]k×k and we
refer to it as the community connectivity matrix. This implies that given the community
membership vectors πu and πv, the probability of an edge from u to v is π>u Pπv (since
when πu = ei and πv = ej , we have π>u Pπv = Pi,j .). The stochastic model has been
extensively studied and can be learnt efficiently through various methods, e.g., spectral
clustering (McSherry, 2001), convex optimization (Chen et al., 2012). and so on. Many
of these methods rely on conditional independence assumptions of the edges in the block
model for guaranteed learning.

2.1.3 Mixed Membership Model

We now consider the extension of the stochastic block model which allows for an individual
to belong to multiple communities and yet preserves some of the convenient independence
assumptions of the block model. In this model, the community membership vector πu at
node u is a probability vector, i.e.,

∑
i∈[k] πu(i) = 1, for all u ∈ [n]. Given the commu-

nity membership vectors, the generation of the edges is identical to the block model: given
vectors πu and πv, the probability of an edge from u to v is π>u Pπv, and the edges are inde-
pendently drawn. This formulation allows for the nodes to be in multiple communities, and
at the same time, preserves the conditional independence of the edges, given the community
memberships of the nodes.

2.1.4 Dirichlet Prior for Community Membership

The only aspect left to be specified for the mixed membership model is the distribution
from which the community membership vectors Π are drawn. We consider the popular
setting of Airoldi et al. (2008), where the community vectors {πu} are i.i.d. draws from the
Dirichlet distribution, denoted by Dir(α), with parameter vector α ∈ Rk>0. The probability
density function of the Dirichlet distribution is given by

P[π] =

∏k
i=1 Γ(αi)

Γ(α0)

k∏
i=1

παi−1
i , π ∼ Dir(α), α0 :=

∑
i

αi, (6)

where Γ(·) is the Gamma function and the ratio of the Gamma function serves as the
normalization constant.

5. We limit our discussion to directed networks in this paper, but note that the results also hold for undi-
rected community models, where P is a symmetric matrix, and an edge (u, v) is formed with probability
π>u Pπv = π>v Pπu.
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The Dirichlet distribution is widely employed for specifying priors in Bayesian statistics,
e.g., latent Dirichlet allocation (Blei et al., 2003). The Dirichlet distribution is the conjugate
prior of the multinomial distribution which makes it attractive for Bayesian inference.

Let α̂ denote the normalized parameter vector α/α0, where α0 :=
∑

i αi. In particular,
note that α̂ is a probability vector:

∑
i α̂i = 1. Intuitively, α̂ denotes the relative expected

sizes of the communities (since E[n−1
∑

u∈[n] πu[i]] = α̂i). Let α̂max be the largest entry in α̂,
and α̂min be the smallest entry. Our learning guarantees will depend on these parameters.

The stochastic block model is a limiting case of the mixed membership model when the
Dirichlet parameter is α = α0 · α̂, where the probability vector α̂ is held fixed and α0 → 0.
In the other extreme when α0 → ∞, the Dirichlet distribution becomes peaked around a
single point, for instance, if αi ≡ c and c → ∞, the Dirichlet distribution is peaked at
k−1 · ~1, where ~1 is the all-ones vector. Thus, the parameter α0 serves as a measure of the
average sparsity of the Dirichlet draws or equivalently, of how concentrated the Dirichlet
measure is along the different coordinates. This in effect, controls the extent of overlap
among different communities.

2.1.5 Sparse Regime of Dirichlet Distribution

When the Dirichlet parameter vector satisfies6 αi < 1, for all i ∈ [k], the Dirichlet dis-
tribution Dir(α) generates “sparse” vectors with high probability;7; see Telgarsky (2012)
(and in the extreme case of the block model where α0 → 0, it generates 1-sparse vectors).
Many real-world settings involve sparse community membership and the total number of
communities is typically much larger than the extent of membership of a single individual,
e.g., hobbies/interests of a person, university/company networks that a person belongs to,
the set of transcription factors regulating a gene, and so on. Our learning guarantees are
limited to the sparse regime of the Dirichlet model.

2.2 Graph Moments under Mixed Membership Models

Our approach for learning a mixed membership community model relies on the form of the
graph moments8 under the mixed membership model. We now describe the specific graph
moments used by our learning algorithm (based on 3-star and edge counts) and provide
explicit forms for the moments, assuming draws from a mixed membership model.

2.2.1 Notation

Recall that G denotes the adjacency matrix and that GX,A denotes the submatrix corre-
sponding to edges going from X to A. Recall that P ∈ [0, 1]k×k denotes the community
connectivity matrix. Define

F := Π>P> = [π1|π2| · · · |πn]>P>. (7)

6. The assumption that the Dirichlet distribution be in the sparse regime is not strictly needed. Our results
can be extended to general Dirichlet distributions, but with worse scaling requirements on the network
size n for guaranteed learning.

7. Roughly the number of entries in π exceeding a threshold τ is at most O(α0 log(1/τ)) with high proba-
bility, when π ∼ Dir(α).

8. We interchangeably use the term first order moments for edge counts and third order moments for 3-star
counts.
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u v w

x

A B C

Figure 1: Our moment-based learning algorithm uses 3-star count tensor from set X to
sets A,B,C (and the roles of the sets are interchanged to get various estimates).
Specifically, T is a third order tensor, where T(u, v, w) is the normalized count of
the 3-stars with u, v, w as leaves over all x ∈ X.

For a subset A ⊆ [n] of individuals, let FA ∈ R|A|×k denote the submatrix of F corresponding
to nodes in A, i.e., FA := Π>AP

>. We will subsequently show that FA is linear map which
takes any community vector πi as input and outputs the corresponding neighborhood vector
G>i,A in expectation.

Our learning algorithm uses moments up to the third-order, represented as a tensor. A
third-order tensor T is a three-dimensional array whose (p, q, r)-th entry denoted by Tp,q,r.
The symbol ⊗ denotes the standard Kronecker product: if u, v, w are three vectors, then

(u⊗ v ⊗ w)p,q,r := up · vq · wr. (8)

A tensor of the form u ⊗ v ⊗ w is referred to as a rank-one tensor. The decomposition of
a general tensor into a sum of its rank-one components is referred to as canonical polyadic
(CP) decomposition Kolda and Bader (2009). We will subsequently see that the graph
moments can be expressed as a tensor and that the CP decomposition of the graph-moment
tensor yields the model parameters and the community vectors under the mixed membership
community model.

2.2.2 Graph Moments under Stochastic Block Model

We first analyze the graph moments in the special case of a stochastic block model (i.e., α0 =∑
i αi → 0 in the Dirichlet prior in (6)) and then extend it to general mixed membership

model. We provide explicit expressions for the graph moments corresponding to edge counts
and 3-star counts. We later establish in Section 3 that these moments are sufficient to learn
the community memberships of the nodes and the model parameters of the block model.

2.2.3 3-star Counts

The primary quantity of interest is a third-order tensor which counts the number of 3-stars.
A 3-star is a star graph with three leaves {a, b, c} and we refer to the internal node x of the
star as its “head”, and denote the structure by x→ {a, b, c} (see Figure 1). We partition the
network into four9 parts and consider 3-stars such that each node in the 3-star belongs to a
different partition. This is necessary to obtain a simple form of the moments, based on the
conditional independence assumptions of the block model, see Proposition 2. Specifically,

9. For sample complexity analysis, we require dividing the graph into more than four partitions to deal
with statistical dependency issues, and we outline it in Section 3.
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consider10 a partition A,B,C,X of the network. We count the number of 3-stars from X
to A,B,C and our quantity of interest is

TX→{A,B,C} :=
1

|X|
∑
i∈X

[G>i,A ⊗G>i,B ⊗G>i,C ], (9)

where ⊗ is the Kronecker product, defined in (8) and Gi,A is the row vector supported on
the set of neighbors of i belonging to set A. T ∈ R|A|×|B|×|C| is a third order tensor, and
an element of the tensor is given by

TX→{A,B,C}(a, b, c) =
1

|X|
∑
x∈X

G(x, a)G(x, b)G(x, c), ∀a ∈ A, b ∈ B, c ∈ C, (10)

which is the normalized count of the number of 3-stars with leaves a, b, c such that its “head”
is in set X.

We now relate the tensor TX→{A,B,C} to the parameters of the stochastic block model,
viz., the community connectivity matrix P and the community probability vector α̂, where
α̂i is the probability of choosing community i.

Proposition 2 (Moments in Stochastic Block Model) Given partitions A,B,C,X, and
F := Π>P>, where P is the community connectivity matrix and Π is the matrix of commu-
nity membership vectors, we have

E[G>X,A|ΠA,ΠX ] = FAΠX , (11)

E[TX→{A,B,C} |ΠA,ΠB,ΠC ] =
∑
i∈[k]

α̂i(FA)i ⊗ (FB)i ⊗ (FC)i, (12)

where α̂i is the probability for a node to select community i.

Remark: In Equation (11), we see that the edge generation occurs under a linear model,
and more precisely, the matrix FA ∈ R|A|×k is a linear map which takes a community vector
πi ∈ Rk to a neighborhood vector G>i,A ∈ R|A| in expectation.

Remark: (Identifiability under third order moments)) Note the form of the 3-star count
tensor T in (12). It provides a CP decomposition of T since each term in the summa-
tion, viz., α̂i(FA)i ⊗ (FB)i ⊗ (FC)i, is a rank one tensor. Thus, we can learn the matrices
FA, FB, FC and the vector α̂ through CP decomposition of tensor T. Once these parameters
are learnt, learning the communities is straight-forward under exact moments: by exploiting
(11), we find ΠX as

ΠX = F †A · E[G>X,A|ΠA,ΠX ].

Similarly, we can consider another tensor consisting of 3-stars from A to X,B,C, and
obtain matrices FX , FB and FC through a CP decomposition, and so on. Once we obtain
matrices F and Π for the entire set of nodes in this manner, we can obtain the community
connectivity matrix P , since F := Π>P>. Thus, in principle, we are able to learn all the

10. To establish our theoretical guarantees, we assume that the partitions A,B,C,X are randomly chosen
and are of size Θ(n).
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model parameters (α̂ and P ) and the community membership matrix Π under the stochas-
tic block model, given exact moments. This establishes identifiability of the model given
moments up to third order and forms a high-level approach for learning the communities.
When only samples are available, we establish that the empirical versions are close to the
exact moments considered above, and we modify the basic learning approach to obtain robust
guarantees. See Section 3 for details.
Remark: (Significance of conditional independence relationships) The main property ex-
ploited in proving the tensor form in (12) is the conditional-independence assumption under
the stochastic block model: the realization of the edges in each 3-star, say in x→ {a, b, c}, is
conditionally independent given the community membership vector πx, when x 6= a 6= b 6= c.
This is because the community membership vectors Π are assumed to be drawn independently
at the different nodes and the edges are drawn independently given the community vectors.

Considering 3-stars from X to A,B,C where X,A,B,C form a partition ensures that
this conditional independence is satisfied for all the 3-stars in tensor T.

Proof: Recall that the probability of an edge from u to v given πu, πv is

E[Gu,v|πu, πv] = π>u Pπv = π>v P
>πu = Fvπu,

and E[GX,A|ΠA,ΠX ] = Π>XPΠA = Π>XF
>
A and thus (11) holds. For the tensor form, first

consider an element of the tensor, with a ∈ A, b ∈ B, c ∈ C,

E
[
TX→{A,B,C}(a, b, c)|πa, πb, πc, πx

]
=

1

|X|
∑
x∈X

Faπx · Fbπx · Fcπx,

The equation follows from the conditional-independence assumption of the edges (assuming
a 6= b 6= c). Now taking expectation over the nodes in X, we have

E
[
TX→{A,B,C}(a, b, c)|πa, πb, πc

]
=

1

|X|
∑
x∈X

E [Faπx · Fbπx · Fcπx|πa, πb, πc]

= E [Faπ · Fbπ · Fcπ|πa, πb, πc]

=
∑
j∈[k]

α̂j(Fa)j · (Fb)j · (Fc)j ,

where the last step follows from the fact that π = ej with probability α̂j and the result
holds when x 6= a, b, c. Recall that (Fa)j denotes the jth column of Fa (since Faej = (Fa)j).
Collecting all the elements of the tensor, we obtain the desired result. �

2.2.4 Graph Moments under Mixed Membership Dirichlet Model

We now analyze the graph moments for the general mixed membership Dirichlet model.
Instead of the raw moments (i.e., edge and 3-star counts), we consider modified moments
to obtain similar expressions as in the case of the stochastic block model.

Let µX→A ∈ R|A| denote a vector which gives the normalized count of edges from X to
A:

µX→A :=
1

|X|
∑
i∈X

[G>i,A]. (13)
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We now define a modified adjacency matrix11 Gα0
X,A as

Gα0
X,A :=

(√
α0 + 1GX,A − (

√
α0 + 1− 1)~1µ>X→A

)
. (14)

In the special case of the stochastic block model (α0 → 0), Gα0
X,A = GX,A is the submatrix

of the adjacency matrix G. Similarly, we define modified third-order statistics,

Tα0

X→{A,B,C} := (α0 + 1)(α0 + 2) TX→{A,B,C}+2α2
0 µX→A ⊗ µX→B ⊗ µX→C

− α0(α0 + 1)

|X|
∑
i∈X

[
G>i,A ⊗G>i,B ⊗ µX→C +G>i,A ⊗ µX→B ⊗G>i,C + µX→A ⊗G>i,B ⊗G>i,C

]
,

(15)

and it reduces to (a scaled version of) the 3-star count TX→{A,B,C} defined in (9) for the
stochastic block model (α0 → 0). The modified adjacency matrix and the 3-star count
tensor can be viewed as a form of “centering” of the raw moments which simplifies the
expressions for the moments. The following relationships hold between the modified graph
moments Gα0

X,A, Tα0 and the model parameters P and α̂ of the mixed membership model.

Proposition 3 (Moments in Mixed Membership Model) Given partitions A,B,C,X
and Gα0

X,A and Tα0, as in (14) and (15), normalized Dirichlet concentration vector α̂, and

F := Π>P>, where P is the community connectivity matrix and Π is the matrix of commu-
nity memberships, we have

E[(Gα0
X,A)>|ΠA,ΠX ] = FA Diag(α̂1/2)ΨX , (16)

E[Tα0

X→{A,B,C} |ΠA,ΠB,ΠC ] =

k∑
i=1

α̂i(FA)i ⊗ (FB)i ⊗ (FC)i, (17)

where (FA)i corresponds to ith column of FA and ΨX relates to the community membership
matrix ΠX as

ΨX := Diag(α̂−1/2)

(
√
α0 + 1ΠX − (

√
α0 + 1− 1)

(
1

|X|
∑
i∈X

πi

)
~1>

)
.

Moreover, we have that
|X|−1EΠX [ΨXΨ>X ] = I. (18)

Remark: The 3-star count tensor Tα0 is carefully chosen so that the CP decomposition of
the tensor directly yields the matrices FA, FB, FC and α̂i, as in the case of the stochastic block
model. Similarly, the modified adjacency matrix (Gα0

X,A)> is carefully chosen to eliminate

second-order correlation in the Dirichlet distribution and we have that |X|−1EΠX [ΨΨ>] =
I is the identity matrix. These properties will be exploited by our learning algorithm in
Section 3.

11. To compute the modified moments Gα0 , and Tα0 , we need to know the value of the scalar α0 :=
∑
i αi,

which is the concentration parameter of the Dirichlet distribution and is a measure of the extent of
overlap between the communities. We assume its knowledge here.

2254



A Tensor Approach to Learning Mixed Membership Community Models

Remark: Recall that α0 quantifies the extent of overlap among the communities. The
computation of the modified moment Tα0 requires the knowledge of α0, which is assumed to
be known. Since this is a scalar quantity, in practice, we can easily tune this parameter via
cross validation.

Proof: The proof is on lines of Proposition 2 for stochastic block models (α0 → 0)
but more involved due to the form of Dirichlet moments. Recall E[G>i,A|πi,ΠA] = FAπi
for a mixed membership model, and µX→A := 1

|X|
∑

i∈X G
>
i,A, therefore E[µX→A|ΠA,ΠX ] =

FA

(
1
|X|
∑

i∈X πi

)
~1>. Equation (16) follows directly. For Equation (18), we note the Dirich-

let moment, E[ππ>] = 1
α0+1 Diag(α̂) + α0

α0+1 α̂α̂
>, when π ∼ Dir(α) and

|X|−1E[ΨXΨ>X ] = Diag(α̂−1/2)
[
(α0 + 1)E[ππ>] + (−2

√
α0 + 1(

√
α0 + 1− 1)

+(
√
α0 + 1− 1)2)E[π]E[π]>

]
Diag(α̂−1/2)

= Diag(α̂−1/2)
(

Diag(α̂) + α0α̂α̂
> + (−α0)α̂α̂>

)
Diag(α̂−1/2)

= I.

On lines of the proof of Proposition 2 for the block model, the expectation in (17) involves
multi-linear map of the expectation of the tensor products π ⊗ π ⊗ π among other terms.
Collecting these terms, we have that

(α0 + 1)(α0 + 2)E[π ⊗ π ⊗ π]− (α0)(α0 + 1)(E[π ⊗ π ⊗ E[π]]

+E[π ⊗ E[π]⊗ π] + E[E[π]⊗ π ⊗ π]) + 2α2
0E[π]⊗ E[π]⊗ E[π]

is a diagonal tensor, in the sense that its (p, p, p)-th entry is α̂p, and its (p, q, r)-th entry is
0 when p, q, r are not all equal. With this, we have (17). �

Note the nearly identical forms of the graph moments for the stochastic block model in
(11), (12) and for the general mixed membership model in (16), (17). In other words, the
modified moments Gα0

X,A and Tα0 have similar relationships to underlying parameters as the
raw moments in the case of the stochastic block model. This enables us to use a unified
learning approach for the two models, outlined in the next section.

3. Algorithm for Learning Mixed Membership Models

The simple form of the graph moments derived in the previous section is now utilized to
recover the community vectors Π and model parameters P, α̂ of the mixed membership
model. The method is based on the so-called tensor power method, used to obtain a tensor
decomposition. We first outline the basic tensor decomposition method below and then
demonstrate how the method can be adapted to learning using the graph moments at hand.
We first analyze the simpler case when exact moments are available in Section 3.2 and then
extend the method to handle empirical moments computed from the network observations
in Section 3.3.
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3.1 Overview of Tensor Decomposition through Power Iterations

In this section, we review the basic method for tensor decomposition based on power iter-
ations for a special class of tensors, viz., symmetric orthogonal tensors. Subsequently, in
Section 3.2 and 3.3, we modify this method to learn the mixed membership model from
graph moments, described in the previous section. For details on the tensor power method,
refer to Anandkumar et al. (2012a); Kolda and Mayo (2011).

Recall that a third-order tensor T is a three-dimensional array and we use Tp,q,r to
denote the (p, q, r)-th entry of the tensor T . The standard symbol ⊗ is used to denote the
Kronecker product, and (u ⊗ v ⊗ w) is a rank one tensor. The decomposition of a tensor
into its rank one components is called the CP decomposition.

3.1.1 Multi-linear Maps

We can view a tensor T ∈ Rd×d×d as a multilinear map in the following sense: for a set of
matrices {Vi ∈ Rd×mi : i ∈ [3]}, the (i1, i2, i3)-th entry in the three-way array representation
of T (V1, V2, V3) ∈ Rm1×m2×m3 is

[T (V1, V2, V3)]i1,i2,i3 :=
∑

j1,j2,j3∈[d]

Tj1,j2,j3 [V1]j1,i1 [V2]j2,i2 [V3]j3,i3 .

The term multilinear map arises from the fact that the above map is linear in each of the
coordinates, e.g., if we replace V1 by aV1 +bW1 in the above equation, where W1 is a matrix
of appropriate dimensions, and a, b are any scalars, the output is a linear combination of
the outputs under V1 and W1 respectively. We will use the above notion of multi-linear
transforms to describe various tensor operations. For instance, T (I, I, v) yields a matrix,
T (I, v, v), a vector, and T (v, v, v), a scalar.

3.1.2 Symmetric Tensors and Orthogonal Decomposition

A special class of tensors are the symmetric tensors T ∈ Rd×d×d which are invariant to
permutation of the array indices. Symmetric tensors have CP decomposition of the form

T =
∑
i∈[r]

λivi ⊗ vi ⊗ vi =
∑
i∈[r]

λiv
⊗3
i , (19)

where r denotes the tensor CP rank and we use the notation v⊗3
i := vi ⊗ vi ⊗ vi. It is

convenient to first analyze methods for decomposition of symmetric tensors and we then
extend them to the general case of asymmetric tensors.

Further, a sub-class of symmetric tensors are those which possess a decomposition into
orthogonal components, i.e., the vectors vi ∈ Rd are orthogonal to one another in the
above decomposition in (19) (without loss of generality, we assume that vectors {vi} are
orthonormal in this case). An orthogonal decomposition implies that the tensor rank r ≤ d
and there are tractable methods for recovering the rank-one components in this setting. We
limit ourselves to this setting in this paper.
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3.1.3 Tensor Eigen Analysis

For symmetric tensors T possessing an orthogonal decomposition of the form in (19), each
pair (λi, vi), for i ∈ [r], can be interpreted as an eigen-pair for the tensor T , since

T (I, vi, vi) =
∑
j∈[r]

λj 〈vi, vj〉2 vj = λivi, ∀i ∈ [r],

due to the fact that 〈vi, vj〉 = δi,j . Thus, the vectors {vi}i∈[r] can be interpreted as fixed
points of the map

v 7→ T (I, v, v)

‖T (I, v, v)‖
, (20)

where ‖ · ‖ denotes the spectral norm (and ‖T (I, v, v)‖ is a vector norm), and is used to
normalize the vector v in (20).

3.1.4 Basic Tensor Power Iteration Method

A straightforward approach to computing the orthogonal decomposition of a symmetric
tensor is to iterate according to the fixed-point map in (20) with an arbitrary initialization
vector. This is referred to as the tensor power iteration method. Additionally, it is known
that the vectors {vi}i∈[r] are the only stable fixed points of the map in (20). In other words,
the set of initialization vectors which converge to vectors other than {vi}i∈[r] are of measure
zero. This ensures that we obtain the correct set of vectors through power iterations and
that no spurious answers are obtained. See Anandkumar et al. (2012b, Thm. 4.1) for details.
Moreover, after an approximately fixed point is obtained (after many power iterations), the
estimated eigen-pair can be subtracted out (i.e., deflated) and subsequent vectors can be
similarly obtained through power iterations. Thus, we can obtain all the stable eigen-pairs
{λi, vi}i∈[r] which are the components of the orthogonal tensor decomposition. The method
needs to be suitably modified when the tensor T is perturbed (e.g., as in the case when
empirical moments are used) and we discuss it in Section 3.3.

3.2 Learning Mixed Membership Models under Exact Moments

We first describe the learning approach when exact moments are available. In Section 3.3,
we suitably modify the approach to handle perturbations, which are introduced when only
empirical moments are available.

We now employ the tensor power method described above to obtain a CP decomposition
of the graph moment tensor Tα0 in (15). We first describe a “symmetrization” procedure
to convert the graph moment tensor Tα0 to a symmetric orthogonal tensor through a multi-
linear transformation of Tα0 . We then employ the power method to obtain a symmetric
orthogonal decomposition. Finally, the original CP decomposition is obtained by revers-
ing the multi-linear transform of the symmetrization procedure. This yields a guaranteed
method for obtaining the decomposition of graph moment tensor Tα0 under exact moments.
We note that this symmetrization approach has been earlier employed in other contexts,
e.g., for learning hidden Markov models (Anandkumar et al., 2012b, Sec. 3.3).
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3.2.1 Reduction of the Graph-moment Tensor to Symmetric Orthogonal
Form (Whitening)

Recall from Proposition 3 that the modified 3-star count tensor Tα0 has a CP decomposition
as

E[Tα0 |ΠA,ΠB,ΠC ] =

k∑
i=1

α̂i(FA)i ⊗ (FB)i ⊗ (FC)i.

We now describe a symmetrization procedure to convert Tα0 to a symmetric orthogonal
tensor through a multi-linear transformation using the modified adjacency matrix Gα0 ,
defined in (14). Consider the singular value decomposition (SVD) of the modified adjacency
matrix Gα0 under exact moments:

|X|−1/2E[(Gα0
X,A)>|Π] = UADAV

>
A .

Define WA := UAD
−1
A , and similarly define WB and WC using the corresponding matrices

Gα0
X,B and Gα0

X,C respectively. Now define

RA,B :=
1

|X|
W>B E[(Gα0

X,B)>|Π] · E[(Gα0
X,A)|Π]WA, W̃B := WBRA,B, (21)

and similarly define W̃C . We establish that a multilinear transformation (as defined in
(3.1.1)) of the graph-moment tensor Tα0 using matrices WA, W̃B, and W̃C results in a
symmetric orthogonal form.

Lemma 4 (Orthogonal Symmetric Tensor) Assume that the matrices FA, FB, FC and
ΠX have rank k, where k is the number of communities. We have an orthogonal sym-
metric tensor form for the modified 3-star count tensor Tα0 in (15) under a multilinear
transformation using matrices WA, W̃B, and W̃C :

E[Tα0(WA, W̃B, W̃C)|ΠA,ΠB,ΠC ] =
∑
i∈[k]

λi(Φ)⊗3
i ∈ Rk×k×k, (22)

where λi := α̂−0.5
i and Φ ∈ Rk×k is an orthogonal matrix, given by

Φ := W>A FA Diag(α̂0.5). (23)

Remark: Note that the matrix WA orthogonalizes FA under exact moments, and is
referred to as a whitening matrix. Similarly, the matrices W̃B = RA,BWB and W̃C =
RA,CWC consist of whitening matrices WB and WC , and in addition, the matrices RA,B and
RA,C serve to symmetrize the tensor. We can interpret {λi, (Φ)i}i∈[k] as the stable eigen-
pairs of the transformed tensor (henceforth, referred to as the whitened and symmetrized
tensor).
Remark: The full rank assumption on matrix FA = Π>AP

> ∈ R|A|×k implies that |A| ≥ k,
and similarly |B|, |C|, |X| ≥ k. Moreover, we require the community connectivity matrix
P ∈ Rk×k to be of full rank12 (which is a natural non-degeneracy condition). In this case,

12. In the work of McSherry (2001), where spectral clustering for stochastic block models is analyzed, rank
deficient P is allowed as long as the neighborhood vectors generated by any pair of communities are
sufficiently different. On the other hand, our method requires P to be full rank. We argue that this is
a mild restriction since we allow for mixed memberships while McSherry (2001) limit to the stochastic
block model.
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we can reduce the graph-moment tensor Tα0 to a k-rank orthogonal symmetric tensor, which
has a unique decomposition. This implies that the mixed membership model is identifiable
using 3-star and edge count moments, when the network size n = |A|+ |B|+ |C|+ |X| ≥ 4k,
matrix P is full rank and the community membership matrices ΠA,ΠB,ΠC ,ΠX each have
rank k. On the other hand, when only empirical moments are available, roughly, we require
the network size n = Ω(k2(α0 + 1)2) (where α0 :=

∑
i αi is related to the extent of overlap

between the communities) to provide guaranteed learning of the community membership and
model parameters. See Section 4 for a detailed sample analysis.
Proof: Recall that the modified adjacency matrix Gα0 satisfies

E[(Gα0
X,A)>|ΠA,ΠX ] = FA Diag(α̂1/2)ΨX ,

ΨX := Diag(α̂−1/2)

(
√
α0 + 1ΠX − (

√
α0 + 1− 1)

(
1

|X|
∑
i∈X

πi

)
~1>

)
.

From the definition of ΨX above, we see that it has rank k when ΠX has rank k. Using the
Sylvester’s rank inequality, we have that the rank of FA Diag(α̂1/2)ΨX is at least 2k−k = k.
This implies that the whitening matrix WA also has rank k. Notice that

|X|−1W>A E[(Gα0
X,A)>|Π] · E[(Gα0

X,A)|Π]WA = D−1
A U>AUAD

2
AU
>
AUAD

−1
A = I ∈ Rk×k,

or in other words, |X|−1MM> = I, where M := W>A FA Diag(α̂1/2)ΨX . We now have that

I = |X|−1EΠX

[
MM>

]
= |X|−1W>A FA Diag(α̂1/2)E[ΨXΨ>X ] Diag(α̂1/2)F>AWA

= W>A FA Diag(α̂)F>AWA,

since |X|−1EΠX [ΨXΨ>X ] = I from (18), and we use the fact that the sets A and X do not
overlap. Thus, WA whitens FA Diag(α̂1/2) under exact moments (up on taking expectation
over ΠX) and the columns of W>A FA Diag(α̂1/2) are orthonormal. Now note from the
definition of W̃B that

W̃>B E[(Gα0
X,B)>|Π] = W>A E[(Gα0

X,A)>|Π],

since WB satisfies
|X|−1W>B E[(Gα0

X,B)>|Π] · E[(Gα0
X,B)|Π]WB = I,

and similar result holds for W̃C . The final result in (22) follows by taking expectation of
tensor Tα0 over ΠX . �

3.2.2 Overview of the Learning Approach under Exact Moments

With the above result in place, we are now ready to describe the high-level approach for
learning the mixed membership model under exact moments. First, symmetrize the graph-
moment tensor Tα0 as described above and then apply the tensor power method described
in the previous section. This enables us to obtain the vector of eigenvalues λ := α̂−1/2 and
the matrix of eigenvectors Φ = W>A FA Diag(α̂0.5) using tensor power iterations. We can
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then recover the community membership vectors of set Ac (i.e., nodes not in set A) under
exact moments as

ΠAc ← Diag(λ)−1Φ>W>A E[G>Ac,A|Π],

since E[G>Ac,A|Π] = FAΠAc (since A and Ac do not overlap) and Diag(λ)−1Φ>W>A =

Diag(α̂)F>AWAW
>
A under exact moments. In order to recover the community member-

ship vectors of set A, viz., ΠA, we can use the edge-set GA,B. Once all the community
membership vectors Π are obtained, we can obtain the community connectivity matrix P ,
using the relationship: Π>PΠ = E[G|Π] and noting that we assume Π to be of rank k.
Thus, we are able to learn the community membership vectors Π and the model parameters
α̂ and P of the mixed membership model using edge counts and the 3-star count tensor.
We now describe modifications to this approach to handle empirical moments.

3.3 Learning Algorithm under Empirical Moments

In the previous section, we explored a tensor-based approach for learning mixed membership
model under exact moments. However, in practice, we only have samples (i.e., the observed
network), and the method needs to be robust to perturbations when empirical moments are
employed.

Algorithm 1 {Π̂, P̂ , α̂} ← LearnMixedMembership(G, k, α0, N, τ)

Input: Adjacency matrix G ∈ Rn×n, k is the number of communities, α0 :=
∑

i αi, where
α is the Dirichlet parameter vector, N is the number of iterations for the tensor power
method, and τ is used for thresholding the estimated community membership vectors,
specified in (29) in assumption A5. Let Ac := [n] \A denote the set of nodes not in A.

Output: Estimates of the community membership vectors Π ∈ Rn×k, community connec-
tivity matrix P ∈ [0, 1]k×k, and the normalized Dirichlet parameter vector α̂.
Partition the vertex set [n] into 5 parts X, Y , A, B, C.
Compute moments Gα0

X,A, Gα0
X,B, Gα0

X,C , Tα0

Y→{A,B,C} using (14) and (15).

{Π̂, α̂} ← LearnPartitionCommunity(Gα0
X,A, Gα0

X,B, Gα0
X,C , Tα0

Y→{A,B,C}, G,N, τ).

Define Q̂ such that its i-th row is Q̂i := (α0 + 1) Π̂i

|Π̂i|1
− α0

n
~1>. {We will establish that

Q̂ ≈ (Π†)> under conditions A1-A5.}
Estimate P̂ ← Q̂GQ̂>. {Recall that E[G] = Π>PΠ in our model.}
Return Π̂, P̂ , α̂

3.3.1 Pre-processing Step: Partitioning

In the previous section, we partitioned the nodes into four sets A,B,C,X for learning
under exact moments. However, we require more partitions under empirical moments to
avoid statistical dependency issues and obtain stronger reconstruction guarantees. We now
divide the network into five non-overlapping sets A,B,C,X, Y . The set X is employed to
compute whitening matrices ŴA, ŴB and ŴC , described in detail subsequently, the set Y
is employed to compute the 3-star count tensor Tα0 and sets A,B,C contain the leaves of
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Procedure 1 {Π̂, α̂} ← LearnPartitionCommunity(Gα0
X,A, Gα0

X,B, Gα0
X,C , Tα0

Y→{A,B,C}, G,

N , τ)

Input: Require modified adjacency submatrices Gα0
X,A, Gα0

X,B, Gα0
X,C , 3-star count tensor

Tα0

Y→{A,B,C}, adjacency matrixG, number of iterationsN for the tensor power method and

threshold τ for thresholding estimated community membership vectors. Let Thres(A, τ)
denote the element-wise thresholding operation using threshold τ , i.e., Thres(A, τ)i,j =
Ai,j if Ai,j ≥ τ and 0 otherwise. Let ei denote basis vector along coordinate i.

Output: Estimates of Π and α̂.
Compute rank-k SVD: (|X|−1/2Gα0

X,A)>k−svd = UADAV
>
A and compute whitening matrices

ŴA := UAD
−1
A . Similarly, compute ŴB, ŴC and R̂AB, R̂AC using (24).

Compute whitened and symmetrized tensor T ← Tα0

Y→{A,B,C}(ŴA, ŴBR̂AB, ŴCR̂AC).

{λ̂, Φ̂} ←TensorEigen(T, {Ŵ>AG>i,A}i/∈A, N). {Φ̂ is a k×k matrix with each columns being

an estimated eigenvector and λ̂ is the vector of estimated eigenvalues.}
Π̂Ac ← Thres(Diag(λ̂)−1Φ̂>Ŵ>AG

>
Ac,A , τ) and α̂i ← λ̂−2

i , for i ∈ [k].

Π̂A ← Thres(Diag(λ̂)−1Φ̂>R̂>ABŴ
>
BG

>
A,B , τ).

Return Π̂ and α̂.

the 3-stars under consideration. The roles of the sets can be interchanged to obtain the
community membership vectors of all the sets.

3.3.2 Pre-processing Step: Whitening

The whitening procedure is along the same lines as described in the previous section, except
that now empirical moments are used. Specifically, consider the k-rank singular value
decomposition (SVD) of the modified adjacency matrix Gα0 defined in (14),

(|X|−1/2Gα0
X,A)>k−svd = UADAV

>
A .

Define ŴA := UAD
−1
A , and similarly define ŴB and ŴC using the corresponding matrices

Gα0
X,B and Gα0

X,C respectively. Now define

R̂A,B :=
1

|X|
Ŵ>B (Gα0

X,B)>k−svd · (G
α0
X,A)k−svdŴA, (24)

and similarly define R̂AC . The whitened and symmetrized graph-moment tensor is now
computed as

Tα0

Y→{A,B,C}(ŴA, ŴBR̂AB, ŴCR̂AC),

where Tα0 is given by (15) and the multi-linear transformation of a tensor is defined in
(3.1.1).

3.3.3 Modifications to the Tensor Power Method

Recall that under exact moments, the stable eigen-pairs of a symmetric orthogonal tensor
can be computed in a straightforward manner through the basic power iteration method in
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(20), along with the deflation procedure. However, this is not sufficient to get good recon-
struction guarantees under empirical moments. We now propose a robust tensor method,
detailed in Procedure 2. The main modifications involve: (i) efficient initialization and
(ii) adaptive deflation, which are detailed below. Employing these modifications allows us
to tolerate a far greater perturbation of the third order moment tensor, than the basic
tensor power procedure employed in Anandkumar et al. (2012b). See remarks following
Theorem 11 in Appendix A for the precise comparison.

3.3.4 Modification 1: Efficient Initialization

Recall that the basic tensor power method incorporates generic initialization vectors and
this procedure recovers all the stable eigenvectors correctly (except for initialization vectors
over a set of measure zero). However, under empirical moments, we have a perturbed tensor,
and here, it is advantageous to instead employ specific initialization vectors. For instance,
to obtain one of the eigenvectors (Φ)i, it is advantageous to initialize with a vector in the
neighborhood of (Φ)i. This not only reduces the number of power iterations required to
converge (approximately), but more importantly, this makes the power method more robust
to perturbations. See Theorem 11 in Appendix A.1 for a detailed analysis quantifying the
relationship between initialization vectors, tensor perturbation and the resulting guarantees
for recovery of the tensor eigenvectors.

For a mixed membership model in the sparse regime, recall that the community member-
ship vectors Π are sparse (with high probability). Under this regime of the model, we note
that the whitened neighborhood vectors contain good initializers for the power iterations.
Specifically, in Procedure 2, we initialize with the whitened neighborhood vectors Ŵ>AG

>
i,A,

for i /∈ A. The intuition behind this is as follows: for a suitable choice of parameters (such
as the scaling of network size n with respect to the number of communities k), we expect
neighborhood vectors G>i,A to concentrate around their mean values, viz., , FAπi. Since πi
is sparse (w.h.p) for the model regime under consideration, this implies that there exist
vectors Ŵ>A FAπi, for i ∈ Ac, which concentrate (w.h.p) on only along a few eigen-directions
of the whitened tensor, and hence, serve as an effective initializer.

3.3.5 Modification 2: Adaptive Deflation

Recall that in the basic power iteration procedure, we can obtain the eigen-pairs one af-
ter another through simple deflation: subtracting the estimates of the current eigen-pairs
and running the power iterations again to obtain new eigenvectors. However, it turns out
that we can establish better theoretical guarantees (in terms of greater robustness) when
we adaptively deflate the tensor in each power iteration. In Procedure 2, among the esti-
mated eigen-pairs, we only deflate those which “compete” with the current estimate of the

power iteration. In other words, if the vector in the current iteration θ
(τ)
t has a significant

projection along the direction of an estimated eigen-pair φj , i.e.,

|λj
〈
θ

(τ)
t , φj

〉
| > ξ,

for some threshold ξ, then the eigen-pair is deflated; otherwise the eigenvector φj is not
deflated. This allows us to carefully control the error build-up for each estimated eigenpair
in our analysis. Intuitively, if an eigenvector does not have a good correlation with the
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current estimate, then it does not interfere with the update of the current vector, while if
the eigenvector has a good correlation, then it is pertinent that it be deflated so as to dis-
courage convergence in the direction of the already estimated eigenvector. See Theorem 11
in Appendix A.1 for details.

Finally, we note that stabilization, as proposed by Kolda and Mayo (2011) for general
tensor eigen-decomposition (as opposed to orthogonal decomposition in this paper), can be
effective in improving convergence, especially on real data, and we defer its detailed analysis
to future work.

Procedure 2 {λ,Φ} ←TensorEigen(T, {vi}i∈[L], N)

Input: Tensor T ∈ Rk×k×k, L initialization vectors {vi}i∈L, number of iterations N .
Output: the estimated eigenvalue/eigenvector pairs {λ,Φ}, where λ is the vector of eigen-

values and Φ is the matrix of eigenvectors.
for i = 1 to k do

for τ = 1 to L do
θ0 ← vτ .
for t = 1 to N do
T̃ ← T .
for j = 1 to i− 1 (when i > 1) do

if |λj
〈
θ

(τ)
t , φj

〉
| > ξ then

T̃ ← T̃ − λjφ⊗3
j .

end if
end for

Compute power iteration update θ
(τ)
t :=

T̃ (I,θ
(τ)
t−1,θ

(τ)
t−1)

‖T̃ (I,θ
(τ)
t−1,θ

(τ)
t−1)‖

end for
end for
Let τ∗ := arg maxτ∈L{T̃ (θ

(τ)
N , θ

(τ)
N , θ

(τ)
N )}.

Do N power iteration updates starting from θ
(τ∗)
N to obtain eigenvector estimate φi,

and set λi := T̃ (φi, φi, φi).
end for
return the estimated eigenvalue/eigenvectors (λ,Φ).

3.3.6 Reconstruction after Tensor Power Method

Recall that previously in Section 3.2, when exact moments are available, estimating the
community membership vectors Π is straightforward, once we recover all the stable tensor
eigen-pairs. However, in case of empirical moments, we can obtain better guarantees with
the following modification: the estimated community membership vectors Π are further
subject to thresholding so that the weak values are set to zero. Since we are limiting
ourselves to the regime of the mixed membership model, where the community vectors
Π are sparse (w.h.p), this modification strengthens our reconstruction guarantees. This
thresholding step is incorporated in Algorithm 1.
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Moreover, recall that under exact moments, estimating the community connectivity
matrix P is straightforward, once we recover the community membership vectors since P ←
(Π>)†E[G|Π]Π†. However, when empirical moments are available, we are able to establish
better reconstruction guarantees through a different method, outlined in Algorithm 1. We
define Q̂ such that its i-th row is

Q̂i := (α0 + 1)
Π̂i

|Π̂i|1
− α0

n
~1>,

based on estimates Π̂, and the matrix P̂ is obtained as P̂ ← Q̂GQ̂>. We subsequently
establish that Q̂Π̂> ≈ I, under a set of sufficient conditions outlined in the next section.

3.3.7 Improved Support Recovery Estimates in Homophilic Models

A sub-class of community model are those satisfying homophily. As discussed in Section 1,
homophily or the tendency to form edges within the members of the same community has
been posited as an important factor in community formation, especially in social settings.
Many of the existing learning algorithms (e.g., Chen et al., 2012) require this assumption to
provide guarantees in the stochastic block model setting. Moreover, our procedure described
below can be easily modified to work in situations where the order of intra-connectivity
and inter-connectivity among communities is reversed, i.e., in the community connectivity
matrix P ∈ [0, 1]k×k, P (i, i) ≡ p < P (i, j) ≡ q, for all i 6= j. For instance, in the k-coloring
model (McSherry, 2001), p = 0 and q > 0.

We describe the post-processing method in Procedure 3 for models with community
connectivity matrix P satisfying P (i, i) ≡ p > P (i, j) ≡ q for all i 6= j. For such models,
we can obtain improved estimates by averaging. Specifically, consider nodes in set C and
edges going from C to nodes in B. First, consider the special case of the stochastic block
model: for each node c ∈ C, compute the number of neighbors in B belonging to each
community (as given by the estimate Π̂ from Algorithm 1), and declare the community
with the maximum number of such neighbors as the community of node c. Intuitively, this
provides a better estimate for ΠC since we average over the edges in B. This method has
been used before in the context of spectral clustering (McSherry, 2001).

The same idea can be extended to the general mixed membership (homophilic) models:
declare communities to be significant if they exceed a certain threshold, as evaluated by
the average number of edges to each community. The correctness of the procedure can be
gleaned from the fact that if the true F matrix is input, it satisfies

Fj,i = q + Πi,j(p− q), ∀ i ∈ [k], j ∈ [n],

and if the true P matrix is input, H = p and L = q. Thus, under a suitable threshold ξ,
the entries Fj,i provide information on whether the corresponding community weight Πi,j

is significant.

In the next section, we establish that in certain regime of parameters, this support
recovery procedure can lead to zero-error support recovery of significant community mem-
berships of the nodes and also rule out communities where a node does not have a strong
presence.
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Procedure 3 {Ŝ} ← SupportRecoveryHomophilicModels(G, k, α0, ξ, Π̂)

Input: Adjacency matrix G ∈ Rn×n, k is the number of communities, α0 :=
∑

i αi, where
α is the Dirichlet parameter vector, ξ is the threshold for support recovery, corresponding
to significant community memberships of an individual. Get estimate Π̂ from Algorithm 1.
Also asume the model is homophilic: P (i, i) ≡ p > P (i, j) ≡ q, for all i 6= j.

Output: Ŝ ∈ {0, 1}n×k is the estimated support for significant community memberships
(see Theorem 7 for guarantees).
Consider partitions A,B,C,X, Y as in Algorithm 1.
Define Q̂ on lines of definition in Algorithm 1, using estimates Π̂. Let the i-th row for

set B be Q̂iB := (α0 + 1)
Π̂iB
|Π̂iB |1

− α0
n
~1>. Similarly define Q̂iC .

Estimate F̂C ← GC,BQ̂
>
B, P̂ ← Q̂C F̂C .

if α0 = 0 (stochastic block model) then
for x ∈ C do

Let i∗ ← arg maxi∈[k] F̂C(x, i) and Ŝ(i∗, x)← 1 and 0 o.w.
end for

else
Let H be the average of diagonals of P̂ , L be the average of off-diagonals of P̂
for x ∈ C, i ∈ [k] do
Ŝ(i, x)← 1 if F̂C(x, i) ≥ L+ (H −L) · 3ξ

4 and zero otherwise.{Identify large entries}
end for

end if
Permute the roles of the sets A,B,C,X, Y to get results for remaining nodes.
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3.3.8 Computational Complexity

We note that the computational complexity of the method, implemented naively, is O(n2k+
k4.43α̂−1

min) when α0 > 1 and O(n2k) when α0 < 1. This is because the time for computing
whitening matrices is dominated by SVD of the top k singular vectors of n×n matrix, which
takes O(n2k) time. We then compute the whitened tensor T which requires time O(n2k +
k3n) = O(n2k), since for each i ∈ Y , we multiply Gi,A, Gi,B, Gi,C with the corresponding
whitening matrices, and this step takes O(nk) time. We then average this k× k× k tensor
over different nodes i ∈ Y to the result, which takes O(k3) time in each step.

For the tensor power method, the time required for a single iteration is O(k3). We
need at most log n iterations per initial vector, and we need to consider O(α̂−1

mink
0.43) initial

vectors (this could be smaller when α0 < 1). Hence the total running time of tensor power
method is O(k4.43α̂−1

min) (and when α0 is small this can be improved to O(k4α̂−1
min) which is

dominated by O(n2k).

In the process of estimating Π and P , the dominant operation is multiplying k×n matrix
by n × n matrix, which takes O(n2k) time. For support recovery, the dominant operation
is computing the “average degree”, which again takes O(n2k) time. Thus, we have that the
overall computational time is O(n2k + k4.43α̂−1

min) when α0 > 1 and O(n2k) when α0 < 1.

Note that the above bound on complexity of our method nearly matches the bound
for spectral clustering method (McSherry, 2001), since computing the k-rank SVD requires
O(n2k) time. Another method for learning stochastic block models is based on convex
optimization involving semi-definite programming (SDP) (Chen et al., 2012), and it provides
the best scaling bounds (for both the network size n and the separation p − q for edge
connectivity) known so far. The specific convex problem can be solved via the method
of augmented Lagrange multipliers (Lin et al., 2010), where each step consists of an SVD
operation and q-linear convergence is established by Lin et al. (2010). This implies that the
method has complexity O(n3), since it involves taking SVD of a general n×n matrix, rather
than a k-rank SVD. Thus, our method has significant advantage in terms of computational
complexity, when the number of communities is much smaller than the network size (k � n).

Further, a subsequent work provides a more sophisticated implementation of the pro-
posed tensor method through parallelization and the use of stochastic gradient descent for
tensor decomposition (Huang et al., 2013). Additionally, the k-rank SVD operations are
approximated via randomized methods such as the Nystrom’s method leading to more effi-
cient implementations (Gittens and Mahoney, 2013). Huang et al. (2013) deploy the tensor
approach for community detection and establish that it has a running time of O(n + k3)
using nk cores under a parallel computation model (JáJá, 1992).

4. Sample Analysis for Proposed Learning Algorithm

In this section we analyze our algorithm when the moments are estimated from the sample.
Unlike common sample complexity analysis, here we are only given one instance of the
graph. We treat the edges in the graph as independent samples (conditioned on community
membership), and the “sample complexity” will control how many communities we can
learn in a graph with n vertices.
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4.1 Homogeneous Mixed Membership Models

It is easier to first present the results for our proposed algorithm for the special case,
where all the communities have the same expected size and the entries of the community
connectivity matrix P are equal on diagonal and off-diagonal locations:

α̂i ≡
1

k
, P (i, j) = p · I(i = j) + q · I(i 6= j), p ≥ q. (25)

In other words, the probability of an edge according to P only depends on whether it is
between two individuals of the same community or between different communities. The
above setting is also well studied for stochastic block models (α0 = 0), allowing us to
compare our results with existing ones. The results for general mixed membership models
are deferred to Section 4.2.

[A1] Sparse regime of Dirichlet parameters: The community membership vectors are
drawn from the Dirichlet distribution, Dir(α), under the mixed membership model. We
assume that αi < 1 for i ∈ [k] (see Section 2.1 for an extended discussion on the sparse
regime of the Dirichlet distribution) and that α0 is known.

[A2] Condition on the network size: Given the concentration parameter of the Dirich-
let distribution, α0 :=

∑
i αi, we require that

n = Ω̃(k2(α0 + 1)2), (26)

and that the disjoint sets A,B,C,X, Y are chosen randomly and are of size Θ(n). Note
that from assumption A1, αi < 1 which implies that α0 < k. Thus, in the worst-case, when
α0 = Θ(k), we require13 n = Ω̃(k4), and in the best case, when α0 = Θ(1), we require
n = Ω̃(k2). The latter case includes the stochastic block model (α0 = 0), and thus, our
results match the state-of-art bounds for learning stochastic block models.

[A3] Condition on edge connectivity: Recall that p is the probability of intra-
community connectivity and q is the probability of inter-community connectivity. We
require that

p− q
√
p

= Ω

(
(α0 + 1)k

n1/2

)
(27)

The above condition is on the standardized separation between intra-community and inter-
community connectivity (note that

√
p is the standard deviation of a Bernoulli random

variable). The above condition is required to control the perturbation in the whitened
tensor (computed using observed network samples), thereby, providing guarantees on the
estimated eigen-pairs through the tensor power method.

[A4] Condition on number of iterations of the power method: We assume that the
number of iterations N of the tensor power method in Procedure 2 satisfies

N ≥ C2 ·
(

log(k) + log log

(
p− q
p

))
, (28)

for some constant C2.

13. The notation Ω̃(·), Õ(·) denotes Ω(·), O(·) up to poly-log factors.
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[A5] Choice of τ for thresholding community vector estimates: The threshold τ
for obtaining estimates Π̂ of community membership vectors in Algorithm 1 is chosen as

τ =

Θ

(
k
√
α0√
n
·
√
p

p− q

)
, α0 6= 0, (29)

0.5, α0 = 0, (30)

For the stochastic block model (α0 = 0), since πi is a basis vector, we can use a large
threshold. For general models (α0 6= 0), τ can be viewed as a regularization parameter and
decays as n−1/2 when other parameters are held fixed. We are now ready to state the error
bounds on the estimates of community membership vectors Π and the block connectivity
matrix P . Π̂ and P̂ are the estimates computed in Algorithm 1.

Recall that for a matrix M , (M)i and (M)i denote the ith row and column respectively.
We say that an event holds with high probability, if it occurs with probability 1 − n−c for
some constant c > 0.

Theorem 5 (Guarantees on Estimating P , Π) Under assumptions A1-A5, we have with
high probability

επ,`1 := max
i∈[n]
‖Π̂i −Πi‖1 = Õ

(
(α0 + 1)3/2√np

(p− q)

)
(31)

εP := max
i,j∈[k]

|P̂i,j − Pi,j | = Õ

(
(α0 + 1)3/2k

√
p

√
n

)
. (32)

The proofs are given in the Appendix and a proof outline is provided in Section 4.3.
The main ingredient in establishing the above result is the tensor concentration bound

and additionally, recovery guarantees under the tensor power method in Procedure 2. We
now provide these results below.

Recall that FA := Π>AP
> and Φ = W>A FA Diag(α̂1/2) denotes the set of tensor eigenvec-

tors under exact moments in (23), and Φ̂ is the set of estimated eigenvectors under empirical
moments, obtained using Procedure 1. We establish the following guarantees.

Lemma 6 (Perturbation bound for estimated eigen-pairs) Under the assumptions
A1-A4, the recovered eigenvector-eigenvalue pairs (Φ̂i, λ̂i) from the tensor power method in
Procedure 2 satisfies with high probability, for a permutation θ, such that

max
i∈[k]
‖Φ̂i − Φθ(i)‖ ≤ 8k−1/2εT , max

i∈[k]
|λi − α̂−1/2

θ(i) | ≤ 5εT , (33)

The tensor perturbation bound εT is given by

εT :=
∥∥∥Tα0

Y→{A,B,C}(ŴA, ŴBR̂AB, ŴCR̂AC)

−E[Tα0

Y→{A,B,C}(WA,WBRAB,WCRAC)|ΠA∪B∪C ]
∥∥∥ (34)

= Õ

(
(α0 + 1)k3/2√p

(p− q)
√
n

)
, (35)

where ‖T‖ for a tensor T refers to its spectral norm.
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Remark: (Stochastic Block Models (α0 = 0)) For stochastic block models, assumptions A2
and A3 reduce to

n = Ω̃(k2), ζ = Θ

( √
p

p− q

)
= O

(
n1/2

k

)
. (36)

This matches with the best known scaling (up to poly-log factors), and was previously
achieved via convex optimization by Chen et al. (2012) for stochastic block models. How-
ever, our results in Theorem 5 do not provide zero error guarantees as in Chen et al. (2012).
We strengthen our results to provide zero-error guarantees in Section 4.1.1 below and thus,
match the scaling of Chen et al. (2012) for stochastic block models. Moreover, we also pro-
vide zero-error support recovery guarantees for recovering significant memberships of nodes
in mixed membership models in Section 4.1.1.

Remark: (Dependence on α0) The guarantees degrade as α0 increases, which is intuitive
since the extent of community overlap increases. The requirement for scaling of n also grows
as α0 increases. Note that the guarantees on επ and εP can be improved by assuming a more
stringent scaling of n with respect to α0, rather than the one specified by A2.

4.1.1 Zero-error Guarantees for Support Recovery

Recall that we proposed Procedure 3 as a post-processing step to provide improved support
recovery estimates. We now provide guarantees for this method.

We now specify the threshold ξ for support recovery in Procedure 3.

[A6] Choice of ξ for support recovery: We assume that the threshold ξ in Procedure 3
satisfies

ξ = Ω(εP ),

where εP is specified in Theorem 5.

We now state the guarantees for support recovery.

Theorem 7 (Support recovery guarantees) Assuming A1-A6 and (25) hold, the sup-
port recovery method in Procedure 3 has the following guarantees on the estimated support
set Ŝ: with high probability,

Π(i, j) ≥ ξ ⇒ Ŝ(i, j) = 1 and Π(i, j) ≤ ξ

2
⇒ Ŝ(i, j) = 0, ∀i ∈ [k], j ∈ [n], (37)

where Π is the true community membership matrix.

Thus, the above result guarantees that the Procedure 3 correctly recovers all the “large”
entries of Π and also correctly rules out all the “small” entries in Π. In other words, we
can correctly infer all the significant memberships of each node and also rule out the set of
communities where a node does not have a strong presence.

The only shortcoming of the above result is that there is a gap between the “large”
and “small” values, and for an intermediate set of values (in [ξ/2, ξ]), we cannot guarantee
correct inferences about the community memberships. Note this gap depends on εP , the
error in estimating the P matrix. This is intuitive, since as the error εP decreases, we can
infer the community memberships over a large range of values.
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For the special case of stochastic block models (i.e., limα0 → 0), we can improve the
above result and give a zero error guarantee at all nodes (w.h.p). Note that we no longer
require a threshold ξ in this case, and only infer one community for each node.

Corollary 8 (Zero error guarantee for block models) Assuming A1-A5 and (25) hold,
the support recovery method in Procedure 3 correctly identifies the community memberships
for all nodes with high probability in case of stochastic block models (α0 → 0).

Thus, with the above result, we match the state-of-art results of Chen et al. (2012) for
stochastic block models in terms of scaling requirements and recovery guarantees.

4.2 General (Non-homogeneous) Mixed Membership Models

In the previous sections, we provided learning guarantees for learning homogeneous mixed
membership models. Here, we extend the results to learning general non-homogeneous
mixed membership models under a sufficient set of conditions, involving scaling of various
parameters such as network size n, number of communities k, concentration parameter α0

of the Dirichlet distribution (which is a measure of overlap of the communities) and so on.
[B1] Sparse regime of Dirichlet parameters: The community membership vectors are
drawn from the Dirichlet distribution, Dir(α), under the mixed membership model. We
assume that14 αi < 1 for i ∈ [k] αi < 1 (see Section 2.1 for an extended discussion on the
sparse regime of the Dirichlet distribution).
[B2] Condition on the network size: Given the concentration parameter of the Dirich-
let distribution, α0 :=

∑
i αi, and α̂min := αmin/α0, the expected size of the smallest com-

munity, define

ρ :=
α0 + 1

α̂min
. (38)

We require that the network size scale as

n = Ω
(
ρ2 log2 k

)
, (39)

and that the sets A,B,C,X, Y are Θ(n). Note that from assumption B1, αi < 1 which
implies that α0 < k. Thus, in the worst-case, when α0 = Θ(k), we require15 n = Ω̃(k4),
assuming equal sizes: α̂i = 1/k, and in the best case, when α0 = Θ(1), we require n = Ω̃(k2).
The latter case includes the stochastic block model (α0 = 0), and thus, our results match
the state-of-art bounds for learning stochastic block models. See Section 4.1 for an extended
discussion.
[B3] Condition on relative community sizes and block connectivity matrix: Recall
that P ∈ [0, 1]k×k denotes the block connectivity matrix. Define

ζ :=

(
α̂max

α̂min

)1/2
√

(maxi(Pα̂)i)

σmin(P )
, (40)

14. The assumption B1 that the Dirichlet distribution be in the sparse regime is not strictly needed. Our
results can be extended to general Dirichlet distributions, but with worse scaling requirements on n. The
dependence of n is still polynomial in α0, i.e., we require n = Ω̃((α0 + 1)cα̂−2

min), where c ≥ 2 is some
constant.

15. The notation Ω̃(·), Õ(·) denotes Ω(·), O(·) up to log factors.

2270



A Tensor Approach to Learning Mixed Membership Community Models

where σmin(P ) is the minimum singular value of P . We require that

ζ =


O

(
n1/2

ρ

)
, α0 < 1 (41)

O

(
n1/2

ρkα̂max

)
α0 ≥ 1. (42)

Intuitively, the above condition requires the ratio of maximum and minimum expected
community sizes to be not too large and for the matrix P to be well conditioned. The
above condition is required to control the perturbation in the whitened tensor (computed
using observed network samples), thereby, providing guarantees on the estimated eigen-
pairs through the tensor power method. The above condition can be interpreted as a
separation requirement between intra-community and inter-community connectivity in the
special case considered in Section 4.1. Specifically, for the special case of homogeneous
mixed membership model, we have

σmin(P ) = Θ(p− q), max
i

(Pα̂)i =
p

k
+ (k − 1)

q

k
≤ p.

Thus, the assumptions A2 and A3 in Section 4.1 given by

n = Ω̃(k2(α0 + 1)2), ζ = Θ

( √
p

p− q

)
= O

(
n1/2

(α0 + 1)k

)

are special cases of the assumptions B2 and B3 above.
[B4] Condition on number of iterations of the power method: We assume that the
number of iterations N of the tensor power method in Procedure 2 satisfies

N ≥ C2 ·
(

log(k) + log log

(
σmin(P )

(maxi(Pα̂)i)

))
, (43)

for some constant C2.
[B5] Choice of τ for thresholding community vector estimates: The threshold τ
for obtaining estimates Π̂ of community membership vectors in Algorithm 1 is chosen as

τ =

Θ

(
ρ1/2 · ζ · α̂1/2

max

n1/2 · α̂min

)
, α0 6= 0, (44)

0.5, α0 = 0, (45)

For the stochastic block model (α0 = 0), since πi is a basis vector, we can use a large
threshold. For general models (α0 6= 0), τ can be viewed as a regularization parameter and
decays as n−1/2 when other parameters are held fixed. Moreover, when n = Θ̃(ρ2), we have
that τ ∼ ρ−1/2 when other terms are held fixed. Recall that ρ ∝ (α0 +1) when the expected
community sizes α̂i are held fixed. In this case, τ ∼ ρ−1/2 allows for smaller values to be
picked up after thresholding as α0 is increased. This is intuitive since as α0 increases, the
community vectors π are more “spread out” across different communities and have smaller
values.
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We are now ready to state the error bounds on the estimates of community membership
vectors Π and the block connectivity matrix P . Π̂ and P̂ are the estimates computed in
Algorithm 1.

Recall that for a matrix M , (M)i and (M)i denote the ith row and column respectively.
We say that an event holds with high probability, if it occurs with probability 1 − n−c for
some constant c > 0.

Theorem 9 (Guarantees on estimating P , Π) Under assumptions B1-B5, The esti-
mates P̂ and Π̂ obtained from Algorithm 1 satisfy with high probability,

επ,`1 := max
i∈[k]
|(Π̂)i − (Π)i|1 = Õ

(
n1/2 · ρ3/2 · ζ · α̂max

)
(46)

εP := max
i,j∈[n]

|P̂i,j − Pi,j | = Õ
(
n−1/2 · ρ5/2 · ζ · α̂3/2

max · (Pmax − Pmin)
)

(47)

The proofs are in Appendix B and a proof outline is provided in Section 4.3.

The main ingredient in establishing the above result is the tensor concentration bound
and additionally, recovery guarantees under the tensor power method in Procedure 2. We
now provide these results below.

Recall that FA := Π>AP
> and Φ = W>A FA Diag(α̂1/2) denotes the set of tensor eigenvec-

tors under exact moments in (23), and Φ̂ is the set of estimated eigenvectors under empirical
moments, obtained using Procedure 1. We establish the following guarantees.

Lemma 10 (Perturbation bound for estimated eigen-pairs) Under the assumptions
B1-B4, the recovered eigenvector-eigenvalue pairs (Φ̂i, λ̂i) from the tensor power method in
Procedure 2 satisfies with high probability, for a permutation θ, such that

max
i∈[k]
‖Φ̂i − Φθ(i)‖ ≤ 8α̂1/2

maxεT , max
i
|λi − α̂−1/2

θ(i) | ≤ 5εT , (48)

The tensor perturbation bound εT is given by

εT :=
∥∥∥Tα0

Y→{A,B,C}(ŴA, ŴBR̂AB, ŴCR̂AC)

−E[Tα0

Y→{A,B,C}(WA,WBRAB,WCRAC)|ΠA∪B∪C ]
∥∥∥ (49)

= Õ

(
ρ√
n
· ζ

α̂
1/2
max

)
, (50)

where ‖T‖ for a tensor T refers to its spectral norm, ρ is defined in (38) and ζ in (40).

4.2.1 Application to Planted Clique Problem

The planted clique problem is a special case of the stochastic block model Condon and Karp
(1999), and is arguably the simplest setting for the community problem. Here, a clique of
size s is uniformly planted (or placed) in an Erdős-Rényi graph with edge probability 0.5.
This can be viewed as a stochastic block model with k = 2 communities, where α̂min = s/n
is the probability of a node being in a clique and α̂max = 1− s/n. The connectivity matrix
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is P = [1, q; q, q] with q = 0.5, since the probability of connectivity within the clique is 1
and the probability of connectivity for any other node pair is 0.5.

Since the planted clique setting has unequal sized communities, the general result in
Section 9 is applicable, and we demonstrate how the assumptions (B1)-(B5) simplify for
the planted clique setting. We have that α0 = 0, since the communities are non-overlapping.
For assumption B2, we have that

ρ =
α0 + 1

α̂min
=
n

s
, n = Ω̃(ρ2)⇒ s = Ω̃(

√
n). (51)

For assumption B3, we have that σmin(P ) = Θ(1) and that maxi(Pα̂)i ≤ s/n+ q ≤ 2, and
thus the assumption B3 simplifies as

ζ :=

(
α̂max

α̂min

)1/2
√

(maxi(Pα̂)i)

σmin(P )
= Õ

(√
n

ρ

)
⇒ s = Ω̃

(
n2/3

)
. (52)

The condition in (51) that s = Ω̃(n1/2) matches the computational lower bounds for recover-
ing the clique (Feldman et al., 2012). Unfortunately, the condition in (52) that s = Ω̃

(
n2/3

)
is worse. This is required for assumption (B3) to hold, which is needed to ensure the success
of the tensor power method. The whitening step is particularly sensitive to the condition
number of the matrix to be whitened (i.e., matrices FA, FB, FC in our case and the condition
numbers for these matrices depend on the ratio of the community sizes), which results in
a weaker guarantee. Thus, our method does not perform very well when the community
sizes are drastically different. It remains an open question if our method can be improved
in this setting. We conjecture that using “peeling” ideas similar to Ailon et al. (2013),
where the communities are recovered one by one can improve our dependence on the ratio
of community sizes.

4.3 Proof Outline

We now summarize the main techniques involved in proving Theorem 9. The details are in
the Appendix. The main ingredient is the concentration of the adjacency matrix: since the
edges are drawn independently conditioned on the community memberships, we establish
that the adjacency matrix concentrates around its mean under the stated assumptions. See
Appendix C.4 for details. With this in hand, we can then establish concentration of various
quantities used by our learning algorithm.

Step 1: Whitening matrices. We first establish concentration bounds on the whitening
matrices ŴA, ŴB, ŴC computed using empirical moments, described in Section 3.3.1. With
this in hand, we can approximately recover the span of matrix FA since Ŵ>A F Diag(α̂i)

1/2 is a
rotation matrix. The main technique employed is the Matrix Bernstein’s inequality (Tropp,
2012, thm. 1.4). See Appendix C.2 for details.

Step 2: Tensor concentration bounds. Recall that we use the whitening matrices to obtain
a symmetric orthogonal tensor. We establish that the whitened and symmetrized tensor
concentrates around its mean. (Note that the empirical third order tensor TX→A,B,C tends
to its expectation conditioned on ΠA,ΠB,ΠC when |X| → ∞). This is done in several stages
and we carefully control the tensor perturbation bounds. See Appendix C.1 for details.
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Step 3: Tensor power method analysis. We analyze the performance of Procedure 2 under
empirical moments. We employ the various improvements, detailed in Section 3.3.3 to es-
tablish guarantees on the recovered eigen-pairs. This includes coming up with a condition
on the tensor perturbation bound, for the tensor power method to succeed. It also involves
establishing that there exist good initializers for the power method among (whitened) neigh-
borhood vectors. This allows us to obtain stronger guarantees for the tensor power method,
compared to earlier analysis by Anandkumar et al. (2012b). This analysis is crucial for us to
obtain state-of-art scaling bounds for guaranteed recovery (for the special case of stochastic
block model). See Appendix A for details.

Step 4: Thresholding of estimated community vectors. In Step 3, we provide guarantees
for recovery of each eigenvector in `2 norm. Direct application of this result only allows us
to obtain `2 norm bounds for row-wise recovery of the community matrix Π. In order to
strengthen the result to an `1 norm bound, we threshold the estimated Π vectors. Here, we
exploit the sparsity in Dirichlet draws and carefully control the contribution of weak entries
in the vector. Finally, we establish perturbation bounds on P through rather straightforward
concentration bound arguments. See Appendix B.2 for details.

Step 5: Support recovery guarantees. To simplify the argument, consider the stochastic
block model. Recall that Procedure 3 readjusts the community membership estimates
based on degree averaging. For each vertex, if we count the average degree towards these
“approximate communities”, for the correct community the result is concentrated around
value p and for the wrong community the result is around value q. Therefore, we can
correctly identify the community memberships of all the nodes, when p − q is sufficiently
large, as specified by A3. The argument can be easily extended to general mixed membership
models. See Appendix B.4 for details.

4.4 Comparison with Previous Results

We now compare the results of this paper to our previous work (Anandkumar et al., 2012b)
on the use of tensor-based approaches for learning various latent variable models such as
topic models, hidden Markov models (HMM) and Gaussian mixtures. At a high level,
the tensor approach is exploited in a similar manner in all these models (including the
community model in this paper), viz., that the conditional-independence relationships of
the model result in a low rank tensor, constructed from low order moments under the given
model. However, there are several important differences between the community model and
the other latent variable models considered by Anandkumar et al. (2012b) and we list them
below. We also precisely list the various algorithmic improvements proposed in this paper
with respect to the tensor power method, and how they can be applicable to other latent
variable models.

4.4.1 Topic Model vs. Community Model

Among the latent variable models studied by Anandkumar et al. (2012b), the topic model,
viz., latent Dirichlet allocation (LDA), bears the closest resemblance to MMSB. In fact, the
MMSB model was originally inspired by the LDA model. The analogy between the MMSB
model and the LDA is direct under our framework and we describe it below.
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.
(a) Community model as a topic model

.
(b) Graphical model representation

Figure 2: Casting the community model as a topic model, we obtain conditional indepen-
dence of the three views.

Recall that for learning MMSBs, we consider a partition of the nodes {X,A,B,C} and
we consider the set of 3-stars from set X to A,B,C. We can construct an equivalent topic
model as follows: the nodes in X form the “documents” and for each document x ∈ X, the
neighborhood vectors G>xA, G

>
xB, G

>
xC form the three “words” or “views” for that document.

In each document x ∈ X, the community vector πx corresponds to the “topic vector” and
the matrices FA, FB and FC correspond to the topic-word matrices. Note that the three
views G>xA, G

>
xB, G

>
xC are conditionally independent given the topic vector πx. Thus, the

community model can be cast as a topic model or a multi-view model. See Figure 2.

Although the community model can be viewed as a topic model, it has some important
special properties which allows us to provide better guarantees. The topic-word matrices
FA, FB, FC are not arbitrary matrices. Recall that FA := Π>AP

> and similarly FB, FC are
random matrices and we can provide strong concentration bounds for these matrices by
appealing to random matrix theory. Moreover, each of the views in the community model
has additional structure, viz., the vector G>x,A has independent Bernoulli entries conditioned
on the community vector πx, while in a general multi-view model, we only specify the
conditional distribution of each view given the hidden topic vector. This further allows
us to provide specialized concentration bounds for the community model. Importantly, we
can recover the community memberships (or topic vectors) accurately while for a general
multi-view model this cannot be guaranteed and we can only hope to recover the model
parameters.

4.4.2 Improvements to Tensor Recovery Guarantees in This Paper

In this paper, we make modifications to the tensor power method of Anandkumar et al.
(2012b) and obtain better guarantees for the community setting. Recall that the two modi-
fications are adaptive deflation and initialization using whitened neighborhood vectors. The
adaptive deflation leads to a weaker gap condition for an initialization vector to succeed
in estimating a tensor eigenvector efficiently. Initialization using whitened neighborhood
vectors allows us to tolerate more noise in the estimated 3-star tensor, thereby improving
our sample complexity result. We make this improvement precise below.
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If we directly apply the tensor power method of Anandkumar et al. (2012b), without
considering the modifications, we require a stronger condition on the sample complexity
and edge connectivity. For simplicity, consider the homogeneous setting of Section 4.1. The
conditions (A2) and (A3) now need to be replaced with stronger conditions: [A2’] Sample
complexity: The number of samples satisfies

n = Ω̃(k4(α0 + 1)2).

[A3’] Edge connectivity: The edge connectivity parameters p, q satisfy

p− q
√
p

= Ω

(
(α0 + 1)k2

√
n

)
.

Thus, we obtain significant improvements in recovery guarantees via algorithmic modifica-
tions and careful analysis of concentration bounds.

The guarantees derived in this paper are specific to the community setting, and we
outlined previously the special properties of the community model when compared to a
general multi-view model. However, when the documents of the topic model are sufficiently
long, the word frequency vector within a document has good concentration, and our modified
tensor method has better recovery guarantees in this setting as well. Thus, the improved
tensor recovery guarantees derived in this paper are applicable in scenarios where we have
access to better initialization vectors rather than simple random initialization.

5. Conclusion

In this paper, we presented a novel approach for learning overlapping communities based on
a tensor decomposition approach. We established that our method is guaranteed to recover
the underlying community memberships correctly, when the communities are drawn from
a mixed membership stochastic block model (MMSB). Our method is also computationally
efficient and requires simple linear algebraic operations and tensor iterations. Moreover, our
method is tight for the special case of the stochastic block model (up to poly-log factors),
both in terms of sample complexity and the separation between edge connectivity within a
community and across different communities.

We now note a number of interesting open problems and extensions. While we obtained
tight guarantees for MMSB models with uniform sized communities, our guarantees are
weak when the community sizes are drastically different, such as in the planted clique set-
ting where we do not match the computational lower bound (Feldman et al., 2012). The
whitening step in the tensor decomposition method is particularly sensitive to the ratio
of community sizes and it is interesting to see if modifications can be made to our algo-
rithm to provide tight guarantees under unequal community sizes. While this paper mostly
dealt with the theoretical analysis of the tensor method for community detection, we note
recent experimental results where the tensor method is deployed on graphs with millions
of nodes with very good accuracy and running times (Huang et al., 2013). In fact, the
running times are more than an order of magnitude better than the state-of-art variational
approach for learning MMSB models. The work of (Huang et al., 2013) makes an im-
portant modification to make the method scalable, viz., that the tensor decomposition is
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carried out through stochastic updates in parallel unlike the serial batch updates considered
here. Establishing theoretical guarantees for stochastic tensor decomposition is an impor-
tant problem. Moreover, we have limited ourselves to the MMSB models, which assumes
a linear model for edge formation, which is not applicable universally. For instance, exclu-
sionary relationships, where two nodes cannot be connected because of their memberships
in certain communities cannot be imposed in the MMSB model. Are there other classes of
mixed membership models which do not suffer from this restriction, and yet are identifiable
and are amenable for learning? Moreover, the Dirichlet distribution in the MMSB model
imposes constraints on the memberships across different communities. Can we incorporate
mixed memberships with arbitrary correlations? The answers to these questions will further
push the boundaries of tractable learning of mixed membership communities models.
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Appendix A. Tensor Power Method Analysis

In this section, we leverage on the perturbation analysis for tensor power method in Anand-
kumar et al. (2012b). As discussed in Section 3.3.3, we propose the following modifications
to the tensor power method and obtain guarantees below for the modified method. The
two main modifications are: (1) we modify the tensor deflation process in the robust power
method in Procedure 2. Rather than a fixed deflation step after obtaining an estimate of
the eigenvalue-eigenvector pair, in this paper, we deflate adaptively depending on the cur-
rent estimate, and (2)rather than selecting random initialization vectors, as in Anandkumar
et al. (2012b), we initialize with vectors obtained from adjacency matrix.

Below in Section A.1, we establish success of the modified tensor method under “good”
initialization vectors, as defined below. This involves improved error bounds for the modified
deflation procedure provided in Section A.2. In Section C.5, we subsequently establish that
under the Dirichlet distribution (for small α0), we obtain “good” initialization vectors.

A.1 Analysis under Good Initialization Vectors

We now show that when “good” initialization vectors are input to tensor power method in
Procedure 2, we obtain good estimates of eigen-pairs under appropriate choice of number
of iterations N and spectral norm ε of tensor perturbation.

Let T =
∑

i∈[k] λivi, where vi are orthonormal vectors and λ1 ≥ λ2 ≥ . . . λk. Let

T̃ = T + E be the perturbed tensor with ‖E‖ ≤ ε. Recall that N denotes the number of
iterations of the tensor power method.
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We call an initialization vector u to be (γ,R0)-good if there exists vi such that 〈u, vi〉 >
R0 and

| 〈u, vi〉 | −max
j<i
| 〈u, vj〉 | > γ| 〈u, vi〉 |. (53)

Choose γ = 1/100.

Theorem 11 There exists universal constants C1, C2 > 0 such that the following holds.

ε ≤ C1 · λminR
2
0, N ≥ C2 ·

(
log(k) + log log

(
λmax

ε

))
, (54)

Assume there is at least one good initialization vector corresponding to each vi, i ∈ [k]. The
parameter ξ for choosing deflation vectors in each iteration of the tensor power method in
Procedure 2 is chosen as ξ ≥ 25ε. We obtain eigenvalue-eigenvector pairs (λ̂1, v̂1), (λ̂2, v̂2),
. . . , (λ̂k, v̂k) such that there exists a permutation π on [k] with

‖vπ(j) − v̂j‖ ≤ 8ε/λπ(j), |λπ(j) − λ̂j | ≤ 5ε, ∀j ∈ [k],

and ∥∥∥∥∥∥T −
k∑
j=1

λ̂j v̂
⊗3
j

∥∥∥∥∥∥ ≤ 55ε.

Remark: (need for adaptive deflation) We now compare the above result with the result
in (Anandkumar et al., 2012b, Thm. 5.1), where similar guarantees are obtained for a sim-
pler version of the tensor power method without any adaptive deflation and using random
initialization. The main difference is in our requirement of the gap γ in (53) for an ini-
tialization vector is weaker than the gap requirement in (Anandkumar et al., 2012b, Thm.
5.1). This is due to the use of adaptive deflation in this paper.
Remark: (need for non-random initialization) In this paper, we employ whitened neigh-
borhood vectors generated under the MMSB model for initialization, while (Anandkumar
et al., 2012b, Thm. 5.1) assumes a random initialization. Under random initialization, we
obtain R0 ∼ 1/

√
k (with poly(k) trials), while for initialization using whitened neighborhood

vectors, we subsequently establish that R0 = Ω(1) is a constant, when number of samples n
is large enough. We also establish that the gap requirement in (53) is satisfied for the choice
of γ = 1/100 above. See Lemma 25 for details. Thus, we can tolerate much larger pertur-
bation ε of the third order moment tensor, when non-random initializations are employed.
Proof: The proof is on lines of the proof of (Anandkumar et al., 2012b, Thm. 5.1) but
here, we consider the modified deflation procedure, which improves the condition on ε in
(54). We provide the full proof below for completeness.

We prove by induction on i, the number of eigenpairs estimated so far by Procedure 2.
Assume that there exists a permutation π on [k] such that the following assertions hold.

1. For all j ≤ i, ‖vπ(j) − v̂j‖ ≤ 8ε/λπ(j) and |λπ(j) − λ̂j | ≤ 12ε.

2. D(u, i) is the set of deflated vectors given current estimate of the power method is
u ∈ Sk−1:

D(u, i; ξ) := {j : |λ̂iθ̂i| ≥ ξ} ∩ [i],

where θ̂i := 〈u, v̂i〉.
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3. The error tensor

Ẽi+1,u :=

(
T̂ −

∑
j∈D(u,i;ξ)

λ̂j v̂
⊗3
j

)
−

∑
j /∈D(u,i;ξ)

λπ(j)v
⊗3
π(j)

= E +
∑

j∈D(u,i;ξ)

(
λπ(j)v

⊗3
π(j) − λ̂j v̂

⊗3
j

)
satisfies

‖Ẽi+1,u(I, u, u)‖ ≤ 56ε, ∀u ∈ Sk−1; (55)

‖Ẽi+1,u(I, u, u)‖ ≤ 2ε, ∀u ∈ Sk−1 s.t. ∃j ≥ i+ 1 � (u>vπ(j))
2 ≥ 1− (168ε/λπ(j))

2.

(56)

We take i = 0 as the base case, so we can ignore the first assertion, and just observe that
for i = 0, D(u, 0; ξ) = ∅ and thus

Ẽ1,u = T̂ −
k∑
j=1

λiv
⊗3
i = E, ∀u ∈ Sk−1.

We have ‖Ẽ1‖ = ‖E‖ = ε, and therefore the second assertion holds.
Now fix some i ∈ [k], and assume as the inductive hypothesis. The power iterations now

take a subset of j ∈ [i] for deflation, depending on the current estimate. Set

C1 := min
{

(56 · 9 · 102)−1, (100 · 168)−1,∆′ from Lemma 12 with ∆ = 1/50
}
. (57)

For all good initialization vectors which are γ-separated relative to π(jmax), we have (i)

|θ(τ)
jmax,0

| ≥ R0, and (ii) that by (Anandkumar et al., 2012b, Lemma B.4) (using ε̃/p := 2ε,
κ := 1, and i∗ := π(jmax), and providing C2),

|T̃i(θ(τ)
N , θ

(τ)
N , θ

(τ)
N )− λπ(jmax)| ≤ 5ε,

(notice by definition that γ ≥ 1/100 implies γ0 ≥ 1 − 1/(1 + γ) ≥ 1/101, thus it follows
from the bounds on the other quantities that ε̃ = 2pε ≤ 56C1 · λminR

2
0 <

γ0
2(1+8κ) · λ̃min · θ2

i∗,0

as necessary). Therefore θN := θ
(τ∗)
N must satisfy

T̃i(θN , θN , θN ) = max
τ∈[L]

T̃i(θ
(τ)
N , θ

(τ)
N , θ

(τ)
N ) ≥ max

j≥i
λπ(j) − 5ε = λπ(jmax) − 5ε.

On the other hand, by the triangle inequality,

T̃i(θN , θN , θN ) ≤
∑
j≥i

λπ(j)θ
3
π(j),N + |Ẽi(θN , θN , θN )|

≤
∑
j≥i

λπ(j)|θπ(j),N |θ2
π(j),N + 56ε

≤ λπ(j∗)|θπ(j∗),N |+ 56ε,
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where j∗ := arg maxj≥i λπ(j)|θπ(j),N |. Therefore

λπ(j∗)|θπ(j∗),N | ≥ λπ(jmax) − 5ε− 56ε ≥ 4

5
λπ(jmax).

Squaring both sides and using the fact that θ2
π(j∗),N + θ2

π(j),N ≤ 1 for any j 6= j∗,

(
λπ(j∗)θπ(j∗),N

)2 ≥ 16

25

(
λπ(jmax)θπ(j∗),N

)2
+

16

25

(
λπ(jmax)θπ(j),N

)2
≥ 16

25

(
λπ(j∗)θπ(j∗),N

)2
+

16

25

(
λπ(j)θπ(j),N

)2
,

which in turn implies

λπ(j)|θπ(j),N | ≤
3

4
λπ(j∗)|θπ(j∗),N |, j 6= j∗.

This means that θN is (1/4)-separated relative to π(j∗). Also, observe that

|θπ(j∗),N | ≥
4

5
·
λπ(jmax)

λπ(j∗)
≥ 4

5
,

λπ(jmax)

λπ(j∗)
≤ 5

4
.

Therefore by (Anandkumar et al., 2012b, Lemma B.4) (using ε̃/p := 2ε, γ := 1/4, and
κ := 5/4), executing another N power iterations starting from θN gives a vector θ̂ that
satisfies

‖θ̂ − vπ(j∗)‖ ≤
8ε

λπ(j∗)
, |λ̂− λπ(j∗)| ≤ 5ε.

Since v̂i = θ̂ and λ̂i = λ̂, the first assertion of the inductive hypothesis is satisfied, as we
can modify the permutation π by swapping π(i) and π(j∗) without affecting the values of
{π(j) : j ≤ i− 1} (recall j∗ ≥ i).

We now argue that Ẽi+1,u has the required properties to complete the inductive step.
By Lemma 12 (using ε̃ := 5ε, ξ = 5ε̃ = 25ε and ∆ := 1/50, the latter providing one upper
bound on C1 as per (57)), we have for any unit vector u ∈ Sk−1,∥∥∥∥∥

(∑
j≤i

(
λπ(j)v

⊗3
π(j) − λ̂j v̂

⊗3
j

))
(I, u, u)

∥∥∥∥∥ ≤
(

1/50 + 100
i∑

j=1

(u>vπ(j))
2

)1/2

5ε ≤ 55ε. (58)

Therefore by the triangle inequality,

‖Ẽi+1(I, u, u)‖ ≤ ‖E(I, u, u)‖+

∥∥∥∥∥
(∑
j≤i

(
λπ(j)v

⊗3
π(j) − λ̂j v̂

⊗3
j

))
(I, u, u)

∥∥∥∥∥ ≤ 56ε.

Thus the bound (55) holds.
To prove that (56) holds, for any unit vector u ∈ Sk−1 such that there exists j′ ≥ i+ 1

with (u>vπ(j′))
2 ≥ 1− (168ε/λπ(j′))

2. We have (via the second bound on C1 in (57) and the
corresponding assumed bound ε ≤ C1 · λminR

2
0)

100

i∑
j=1

(u>vπ(j))
2 ≤ 100

(
1− (u>vπ(j′))

2
)
≤ 100

(
168ε

λπ(j′)

)2

≤ 1

50
,
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and therefore (
1/50 + 100

i∑
j=1

(u>vπ(j))
2

)1/2

5ε ≤ (1/50 + 1/50)1/25ε ≤ ε.

By the triangle inequality, we have ‖Ẽi+1(I, u, u)‖ ≤ 2ε. Therefore (56) holds, so the second
assertion of the inductive hypothesis holds. We conclude that by the induction principle,
there exists a permutation π such that two assertions hold for i = k. From the last induction
step (i = k), it is also clear from (58) that ‖T −

∑k
j=1 λ̂j v̂

⊗3
j ‖ ≤ 55ε. This completes the

proof of the theorem. �

A.2 Deflation Analysis

Lemma 12 (Deflation analysis) Let ε̃ > 0 and let {v1, . . . , vk} be an orthonormal basis
for Rk and λi ≥ 0 for i ∈ [k]. Let {v̂1, . . . , v̂k} ∈ Rk be a set of unit vectors and λ̂i ≥ 0.
Define third order tensor Ei such that

Ei := λiv
⊗3
i − λ̂iv̂

⊗3
i , ∀ i ∈ k.

For some t ∈ [k] and a unit vector u ∈ Sk−1 such that u =
∑

i∈[k] θivi and θ̂i := 〈u, v̂i〉, we
have for i ∈ [t],

|λ̂iθ̂i| ≥ ξ ≥ 5ε̃,

|λ̂i − λi| ≤ ε̃,
‖v̂i − vi‖ ≤ min{

√
2, 2ε̃/λi},

then, the following holds∥∥∥∥ t∑
i=1

Ei(I, u, u)

∥∥∥∥2

2

≤
(

4(5 + 11ε̃/λmin)2 + 128(1 + ε̃/λmin)2(ε̃/λmin)2

)
ε̃2

t∑
i=1

θ2
i

+ 64(1 + ε̃/λmin)2ε̃2 + 2048(1 + ε̃/λmin)2ε̃2.

In particular, for any ∆ ∈ (0, 1), there exists a constant ∆′ > 0 (depending only on ∆) such
that ε̃ ≤ ∆′λmin implies ∥∥∥∥ t∑

i=1

Ei(I, u, u)

∥∥∥∥2

2

≤
(

∆ + 100
t∑
i=1

θ2
i

)
ε̃2.

Proof: The proof is on lines of deflation analysis in (Anandkumar et al., 2012b, Lemma
B.5), but we improve the bounds based on additional properties of vector u. From Anand-
kumar et al. (2012b), we have that for all i ∈ [t], and any unit vector u,∥∥∥∥ t∑

i=1

Ei(I, u, u)

∥∥∥∥2

2

≤
(

4(5 + 11ε̃/λmin)2 + 128(1 + ε̃/λmin)2(ε̃/λmin)2

)
ε̃2

t∑
i=1

θ2
i

+ 64(1 + ε̃/λmin)2ε̃2
t∑
i=1

(ε̃/λi)
2 + 2048(1 + ε̃/λmin)2ε̃2

( t∑
i=1

(ε̃/λi)
3

)2

.

(59)
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Let λ̂i = λi + δi and θ̂i = θi + βi. We have δi ≤ ε̃ and βi ≤ 2ε̃/λi, and that |λ̂iθ̂i| ≥ ξ.

||λ̂iθ̂i| − |λiθi|| ≤ |λ̂iθ̂i − λiθi|
≤ |(λi + δi)(θi + βi)− λiθi|
≤ |δiθi + λiβi + δiβi|
≤ 4ε̃.

Thus, we have that |λiθi| ≥ 5ε̃ − 4ε̃ = ε̃. Thus
∑t

i=1 ε̃
2/λ2

i ≤
∑

i θ
2
i ≤ 1. Substituting in

(59), we have the result. �

Appendix B. Proof of Theorem 9

We now prove the main results on error bounds claimed in Theorem 9 for the estimated
community vectors Π̂ and estimated block probability matrix P̂ in Algorithm 1. Below, we
first show that the tensor perturbation bounds claimed in Lemma 10 holds.

Let ‖T‖ denote the spectral norm for a tensor T (or in special cases a matrix or a
vector). Let ‖M‖F denote the Frobenius norm. Let |M1| denote the operator `1 norm, i.e.,
the maximum `1 norm of its columns and ‖M‖∞ denote the maximum `1 norm of its rows.

Let κ(M) denote the condition number, i.e., ‖M‖
σmin(M) .

B.1 Proof of Lemma 10

From Theorem 11 in Appendix A, we see that the tensor power method returns eigenvalue-
vector pair (λ̂i, Φ̂i) such that there exists a permutation θ with

max
i∈[k]
‖Φ̂i − Φθ(i)‖ ≤ 8α̂1/2

maxεT , (60)

and
max
i
|λi − α̂−1/2

θ(i) | ≤ 5εT , (61)

when the perturbation of the tensor is small enough, according to

εT ≤ C1α̂
−1/2
max r

2
0, (62)

for some constant C1, when initialized with a (γ, r0) good vector.
With the above result, two aspects need to be established: (1) the whitened tensor

perturbation εT is as claimed, (2) the condition in (62) is satisfied and (3) there exist
good initialization vectors when whitened neighborhood vectors are employed. The tensor
perturbation bound εT is established in Theorem 16 in Appendix C.1.

Lemma 25 establishes that when ζ = O(
√
nr2

0/ρ), we have good initialization vectors
with Recall r2

0 = Ω(1/α̂maxk) when α0 > 1 and r2
0 = Ω(1) for α0 ≤ 1, and γ = 1/100 with

probability 1− 9δ under Dirichlet distribution, when

n = Ω̃
(
α−1

mink
0.43 log(k/δ)

)
, (63)

which is satisfied since we assume α̂−2
min < n.
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We now show that the condition in (62) is satisfied under the assumptions B1-B4. Since
εT is given by

εT = Õ

(
ρ√
n
· ζ

α̂
1/2
max

)
,

the condition in (62) is equivalent to ζ = O(
√
nr2

0/ρ). Therefore when ζ = O(
√
nr2

0/ρ), the
assumptions of Theorem 11 are satisfied.

B.2 Reconstruction of Π after Tensor Power Method

Let (M)i and (M)i denote the ith row and ith column in matrix M respectively. Let Z ⊆ Ac
denote any subset of nodes not in A, considered in Procedure LearnPartition Community.
Define

Π̃Z := Diag(λ)−1Φ>Ŵ>AG
>
Z,A. (64)

Recall that the final estimate Π̂Z is obtained by thresholding Π̃Z element-wise with threshold
τ in Procedure 1. We first analyze perturbation of Π̃Z .

Lemma 13 (Reconstruction Guarantees for Π̃Z) Assuming Lemma 10 holds and the
tensor power method recovers eigenvectors and eigenvalues up to the guaranteed errors, we
have with probability 1− 122δ,

επ := max
i∈Z
‖(Π̃Z)i − (ΠZ)i‖ = O

(
εT α̂

1/2
max

(
α̂max

α̂min

)1/2

‖ΠZ‖

)
,

= O

(
ρ · ζ · α̂1/2

max

(
α̂max

α̂min

)1/2
)

where εT is given by (72).

Proof: We have (Π̃Z)i = λ−1
i ((Φ)i)

>Ŵ>AG
>
Z,A. We will now use perturbation bounds for

each of the terms to get the result.
The first term is

‖Diag(λi)
−1 −Diag(α̂

1/2
i )‖ · ‖Diag(α̂1/2)F̃>A ‖ · ‖F̃A‖ · ‖ΠZ‖

≤ 5εT α̂maxα̂
−1/2
min (1 + ε1)2‖ΠZ‖

from the fact that ‖Diag(α̂1/2)F̃>A ‖ ≤ 1 + ε1, where ε1 is given by (87). The second term is

‖Diag(α̂1/2)‖ · ‖(Φ)i − α̂1/2
i (F̃A)i‖ · ‖F̃A‖ · ‖ΠZ‖

≤ 8α̂maxεT α̂
−1/2
min (1 + ε1)‖ΠZ‖

The third term is

‖α̂1/2
i ‖ · ‖(Ŵ

>
A −W>A )FAΠZ‖

≤ α̂1/2
maxα̂

−1/2
min ‖ΠZ‖εW (65)

≤ O

((
α̂max

α̂min

)1/2

εT α̂
1/2
min‖ΠZ‖

)
, (66)
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from Lemma 17 and finally, we have

‖α̂1/2
i ‖ · ‖WA‖ · ‖G>Z,A − FAΠZ‖

≤ O

(
α̂1/2

max

√
α0 + 1

α̂minσmin(P )

√
(max

i
(Pα̂)i)(1 + ε2 + ε3) log

k

δ

)
(67)

≤ O

((
α̂max

α̂min

)1/2

εT
√
α0 + 1(1 + ε2 + ε3)

√
log k

δ

)
(68)

from Lemma 22 and Lemma 23.

The third term in (66) dominates the last term in (68) since (α0 + 1) log k/δ < nα̂min

(due to assumption B2 on scaling of n). �

We now show that if we threshold the entries of Π̃Z , the the resulting matrix Π̂Z has
rows close to those in ΠZ in `1 norm.

Lemma 14 (Guarantees after thresholding) For Π̂Z := Thres(Π̃Z , τ), where τ is the
threshold, we have with probability 1− 2δ, that

επ,`1 := max
i∈[k]
|(Π̂Z)i − (ΠZ)i|1 = O

(
√
nη επ

√
log

1

2τ

(
1−

√
2 log(k/δ)

nη log(1/2τ)

)

+nητ +

√
(nη + 4τ2) log

k

δ
+
ε2
π

τ

)
,

where η = α̂max when α0 < 1 and η = αmax when α0 ∈ [1, k).

Remark: The above guarantee on Π̂Z is stronger than for Π̃Z in Lemma 13 since this is
an `1 guarantee on the rows compared to `2 guarantee on rows for Π̃Z .

Remark: When τ is chosen as

τ = Θ(
επ√
nη

) = Θ

(
ρ1/2 · ζ · α̂1/2

max

n1/2 · α̂min

)
,

we have that

max
i∈[k]
|(Π̂Z)i − (ΠZ)i|1 = Õ (

√
nη · επ)

= Õ
(
n1/2 · ρ3/2 · ζ · α̂max

)

Proof: Let Si := {j : Π̂Z(i, j) > 2τ}. For a vector v, let vS denote the sub-vector by
considering entries in set S. We now have

|(Π̂Z)i − (ΠZ)i|1 ≤ |(Π̂Z)iSi − (ΠZ)iSi |1 + |(ΠZ)iSci |1 + |(Π̂Z)iSci |1
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Case α0 < 1: From Lemma 26, we have P[Π(i, j) ≥ 2τ ] ≤ 8α̂i log(1/2τ). Since Π(i, j) are
independent for j ∈ Z, we have from multiplicative Chernoff bound (Kearns and Vazirani,
1994, Thm 9.2), that with probability 1− δ,

max
i∈[k]
|Si| < 8nα̂max log

(
1

2τ

)(
1−

√
2 log(k/δ)

nα̂i log(1/2τ)

)
.

We have

|(Π̃Z)iSi − (ΠZ)iSi |1 ≤ επ|Si|
1/2,

and the ith rows of Π̃Z and Π̂Z can differ on Si, we have |Π̃Z(i, j)− Π̂Z(i, j)| ≤ τ , for j ∈ Si,
and number of such terms is at most ε2

π/τ
2. Thus,

|(Π̃Z)iSi − (Π̂Z)iSi |1 ≤
ε2
π

τ
.

For the other term, from Lemma 26, we have

E[ΠZ(i, j) · δ(ΠZ(i, j) ≤ 2τ)] ≤ α̂i(2τ).

Applying Bernstein’s bound we have with probability 1− δ

max
i∈[k]

∑
j∈Z

ΠZ(i, j) · δ(ΠZ(i, j) ≤ 2τ) ≤ nα̂max(2τ) +

√
2(nα̂max + 4τ2) log

k

δ
.

For Π̂i
Sci

, we further divide Sci into Ti and Ui, where Ti := {j : τ/2 < ΠZ(i, j) ≤ 2τ} and

Ui := {j : ΠZ(i, j) ≤ τ/2}.
In the set Ti, using similar argument we know |(ΠZ)iTi−(Π̃Z)iTi |1 ≤ O(επ

√
nα̂max log 1/τ),

therefore

|Π̂i
Ti |1 ≤ |Π̃

i
Ti |1 ≤ |Π

i
Ti − Π̃i

Ti |1 + |Πi
Sci
|1 ≤ O(επ

√
nα̂max log 1/τ).

Finally, for index j ∈ Ui, in order for Π̂Z(i, j) be positive, it is required that Π̃Z(i, j)−
ΠZ(i, j) ≥ τ/2. In this case, we have

|(Π̂Z)iUi |1 ≤
4

τ

∥∥∥(Π̃Z)iUi −Πi
Ui

∥∥∥2
≤ 4ε2

π

τ
.

Case α0 ∈ [1, k): From Lemma 26, we see that the results hold when we replace α̂max with
αmax. �

B.3 Reconstruction of P after Tensor Power Method

Finally we would like to use the community vectors Π and the adjacency matrix G to
estimate the P matrix. Recall that in the generative model, we have E[G] = Π>PΠ. Thus,
a straightforward estimate is to use (Π̂†)>GΠ̂†. However, our guarantees on Π̂ are not
strong enough to control the error on Π̂† (since we only have row-wise `1 guarantees).
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We propose an alternative estimator Q̂ for Π̂† and use it to find P̂ in Algorithm 1. Recall
that the i-th row of Q̂ is given by

Q̂i := (α0 + 1)
Π̂i

|Π̂i|1
− α0

n
~1>.

Define Q using exact communities, i.e.,

Qi := (α0 + 1)
Πi

|Πi|1
− α0

n
~1>.

We show below that Q̂ is close to Π†, and therefore, P̂ := Q̂>GQ̂ is close to P w.h.p.

Lemma 15 (Reconstruction of P ) With probability 1− 5δ,

εP := max
i,j∈[n]

|P̂i,j − Pi,j | ≤ O

(
(α0 + 1)3/2επ(Pmax − Pmin)√

n
α̂−1

minα̂
1/2
max log

nk

δ

)

Remark: If we define a new matrix Q′ as (Q′)i := α0+1
nα̂i

Πi − α0
n
~1>, then EΠ[Q′Π>] = I.

Below, we show that Q′ is close to Q since E[|Πi|1] = nα̂i and thus the above result holds.
We require Q to be normalized by |Πi|1 in order to ensure that the first term of Q has equal
column norms, which will be used in our proofs subsequently.
Proof: The proof goes in three steps:

P ≈ QΠ>PΠQ> ≈ QGQ> ≈ Q̂GQ̂>.

Note that EΠ[ΠQ>] = I and by Bernstein’s bound, we can claim that ΠQ> is close to
I and can show that the i-th row of QΠ> satisfies

∆i := |(QΠ>)i − e>i |1 = O

(
k

√
log

(
nk

δ

)
α̂max

α̂min

1√
n

)
with probability 1− δ. Moreover,

|(Π>PΠQ>)i,j − (Π>P )i,j | ≤ |(Π>P )i((Q)j − ej)| = |(Π>P )i∆j |

≤ O

(
Pmaxk ·

√
α̂max/α̂min√
n

√
log

nk

δ

)
.

using the fact that (Π>P )i,j ≤ Pmax.
Now we claim that Q̂ is close to Q and it can be shown that

|Qi − Q̂i|1 ≤ O
(

εP
Pmax − Pmin

)
(69)

Using (69), we have

|(Π>PΠQ>)i,j − (Π>PΠQ̂>)i,j | = |(Π>PΠ)i(Q> − Q̂>)j |
= ((Π>PΠ)i − Pmin~1

>)|(Q> − Q̂>)j |1
≤ O((Pmax − Pmin)|(Q> − Q̂>)j |1) = O(εP ).
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using the fact that (Qj − Q̂j)~1 = 0, due to the normalization.
Finally, |(GQ̂>)i,j(Π

>PΠQ̂>)i,j | are small by standard concentration bounds (and the
differences are of lower order). Combining these |P̂i,j − Pi,j | ≤ O(εP ).

�

B.4 Zero-error Support Recovery Guarantees

Recall that we proposed Procedure 3 to provide improved support recovery estimates in
the special case of homophilic models (where there are more edges within a community
than to any community outside). We limit our analysis to the special case of uniform sized
communities (αi = 1/k) and matrix P such that P (i, j) = pI(i = j) + qI(i 6= j) and p ≥ q.
In principle, the analysis can be extended to homophilic models with more general P matrix
(with suitably chosen thresholds for support recovery).

We first consider analysis for the stochastic block model (i.e., α0 → 0) and prove the
guarantees claimed in Corollary 8.

Proof of Corollary 8: Recall the definition of Π̃ in (64) and Π̂ is obtained by thresholding
Π̃ with threshold τ . Since the threshold τ for stochastic block models is 0.5 (assumption
B5), we have

|(Π̂)i − (Π)i|1 = O(ε2
π), (70)

where επ is the row-wise `2 error for Π̃ in Lemma 13. This is because Π(i, j) ∈ {0, 1}, and
in order for our method to make a mistake, it takes 1/4 in the `22 error.

In Procedure 3, for the stochastic block model (α0 = 0), for a node x ∈ [n], we have

F̂ (x, i) =
∑
y∈[n]

Gx,y
Π̂(i, y)

|Π̂i|1
≈
∑
y∈[n]

Gx,y
Π̂(i, y)

|Πi|1
≈ k

n

∑
y∈[n]

Gx,yΠ̂(i, y),

using (70) and the fact that the size of each community on average is n/k. In other words, for
each vertex x, we compute the average number of edges from this vertex to all the estimated
communities according to Π̂, and set it to belong to the one with largest average degree.
Note that the margin of error on average for each node to be assigned the correct community
according to the above procedure is (p−q)n/k, since the size of each community is n/k and
the average number of intra-community edges at a node is pn/k and edges to any different
community at a node is qn/k. From (70), we have that the average number of errors made
is O((p − q)ε2

π). Note that the degrees concentrate around their expectations according
to Bernstein’s bound and the fact that the edges used for averaging is independent from
the edges used for estimating Π̂. Thus, for our method to succeed in inferring the correct
community at a node, we require,

O((p− q)ε2
π) ≤ (p− q)n

k
,

which implies

p− q ≥ Ω̃

(√
pk
√
n

)
.

�
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We now prove the general result on support recovery.

Proof of Theorem 7: From Lemma 15,

|P̂i,j − Pi,j | ≤ O(εP )

which implies bounds for the average of diagonals H and average of off-diagonals L:

|H − p| = O(εP ), |L− q| = O(εP ).

On similar lines as the proof of Lemma 15 and from independence of edges used to define
F̂ from the edges used to estimate Π̂, we also have

|F̂ (j, i)− F (j, i)| ≤ O(εP ).

Note that Fj,i = q + Πi,j(p − q). The threshold ξ satisfies ξ = Ω(εP ), therefore, all the
entries in F that are larger than q+ (p− q)ξ, the corresponding entries in S are declared to
be one, while none of the entries that are smaller than q+ (p− q)ξ/2 are set to one in S. �

Appendix C. Concentration Bounds

In this section we prove concentration bounds for the tensors and matrices appeared in the
algorithm.

C.1 Main Result: Tensor Perturbation Bound

We now provide the main result that the third-order whitened tensor computed from samples
concentrates. Recall that Tα0

Y→{A,B,C} denotes the third order moment computed using edges

from partition Y to partitions A,B,C in (15). ŴA, ŴBR̂AB, ŴCR̂AC are the whitening
matrices defined in (24). The corresponding whitening matrices WA,WBRAB,WCRAC for
exact moment third order tensor E[Tα0

Y→{A,B,C} |Π] will be defined later. Recall that ρ is

defined in (38) as ρ := α0+1
α̂min

. Given δ ∈ (0, 1), throughout assume that

n = Ω

(
ρ2 log2 k

δ

)
, (71)

as in Assumption (B2).

Theorem 16 (Perturbation of whitened tensor) When the partitions A,B,C,X, Y sat-
isfy (71), we have with probability 1− 100δ,

εT :=
∥∥∥Tα0

Y→{A,B,C}(ŴA, ŴBR̂AB, ŴCR̂AC)− E[Tα0

Y→{A,B,C}(WA, W̃B, W̃C)|ΠA,ΠB,ΠC ]
∥∥∥

= O

(
(α0 + 1)

√
(maxi(Pα̂)i)

n1/2α̂
3/2
minσmin(P )

·

(
1 +

(
ρ2

n
log2 k

δ

)1/4
)√

log k

δ

)

= Õ

(
ρ√
n
· ζ

α̂
1/2
max

)
. (72)
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C.1.1 Proof Overview

The proof of the above result follows. It consists mainly of the following steps: (1) Con-
trolling the perturbations of the whitening matrices and (2) Establishing concentration of
the third moment tensor (before whitening). Combining the two, we can then obtain per-
turbation of the whitened tensor. Perturbations for the whitening step is established in
Appendix C.2. Auxiliary concentration bounds required for the whitening step, and for the
claims below are in Appendix C.3 and C.4.

Proof of Theorem 16: In tensor Tα0 in (15), the first term is

(α0 + 1)(α0 + 2)
∑
i∈Y

(
G>i,A ⊗G>i,B ⊗G>i,C

)
.

We claim that this term dominates in the perturbation analysis since the mean vector
perturbation is of lower order. We now consider perturbation of the whitened tensor

Λ0 =
1

|Y |
∑
i∈Y

(
(Ŵ>AG

>
i,A)⊗ (R̂>ABŴ

>
BG

>
i,B)⊗ (R̂>ACŴ

>
CG

>
i,C)
)
.

We show that this tensor is close to the corresponding term in the expectation in three
steps.

First we show it is close to

Λ1 =
1

|Y |
∑
i∈Y

(
(Ŵ>A FAπi)⊗ (R̂>ABŴ

>
B FBπi)⊗ (R̂>ACŴ

>
C FCπi)

)
.

Then this vector is close to the expectation over ΠY .

Λ2 = Eπ∼Dir(α)

(
(Ŵ>A FAπ)⊗ (R̂>ABŴ

>
B FBπ)⊗ (R̂>ACŴ

>
C FCπ)

)
.

Finally we replace the estimated whitening matrix ŴA with WA, defined in (73), and
note that WA whitens the exact moments.

Λ3 = Eπ∼Dir(α)

(
(W>A FAπ)⊗ (W̃>B FBπ)⊗ (W̃>C FCπ)

)
.

For Λ0−Λ1, the dominant term in the perturbation bound (assuming partitionsA,B,C,X, Y
are of size n) is (since for any rank 1 tensor, ‖u⊗ v ⊗ w‖ = ‖u‖ · ‖v‖ · ‖w‖),

O

(
1

|Y |
‖W̃>B FB‖2

∥∥∥∥∥∑
i∈Y

(
Ŵ>AG

>
i,A − Ŵ>A FAπi

)∥∥∥∥∥
)

O

(
1

|Y |
α̂−1

min ·
(α0 + 1)(maxi(Pα̂)i)

α̂minσmin(P )
· (1 + ε1 + ε2 + ε3)

√
log

n

δ

)
,

with probability 1−13δ (Lemma 18). Since there are 7 terms in the third order tensor Tα0 ,
we have the bound with probability 1− 91δ.
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For Λ1 − Λ2, since ŴAFA Diag(α̂)1/2 has spectral norm almost 1, by Lemma 20 the
spectral norm of the perturbation is at most∥∥∥ŴAFA Diag(α̂)1/2

∥∥∥3
∥∥∥∥∥ 1

|Y |
∑
i∈Y

(Diag(α̂)−1/2πi)
⊗3 − Eπ∼Dir(α)(Diag(α̂)−1/2πi)

⊗3

∥∥∥∥∥
≤ O

(
1

α̂min
√
n
·
√

log
n

δ

)
.

For the final term Λ2 − Λ3, the dominating term is

(ŴA −WA)FA Diag(α̂)1/2 ‖Λ3‖ ≤ εWA
‖Λ3‖

≤ O

(
(α0 + 1)

√
maxi(Pα̂)i

n1/2α̂
3/2
minσmin(P )

(1 + ε1 + ε2 + ε3)

√
log

n

δ

)
.

Putting all these together, the third term ‖Λ2 − Λ3‖ dominates. We know with probability
at least 1− 100δ, the perturbation in the tensor is at most

O

(
(α0 + 1)

√
maxi(Pα̂)i

n1/2α̂
3/2
minσmin(P )

(1 + ε1 + ε2 + ε3)

√
log

n

δ

)
.

�

C.2 Whitening Matrix Perturbations

Consider rank-k SVD of |X|−1/2(Gα0
X,A)>k−svd = ÛAD̂AV̂

>
A , and the whitening matrix is given

by ŴA := ÛAD̂
−1
A and thus |X|−1Ŵ>A (Gα0

X,A)>k−svd(G
α0
X,A)k−svdŴA = I. Now consider the

singular value decomposition of

|X|−1Ŵ>A E[(Gα0
X,A)>|Π] · E[(Gα0

X,A)|Π]ŴA = ΦD̃Φ>.

ŴA does not whiten the exact moments in general. On the other hand, consider

WA := ŴAΦAD̃
−1/2
A Φ>A. (73)

Observe that WA whitens |X|−1/2E[(Gα0
X,A)|Π]

|X|−1W>A E[(Gα0
X,A)>|Π]E[(Gα0

X,A)|Π]WA = (ΦAD̃
−1/2
A Φ>A)>ΦAD̃AΦ>AΦAD̃

−1/2
A Φ>A = I

Now the ranges of WA and ŴA may differ and we control the perturbations below.
Also note that R̂A,B, R̂A,C are given by

R̂AB := |X|−1Ŵ>B (Gα0
X,B)>k−svd(G

α0
X,A)k−svdŴA. (74)

RAB := |X|−1W>B E[(Gα0
X,B)>|Π] · E[Gα0

X,A|Π] ·WA. (75)

Recall εG is given by (80), and σmin

(
E[Gα0

X,A|Π]
)

is given in (23) and |A| = |B| = |X| = n.
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Lemma 17 (Whitening matrix perturbations) With probability 1− δ,

εWA
:= ‖Diag(α̂)1/2F>A (ŴA −WA)‖ = O

 (1− ε1)−1/2εG

σmin

(
E[Gα0

X,A|Π]
)
 (76)

εW̃B
:= ‖Diag(α̂)1/2F>B (ŴBR̂AB −WBRAB)‖ = O

 (1− ε1)−1/2εG

σmin

(
E[Gα0

X,B|Π]
)
 (77)

Thus, with probability 1− 6δ,

εWA
= εW̃B

= O

(
(α0 + 1)

√
maxi(Pα̂)i

n1/2α̂minσmin(P )
· (1 + ε1 + ε2 + ε3)

)
, (78)

where ε1, ε2 and ε3 are given by (86) and (87).

Remark: Note that when partitions X,A satisfy (71), ε1, ε2, ε3 are small. When P is well
conditioned and α̂min = α̂max = 1/k, we have εWA

, εW̃B
= O(k/

√
n).

Proof: Using the fact that WA = ŴAΦAD̃
−1/2
A Φ>A or ŴA = WAΦAD̃

1/2
A Φ>A we have that

‖Diag(α̂)1/2F>A (ŴA −WA)‖ ≤ ‖Diag(α̂)1/2F>AWA(I − ΦAD̃
1/2
A Φ>A)‖

= ‖Diag(α̂)1/2F>AWA(I − D̃1/2
A )‖

≤ ‖Diag(α̂)1/2F>AWA(I − D̃1/2
A )(I + D̃

1/2
A )‖

≤ ‖Diag(α̂)1/2F>AWA‖ · ‖I − D̃A‖

using the fact that D̃A is a diagonal matrix.

Now note that WA whitens |X|−1/2E[Gα0
X,A|Π] = |X|−1/2FA Diag(α1/2)ΨX , where ΨX is

defined in (85). Further it is shown in Lemma 23 that ΨX satisfies with probability 1 − δ
that

ε1 := ‖I − |X|−1ΨXΨ>X‖ ≤ O

(√
(α0 + 1)

α̂min|X|
· log

k

δ

)

Since ε1 � 1 when X,A satisfy (71). We have that |X|−1/2ΨX has singular values around
1. Since WA whitens |X|−1/2E[Gα0

X,A|Π], we have

|X|−1W>A FA Diag(α1/2)ΨXΨ>X Diag(α1/2)F>AWA = I.

Thus, with probability 1− δ,

‖Diag(α̂)1/2F>AWA‖ = O((1− ε1)−1/2).
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Let E[(Gα0
X,A)|Π] = (Gα0

X,A)k−svd + ∆. We have

‖I − D̃A‖ = ‖I − ΦAD̃AΦ>A‖
= ‖I − |X|−1Ŵ>A E[(Gα0

X,A)>|Π] · E[(Gα0
X,A)|Π]ŴA‖

= O
(
|X|−1‖Ŵ>A

(
∆>(Gα0

X,A)k−svd + ∆(Gα0
X,A)>k−svd

)
ŴA‖

)
= O

(
|X|−1/2‖Ŵ>A ∆>V̂A + V̂ >A ∆ŴA‖

)
,

= O
(
|X|−1/2‖ŴA‖‖∆‖

)
= O

(
|X|−1/2‖WA‖εG

)
,

since ‖∆‖ ≤ εG + σk+1(Gα0
X,A) ≤ 2εG, using Weyl’s theorem for singular value perturbation

and the fact that εG · ‖WA‖ � 1 and ‖WA‖ = |X|1/2/σmin

(
E[Gα0

X,A|Π]
)

.

We now consider perturbation of WBRAB. By definition, we have that

E[Gα0
X,B|Π] ·WBRAB = E[Gα0

X,A|Π] ·WA.

and

‖WBRAB‖ = |X|1/2σmin(E[Gα0
X,B|Π])−1.

Along the lines of previous derivation for εWA
, let

|X|−1(ŴBR̂AB)> · E[(Gα0
X,B)>|Π] · E[Gα0

X,B|Π]ŴBR̂AB = ΦBD̃BΦ>B.

Again using the fact that |X|−1ΨXΨ>X ≈ I, we have

‖Diag(α̂)1/2F>BWBRAB‖ ≈ ‖Diag(α̂)1/2F>AWA‖,

and the rest of the proof follows. �

C.3 Auxiliary Concentration Bounds

Lemma 18 (Concentration of sum of whitened vectors) Assuming all the partitions
satisfy (71), with probability 1− 7δ,∥∥∥∥∥∑

i∈Y

(
Ŵ>AG

>
i,A − Ŵ>A FAπi

)∥∥∥∥∥ = O(
√
|Y |α̂maxεWA

)

= O

(√
(α0 + 1)(maxi(Pα̂)i)

α̂minσmin(P )
· (1 + ε2 + ε3)

√
log n/δ

)
,∥∥∥∥∥∑

i∈Y

(
(ŴBR̂AB)>(G>i,B − FBπi)

)∥∥∥∥∥ = O

(√
(α0 + 1)(maxi(Pα̂)i)

α̂minσmin(P )
· (1 + ε1 + ε2 + ε3)

√
log n/δ

)
.
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Remark: Note that when P is well conditioned and α̂min = α̂max = 1/k, we have the
above bounds as O(k). Thus, when it is normalized with 1/|Y | = 1/n, we have the bound
as O(k/n).
Proof: Note that ŴA is computed using partition X and Gi,A is obtained from i ∈ Y .

We have independence for edges across different partitions X and Y . Let Ξi := Ŵ>A (G>i,A−
FAπi).Applying matrix Bernstein’s inequality to each of the variables, we have

‖Ξi‖ ≤ ‖ŴA‖ · ‖G>i,A − FAπi‖

≤ ‖ŴA‖
√
‖FA‖1,

from Lemma 22. The variances are given by

‖
∑
i∈Y

E[ΞiΞ
>
i |Π]‖ ≤

∑
i∈Y

Ŵ>A Diag(FAπi)ŴA,

≤ ‖ŴA‖2‖FY ‖1

= O

(
|Y |
|A|
· (α0 + 1)(maxi(Pα̂)i)

α̂2
minσ

2
min(P )

· (1 + ε2 + ε3)

)
,

with probability 1−2δ from (83) and (84), and ε2, ε3 are given by (87). Similarly, ‖
∑

i∈Y E[Ξ>i Ξi|Π]‖ ≤
‖ŴA‖2‖FY ‖1. Thus, from matrix Bernstein’s inequality, we have with probability 1− 3δ

‖
∑
i∈Y

Ξi‖ = O(‖ŴA‖
√

max(‖FA‖1, ‖FX‖1)).

= O

(√
(α0 + 1)(maxi(Pα̂)i)

α̂minσmin(P )
· (1 + ε2 + ε3)

√
log n/δ

)
On similar lines, we have the result for B and C, and also use the independence as-

sumption on edges in various partitions. �

We now show that not only the sum of whitened vectors concentrates, but that each
individual whitened vector Ŵ>AG

>
i,A concentrates, when A is large enough.

Lemma 19 (Concentration of a random whitened vector) Conditioned on πi, with
probability at least 1/4,∥∥∥Ŵ>AG>i,A −W>A FAπi∥∥∥ ≤ O(εWA

α̂
−1/2
min ) = Õ

(√
(α0 + 1)(maxi(Pα̂)i)

n1/2α̂
3/2
minσmin(P )

)
.

Remark: The above result is not a high probability event since we employ Chebyshev’s
inequality to establish it. However, this is not an issue for us, since we will employ it to
show that out of Θ(n) whitened vectors, there exists at least one good initialization vec-
tor corresponding to each eigen-direction, as required in Theorem 11 in Appendix A. See
Lemma 25 for details.
Proof We have∥∥∥Ŵ>AG>i,A −W>A FAπi∥∥∥ ≤ ∥∥∥(ŴA −WA)>FAπi

∥∥∥+
∥∥∥Ŵ>A (G>i,A − FAπi)

∥∥∥ .
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The first term is satisfies satisfies with probability 1− 3δ

‖(Ŵ>A −W>A )FAπi‖ ≤ εWA
α̂
−1/2
min

= O

(
(α0 + 1)α̂

1/2
max

√
(maxi(Pα̂)i)

n1/2α̂
3/2
minσmin(P )

· (1 + ε1 + ε2 + ε3)

)

Now we bound the second term. Note that G>i,A is independent of Ŵ>A , since they are
related to disjoint subset of edges. The whitened neighborhood vector can be viewed as a
sum of vectors:

Ŵ>AG
>
i,A =

∑
j∈A

Gi,j(Ŵ
>
A )j =

∑
j∈A

Gi,j(D̂AÛ
>
A )j = D̂A

∑
j∈A

Gi,j(Û
>
A )j .

Conditioned on πi and FA, Gi,j are Bernoulli variables with probability (FAπi)j . The
goal is to compute the variance of the sum, and then use Chebyshev’s inequality noted in
Proposition 32.

Note that the variance is given by

‖E[(G>i,A − FAπi)>ŴAŴ
>
A (G>i,A − FAπi)]‖ ≤ ‖ŴA‖2

∑
j∈A

(FAπi)j

∥∥∥(Û>A )j

∥∥∥2
.

We now bound the variance. By Wedin’s theorem, we know the span of columns of ÛA is
O(εG/σmin(Gα0

X , A)) = O(εWA
) close to the span of columns of FA. The span of columns of

FA is the same as the span of rows in ΠA. In particular, let ProjΠ be the projection matrix
of the span of rows in ΠA, we have∥∥∥ÛAÛ>A − ProjΠ∥∥∥ ≤ O(εWA

).

Using the spectral norm bound, we have the Frobenius norm∥∥∥ÛAÛ>A − ProjΠ∥∥∥
F
≤ O(εWA

√
k)

since they are rank k matrices. This implies that

∑
j∈A

(∥∥∥(Û>A )j

∥∥∥− ∥∥∥ProjjΠ∥∥∥)2
= O(ε2WA

k).

Now

‖ProjjΠ‖ ≤
‖πj‖

σmin(ΠA)
= O

√(α0 + 1)

nα̂min

 ,

from Lemma 23
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Now we can bound the variance of the vectors
∑

j∈AGi,j(Û
>
A )j , since the variance of

Gi,j is bounded by (FAπi)j (its probability), and the variance of the vectors is at most∑
j∈A

(FAπi)j

∥∥∥(Û>A )j

∥∥∥2
≤ 2

∑
j∈A

(FAπi)j

∥∥∥ProjjΠ∥∥∥2
+ 2

∑
j∈A

(FAπi)j

(∥∥∥(Û>A )j

∥∥∥− ∥∥∥ProjjΠ∥∥∥)2

≤ 2
∑
j∈A

(FAπi)j max
j∈A

(∥∥∥ProjjΠ∥∥∥2
)

+ max
i,j

Pi,j
∑
j∈A

(∥∥∥(Û>A )j

∥∥∥− ∥∥∥ProjjΠ∥∥∥)2

≤ O
(
|FA|1(α0 + 1)

nα̂min

)
Now Chebyshev’s inequality implies that with probability at least 1/4 (or any other

constant), ∥∥∥∥∥∥
∑
j∈A

(Gi,j − FAπi)(Û>A )j

∥∥∥∥∥∥
2

≤ O
(
|FA|1(α0 + 1)

nα̂min

)
.

And thus, we have

Ŵ>A (Gi,A − FAπi) ≤

√
|FA|1(α0 + 1)

nα̂min
·
∥∥∥Ŵ>A ∥∥∥ ≤ O (εWA

α̂
−1/2
min

)
.

Combining the two terms, we have the result.

Finally, we establish the following perturbation bound between empirical and expected
tensor under the Dirichlet distribution, which is used in the proof of Theorem 16.

Lemma 20 (Concentration of third moment tensor under Dirichlet distribution)

With probability 1− δ, for πi
iid∼ Dir(α),∥∥∥∥∥ 1

|Y |
∑
i∈Y

(Diag(α̂)−1/2πi)
⊗3 − Eπ∼Dir(α)(Diag(α̂)−1/2π)⊗3

∥∥∥∥∥ ≤ O
(
· 1

α̂min
√
n

√
log

n

δ

)
= Õ

(
1

α̂min
√
n

)
Proof The spectral norm of this tensor cannot be larger than the spectral norm of a k×k2

matrix that we obtain be “collapsing” the last two dimensions (by definitions of norms).
Let φi := Diag(α̂)−1/2πi and the “collapsed” tensor is the matrix φi(φi⊗φi)> (here we view
φi ⊗ φi as a vector in Rk2). We apply Matrix Bernstein on the matrices Zi = φi(φi ⊗ φi)>.
Now ∥∥∥∥∥∑

i∈Y
E[ZiZ

>
i ]

∥∥∥∥∥ ≤ |Y |max ‖φ‖4
∥∥∥E[φφ>]

∥∥∥ ≤ |Y |α̂−2
min

since
∥∥E[φφ>]

∥∥ ≤ 2. For the other variance term
∥∥∑

i∈Y E[Z>i Zi]
∥∥, we have∥∥∥∥∥∑

i∈Y
E[Z>i Zi]

∥∥∥∥∥ ≤ |Y |α̂min

∥∥∥E[(φ⊗ φ)(φ⊗ φ)>]
∥∥∥ .
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It remains to bound the norm of E[(φ⊗ φ)(φ⊗ φ)>]. We have

‖E[(φ⊗ φ)(φ⊗ φ)>]‖ = sup

‖E[M2]‖, s.t.M =
∑
i,j

Ni,jφiφ
>
j , ‖N‖F = 1

 .

by definition. We now group the terms of E[M2] and bound them separately.

M2 =
∑
i

N2
i,iφiφ

>
i ‖φi‖2 +

∑
i 6=j

N2
i,jφiφ

>
j 〈φi, φj〉

+
∑
i 6=j 6=a

Ni,iNj,aφiφ
>
a 〈φi, φj〉+

∑
i 6=j 6=a6=b

Ni,jNa,bφiφ
>
b 〈φj , φa〉 (79)

We bound the terms individually now.
‖φ(i)‖4 terms: By properties of Dirichlet distribution we know

E[‖φ(i)‖4] = Θ(α̂−1
i ) ≤ O(α̂−1

min).

Thus, for the first term in (79), we have

sup
N :‖N‖F=1

‖
∑
i

E[N2
i,iφiφ

>
i ‖φi]‖2‖ = O(α̂−1

min).

‖φ(i)‖3 · ‖φ(j)‖ terms: We have

‖E[
∑
i,j

Ni,iNi,jφ(i)3φ(j)]‖ ≤ E[‖φi‖2·‖φj‖] ≤ O(

√∑
i,j

(N2
i,iα̂(j))

∑
i,j

N2
i,jα̂(i)−1) ≤ O(α̂

−1/2
min ).

‖φ(i)‖2 · ‖φ(j)‖2 terms: the total number of such terms is O(k2) and we have

E[‖φ(i)‖2 · ‖φ(j)‖2] = Θ(1),

and thus the Frobenius norm of these set of terms is smaller than O(k)
‖φ(i)‖2 · ‖φ(j)‖ · ‖φ(a)‖ terms: there are O(k3) such terms, and we have

‖E[φ(i)‖2 · ‖φ(j)‖ · ‖φ(a)]‖ = Θ(α̂(i2)1/2α̂(i3)1/2).

The Frobenius norm of this part of matrix is bounded by

O

√ ∑
i,j,a∈[k]

α̂(j)α̂(a)

 ≤ O(
√
k)

√∑
j

∑
a

α̂jα̂a ≤ O(
√
k).

the rest: the sum is

E[
∑

i 6=j 6=a6=b
Ni,jNa,bα̂(i)1/2α̂(j)1/2α̂(a)1/2α̂(b)1/2].

It is easy to break the bounds into the product of two sums (
∑

i,j and
∑

a,b) and then bound
each one by Cauchy-Schwartz, the result is 1.
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Hence the variance term in Matrix Bernstein’s inequality can be bounded by σ2 ≤
O(nα̂−2

min), each term has norm at most α̂
−3/2
min . When α̂−2

min < n we know the variance term
dominates and the spectral norm of the difference is at most O(α̂−1

minn
−1/2

√
log n/δ) with

probability 1− δ.

C.4 Basic Results on Spectral Concentration of Adjacency Matrix

Let n := max(|A|, |X|).

Lemma 21 (Concentration of Gα0
X,A) When πi ∼ Dir(α), for i ∈ V , with probability

1− 4δ,

εG := ‖Gα0
X,A − E[(Gα0

X,A)>|Π]‖ = O

(√
(α0 + 1)n · (max

i
(Pα̂)i)(1 + ε2) log

n

δ

)
(80)

Proof: From definition of Gα0
X,A, we have

εG ≤
√
α0 + 1‖GX,A − E[GX,A|Π]‖+ (

√
α0 + 1− 1)

√
|X|‖µX,A − E[µX,A|Π]‖.

We have concentration for µX,A and adjacency submatrix GX,A from Lemma 22. �

We now provide concentration bounds for adjacency sub-matrix GX,A from partition
X to A and the corresponding mean vector. Recall that E[µX→A|FA, πX ] = FAπX and
E[µX→A|FA] = FAα̂.

Lemma 22 (Concentration of adjacency submatrices) When πi
iid∼ Dir(α) for i ∈ V ,

with probability 1− 2δ,

‖GX,A − E[GX,A|Π]‖ = O

(√
n · (max(max

i
(Pα̂)i,max

i
(P>α̂)i))(1 + ε2) log

n

δ

)
. (81)

‖µA − E[µA|Π]‖ = O

(
1

|X|

√
n · (max(max

i
(Pα̂)i,max

i
(P>α̂)i))(1 + ε2) log

n

δ

)
, (82)

where ε2 is given by (87).

Proof: Recall E[GX,A|Π] = FAΠX and GA,X = Ber(FAΠX) where Ber(·) denotes the
Bernoulli random matrix with independent entries. Let

Zi := (G>i,A − FAπi)e>i .

We have G>X,A − FAΠX =
∑

i∈X Zi. We apply matrix Bernstein’s inequality.

We compute the variances
∑

i E[ZiZ
>
i |Π] and

∑
i E[Z>i Zi|Π]. We have that

∑
i E[ZiZ

>
i |Π]

only the diagonal terms are non-zero due to independence of Bernoulli variables, and

E[ZiZ
>
i |Π] ≤ Diag(FAπi) (83)
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entry-wise. Thus,

‖
∑
i∈X

E[ZiZ
>
i |Π]‖ ≤ max

a∈A

∑
i∈X,b∈[k]

FA(a, b)πi(b)

= max
a∈A

∑
i∈X,b∈[k]

FA(a, b)ΠX(b, i)

≤ max
c∈[k]

∑
i∈X,b∈[k]

P (b, c)ΠX(b, i)

= ‖P>ΠX‖∞. (84)

Similarly ‖
∑

i∈X E[Z>i Zi]‖ =
∑

i∈X Diag(E[‖G>i,A − FAπi‖2]) ≤ ‖P>ΠX‖∞. On lines of

Lemma 27, we have ‖P>ΠX‖∞ = O(|X| · (maxi(P
>α̂)i)) when |X| satisfies (71).

We now bound ‖Zi‖. First note that the entries in Gi,A are independent and we can use
the vector Bernstein’s inequality to bound ‖Gi,A−FAπi‖. We have maxj∈A |Gi,j−(FAπi)j | ≤
2 and

∑
j E[Gi,j − (FAπi)j ]

2 ≤
∑

j(FAπi)j ≤ ‖FA‖1. Thus with probability 1− δ, we have

‖Gi,A − FAπi‖ ≤ (1 +
√

8 log(1/δ))
√
‖FA‖1 + 8/3 log(1/δ).

Thus, we have the bound that ‖
∑

i Zi‖ = O(max(
√
‖FA‖1,

√
‖P>ΠX‖∞)). The concen-

tration of the mean term follows from this result. �

We now provide spectral bounds on E[(Gα0
X,A)>|Π]. Define

ψi := Diag(α̂)−1/2(
√
α0 + 1πi − (

√
α0 + 1− 1)µ). (85)

Let ΨX be the matrix with columns ψi, for i ∈ X. We have

E[(Gα0
X,A)>|Π] = FA Diag(α̂)1/2ΨX ,

from definition of E[(Gα0
X,A)>|Π].

Lemma 23 (Spectral bounds) With probability 1− δ,

ε1 := ‖I − |X|−1ΨXΨ>X‖ ≤ O

(√
(α0 + 1)

α̂min|X|
· log

k

δ

)
(86)

With probability 1− 2δ,

‖E[(Gα0
X,A)>|Π]‖ = O

(
‖P‖α̂max

√
|X||A|(1 + ε1 + ε2)

)
σmin

(
E[(Gα0

X,A)>|Π]
)

= Ω

α̂min

√
|A||X|
α0 + 1

(1− ε1 − ε3) · σmin(P )·

 ,

where

ε2 := O

((
1

|A|α̂2
max

log
k

δ

)1/4
)
, ε3 := O

((
(α0 + 1)2

|A|α̂2
min

log
k

δ

)1/4
)
. (87)
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Remark: When partitions X,A satisfy (71), ε1, ε2, ε3 are small.
Proof: Note that ψi is a random vector with norm bounded by O(

√
(α0 + 1)/α̂min) from

Lemma 27 and E[ψiψ
>
i ] = I. We now prove (86). using Matrix Bernstein Inequality. Each

matrix ψiψ
>
i /|X| has spectral norm at most O((α0 + 1)/α̂min|X|). The variance σ2 is

bounded by∥∥∥∥∥ 1

|X|2
E[
∑
i∈X
‖ψi‖2 ψiψ>i ]

∥∥∥∥∥ ≤
∥∥∥∥∥ 1

|X|2
max ‖ψi‖2 E[

∑
i∈X

ψiψ
>
i ]

∥∥∥∥∥ ≤ O((α0 + 1)/α̂min|X|).

Since O((α0 + 1)/αmin|X|) < 1, the variance dominates in Matrix Bernstein’s inequality.
Let B := |X|−1ΨXΨ>X . We have with probability 1− δ,

σmin(E[(Gα0
X,A)>|Π]) =

√
|X|σmin(FA Diag(α̂)1/2BDiag(α̂)1/2F>A ),

= Ω(
√
α̂min|X|(1− ε1) · σmin(FA)).

From Lemma 27, with probability 1− δ,

σmin(FA) ≥

√ |A|α̂min

α0 + 1
−O((|A| log k/δ)1/4)

 · σmin(P ).

Similarly other results follow. �

C.5 Properties of Dirichlet Distribution

In this section, we list various properties of Dirichlet distribution.

C.5.1 Sparsity Inducing Property

We first note that the Dirichlet distribution Dir(α) is sparse depending on values of αi,
which is shown in Telgarsky (2012).

Lemma 24 Let reals τ ∈ (0, 1], αi > 0, α0 :=
∑

i αi and integers 1 ≤ s ≤ k be given. Let
(Xi, . . . , Xk) ∼ Dir(α). Then

Pr
[
|{i : Xi ≥ τ}| ≤ s

]
≥ 1− τ−α0e−(s+1)/3 − e−4(s+1)/9,

when s+ 1 < 3k.

We now show that we obtain good initialization vectors under Dirichlet distribution.
Arrange the α̂j ’s in ascending order, i.e., α̂1 = α̂min ≤ α̂2 . . . ≤ α̂k = α̂max. Recall that

columns vectors Ŵ>AG
>
i,A, for i /∈ A, are used as initialization vectors to the tensor power

method. We say that ui :=
Ŵ>AG

>
i,A

‖Ŵ>AG
>
i,A‖

is a (γ,R0)-good initialization vector corresponding

to j ∈ [k] if
|〈ui,Φj〉| ≥ R0, |〈ui,Φj〉| −max

m<j
|〈ui,Φm〉| ≥ γ |〈ui,Φj〉| , (88)

where Φj := α̂
1/2
j (F̃A)j , where (F̃A)j is the jth column of F̃A := W>A FA. Note that the {Φj}

are orthonormal and are the eigenvectors to be estimated by the tensor power method.
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Lemma 25 (Good initialization vectors under Dirichlet distribution) When

πi
iid∼ Dir(α), and αj < 1, let

∆ := O

(
ζρ√
nr0

)
. (89)

For j ∈ [k], there is at least one (γ − 2∆
r0−∆ , r0 −∆)-good vector corresponding to each Φj,

for j ∈ [k], among {ui}i∈[n] with probability 1− 9δ, when

n = Ω̃
(
α−1

mine
r0α̂

1/2
max(α0+c1

√
kα0)(2k)r0c2 log(k/δ)

)
, (90)

where c1 := (1 +
√

8 log 4) and c2 := 4/3(log 4), when

(1− γ)r0α̂
1/2
min(α0 + (1 +

√
8 log 4)

√
kα0 + 4/3(log 4)α̂

−1/2
min log 2k) > 1. (91)

When α0 < 1, the bound can be improved for r0 ∈ (0.5, (α0 + 1)−1) and 1− γ ≥ 1−r0
r0

as

n >
(1 + α0)(1− r0α̂min)

α̂min(αmin + 1− r0(α0 + 1))
log(k/δ). (92)

Remark: (when α0 ≥ 1, α0 = Θ(1)) When r0 is chosen as r0 = α
−1/2
max (

√
α0 + c1

√
k)−1,

the term er0α̂
1/2
max(α0+c1

√
kα0) = e, and we require

n = Ω̃
(
α−1

mink
0.43 log(k/δ)

)
, r0 = α−1/2

max (
√
α0 + c1

√
k)−1, (93)

by substituting c2/c1 = 0.43. Moreover, (91) is satisfied for the above choice of r0 when
γ = Θ(1).

In this case we also need ∆ < r0/2, which implies

ζ = O

( √
n

ρkα̂max

)
(94)

Remark: (when α0 < 1) In this regime, (92) implies that we require n = Ω(α̂−1
min). Also,

r0 is a constant, we just need ζ = O(
√
n/ρ).

Proof: Define ũi := W>A FAπi/‖W>A FAπi‖, when whitening matrix WA and FA corre-
sponding to exact statistics are input.

We first observe that if ũi is (γ, r0) good, then ui is (γ − 2∆
r0−∆ , r0 −∆) good.

When ũi is (γ, r0) good, note that W>A FAπi ≥ α̂
−1/2
max r0 since σmin(W>A FA) = α̂

−1/2
max and

‖πi‖ ≥ r0. Now with probability 1/4, conditioned on πi, we have the event B(i),

B(i) := {‖ui − ũi‖ ≤ ∆},

where ∆ is given by

∆ = Õ

(
α̂0.5

max

√
(α0 + 1)(maxi(Pα̂)i)

r0n1/2α̂1.5
minσmin(P )

)
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from Lemma 19. Thus, we have P[B(i)|πi] ≥ 1/4, i.e., B(i) occurs with probability 1/4 for
any realization of πi.

If we perturb a (γ, r0) good vector by ∆ (while maintaining unit norm), then it is still
(γ − 2∆

r0−∆ , r0 −∆) good.
We now show that the set {ũi} contains good initialization vectors when n is large

enough. Consider Yi ∼ Γ(αi, 1), where Γ(·, ·) denotes the Gamma distribution and we have
Y/
∑

i Yi ∼ Dir(α). We first compute the probability that ũi := W>A FAπi/‖W>A FAπi‖ is a
(r0, γ)-good vector with respect to j = 1 (recall that α̂1 = α̂min). The desired event is

A1 := (α̂
−1/2
1 Y1 ≥ r0

√∑
j

α̂−1
j Y 2

j ) ∩ (α̂
−1/2
1 Y1 ≥

1

1− γ
max
j>1

α̂
−1/2
j Yj) (95)

We have

P [A1] ≥ P

(α̂
−1/2
min Y1 ≥ r0

√∑
j

α̂−1
j Y 2

j ) ∩ (Y1 ≥
1

1− γ
max
j>1

Yj)


≥ P

(α̂
−1/2
min Y1 > r0t)

⋂
(
∑
j

α̂−1
j Y 2

j ≤ t2)
⋂
j>1

(Y1 ≤ (1− γ)r0tα̂
1/2
min)

 , for some t

≥ P
[
α̂
−1/2
min Y1 > r0t

]
P

∑
j

α̂−1
j Y 2

j ≤ t2
∣∣∣α̂−1/2
j Yj ≤ (1− γ)r0tα̂

1/2
min


P
[
max
j>1

Yj ≤ (1− γ)r0tα̂
1/2
min

]

≥ P
[
α̂
−1/2
min Y1 > r0t

]
P

∑
j

α̂−1
j Y 2

j ≤ t2
P

[
max
j>1

Yj ≤ (1− γ)r0tα̂
1/2
min

]
.

When αj ≤ 1, we have
P[∪jYj ≥ log 2k] ≤ 0.5,

since P (Yj ≥ t) ≤ tαj−1e−t ≤ e−t when t > 1 and αj ≤ 1. Applying vector Bernstein’s
inequality, we have with probability 0.5− e−m that

‖Diag(α̂
−1/2
j )(Y − E(Y ))‖2 ≤ (1 +

√
8m)

√
kα0 + 4/3mα̂

−1/2
min log 2k,

since E[
∑

j α̂
−1
j Var(Yj)] = kα0 since α̂j = αj/α0 and Var(Yj) = αj . Thus, we have

‖Diag(α̂
−1/2
j )Y ‖2 ≤ α0 + (1 +

√
8m)

√
kα0 + 4/3mα̂

−1/2
min log 2k,

since ‖Diag(α̂
−1/2
j )E(Y )‖2 =

√∑
j α̂
−1
j α2

j = α0. Choosing m = log 4, we have with proba-

bility 1/4 that

‖Diag(α̂
−1/2
j )Y ‖2 ≤ t := α0 + (1 +

√
8 log 4)

√
kα0 + 4/3(log 4)α̂

−1/2
min log 2k, (96)

= α0 + c1

√
kα0 + c2α̂

−1/2
min log 2k. (97)
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We now have

P
[
α̂
−1/2
min Y1 > r0t

]
≥ αmin

4C

(
r0tα̂

1/2
min

)αmin−1
e−r0tα̂

1/2
min ,

from Lemma 28.
Similarly,

P
[
max
j 6=1

Yj ≤ α̂1/2
min(1− γ)r0t

]
≥ 1−

∑
j

(
(1− γ)r0tα̂

1/2
min

)∑
j αj−1

e−(1−γ)r0α̂
1/2
mint

≥ 1− ke−(1−γ)r0α̂
1/2
mint,

assuming that (1− γ)r0α̂
1/2
mint > 1.

Choosing t as in (96), we have the probability of the event in (95) is greater than

αmin

16C

(
1− e−(1−γ)r0α̂

1/2
min(α0+c1

√
kα0)

2(2k)(1−γ)r0c2−1

)
e−r0α̂

1/2
min(α0+c1

√
kα0)

(2k)r0c2

·
(
r0α̂

1/2
min(α0 + c1

√
kα0 + c2α̂

−1/2
min log 2k)

)αmin−1
.

Similarly the (marginal) probability of events A2 can be bounded from below by replacing
αmin with α2 and so on. Thus, we have

P[Am] = Ω̃

(
αmin

e−r0α̂
1/2
max(α0+c1

√
kα0)

(2k)r0c2

)
,

for all m ∈ [k].
Thus, we have each of the events A1(i)∩B(i),A2(i)∩B(i), . . . ,Ak ∩B(i) occur at least

once in i ∈ [n] i.i.d. tries with probability

1− P

 ⋃
j∈[k]

(
⋂
i∈[n]

(Aj(i) ∩ B(i))c)


≥ 1−

∑
j∈[k]

P

 ⋂
i∈[n]

(Aj(i)− B(i))c


≥ 1−

∑
j∈[k]

exp [−nP(Aj ∩ B)] ,

≥ 1− k exp

[
−nΩ̃

(
αmin

e−r0α̂
1/2
max(α0+c1

√
kα0)

(2k)r0c2

)]
,

where Aj(i) denotes the event that A1 occurs for ith trial and we have that P[B|Aj ] ≥ 0.25
since B occurs in any trial with probability 0.25 for any realization of πi and the events Aj
depend only on πi. We use that 1− x ≤ e−x when x ∈ [0, 1]. Thus, for the event to occur
with probability 1− δ, we require

n = Ω̃
(
α−1

mine
r0α̂

1/2
max(α0+c1

√
kα0)(2k)r0c2 log(1/δ)

)
.
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We can improve the above bound by directly working with the Dirichlet distribution.
Let π ∼ Dir(α). The desired event corresponding to j = 1 is given by

A1 =

(
α̂
−1/2
1 π1

‖Diag(α̂
−1/2
i )π‖

≥ r0

)⋂
i>1

(
π1 ≥

πi
1− γ

)
.

Thus, we have

P[A1] ≥ P

[
(π1 ≥ r0)

⋂
i>1

(πi ≤ (1− γ)r0)

]

≥ P[π1 ≥ r0]P

(⋂
i>1

πi ≤ (1− γ)r0|π1 ≥ r0

)
,

since P
(⋂

i>1 πi ≤ (1− γ)r0|π1 ≥ r0

)
≥ P

(⋂
i>1 πi ≤ (1− γ)r0

)
. By properties of Dirichlet

distribution, we know E[πi] = α̂i and E[π2
i ] = α̂i

αi+1
α0+1 . Let p := Pr[π1 ≥ r0]. We have

E[π2
i ] = pE[π2

i |πi ≥ r0] + (1− p)E[π2
i |πi < r0]

≤ p+ (1− p)r0E[πi|πi < r0]

≤ p+ (1− p)r0E[πi].

Thus, p ≥ α̂min(αmin+1−r0(α0+1))
(α0+1)(1−r0α̂min) , which is useful when r0(α0 + 1) < 1. Also when π1 ≥ r0,

we have that πi ≤ 1− r0 since πi ≥ 0 and
∑

i πi = 1. Thus, choosing 1− γ = 1−r0
r0

, we have
the other conditions for A1 are satisfied. Also, verify that we have γ < 1 when r0 > 0.5 and
this is feasible when α0 < 1. �

We now prove a result that the entries of πi, which are marginals of the Dirichlet
distribution, are likely to be small in the sparse regime of the Dirichlet parameters. Recall
that the marginal distribution of πi is distributed as B(αi, α0 − αi), where B(a, b) is the
beta distribution and

P[Z = z] ∝ za−1(1− z)b−1, Z ∼ B(a, b).

Lemma 26 (Marginal Dirichlet distribution in sparse regime) For Z ∼ B(a, b), the
following results hold:
Case b ≤ 1, C ∈ [0, 1/2]:

Pr[Z ≥ C] ≤ 8 log(1/C) · a

a+ b
, (98)

E[Z · δ(Z ≤ C)] ≤ C · E[Z] = C · a

a+ b
. (99)

Case b ≥ 1, C ≤ (b+ 1)−1: we have

Pr[Z ≥ C] ≤ a log(1/C), (100)

E[Z · δ(Z ≤ C)] ≤ 6aC. (101)
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Remark: The guarantee for b ≥ 1 is worse and this agrees with the intuition that the
Dirichlet vectors are more spread out (or less sparse) when b = α0 − αi is large.
Proof We have

E[Z · δ(Z ≤ C)] =

∫ C

0

1

B(a, b)
xa(1− x)b−1dx

≤ (1− C)b−1

B(a, b)

∫ C

0
xadx

=
(1− C)b−1Ca+1

(a+ 1)B(a, b)
.

For E[Z · δ(Z ≥ C)], we have,

E[Z · δ(Z ≥ C)] =

∫ 1

C

1

B(a, b)
xa(1− x)b−1dx

≥ Ca

B(a, b)

∫ 1

C
(1− x)b−1dx

=
(1− C)bCa

bB(a, b)
.

The ratio between these two is at least

E[Z · δ(Z ≥ C)]

E[Z · δ(Z ≤ C)]
≥ (1− C)(a+ 1)

bC
≥ 1

C
.

The last inequality holds when a, b < 1 and C < 1/2. The sum of the two is exactly E[Z],
so when C < 1/2 we know E[Z · δ(Z ≤ C)] < C · E[Z].

Next we bound the probability Pr[Z ≥ C]. Note that Pr[Z ≥ 1/2] ≤ 2E[Z] = 2a
a+b by

Markov’s inequality. Now we show Pr[Z ∈ [C, 1/2]] is not much larger than Pr[Z ≥ 1/2] by
bounding the integrals.

A =

∫ 1

1/2
xa−1(1− x)b−1dx ≥

∫ 1

1/2
(1− x)b−1dx = (1/2)b/b.

B =

∫ 1/2

C
xa−1(1− x)b−1 ≤ (1/2)b−1

∫ 1/2

C
xa−1dx

≤ (1/2)b−1 0.5a − Ca

a

≤ (1/2)b−1 1− (1− a log 1/C)

a

= (1/2)b−1 log(1/C).

The last inequality uses the fact that ex ≥ 1 + x for all x. Now

Pr[Z ≥ C] = (1 +
B

A
) Pr[Z ≥ 1/2] ≤ (1 + 2b log(1/C))

2a

a+ b
≤ 8 log(1/C) · a

a+ b
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and we have the result.
When b ≥ 1, we have an alternative bound. We use the fact that if X ∼ Γ(a, 1) and

Y ∼ Γ(b, 1) then Z ∼ X/(X +Y ). Since Y is distributed as Γ(b, 1), its PDF is 1
Γ(b)x

b−1e−x.

This is proportional to the PDF of Γ(1) (e−x) multiplied by a increasing function xb−1.
Therefore we know Pr[Y ≥ t] ≥ PrY ′∼Γ(1)[Y

′ ≥ t] = e−t.
Now we use this bound to compute the probability that Z ≤ 1/R for all R ≥ 1.
This is equivalent to

Pr[
X

X + Y
≤ 1

R
] =

∫ ∞
0

Pr[X = x]Pr[Y ≥ (R− 1)X]dx

≥
∫ ∞

0

1

Γ(a)
xa−1e−Rxdx

= R−a
∫ ∞

0

1

Γ(a)
ya−1e−ydy

= R−a.

In particular, Pr[Z ≤ C] ≥ Ca, which means Pr[Z ≥ C] ≤ 1− Ca ≤ a log(1/C).
For E[Zδ(Z < C)], the proof is similar as before:

P = E[Zδ(Z < C)] =

∫ C

0

1

B(a, b)
xa(1− x)bdx ≤ Ca+1

B(a, b)(a+ 1)
,

Q = E[Zδ(Z ≥ C)] =

∫ 1

C

1

B(a, b)
xa(1− x)bdx ≥ Ca(1− C)b+1

B(a, b)(b+ 1)
.

Now E[Zδ(Z ≤ C)] ≤ P
QE[Z] ≤ 6aC when C < 1/(b+ 1).

C.5.2 Norm Bounds

Lemma 27 (Norm Bounds under Dirichlet distribution) For πi
iid∼ Dir(α) for i ∈ A,

with probability 1− δ, we have

σmin(ΠA) ≥

√
|A|α̂min

α0 + 1
−O((|A| log k/δ)1/4),

‖ΠA‖ ≤
√
|A|α̂max +O((|A| log k/δ)1/4),

κ(ΠA) ≤

√
(α0 + 1)α̂max

α̂min
+O((|A| log k/δ)1/4).

This implies that ‖FA‖ ≤ ‖P‖
√
|A|α̂max, κ(FA) ≤ O(κ(P )

√
(α0 + 1)α̂max/α̂min). More-

over, with probability 1− δ

‖FA‖1 ≤ |A| ·max
i

(Pα̂)i +O

(
‖P‖

√
|A| log

|A|
δ

)
. (102)
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Remark: When |A| = Ω

(
log k

δ

(
α0+1
α̂min

)2
)

, we have σmin(ΠA) = Ω(
√
|A|α̂min

α0+1 ) with proba-

bility 1− δ for any fixed δ ∈ (0, 1).
Proof: Consider ΠAΠ>A =

∑
i∈A πiπ

>
i .

1

|A|
E[ΠAΠ>A] =Eπ∼Dir(α)[ππ

>]

=
α0

α0 + 1
α̂α̂> +

1

α0 + 1
Diag(α̂),

from Proposition 29. The first term is positive semi-definite so the eigenvalues of the
sum are at least the eigenvalues of the second component. Smallest eigenvalue of second
component gives lower bound on σmin(E[ΠAΠ>A]). The spectral norm of the first component
is bounded by α0

α0+1 ‖α̂‖ ≤
α0
α0+1 α̂max, the spectral norm of second component is 1

α0+1αmax.

Thus
∥∥E[ΠAΠ>A]

∥∥ ≤ |A| · α̂max.
Now applying Matrix Bernstein’s inequality to 1

|A|
∑

i

(
πiπ
>
i − E[ππ>]

)
. We have that

the variance is O(1/|A|). Thus with probability 1− δ,∥∥∥∥ 1

|A|

(
ΠAΠ>A − E[ΠAΠ>A]

)∥∥∥∥ = O

(√
log(k/δ)

|A|

)
.

For the result on F , we use the property that for any two matrices A,B, ‖AB‖ ≤ ‖A‖ ‖B‖
and κ(AB) ≤ κ(A)κ(B).

To show bound on ‖FA‖1, note that each column of FA satisfies E[(FA)i] = 〈α̂, (P )i〉 1>,
and thus ‖E[FA]‖1 ≤ |A|maxi(Pα̂)i. Using Bernstein’s inequality, for each column of FA,
we have, with probability 1− δ,

∣∣ ‖(FA)i‖1 − |A|
〈
α̂, (P )i

〉∣∣ = O

(
‖P‖

√
|A| log

|A|
δ

)
,

by applying Bernstein’s inequality, since |
〈
α̂, (P )i

〉
| ≤ ‖P‖, and thus we have∑

i∈A ‖E[(P )jπiπ
>
i ((P )j)>]‖, and

∑
i∈A ‖E[π>i ((P )j)>(P )jπi]‖ ≤ |A| · ‖P‖. �

C.5.3 Properties of Gamma and Dirichlet Distributions

Recall Gamma distribution Γ(α, β) is a distribution on nonnegative real values with density
function βα

Γ(α)x
α−1e−βx.

Proposition 28 (Dirichlet and Gamma distributions) The following facts are known
for Dirichlet distribution and Gamma distribution.

1. Let Yi ∼ Γ(αi, 1) be independent random variables, then the vector
(Y1, Y2, ..., Yk)/

∑k
i=1 Yk is distributed as Dir(α).

2. The Γ function satisfies Euler’s reflection formula: Γ(1− z)Γ(z) ≤ π/ sinπz.

3. The Γ(z) ≥ 1 when 0 < z < 1.
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4. There exists a universal constant C such that Γ(z) ≤ C/z when 0 < z < 1.

5. For Y ∼ Γ(α, 1) and t > 0 and α ∈ (0, 1), we have

α

4C
tα−1e−t ≤ Pr[Y ≥ t] ≤ tα−1e−t, (103)

and for any η, c > 1, we have

P[Y > ηt|Y ≥ t] ≥ (cη)α−1e−(η−1)t. (104)

Proof: The bounds in (103) is derived using the fact that 1 ≤ Γ(α) ≤ C/α when α ∈ (0, 1)
and ∫ ∞

t

1

Γ(αi)
xαi−1e−xdx ≤ 1

Γ(αi)

∫ ∞
t

tαi−1e−xdx ≤ tαi−1e−t,

and∫ ∞
t

1

Γ(αi)
xαi−1e−xdx ≥ 1

Γ(αi)

∫ 2t

t
xαi−1e−xdx ≥ αi/C

∫ 2t

t
(2t)αi−1e−xdx ≥ αi

4C
tαi−1e−t.

�

Proposition 29 (Moments under Dirichlet distribution) Suppose v ∼ Dir(α), the
moments of v satisfies the following formulas:

E[vi] =
αi
α0

E[v2
i ] =

αi(αi + 1)

α0(α0 + 1)

E[vivj ] =
αiαj

α0(α0 + 1)
, i 6= j.

More generally, if a(t) =
∏t−1
i=0(a+ i), then we have

E[

k∏
i=1

v
(ai)
i ] =

∏k
i=1 α

(ai)
i

α
(
∑k
i=1 ai)

0

.

C.6 Standard Results

C.6.1 Bernstein’s Inequalities

One of the key tools we use is the standard matrix Bernstein inequality (Tropp, 2012, thm.
1.4).

Proposition 30 (Matrix Bernstein Inequality) Suppose Z =
∑

jWj where

1. Wj are independent random matrices with dimension d1 × d2,

2. E[Wj ] = 0 for all j,
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3. ‖Wj‖ ≤ R almost surely.

Let d = d1 + d2, and σ2 = max
{∥∥∥∑j E[WjW

>
j ]
∥∥∥ , ∥∥∥∑j E[W>j Wj ]

∥∥∥}, then we have

Pr[‖Z‖ ≥ t] ≤ d · exp
{
−t2/2

σ2 +Rt/3

}
.

Proposition 31 (Vector Bernstein Inequality) Let z = (z1, z2, ..., zn) ∈ Rn be a ran-
dom vector with independent entries, E[zi] = 0, E[z2

i ] = σ2
i , and Pr[|zi| ≤ 1] = 1. Let

A = [a1|a2| · · · |an] ∈ Rm×n be a matrix, then

Pr[‖Az‖ ≤ (1 +
√

8t)

√√√√ n∑
i=1

‖ai‖2 σ2
i + (4/3) max

i∈[n]
‖ai‖ t] ≥ 1− e−t.

C.6.2 Vector Chebyshev Inequality

We will require a vector version of the Chebyshev inequality Ferentios (1982).

Proposition 32 Let z = (z1, z2, ..., zn) ∈ Rn be a random vector with independent entries,
E[zi] = µ, σ := ‖Diag(E[(z − µ)>(z − µ)])‖. Then we have that

P[‖z − µ‖ > tσ] ≤ t−2.

C.6.3 Wedin’s Theorem

We make use of Wedin’s theorem to control subspace perturbations.

Lemma 33 (Wedin’s theorem; Theorem 4.4, p. 262 in Stewart and Sun (1990).)
Let A,E ∈ Rm×n with m ≥ n be given. Let A have the singular value decomposition U>1

U>2
U>3

A [ V1 V2

]
=

 Σ1 0
0 Σ2

0 0

 .
Let Ã := A+E, with analogous singular value decomposition (Ũ1, Ũ2, Ũ3, Σ̃1, Σ̃2, Ṽ1Ṽ2). Let
Φ be the matrix of canonical angles between range(U1) and range(Ũ1), and Θ be the matrix
of canonical angles between range(V1) and range(Ṽ1). If there exists δ, α > 0 such that
mini σi(Σ̃1) ≥ α+ δ and maxi σi(Σ2) ≤ α, then

max{‖ sin Φ‖2, ‖ sin Θ‖2} ≤
‖E‖2
δ

.
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Abstract

This paper proposes an online tree-based Bayesian approach for reinforcement learning.
For inference, we employ a generalised context tree model. This defines a distribution
on multivariate Gaussian piecewise-linear models, which can be updated in closed form.
The tree structure itself is constructed using the cover tree method, which remains effi-
cient in high dimensional spaces. We combine the model with Thompson sampling and
approximate dynamic programming to obtain effective exploration policies in unknown en-
vironments. The flexibility and computational simplicity of the model render it suitable
for many reinforcement learning problems in continuous state spaces. We demonstrate this
in an experimental comparison with a Gaussian process model, a linear model and simple
least squares policy iteration.

Keywords: Bayesian inference, non-parametric statistics, reinforcement learning

1. Introduction

In reinforcement learning, an agent must learn how to act in an unknown environment
from limited feedback and delayed reinforcement. Efficient learning and planning requires
models of the environment that are not only general, but can also be updated online with
low computational cost. In addition, probabilistic models allow the use of a number of near-
optimal algorithms for decision making under uncertainty. While it is easy to construct such
models for small, discrete environments, models for the continuous case have so far been
mainly limited to parametric models, which may not have the capacity to represent the
environment (such as generalised linear models) and to non-parametric models, which do
not scale very well (such as Gaussian processes).

In this paper, we propose a non-parametric family of tree models, with a data-dependent
structure constructed through the cover tree algorithm, introduced by Beygelzimer et al.
(2006). Cover trees are data structures that cover a metric space with a sequence of data-
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dependent partitions. They were initially proposed for the problem of k-nearest neighbour
search, but they are in general a good method to generate fine partitions of a state space,
due to their low complexity, and can be applied to any state space, with a suitable choice
of metric. In addition, it is possible to create a statistical model using the cover tree as a
basis. Due to the tree structure, online inference has low (logarithmic) complexity.

In this paper, we specifically investigate the case of a Euclidean state space. For this,
we propose a model generalising the context tree weighting algorithm proposed by Willems
et al. (1995), combined with Bayesian multivariate linear models. The overall prior can be
interpreted as a distribution on piecewise-linear models. We then compare this model with
a Gaussian process model, a single linear model, and the model-free method least-squares
policy iteration in two well-known benchmark problems in combination with approximate
dynamic programming and show that it consistently outperforms other approaches.

The remainder of the paper is organised as follows. Section 1.1 introduces the setting,
Section 1.2 discusses related work and Section 1.3 explains our contribution. The model
and algorithm are described in Section 2. Finally, comparative experiments are presented
in Section 3 and we conclude with a discussion of the advantages of cover-tree Bayesian
reinforcement learning and directions of future work in Section 4.

1.1 Setting

We assume that the agent acts within a fully observable discrete-time Markov decision
process (MDP), with a metric state space S, for example S ⊂ Rm. At time t, the agent
observes the current environment state st ∈ S, takes an action at from a discrete set A,
and receives a reward rt ∈ R. The probability over next states is given in terms of a
transition kernel Pµ(S | s, a) , Pµ(st+1 ∈ S | st = s, at = a). The agent selects its
actions using a policy π ∈ Π, which in general defines a conditional distribution Pπ(at |
s1, . . . , st, a1, . . . , at−1, r1, . . . , rt−1) over the actions, given the history of states and actions.
This reflects the learning process that the agent undergoes, when the MDP µ is unknown.

The agent’s utility is U ,
∑∞

t=0 γ
trt, the discounted sum of future rewards, with γ ∈

(0, 1) a discount factor such that rewards further into the future are less important than
immediate rewards. The goal of the agent is to maximise its expected utility:

max
π∈Π

Eπµ U = max
π∈Π

Eπµ
∞∑
t=0

γtrt,

where the value of the expectation depends on the agent’s policy π and the environment µ.
If the environment is known, well-known dynamic programming algorithms can be used to
find the optimal policy in the discrete-state case (Puterman, 2005), while many approximate
algorithms exist for continuous environments (Bertsekas and Tsitsiklis, 1996). In this case,
optimal policies are memoryless and we let Π1 denote the set of memoryless policies. Then
MDP and policy define a Markov chain with kernel P πµ (S | s, a) =

∑
a∈A Pµ(S | s, a)π(a | s).

However, since the environment µ is unknown, the above maximisation is ill-posed. In
the Bayesian framework for reinforcement learning, this problem is alleviated by perform-
ing the maximisation conditioned on the agent’s belief about the true environment µ. This
converts the problem of reinforcement learning into a concrete, optimisation problem. How-

2314



Cover Tree Bayesian RL

ever, this is generally extremely complex, as we must optimise over all history-dependent
policies.

More specifically, the main assumption in Bayesian reinforcement learning is that the
environment µ lies in a given set of environments M. In addition, the agent must select
a subjective prior distribution p(µ) which encodes its belief about which environments are
most likely. The Bayes-optimal expected utility for p is:

U∗p , max
π∈ΠD

Eπp U = max
π∈ΠD

∫
M

(
Eπµ U

)
dp(µ). (1)

Unlike the known µ case, the optimal policy may not be memoryless, as our belief changes
over time. This makes the optimisation over the policies significantly harder (Duff, 2002), as
we have to consider the set of all history-dependent deterministic policies, which we denote
by ΠD ⊂ Π. In this paper, we employ the simple, but effective, heuristic of Thompson
sampling (Thompson, 1933; Wyatt, 1998; Dearden et al., 1998; Strens, 2000) for finding
policies. This strategy is known by various other names, such as probability matching,
stochastic dominance, sampling-greedy and posterior sampling. Very recently Osband et al.
(2013) showed that it suffers small Bayes-regret relative to the Bayes-optimal policy for
finite, discrete MDPs.

The second problem in Bayesian reinforcement learning is the choice of the prior distri-
bution. This can be of critical importance for large or complex problems, for two reasons.
Firstly, a well-chosen prior can lead to more efficient learning, especially in the finite-sample
regime. Secondly, as reinforcement learning involves potentially unbounded interactions,
the computational and space complexity of calculating posterior distributions, estimating
marginals and performing sampling become extremely important. The choice of priors is
the main focus of this paper. In particular, we introduce a prior over piecewise-linear mul-
tivariate Gaussian models. This is based on the construction of a context tree model, using
a cover tree structure, which defines a conditional distribution on local linear Bayesian
multivariate models. Since inference for the model can be done in closed form, the result-
ing algorithm is very efficient, in comparison with other non-parametric models such as
Gaussian processes. The following section discusses how previous work is related to our
model.

1.2 Related Work

One component in our model is the context tree. Context trees were introduced by Willems
et al. (1995) for sequential prediction (see Begleiter et al., 2004, for an overview). In this
model, a distribution of variable order Markov models for binary sequences is constructed,
where the tree distribution is defined through context-dependent weights (for probability of
a node being part of the tree) and Beta distributions (for predicting the next observation).
A recent extension to switching time priors (van Erven et al., 2008) has been proposed by
Veness et al. (2012). More related to this paper is an algorithm proposed by Kozat et al.
(2007) for prediction. This asymptotically converges to the best univariate piecewise linear
model in a class of trees with fixed structure.

Many reinforcement learning approaches based on such trees have been proposed, but
have mainly focused on the discrete partially observable case (Daswani et al., 2012; Veness
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et al., 2011; Bellemare et al., 2013; Farias et al., 2010).1 However, tree structures can
generally be used to perform Bayesian inference in a number of other domains (Paddock
et al., 2003; Meila and Jordan, 2001; Wong and Ma, 2010).

The core of our model is a generalised context tree structure that defines a distribution on
multivariate piecewise-linear-Gaussian models. Consequently, a necessary component in our
model is a multivariate linear model at each node of the tree. Such models were previously
used for Bayesian reinforcement learning in Tziortziotis et al. (2013) and were shown to
perform well relatively to least-square policy iteration (LSPI, Lagoudakis and Parr, 2003).
Other approaches using linear models include Strehl and Littman (2008), which proves
mistake bounds on reinforcement learning algorithms using online linear regression, and
Abbeel and Ng (2005) who use separate linear models for each dimension. Another related
approach in terms of structure is Brunskill et al. (2009), which partitions the space into
types and estimates a simple additive model for each type.

Linear-Gaussian models are naturally generalised by Gaussian processes (GP). Some ex-
amples of GP in reinforcement learning include those of Rasmussen and Kuss (2004), Deisen-
roth et al. (2009) and Deisenroth and Rasmussen (2011), which focused on a model-
predictive approach, while the work of Engel et al. (2005) employed GPs for expected
utility estimation. GPs are computationally demanding, in contrast to our tree-structured
prior. Another problem with the cited GP-RL approaches is that they employ the marginal
distribution in the dynamic programming step. This heuristic ignores the uncertainty about
the model (which is implicitly taken into account in Equations 1, 6). A notable exception
to this is the policy gradient approach employed by Ghavamzadeh and Engel (2006) which
uses full Bayesian quadrature. Finally, output dimensions are treated independently, which
may not make good use of the data. Methods for efficient dependent GPs such as the one
introduced by Alvarez et al. (2011) have not yet been applied to reinforcement learning.

For decision making, this paper uses the simple idea of Thompson sampling (Thompson,
1933; Wyatt, 1998; Dearden et al., 1998; Strens, 2000), which has been shown to be near-
optimal in certain settings (Kaufmann et al., 2012; Agrawal and Goyal, 2012; Osband et al.,
2013). This avoids the computational complexity of building augmented MDP models (Auer
et al., 2008; Asmuth et al., 2009; Castro and Precup, 2010; Araya et al., 2012), Monte-
Carlo tree search (Veness et al., 2011), sparse sampling (Wang et al., 2005), stochastic
branch and bound (Dimitrakakis, 2010b) or creating lower bounds on the Bayes-optimal
value function (Poupart et al., 2006; Dimitrakakis, 2011). Thus the approach is reasonable
as long as sampling from the model is efficient.

1.3 Our Contribution

Our approach is based upon three ideas. The first idea is to employ a cover tree (Beygelzimer
et al., 2006) to create a set of partitions of the state space. This avoids having to prespecify
a structure for the tree. The second technical novelty is the introduction of an efficient non-
parametric Bayesian conditional density estimator on the cover tree structure. This is a
generalised context tree, endowed with a multivariate linear Bayesian model at each node.
We use this to estimate the dynamics of the underlying environment. The multivariate

1. We note that another important work in tree-based reinforcement learning, though not directly related
to ours, is that of Ernst et al. (2005), which uses trees for expected utility rather than model estimation.
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models allow for a sample-efficient estimation by capturing dependencies. Finally, we take
a sample from the posterior to obtain a piecewise linear Gaussian model of the dynamics.
This can be used to generate policies. In particular, from this, we obtain trajectories of
simulated experience, to perform approximate dynamic programming (ADP) in order to
select a policy. Although other methods could be used to calculate optimal actions, we
leave them for future work.

The main advantage of our approach is its generality and efficiency. The posterior cal-
culation and prediction is fully conjugate and can be performed online. At the t-th time
step, inference takes O(ln t) time. Sampling from the tree, which need only be done infre-
quently, is O(t). These properties are in contrast to other non-parametric approaches for
reinforcement learning such as GPs. The most computationally heavy step of our algorithm
is ADP. However, once a policy is calculated, the actions to be taken can be calculated
in logarithmic time at each step. The specific ADP algorithm used is not integral to our
approach and for some problems it might be more efficient to use an online algorithm.

2. Cover Tree Bayesian RL

The main idea of cover tree Bayesian reinforcement learning (CTBRL) is to construct a cover
tree from the observations, simultaneously inferring a conditional probability density on the
same structure, and to then use sampling to estimate a policy. We use a cover tree due to its
efficiency compared with e.g., a fixed sequence of partitions or other dynamic partitioning
methods such as KD-trees. The probabilistic model we use can be seen as a distribution
over piecewise linear-Gaussian densities, with one local linear model for each set in each
partition. Due to the tree structure, the posterior can be computed efficiently online. By
taking a sample from the posterior, we acquire a specific piecewise linear Gaussian model.
This is then used to find an approximately optimal policy using approximate dynamic
programming.

An overview of CTBRL is given in pseudocode in Alg. 1. As presented, the algorithm
works in an episodic manner.2 When a new episode k starts at time tk, we calculate a
new stationary policy by sampling a tree µk from the current posterior ptk(µ). This tree
corresponds to a piecewise-linear model. We draw a large number of rollout trajectories
from µk using an arbitrary exploration policy. Since we have the model, we can use an
initial state distribution that covers the space well. These trajectories are used to estimate
a near-optimal policy πk using approximate dynamic programming. During the episode, we
take new observations using πk, while growing the cover tree as necessary and updating the
posterior parameters of the tree and the local model in each relevant tree node.

We now explain the algorithm in detail. First, we give an overview of the cover tree
structure on which the context tree model is built. Then we show how to perform infer-
ence on the context tree, while Section 2.3 describes the multivariate model used in each
node of the context tree. The sampling approach and the approximate dynamic method
are described in Section 2.4, while the overall complexity of the algorithm is discussed in
Section 2.5.

2. An online version of the same algorithm (still employing Thompson sampling) would move line 6 to just
before line 9. A fully Bayes online version would “simply” take an approximation of the Bayes-optimal
action at every step.

2317



Tziortztiotis, Dimitrakakis and Blekas

Algorithm 1 CTBRL (Episodic, using Thompson sampling)

1: k = 0, π0 = Unif (A), prior p0 on M.
2: for t = 1, . . . , T do
3: if episode-end then
4: k := k + 1.
5: Sample model µk ∼ pt(µ).
6: Calculate policy πk ≈ arg maxπ Eπµk U .
7: end if
8: Observe state st.
9: Take action at ∼ πk(· | st).

10: Observe next state st+1, reward rt+1.
11: Add a leaf node to the tree Tat , containing st.
12: Update posterior: pt+1(µ) = pt(µ | st+1, st, at) by updating the parameters of all

nodes containing st.
13: end for

2.1 The Cover Tree Structure

Cover trees are a data structure that can be applied to any metric space and are, among
other things, an efficient method to perform nearest-neighbour search in high-dimensional
spaces (Beygelzimer et al., 2006). In this paper, we use cover trees to automatically con-
struct a sequence of partitions of the state space. Section 2.1.1 explains the properties of
the constructed cover tree. As the formal construction duplicates nodes, in practice we use
a reduced tree where every observed point corresponds to one node in the tree. This is
explained in Section 2.1.2. An explanation of how nodes are added to the structure is given
in Section 2.1.3.

2.1.1 Cover Tree Properties

To construct a cover tree T on a metric space (Z, ψ) we require a set of points Dt =
{z1, . . . ,zt}, with zi ∈ Z, a metric ψ, and a constant ζ > 1. We introduce a mapping
function [·] so that the i-th tree node corresponds to one point z[i] in this set. The nodes
are arranged in levels, with each point being replicated at nodes in multiple levels, i.e., we
may have [i] = [j] for some i 6= j. Thus, a point corresponds to multiple nodes in the tree,
but to at most one node at any one level. Let Gn denote the set of points corresponding
to the nodes at level n of the tree and C(i) ⊂ Gn−1 the corresponding set of children. If
i ∈ Gn then the level of i is `(i) = n. The tree has the following properties:

1. Refinement: Gn ⊂ Gn−1.

2. Siblings separation: i, j ∈ Gn, ψ(z[i], z[j]) > ζn.

3. Parent proximity: If i ∈ Gn−1 then ∃ a unique j ∈ Gn such that ψ(z[i], z[j]) ≤ ζn and
i ∈ C(j).

These properties can be interpreted as follows. Firstly lower levels always contain more
points. Secondly, siblings at a particular level are always well-separated. Finally, a child
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must be close to its parent. These properties directly give rise to the theoretical guarantees
given by the cover tree structure, as well as methods for searching and adding points to the
tree, as explained below.

2.1.2 The Reduced Tree

As formally the cover tree duplicates nodes, in practice we use the explicit representa-
tion (described in more detail in Section 2 of Beygelzimer et al., 2006). This only stores
the top-most tree node i corresponding to a point z[i]. We denote this reduced tree by T̂ .

The depth d(i) of node i ∈ T̂ is equal to its number of ancestors, with the root node having
a depth of 0. After t observations, the set of nodes containing a point z, is:

Ĝt(z) ,
{
i ∈ T̂

∣∣∣ z ∈ Bi } ,
where Bi =

{
z ∈ Z

∣∣ ψ(z[i], z) ≤ ζd(i)
}

is the neighbourhood of i. Then Ĝt(z) forms a
path in the tree, as each node only has one parent, and can be discovered in logarithmic
time through the Find-Nearest function (Beygelzimer et al., 2006, Theorem 5). This fact
allows us to efficiently search the tree, insert new nodes, and perform inference.

2.1.3 Inserting Nodes in the Cover Tree

The cover tree insertion we use is only a minor adaptation of the Insert algorithm by
Beygelzimer et al. (2006). For each action a ∈ A, we create a different reduced tree T̂a, over
the state space, i.e., Z = S, and build the tree using the metric ψ(s, s′) = ‖s− s′‖1.

At each point in time t, we obtain a new observation tuple st, at, st+1. We select the
tree T̂at corresponding to the action. Then, we traverse the tree, decreasing d and keeping
a set of nodes Qd ⊂ Gd that are ζd-close to st. We stop whenever Qd contains a node that
would satisfy the parent proximity property if we insert the new point at d − 1, while the
children of all other nodes in Qd would satisfy the sibling separation property. This means
that we can now insert the new datum as a child of that node.3 Finally, the next state st+1

is only used during the inference process, explained below.

2.2 Generalised Context Tree Inference

In our model, each node i ∈ T̂ is associated with a particular Bayesian model. The main
problem is how to update the individual models and how to combine them. Fortunately,
a closed form solution exists due to the tree structure. We use this to define a generalised
context tree, which can be used for inference.

As with other tree models (Willems et al., 1995; Ferguson, 1974), our model makes
predictions by marginalising over a set of simpler models. Each node in the context tree is
called a context, and each context is associated with a specific local model. At time t, given
an observation st = s and an action at = a, we calculate the marginal (predictive) density
pt of the next observation:

pt(st+1 | st, at) =
∑
ct

pt(st+1 | st, ct)pt(ct | st, at),

3. The exact implementation is available in the CoverTree class in Dimitrakakis et al. (2007).
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st st+1

at

ct

θt

Figure 1: The generalised context tree graphical model. Blue circles indicate observed vari-
ables. Green dashed circles indicate latent variables. Red rectangles indicate
choice variables. Arrows indicate dependencies. Thus, the context distribution
at time t depends on both the state and action, while the parameters depend on
the context. The next state depends on the action only indirectly.

where we use the symbol pt throughout for notational simplicity to denote marginal distri-
butions from our posterior at time t. Here, ct is such that if pt(ct = i | st, at) > 0, then the
current state is within the neighbourhood of i-th node of the reduced cover tree T̂at , i.e.,
st ∈ Bi.

For Euclidean state spaces, the i-th component density pt(st+1 | st, ct = i) employs a
linear Bayesian model, which we describe in the next section. The graphical structure of
the model is shown in simplified form in Fig. 1. The context at time t depends only on the
current state st and action at. The context corresponds to a particular local model with
parameter θt, which defines the conditional distribution.

The probability distribution pt(ct | st, at) is determined through stopping probabilities.
More precisely, we set it be equal to the probability of stopping at the i-th context, when
performing a walk from the leaf node containing the current observation towards the root,
stopping at the j-th node with probability wj,t along the way:

pt(ct = i | st, at) = wi,t
∏

j∈Dt(i)

(1− wj,t),

where Dt(i) are the descendants of i that contain the observation st. This forms a path
from i to the leaf node containing st. Note that w0,t = 1, so we always stop whenever
we reach the root. Due to the effectively linear structure of the relevant tree nodes, the
stopping probability parameters w can be updated in closed form, as shown in Dimitrakakis
(2010a, Theorem 1) via Bayes’ theorem as follows:

wi,t+1 =
pt(st+1 | st, ct = i)wi,t

pt(st+1 | st, ct ∈ {i} ∪Dt(i))
. (2)

Since there is a different tree for each action, ct = i uniquely identifies a tree, the action
does not need to enter in the conditional expressions above. Finally, it is easy to see, by
marginalisation and the definition of the stopping probabilities, that the denominator in
the above equation can be calculated recursively:

pt(st+1 | st, ct ∈ {i}∪Dt(i)) = wi,tpt(st+1 | st, ct = i)+(1−wi,t)pt(st+1 | st, ct ∈ Dt(i)).
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Consequently, inference can be performed with a simple forward-backward sweep through
a single tree path. In the forward stage, we compute the probabilities of the denominator,
until we reach the point where we have to insert a new node. Whenever a new node is
inserted in the tree, its weight parameter is initialised to 2−d(i). We then go backwards to
the root node, updating the weight parameters and the posterior of each model. The only
remaining question is how to calculate the individual predictive marginal distributions for
each context i in the forward sweep and how to calculate their posterior in the backward
sweep. In this paper, we associate a linear Bayesian model with each context, which provides
this distribution.

2.3 The Linear Bayesian Model

In our model we assume that, given ct = i, the next state st+1 is given by a linear transfor-
mation of the current state and additive noise εi,t:

st+1 = Aixt + εi,t, xt ,

(
st
1

)
, (3)

where xt is the current state vector augmented by a unit basis.4 In particular, each context
models the dynamics via a Bayesian multivariate linear-Gaussian model. For the i-th con-
text, there is a different (unknown) parameter pair (Ai,Vi) where Ai is the design matrix
and Vi is the covariance matrix. Then the next state distribution is:

st+1 | xt = x, ct = i ∼ N (Aix,Vi).

Thus, the parameters θt which are abstractly shown in Fig. 1 correspond to the two matrices
A,V . We now define the conditional distribution of these matrices given ct = i.

We can model our uncertainty about these parameters with an appropriate prior dis-
tribution p0. In fact, a conjugate prior exists in the form of the matrix inverse-Wishart
normal distribution. In particular, given Vi = V , the distribution for Ai is matrix-normal,
while the marginal distribution of Vi is inverse-Wishart:

Ai | Vi = V ∼ N (Ai |M ,C︸ ︷︷ ︸
prior parameters

,V ) (4)

Vi ∼ W (Vi |
︷ ︸︸ ︷
W , n). (5)

Here N is the prior on design matrices, which has a matrix-normal distribution, conditional
on the covariance and two prior parameters: M , which is the prior mean and C which is
the prior covariance of the dependent variable (i.e., the output). Finally, W is the marginal
prior on covariance matrices, which has an inverse-Wishart distribution with W and n.
More precisely, the distributions have the following forms:

N (Ai |M ,C,V ) ∝ e−
1
2
tr[(Ai−M)>V −1(Ai−M)C]

W (V |W , n) ∝ |V −1W /2|n/2e−
1
2
tr(V −1W ).

4. While other transformations of st are possible, we do not consider them in this paper.
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Essentially, the model extends the classic Bayesian linear regression model (e.g., DeGroot,
1970) to the multivariate case via vectorisation of the mean matrix. Since the prior is
conjugate, it is relatively simple to calculate the posterior after each observation. For
simplicity, and to limit the total number of prior parameters we have to select, we use the
same prior parameters (Mi,Ci,Wi, ni) for all contexts in the tree.

To integrate this with inference in the tree, we must define the marginal distribution
used in the nominator of (2). This is a multivariate Student-t distribution, so if the posterior
parameters for context i at time t are (M t

i ,C
t
i ,W

t
i , n

t
i), then this is:

pt(st+1 | xt = x, ct = i) = Student(M t
i ,W

t
i /z

t
i , 1 + nti),

where zti = 1− x>(Ct
i + xx>)−1x.

2.3.1 Regression Illustration

−4 −2 0 2 4

−1

0

1

st

s
t+

1

103 samples
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0

1

st

104 samples

E(st+1 | st) Ept(st+1 | st)
Eµ̂1(st+1 | st) Eµ̂2(st+1 | st)

Figure 2: Regression illustration. We plot the expected value for the real distribution, the
marginal, as well as two sampled models µ̂1, µ̂2 ∼ pt(µ).

An illustration of inference using the generalised context tree is given in Fig. 2, where the
piecewise-linear structure is evident. The st variates are drawn uniformly in the displayed
interval, while st+1 | st = s ∼ N (sin(s), 0.1), i.e., drawn a normal distribution with mean
sin(st) and variance 0.1. The plot shows the marginal expectation Ept , as well as the
expectation from two different models sampled from the posterior pt(µ).
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2.4 Approximating the Optimal Policy with Thompson Sampling

Many algorithms exist for finding the optimal policy for a specific MDP µ, or for calculating
the expected utility of a given policy for that MDP. Consequently, a simple idea is to draw
MDP samples µi from the current posterior distribution and then calculate the expected
utility of each. This can be used to obtain approximate lower and upper bounds on the
Bayes-optimal expected utility by maximising over the set of memoryless policiesΠ1. Taking
K samples, allows us to calculate the upper and lower bounds with accuracy O(1/

√
K).

max
π∈Π1

Eπp U ≈ max
π∈Π1

1

K

K∑
i=1

Eπµi U ≤
1

K

K∑
i=1

max
π∈Π1

Eπµi U, µi ∼ pt(µ). (6)

We consider only the special case K = 1, i.e., when we only sample a single MDP. Then
the two values are identical and we recover Thompson sampling. The main problems we
have to solve now is how to sample a model and how to calculate a policy for the sampled
model.

2.4.1 Sampling a Model from the Posterior

Each model µ sampled from the posterior corresponds to a particular choice of tree pa-
rameters. Sampling is done in two steps. The first generates a partition from the tree
distribution and the second step generates a linear model for each context in the partition.

The first step is straightforward. We only need to sample a set of weights ŵi ∈ {0, 1}
such that P(ŵi = 1) = wi,t, as shown in Dimitrakakis (2010a, Rem. 2). This creates a
partition, with one Bayesian multivariate linear model responsible for each context in the
partition.

The second step is to sample a design and covariance matrix pair (Âi, V̂i) for each
context i in the partition. This avoids sampling matrices for contexts not part of the
sampled tree. As the model suggests, we can first sample the noise covariance by plugging
the posterior parameters in (5) to obtain V̂i. Sampling from this distribution can be done
efficiently using the algorithm suggested by Smith and Hocking (1972). We then plug in V̂i
into the conditional design matrix posterior (4) to obtain a design matrix Âi by sampling
from the resulting matrix-normal distribution.

The final MDP sample µ from the posterior has two elements. Firstly, a set of contexts
Ĉµ ⊂

⋃
a∈A T̂a, from all action trees. This set is a partition with associated mapping fµ : S×

A → Ĉµ. Secondly, a set of associated design and covariance matrices
{

(Aµi , V
µ
i )
∣∣∣ i ∈ Ĉµ }

for each context. Then the prediction of the sampled MDP is:

Pµ(st+1 | st, at) = N (Aµf(st,at)xt, V
µ
f(st,at)

), (7)

where xt is given in (3).

2.4.2 Finding a Policy for a Sample via ADP

In order to calculate an optimal policy π∗(µ) for µ, we generate a large number of trajectories
from µ using a uniform policy. After selecting an appropriate set of basis functions, we then
employ a variant of the least-squares policy iteration (LSPI, Lagoudakis and Parr, 2003)
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algorithm, using least-squares temporal differences (LSTD, Bradtke and Barto, 1996) rather
than LSTDQ. This is possible because since we have µ available, we have access to (7) and
it makes LSPI slightly more efficient.

More precisely, consider the value function V π
µ : S → R, defined as:

V π
µ (s) , Eπµ (U | st = s) .

Unfortunately, for continuous S finding an optimal policy requires approximations. A com-
mon approach is to make use of the fact that:

V π
µ (s) = ρ(s) + γ

∫
S
V π
µ (s′) dP πµ (s′ | s),

where we assume for simplicity that ρ(s) is the reward obtained at state s. The conditional
measure P πµ is the transition kernel on S induced by µ, π, introduced in Section 1.1. We
then select a parametric family vω : S → R with parameter ω ∈ Ω and minimise:

h(ω) +

∫
S

∥∥∥∥vω(s)− ρ(s)− γ
∫
S
vω(s′) dP̂ πµ (s′|s)

∥∥∥∥ dχ(s), (8)

where h is a regularisation term, χ is an appropriate measure on S and P̂ πµ is an empirical
estimate of the transition kernel, used to approximate the respective integral that uses P πµ .
As we can take an arbitrary number of trajectories from µ, π, this can be as accurate as our
computational capacity allows.

In practice, we minimise (8) with a generalised linear model (defined on an appropriate
basis) for vω while χ need only be positive on a set of representative states. Specifically, we
employ a variant of the least-squares policy iteration (LSPI, Lagoudakis and Parr, 2003)
algorithm, using the least-squares temporal differences (LSTD, Bradtke and Barto, 1996)
for the minimisation of (8). Then the norm is the euclidean norm and the regularisation
term is h(ω) = λ‖ω‖. In order to estimate the inner integral, we take KL ≥ 1 samples from
the model so that

P̂ πµ (s′ | s) , 1

KL

KL∑
i=1

I
{
sit+1 = s′ | sit = s

}
, (9)

sit+1 | sit = s ∼ P πµ (· | s),

where I {·} is an indicator function and P πµ is decomposable in known terms. Equation
(9) is also used for action selection in order to calculate an approximate expected utility
qω(s, a) for each state-action pair (s, a):

qω(s, a) , ρ(s) + γ

∫
S
vω(s′) dP̂ πµ (s′|s)

Effectively, this approximates the integral via sampling. This may add a small amount5 of
additional stochasticity to action selection, which can be reduced6 by increasing KL.

Finally, we optimise the policy by approximate policy iteration. At the j-th iteration we
obtain an improved policy π̂j(a | s) ∝ P[a ∈ arg maxa′∈A qωj−1(s, a′)] from ωj−1 and then
estimate ωj for the new policy.

5. Generally, this error is bounded by O(K
−1/2
L ).

6. We remind the reader that Thompson sampling itself results in considerable exploration by sampling an
MDP from the posterior. Thus, additional randomness may be detrimental.
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2.5 Complexity

We now analyse the computational complexity of our approach, including the online com-
plexity of inference and decision making, and of the sampling and ADP taking place every
episode. It is worthwhile to note two facts. Firstly, that the complexity bounds related
to the cover tree depend on a constant c, which however depends on the distribution of
samples in the state space. In the worst case (i.e., a uniform distribution), this is bounded
exponentially in the dimensionality of the actual state space. While we do not expect this
to be the case in practice, it is easy to construct a counterexample where this is the case.
Secondly, that the complexity of the ADP step is largely independent of the model used,
and mostly depends on the number of trajectories we take in the sampled model and the
dimensionality of the feature space.

First, we examine the total computation time that is required to construct the tree.

Corollary 1 Cover tree construction from t observations takes O(t ln t) operations.

Proof In the cover tree, node insertion and query are O(ln t)(Beygelzimer et al., 2006,
Theorems 5, 6). Then note that

∑t
k=1 ln k ≤

∑t
k=1 ln t = t ln t.

At every step of the process, we must update our posterior parameters. Fortunately, this
also takes logarithmic time as we only need to perform calculations for a single path from
the root to a leaf node.

Lemma 2 If S ⊂ Rm, then inference at time step t has complexity O(m3 ln t).

Proof At every step, we must perform inference on a number of nodes equal to the length of
the path containing the current observation. This is bounded by the depth of the tree, which
is in turn bounded by O(ln t) from Beygelzimer et al. (2006, Lemma 4.3). Calculating (2)
is linear in the depth. For each node, however, we must update the linear-Bayesian model,
and calculate the marginal distribution. Each requires inverting an m ×m matrix, which
has complexity O(m3).

Finally, at every step we must choose an action through value function look-up. This again
takes logarithmic time, but there is a scaling depending on the complexity of the value
function representation.

Lemma 3 If the LSTD basis has dimensionality mL, then taking a decision at time t has
complexity O(KLmL ln t).

Proof To take a decision we merely need to search in each action tree to find a corre-
sponding path. This takes O(ln t) time for each tree. After Thompson sampling, there will
only be one linear model for each action tree. LSTD takes KL operations, and requires the
inner product of two mL-dimensional vectors.

The above lemmas give the following result:

Theorem 4 At time t, the online complexity of CTBRL is O((m3 +KLmL) ln t).

We now examine the complexity of finding a policy. Although this is the most computa-
tionally demanding part, its complexity is not dependent on the cover tree structure or the
probabilistic inference method used. However, we include it here for completeness.
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Lemma 5 Thompson sampling at time t is O(tm3).

Proof In the worst case, our sampled tree will contain all the leaf nodes of the reduced tree,
which are O(t). For each sampled node, the most complex operation is Wishart generation,
which is O(m3) (Smith and Hocking, 1972).

Lemma 6 If we use ns samples for LSTD estimation and the basis dimensionality is mL,
this step has complexity O(m3

L + ns(m
2
L +KLmL ln t)).

Proof For each sample we must take a decision according to the last policy, which requires
O(KLmL ln t) as shown previously. We also need to update two matrices (see Boyan, 2002),
which is O(m2

L). So, O(ns(m
2
L+KLmL ln t)) computations must be performed for the total

number of the selected samples. Since LSTD requires an mL ×mL matrix inversion, with
complexity O(m3

L), we obtain the final result.

From Lemmas 3 and 6 it follows that:

Theorem 7 If we employ API with KA iterations, the total complexity of calculating a new
policy is O(tm3 +KA(m3

L + ns(m
2
L +KLmL ln t))).

Thus, while the online complexity of CTBRL is only logarithmic in t, there is a sub-
stantial cost when calculating a new policy. This is only partially due to the complexity of
sampling a model, which is manageable when the state space has small dimensionality. Most
of the computational effort is taken by the API procedure, at least as long as t < (mL/m)3.
However, we think this is unavoidable no matter what the model used is.

The complexity of Gaussian process (GP) models is substantially higher. In the simplest
model, where each output dimension is modelled independently, inference is O(mt3), while
the fully multivariate tree model has complexity O(m3t ln t). Since there is no closed form
method for sampling a function from the process, one must resort to iterative sampling
of points. For n points, the cost is approximately O(nmt3), which makes sampling long
trajectories prohibitive. For that reason, in our experiments we only use the mean of the
GP.

3. Experiments

We conducted two sets of experiments to analyse the offline and the online performance.
We compared CTBRL with the well-known LSPI algorithm (Lagoudakis and Parr, 2003)
for the offline case, as well as an online variant (Buşoniu et al., 2010) for the online case.
We also compared CTBRL with linear Bayesian reinforcement learning (LBRL, Tziortziotis
et al., 2013) and finally GP-RL, where we simply replaced the tree model with a Gaussian
process. For CTBRL and LBRL we use Thompson sampling. However, since Thompson
sampling cannot be performed on GP models, we use the mean GP instead. In order to
compute policies given a model, all model-based methods use the variant of LSPI explained
in Section 2.4.2. Hence, the only significant difference between each approach is the model
used, and whether or not they employ Thompson sampling.

A significant limitation of Gaussian processes is that their computational complexity
becomes prohibitive as the number of samples becomes extremely large. In order to make
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the GP model computationally practical, the greedy approximation approach introduced
by Engel et al. (2002) has been adopted. This is a kernel sparsification methodology which
incrementally constructs a dictionary of the most representative states. More specifically,
an approximate linear dependence analysis is performed in order to examine whether a state
can be approximated sufficiently as a linear combination of current dictionary members or
not.

We used one preliminary run and guidance from the literature to make an initial selection
of possible hyper-parameters, such as the number of samples and the features used for LSTD
and LSTD-Q. We subsequently used 10 runs to select a single hyper-parameter combination
for each algorithm-domain pair. The final evaluation was done over an independent set of
100 runs.

For CTBRL and the GP model, we had the liberty to draw an arbitrary number of
trajectories for the value function estimation. We drew 1-step transitions from a set of 3000
uniformly drawn states from the sampled model (the mean model in the GP case). We used
25 API iterations on this data.

For the offline performance evaluation, we first drew rollouts from k = {10, 20, . . . , 50,
100, . . . , 1000} states drawn from the true environment’s starting distribution, using a uni-
formly random policy. The maximum horizon of each rollout was set equal to 40. The
collected data was then fed to each algorithm in order to produce a policy. This policy was
evaluated over 1000 rollouts on the environment.

In the online case, we simply use the last policy calculated by each algorithm at the
end of the last episode, so there is no separate learning and evaluation phase. This means
that efficient exploration must be performed. For CTBRL, this is done using Thompson
sampling. For online-LSPI, we followed the approach of Buşoniu et al. (2010), who adopts
an ε-greedy exploration scheme with an exponentially decaying schedule εt = εtd, with
ε0 = 1. In preliminary experiments, we found εd = 0.997 to be a reasonable compromise.
We compared the algorithms online for 1000 episodes.

3.1 Domains

We consider two well-known continuous state, discrete-action, episodic domains. The first
is the inverted pendulum domain and the second is the mountain car domain.

3.1.1 Inverted Pendulum

The goal in this domain, is to balance a pendulum by applying forces of a mixed magnitude
(50 Newtons). The state space consists of two continuous variables, the vertical angle and
the angular velocity of the pendulum. There are three actions: no force, left force or right
force. A zero reward is received at each time step except in the case where the pendulum
falls. In this case, a negative (-1) reward is given and a new episode begins. An episode
also ends with 0 reward after 3000 steps, after which we consider that the pendulum is
successfully balanced. Each episode starts by setting the pendulum in a perturbed state
close to the equilibrium point. More information about the specific dynamics can be found
at Lagoudakis and Parr (2003). The discount factor γ was 0.95. The basis we used for
LSTD/LSPI, was equidistant 3× 3 grid of RBFs over the state space following the sugges-
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tions of Lagoudakis and Parr (2003). This was replicated for each action for the LSTD-Q
algorithm used in LSPI.

3.1.2 Mountain Car

The aim in this domain is to drive an underpowered car to the top of a hill. Two continuous
variables characterise the vehicle state in the domain, its position and its velocity. The
objective is to drive an underpowered vehicle up a steep valley from a randomly selected
position to the right hilltop (at position > 0.5) within 1000 steps. There are three actions:
forward, reverse and zero throttle. The received reward is −1 except in the case where the
target is reached (zero reward). At the beginning of each rollout, the vehicle is positioned to
a new state, with the position and the velocity uniformly randomly selected. The discount
factor is set to γ = 0.999. An equidistant 4 × 4 grid of RBFs over the state space plus a
constant term is selected for LSTD and LSPI.

3.2 Results

In our results, we show the average performance in terms of number of steps of each method,
averaged over 100 runs. For each average, we also plot the 95% confidence interval for the
accuracy of the mean estimate with error bars. In addition, we show the 90% percentile
region of the runs, in order to indicate inter-run variability in performance.

Figure 3(a) shows the results of the experiments in the offline case. For the mountain
car, it is clear that CTBRL is significantly more stable compared to GPRL and LSPI. In
contrast to the other two approaches, CTBRL needs only a small number of rollouts in
order to discover the optimal policy. For the pendulum domain, the performance of both
CTBRL and GPRL is almost perfect, as they need only about twenty rollouts in order to
discover the optimal policy. On the other hand, LSPI despite the fact that manages to find
the optimal policy frequently, around 5% of its runs fail.

Figure 3(b) shows the results of the experiments in the online case. For the mountain
car, CTBRL managed to find an excellent policy in the vast majority of runs, while con-
verging earlier than GPRL and LSPI. Moreover, CTBRL presents a more stable behaviour
in contrast to the other two. In the pendulum domain, the performance difference relative
to LSPI is even more impressive. It becomes apparent that both CTBRL and GPRL reach
near optimal performances with an order of magnitude fewer episodes than LSPI, while the
latter remains unstable. In this experiment, we see that CTBRL reaches an optimal policy
slightly before GPRL. Although the difference is small, it is very consistent.

The success of CTBRL over the other approaches can be attributed to a number of
reasons. Firstly, it could be a better model. Indeed, in the offline results for the mountain
car domain, where the starting state distribution is uniform, and all methods have the same
data, we can see that CTBRL has a far better performance than everything else. The
second could be the more efficient exploration afforded by Thompson sampling. Indeed, in
the mountain car online experiments we see that the LBRL performs quite well (Fig. 3(b)),
even though its offline performance is not very good (Fig. 3(a)). However, Thompson
sampling is not sufficient for obtaining a good performance, as seen by both the offline
results and the performance in the pendulum domain.
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Figure 3: Experimental evaluation. The dashed line shows CTBRL, the dotted line shows
LBRL, the solid line shows LSPI, while the dash-dotted line shows GPRL. The
error bars denote 95% confidence intervals for the mean (i.e., statistical signifi-
cance). The shaded regions denote 90% percentile performance (i.e., robustness)
across runs. In all cases, CTBRL converges significantly quicker than the other
approaches. In addition, as the percentile regions show, it is also much more
stable than LBRL, GPRL and LSPI.
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4. Conclusion

We proposed a computationally efficient, fully Bayesian approach for the exact inference
of unknown dynamics in continuous state spaces. The total computation for inference
after t steps is O(t ln t), in stark contrast to other non-parametric models such as Gaussian
processes, which scale O(t3). In addition, inference is naturally performed online, with the
computational cost at time t being O(ln t).

In practice, the computational complexity is orders of magnitude lower for cover trees
than GP, even for these problems. We had to use a dictionary and a lot of tuning to
make GP methods work, while cover trees worked out of the box. Another disadvantage of
GP methods is that it is infeasible to implement Thompson sampling with them. This is
because it is not possible to directly sample a function from the GP posterior. Although
Thompson sampling confers no advantage in the offline experiments (as the data there were
the same for all methods), we still see that the performance of CTBRL is significantly better
on average and that it is much more stable.

Experimentally, we showed that cover trees are more efficient both in terms of compu-
tation and in terms of reward, relative to GP models that used the same ADP method to
optimise the policy and to a linear Bayesian model which used both the same ADP method
and the same exploration strategy. We can see that overall the linear model performs sig-
nificantly worse than both GP-RL and CTBRL, though better than ε-greedy LSPI. This
shows that the main reason for the success of CTBRL is the cover tree inference and not
the linear model itself, or Thompson sampling.

CTBRL is particularly good in online settings, where the exact inference, combined with
the efficient exploration provided by Thompson sampling give it an additional advantage.
We thus believe that CTBRL is a method that is well-suited for exploration in unknown
continuous state problems. Unfortunately, it is not possible to implement Thompson sam-
pling in practice using GPs, as there is no reasonable way to sample a function from the
GP posterior. Nevertheless, we found that in both online and offline experiments (where
Thompson sampling should be at a disadvantage) the cover tree method achieved superior
performance to Gaussian processes.

Although we have demonstrated the method in low dimensional problems, higher di-
mensions are not a problem for the cover tree inference itself. The bottleneck is the value
function estimation and ADP. This is independent of the model used, however. For example,
GP methods for estimating the value function (c.f. Deisenroth et al., 2009) typically have a
large number of hyper-parameters for value function estimation, such as choice of represen-
tative states and trajectories, kernel parameters and method for updating the dictionary,
to avoid problems with many observations.

While in practice ADP can be performed in the background while inference is taking
place, and although we seed the ADP with the previous solution, one would ideally like to
use a more incremental approach for that purpose. One interesting idea would be to employ
a gradient approach in a similar vein to Deisenroth and Rasmussen (2011). An alternative
approach would be to employ an online method, in order to avoid estimating a policy for
the complete space.7 Promising such approaches include running bandit-based tree search
methods such as UCT (Kocsis and Szepesvári, 2006) on the sampled models.

7. A suggestion made by the anonymous reviewers.
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Another direction of future work is to consider more sophisticated exploration policies,
particularly for larger problems. Due to the efficiency of the model, it should be possible
to compute near-Bayes-optimal policies by applying the tree search method used by Veness
et al. (2011). Finally, it would be interesting to examine continuous actions. These can
be handled efficiently both by the cover tree and the local linear models by making the
next state directly dependent on the action through an augmented linear model. While
optimising over a continuous action space is challenging, more recent efficient tree search
methods such as metric bandits (Bubeck et al., 2011) may alleviate that problem.

An interesting theoretical direction would be to obtain regret bounds for the problem.
This could perhaps be done building upon the analyses of Kozat et al. (2007) for context
tree prediction, and of Ortner and Ryabko (2012) for continuous MDPs. The statistical
efficiency of the method could be improved by considering edge-based (rather than node-
based) distributions on trees, as was suggested by Pereira and Singer (1999).

Finally, as the cover tree method only requires specifying an appropriate metric, the
method could be applicable to many other problems. This includes both large discrete
problems, and partially observable problems. It would be interesting to see if the approach
also gives good results in those cases.
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Learning Research, 12:1655–1695, 2011.
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Abstract

Latent force models (LFM) are principled approaches to incorporating solutions to differen-
tial equations within non-parametric inference methods. Unfortunately, the development
and application of LFMs can be inhibited by their computational cost, especially when
closed-form solutions for the LFM are unavailable, as is the case in many real world prob-
lems where these latent forces exhibit periodic behaviour. Given this, we develop a new
sparse representation of LFMs which considerably improves their computational efficiency,
as well as broadening their applicability, in a principled way, to domains with periodic or
near periodic latent forces. Our approach uses a linear basis model to approximate one
generative model for each periodic force. We assume that the latent forces are generated
from Gaussian process priors and develop a linear basis model which fully expresses these
priors. We apply our approach to model the thermal dynamics of domestic buildings and
show that it is effective at predicting day-ahead temperatures within the homes. We also
apply our approach within queueing theory in which quasi-periodic arrival rates are mod-
elled as latent forces. In both cases, we demonstrate that our approach can be implemented
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efficiently using state-space methods which encode the linear dynamic systems via LFMs.
Further, we show that state estimates obtained using periodic latent force models can re-
duce the root mean squared error to 17% of that from non-periodic models and 27% of the
nearest rival approach which is the resonator model (Särkkä et al., 2012; Hartikainen et al.,
2012).

Keywords: latent force models, Gaussian processes, Kalman filter, kernel principle com-
ponent analysis, queueing theory

1. Introduction

Latent force models (LFMs) have received considerable interest in the machine learning
community as they combine underlying physical knowledge of a system with data driven
models expressed as Bayesian non-parametric Gaussian process (GP) priors (see, for exam-
ple, Alvarez et al., 2009; Hartikainen and Särkkä, 2010). In more detail, the physical process
that generates the data is typically represented by one or more differential equations. These
differential equations can then be accommodated within covariance functions along with the
data driven priors. Doing so allows inferences to be drawn in regimes where data may be
sparse or absent, where a purely data driven model will typically perform poorly. To date,
such models have been applied in areas such as computational biology and understanding
motion patterns (Alvarez et al., 2009, 2010).

Despite growing interest in LFMs, their real world applicability has been limited as in-
ference using LFMs expressed directly through covariance functions can be computationally
prohibitive on large data sets. It is well known that regression with GPs imposes high com-
putational cost which scales as O(N3T 3) during training, where N is the dimension of the
data observed at each time point and T is the number of time points. However, it has also
been shown that training LFMs using state-space methods can be considerably less com-
putationally demanding (Rasmussen and Williams, 2006; Hartikainen and Särkkä, 2010) as
state-space methods scale as O(N3T ). It is this computational saving that motivates the
state-space approach to LFM inference in this paper.

The state-space approach to LFM inference advocated by Hartikainen and Särkkä (2010,
2011) augments the state vector so that Matérn and squared-exponential priors can be
accommodated (although only approximately in the case of the squared-exponential). All
the information encoded within the GP prior (that is, process smoothness, stationarity etc)
is fully captured within their state-space representation. However, their approach assumes
that the LFM kernel’s inverse power spectrum can be represented by a power series in
the frequency domain. Unfortunately, this requirement severely inhibits the applicability of
their approach and, consequently, only a small repertoire of GP priors have been investigated
within LFMs to date, namely, squared-exponential and Matérn kernels. Specifically, the
state-space approach advocated by Hartikainen and Särkkä (2010) does not accommodate
periodic kernels as we shall demonstrate in this paper. This is a key limitation as periodicity
is common in many physical processes as we shall demonstrate in our empirical evaluation.
Expressing our prior knowledge of the periodicity, as a GP prior, within the state-space
approach is the key challenge problem addressed in this paper.

Thus, against this background, we describe a principled method for incorporating sta-
tionary periodic, non-stationary periodic and quasi-periodic Gaussian process priors within
state-space approaches to LFM inference. Within our approach all LFM parameters can be
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inferred using Bayesian methods or maximum likelihood and thus we circumvent the need to
set any of these parameters by hand. Further, to accommodate periodic and quasi-periodic
models within LFMs we develop a novel state-space approach to inference. In particu-
lar, we propose to represent periodic and quasi-periodic driving forces, which are assumed
smooth, by linear basis models (LBMs) with eigenfunction basis functions derived using
kernel principal component analysis (KPCA) in the temporal domain. These basis models,
although parametric in form, are optimized so that their generative properties accurately
approximate the driving force kernel. We will show that efficient inference can then be
performed using a state-space approach by augmenting the state with additional variables
which sparsely represent the periodic latent forces.

Our LBM approach to accommodating periodic kernels is inspired by the resonator
model (Särkkä et al., 2012; Hartikainen et al., 2012) in which the periodic process is modelled
as a superposition of resonators, each of which can be represented within the state-vector.
Unfortunately, the resonator model, in its current form, does not encode all the underlying
GP prior information of the periodic process as the resonator is not tailored to accommo-
date all the prior information encoded via the covariance function (see Section 4 for more
detail). An alternative approach to modelling stationary kernels, including periodic kernels,
is sparse spectrum Gaussian process regression (SSGPR) of Lázaro-Gredilla et al. (2010).
This approach is similar in spirit to the resonator model in that it encodes stationary GP
priors via basis functions (sinusoidal functions, in this case). However, unlike the resonator
model, the SSGPR is able to encode the GP prior by reinterpreting the spectral density
of a stationary GP kernel as a probability density function over frequency space. This pdf
is then sampled using Monte Carlo to yield the frequencies of the sinusoidal basis func-
tions. Unfortunately, this stochastic approach can often provide a poor approximation to
the covariance function (see Section 5 for more detail).

We shall develop a LBM which captures all the information encoded within the GP
prior and demonstrate its superior accuracy over the resonator model and the SSGPR. We
shall also establish the close link between the resonator basis and the eigenfunction basis
used in our approach and consequently, derive a novel method for tailoring the resonator
basis to accommodate all the information encoded within the covariance function.

Our research is driven by two specific applications although the methods that we propose
are of general applicability. Specifically, we apply our approach to the estimation and
prediction of the behaviour of customer queues in call centres, based on flow models of queue
dynamics represented as LFMs. The behaviour of queues is of general importance in several
applications including communication networks (Wang et al., 1996), weather monitoring
(Sims et al., 2005) and truck coordination at ports (Ji and Zhou, 2010). Accurate predictions
of the customer queue arrival rates based on an underlying LFM is a key requirement for
determining the number of call centre agents required at various times throughout the day.
We also apply our approach to the estimation and prediction of the internal temperature
within a home, based on thermal models of home heating systems represented as LFMs.
Accurate predictions of the internal temperature based on an underlying LFM is a key
component for predicting energy used in heating a home and, consequently, an integral
part of many home energy saving systems (Bacher and Madsen, 2011). These applications
demonstrate our approach under two different modelling conditions, the queue LFM is
nonlinear whereas the thermal LFM is linear, while the queue application is a tracking
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application and regular measurements are available whereas the thermal application requires
long term predictions (a day ahead) during which no measurements are available.

In more detail, telephone call centre managers are concerned with staffing and specifi-
cally, assigning the appropriate number of agents to guarantee that the customers’ queueing
time does not prohibit sales (Feigin et al., 2006). Although there is significant literature
on attempts to accurately model the dynamics of queues, it has failed to offer a method
for inferring the highly quasi-periodic arrival rates from sparse measurements of the queue
lengths (Wang et al., 1996). Determining such arrival rates is key to predicting queue
lengths, and hence customer waiting times. These predictions help the call centre manager
to plan staffing throughout the day to ensure an acceptable customer waiting time. We will
demonstrate that our approach to modelling LFMs is capable of inferring these unknown
arrival rates. Furthermore, although the dynamic system in this application is nonlinear
and the arrival rate is quasi-periodic, it is still Markovian and, consequently, a state-space
approach to inference is ideally suited to this application.

Energy saving in homes is a key issue as governments aim to reduce the carbon footprint
of their countries. A significant amount of energy is expended in heating homes and home
owners need to be encouraged to reduce their energy consumption and carbon emissions
incurred through home heating (MacKay, 2009; DECC, 2009). Consequently, we apply our
approach to the estimation and prediction of internal temperatures using thermal models of
home heating systems. Our approach allows us to make day ahead predictions of the energy
usage, which can then be fed back to the householder in real-time so that they can take
appropriate mitigating actions to reduce their energy consumption. Home heating systems
typically consist of a thermostat with a set-point that controls the activations of a gas or
electrical boiler to ensure that the internal temperature follows the set-point. Although
there is significant literature on attempts to accurately model the thermal dynamics of
buildings, it has failed to take into account the daily human behaviours within their homes,
which can have a significant impact on the energy signatures obtained from similar homes
(Bacher and Madsen, 2011). For instance, during cold periods, a householder may deploy
an additional heater or, in hot periods, open a window. Furthermore, the thermal dynamics
of real homes are more complex in reality than existing thermal models suggest; sunlight
through windows contributes to extra heat while open windows cause heat loss. Residual
heat can also be retained by thermal blocks such as walls and ceilings that then re-radiate
heat. Crucially, many of these heat sources are periodic in nature. For instance, an addi-
tional heater may be switched on every night during cold periods, whilst the diurnal sun
cycle will contribute additional heat during the day. We will demonstrate that our approach
is capable of inferring these unknown periodic heat sources. Again, the dynamic system
in this application is linear and Markovian and, consequently, a state-space approach to
inference is again ideally suited to this problem.

In undertaking this work, we advance the state of the art in the following ways:

• We offer the only principled approach to incorporating all Gaussian process prior
models within a state-space approach to inference with LFMs.1

1. What this paper does not aim to establish is the value of GP models per se over other models. The paper
thus focuses on developing efficient, scalable representations and tools for performing GP inference.
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• We are the first to demonstrate that the eigenfunction model of Gaussian process
priors out-performs an alternative approach to modelling periodic Gaussian process
priors; namely, the sparse spectrum Gaussian process regression (SSGPR) approach
developed by Lázaro-Gredilla et al. (2010).

• We demonstrate, for the first time, the close link between the eigenfunction model and
the resonator model (Särkkä et al., 2012; Hartikainen et al., 2012; Solin and Särkkä,
2013). Consequently, we offer a novel mechanism for incorporating all information
encoded within the latent force covariance function into the resonator model.

• We propose the only approach that is able to incorporate all types of periodic Gaussian
process priors within a state-space approach to LFM inference. These priors include
stationary periodic, non-stationary periodic and quasi-periodic covariance functions.

• We are the first to apply LFMs to queueing theory, specifically to the modelling of
queue arrival rates. Through empirical evaluation, we show that for tracking the
customer queue lengths in the call centre application, the RMSE of our approach
using a quasi-periodic kernel model of the arrival rate can be 17% of that using the
same approach with a non-periodic kernel model.

• We are the first to apply LFMs to the modelling of thermal dynamics within real
homes, specifically to unknown physical thermal processes. We show that for day
ahead predictions of temperature in homes, the RMSE of our approach is 45% of that
obtained using the resonator model (Solin and Särkkä, 2013) when the latent forces
exhibit quasi-periodic behaviour.

The structure of our paper is as follows: in Section 2 we review approaches to regression
and time-series analysis using Gaussian processes and the Kalman filter. In Section 3
we review LFMs with a particular focus on periodic latent forces and then in Section 4
we present a critique of the existing state-space approaches to inference with LFMs. In
Section 5 we present a novel approach to representing periodic LFMs by linear basis models.
We critique the existing spectral models for representing periodic, stationary Gaussian
process priors and argue that kernel principal component analysis is the most effective
approach to inferring the Fourier basis for the corresponding LBMs. In Section 6 we extend
our approach to representing quasi-periodic latent forces by linear basis models. Then, in
Section 7 (with further details in Appendix A), we derive a state-space approach to inference
with LFMs which accommodates both periodic and quasi-periodic forces via LBMs. In
Section 8, we empirically demonstrate the utility of our approach in tracking the length of
call centre customer queues in the presence of, initially, unknown arrival rates which are
modelled as latent forces. In Section 9 we also apply our approach to predicting the internal
temperature of homes in the presence of, a priori, unknown residual heat periodic latent
forces. Furthermore, we demonstrate our approach on both single output and multi-output
Gaussian process thermal models. We conclude in Section 10. Finally, in Appendix B
we demonstrate the theoretical link between the eigenfunction basis used in our approach
and the basis used within the resonator model. Consequently, we offer a novel method for
encoding periodic latent force covariance functions within the resonator model.
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2. A Review of Gaussian Process Priors and Inference

A Gaussian process (GP) is often thought of as a Gaussian distribution over functions
(Rasmussen and Williams, 2006). A GP is fully described by its mean function, µ, and
covariance function, K. A draw, f , from a GP is traditionally written as

f ∼ GP(µ,K).

The value of the function, f , at inputs X is denoted f(X). Similarly, the value of the
mean function and covariance function at these inputs are denoted µ(X) and K(X,X),
respectively. The meaning of a GP becomes clear when we consider that, for any finite set
of inputs, X, f(X) is a draw from a multi-variate Gaussian, f(X) ∼ N (µ(X),K(X,X)).

Suppose we have a set of training data

D = {(x1, y1), . . . , (xn, yn)}, (1)

drawn from a function, f with

yi = f(xi) + εi,

where εi is a zero-mean Gaussian random variable with variance σ2. For convenience both
inputs and outputs are aggregated into sets X = {x1, . . . , xn} and Y = {y1, . . . , yn}, respec-
tively. The GP estimates the value of the function f at test inputs X∗ = {x∗1, . . . , x∗m}.
The basic GP regression equations are given by

f̄∗ = µ(X∗) +K(X∗, X)[K(X,X) + σ2I]−1(Y − µ(X)), (2)

Var(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2I]−1K(X∗, X)T , (3)

where I is the identity matrix, f̄∗ is the posterior mean function at X∗ and Var(f∗) is the
posterior covariance (Rasmussen and Williams, 2006). The inversion operation present in
Equations (2) and (3) is the source of the cubic computational complexity reported in the
previous section.

The matrix K(X,X) is the covariance of the Gaussian prior distribution over f(X).
The covariance matrix has elements

K(xi, xj) = Cov(f(xi), f(xj)),

where the term K(X∗, X) is the covariance between the function, f , evaluated at the test
inputs X∗ and the training inputs X. The function K is alternatively called the kernel or
the covariance function. There are many off-the-shelf kernels available (see, for example,
Rasmussen and Williams, 2006) and appropriate kernels are chosen to model functions
with requisite qualitative properties such as smoothness and stationarity. Further, basic
kernels can be combined together to form more sophisticated kernels tailored to particular
modelling needs. The mean function encodes our prior knowledge of the function mean.
For ease of exposition we will assume that the mean function is zero a priori although the
approaches to GP inference presented in later sections are not limited to this case.
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The GP parameters θ (which includes σ and hyperparameters associated with the co-
variance function) can be inferred from the data through Bayes’ rule

p(θ | Y,X) =
p(Y | X, θ)
p(Y | X)

p(θ).

The parameters are usually given a vague prior distribution p(θ). In this paper, since our
applications in Sections 8 and 9 exploit large data sets, we use maximum likelihood to
infer the parameters and identify the assumed unique value for θ which maximizes p(Y |
X, θ). This approach is preferred over full Bayesian marginalisation (Bishop, 1999) as
the preponderance of data in the applications we consider produces very tight posterior
distributions over the parameters.

When the Gaussian process models a time series then the input variables, X, are values
of time. We shall assume that increasing input indices correspond to sequential time stamps,
x1 ≤ x2 ≤ . . . ≤ xn−1 ≤ xn. We are at liberty to deploy GP inference using Equations (2)
and (3) to either interpolate the function f(x∗) at x∗ when x1 < x∗ < xn or extrapolate
f(x∗) when either x∗ < x1 or x∗ > xn. When measurements are obtained sequentially,
extrapolation forward in time is termed prediction and the inference of f(x∗) is termed
filtering. Interpolation with sequential measurements is termed smoothing. Although both
smoothing and filtering approaches have been developed for Gaussian process regression
(Hartikainen and Särkkä, 2010), we shall be concerned with filtering only. However, the
eigenfunction models for periodic Gaussian processes developed in this paper can also be
used for smoothing.

In the next section we review the latent force model (LFM) which is a principled ap-
proach to incorporating solutions to differential equations within Gaussian process inference
methods.

3. Latent Force Models

In this section we present a brief introduction to latent force models and describe their
practical limitations. Specifically, we consider dynamic processes which can be described
by a set of E coupled, stochastic, linear, first order differential equations

dzq(t)

dt
=

E∑
e=1

Fe,qze(t) +
R∑
r=1

Lr,qur(t),

where q and e index each variable z, R is the number of latent forces and r indexes each
latent force u, and L and F are coefficients of the system. For example, in our home
heating application (described in detail in Section 9), z1(t) models the internal temperature
of a home, z2(t) the ambient temperature immediately outside the home, u1(t) is the heater
output from a known proportional controller and u2(t) is an unknown residual force. In this
application, we assume u2(t) is periodic as it is used to model solar warming, some habitual
human behaviour and the thermal lags in the heating system. The resulting differential
equations can be written as

dz(t)

dt
= F z(t) + Lu(t), (4)
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where u(t) is a vector of R independent driving forces (also called the latent forces). We
distinguish non-periodic latent forces, np, and periodic latent forces, p, as they will be
modelled differently in our approach. Non-periodic forces will be modelled using the existing
approach advocated in Hartikainen and Särkkä (2010), which is reviewed in Section 4, and
periodic forces will be modelled using our novel linear basis approach presented in Section 5.
In Equation (4) the E × E matrix F and the E × R matrix L are non-random coefficients
that link the latent forces to the dynamic processes. Although we deal with first order
differential equations only, all higher order differential equations can be converted to a set
of coupled first order equations (Hartikainen and Särkkä, 2010).

Following Alvarez et al. (2009) and Hartikainen and Särkkä (2010, 2011) we assume
that the latent forces, u, are independent draws from Gaussian processes, ui ∼ GP(0,Ki)
where Ki is the GP covariance function (Rasmussen and Williams, 2006) for force ui. Con-
sequently, the covariance for z at any times t and t′ can be evaluated as

E[(z(t)− z̄(t))(z(t′)− z̄(t′))T ] = Φ(t0, t)P
0
zΦ(t0, t

′)T + Γ(t0, t, t
′), (5)

where Φ(t0, t) denotes the matrix exponential, Φ(t0, t) = exp(F(t−t0)) expressed in Alvarez
et al. (2009), z̄(t) = E[z(t)] and2

Γ(t0, t, t
′) =

∫ t

t0

∫ t′

t0

Φ(s, t)LK(s, s′)LTΦ(s′, t′)T ds ds′.

P0
z is the state covariance at time t0, P0

z = E[(z(t0) − z̄(t0))(z(t0) − z̄(t0))
T ] and K(s, s′)

is the diagonal matrix K(s, s′) = diag(K1(s, s
′), . . . ,KR(s, s′)). Since z(t) is a vector and

defined for any times t and t′ then E[(z(t)− z̄(t))(z(t′)− z̄(t′))T ] is a multi-output Gaussian
process covariance function. A kernel for covariances between the target, z, and the latent
forces, u, can also be derived. Inference with these kernels is then undertaken directly using
Equations (2) and (3).

Unfortunately, a näıve implementation of LFM inference using Equations (2) and (3)
and covariance functions derived using Equation (5) can be computationally prohibitive.
As we have already pointed out, this approach can be computationally expensive due to the
need to invert prohibitively large covariance matrices. To mitigate computational intensive
matrix inversion in the GP equations, various sparse solutions have been proposed (see, for
example, Williams and Seeger, 2001; Snelson and Ghahramani, 2006; Lázaro-Gredilla et al.,
2010) and an early review of some of these methods is presented in Quiñonero Candela and
Rasmussen (2005). Unfortunately, the spectral decomposition approach of Lázaro-Gredilla
et al. (2010) is sub-optimal in that it randomly assigns the components of a sparse spectral
representation and this limitation is explored in detail in Section 5. The Nyström method
for approximating eigenfunctions is used in Williams and Seeger (2001) to derive a sparse
approximation for the kernel which can then be used to improve the computational efficiency
of the GP inference Equations (2) and (3). Unfortunately, this approximate kernel is not
used consistently throughout the GP equations and this can lead incorrectly to negative
predicted variances.

The pseudo-input approach (also called inducing inputs, Snelson and Ghahramani, 2006;
Quiñonero Candela and Rasmussen, 2005) is a successful method for reducing the number

2. All integrals in this paper should be interpreted as Itô integrals.
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of input samples used within GP inference without significantly losing information en-
coded within the full data set. In essence, densely packed samples are summarized around
sparsely distributed inducing points. Pseudo-inputs have been successfully deployed within
sparse approximations of dependent output Gaussian processes (Alvarez and Lawrence,
2008, 2011). Pseudo-inputs have recently been introduced to GP time-series inference and
applied to problems which exploit differential equations of the physical process via the la-
tent force model (Alvarez et al., 2011). In Alvarez et al. (2011) the latent force is expressed
at pseudo-inputs and then convolved with a smooth function to interpolate between the
pseudo-inputs. However, although inducing inputs can reduce the sampling rate and sum-
marize local information, they still have to be liberally distributed over the entire time se-
quence. We may assume, for simplicity, the pseudo-inputs are evenly spread over time and,
therefore, the number of pseudo-inputs, P , would have to increase linearly with the num-
ber of observations (although with a rate considerably lower than the observation sampling
rate). Unfortunately, the computational complexity of GP inference with pseudo-inputs is
O(TP 2) where T is the number of observations (Alvarez and Lawrence, 2008). Thus, al-
though pseudo-inputs are able to improve the efficiency of GP inference to some extent, for
time series analysis their computational cost is still cubic in the number of measurements
and this can be computationally prohibitive.

In the next section we describe a state-space reformulation of the LFM. The state-space
approach has the advantage that it has a computational complexity for inferring the target
process, z, which is O(T ) but at the expense of representing the target process with extra
state variables.

4. State-Space Approaches to Latent Force Models

In this section we review the current state-space approach to inference with LFMs (Har-
tikainen and Särkkä, 2010) and show how some covariance functions can be represented
exactly in state-space. Unfortunately, we shall also demonstrate that periodic kernels can-
not be incorporated into LFMs using the approach advocated by Hartikainen and Särkkä
(2010). To address this key issue, we will then propose to approximate a periodic covari-
ance function with a sparse linear basis model. This will allow us to represent periodic
behaviour within a LFM efficiently and also incorporate information encoded within the
periodic kernel prior. Our work is inspired by, and can be seen as, an extension of the res-
onator model (Särkkä et al., 2012; Hartikainen et al., 2012), which is an alternative linear
basis model that allows periodic processes to be modelled within the state-space approach.
Our LBM approach, described in Section 5, builds on the resonator model and extends it
by incorporating the prior information encoded within the latent force covariance function.

When the target processes, z as per Equation (4), can be expressed in Markov form, we
can avoid the need to invert large covariance matrices and also avoid the need to evaluate
Equation (5) over long time intervals, [t0, t], by using the more efficient state-space inference
approach advocated by Hartikainen and Särkkä (2010) and in this paper. The temporal
computational complexity of the state-space approach is O(T ) as we integrate over short
time intervals, [t0, t], and then reconstruct long term integrations by conflating the local
integrations via the Kalman filter. This is an alternative approach to that advocated by
Alvarez et al. (2009) in which we integrate the differential equations, as per Equation (5),
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over long intervals, [t0, t], and then regress using Equations (2) and (3). Both approaches are
mathematically equivalent in that they produce identical inferences when they are applied
to the same differential model, latent force covariance functions and data.

The Kalman filter is a state-space tool for time series estimation with Gaussian pro-
cesses (Kalman et al., 1960). The Kalman smoother is also available for interpolation with
sequential data. The Kalman filter is a state-space inference tool which summarizes all
information about the process, f , at time x via a state description. The advantage of the
Kalman filter is that any process f∗ at any future time x∗ can be inferred from the current
state without any need to refer to the process history. The state at any time x is captured
by a finite set of Gaussian distributed state variables, U, and we assume that f is a linear
function of the state variables. In Hartikainen and Särkkä (2010) the state variables corre-
sponding to each latent force f are the function f and its derivatives. In our approach the
state variables corresponding to each periodic latent force will be the eigenfunctions of the
periodic covariance function. The key advantage of the Kalman filter is that its computa-
tional complexity is linear in the amount of data from a single output time-series. Contrast
this with the standard Gaussian process approach, as per Equations (2) and (3), which
require the inversion of a covariance matrix and thus, have a computational complexity
which is cubic in the amount of data.3

To illustrate the state-space approach consider a single non-periodic latent force, ur(t),
indexed by r, in Equation (4). We assume that this force is drawn from a Gaussian process
thus

ur ∼ GP(0,Kr),

where Kr is a stationary kernel. In Hartikainen and Särkkä (2010) the authors demonstrate
that a large range of stationary Gaussian process kernels, Kr, representing the latent force
prior can be transformed into multivariate linear time-invariant (LTI) stochastic differential
equations of the form

dUr(t)

dt
= Fr Ur(t) + Wr ωr(t), (6)

where Ur(t) = (ur(t),
dur(t)
dt , · · · , d

pr−1ur(t)
dtpr−1 )T and

Fr =


0 1

. . .
. . .

0 1

−c0r · · · −c
pr−2
r −cpr−1r

 , Wr =


0
...
0
1

 , (7)

where c are coefficients which can be set using spectral analysis of the kernel as per Har-
tikainen and Särkkä (2010). The force, ur(t), can be recovered from Ur(t) using the indi-
cator vector ∆r = (1, 0, . . . , 0) where

ur(t) = ∆rUr(t).

3. The Kalman filter has a cubic computational complexity in the number of measured processes for multi-
output Gaussian processes. We shall clarify the computational complexity of Kalman filter models for
multi-output GPs in Section 7 and investigate an application of multi-output GPs in Section 9.
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By choosing the coefficients c0r , . . . , c
pr−1
r in Equation (7), the spectral density of the white

noise process ωr(t) in Equation (6) and the dimensionality pr of Ur(t) appropriately, the
covariance of ur(t), corresponding to the dynamic model, can be chosen to correspond to the
GP prior Kr. The differential equations expressed in Equation (6) can then be integrated
into the LFM to form the augmented dynamic model expressed later in Equation (12). The
coefficients c0r , . . . , c

pr−1
r are found by initially taking the Fourier transform of both sides

of Equation (6). The coefficients can then be expressed in terms of the spectral density of
the latent force kernel, Kr, provided that its spectral density, Sr($), can be written as a
rational function of $2 thus

Sr($) =
(constant)

(polynomial in $2)
. (8)

The inverse power spectrum is then approximated by a polynomial series from which the
transfer function of an equivalent stable Markov process for the kernel can be inferred
along with the corresponding spectral density of the white noise process. The stochastic
differential equation coefficients are then calculated from the transfer function. For example,
for the first-order Matérn kernel given by

Kr(t, t
′) = σ2r exp

(
−|t− t

′|
lr

)
, (9)

with output scale σr and input scale lr, ur ∼ GP(0,Kr) can be represented by Equation (6)
with Ur(t) = ur, Wr = 1 and

Fr = −1/lr. (10)

The spectral density, λr, of the white noise process, ωr, is

λr =
2σ2r
√
π

lr Γ(0.5)
, (11)

and Γ is the Gamma function (Hartikainen and Särkkä, 2010).

Now, by augmenting the state vector, z in Equation (4), with the non-periodic forces
Ur(t) and their derivatives, Hartikainen and Särkkä (2011) demonstrate that the dynamic
equation can be rewritten as a joint stochastic differential model thus

dza(t)

dt
= Fa za(t) + Laωa(t), (12)

where

za(t) = (z(t), U1(t), . . . , UR(t))T ,

Fa =


F LS1∆1 . . . LSR∆R

0 F1 . . . 0
...

0 0 . . . FR

 ,
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R is the number of latent forces, Sr = (0, . . . , 1, . . . , 0) is the indicator vector which extracts
the rth column of L corresponding to the rth force, ur, and ωa(t) is the appropriate scalar
process noise

ωa(t) = (0, ω1(t), . . . , ωR)T , (13)

La = blockdiag(0, W1, . . . ,WR). (14)

These differential equations have the solution

za(t) = Φ(t0, t)za(t0) + qa(t0, t),

where, again, Φ(t0, t) denotes the matrix exponential, Φ(t0, t) = exp(Fa(t− t0)) expressed
in Alvarez et al. (2009). The process noise vector, qa(t0, t), is required to accommo-
date the Matérn or SE latent forces within the discrete time dynamic model, qa(t0, t) ∼
N (0,Qa(t0, t)) where

Qa(t0, t) =

∫ t

t0

Φ(s, t)LaΛaL
T
aΦ(s, t)Tds,

and Λa is a diagonal matrix

Λa = diag(0, λ1, . . . , λR), (15)

where λr is the spectral density of the white noise process corresponding to the Matérn or
SE process, Kr (Hartikainen and Särkkä, 2010).

We now briefly describe the reasons why this spectral analysis approach advocated by
Hartikainen and Särkkä (2010, 2011) cannot be immediately applied to periodic kernels. For
illustrative purposes we shall investigate the commonly used squared-exponential periodic
kernel expressed as

KSE(t, t′) = exp

−sin
(
π(t−t′)
D

)2
l2

 , (16)

with input scale l = 3, an implicit output scale of unity and period D = 0.7, although
our analysis and conclusions apply to all periodic kernels, in general. Unfortunately, as
is shown in the left panel of Figure 1, the power spectrum for this periodic kernel is a
weighted sum of Dirac delta functions, each delta function identifying a sinusoidal mode.
The inverse of the power spectrum is highly nonlinear and not amenable to the polynomial
series approximations expressed in Equation (8). The left panel also shows the best (in a
least squares sense) polynomial fit to the inverse spectrum. The polynomial coefficients are
shown in the central panel and very little weight is assigned to higher order frequencies. Now,
using the approach advocated in Hartikainen and Särkkä (2010) we can infer the covariance
function corresponding to this polynomial approximation of the inverse spectrum. This
covariance function and the true periodic covariance function are shown in the right panel
of Figure 1. It is clear that the covariance function obtained using Hartikainen and Särkkä
(2010) is a poor representation of the true periodic kernel.
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Figure 1: Spectral analysis of a periodic covariance function. The left panel shows inverse
power spectrum for a periodic squared-exponential kernel (thin line) and its poly-
nomial approximation (thick line). The central panel shows the coefficients of the
polynomial approximation. The right panel shows the true covariance function
(crossed line) and its approximation (solid line) recovered from the polynomial
representation of the inverse power spectrum.

So, it is not possible to formulate all periodic latent forces via Equation (6). However,
by approximating the latent force as a linear sum of basis functions, such that each basis
function, φ, can be formulated via Equation (6) as

ur(t) =
∑
j

arjφj(t), (17)

then it is possible to represent the periodic latent force within the KF. In essence, the
latent force, ur, is decomposed into a weighted sum of basis latent forces, {φj}, such that
each φ satisfies Equation (6). This is the approach of Särkkä et al. (2012) for representing
both stationary and quasi-periodic latent forces via their resonator model. In Hartikainen
et al. (2012), the resonator, φr, is chosen to be a Fourier basis, φr(t) = cos(frt) or φr(t) =
sin(frt). The resonator can be represented by Equation (6) as a state comprising the
instantaneous resonator value, φr(t), and its derivative, φ̇r(t) thus, Ur(t) = (φr(t), φ̇r(t))

T .
The corresponding SDE has Fr = [0 1 ; −f2r 0] and Wr = 0. The Fourier basis is
particularly useful for modelling stationary covariance functions.

In Hartikainen et al. (2012) quasi-periodic latent forces were implemented as a super-
position

u(t) =
∑
j

ψj(t), (18)
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of resonators, ψ, of the form

d2ψj(t)

dt2
= −(2πfj(t))

2ψj(t) + ωj(t), (19)

where ω is a white noise component. Crucially, the resonator frequencies, f , are time
variant and this supports non-stationary and quasi-periodic forces. This model is very
flexible and both periodic and quasi-periodic processes can be expressed using the resonator
model (as detailed in Appendix B). However, currently no mechanism has been proposed to
incorporate prior information encoded in periodic GP kernels within the resonator model.
Further, inferring the parameters and the frequency profiles, f(t), for each resonator can be
prohibitively computationally expensive (as we demonstrate in Appendix B). Despite these
shortcomings there is a very close connection between the resonator model for periodic latent
forces and the eigenfunction approach proposed in this paper. This connection is explored
in detail in Appendix B in which we assert that the eigenfunction basis is an instance of the
resonator basis for perfectly periodic covariance functions. We subsequently demonstrate
how the eigenfunction approach can both inform the resonator model of the GP prior and
also simplify the inference of the resonator model parameters including the frequency profile.
Further, we show that the optimal minimum mean-square resonator model is an alternative
way of representing the corresponding eigenfunction basis within the Kalman filter.

In the original implementation of the resonator model (Särkkä et al., 2012) the model
parameters were set by hand. Recently, a new variation of the resonator model has been
proposed in which the most likely model parameters are learned from the data (Solin and
Särkkä, 2013). In this version the resonator is the solution of the time invariant second
order differential equation

d2ψj(t)

dt2
= Ajψj(t) +Bj

dψj(t)

dt
+ ωj(t), (20)

where A and B are constant coefficients. We note that this variation of the resonator
model is a special case of the original resonator model with a frequency profile fj(t) =
i
2π

√
Aj +Bj

1
ψj(t)

dψj(t)
dt in Equation (19). To model quasi-periodic processes Equation (20)

comprises a decay term via the first derivative of the resonator function. This new model
is computationally efficient as it imposes constant coefficients unlike the original resonator
model in Särkkä et al. (2012). However, the computational efficiency of the model in Equa-
tion (20), gained by losing the requirement to infer a frequency profile for each resonator, is
at the expense of the model’s flexibility. We compare the resonator model in Equation (20)
with our eigenfunction approach on a real world application in Section 9.

In preparation for the approach advocated in this paper, in which we also represent the
periodic kernel via a linear basis model, the following section compares the two key alter-
native approaches to directly inferring linear basis models from Gaussian Process kernels,
namely the sparse spectrum Gaussian process regression (SSGPR, Lázaro-Gredilla et al.,
2010) and kernel principal component analysis (Schölkopf and Müller, 1998).

5. Representing Periodic Latent Forces with Linear Basis Models

In this section, we exploit linear basis models and propose a novel approach to representing
periodic latent force GP kernels. Our aim is to derive a sparse representation for periodic
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kernels so that they can be accommodated within a state-space formulation of the LFM.
Linear basis models (LBMs) have a long history in machine learning. In particular, special
cases of them include kernel density estimators (Parzen, 1962) and the Relevance Vector
Machine (Tipping, 2001). There are two key advantages to representing periodic kernels
using a sparse basis model: firstly, they can approximate the kernel using a weighted sum
over a finite set of functions. As we will see, for relatively smooth kernels the number of
basis functions can be small. The second advantage, as we will show in Section 7, is that
the LBM representation is amenable to inference using computationally efficient state-space
methods. We exploit the Nyström approximation as opposed to other sparse approximations
(such as the sparse spectrum Gaussian process regression method of Lázaro-Gredilla et al.,
2010) as, we will see, the eigenfunctions of the kernel form the most efficient basis for
the corresponding driving forces. This approximation will accommodate both the prior
information about the driving forces (encoded in the kernel) within a state-space approach
and also provide a means to learn these driving forces from data using iterative state-space
methods. Approximating Gaussian process priors via the Nyström method is not new (see,
for example, Williams and Seeger, 2001). However, using this to accommodate periodic and
quasi-periodic latent forces within LFMs is novel.

In order to develop our LBM for latent forces we shall first investigate current approaches
to sparse representations of stationary covariance functions and then demonstrate that
one of these approaches, namely the eigenfunction approach, generalizes to non-stationary
covariance functions. Bochner’s theorem asserts that all stationary covariance functions can
be expressed as the Fourier transform of their corresponding spectral densities (where the
spectral density exists. See, for example, Rasmussen and Williams, 2006). Furthermore, in
the stationary case, the Fourier basis is the eigenfunctions of the covariance function. There
has been a long history of research into the spectral analysis of stationary Gaussian process
kernels (see, for example, Bengio et al., 2004). However, only recently has the Fourier
basis been investigated in the context of latent force models. To date, two approaches have
been proposed to incorporate knowledge of all stationary kernels, including periodic kernels,
within the linear basis representation via spectral analysis: the SSGPR (Lázaro-Gredilla
et al., 2010) and the KPCA (Drineas and Mahoney, 2005) method. The key advantage of
these approaches is that the basis frequencies can be calculated from the prior latent force
kernel. These approaches are described and compared next.

The SSGPR (Lázaro-Gredilla et al., 2010) approach reinterprets the spectral density of
a stationary GP kernel as the probability density function over frequency space. This pdf is
then sampled using Monte Carlo to yield the frequencies of the sinusoidal basis functions of
the LBM.4 The advantage of this approach is that a sparse set of sinusoidal basis functions
is identified such that the most significant frequencies of these sinusoidal basis functions
have the greatest probability of being chosen. The phase of each basis function is then
inferred from the data. The disadvantage of this approach is it can often provide a poor
approximation to the covariance function as we will demonstrate shortly in Figure 3.

An alternative approach to the SSGPR is KPCA which effectively intelligently samples
the most informative frequencies within the spectral density. Mercer’s theorem (Mercer,
1909) allows us to represent each periodic latent force, u(t), at arbitrary inputs, t, via an

4. In their code, available at http://www.tsc.uc3m.es/~miguel/downloads.php, the authors try several
frequency initializations and use the best one.
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infinite set of basis functions, φj , as

u(t) =

∞∑
j=1

ajφj(t), (21)

where {aj} are the model weights which are independently drawn from a Gaussian thus

aj ∼ N (0, µφj ), (22)

where µφj is the variance of aj . For any choice of probability density function, p, there exists
an orthonormal basis, {φ}, such that∫

φi(t)φj(t)p(t)dt =

{
1 if i = j,

0 otherwise.

Furthermore, the latent force prior, K(t, t′) = E[u(t)u(t′)], can be expressed as

K(t, t′) =

∞∑
j=1

µφj φj(t)φj(t
′), (23)

where, φj are the eigenfunctions of the kernel, K, under p such that∫
K(t, t′)φj(t

′)p(t′)dt′ = µφj φj(t), (24)

and the variance, µφj , is also an eigenvalue of the kernel.

Of course, it is not feasible to actually use an infinite basis. Thus, we approximate the
infinite sum in Equation (21) by a finite sum over a subset of significant eigenfunctions
which have the J most significant eigenvalues, µφ, as

u(t) ≈
J∑
j=1

ajφj(t). (25)

Fortunately, kernel principal component analysis (KPCA) allows us to identify the most
significant J eigenfunctions a priori as well as compute their form approximately (Schölkopf
and Müller, 1998).

The role of p, in Equation (24), is to weight the values of time t. We are free to choose the
probability density function, p(t), as we wish. For stationary covariance functions, a uniform
pdf is appropriate as it weights each time instance, t, equally. To evaluate the integral in
Equation (24) we use a quadrature-based method and N equally spaced quadrature points,
S, of t, where S = {s1, . . . , sN} (see, for example, Shawe-Taylor et al., 2005). Thus

∫
K(t, t′)φj(t

′)p(t′)dt′ ≈ 1

N

N∑
i=1

K(t, si)φj(si). (26)
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The points, S, are also used to construct an N ×N covariance matrix, G, called the Gram
matrix, where

Gij = K(si, sj). (27)

The Nyström approach is then used to derive approximate eigenfunctions of K using the
eigenvectors, v, and eigenvalues, µ, of the Gram matrix (Drineas and Mahoney, 2005). We
denote the Nyström approximation for φj with uniform pdf p as φ̃j . For each eigenvector,
vj , we have

φ̃j(t) =

√
N

µj
K(t, S)vj . (28)

Since {vj} are orthonormal then {φ̃j} are orthogonal. Now, substituting the approximation
for φ into Equation (25) we get

u(t) ≈
J∑
j=1

ajφ̃j(t). (29)

By forming the covariance between u(t) and u(t′) we can derive a relationship between

the latent force prior, the approximate eigenfunctions and the variances µφj of the model
weights, aj , as

K(t, t′) ≈
J∑
j=1

µφj φ̃j(t)φ̃j(t
′), (30)

where µφj ≈ µj/N , is the scaled Gram matrix eigenvalue (Williams and Seeger, 2001).

As we can compare the covariance function, K, with the corresponding Nyström co-
variance function approximation, as per Equation (30), then the sample set, S, can be
chosen a priori to provide a comprehensive representation of the kernel K. Furthermore, as
N →∞ then φ̃j → φj . Finally, although the eigenfunction LBM is a parametric model, the
eigenfunctions accurately reproduce the periodic GP prior across an entire period and unde-
sirable extrapolation errors often associated with spatially degenerate LBMs are alleviated
here (Rasmussen and Williams, 2006).

Throughout this paper the LBMs will comprise the most significant eigenfunctions ac-
cording to the following definition,

Definition 1 An eigenfunction is significant if its eigenvalue is more than a pre-defined
fraction γ of the maximum eigenvalue.

We have found that γ = 1/100 is a robust choice for the applications in Sections 8 and 9 in
which fewer than 30 basis functions are required to model the latent forces.
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Figure 2: Example eigenfunctions for (a) stationary periodic and (b) non-stationary co-
variance functions, both with period 10 units. Also, the number of significant
eigenfunctions for input length scales, l, for the (c) stationary periodic and (d)
non-stationary covariance function.

To demonstrate the eigenfunction approach to representing Gaussian process priors via
a finite basis, Figure 2(a) shows example eigenfunctions for a stationary periodic Matérn
process. The Matérn kernel is defined (Rasmussen and Williams, 2006) as

Matérn(τ, ν, σ, l) = σ2
21−ν

Γ(ν)

(√
2ν

l
τ

)ν
Ǩν

(√
2ν

l
τ

)
, (31)

where τ ≥ 0, Γ and Ǩν are the gamma and modified Bessel functions, respectively, ν
indicates the order, σ is the output scale which governs the amplitude of the kernel and
l is the input length scale which governs the smoothness of the kernel. When the target
function is periodic it is a direct function of the period phase, κ(τ) = | sin(πτ/D)| where D
is the function period. Consequently, the periodic Matérn is given by Matérn(κ(τ), ν, σ, l).
The periodic Matérn is of particular interest to us as it is used in Section 8 to model
customer call centre arrival rates and in Section 9 to model the residual dynamics within
home heating.

We observe that the eigenfunctions of the periodic kernel are the sinusoidal basis func-
tions as shown in Figure 2. This basis corresponds to the Fourier basis functions for the
power spectrum that can be obtained by Fourier analysis of the kernel. However, although
through Fourier analysis we would be able to determine the power spectrum of the covari-
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ance function, and consequently the magnitude of the basis function, we would be unable
to determine the phase of the basis function. KPCA, in contrast, is able to determine both
the magnitude, and consequently phase, of the Fourier basis functions.

A key property of the KPCA approach is that the eigenfunctions are not limited to
the Fourier basis and, consequently, KPCA is also able to model non-stationary periodic
covariance functions efficiently, in which case the eigenfunctions, which are inferred using
KPCA from the non-stationary covariance function, are anharmonic as we will now demon-
strate. Figure 2(b) shows the first three most significant eigenfunctions for an exponentially
moderated periodic kernel

K(t, t′) = Matérn(κ(t− t′), ν, σ, l) exp
(
−|t| − |t′|

)
. (32)

Figure 2, panels (c) and (d) show how the number of significant eigenfunctions decreases
with increasing kernel smoothness for both the harmonic and anharmonic kernels above.
The smoothness of the kernel is parameterized by the phase length scale, l. As above, we
choose to declare an eigenfunction as significant if its eigenvalue is more than one hundredth
of the maximum eigenvalue. Although this is a conservative definition of significance we
can see that only a small number of basis functions are required to model these kernels.

We now compare the SSGPR, described above, and the eigenfunction approaches to
modelling stationary kernels. For stationary kernels both the SSGPR and eigenfunction
methods use a linear basis model with sinusoidal basis functions. The only difference be-
tween the approaches is that SSGPR assigns basis function frequencies (called spectral
points) by sampling the kernel power spectrum. Both sine and cosine functions are used
for each frequency. The KPCA infers its frequencies deterministically from the kernel and
uses the basis functions with the most significant eigenvalues. Each spectral point corre-
sponds to a Fourier basis function with known frequency with indeterminate phase. So,
S spectral points produce S Fourier basis functions which has the same complexity as S
Fourier basis functions in the eigenfunction approach. We compare the efficacy of both
linear basis approaches when representing the squared-exponential kernel. The SSGPR was
specifically developed with this kernel in mind and thus we present the fairest comparison.
In order to investigate this difference and isolate the inference procedure by which the GP
hyperparameters are learned from the data, the SSGPR algorithm is changed only slightly
so that the actual kernel hyperparameters used correspond to the actual hyperparameters
of the model which generated the training data. We also use the known generative GP
hyperparameters within the eigenfunction model.

To demonstrate the superiority of the eigenfunction approach over the SSGPR ap-
proach, Figures 3 and 4 compare the SSGPR and eigenfunction representations of a squared-
exponential kernel with an input scale of 10 units and output scale of 1 unit. The significant
twenty two eigenfunctions were used and, equivalently, twenty two SSGPR spectral points
were randomly chosen from the SE spectral density as proposed by Lázaro-Gredilla et al.
(2010). Further, the eigenfunction approach used 20 evenly spaced points to construct the
Gram matrix. In the case of the KPCA the corresponding covariance functions differed
by no more than 9.6 × 10−5 from the actual covariance function. The SSGPR, using the
same number of Fourier basis functions, deviated by as much as 0.36 (that is 36% of the
prior function variance) when 22 spectral points were used. Figures 3 and 4 also show the
covariance function for the SSGPR when 88 spectral points were used. In this case, the
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SSGPR covariance function approximation differed by as much as 0.23 (that is, 23% of the
prior function variance). Clearly, the eigenfunction model is a much more accurate repre-
sentation of the actual generative kernel even when using only a quarter of the number of
basis functions as the SSGPR.

The error in the SSGPR representation of the covariance function can have a signifi-
cant impact on the accuracy of GP inference as the SSGPR can significantly underestimate
the posterior variance of the target function. To illustrate the extent of this problem,
Figure 4 shows the posterior distributions of a sparsely measured function inferred using
Equations (2) and (3) and the SSGPR and eigenfunction approximations of the covariance
functions. Clearly, the SSGPR variances in the top two panes are less than those calculated
using the squared-exponential model (bottom right pane) and the approximate eigenfunc-
tion model (lower left pane). Furthermore, Table 1 compares the RMSE and expected
log likelihood for the SSGPR and KPCA approaches over 100 functions drawn from the
GP. Each function is measured every 10 units, as above, with no measurement noise. The
SSGPR propensity to underestimate the posterior variance is demonstrated by a very low
expected log likelihood of −6.9× 104 compared to 75 for the KPCA eigenfunction method.
Even when the number of spectral points is increased four fold the KPCA approach is still
more accurate.

In summary, the eigenfunction model is a more efficient representation than the SSGPR
in that it identifies an orthogonal basis and consequently requires fewer basis functions
to capture the significant features of the generative kernel. Further, as we saw earlier,
the eigenfunction approach generalizes to non-stationary kernels which can be represented
efficiently by non-sinusoidal basis functions. Consequently, we advocate the eigenfunction
approach over the SSGPR approach for generating the basis for use with LFMs.

Method RMSE ELL

SSGPR 3.03± 0.04 −6.9× 104 ± 0.6× 104

SSGPR (x4) 2.74± 0.03 −1.2× 104 ± 0.1× 104

KPCA 2.49± 0.03 75.0± 0.9

Table 1: RMSE and expected log likelihood for KPCA and SSGPR with the same number
of basis functions and also SSGPR with four fold increase in the number basis
functions.

In the next section we extend our eigenfunction approach to quasi-periodic latent force
models. This is a key contribution of our paper.

6. Representing Quasi-Periodic Latent Forces with Linear Basis Models

The eigenfunction basis model presented in the previous section assumes that the latent force
is perfectly periodic. However, the force may change gradually from cycle to cycle despite
the latent force kernel parameters remaining fixed. For example, the force’s phase may
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Figure 3: A comparison of SSGPR and eigenfunction approaches to modelling GP kernels
via basis functions. The plots show the covariance functions corresponding to
each of the eigenfunction and SSGPR models.

change between cycles. In the home heating application (described in detail in Section 9),
where the residual heat within a home is modelled as a latent force, a phase shift in the
residual heat profile may arise from cooking dinner at slightly different times from day to
day.

When the latent force process, u(t), is not perfectly periodic but exhibits some regularity
from cycle to cycle it is called quasi-periodic and is often modelled as the product of two
kernels (Rasmussen and Williams, 2006) thus

Kquasi-periodic(t, t
′) = Kquasi(t, t

′)Kperiodic(t, t
′), (33)

where Kperiodic(t, t
′) is a periodic kernel (stationary or non-stationary) and Kquasi(t, t

′) is
a non-periodic kernel which reduces the inter-cycle correlations. For example, in Roberts
et al. (2013), their quasi-periodic kernel is the product of a squared-exponential kernel and
a periodic squared-exponential kernel and takes the form

Kquasi-periodic(t, t
′) = σ2 exp

(
−(t− t′)2

l2quasi

)
exp

−sin
(
π(t−t′)
Dperiodic

)2
l2periodic

 . (34)

We note that Equation (32) is also a quasi-periodic covariance function.
We will now demonstrate that Kquasi-periodic(t, t

′) can be modelled within the state-space
approach by LBMs by letting the eigenfunction weights, a as per Equation (21), change
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Figure 4: A comparison of SSGPR and eigenfunction approaches to modelling GP kernels
via basis functions. The plots show typical example function estimates drawn
using both approaches. The KPCA uses 22 basis functions and the SSGPR uses
22 spectral points and 88 spectral points respectively. The grey regions are the
first standard deviation confidence regions.

dynamically. Equation (21) can be extended to include time varying process weights, a(t)
(O’Hagan, 1978) thus

u(t) =
∑
j

aj(t)φj(t). (35)

Consequently, when u(t) is generated by a quasi-periodic kernel then

Kquasi-periodic(t, t
′) = E[u(t) u(t′)] =

∑
ij

φi(t)E[ai(t)aj(t
′)]φj(t

′).

We assume that ai(t) is drawn from a Gaussian process, so that

ai ∼ GP(0, µφiKquasi), (36)

where µφi is the eigenvalue for the eigenfunction, φi, of Kperiodic as per Equation (23). We
also assume that each weight process is independent. Thus

E[ai(t)aj(t
′)] =

{
µφiKquasi(t, t

′) if i = j,

0 if i 6= j.
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Consequently

Kquasi-periodic(t, t
′) =

∑
i

φi(t)µ
φ
iKquasi(t, t

′)φi(t
′)

= Kquasi(t, t
′)
∑
i

φi(t)µ
φ
i φi(t

′)

= Kquasi(t, t
′)Kperiodic(t, t

′).

We see that the periodic component of the model, Kperiodic, is represented by the basis
function, φ, in the LBM whereas the non-periodic component, Kquasi, is represented via
the time varying LBM coefficients, a. Note that, whereas for the resonator model, as per
Equations (18) and (19), the Fourier basis functions, φ, are stochastic functions of time,
in the eigenfunction approach, the coefficients, a, are stochastic functions of time and they
reassign weight to fixed basis functions, φ(t).

In order to accommodate variant LBM coefficients in the Kalman filter we assume that
each LBM coefficient is drawn from a stationary Gaussian process with covariance function,
Kquasi, as per Equation (36). In which case, we can express the eigenfunction weight
Gaussian process, ar(t), as a stochastic differential equation, as per Equation (6), thus

dAr(t)

dt
= Fr Ar(t) + Wr ωr(t), (37)

where the state vector, Ar(t), comprises the coefficient time series and its derivatives,

Ar(t) = (ar(t)
dar(t)
dt , · · · , d

pr−1ar(t)
dtpr−1 )T . Thus, as Ar can be expressed as a stochastic dif-

ferential equation then it can be inferred using the Kalman filter as demonstrated in Har-
tikainen and Särkkä (2010). We can weaken the stationarity assumption and thus permit
a greater choice for Kquasi by allowing changes in Kquasi’s output scale at discrete time
instances called change points.

We propose three forms for Kquasi which are the Continuous Quasi model (CQM), the
Step Quasi model (SQM) and the Wiener-step Quasi model (WQM). Although many other
quasi-periodic forms are possible these models are chosen as they can each be represented
efficiently within the Kalman filter state vector, as we will see in Section 7, whilst capturing
the key qualitative properties of the data we wish to model. Specifically, the CQM models
smooth, continuous deviations from cyclic behaviour over time, and, consequently, closely
resembles the quasi-periodic model in Roberts et al. (2013). Alternatively, the SQM and
WQM impose stationarity within a cycle but allow for function variation between cycles.
We demonstrate that each can be represented in the Kalman filter via a single variable in
the state-vector.

6.1 Continuous Quasi Model (CQM)

This stationary model imposes changes in the cycle continuously over time t. It is equivalent
to the Matérn kernel with order ν = 1/2 expressed as

KCQM
quasi (t, t′) = σ2r exp

(
−|t− t

′|
lr

)
. (38)
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The input hyperparameter, lr, is positive. As the CQM covariance function, KCQM, is a
first order Matérn, as per Equation (9), it can be represented as a Markov process, as per
Equation (37). The process model, Fr, and white noise spectral density, qr, for the first
order Matérn are presented in Equations (10) and (11). Reproducing this model here for
completeness, if a is drawn from a GP with the quasi-periodic kernel in Equation (38),
ar ∼ GP(0,KCQM

quasi ), then

dar(t)

dt
= Frar(t) + ωr(t),

where, ωr(t) is a white noise process with spectral density qr and

Fr = − 1

lr
, qr =

2σ2r
√
π

lr Γ(0.5)
,

and lr and σr are the input and output scales, respectively, as per Equation (38). We note
that, by using the CQM kernel as part of the quasi-periodic latent force covariance function,
each LBM coefficient, ar(t), can be represented by a single variable in the Kalman filter
state vector. In Section 7 we will demonstrate how this continuous time LTI model can be
incorporated into a discrete time LFM model.

6.2 Step Quasi Model (SQM)

This model can be used to decorrelate cycles at change points between cycles. This non-
stationary model preserves the variance of the periodic function each side of the change
point. However, the function’s correlation across the change point is diminished. For
times, t and t′, with t and t′ in the same cycle Kquasi-periodic(t, t

′) = Kperiodic(t, t
′). When

times t and t′ correspond to different cycles then Kquasi-periodic(t, t
′) < Kperiodic(t, t

′). If N
consecutive cycles are labelled C = 1, 2, . . . , N and C(t) denotes the cycle index for time t
then

KSQM
quasi(t, t

′) = σ2r exp

(
−|C(t)− C(t′)|

lr

)
. (39)

Again, the kernel input hyperparameter, lr, is positive.

6.3 Wiener-step Quasi Model (WQM)

Again, we assume the presence of change points between cycles. This non-stationary model
increases the variance of the function at the change point. If N consecutive cycles are
labelled C = 1, . . . , N then

KWQM
quasi (t, t′) = ξ0 + min(C(t′), C(t))ξr, (40)

where ξ0 and ξr are positive.
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Example covariance functions for the three forms for Kquasi are shown in Figure 5. Also,
sample quasi-periodic function draws are shown for each kernel. The functions are drawn
from a quasi-periodic squared-exponential kernel Kquasi-periodic(t, t

′) with Kperiodic(t, t
′) the

periodic squared-exponential KSE, as per Equation (16), with period D = 10 units, various
input scales l (specified within each subfigure) and Kquasi(t, t

′) set to either KCQM
quasi (t, t′),

KSQM
quasi(t, t

′) or KWQM
quasi (t, t′). In the case of SQM and WQM a new cycle begins every 10

time units.
The SQM and WQM kernels can be incorporated into the discrete time Kalman filter

by firstly expressing them as continuous time differential equations as per Equation (6).
Suppose that either ar ∼ GP(0,KSQM) or ar ∼ GP(0,KWQM) then

dar(t)

dt
= 0,

everywhere, except at change points. Thus, in the case of SQM and WQM the corresponding
process ar(t) can be represented via a first order differential equation as per Equation (37)
with Ar(t) = ar(t), ∆r = 1, Fr = 0 and Wr = 0. However, at a change point, τ , the SQM
and WQM covariance functions jump in value as can be seen in Figure 5 at input distances
20 and 40, for example. The value of the process, ar(τ), immediately after the change point
is related to the process, ar(τ−), immediately before the jump thus

ar(τ) = G∗rar(τ−) + χ∗r(τ), (41)

where G∗r is the process model and χ∗r(τ) is a Gaussian random variable, χ∗r(τ) ∼ N (0, Q∗r).
In Appendix A we demonstrate that the process model, G∗r , and process noise variance, Q∗r ,
for the SQM at the change point are

G∗r,SQM = exp

(
− 1

lr

)
(42)

and

Q∗r,SQM = σ2r

(
1− exp

(
− 2

lr

))
, (43)

respectively. Similarly, Appendix A also shows that the process model, G∗r , and process
noise variance, Q∗r , for the WQM at a change point are

G∗r,WQM = 1 (44)

and

Q∗r,WQM = ξr, (45)

respectively. The latent force variance increases at the change point under the WQM
whereas the variance remains unchanged for the SQM. In Section 7, we demonstrate how
these expressions for G∗ and Q∗ are incorporated within the discrete form of the Kalman
filter.
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Figure 5: Covariance functions (left column) for CQM, SQM and WQM. Also, sample quasi-
periodic functions (right column) for CQM, SQM and WQM quasi kernels and a
squared-exponential periodic kernel.

The three forms for Kquasi will be applied to both the call centre customer queue tracking
and home temperature prediction problem domains in Sections 8 and 9. In the next section
we describe how we perform inference with a LFM using a state-space approach, where the
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state vector is augmented with periodic or quasi-periodic latent forces that are approximated
using the latent force eigenfunctions.

7. Recursive Estimation with Periodic and Quasi-Periodic Latent Force
Models

This section describes a state-space approach to inference with LFMs in some detail. We
shall treat the periodic and non-periodic latent forces differently when performing inference
with them. Following Hartikainen and Särkkä (2010, 2011), non-periodic forces will be mod-
elled using the power spectrum of their corresponding covariance functions. Alternatively,
the periodic latent forces will be modelled using the eigenfunctions of the corresponding
periodic covariance function. The key idea in this section is to infer the LFM unknowns via
the Kalman filter. The unknowns include the non-periodic forces and their derivatives, as
per Equation (12), along with the coefficients of the periodic forces, as per Equation (37).
The remainder of this section describes in detail how the KF state is predicted forward in
time and how measurements of the system are folded into the state estimate.

We examine periodic and quasi-periodic cases separately as state-space inference with
periodic latent forces uses a more compact model. For the periodic case, we assume that
the latent forces, u, as per Equation (4), can be separated into two distinct sets, periodic
forces, up, and non-periodic forces, unp, so that Lu(t) = Lnpunp(t) + Lpup(t) as described
in Section 3. Then, Equation (4) becomes

dz(t)

dt
= F z(t) + Lnpunp(t) + Lpup(t).

We model non-periodic latent forces and their derivatives, as per Equation (6), and periodic
forces using eigenfunctions as per Equation (29). We define the augmented state vector, za,
as per Equation (12), and also the corresponding periodic force coefficients, Lap = [LTp , 0T ]T

so that the forces up still act on z within za thus

dza(t)

dt
= Fa za(t) + Laωa(t) + Lapup(t), (46)

where ωa and La are as per Equations (13) and (14).
We now introduce our eigenfunction model for the periodic latent forces into Equa-

tion (46). First, we consider periodic latent forces, introduced in Section 5, for which the
corresponding LBM coefficients, {a} in Equation (29), are constant over time. Substituting
our Nyström approximation basis model for the periodic forces, as per Equation (28), into
the dynamic differential model, as per Equation (46), we get

dza(t)

dt
= Fa za(t) + Laωa(t) +

R∑
r=1

Jr∑
j=1

Lap(·, r) φ̃rj(t) arj , (47)

where R is the number of latent forces, Jr is the number of eigenfunctions for latent force
r, arj are the eigenfunction weights and the vector Lap(·, r) is the rth column of the matrix

Lap in Equation (46). The Nyström basis function, φ̃rj , is

φ̃rj(t) =

√
Nr

µrj
Kr(t, Sr)vrj , (48)
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where Kr, Sr and Nr are the covariance function, the quadrature points at which the kernel
is sampled for force r, as per Equation (26), and the cardinality of Sr. The µrj and vrj are
the Gram matrix eigenvalues and eigenvectors, respectively.

The differential equations (47) have the solution

za(t) = Φ(t0, t)za(t0) + qa(t0, t) +
R∑
r=1

Jr∑
j=1

arjMrj(t0, t), (49)

where, again, Φ(t0, t) denotes the matrix exponential, Φ(t0, t) = exp(Fa(t − t0)), and
qa(t0, t) ∼ N (0,Qa(t0, t)) where

Qa(t0, t) =

∫ t

t0

Φ(s, t)LaΛaL
T
aΦ(s, t)Tds,

and Λa, as per Equation (15), is the spectral density of the white noise processes corre-
sponding to the non-periodic latent forces. The matrix Mrj(t0, t) is the convolution of the
state transition model, Φ, with each of the periodic latent force eigenfunctions expressed as

Mrj(t0, t) =

√
Nr

µrj

[∫ t

t0

ds Φ(s, t)Lap(·, r)Kr(s, Sr)

]
vrj .

For small time intervals [t0, t], which is the case for our applications in Sections 8 and 9,
Mrj can be calculated using numerical matrix exponential integration methods. Further,
we note Φ(t0, t) is stationary and this can mitigate the need to recalculate this matrix
exponential at each instance of the time series.

To accommodate the latent forces within the Kalman filter we must ensure that our
discrete time dynamic model, as per Equation (49), has the appropriate form. Specifically

X(t) = G(t0, t)X(t0) + ω(t0, t),

where the noise process, ω, is i.i.d Gaussian and zero-mean. In order to rewrite Equa-
tion (49) into the appropriate form for Kalman filter inference we define a vector, a, as per
Equation (21), which collects together the eigenfunction weights thus

a = (a11, . . . , a1J1 , a21, . . . , a2J2 . . .)
T ,

and, similarly, a matrix, M, which collects together the convolutions, Mrj , thus

M(t0, t) = (M11(t0, t), . . . ,M1J1(t0, t),M21(t0, t), . . . ,M2J2(t0, t) . . .).

We further augment the state vector to accommodate the model weights, a, corresponding
to the periodic latent forces. Let

X(t) = (zTa (t),aT )T , (50)

be our augmented state vector which now accommodates the derivative auxiliary variables
in za required by the non-periodic forces as per Hartikainen and Särkkä (2011) and the
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eigenfunction weights, a, required by the periodic forces as per our approach. When the
eigenfunction weights are constant we can rewrite Equation (49) thus

X(t) = G(t0, t)X(t0) + ω(t0, t), (51)

where

G(t0, t) =

(
Φ(t0, t) M(t0, t)

0 I,

)
(52)

and

ω(t0, t) =

(
qa(t0, t)

0

)
.

Thus, predictions of the Gaussian process, X, can be inferred using the Kalman filter. Of
course, the model in Equation (51) can also be incorporated within the Kalman Smoother
to perform full (that is, forward and backward) regression over X(t) for all time t if required
(Hartikainen and Särkkä, 2010). The prediction equations for the state mean, X̄(t | t0),
and covariance, P(t | t0), at time t conditioned on measurements obtained up to time t0,
are

X̄(t | t0) = G(t0, t)X̄(t0 | t0), (53)

P(t | t0) = G(t0, t)P(t0 | t0)G(t0, t)
T + Q(t0, t), (54)

where Q(t0, t) ,

(
Qa(t0, t) 0

0 0

)
.

We assume that measurements, y, are Gaussian distributed thus

y(t) = H X(t) + η(t), (55)

where η is zero-mean multivariate Gaussian, η ∼ N (0,Z), where Z is the observation noise
covariance matrix and the measurement model, H, extracts the appropriate elements of the
state vector. These measurements can be folded into the Kalman filter in the usual way.
The update equations given measurement, y(t), as per equation (55), are

X̄(t | t) = X̄(t | t0) + K(y(t)−HX̄(t | t0)), (56)

P(t | t) = (I−KH)P(t | t0), (57)

where K is the Kalman gain given by

K = P(t | t0)HT (HP(t | t0)HT + Z)−1. (58)

The computational complexity of the Kalman gain is cubic in the cardinality of the
measurement vector, y (that is, not necessarily a function of the cardinality of the state).
The cubic cost arises from the need to invert a covariance matrix in Equation (58). For a
single output Gaussian process this covariance will be a scalar. However, for multi-output
Gaussian processes, when each physical process is measured, y(t) will be a vector of (noisy)
measurements of each process at time t. In which case, the computational complexity of the
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Kalman gain will be cubic in the number of measured physical processes. So, although the
state vector may be augmented in order to model both physical processes and latent forces,
as described above, these additions will not impact on the cost of the matrix inversion in
Equation (58).

We next extend our state-space approach to accommodate quasi-periodic latent forces.
For the quasi-periodic latent forces the corresponding kernel LBM coefficients, a, are func-
tions of time, as per Equation (35). We assume that each LBM coefficient is drawn from
a Gaussian process with covariance function, Kquasi, as per Equation (33), and we now
demonstrate how these dynamic weight processes, a(t), are incorporated into the Kalman
filter, Equations (53) to (57).

As above, arj , corresponds to the jth eigenfunction for latent force r. However, for
quasi-periodic latent forces each eigenfunction weight is variant and we assume arj(t) can
be written as a stochastic differential equation, as proposed in Section 6, thus

dArj(t)

dt
= FrjArj(t) + Wrj ωrj(t), (59)

where the state vector, Arj(t), comprises derivatives of the coefficient time series, Arj(t) =

(arj(t),
darj(t)
dt , · · · , d

prj−1arj(t)

dtprj−1 )T . We can recover the eigenfunction coefficient from Arj

thus

arj(t) = ∆rjArj(t),

where the vector ∆rj = (1, 0, . . . , 0) is an indicator vector which extracts the LBM coefficient
arj from Arj . Thus, the latent force, ur(t), as per Equation (35), is

ur(t) =
∑
j

arj(t)φrj(t) =
∑
j

φrj(t)∆rjArj(t), (60)

where φrj is the jth eigenfunction for the latent force r. Substituting our Nyström approx-
imation for the eigenfunction, φ(t) as per Equation (28), into Equation (60) we get

ur(t) =
∑
j

√
Nr

µrj
[Kr(t, Sr)] vrj∆rjArj(t).

Then, substituting ur into the differential latent force model, Equation (47), we get

dza(t)

dt
= Fa za(t) + Laωa(t) +

R∑
r=1

Jr∑
j=1

mrj(t)Arj(t), (61)

where R is the number of latent forces, Jr is the number of eigenfunctions for latent force
r, La and ωa(t) are as per Equations (13) and (14) and the vector mrj is

mrj(t) =

√
Nr

µrj

[
Lap(·, r)Kr(t, Sr)

]
vrj∆rj , (62)

where Kr, Sr and Nr are the covariance function, the quadrature points at which the kernel
is sampled for force r, as per Equation (26), and the cardinality of Sr. The µrj and vrj are

2366



Periodic Latent Force Models

the Gram matrix eigenvalues and eigenvectors, respectively. The vector Lap(·, r) is the rth

column of the matrix Lap in Equation (46).
Now, as for the constant eigenfunction coefficient case, to exploit the Kalman filter for

LFM inference with quasi-periodic latent forces we gather together all the LFM Gaussian
variables, za and {Arj}, into a single state-vector. In so doing, we define a vector A(t)
which collects together the eigenfunction coefficients and their derivatives thus

A(t) , (A11(t)
T ,A12(t)

T , . . . ,A21(t)
T ,A22(t)

T , . . . , )T , (63)

a matrix m(t) which collects together the vectors {mrj} thus

m(t) , (m11(t),m12(t), . . . ,m21(t),m22(t), . . . , ),

a matrix FA which collects together the process models for all eigenfunction coefficients for
all latent forces, as per Equation (59) thus

FA , blockdiag(F11,F12 . . . ,F21,F22, . . .),

a vector ωA which collects together the noise processes for the non-periodic forces, ωa, as per
Equation (61), and noise processes for all the eigenfunction coefficients as per Equation (59)
thus

ωA , (ωTa , ω11, ω12, . . . , ω21, ω22, . . .)
T , (64)

and the block diagonal matrix LA which collects together the corresponding process noise
coefficients, La, as per Equation (61) and Wrj as per Equation (59) thus

LA , blockdiag(La,W11,W12 . . . ,W21,W22, . . .).

As per Equation (50) let

X(t) , (zTa (t),AT (t))T , (65)

be our augmented state vector which now accommodates the derivative auxiliary variables
required by the non-periodic forces as per Hartikainen and Särkkä (2011) and the eigen-
function weights required by the quasi-periodic forces as per our approach. Combining
Equations (59) and (61) we get

dX(t)

dt
=

(
Fa m(t)
0 FA

)
X(t) + LAωA(t), (66)

where ωA(t) is a vector of independent white noise processes. The spectral density of the
ith white noise process in this vector is [ΛA]i where

ΛA = (Λa, q11, q12, . . . , q21,, q22, . . .).

The Λa, as per Equation (15), is the spectral density of the white noise processes corre-
sponding to the non-periodic latent forces and qrj , as per Equation (59), is the spectral
density of the white noise process for the eigenfunction weight, arj .
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Unfortunately, Equation (66) is an inhomogeneous SDE as m is a function of time.
Consequently, in this form, X(t) cannot be folded into the Kalman filter. However, by
assuming m(t) is approximately constant over the short time interval, [t0, t], and asserting

m(t) ≈m(t0) then dX(t)
dt can be integrated into the appropriate form

X(t) = Φ(t0, t)X(t0) + q(t0, t), (67)

where

Φ(t0, t) = exp

[(
Fa m(t0)
0 FA

)
(t− t0)

]
. (68)

The process noise, q(t0, t) ∼ N (0,Q(t0, t)), where

Q(t0, t) =

∫ t

t0

Φ(s, t) LAΛALTAΦ(s, t)Tds. (69)

Thus, the state X(t) can be predicted using the Kalman filter, as per Equations (53)
and (54), by defining the process model, as per Equation (68), thus

G(t0, t) = Φ(t0, t),

and the process noise covariance, Q(t0, t), as per Equation (69). We note the quasi-periodic
covariance functions Step Quasi (SQM) and Wiener-step Quasi (WQM), eigenfunction co-
efficients are perturbed, as per Equation (41), at change points. The discrete form of the
Kalman filter can readily predict the value of each coefficient across a change point using
the process model, G∗j , and process noise variance, Q∗j , for each coefficient, arj , as per
Equation (41).

In general, our Kalman filter approach to LFM inference requires a process model, Arj ,
for each eigenfunction coefficient. Thus, the computational complexity of the prediction step
of the Kalman filter which employs quasi-periodic models increases quadratically with the
number of latent forces R, the number of derivatives used to represent each non-periodic
latent force (N in Equation (64)) and the number of derivatives used to represent each
time variant eigenfunction coefficient. Although, our approach supports any quasi-periodic
covariance function, for practical applications, we recommend using the quasi-periodic co-
variance functions developed in Section 6 which are readily convertible to the Markovian
form as per Equation (59) and for which only one variable is required to represent each
time varying eigenfunction coefficient. These quasi-periodic covariance functions are the
Continuous Quasi model (CQM), the Step Quasi model (SQM) and the Wiener-step Quasi
model (WQM).

In Sections 8 and 9 we determine the efficacy of our state-space approach to LFM
inference on two real world applications: i) the inference of call centre customer arrival
rates and the tracking of customer queue lengths and ii) the inference of periodic residual
heat dynamics within real homes and the prediction of internal temperature. We compare
our approaches for the different periodic and quasi-periodic kernels developed in Section 6
on the call centre application and demonstrate the utility of incorporating periodic latent
force models over non-periodic models. Then we compare our approaches to periodic and
quasi-periodic LFMs to the resonator model in the thermal application.
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8. Modelling Queues with Quasi-Periodic Arrival Rates

In this section we apply our approach to LFM inference to the dynamics of telephone queues
in call centres as outlined in Section 1 with the aim of tracking the diurnal customer queue
length when different agent deployment strategies are used. We use real customer arrival
rate data, provided by Feigin et al. (2006), in which the customer telephone arrival rates for
a loan company sales line have been collected every 5 minutes over a three month period
starting from October 2001. The arrival rates during eleven consecutive Thursdays over
this period are shown in Figure 6.
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Figure 6: Customer arrival rates (per minute) for the same week day (Thursday) over a 11
week period showing the quasi-periodic nature of the data.

To model the queue dynamics as a latent force model we use the Pointwise Stationary
Fluid Flow Approximation (PSFFA) for queues (Wang et al., 1996). The PSFFA models
the mean queue length, L, in terms of arrival processes, ζ, using a first order differential
equation given by

dL(t)

dt
= g(L) + ζ(t) (70)

where, g, is a non-negative, non-linear function of the queue length, L. This model is often
used to model queues in call centres where L(t) is the average length of the queue at time t
and ζ(t) is the mean arrival rate, that is the average rate at which customers join the queue
(Wang et al., 1996). The PSFFA is a first order, non-linear differential equation. Ignoring
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the non-linearity of g for now, we see that Equation (70) is of the form of Equation (4).
Thus, Equation (70) is an example of a LFM in which the queue length, L in Equation (70)
is the target process, z in Equation (4) and the customer arrival rate, ζ(t) in Equation (70),
is the sole latent force, u, in Equation (4). Consequently, we apply our approach to LFM
inference to the tracking of queue lengths using the PSFFA.

We consider the M/M/1 queue as it corresponds exactly to the customer arrival process,
ζ, which is Poisson and the service time is arbitrarily distributed with successive service
times being independent and identically distributed.5 Service times have an exponential
distribution with parameter Ω in the M/M/1 queue. A single server serves customers one
at a time from the front of the queue, according to a first-come, first-served basis. When
the service is complete the customer leaves the queue and the number of customers in the
system reduces by one. The queue buffer is of infinite size, so there is no limit on the
number of customers it can contain.

The PSFFA allows us to represent this M/M/1 system via the following differential
equation for the mean queue length, L (Wang et al., 1996)

dL(t)

dt
= −Ω(t)

(
L(t)

1 + L(t)

)
+ ζ(t), (71)

where Ω(t) is the mean queue service rate. We use this model to simulate the true queue
length, L, using the real customer arrival rate, ζ, from data provided by Feigin et al. (2006)
and realistic service rate profiles, Ω. Measurements of the instantaneous customer queue
length, y(t∗), are generated for times, t∗, during the day and are given by

y(t∗) = L(t∗) + ε(t∗),

where, t∗, are sufficiently spaced so that ε(t∗) is zero-mean, i.i.d. Gaussian.

To recover the customer arrival rate from the measured queue length we assume that
the mean arrival rate, ζ, is drawn from a Gaussian process, ζ ∼ GP(0,Karrival rate), where
Karrival rate is the arrival rate process covariance function. Note that the arrival rate can be
positive or negative. Negative arrival rates correspond to customers who leave the system
without being served. We choose Karrival rate to be either the first order Matérn kernel,
a periodic first order Matérn kernel as per Equation (31) or a quasi-periodic first order
Matérn kernel utilizing a CQM, SQM or WQM kernel, as per Section 6.

As per Equation (65), the augmented state-vector, X(t), is X(t) =
(
L(t),AT (t)

)T
where

A(t) are the eigenfunction weights corresponding to the periodic latent force covariance
functions, as per Equation (63). Unfortunately, the transition dynamics in Equation (71)
are nonlinear. However, if we assume that the mean, L̄(t0), of L, conditioned on the
measurements up to time t0 is a good approximation for L over the entire, yet small,
interval [t0, t] then we can rewrite Equation (71) as a locally linear model thus

dL(t)

dt
≈ − Ω(t)

1 + L̄(t0)
L(t) + ζ(t), (72)

5. The term ‘M/M/1’ is Kendall’s queue classification notation (Kendall, 1953) corresponding to a stochastic
process whose state-space is the set {0, 1, 2, 3, ...} where, in our case, the value corresponds to the number
of customers in the system.
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over [t0, t]. This model then has the appropriate form for inclusion within the Kalman filter.
In our experiments predictions are made over 2 minute time intervals. This time interval
is chosen so that Equation (72) is a stable local approximation to the queue dynamics. We
shall call this KF algorithm LFMwith as it contains a GP model of the arrival rate process.
We use maximum likelihood to obtain the GP hyperparameters and the model parameters
which are the Matérn output and input scales and the observation noise variance. The cycle
period is fixed at 24 hours.

The efficacy of our customer queue model is evaluated by training the model using data
over three full consecutive Thursdays and then tracking the mean queue length over the
following Thursday. The queue length observations are made every 40 minutes during the
training period and every three hours during the fourth day tracking phase. The longer
tracking interval is specifically chosen to test the predictive power of our model with sparse
observations. The efficacy of our approach to LFM inference for even longer term predictions
(that is, day ahead predictions) is explored in Section 9.

We also introduce four further algorithms to empirically demonstrate the importance
of using periodic and quasi-periodic latent force models in our domain and to demonstrate
the efficacy of our algorithm at tracking customer queue lengths. Three of these algorithms
use quasi-periodic latent force models. LFMquasi (CQM), LFMquasi (SQM) and
LFMquasi (WQM) algorithms use the Continuous Quasi-periodic model, the Step Quasi-
periodic model and the Wiener-step periodic model respectively, described in Section 6, to
model the arrival rates. These models are identical to the periodic model used in LFMwith
except that the correlation between cycles is reduced by the quasi-periodic kernel. The most
likely hyperparameters are used for the SQM, CQM and WQM kernels. The change points
required by the SQM and WQM quasi-periodic latent force models are set to midnight
for all cycles. We also implement Hartikainen’s algorithm (Hartikainen and Särkkä, 2010)
for sequential inference which uses the M/M/1 model described above and a non-periodic
first order Matérn kernel for the customer arrival rate process (Hart) to demonstrate the
performance of a non-periodic model.

An example run of our algorithms is shown in Figure 7 and this shows the ground
truth queue lengths (in black) and first standard deviation estimates of the queue lengths
using Hart, LFMwith and LFMquasi (SQM) latent force models. This figure shows the
tracked queue length over four days. The LFM parameters are learned using the first three
days of data only. The fourth day is tracked without any further learning of the LFM model
parameters. The left column of plots shows the queue length estimates for a fixed service
rate, Ω = 10, applying to both training and tracking phases. The right column of plots
shows the estimates for a fixed training service rate, Ω = 10, and a variable test service rate
of Ω = 15 for the first half of the fourth day and Ω = 5 for the second half. By testing the
algorithm with variable service rates, we are able to test the efficacy of the algorithms at
both reproducing the training data and at making predictions in regimes not encountered
during the training period. Clearly the quasi-periodic model is the most accurate, in this
case, with a RMSE of 1.9 compared to 2.3 and 4.6 for Hart and LFMwith, respectively.

To fully test the accuracy of the inferred residual model we evaluated the RMSE and
expected log likelihood of the predicted average queue length for each day and for each al-
gorithm over 11 days. Firstly, the service rate was held constant throughout at an arbitrary
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(e) LFMquasi (SQM): Ω=10 (f) LFMquasi (SQM): Ω=10, 15 and then 5

Figure 7: Call centre customer queue length over four consecutive Thursdays. The first
three days of data are used to train the model. The fourth day is tracked. The
1st standard deviation confidence interval is shown (grey). The solid black line
shows the ground truth. The left column of plots shows the results for a fixed
service rate, Ω = 10, for both training and test phases. The right column of plots
shows the results for a fixed training service rate, Ω = 10, and a variable test
service rate of Ω = 15 for the first half of the fourth day and Ω = 5 for the second
half.

value of Ω = 10. The results are summarized in Table 2. Clearly, the RMSE is lower for the
quasi-periodic models but their expected log likelihoods are larger than the periodic model
indicating the superiority of the quasi-periodic models.
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Method RMSE ELL

LFMquasi (SQM) 4.6± 2.2 −146± 22
LFMquasi (CQM) 4.4± 1.3 −142± 15
LFMquasi (WQM) 1.8± 0.2 −139± 20

LFMwith 2.2± 0.4 −276± 60
Hart 10.6± 5.9 −209± 29

Table 2: Day ahead tracking: Queue length RMSE and expected log likelihood (ELL) for
periodic, quasi-periodic and non-periodic arrival rate models. Both training and
test epochs have the same fixed service rate Ω = 10.

In the final experiment in this section we demonstrate the ability of our approach to
make inferences in regimes where data is absent. This is a powerful and useful property of
Gaussian process models. Specifically, to plan future staffing requirements the call centre
manager needs to predict the impact that a novel service rate will have on future queue
lengths given predicted customer arrival rates. However, the service centre may not have
utilized this staffing profile to date. In this case, for illustrative purposes, we assume that
the staff profile to date has been constant during working hours with a fixed service rate,
Ω = 10. However, the service manager has noticed a significant queue of customers forming
in the morning and then relatively few customers arriving in the afternoon. Consequently,
the service manager contemplates employing a variable staffing profile and hiring more staff
during the first half of the day, so that the service rate increases to Ω = 15, and then
retaining fewer staff in the afternoon, so that the service rate drops to Ω = 5.

To determine the efficacy of our approach at predicting the impact of variable staffing
profiles given only data from constant staffing profiles we repeated the experiment above
with a fixed service rate, Ω = 10 during training and a variable service rate during the test
period. In this case, we chose a high service rate of Ω = 15 for the first half of the test day
and then a low rate, Ω = 5 over the second half. The RMSE and expected log likelihood
are shown in Table 3. Again, the quasi-periodic models have similar efficacy and produce
the most accurate estimates of the customer queue length in this case with an RMSE of
3.3 compared to 11.6 and 5.7 for Hart and LFMwith, respectively. We note that, for
both experiments, the LFMquasi (SQM), LFMquasi (CQM), LFMquasi (WQM)
and LFMwith used fewer than 28, 28, 20, 28 basis functions, respectively, to represent the
arrival rate process.6 Consequently, our LBM Kalman filter approach to LFM tracking is
computationally efficient.

In the next section we evaluate our approach to LFM inference for longer term predic-
tions than those considered in the call centre application. We shall demonstrate that our
approach can exploit the quasi-periodic nature of the latent force to project far forward
in time an accurate estimate of the force. Consequently, we shall see that our approach is

6. The actual number of basis functions used varied between runs.
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Method RMSE ELL

LFMquasi (SQM) 7.2± 1.8 −183± 21
LFMquasi (CQM) 15.2± 4.0 −205± 24
LFMquasi (WQM) 3.3± 0.6 −152± 15

LFMwith 5.7± 1.2 −725± 301
Hart 11.6± 1.1 −305± 49

Table 3: Queue length RMSE and expected log likelihood (ELL) for periodic and quasi-
periodic arrival rate models. Training over three days with a fixed service rate
Ω = 10. The test day had a service rate of Ω = 15 for the first half of the day
followed by Ω = 5 for the remainder.

effective at performing day ahead predictions of temperatures in the home using differential
thermal models and non-parametric models of the residual heat within the home.

9. Modelling the Thermal Dynamics of Home Heating

In this section we apply our approach to LFM to the thermal modelling problem outlined in
Section 1. We assume that the differential equation governing the thermal dynamics within
a home is given by

dTint(t)

dt
= α(Text(t)− Tint(t)) + βE(t) +R(t), (73)

where Tint and Text are the internal temperature within the home and the onsite ambient
external temperature respectively in ◦C (Bacher and Madsen, 2011; Rogers et al., 2011;
Ramchurn et al., 2012). E(t) represents the thermostat control output at time t (E(t) ∈
{0, 1}), β represents the thermal output of the heater and α is the leakage coefficient to the
ambient environment. In this model Text(t) and E(t) are known latent forces for the LFM
in Equation (73). R(t) is the residual generated by latent forces which are not captured
by the differential thermal model, such as heat generated by solar warming and lags in the
heating system. These are completely unknown a priori but, since they are expected to
exhibit periodic behaviour, a periodic Matérn kernel prior is used to model them.

We assume that Text(t) at times t and t0 can be modelled by a non-periodic GP prior
Matérn(|t− t0|, 0.5, σext, lext). We choose the Matérn kernel as this imposes continuity in
the function but imposes no strong assumptions about higher order derivatives. However,
our approach can be applied to Matérn functions of higher smoothness if required. The
state vector, X, as per Equation (51), comprises the internal temperature, the external
temperature and its derivative and eigenfunction coefficient weights, A, for our sparse basis
model of the residual as per Equation (63). We model the residual process by a periodic
Matérn kernel, Matérn(| sin(πτ/D)|, ν, σ, l) with order ν = 1/2, smoothness, l, and D set
to correspond to a daily period. Again, we choose the Matérn for the same reasons as
above. The residual is represented via J basis functions (φ1(θ), . . . , φJ(θ)) corresponding to
Equation (28), where θ is the periodic phase as described in Section 7. The augmented state-
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vector, X(t), is X(t) =
(
Tint(t), Text(t),

Text(t)
dt ,A(t)T

)T
and the continuous time dynamic

model corresponding to Equation (66) is

dX(t)

dt
=

(
Fa m(t)
0 FA

)
X(t) + LAωA(t) + βE(t),

where E(t) = (E(t), 0, . . . , 0)T is the same size as X(t).
We will now describe the role of each term in the dynamic model. Within the transition

model, Fa captures the temperature gradient components of Equation (73) and the Matérn
driving forces for the external temperature thus

Fa =

−α α 0
0 0 1
0 −ρ2ext −2ρext

 ,

with ρext = 2/lext. The derivative of the external temperature is represented in the state
vector so that the Matérn latent force kernel can be encoded within the Kalman filter as
summarized in Section 4 and described in detailed in Hartikainen and Särkkä (2010). We
set the order of this Matérn covariance function to ν = 3/2 as the external temperature
process is relatively smooth. The matrix m captures the residual heat contribution to the
internal temperate and depends on the choice of the residual model covariance function, K,
in Equation (62). Further, the matrix FA models the dynamics of each periodic residual heat
process and this also depends on the choice of residual model covariance function, as per
Equation (59). The corresponding discrete form of the Kalman filter, as per Equation (67),
is evaluated over 10 minute time intervals, [t0, t]. This time interval is chosen to coincide
with the heater on/off control cycle.

The Kalman filter is initialised with known current temperature values. The initial
covariance is block diagonal with a diagonal matrix over the temperature components (in-
cluding the solution to the appropriate Riccati equation for the external temperature Matérn
model presented in Hartikainen and Särkkä, 2010) and a diagonal covariance over the resid-
ual model weights corresponding to the periodic Matérn residual process. The covariance
for the model weights is obtained using the periodic Matérn prior and corresponding eigen-
functions as described in Section 4.

When tracking the internal room temperature we know the state of the heater, that
is, whether it is “on” (that is, E(t) = 1) or “off” (that is, E(t) = 0), at each point in
time. However, when predicting the internal room temperature a full day ahead the times
at which the heater will switch on or off will not be known in advance. Uncertainty in the
future controller behaviour arises because the heater behaviour depends on the internal room
temperature and the predicted internal room temperature will be uncertain. The heater will
be on if the room temperature is below the set-point or off if above the set-point. In order
to accommodate the uncertainty in the heater switching process and, as the control output
is binary, then prediction is performed using the Rao-Blackwellized Particle filter (RBPF,
Doucet et al., 2000). The RBPF uses a set of particles to represent the many possible
states of the system (the internal temperature and residual). The corresponding on/off
control output is determined for each particle from the value of the internal temperature
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Figure 8: Internal and external temperature, thermostat set-point and heater activation
for a four day training period (upper). Also shown is the residual sequentially
inferred using LFMwith (central) and the Hart (lower) algorithms. The 1st
standard deviation confidence interval is shown (grey).

associated with that particle and the set point. For each particle the Kalman filter is used
to predict the room temperature conditioned on the control output for that particle which
is held constant for each 10 minute interval. For each 10 minute interval there are RBPF
particles corresponding to the control output being “on” or “off” over that interval. Each
particle also has a prior Gaussian distribution over X and the Kalman filter is used to
predict the state X at the end of the current interval conditioned on the binary value of the
heater for that particle. A new set of particles is then generated by taking each particle in
turn, sampling the posterior of the internal temperature, conditioning the posterior on that
internal temperature sample and then assigning the heater state according to the controller
(set point minus the internal temperature when the heater is primed). This procedure is
iterated to predict over the entire day ahead. With P particles and cardinality C of X,
the complexity of the prediction phase scales as O(C2TP ) over T time steps. Following
nomenclature in the call centre theory application in Section 8, we shall call this RBPF
algorithm LFMwith+ as it contains a GP model of the residual heat process. However, we
have added the superscript ‘+’ to denote that LFM inference is performed by the RBPF. We
use maximum likelihood to obtain the model parameters for the thermal model, {α, β}, the
GP hyperparameters, {σ, l, σext, lext} and the observation noise variance. We note that,
if the set-point process is also uncertain but a distribution over the future set-point process
is known then the RBPF particles can be drawn from the on/off control distribution and
the set-point distribution. We do not examine the case of uncertain set-point values in this
paper.
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We also implement four further algorithms to empirically demonstrate the importance
of using a periodic residual model in our domain and to demonstrate the efficacy of our al-
gorithm at predicting internal temperatures. Three of these algorithms use quasi-periodic la-
tent force models. LFMquasi (SQM)+, LFMquasi (CQM)+ and LFMquasi (WQM)+

algorithms use the step quasi-periodic model, the continuous quasi-periodic model and the
Wiener quasi-periodic model, respectively, described in Section 6, to model the residual
driving forces. These models are identical to the periodic model used in LFMwith+ ex-
cept that the correlation between cycles is reduced by the quasi-periodic kernel. Again,
these models use the same quasi-periodic covariance functions as their counterparts in the
call centre application in Section 8 and, again, we have added the superscript ‘+’ to de-
note that LFM inference is performed by the RBPF. A fifth algorithm, LFMwithout+,
assumes that there is no residual heat within the home. This algorithm is an instance
of LFMwith+ with no periodic latent force basis functions in the state vector. We also
implement Hartikainen’s algorithm (Hartikainen and Särkkä, 2010) for sequential inference
which uses the thermal model described above and a non-periodic Matérn kernel for the
residual (Hart+). To accommodate the binary thermostat controller within Hart+ we use
the RBPF, as described above, but with Hartikainen’s Kalman filter formalism.

We also implement a recent version of the resonator model (Solin and Särkkä, 2013)
which we call the Resonator+. The resonators are defined via the second order differen-
tial equation, as per Equation (20), which includes a decay term with fixed frequency and
decay coefficients. We chose to implement this version of the resonator model as opposed
to the time varying frequency version (Särkkä et al., 2012) as this version of the resonator
model is completely developed in the literature and inferring the coefficients using maxi-
mum likelihood techniques has been thoroughly tested (Solin and Särkkä, 2013). In order
to undertake a fair comparison between the performance of the resonator model and our
eigenfunction approaches we choose the number of resonators and eigenfunctions to be the
same. Further, we infer the most likely resonator frequencies and decay coefficients using
the same Nelder-Mead optimisation algorithm implemented in our eigenfunction approach.
As the residual process is quasi-periodic with period, D (corresponding to one day), we ini-
tialize the resonator frequencies to be distinct and contiguous multiples of 1/D. As with all
the LFM algorithms above, day ahead predictions with the resonator model are performed
by the RBPF.

We collected two data sets from two different homes in January 2012 recording the
internal temperature, Tint, the external temperature, Text, the thermostat set point and the
heater activity, E, at one minute intervals. Each data set comprises fourteen consecutive
days of data. We label these data sets data1 and data2. For each home four complete
consecutive days of the data set are chosen to train each algorithm. We then predict the
internal temperature, Tint(t), over the next full day. With 14 days of data for each data set,
10 full day predictions can be made for each data set with each algorithm. Note that both
data sets have thermostat set point changes that require predictions to be made in regimes
in which the algorithms have not been trained.

We shall first illustrate the efficacy of the three algorithms on a single example of the
training and prediction process before presenting a statistical comparison of the algorithms
over the full data set. Figure 8 shows four days of training data from data1. The central
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Figure 9: Internal temperature prediction compared to actual measured value using the
LFMwithout+ (top left), the LFMwith+ (top right), the LFMquasi (SQM)+

(middle left), the LFMquasi (CQM)+ (middle right), the Hart+ (bottom left)
and the Resonator+ (bottom right) algorithms. The 1st standard deviation con-
fidence interval is shown (grey). Also shown is the thermostat set point (green).

and bottom plots show the residual over the two day period inferred by LFMwith+ and by
Hart+. The Hart+ plot shows that, although the residual exhibits some daily periodicity,

2378



Periodic Latent Force Models

the cycle is imperfect. However, the inferred residual for LFMwith+ is more certain than
that for Hart+ as the periodic residual model in LFMwith+ shares information between
cycles. Consequently, the predictions drawn using LFMwith+ are more accurate than
those from Hart+ as we will see subsequently. In addition in Figure 8 in the plot of the
residual for LFMwith+, we observe that this residual tries to compensate for the errors in
the daily fall in temperature at the start of each day between times 7.0 and 7.2, 8.0 and
8.2, 9.0 and 9.2 and again between 10.0 and 10.2. We will show that these effects can have
a significant impact on the day ahead prediction of the internal temperature. Although the
residual model for LFMwith+ is less certain than that for Hart+, it captures the residual
errors that arise due to using the simple thermal model in Equation (73). For instance,
at the start of each day, when the heating comes on, the residual for LFMwith+ shows a
sharp spike, which represents a thermal lag in the physical process: in our homes a boiler
heats up water, which, as it flows through radiators, indirectly heats up the air inside. The
residual for Hart+ however, is unable to accurately model this lag.

Figure 9 shows the day-ahead prediction of the temperature for the day immediately fol-
lowing the training days in Figure 8 using all seven algorithms. The LFMquasi (CQM)+

prediction of the internal temperature has the smallest RMSE and one of the largest log
likelihoods. This indicates that the underlying model is much more accurate than those of
the other approaches. The RMSE for the example in Figure 9 is shown in Table 4.

Method RMSE

LFMquasi (SQM)+ 0.53
LFMquasi (CQM)+ 0.48

LFMwith+ 0.49
LFMwithout+ 0.84

Hart+ 0.70
Resonator+ 0.70

Table 4: Internal temperature prediction RMSE of real home data data1 over day 11 for
non-periodic, quasi-periodic, periodic and no residual models.

To fully test the accuracy of the inferred residual model we evaluated the RMSE and
the expected log likelihood of the predicted temperature for each day and for each algo-
rithm over the 10 days for both homes for which predictions were generated. The example
in Figures 8 and 9 corresponds to data set data1, day 11. Table 5 presents the expected
RMSE and the expected log likelihood of the predicted internal temperatures for each home.
LFMs with periodic and quasi-periodic eigenfunction residual models have both the best
RMSE and expected log likelihoods for data1 and data2. The best periodic model overall
with a mean RMSE of 0.52 ± 0.05 across both data sets and an expected log likelihood of
−106±13 is the LFMwith+. The Resonator+ model has a lower consistency with an ex-
pected log likelihood of −1373±1027 and it also has a higher overall RMSE at 1.15±0.22.7

7. The relative performance of the eigenfunction and resonator models depends on how well the model
parameters are learned. Of course, changing the parameter inference mechanism could effect the per-
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The LFMwithout+ model is weak as it is unable to accurately explain the training data
without a residual model. Furthermore, although the Hart+ approach has a very precise
residual model, as shown in Figure 8, its predictions are weak since it is unaware that
the residual is periodic. The non-periodic Matérn kernel, that is used by Hart+, is un-
able to make accurate long term predictions of the residual since the learned input length
scale for the residual is short. We note that the LFMquasi (WQM)+ performs relatively
badly on these data sets whereas the same algorithm performs well in the call centre ap-
plication in Section 8. The reason for this is that the LFMquasi (WQM)+ best models
quasi-periodicity when the output scale of the residual changes between periods. Since the
output scale for the heat residual does not vary from day to day then this model gives a
poor fit. However, the scale of the queue length varies significantly from day to day within
the call centre application and this is best modelled via the LFMquasi (WQM)+. We
note that the LFMwith+, LFMquasi (WQM)+, LFMquasi (SQM)+ and LFMquasi
(CQM)+ each used fewer than 24 significant basis functions to represent the residual pro-
cess. Consequently, our LBM Kalman filter approach to LFM prediction is computationally
efficient.

Method
data1 data2 Overall

RMSE ELL RMSE ELL RMSE ELL

LFMquasi (SQM)+ 0.73± 0.22 −133± 24 0.59± 0.07 −90± 8 0.67± 0.13 −116± 15
LFMquasi (CQM)+ 0.85± 0.15 −166± 17 0.89± 0.19 −144± 20 0.87± 0.11 −157± 13
LFMquasi (WQM)+ 1.15± 0.14 −260± 17 0.94± 0.17 −179± 27 1.06± 0.11 −227± 18

LFMwith+ 0.51± 0.06 −104± 19 0.55± 0.09 −108± 19 0.52± 0.05 −106± 13
LFMwithout+ 0.59± 0.08 −156± 40 0.65± 0.11 −121± 21 0.61± 0.06 −142± 25

Hart+ 1.03± 0.17 −183± 21 0.75± 0.17 −130± 20 0.92± 0.12 −162± 16
Resonator+ 1.39± 0.32 −2122± 1702 0.79± 0.22 −250± 110 1.15± 0.22 −1373± 1027

Table 5: Day ahead prediction (real home data): RMSE and expected log likelihood (ELL)
for non-periodic, quasi-periodic, periodic and no residual models.

We also evaluated the algorithms on the data when tracking the internal temperature
over a day. We note, when tracking, the heater output is known at each time instant
and, thus, it is not necessary to use the RBPF whose sole purpose is to accommodate
uncertainty in the binary heater output. Thus, each LFM is now implemented through
a standard Kalman filter. The LFM models were trained over four consecutive days as
described above, but, in this case, the day ahead internal temperatures were filtered using
measurements obtained every 100 minutes. Table 6 presents the expected RMSE and the
expected log likelihood of the internal temperatures for each home.

To determine the efficacy of the algorithms under more pronounced residual forces we
simulated the heater output and, consequently, the internal temperature for residual heat
drawn from a crisp quasi-periodic Matérn Gaussian process. We drew the residual process
from the step-quasi model (SQM) as this model was a good representation of the real

formance measures reported in this paper. Given this, we endeavoured to extract the best performance
from each model.
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Method
data1 data2 Overall

RMSE ELL RMSE ELL RMSE ELL

LFMquasi (SQM) 0.19± 0.01 85± 13 0.28± 0.04 12± 25 0.22± 0.02 56± 15
LFMquasi (CQM) 0.19± 0.02 63± 12 0.27± 0.04 −9± 26 0.22± 0.02 34± 15
LFMquasi (WQM) 0.26± 0.06 51± 30 0.29± 0.06 −23± 44 0.27± 0.04 21± 26

LFMwith 0.18± 0.02 87± 11 0.32± 0.04 −41± 29 0.24± 0.02 35± 21
LFMwithout 0.22± 0.03 48± 16 0.29± 0.04 6± 25 0.25± 0.02 31± 14

Hart 0.21± 0.02 78± 15 0.27± 0.05 26± 24 0.23± 0.02 55± 14
Resonator 0.82± 0.34 −190± 87 0.81± 0.35 −343± 225 0.82± 0.24 −251± 101

Table 6: Tracking a day ahead: RMSE and expected log likelihood (ELL) for non-periodic,
quasi-periodic, periodic and no residual models.

data as demonstrated in Table 5. We then inferred the internal temperature process using
Equation (73). Although we found that all three quasi-periodic models exhibited similar
RMSE performance for day ahead tracking, the SQM model showed significant performance
improvement over all other models when predicting a day ahead.

Example estimates for each prediction algorithm are shown in Figure 10. We re-
evaluated the filter algorithms on this simulated data and the results are presented in
Table 7. The LFMquasi (SQM)+ exhibits the lowest RMSE and highest log likelihood
overall with values 1.00 ± 0.16 and −190 ± 28, respectively, which isn’t surprising as the
alternative approaches all use incorrect models for the residual. However, specifically the
LFMquasi(SQM)+ is significantly more accurate and consistent than the Resonator+

model, which has an RMSE and expected likelihood of 1.43± 0.19 and −279± 54, respec-
tively. Consequently, despite the flexibility of the resonator model, it is unable to capture
the dynamics of the SQM generated residual as it has not been informed of the prior nature
of the residual and further, is unable to recover this information from the data. Clearly,
encoding the appropriate prior model for the residual is critical for tracking the internal
temperature accurately.

Method
data1 data2 Overall

RMSE ELL RMSE ELL RMSE ELL

LFMquasi (SQM)+ 0.75± 0.24 −161± 30 1.12± 0.20 −204± 40 1.00± 0.16 −190± 28
LFMquasi (CQM)+ 1.37± 0.26 −288± 59 1.37± 0.23 −258± 48 1.37± 0.17 −268± 37
LFMquasi (WQM)+ 1.43± 0.40 −236± 39 1.46± 0.27 −241± 27 1.45± 0.21 −239± 21

LFMwith+ 1.02± 0.34 −338± 198 1.23± 0.25 −377± 116 1.16± 0.19 −364± 97
LFMwithout+ 1.57± 0.38 −376± 128 1.70± 0.36 −362± 101 1.66± 0.26 −367± 77

Hart+ 1.48± 0.37 −247± 36 1.40± 0.22 −294± 80 1.43± 0.19 −279± 54
Resonator+ 1.48± 0.37 −247± 36 1.40± 0.22 −294± 80 1.43± 0.19 −279± 54

Table 7: Day ahead prediction (partially simulated home data): RMSE and expected log
likelihood (ELL) for simulated non-periodic, quasi-periodic, periodic, Resonator
and no residual models.
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Figure 10: Predicted internal temperature compared to simulated value using the
LFMwithout (top left), the LFMwith (top right), the LFMquasi (SQM)
(middle left), the LFMquasi (CQM) (middle right), the Hart (bottom left)
and the Resonator (bottom right) algorithms. The 1st standard deviation con-
fidence interval is shown (grey). Also shown is the thermostat set point (green).

We also compared the run times for each algorithm.8 We collected the time it took
to train each model on four days of data, predict an entire day ahead and then track

8. The run times were determined using a Macbook Pro with a 2.4 GHz Intel Core i7 processor and 8 GB
of memory.
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the internal temperature over that day. For each run the resonator model and LFMquasi
(SQM)+ used exactly the same number of resonators and eigenfunctions, respectively. The
resonator model used between 19 and 21 resonators during the experiment. Further, the
resonator model was provided with a bias term to accommodate non-zero mean residuals.
Figure 11(a) shows a box plot of the single output algorithm run times. The resonator
algorithm is clearly the slowest as the model inference for the resonator requires a search
over a space of frequency and decay coefficients. A detailed breakdown and comparison
of the computational costs of the eigenfunction model and resonator model is presented in
Section B.2.

Finally, we demonstrate the efficacy of our approach at modelling a multi-output system
and consider an extension to the thermal model that incorporates the effect of a building’s
envelope as proposed in Bacher and Madsen (2011). The building’s envelope comprises
mainly the walls which act as a thermal reservoir and delay the heat transfer between the
inside and the outside of the building. The multi-output model is represented by a system
of coupled differential equations as

dTint(t)

dt
= α (Tenv(t)− Tint(t)) + βE(t) +R(t), (74)

dTenv(t)

dt
= Γ (Tint(t)− Tenv(t)) + Ψ (Text(t)− Tenv(t)) . (75)

Here, Tint and Tenv are the internal temperature within the home and the temperature of a
building’s envelope, respectively. Tenv is not directly observed, and has to be inferred from
the data. The parameters in this model include: i) β, which represents the thermal output of
the heater, ii) α, which regulates the convective heat transfer from the internal ambient air
to the envelope, iii) Γ, which weights the convective heat transfer from the envelope to the
ambient air and iv) Ψ, which represents the leakage coefficient to the ambient environment.
In this model Text(t) and E(t) are the latent forces.

To infer the internal temperature of the building using the envelope model we introduce
Tenv to the Kalman filter state vector and two further parameters, Γ and Ψ, whose most
likely values are inferred from the training data. We repeated the experiments on the real
data above but this time using the envelope model. Figure 12 shows example day-ahead
predictions of the internal and envelope temperatures for day 10 in data set data1.

Table 8 presents the expected RMSE and the expected log likelihood of the predicted
internal temperatures for each home. The best algorithm is the LFMquasi (SQM)+ which
uses a quasi-periodic residual model. Referring to the performance of the single-output
model in Table 5 it is interesting to note that the addition of the envelope, as proposed in
Bacher and Madsen (2011), improves the overall performance of all the algorithms.

However, of key importance for the application of our approach to multi-output latent
force models in general is the RBPF run times for this model and how they compare with
the single output case. Figure 11(b) shows a box plot of the run times (the total time
to train the RBPF, predict a day ahead and also track a day ahead) for the multi-output
case. The run times compare favourably with the run times for the single output case
despite the fact that the multi-output model requires two extra parameters. The increased
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(a) Single output thermal model (b) Multi-output thermal model

Figure 11: Empirical distribution of run times (in seconds) for each LFM algorithm for both
the single output and multi-output latent force models. The time for a sample
run includes the time to train the model, predict a day ahead and also track a
day ahead.

Method
data1 data2 Overall

RMSE ELL RMSE ELL RMSE ELL

LFMquasi (SQM)+ 0.19± 0.02 80± 12 0.27± 0.04 7± 19 0.22± 0.02 51± 14
LFMquasi (CQM)+ 0.29± 0.07 12± 30 0.28± 0.04 −8± 18 0.29± 0.05 4± 19
LFMquasi (WQM)+ 0.20± 0.02 48± 27 0.27± 0.05 −1± 32 0.23± 0.02 29± 21

LFMwith+ 0.21± 0.02 56± 19 0.32± 0.03 −26± 23 0.25± 0.02 23± 18
LFMwithout+ 0.27± 0.05 24± 26 0.28± 0.05 10± 23 0.27± 0.04 19± 18

Table 8: Predicting internal temperature a day ahead using the multi-output model: RMSE
and expected log likelihood (ELL) for quasi-periodic and periodic models on real
thermal data from two homes.

computational cost for the multi-output model is due to the extra parameters in the multi-
output model and this cost would be present if the standard Gaussian process inference
equations, as Equations (2) and (3), were used in place of the Kalman filter. In general,
the computational complexity of the Kalman filter scales quadratically with the size of the
state vector and so multiple output processes can be accommodated efficiently. We note that
our approach has a linear cost when conditionally independent measurements of multiple
processes are incorporated. This contrasts with the standard Gaussian process inference
equations which have a cubic cost in the number of processes and measurements from each
process due to the need to invert a covariance matrix over all the processes.

In both the home heating application and the call centre application the eigenfunction-
based models demonstrated the best performance, with improved RMSE and expected log
likelihood over non-residual models, non-periodic models and the resonator model. Further,
the quasi-periodic residual models were shown to outperform perfectly periodic models on
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Figure 12: Internal temperature predictions compared to actual real value using the
LFMwithout+ (top left), the LFMwith+ (top right), the LFMquasi
(SQM)+ (bottom left), the LFMquasi (CQM)+ (bottom right) algorithms.
The 1st standard deviation confidence interval is shown (grey). Also shown is
the thermostat set point (green).

problems for which regular human behaviours, such as queuing as customers or heating
homes through cooking or switching on the heating, have some influence. We noted that the
WQM model had the best performance on the call centre application but the SQM exhibited
the best predictive performance on the thermal modelling application. The WQM performed
well on the call centre application because that application included residual forces, in this
case arrival rates, which varied in amplitude from day to day. The SQM succeeded in the
thermal modelling application because the residual heat profile varied slightly from day to
day whilst maintaining a constant overall amplitude.

10. Conclusions

We have derived a novel and principled Bayesian approach to latent force modelling which
accommodates both periodic and non-periodic forces. This approach can be incorporated
within computationally efficient, iterative state-space approaches to inference. We are the
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first to demonstrate that eigenfunctions can be used to model periodic forces within state-
space approaches to LFM inference and we offer the only principled approach to incorporat-
ing periodic covariance functions within a state-space approach to inference with LFMs. We
use the approach in Hartikainen and Särkkä (2010) for modelling non-periodic kernels and
eigenfunction basis functions for modelling periodic kernels within a state-space approach to
inference. We demonstrated that our eigenfunction approach out-performs the sparse spec-
trum Gaussian process regression (SSGPR) approach developed by Lázaro-Gredilla et al.
(2010). Further, we demonstrated the close link between the eigenfunction model and the
resonator model proposed by Särkkä et al. (2012). Consequently, we are the first to demon-
strate how any periodic covariance function can be encoded within the resonator model
using the covariance function’s eigenfunctions. We are also the first to demonstrate that
eigenfunctions can be represented via the resonator model within Kalman filters if required.
Thus, we have proposed, in this paper, the only two approaches to date that are able
to incorporate all types of Gaussian periodic model priors within a state-space approach
to LFM inference. These priors include stationary periodic, non-stationary periodic and
quasi-periodic covariance functions.

We have applied our approach to two applications: call centre customer queues and
thermal modelling of homes. In detail, within the call centre application, customer arrival
rates were modelled as driving forces through a differential model approximation of the
Poisson arrival process. Both periodic and quasi-periodic models were developed to model
the arrival rates of customers. The periodic models improve on the non-periodic model by as
much as 83% in the root-mean-squared error. In the home heating application we modelled
the thermal dynamics of homes where the physics of the energy exchange process is known
but some of the heat generating processes are not known in advance. Our approach can
learn the unknown heat dynamics from data and is able to accurately predict internal tem-
peratures 24 hours ahead. Again, both periodic and quasi-periodic models were developed
but, in this case, to model residual heat within the home. In this case the periodic models
improve on the non-periodic model by reducing the RMSE by as much as 28%. Overall, the
quasi-periodic models produced the lowest mean-squared-error and the highest expected
log likelihood. Further, the eigenfunction model demonstrated improved performance over
the resonator model. In the thermal application the eigenfunction models improve on the
resonator by reducing the RMSE by as much as 74%.

In both the thermal modelling application and the call centre application the periodic
residual models demonstrated the best performance, with improved RMSE and expected log
likelihood over non-residual models, non-periodic models and the resonator model. Further,
the quasi-periodic residual models were shown to outperform perfectly periodic models in
the presence of regular human behaviours, such as customer queues and heating homes
through cooking or switching on the heating. We noted that the WQM model had the best
performance for the call centre application but the SQM exhibited the best performance on
the thermal application. The WQM performed well on the call centre application because
that application included residual forces, in this case arrival rates, which varied in amplitude
from day to day. The SQM succeeded in the thermal application because the residual heat
profile varied slightly from day to day whilst maintaining a constant overall amplitude.

Both applications deployed state-space approaches to LFMs and both applications uti-
lized the eigenfunction representation of the periodic latent forces acting on the system.
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These applications demonstrated the efficacy of our approach on both long term predic-
tions and tracking problems. The applications demonstrated LFM inference on both linear
(home heating) and non-linear (call centre) problems; on latent forces with constant output
scale (home heating) and variable output scale (call centre) and on purely Gaussian models
(call centre) and models involving both Gaussian and binomial variables (thermal). We
also demonstrated both single output Gaussian process and multi-output Gaussian process
regression in the home heating application.

As we noted in the Appendix, the eigenfunction is the optimal RMSE basis model
for any covariance function. However, our approach uses only the eigenfunctions derived
from the covariance function prior. Consequently, an optimal J-dimensional model should
adapt its basis functions to the data set and the eigenfunctions of the posterior covariance
function should be used. We believe it is possible to extend our approach to accommodate
adaptable eigenfunctions and this will be the focus of further work. Further, the Kalman
formalism expressed in this paper lends itself immediately to control problems and we intend
to investigate our approach to LFM inference within model-based predictive control. This
research will be of particular value to domains in which some physical knowledge of the
process is known (and expressible via differential equations) and nonparametric models can
be used to express the latent forces. We will explore the relative merits of expressing control
problems directly via the Gaussian process prior as in, for example, Ažman and Kocijan
(2008), and via the Markovian formalism advocated in this paper.
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Appendix A. Discrete Jump Markov Processes for Non-Stationary
Covariance Functions

We describe how the Step Quasi model (SQM) and the Wiener-step Quasi model (WQM)
can be incorporated within the discrete time Kalman filter.

Suppose that either a ∼ GP(0,KSQM) or a ∼ GP(0,KWQM), where KSQM and KWQM

are the covariance functions for the SQM and WQM, respectively. Consider a change point,
τ and some earlier time τ− close to τ such that τ > τ−. We assume that

a(τ) = Ga(τ−) + χ(τ), (76)

where G is the Kalman filter process model and χ(τ) ∼ N (0, Q). We will now see that
G and Q can be expressed in terms of the kernels, KSQM and KWQM at the change point
τ . Recall E[a(t)] = E[χ(t)] = 0, E[a(t)χ(t)] = 0 and K(t, t′) = E[a(t)a(t′)] for all t and
t′. Thus, by squaring both sides of Equation (76) and then taking the expectation we can
express the variance, K(τ, τ), of a(τ) as

K(τ, τ) = GK(τ−, τ−)G+Q. (77)
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Also, multiplying Equation (76) throughout by a(τ−) before taking the expectation gives
the covariance between a(τ) and a(τ−) as

K(τ, τ−) = GK(τ−, τ−). (78)

Specifically, from Equation (39), the SQM variance, KSQM(τ, τ) = σ2 and KSQM(τ, τ−) =
σ2 exp(−1/l) as C(τ) − C(τ−) = 1 in Equation (39) across a single change point. Thus,
using Equations (77) and (78), the process model, G, and process noise variance, Q, for the
SQM are

GSQM = exp

(
−1

l

)
and QSQM = σ2

(
1− exp

(
−2

l

))
.

Also, by Equation (40) the WQM variances, KWQM(τ, τ) = ξ0 + C(τ)ξ, KWQM(τ−, τ−) =
ξ0+C(τ−)ξ and covariance, KWQM(τ, τ−) = ξ0+C(τ−)ξ. Thus, by Equations (77) and (78),
the process model, G, and process noise variance, Q, for the WQM are

GWQM = 1 and QWQM = ξ

as C(τ)− C(τ−) = 1.

Appendix B. Comparison of Eigenfunction and Resonator Models

In this section we assert that the eigenfunction basis model advocated in this paper is
optimal in that it minimizes the mean squared error for all possible J-dimensional basis
models and thus establish the eigenfunction approach as the preferred approach. We shall
then develop the theoretical link between the eigenfunction basis model and the resonator
model (Särkkä et al., 2012; Hartikainen et al., 2012; Solin and Särkkä, 2013) which is the
most significant alternative approach to modelling periodic forces in LFMs. Consequently,
we will demonstrate that the resonator model parameters can be chosen so that the resonator
basis is equivalent to the eigenfunction basis. As a corollary we propose a novel mechanism
for encoding periodic covariance function priors in the resonator model.

B.1 Establishing the Link Between the Resonator Basis and Eigenfunctions

A J-dimensional linear model is a linear combination of J basis functions. Both the eigen-
function model, as per Equation (25), and resonator model, as per Equation (18), are
J-dimensional linear models. The eigenfunction model, as per Equation (25), is a linear
combination of orthonormal basis functions, φj , whereas the resonator model is a linear
combination of resonators, ψj , which are not necessarily orthogonal.

Let g be some function drawn from a Gaussian process with covariance function K.
Then the Karhunen-Loéve expansion theorem (Loéve, 1955) states that the eigenfunction
basis is the orthonormal basis that minimizes the total mean squared error between the
J-dimensional model and g. Further, any non-orthonormal basis with cardinality, α, can be
converted to an orthonormal basis with cardinality, υ, such that υ ≤ α, by Gram-Schmidt
orthogonalisation (Arfken et al., 2005) and renormalisation. Thus, we can establish imme-
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diately that the eigenfunction basis is the optimal mean squared basis for all J-dimensional
linear models.9

In the remainder of this section we determine the conditions under which each ver-
sion of the resonator model, as per Equations (19) and (20), is equivalent to the optimal
eigenfunction model.

B.1.1 Perfectly Periodic and Stationary Covariance Functions

A perfectly periodic stationary process g ∼ GP(b,K) with period D satisfies, g(t + nD) =
g(t) for all t ∈ R and n ∈ N . Such functions (for example, the squared-exponential in
Equation (16)) are generated from Gaussian processes with covariance functions of the
form K(t, t′) = h(t− t′) for some function h.

Bochner’s theorem (see, for example, Rasmussen and Williams, 2006) states that the
eigenfunctions of a stationary kernel are the Fourier basis functions. Thus, the optimal
J-dimensional linear model for a stationary Gaussian process is a linear combination of
Fourier basis functions. Both resonator models, in Equations (19) and (20), can model
Fourier basis functions exactly by asserting ωj(t) = 0 for all time t and all resonators, j,
in Equation (19), and assigning a constant resonator frequency, f , in the original resonator
model, as per Equation (19), or removing the decay term by setting Bj = 0 in the later
model, as per Equation (20), and assigning Aj = −(2πfj)

2 so that

d2ψj(t)

dt2
= −(2πfj)

2ψj(t).

Thus, the optimal J-dimensional linear model for the stationary kernel case is an instance
of both resonator models.

B.1.2 Perfectly Periodic and Non-stationary Covariance Functions

A perfectly periodic non-stationary process g ∼ GP(b,K) with periodD satisfies, g(t+nD) =
g(t) for all t ∈ R and n ∈ N . Such processes (for example, Equation (32)) are Gaussian
processes with covariance functions of the form K(t, t′) = h(t, t′) where h(t, t′) 6= h(t− t′).
Note that since the latent force g is perfectly periodic then the resonator cannot be stochastic
(that is, ωj(t) = 0 for all time t and resonator, j, in Equation (19)).

We demonstrate that the eigenfunctions for non-stationary covariance functions can
be represented by the resonator model using the time varying frequency model, as per
Equation (20), provided that the eigenfunction is second order differentiable. We note that
the eigenfunction linear basis model, as per Equation (29), and the resonator model, as per
Equation (18), are equivalent if

ψj(t) = ajφj(t), (79)

9. In this paper, we use a static basis chosen from the prior covariance function. However, the eigenfunctions
are dependent on the covariance function and consequently, an optimal J-dimensional model should adapt
its basis when evidence is integrated with the prior. We believe it is possible to extend our approach to
accommodate adaptable eigenfunctions and this will be the focus of a further paper. We note that the
resonator model can also adapt to the evidence provided the frequency process in Equation (19) adapts
with the data.
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for eigenfunction, φj , resonator, ψj , times, t, and some positive coefficient, aj , as per
Equation (18). Substituting Equation (79) into Equation (19), asserting ωj(t) = 0 (as
above) and rearranging we get

(2πfj(t))
2 = − 1

φj(t)

d2φj(t)

dt2
. (80)

Thus, any perfectly periodic covariance function can be encoded within the resonator model
by defining the frequency process, fj(t), in terms of the covariance function eigenfunctions,
φj(t). Furthermore, we can also represent eigenfunctions via the resonator model within
Kalman filters if required. In practise, the Nyström approximation, φ̃, for the eigenfunction
basis is used in place of φ in Equation (80) to calculate the frequency process for the
resonator model.10

To illustrate the link between the eigenfunction and corresponding resonator models for
perfectly periodic covariance functions we derive the frequency process, f(t), for a variation
of the non-stationary covariance function in Equation (32) with a low smoothness, ν = 3/2,
as

K(t, t′) = Matérn(κ(t− t′), ν, σ, l) exp(−α(κ(t)2 + κ(t′)2)), (81)

where κ(τ) = | sin(πτ/D)|, D is the covariance function period and α > 0 is the decay rate.
This covariance function differs from Equation (32) in two crucial respects. Firstly, it is now
perfectly periodic with period D and secondly, it is second order differentiable everywhere,
as required by Equation (80). For ν = 3/2 the Matérn simplifies

Matérn(κ(τ), 3/2, σ, l) = σ2(1 +
√

3κ(τ)/l) exp(−
√

3κ(τ)/l).

Using the Nyström approximation, as per Equation (28), we get

d2φ̃i(t)

dt2
=

√
N

µi

d2K(t, S)

dt2
vi. (82)

After some algebra we obtain

d2K(t, t′)

dt2
=

d2Matérn(κ(τ), 3/2, σ, l)

dτ2
exp(−ακ(t)2) exp(−ακ(t′)2)

+Matérn(κ(τ), 3/2, σ, l)
d2 exp(−ακ(t)2)

dt2
exp(−ακ(t′)2)

+2
dMatérn(κ(τ), 3/2, σ, l)

dτ

d exp(−ακ(t)2)

dt
exp(−ακ(t′)2),

10. We note by Equation (80) the resonator can become unstable close to φ̃ = 0. This problem is easily
solved by initially adding some offset, ∆, to φ̃ for some suitably large ∆ before calculating the frequency
process f(t). Consequently, when f(t) is used in the resonator model, as per Equation (19) the corre-
sponding resonator, ψ(t), represents the eigenfunction basis plus the bias ∆. This bias can be removed
by subtracting ∆ from ψ(t).
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where τ = t− t′ and

dMatérn(κ(τ), 3/2, σ, l)

dτ
= −3πσ2

2Dl2
sin

(
2π

D
τ

)
exp

(
−
√

3

l
κ(τ)

)
,

d exp(−ακ(t)2)

dt
= −πα

D
sin

(
2π

D
t

)
exp(−ακ(t)2),

d2Matérn(κ(τ), 3/2, σ, l)

dτ2
=

3π2σ2

D2l3
exp

(
−
√

3

l
κ(τ)

)(√
3κ(τ)(1− κ(τ)2)− l(1− 2κ(τ)2)

)
,

d2 exp(−ακ(t)2)

dt2
= −2π2α

D2

(α
2

(
[1− 2κ(t)2]2 − 1

)
+ 1− 2κ(t)2

)
exp(−ακ(t)2).

Subsequently, using Equations (80) and (82), the resonator model frequency process, f , for
each resonator model can be chosen so that the resonator is equivalent to the eigenfunction
thus

(2πfj(t))
2 = − 1

φ̃j(t)

d2φ̃j(t)

dt2
. (83)

Figure 13 compares the eigenfunction and corresponding resonator whose frequency pro-
files are calculated using Equation (83). These basis functions are the four most significant
eigenfunctions for the non-stationary periodic covariance function in Equation (81) with
D = 10, α = 0.8 and l = 20. The top panes show the eigenfunction and corresponding
resonator and the bottom panes show the resonator coefficient, (2πf(t))2, as per Equa-
tion (83), required by the resonator model to equate the resonator with the eigenfunction.
We note the presence of negative resonator coefficient values (2πf(t))2. These correspond
to complex valued frequencies which model basis decay in a manner similar to the basis
decay term in the alternative resonator model as per Equation (20).

We next examine the properties of the alternative resonator model, as per Equation (20),
when representing perfectly periodic, non-stationary Gaussian processes. The alternative
resonator model uses time invariant coefficients, A and B, thus

d2ψj(t)

dt2
+Aj

dψj(t)

dt
+Bjψj(t) = ωj(t), (84)

where ωj is a white noise component. Modelling the non-stationary process via Equa-
tion (84) avoids the need to compute frequency processes using the interacting multiple
model (IMM) in the original formalization of the resonator model (Särkkä et al., 2012). For
perfectly periodic covariance functions (with period D) then ψj(t + D) = ψj(t) for all t
and consequently, as ωj is i.i.d., then ωj(t) = 0 for all t. Thus, the solution of the previous
equation is

ψj(t) = Gj exp
[
(±i
√
Bj − 0.25A2

j − 0.5Aj)t
]
.

So that ψj(t+D) = ψj(t) for all t then Aj = 0 and therefore

ψj(t) = Gj exp
[
i
√
Bjt
]
.
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Figure 13: The four most significant Eigenfunctions and coincident resonators for the non-
stationary periodic covariance function in Equation (81). In each pane the top
graph shows the eigenfunction and the lower graph shows the resonator coeffi-
cient (2πf(t))2 profile required by the resonator model to equate the resonator
with the eigenfunction.

Consequently, expanding the exponential in terms of cosine and sine functions we see that
ψj must be the Fourier basis functions. The Fourier basis is a sub-optimal basis for non-
stationary covariance functions as, in general, the optimal eigenfunction basis is not Fourier
(see, for example, Figure 13). Thus, the resonator model, as per Equation (84), is a sub-
optimal representation for non-stationary periodic covariance functions.

B.1.3 Quasi-Periodic Covariance Functions

A quasi-periodic process g ∼ GP(b,K) is generated from a Gaussian process with covariance
function of the form K(t, t′) = Kquasi(t, t

′)Kperiodic(t, t
′) where Kquasi is non-periodic and

Kperiodic is perfectly periodic (either stationary or non-stationary). Equation (34) is an
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example of a quasi-periodic process covariance function. In general, when the periodic
kernel, Kperiodic, has period D then, with high probability, g(t + D) 6= g(t) for all t ∈ R
unlike the perfectly periodic case presented above.

Quasi-periodic eigenfunction models use a time varying weight coefficient, aj(t), as per
Equation (35). Thus, extending Equation (79), in this case the resonator and eigenfunction
linear basis models are equivalent if

ψj(t) = aj(t)φj(t).

Consequently, by substituting ψj(t) into Equation (19), setting ωj(t) = 0 and rearranging
we get the frequency process, fj(t), for each resonator for the quasi-periodic process we
have

(2πfj(t))
2 = − φ̈j(t)aj(t) + φj(t)äj(t) + 2φ̇j(t)ȧj(t)

aj(t)φj(t)
.

Since the coefficient process aj(t) is stochastic then so too is fj(t). We note that both ψj(t)
and aj(t) must be inferred when using the resonator model and the Kalman filter. This
places significant computational cost on the Kalman filter prediction equations. Thus, we
do not recommend implementing quasi-periodic GP priors with the resonator model as per
Equation (19).

The alternative resonator model, as per Equation (20) encodes a decay term, via the first
order derivative of the basis, appropriate for modelling quasi-periodic covariance functions.
This model is investigated empirically in Section 9 on a home heating prediction problem
which exploits quasi-periodic latent forces.

B.2 Computational Complexity of Eigenfunction and Resonator Models

When the Gaussian process covariance function for each latent force is known, so that
we can generate the appropriate eigenfunction basis for any choice of covariance function
hyperparameters, then searching over the hyperparameter values of the covariance function
can be significantly less computationally demanding than searching over the frequency space
for a potentially large number of resonators.

When constructing the eigenfunction model the greatest computational cost arises from
calculating the Nyström approximation. However, the significant eigenfunctions can be
found iteratively and efficiently using Von Mises iteration. At each iteration the next largest
eigenvalue and corresponding eigenfunction are found. This approach continues until all the
significant eigenvalues are found. If J eigenfunctions with the largest eigenvalues are found
using Von Mises iteration then the complexity of our approach is O(JN2) where N ×N is
the size of the Gram matrix in Equation (27) obtained by sampling the periodic covariance
function. Inferring the eigenfunction model also involves searching over a relatively small
set of p hyperparameters, often of the order of about p = 3 parameters comprising the input
scale, output scale and the period of the covariance function. If the set of admissible values
along each hyperparameter dimension has cardinality Υ then the computational complex-
ity of searching the parameter space is O(Υp). The overall computational complexity of
inferring the eigenfunction model is therefore O(ΥpJN2).
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The parameters of the J-dimensional resonator model can be found by solving a non-
convex optimisation problem over a 3J dimension parameter space where the parameters
are J Fourier basis function frequencies, J basis function phases and J magnitudes for the
basis power spectrum. If the set of admissible values along each dimension has cardinality Υ
then the computational complexity of searching the parameter space is O(Υ3J). To identify
the optimal choice of parameter values each parameter vector constructed during the search
over the parameter space requires the comparison of O(N2) entries between the sampled
kernel and the covariance matrix of the target function induced by the resonator model.
Thus the resonator model is inferred with computational complexity O(Υ3JN2). We note
that, whereas the resonator model training phase is exponentially complex in the number
of basis functions, J , the eigenfunction model is linear in J .11

We compare the run times for the eigenfunction and resonator approaches empirically
in Section 9.

B.3 Summary

We have demonstrated the link between the resonator model and the eigenfunction ap-
proach. Through this link we have been able to identify that,

1. the eigenfunction basis is optimal in that it minimizes the mean squared error between
the J-dimensional model and the target function.

2. the variant frequency term in the resonator second order differential equation provides
sufficient flexibility to yield basis functions which are equivalent to the eigenfunctions.

3. we have developed an algorithm for deriving optimal resonator models for all perfectly
periodic covariance functions from the eigenfunctions of the covariance function. Thus,
we are able to offer an efficient mechanism for encoding the GP prior in the resonator
model.
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Abstract

We introduce a spectral learning algorithm for latent-variable PCFGs (Matsuzaki et al.,
2005; Petrov et al., 2006). Under a separability (singular value) condition, we prove that
the method provides statistically consistent parameter estimates. Our result rests on three
theorems: the first gives a tensor form of the inside-outside algorithm for PCFGs; the
second shows that the required tensors can be estimated directly from training examples
where hidden-variable values are missing; the third gives a PAC-style convergence bound
for the estimation method.

Keywords: latent-variable PCFGs, spectral learning algorithms

1. Introduction

Statistical models with hidden or latent variables are of great importance in natural language
processing, speech, and many other fields. The EM algorithm is a remarkably successful
method for parameter estimation within these models: it is simple, it is often relatively
efficient, and it has well understood formal properties. It does, however, have a major
limitation: it has no guarantee of finding the global optimum of the likelihood function.
From a theoretical perspective, this means that the EM algorithm is not guaranteed to give
statistically consistent parameter estimates. From a practical perspective, problems with
local optima can be difficult to deal with.
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Recent work has introduced a polynomial-time learning algorithm for an important case
of hidden-variable models: hidden Markov models (Hsu et al., 2009). This algorithm uses
a spectral method: that is, an algorithm based on eigenvector decompositions of linear
systems, in particular singular value decomposition (SVD). In the general case, learning
of HMMs is intractable (e.g., see Terwijn, 2002). The spectral method finesses the prob-
lem of intractability by assuming separability conditions. More precisely, the algorithm of
Hsu et al. (2009) has a sample complexity that is polynomial in 1{σ, where σ is the mini-
mum singular value of an underlying decomposition. The HMM learning algorithm is not
susceptible to problems with local maxima.

In this paper we derive a spectral algorithm for learning of latent-variable PCFGs (L-
PCFGs) (Petrov et al., 2006; Matsuzaki et al., 2005). L-PCFGs have been shown to be
a very effective model for natural language parsing. Under a condition on singular values
in the underlying model, our algorithm provides consistent parameter estimates; this is in
contrast with previous work, which has used the EM algorithm for parameter estimation,
with the usual problems of local optima.

The parameter estimation algorithm (see Figure 7) is simple and efficient. The first step
is to take an SVD of the training examples, followed by a projection of the training examples
down to a low-dimensional space. In a second step, empirical averages are calculated on
the training examples, followed by standard matrix operations. On test examples, tensor-
based variants of the inside-outside algorithm (Figures 4 and 5) can be used to calculate
probabilities and marginals of interest.

Our method depends on the following results:

• Tensor form of the inside-outside algorithm. Section 6.1 shows that the inside-outside
algorithm for L-PCFGs can be written using tensors and tensor products. Theorem 3
gives conditions under which the tensor form calculates inside and outside terms
correctly.

• Observable representations. Section 7.2 shows that under a singular-value condition,
there is an observable form for the tensors required by the inside-outside algorithm.
By an observable form, we follow the terminology of Hsu et al. (2009) in referring to
quantities that can be estimated directly from data where values for latent variables
are unobserved. Theorem 6 shows that tensors derived from the observable form
satisfy the conditions of Theorem 3.

• Estimating the model. Section 8 gives an algorithm for estimating parameters of the
observable representation from training data. Theorem 8 gives a sample complexity
result, showing that the estimates converge to the true distribution at a rate of 1{

?
M

where M is the number of training examples.

The algorithm is strikingly different from the EM algorithm for L-PCFGs, both in its
basic form, and in its consistency guarantees. The techniques developed in this paper are
quite general, and should be relevant to the development of spectral methods for estimation
in other models in NLP, for example alignment models for translation, synchronous PCFGs,
and so on. The tensor form of the inside-outside algorithm gives a new view of basic
calculations in PCFGs, and may itself lead to new models.
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In this paper we derive the basic algorithm, and the theory underlying the algorithm.
In a companion paper (Cohen et al., 2013), we describe experiments using the algorithm to
learn an L-PCFG for natural language parsing. In these experiments the spectral algorithm
gives models that are as accurate as the EM algorithm for learning in L-PCFGs. It is
significantly more efficient than the EM algorithm on this problem (9h52m of training time
vs. 187h12m), because after an SVD operation it requires a single pass over the data,
whereas EM requires around 20-30 passes before converging to a good solution.

2. Related Work

The most common approach for statistical learning of models with latent variables is the
expectation-maximization (EM) algorithm (Dempster et al., 1977). Under mild conditions,
the EM algorithm is guaranteed to converge to a local maximum of the log-likelihood
function. This is, however, a relatively weak guarantee; there are in general no guarantees
of consistency for the EM algorithm, and no guarantees of sample complexity, for example
within the PAC framework (Valiant, 1984). This has led a number of researchers to consider
alternatives to the EM algorithm, which do have PAC-style guarantees.

One focus of this work has been on the problem of learning Gaussian mixture models.
In early work, Dasgupta (1999) showed that under separation conditions for the underlying
Gaussians, an algorithm with PAC guarantees can be derived. For more recent work in this
area, see for example Vempala and Wang (2004), and Moitra and Valiant (2010). These
algorithms avoid the issues of local maxima posed by the EM algorithm.

Another focus has been on spectral learning algorithms for hidden Markov models
(HMMs) and related models. This work forms the basis for the L-PCFG learning algo-
rithms described in this paper. This line of work started with the work of Hsu et al. (2009),
who developed a spectral learning algorithm for HMMs which recovers an HMM’s param-
eters, up to a linear transformation, using singular value decomposition and other simple
matrix operations. The algorithm builds on the idea of observable operator models for
HMMs due to Jaeger (2000). Following the work of Hsu et al. (2009), spectral learning
algorithms have been derived for a number of other models, including finite state transduc-
ers (Balle et al., 2011); split-head automaton grammars (Luque et al., 2012); reduced rank
HMMs in linear dynamical systems (Siddiqi et al., 2010); kernel-based methods for HMMs
(Song et al., 2010); and tree graphical models (Parikh et al., 2011; Song et al., 2011). There
are also spectral learning algorithms for learning PCFGs in the unsupervised setting (Bailly
et al., 2013).

Foster et al. (2012) describe an alternative algorithm to that of Hsu et al. (2009) for
learning of HMMs, which makes use of tensors. Our work also makes use of tensors, and
is closely related to the work of Foster et al. (2012); it is also related to the tensor-based
approaches for learning of tree graphical models described by Parikh et al. (2011) and Song
et al. (2011). In related work, Dhillon et al. (2012) describe a tensor-based method for
dependency parsing.

Bailly et al. (2010) describe a learning algorithm for weighted (probabilistic) tree au-
tomata that is closely related to our own work. Our approach leverages functions φ and
ψ that map inside and outside trees respectively to feature vectors (see Section 7.2): for
example, φptq might track the context-free rule at the root of the inside tree t, or features
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corresponding to larger tree fragments. Cohen et al. (2013) give definitions of φ and ψ
used in parsing experiments with L-PCFGs. In the special case where φ and ψ are identity
functions, specifying the entire inside or outside tree, the learning algorithm of Bailly et al.
(2010) is the same as our algorithm. However, our work differs from that of Bailly et al.
(2010) in several important respects. The generalization to allow arbitrary functions φ and
ψ is important for the success of the learning algorithm, in both a practical and theoretical
sense. The inside-outside algorithm, derived in Figure 5, is not presented by Bailly et al.
(2010), and is critical in deriving marginals used in parsing. Perhaps most importantly, the
analysis of sample complexity, given in Theorem 8 of this paper, is much tighter than the
sample complexity bound given by Bailly et al. (2010). The sample complexity bound in
theorem 4 of Bailly et al. (2010) suggests that the number of samples required to obtain
|p̂ptq ´ pptq| ď ε for some tree t of size N , and for some value ε, is exponential in N . In
contrast, we show that the number of samples required to obtain

ř

t |p̂ptq ´ pptq| ď ε where
the sum is over all trees of size N is polynomial in N . Thus our bound is an improvement
in a couple of ways: first, it applies to a sum over all trees of size N , a set of exponential
size; second, it is polynomial in N .

Spectral algorithms are inspired by the method of moments, and there are latent-variable
learning algorithms that use the method of moments, without necessarily resorting to spec-
tral decompositions. Most relevant to this paper is the work in Cohen and Collins (2014)
for estimating L-PCFGs, inspired by the work by Arora et al. (2013).

3. Notation

Given a matrix A or a vector v, we write AJ or vJ for the associated transpose. For any
integer n ě 1, we use rns to denote the set t1, 2, . . . nu.

We use Rmˆ1 to denote the space of m-dimensional column vectors, and R1ˆm to denote
the space of m-dimensional row vectors. We use Rm to denote the space of m-dimensional
vectors, where the vector in question can be either a row or column vector. For any row or
column vector y P Rm, we use diagpyq to refer to the pmˆmq matrix with diagonal elements
equal to yh for h “ 1 . . .m, and off-diagonal elements equal to 0. For any statement Γ, we
use vΓw to refer to the indicator function that is 1 if Γ is true, and 0 if Γ is false. For a
random variable X, we use ErXs to denote its expected value.

We will make use of tensors of rank 3:

Definition 1 A tensor C P Rpmˆmˆmq is a set of m3 parameters Ci,j,k for i, j, k P rms.
Given a tensor C, and vectors y1 P Rm and y2 P Rm, we define Cpy1, y2q to be the m-
dimensional row vector with components

rCpy1, y2qsi “
ÿ

jPrms,kPrms

Ci,j,ky
1
j y

2
k.

Hence C can be interpreted as a function C : Rm ˆ Rm Ñ R1ˆm that maps vectors y1 and
y2 to a row vector Cpy1, y2q P R1ˆm.

In addition, we define the tensor Cp1,2q P Rpmˆmˆmq for any tensor C P Rpmˆmˆmq to
be the function Cp1,2q : Rm ˆ Rm Ñ Rmˆ1 defined as

rCp1,2qpy
1, y2qsk “

ÿ

iPrms,jPrms

Ci,j,ky
1
i y

2
j .
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Similarly, for any tensor C we define Cp1,3q : Rm ˆ Rm Ñ Rmˆ1 as

rCp1,3qpy
1, y2qsj “

ÿ

iPrms,kPrms

Ci,j,ky
1
i y

2
k.

Note that Cp1,2qpy
1, y2q and Cp1,3qpy

1, y2q are both column vectors.

For vectors x, y, z P Rm, xyJzJ is the tensor D P Rmˆmˆm where Di,j,k “ xiyjzk (this
is analogous to the outer product: rxyJsi,j “ xiyj).

We use || . . . ||F to refer to the Frobenius norm for matrices or tensors: for a matrix A,

||A||F “
b

ř

i,jpAi,jq
2, for a tensor C, ||C||F “

b

ř

i,j,kpCi,j,kq
2. For a matrix A we use

||A||2,o to refer to the operator (spectral) norm, ||A||2,o “ maxx‰0 ||Ax||2{||x||2.

4. L-PCFGs

In this section we describe latent-variable PCFGs (L-PCFGs), as used for example by
Matsuzaki et al. (2005) and Petrov et al. (2006). We first give the basic definitions for
L-PCFGs, and then describe the underlying motivation for them.

4.1 Basic Definitions

An L-PCFG is an 8-tuple pN , I,P,m, n, t, q, πq where:

• N is the set of non-terminal symbols in the grammar. I Ă N is a finite set of in-
terminals. P Ă N is a finite set of pre-terminals. We assume that N “ I Y P, and
I X P “ H. Hence we have partitioned the set of non-terminals into two subsets.

• rms is the set of possible hidden states.

• rns is the set of possible words.

• For all a P I, b P N , c P N , h1, h2, h3 P rms, we have a context-free rule aph1q Ñ

bph2q cph3q.

• For all a P P, h P rms, x P rns, we have a context-free rule aphq Ñ x.

• For all a P I, b, c P N , and h1, h2, h3 P rms, we have a parameter tpaÑ b c, h2, h3|h1, aq.

• For all a P P, x P rns, and h P rms, we have a parameter qpaÑ x|h, aq.

• For all a P I and h P rms, we have a parameter πpa, hq which is the probability of
non-terminal a paired with hidden variable h being at the root of the tree.

Note that each in-terminal a P I is always the left-hand-side of a binary rule a Ñ b c;
and each pre-terminal a P P is always the left-hand-side of a rule aÑ x. Assuming that the
non-terminals in the grammar can be partitioned this way is relatively benign, and makes
the estimation problem cleaner.

For convenience we define the set of possible “skeletal rules” as R “ taÑ b c : a P I, b P
N , c P N u.
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S1

NP2

D3

the

N4

dog

VP5

V6

saw

P7

him

r1 “ S Ñ NP VP

r2 “ NP Ñ D N

r3 “ D Ñ the

r4 “ N Ñ dog

r5 “ VP Ñ V P

r6 “ V Ñ saw

r7 “ P Ñ him

Figure 1: s-tree, and its sequence of rules. (For convenience we have numbered the nodes
in the tree.)

These definitions give a PCFG, with rule probabilities

ppaph1q Ñ bph2q cph3q|aph1qq “ tpaÑ b c, h2, h3|h1, aq,

and
ppaphq Ñ x|aphqq “ qpaÑ x|h, aq.

Remark 2 In the previous paper on this work (Cohen et al., 2012), we considered an L-
PCFG model where

ppaph1q Ñ bph2q cph3q|aph1qq “ ppaÑ b c|h1, aq ˆ pph2|h1, aÑ b cq ˆ pph3|h1, aÑ b cq

In this model the random variables h2 and h3 are assumed to be conditionally independent
given h1 and aÑ b c.

In this paper we consider a model where

ppaph1q Ñ bph2q cph3q|aph1qq “ tpaÑ b c, h2, h3, |h1, aq. (1)

That is, we do not assume that the random variables h2 and h3 are independent when
conditioning on h1 and aÑ b c. This is also the model considered by Matsuzaki et al.
(2005) and Petrov et al. (2006).

Note however that the algorithms in this paper are the same as those in Cohen et al.
(2012): we have simply proved that the algorithms give consistent estimators for the model
form in Eq. 1.

As in usual PCFGs, the probability of an entire tree is calculated as the product of its
rule probabilities. We now give more detail for these calculations.

An L-PCFG defines a distribution over parse trees as follows. A skeletal tree (s-tree) is
a sequence of rules r1 . . . rN where each ri is either of the form a Ñ b c or a Ñ x. The
rule sequence forms a top-down, left-most derivation under a CFG with skeletal rules. See
Figure 1 for an example.

A full tree consists of an s-tree r1 . . . rN , together with values h1 . . . hN . Each hi is the
value for the hidden variable for the left-hand-side of rule ri. Each hi can take any value in
rms.
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Define ai to be the non-terminal on the left-hand-side of rule ri. For any i P rN s such

that ai P I (i.e., ai is an in-terminal, and rule ri is of the form aÑ b c) define h
p2q
i to be the

hidden variable value associated with the left child of the rule ri, and h
p3q
i to be the hidden

variable value associated with the right child. The probability mass function (PMF) over
full trees is then

ppr1 . . . rN , h1 . . . hN q “ πpa1, h1q ˆ
ź

i:aiPI
tpri, h

p2q
i , h

p3q
i |hi, aiq ˆ

ź

i:aiPP
qpri|hi, aiq. (2)

The PMF over s-trees is ppr1 . . . rN q “
ř

h1...hN
ppr1 . . . rN , h1 . . . hN q.

In the remainder of this paper, we make use of a matrix form of parameters of an
L-PCFG, as follows:

• For each aÑ b c P R, we define T aÑb c P Rmˆmˆm to be the tensor with values

T aÑb ch1,h2,h3 “ tpaÑ b c, h2, h3|a, h1q.

• For each a P P, x P rns, we define qaÑx P R1ˆm to be the row vector with values

rqaÑxsh “ qpaÑ x|h, aq

for h “ 1, 2, . . .m.

‚ For each a P I, we define the column vector πa P Rmˆ1 where rπash “ πpa, hq.

4.2 Application of L-PCFGs to Natural Language Parsing

L-PCFGs have been shown to be a very useful model for natural language parsing (Mat-
suzaki et al., 2005; Petrov et al., 2006). In this section we describe the basic approach.

We assume a training set consisting of sentences paired with parse trees, which are
similar to the skeletal tree shown in Figure 1. A naive approach to parsing would simply
read off a PCFG from the training set: the resulting grammar would have rules such as

S Ñ NP VP

NP Ñ D N

VP Ñ V NP

D Ñ the

N Ñ dog

and so on. Given a test sentence, the most likely parse under the PCFG can be found using
dynamic programming algorithms.

Unfortunately, simple “vanilla” PCFGs induced from treebanks such as the Penn tree-
bank (Marcus et al., 1993) typically give very poor parsing performance. A critical issue
is that the set of non-terminals in the resulting grammar (S, NP, VP, PP, D, N, etc.) is
often quite small. The resulting PCFG therefore makes very strong independence assump-
tions, failing to capture important statistical properties of parse trees.

In response to this issue, a number of PCFG-based models have been developed which
make use of grammars with refined non-terminals. For example, in lexicalized models
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(Collins, 1997; Charniak, 1997), non-terminals such as S are replaced with non-terminals
such as S-sleeps: the non-terminals track some lexical item (in this case sleeps), in addition
to the syntactic category. For example, the parse tree in Figure 1 would include rules

S-saw Ñ NP-dog VP-saw

NP-dog Ñ D-the N-dog

VP-saw Ñ V-saw P-him

D-the Ñ the

N-dog Ñ dog

V-saw Ñ saw

P-him Ñ him

In this case the number of non-terminals in the grammar increases dramatically, but
with appropriate smoothing of parameter estimates lexicalized models perform at much
higher accuracy than vanilla PCFGs.

As another example, Johnson describes an approach where non-terminals are refined to
also include the non-terminal one level up in the tree; for example rules such as

S Ñ NP VP

are replaced by rules such as

S-ROOT Ñ NP-S VP-S

Here NP-S corresponds to an NP non-terminal whose parent is S; VP-S corresponds to a VP

whose parent is S; S-ROOT corresponds to an S which is at the root of the tree. This simple
modification leads to significant improvements over a vanilla PCFG.

Klein and Manning (2003) develop this approach further, introducing annotations cor-
responding to parents and siblings in the tree, together with other information, resulting
in a parser whose performance is just below the lexicalized models of Collins (1997) and
Charniak (1997).

The approaches of Collins (1997), Charniak (1997), Johnson, and Klein and Manning
(2003) all use hand-constructed rules to enrich the set of non-terminals in the PCFG. A
natural question is whether refinements to non-terminals can be learned automatically.
Matsuzaki et al. (2005) and Petrov et al. (2006) addressed this question through the use
of L-PCFGs in conjunction with the EM algorithm. The basic idea is to allow each non-
terminal in the grammar to have m possible latent values. For example, with m “ 8 we
would replace the non-terminal S with non-terminals S-1, S-2, . . ., S-8, and we would
replace rules such as

S Ñ NP VP

with rules such as

S-4 Ñ NP-3 VP-2

The latent values are of course unobserved in the training data (the treebank), but they can
be treated as latent variables in a PCFG-based model, and the parameters of the model can
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be estimated using the EM algorithm. More specifically, given training examples consisting

of skeletal trees of the form tpiq “ pr
piq
1 , r

piq
2 , . . . , r

piq
Ni
q, for i “ 1 . . .M , where Ni is the number

of rules in the i’th tree, the log-likelihood of the training data is

M
ÿ

i“1

log ppr
piq
1 . . . r

piq
Ni
q “

M
ÿ

i“1

log
ÿ

h1...hNi

ppr
piq
1 . . . r

piq
Ni
, h1 . . . hNiq

where ppr
piq
1 . . . r

piq
Ni
, h1 . . . hNiq is as defined in Eq. 2. The EM algorithm is guaranteed to

converge to a local maximum of the log-likelihood function. Once the parameters of the
L-PCFG have been estimated, the algorithm of Goodman (1996) can be used to parse test-
data sentences using the L-PCFG: see Section 4.3 for more details. Matsuzaki et al. (2005)
and Petrov et al. (2006) show very good performance for these methods.

4.3 Basic Algorithms for L-PCFGs: Variants of the Inside-Outside Algorithm

Variants of the inside-outside algorithm (Baker, 1979) can be used for basic calculations in
L-PCFGs, in particular for calculations that involve marginalization over the values for the
hidden variables.

To be more specific, given an L-PCFG, two calculations are central:

1. For a given s-tree r1 . . . rN , calculate ppr1 . . . rN q “
ř

h1...hN
ppr1 . . . rN , h1 . . . hN q.

2. For a given input sentence x “ x1 . . . xN , calculate the marginal probabilities

µpa, i, jq “
ÿ

τPT pxq:pa,i,jqPτ
ppτq

for each non-terminal a P N , for each pi, jq such that 1 ď i ď j ď N . Here T pxq
denotes the set of all possible s-trees for the sentence x, and we write pa, i, jq P τ if
non-terminal a spans words xi . . . xj in the parse tree τ .

The marginal probabilities have a number of uses. Perhaps most importantly, for a
given sentence x “ x1 . . . xN , the parsing algorithm of Goodman (1996) can be used to find

arg max
τPT pxq

ÿ

pa,i,jqPτ

µpa, i, jq.

This is the parsing algorithm used by Petrov et al. (2006), for example.1 In addition,
we can calculate the probability for an input sentence, ppxq “

ř

τPT pxq ppτq, as ppxq “
ř

aPI µpa, 1, Nq.
Figures 2 and 3 give the conventional (as opposed to tensor) form of inside-outside

algorithms for these two problems. In the next section we describe the tensor form. The
algorithm in Figure 2 uses dynamic programming to compute

ppr1 . . . rN q “
ÿ

h1...hN

ppr1 . . . rN , h1 . . . hN q

1. Note that finding arg maxτPT pxq ppτq, where ppτq “
ř

h1...hN
ppτ, h1 . . . hN q, is NP hard, hence the use

of Goodman’s algorithm. Goodman’s algorithm minimizes a different loss function when parsing: it
minimizes the expected number of spans which are incorrect in the parse tree according to the underlying
L-PCFG. We use it while restricting the output tree to be valid under the PCFG grammar extracted
from the treebank. There are variants of Goodman’s algorithm that do not follow this restriction.
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Inputs: s-tree r1 . . . rN , L-PCFG pN , I,P,m, n, t, q, πq, with parameters

• tpaÑ b c, h2, h3|h1, aq for all aÑ b c P R, h1, h2, h3 P rms.

• qpaÑ x|h, aq for all a P P, x P rns, h P rms

• πpa, hq for all a P I, h P rms.

Algorithm: (calculate the bi terms bottom-up in the tree)

• For all i P rN s such that ai P P, for all h P rms, bih “ qpri|h, aiq

• For all i P rN s such that ai P I, for all h P rms, bih “
ř

h2,h3
tpri, h2, h3|h, aiqb

β
h2
bγh3

where β is the index of the left child of node i in the tree, and γ is the index of the
right child.

Return:
ř

h b
1
hπpa1, hq “ ppr1 . . . rN q

Figure 2: The conventional inside-outside algorithm for calculation of ppr1 . . . rN q.

for a given parse tree r1 . . . rN . The algorithm in Figure 3 uses dynamic programming to
compute marginal terms.

5. Roadmap

The next three sections of the paper derive the spectral algorithm for learning of L-PCFGs.
The structure of these sections is as follows:

• Section 6 introduces a tensor form of the inside-outside algorithms for L-PCFGs. This
is analogous to the matrix form for hidden Markov models (see Jaeger 2000, and in
particular Lemma 1 of Hsu et al. 2009), and is also related to the use of tensors in
spectral algorithms for directed graphical models (Parikh et al., 2011).

• Section 7.2 derives an observable form for the tensors required by algorithms of Sec-
tion 6. The implication of this result is that the required tensors can be estimated
directly from training data consisting of skeletal trees.

• Section 8 gives the algorithm for estimation of the tensors from a training sample,
and gives a PAC-style generalization bound for the approach.

6. Tensor Form of the Inside-Outside Algorithm

This section first gives a tensor form of the inside-outside algorithms for L-PCFGs, then
give an illustrative example.

6.1 The Tensor-Form Algorithms

Recall the two calculations for L-PCFGs introduced in Section 4.3:
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Inputs: Sentence x1 . . . xN , L-PCFG pN , I,P,m, n, t, q, πq, with parameters

• tpaÑ b c, h2, h3|h1, aq for all aÑ b c P R, h1, h2, h3 P rms.

• qpaÑ x|h, aq for all a P P, x P rns, h P rms

• πpa, hq for all a P I, h P rms.

Data structures:

• Each ᾱa,i,j P R1ˆm for a P N , 1 ď i ď j ď N is a row vector of inside terms.

• Each β̄a,i,j P Rmˆ1 for a P N , 1 ď i ď j ď N is a column vector of outside terms.

• Each µ̄pa, i, jq P R for a P N , 1 ď i ď j ď N is a marginal probability.

Algorithm:
(Inside base case) @a P P, i P rN s, h P rms ᾱa,i,ih “ qpaÑ xi|h, aq
(Inside recursion) @a P I, 1 ď i ă j ď N,h P rms

ᾱa,i,jh “

j´1
ÿ

k“i

ÿ

aÑb c

ÿ

h2Prms

ÿ

h3Prms

tpaÑ b c, h2, h3|h, aq ˆ ᾱ
b,i,k
h2

ˆ ᾱc,k`1,j
h3

(Outside base case) @a P I, h P rms β̄a,1,nh “ πpa, hq
(Outside recursion) @a P N , 1 ď i ď j ď N,h P rms

β̄a,i,jh “

i´1
ÿ

k“1

ÿ

bÑc a

ÿ

h2Prms

ÿ

h3Prms

tpbÑ c a, h3, h|h2, bq ˆ β̄
b,k,j
h2

ˆ ᾱc,k,i´1
h3

`

N
ÿ

k“j`1

ÿ

bÑa c

ÿ

h2Prms

ÿ

h3Prms

tpbÑ a c, h, h3|h2, bq ˆ β̄
b,i,k
h2

ˆ ᾱc,j`1,k
h3

(Marginals) @a P N , 1 ď i ď j ď N,

µ̄pa, i, jq “ ᾱa,i,j β̄a,i,j “
ÿ

hPrms

ᾱa,i,jh β̄a,i,jh

Figure 3: The conventional form of the inside-outside algorithm, for calculation of marginal
terms µ̄pa, i, jq.
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Inputs: s-tree r1 . . . rN , L-PCFG pN , I,P,m, nq, parameters

• CaÑb c P Rpmˆmˆmq for all aÑ b c P R

• c8aÑx P Rp1ˆmq for all a P P, x P rns

• c1
a P Rpmˆ1q for all a P I.

Algorithm: (calculate the f i terms bottom-up in the tree)

• For all i P rN s such that ai P P, f i “ c8ri

• For all i P rN s such that ai P I, f i “ Cripfβ, fγq where β is the index of the left
child of node i in the tree, and γ is the index of the right child.

Return: f1c1
a1 “ ppr1 . . . rN q

Figure 4: The tensor form for calculation of ppr1 . . . rN q.

1. For a given s-tree r1 . . . rN , calculate ppr1 . . . rN q.

2. For a given input sentence x “ x1 . . . xN , calculate the marginal probabilities

µpa, i, jq “
ÿ

τPT pxq:pa,i,jqPτ
ppτq

for each non-terminal a P N , for each pi, jq such that 1 ď i ď j ď N , where T pxq
denotes the set of all possible s-trees for the sentence x, and we write pa, i, jq P τ if
non-terminal a spans words xi . . . xj in the parse tree τ .

The tensor form of the inside-outside algorithms for these two problems are shown in
Figures 4 and 5. Each algorithm takes the following inputs:

1. A tensor CaÑb c P Rpmˆmˆmq for each rule aÑ b c.

2. A vector c8aÑx P Rp1ˆmq for each rule aÑ x.

3. A vector c1
a P Rpmˆ1q for each a P I.

The following theorem gives conditions under which the algorithms are correct:

Theorem 3 Assume that we have an L-PCFG with parameters qaÑx, T aÑb c, πa, and that
there exist matrices Ga P Rpmˆmq for all a P N such that each Ga is invertible, and such
that:

1. For all rules aÑ b c, CaÑb cpy1, y2q “
`

T aÑb cpy1Gb, y2Gcq
˘

pGaq´1.

2. For all rules aÑ x, c8aÑx “ qaÑxpG
aq´1.

3. For all a P I, c1
a “ Gaπa.
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Then: 1) The algorithm in Figure 4 correctly computes ppr1 . . . rN q under the L-PCFG. 2)
The algorithm in Figure 5 correctly computes the marginals µpa, i, jq under the L-PCFG.

Proof: see Section A.1. The next section (Section 6.2) gives an example that illustrates
the basic intuition behind the proof. �

Remark 4 It is easily verified (see also the example in Section 6.2), that if the inputs to
the tensor-form algorithms are of the following form (equivalently, the matrices Ga for all
a are equal to the identity matrix):

1. For all rules aÑ b c, CaÑb cpy1, y2q “ T aÑb cpy1, y2q.

2. For all rules aÑ x, c8aÑx “ qaÑx.

3. For all a P I, c1
a “ πa.

then the algorithms in Figures 4 and 5 are identical to the algorithms in Figures 2 and 3
respectively. More precisely, we have the identities

bih “ f ih

for the quantities in Figures 2 and 4, and

ᾱa,i,jh “ αa,i,jh

β̄a,i,jh “ βa,i,jh

for the quantities in Figures 3 and 5.
The theorem shows, however, that it is sufficient2 to have parameters that are equal to

T aÑb c, qaÑx and πa up to linear transforms defined by the matrices Ga for all non-terminals
a. The linear transformations add an extra degree of freedom that is crucial in what follows
in this paper: in the next section, on observable representations, we show that it is possible
to directly estimate values for CaÑb c, c8aÑx and c1

a that satisfy the conditions of the theorem,
but where the matrices Ga are not the identity matrix.

The key step in the proof of the theorem (see Section A.1) is to show that under the
assumptions of the theorem we have the identities

f i “ bipGaq´1

for Figures 2 and 4, and
αa,i,j “ ᾱa,i,jpGaq´1

βa,i,j “ Gaβ̄a,i,j

for Figures 3 and 5. Thus the quantities calculated by the tensor-form algorithms are equiv-
alent to the quantities calculated by the conventional algorithms, up to linear transforms.
The linear transforms and their inverses cancel in useful ways: for example in the output
from Figure 4 we have

µpa, i, jq “ αa,i,jβa,i,j “ ᾱa,i,jpGaq´1Gaβ̄a,i,j “
ÿ

h

ᾱa,i,jh β̄a,i,jh ,

showing that the marginals calculated by the conventional and tensor-form algorithms are
identical.

2. Assuming that the goal is to calculate ppr1 . . . rN q for any skeletal tree, or marginal terms µpa, i, jq.
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Inputs: Sentence x1 . . . xN , L-PCFG pN , I,P,m, nq, parameters CaÑb c P Rpmˆmˆmq

for all aÑ b c P R, c8aÑx P Rp1ˆmq for all a P P, x P rns, c1
a P Rpmˆ1q for all a P I.

Data structures:

• Each αa,i,j P R1ˆm for a P N , 1 ď i ď j ď N is a row vector of inside terms.

• Each βa,i,j P Rmˆ1 for a P N , 1 ď i ď j ď N is a column vector of outside terms.

• Each µpa, i, jq P R for a P N , 1 ď i ď j ď N is a marginal probability.

Algorithm:
(Inside base case) @a P P, i P rN s, αa,i,i “ c8aÑxi
(Inside recursion) @a P I, 1 ď i ă j ď N,

αa,i,j “

j´1
ÿ

k“i

ÿ

aÑb c

CaÑb cpαb,i,k, αc,k`1,jq

(Outside base case) @a P I, βa,1,n “ c1
a

(Outside recursion) @a P N , 1 ď i ď j ď N,

βa,i,j “
i´1
ÿ

k“1

ÿ

bÑc a

CbÑc ap1,2q pβ
b,k,j , αc,k,i´1q

`

N
ÿ

k“j`1

ÿ

bÑa c

CbÑa cp1,3q pβ
b,i,k, αc,j`1,kq

(Marginals) @a P N , 1 ď i ď j ď N,

µpa, i, jq “ αa,i,jβa,i,j “
ÿ

hPrms

αa,i,jh βa,i,jh

Figure 5: The tensor form of the inside-outside algorithm, for calculation of marginal terms
µpa, i, jq.

6.2 An Example

In the remainder of this section we give an example that illustrates how the algorithm in
Figure 4 is correct, and gives the basic intuition behind the proof in Section A.1. While we
concentrate on the algorithm in Figure 4, the intuition behind the algorithm in Figure 5 is
very similar.

Consider the skeletal tree in Figure 6. We will demonstrate how the algorithm in
Figure 4, under the assumptions in the theorem, correctly calculates the probability of
this tree. In brief, the argument involves the following steps:
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S1

NP2

D3

the

N4

dog

V5

sleeps

r1 “ S Ñ NP V

r2 “ NP Ñ D N

r3 “ D Ñ the

r4 “ N Ñ dog

r5 “ V Ñ sleeps

Figure 6: An s-tree, and its sequence of rules. (For convenience we have numbered the
nodes in the tree.)

1. We first show that the algorithm in Figure 4, when run on the tree in Figure 6,
calculates the probability of the tree as

CSÑNP V pCNPÑD N pc8DÑthe, c
8
NÑdogq, c

8
VÑsleepsqc

1
S .

Note that this expression mirrors the structure of the tree, with c8aÑx terms for the
leaves, CaÑb c terms for each rule production aÑ b c in the tree, and a c1

S term for
the root.

2. We then show that under the assumptions in the theorem, the following identity holds:

CSÑNP V pCNPÑD N pc8DÑthe, c
8
NÑdogq, c

8
VÑsleepsqc

1
S .

“ TSÑNP V pTNPÑD N pqDÑthe, qNÑdogq, qVÑsleepsqπ
S (3)

This follows because the Ga and pGaq´1 terms for the various non-terminals in the
tree cancel. Note that the expression in Eq. 3 again follows the structure of the tree,
but with qaÑx terms for the leaves, T aÑb c terms for each rule production aÑ b c in
the tree, and a πS term for the root.

3. Finally, we show that the expression in Eq. 3 implements the conventional dynamic-
programming method for calculation of the tree probability, as described in Eqs. 11–13
below.

We now go over these three points in detail. The algorithm in Figure 4 calculates the
following terms (each f i is an m-dimensional row vector):

f3 “ c8DÑthe

f4 “ c8NÑdog

f5 “ c8VÑsleeps

f2 “ CNPÑD N pf3, f4q

f1 “ CSÑNP V pf2, f5q
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The final quantity returned by the algorithm is

f1c1
S “

ÿ

h

f1
hrc

1
Ssh.

Combining the definitions above, it can be seen that

f1c1
S “ CSÑNP V pCNPÑD N pc8DÑthe, c

8
NÑdogq, c

8
VÑsleepsqc

1
S ,

demonstrating that point 1 above holds.

Next, given the assumptions in the theorem, we show point 2, that is, that

CSÑNP V pCNPÑD N pc8DÑthe, c
8
NÑdogq, c

8
VÑsleepsqc

1
S

“ TSÑNP V pTNPÑD N pqDÑthe, qNÑdogq, qVÑsleepsqπ
S . (4)

This follows because the Ga and pGaq´1 terms in the theorem cancel. More specifically, we
have

f3 “ c8DÑthe “ qDÑthepG
Dq´1 (5)

f4 “ c8NÑdog “ qNÑdogpG
N q´1 (6)

f5 “ c8VÑsleeps “ qVÑsleepspG
V q´1 (7)

f2 “ CNPÑD N pf3, f4q “ TNPÑD N pqDÑthe, qDÑdogqpG
NP q´1 (8)

f1 “ CSÑNP V pf2, f5q “ TSÑNP V pTNPÑD N pqDÑthe, qNÑdogq, qVÑsleepsqpG
Sq´1 (9)

Eqs. 5, 6, 7 follow by the assumptions in the theorem. Eq. 8 follows because by the assump-
tions in the theorem

CNPÑD N pf3, f4q “ TNPÑD N pf3GD, f4GN qpGNP q´1

hence

CNPÑD N pf3, f4q “ TNPÑD N pqDÑthepG
Dq´1GD, qNÑdogpG

N q´1GN qpGNP q´1

“ TNPÑD N pqDÑthe, qNÑdogqpG
NP q´1

Eq. 9 follows in a similar manner.

It follows by the assumption that c1
S “ GSπS that

CSÑNP V pCNPÑD N pc8DÑthe, c
8
NÑdogq, c

8
VÑsleepsqc

1
S

“ TSÑNP V pTNPÑD N pqDÑthe, qNÑdogq, qVÑsleepsqpG
Sq´1GSπS

“ TSÑNP V pTNPÑD N pqDÑthe, qNÑdogq, qVÑsleepsqπ
S (10)

The final step (point 3) is to show that the expression in Eq. 10 correctly calculates the
probability of the example tree. First consider the term TNPÑD N pqDÑthe, qNÑdogq—this
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is an m-dimensional row vector, call this b2. By the definition of the tensor TNPÑD N , we
have

b2h “
“

TNPÑD N pqDÑthe, qNÑdogq
‰

h

“
ÿ

h2,h3

tpNP Ñ D N,h2, h3|h,NP q ˆ qpD Ñ the|h2, Dq ˆ qpN Ñ dog|h3, Nq(11)

By a similar calculation, TSÑNP V pTNPÑD N pqDÑthe, qNÑdogq, qVÑsleepsq—call this vector
b1—is

b1h “
ÿ

h2,h3

tpS Ñ NP V, h2, h3|h, Sq ˆ b
2
h2 ˆ qpV Ñ sleeps|h3, V q (12)

Finally, the probability of the full tree is calculated as
ÿ

h

b1hπ
S
h . (13)

It can be seen that the expression in Eq. 4 implements the calculations in Eqs. 11, 12
and 13, which are precisely the calculations used in the conventional dynamic programming
algorithm for calculation of the probability of the tree.

7. Estimating the Tensor Model

A crucial result is that it is possible to directly estimate parameters CaÑb c, c8aÑx and c1
a

that satisfy the conditions in Theorem 3, from a training sample consisting of s-trees (i.e.,
trees where hidden variables are unobserved). We first describe random variables underlying
the approach, then describe observable representations based on these random variables.

7.1 Random Variables Underlying the Approach

Each s-tree with N rules r1 . . . rN has N nodes. We will use the s-tree in Figure 1 as a
running example.

Each node has an associated rule: for example, node 2 in the tree in Figure 1 has the
rule NP Ñ D N. If the rule at a node is of the form aÑ b c, then there are left and right
inside trees below the left child and right child of the rule. For example, for node 2 we have
a left inside tree rooted at node 3, and a right inside tree rooted at node 4 (in this case the
left and right inside trees both contain only a single rule production, of the form a Ñ x;
however in the general case they might be arbitrary subtrees).

In addition, each node has an outside tree. For node 2, the outside tree is
S

NP VP

V

saw

P

him
The outside tree contains everything in the s-tree r1 . . . rN , excluding the subtree below
node i.

Our random variables are defined as follows. First, we select a random internal node,
from a random tree, as follows:
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• Sample a full tree r1 . . . rN , h1 . . . hN from the PMF ppr1 . . . rN , h1 . . . hN q.

• Choose a node i uniformly at random from rN s.

If the rule ri for the node i is of the form aÑ b c, we define random variables as follows:

• R1 is equal to the rule ri (e.g., NPÑ D N).

• T1 is the inside tree rooted at node i. T2 is the inside tree rooted at the left child of
node i, and T3 is the inside tree rooted at the right child of node i.

• H1, H2, H3 are the hidden variables associated with node i, the left child of node i,
and the right child of node i respectively.

• A1, A2, A3 are the labels for node i, the left child of node i, and the right child of node
i respectively. (e.g., A1 “ NP, A2 “ D, A3 “ N.)

• O is the outside tree at node i.

• B is equal to 1 if node i is at the root of the tree (i.e., i “ 1), 0 otherwise.

If the rule ri for the selected node i is of the form a Ñ x, we have random variables
R1, T1, H1,
A1, O,B as defined above, but H2, H3, T2, T3, A2, and A3 are not defined.

We assume a function ψ that maps outside trees o to feature vectors ψpoq P Rd
1

. For
example, the feature vector might track the rule directly above the node in question, the
word following the node in question, and so on. We also assume a function φ that maps
inside trees t to feature vectors φptq P Rd. As one example, the function φ might be an
indicator function tracking the rule production at the root of the inside tree. Later we give
formal criteria for what makes good definitions of ψpoq and φptq. One requirement is that
d1 ě m and d ě m.

In tandem with these definitions, we assume projection matrices Ua P Rpdˆmq and
V a P Rpd

1ˆmq for all a P N . We then define additional random variables Y1, Y2, Y3, Z
as

Y1 “ pU
a1qJφpT1q Z “ pV

a1qJψpOq

Y2 “ pU
a2qJφpT2q Y3 “ pU

a3qJφpT3q

where ai is the value of the random variable Ai. Note that Y1, Y2, Y3, Z are all in Rm.

7.2 Observable Representations

Given the definitions in the previous section, our representation is based on the following
matrix, tensor and vector quantities, defined for all a P N , for all rules of the form aÑ b c,
and for all rules of the form aÑ x respectively:

Σa “ ErY1Z
J|A1 “ as,

DaÑb c “ E
“

vR1 “ aÑ b cwZY J2 Y
J

3 |A1 “ a
‰

,

d8aÑx “ E
“

vR1 “ aÑ xwZJ|A1 “ a
‰

.
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Assuming access to functions φ and ψ, and projection matrices Ua and V a, these quantities
can be estimated directly from training data consisting of a set of s-trees (see Section 8).

Our observable representation then consists of:

CaÑb cpy1, y2q “ DaÑb cpy1, y2qpΣaq´1, (14)

c8aÑx “ d8aÑxpΣ
aq´1, (15)

c1
a “ E rvA1 “ awY1|B “ 1s . (16)

We next introduce conditions under which these quantities satisfy the conditions in Theo-
rem 3.

The following definition will be important:

Definition 5 For all a P N , we define the matrices Ia P Rpdˆmq and Ja P Rpd
1ˆmq as

rIasi,h “ ErφipT1q | H1 “ h,A1 “ as,

rJasi,h “ ErψipOq | H1 “ h,A1 “ as.

In addition, for any a P N , we use γa P Rm to denote the vector with γah “ P pH1 “ h|A1 “

aq.

The correctness of the representation will rely on the following conditions being satisfied
(these are parallel to conditions 1 and 2 in Hsu et al. (2009)):

Condition 1 @a P N , the matrices Ia and Ja are of full rank (i.e., they have rank m).
For all a P N , for all h P rms, γah ą 0.

Condition 2 @a P N , the matrices Ua P Rpdˆmq and V a P Rpd
1ˆmq are such that the

matrices Ga “ pUaqJIa and Ka “ pV aqJJa are invertible.

We can now state the following theorem:

Theorem 6 Assume conditions 1 and 2 are satisfied. For all a P N , define Ga “ pUaqJIa.
Then under the definitions in Eqs. 14-16:

1. For all rules aÑ b c, CaÑb cpy1, y2q “
`

T aÑb cpy1Gb, y2Gcq
˘

pGaq´1

2. For all rules aÑ x, c8aÑx “ qaÑxpG
aq´1.

3. For all a P N , c1
a “ Gaπa

Proof: The following identities hold (see Section A.2):

DaÑb cpy1, y2q “

´

T aÑb cpy1Gb, y2Gcq
¯

diagpγaqpKaqJ (17)

d8aÑx “ qaÑxdiagpγaqpKaqJ (18)

Σa “ GadiagpγaqpKaqJ (19)

c1
a “ Gaπa (20)
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Under conditions 1 and 2, Σa is invertible, and pΣaq´1 “ ppKaqJq´1pdiagpγaqq´1pGaq´1.
The identities in the theorem follow immediately. �

This theorem leads directly to the spectral learning algorithm, which we describe in the
next section. We give a sketch of the approach here. Assume that we have a training set
consisting of skeletal trees (no latent variables are observed) generated from some under-
lying L-PCFG. Assume in addition that we have definitions of φ, ψ, Ua and V a such that
conditions 1 and 2 are satisfied for the L-PCFG. Then it is straightforward to use the train-
ing examples to derive i.i.d. samples from the joint distribution over the random variables
pA1, R1, Y1, Y2, Y3, Z,Bq used in the definitions in Eqs. 14–16. These samples can be used
to estimate the quantities in Eqs. 14–16; the estimated quantities ĈaÑb c, ĉ8aÑx and ĉ1

a can
then be used as inputs to the algorithms in Figures 4 and 5. By standard arguments, the
estimates ĈaÑb c, ĉ8aÑx and ĉ1

a will converge to the values in Eqs. 14–16.
The following lemma justifies the use of an SVD calculation as one method for finding

values for Ua and V a that satisfy condition 2, assuming that condition 1 holds:

Lemma 7 Assume that condition 1 holds, and for all a P N define

Ωa “ ErφpT1q pψpOqq
J
|A1 “ as (21)

Then if Ua is a matrix of the m left singular vectors of Ωa corresponding to non-zero singular
values, and V a is a matrix of the m right singular vectors of Ωa corresponding to non-zero
singular values, then condition 2 is satisfied.

Proof sketch: It can be shown that Ωa “ IadiagpγaqpJaqJ. The remainder is similar to
the proof of lemma 2 in Hsu et al. (2009). �

The matrices Ωa can be estimated directly from a training set consisting of s-trees,
assuming that we have access to the functions φ and ψ. Similar arguments to those of Hsu
et al. (2009) can be used to show that with a sufficient number of samples, the resulting
estimates of Ua and V a satisfy condition 2 with high probability.

8. Deriving Empirical Estimates

Figure 7 shows an algorithm that derives estimates of the quantities in Eqs. 14, 15, and
16. As input, the algorithm takes a sequence of tuples prpi,1q, tpi,1q, tpi,2q, tpi,3q, opiq, bpiqq for
i P rM s.

These tuples can be derived from a training set consisting of s-trees τ1 . . . τM as follows:
‚ @i P rM s, choose a single node ji uniformly at random from the nodes in τi. Define

rpi,1q to be the rule at node ji. t
pi,1q is the inside tree rooted at node ji. If rpi,1q is of the form

aÑ b c, then tpi,2q is the inside tree under the left child of node ji, and tpi,3q is the inside
tree under the right child of node ji. If rpi,1q is of the form aÑ x, then tpi,2q “ tpi,3q “ NULL.
opiq is the outside tree at node ji. b

piq is 1 if node ji is at the root of the tree, 0 otherwise.
Under this process, assuming that the s-trees τ1 . . . τM are i.i.d. draws from the distribu-

tion ppτq over s-trees under an L-PCFG, the tuples prpi,1q, tpi,1q, tpi,2q, tpi,3q, opiq, bpiqq are i.i.d.
draws from the joint distribution over the random variables R1, T1, T2, T3, O,B defined in
the previous section.

The algorithm first computes estimates of the projection matrices Ua and V a: following
Lemma 7, this is done by first deriving estimates of Ωa, and then taking SVDs of each Ωa.
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The matrices are then used to project inside and outside trees tpi,1q, tpi,2q, tpi,3q, opiq down to
m-dimensional vectors ypi,1q, ypi,2q, ypi,3q, zpiq; these vectors are used to derive the estimates
of CaÑb c, c8aÑx, and c1

a. For example, the quantities

DaÑb c “ E
“

vR1 “ aÑ b cwZY J2 Y
J

3 |A1 “ a
‰

d8aÑx “ E
“

vR1 “ aÑ xwZJ|A1 “ a
‰

can be estimated as

D̂aÑb c “ δa ˆ
M
ÿ

i“1

vrpi,1q “ aÑ b cwzpiqpypi,2qqJpypi,3qqJ

d̂8aÑx “ δa ˆ
M
ÿ

i“1

vrpi,1q “ aÑ xwpzpiqqJ

where δa “ 1{
řM
i“1vai “ aw, and we can then set

ĈaÑb cpy1, y2q “ D̂aÑb cpy1, y2qpΣ̂aq´1

ĉ8aÑx “ d̂8aÑxpΣ̂
aq´1.

We now state a PAC-style theorem for the learning algorithm. First, we give the fol-
lowing assumptions and definitions:

• We have an L-PCFG pN , I,P,m, n, t, q, πq. The samples used in Figures 7 and 8 are
i.i.d. samples from the L-PCFG (for simplicity of analysis we assume that the two
algorithms use independent sets of M samples each: see above for how to draw i.i.d.
samples from the L-PCFG).

• We have functions φptq P Rd and ψpoq P Rd
1

that map inside and outside trees respec-
tively to feature vectors. We will assume without loss of generality that for all inside
trees ||φptq||2 ď 1, and for all outside trees ||ψpoq||2 ď 1.

• See Section 7.2 for a definition of the random variables

pR1, T1, T2, T3, A1, A2, A3, H1, H2, H3, O,Bq,

and the joint distribution over them.

• For all a P N define
Ωa “ ErφpT1qpψpOqq

J|A1 “ as

and define Ia P Rdˆm to be the matrix with entries

rIasi,h “ ErφipT1q|A1 “ a,H1 “ hs

• Define
σ “ min

a
σmpΩ

aq

and
ξ “ min

a
σmpI

aq

where σmpAq is the m’th largest singular value of the matrix A.
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• Define
γ “ min

a,b,cPN ,h1,h2,h3Prms
tpaÑ b c, h2, h3|a, h1q

• Define T pa,Nq to be the set of of all skeletal trees with N binary rules (hence 2N ` 1
rules in total), with non-terminal a at the root of the tree.

The following theorem gives a bound on the sample complexity of the algorithm:

Theorem 8 There exist constants C1, C2, C3, C4, C5 such that the following holds. Pick
any ε ą 0, any value for δ such that 0 ă δ ă 1, and any integer N such that N ě 1.
Define L “ log 2|N |`1

δ . Assume that the parameters ĈaÑb c, ĉ8aÑx and ĉ1
a are output from

the algorithm in Figure 7, with values for Na, Ma and R such that

@a P I, Na ě
C1LN

2m2

γ2ε2ξ4σ4
@a P P, Na ě

C2LN
2m2n

ε2σ4

@a P I,Ma ě
C3LN

2m2

γ2ε2ξ4σ2
@a P P,Ma ě

C4LN
2m2

ε2σ2

R ě
C5LN

2m3

ε2σ2

It follows that with probability at least 1´ δ, for all a P N ,
ÿ

tPT pa,Nq
|p̂ptq ´ pptq| ď ε

, where p̂ptq is the output from the algorithm in Figure 4 with parameters ĈaÑb c, ĉ8aÑx and
ĉ1
a, and pptq is the probability of the skeletal tree under the L-PCFG.

See Appendix B for a proof.
The method described of selecting a single tuple prpi,1q, tpi,1q, tpi,2q, tpi,3q, opiq, bpiqq for each

s-tree ensures that the samples are i.i.d., and simplifies the analysis underlying Theorem 8.
In practice, an implementation should use all nodes in all trees in training data; by Rao-
Blackwellization we know such an algorithm would be better than the one presented, but
the analysis of how much better would be challenging (Bickel and Doksum, 2006; section
3.4.2). It would almost certainly lead to a faster rate of convergence of p̂ to p.

9. Discussion

There are several applications of the method. The most obvious is parsing with L-PCFGs
(Cohen et al., 2013).3 The approach should be applicable in other cases where EM has
traditionally been used, for example in semi-supervised learning. Latent-variable HMMs
for sequence labeling can be derived as special case of our approach, by converting tagged
sequences to right-branching skeletal trees (Stratos et al., 2013).

3. Parameters can be estimated using the algorithm in Figure 7; for a test sentence x1 . . . xN we can first
use the algorithm in Figure 5 to calculate marginals µpa, i, jq, then use the algorithm of Goodman (1996)
to find arg maxτPT pxq

ř

pa,i,jqPτ µpa, i, jq.
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Inputs: Training examples prpi,1q, tpi,1q, tpi,2q, tpi,3q, opiq, bpiqq for i P t1 . . .Mu, where rpi,1q

is a context free rule; tpi,1q, tpi,2q and tpi,3q are inside trees; opiq is an outside tree; and
bpiq “ 1 if the rule is at the root of tree, 0 otherwise. A function φ that maps inside trees
t to feature-vectors φptq P Rd. A function ψ that maps outside trees o to feature-vectors
ψpoq P Rd

1

.

Definitions: For each a P N , define Na “
řM
i“1vai “ aw. Define R “

řM
i“1vb

piq “ 1w.
(These definitions will be used in Theorem 8.)

Algorithm:
Define ai to be the non-terminal on the left-hand side of rule rpi,1q. If rpi,1q is of the
form aÑ b c, define bi to be the non-terminal for the left-child of rpi,1q, and ci to be the
non-terminal for the right-child.
(Step 0: Singular Value Decompositions)

• Use the algorithm in Figure 8 to calculate matrices Ûa P Rpdˆmq, V̂ a P Rpd
1ˆmq and

Σ̂a P Rpmˆmq for each a P N .

(Step 1: Projection)

• For all i P rM s, compute ypi,1q “ pÛaiqJφptpi,1qq.

• For all i P rM s such that rpi,1q is of the form aÑ b c, compute ypi,2q “ pÛ biqJφptpi,2qq
and ypi,3q “ pÛ ciqJφptpi,3qq.

• For all i P rM s, compute zpiq “ pV̂ aiqJψpopiqq.

(Step 2: Calculate Correlations)

• For each a P N , define δa “ 1{
řM
i“1vai “ aw.

• For each rule aÑ b c, compute

D̂aÑb c “ δa ˆ
M
ÿ

i“1

vrpi,1q “ aÑ b cwzpiqpypi,2qqJpypi,3qqJ.

• For each rule aÑ x, compute d̂8aÑx “ δa ˆ
řM
i“1vr

pi,1q “ aÑ xwpzpiqqJ.

(Step 3: Compute Final Parameters)

• For all aÑ b c, ĈaÑb cpy1, y2q “ D̂aÑb cpy1, y2qpΣ̂aq´1.

• For all aÑ x, ĉ8aÑx “ d̂8aÑxpΣ̂
aq´1.

• For all a P I, ĉ1
a “

řM
i“1vai“a and bpiq“1wypi,1q

řM
i“1vb

piq“1w
.

Figure 7: The spectral learning algorithm.
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Inputs: Identical to algorithm in Figure 7.
Definition: For each a P N , define Ma “

řM
i“1vai “ aw (this definition will be used in

Theorem 8).
Algorithm:
‚ For each a P N , compute Ω̂a P Rpdˆd

1q as

Ω̂a “

řM
i“1vai “ awφptpi,1qqpψpopiqqqJ

řM
i“1vai “ aw

and calculate a singular value decomposition of Ω̂a.
‚ For each a P N , define Ûa P Rmˆd to be a matrix of the left singular vectors of Ω̂a

corresponding to the m largest singular values. Define V̂ a P Rmˆd
1

to be a matrix of
the right singular vectors of Ω̂a corresponding to the m largest singular values. Define
Σ̂a “ pÛaqJΩ̂aV̂ a.

Figure 8: Singular value decompositions.

In terms of efficiency, the first step of the algorithm in Figure 7 requires an SVD cal-
culation: modern methods for calculating SVDs are very efficient (e.g., see Dhillon et al.,
2011 and Tropp et al., 2009). The remaining steps of the algorithm require manipulation
of tensors or vectors, and require OpMm3q time.

The sample complexity of the method depends on the minimum singular values of Ωa;
these singular values are a measure of how well correlated ψ and φ are with the unobserved
hidden variable H1. Experimental work is required to find a good choice of values for ψ
and φ for parsing.

For simplicity we have considered the case where each non-terminal has the same num-
ber, m, of possible hidden values. It is simple to generalize the algorithms to the case where
the number of hidden values varies depending on the non-terminal; this is important in
applications such as parsing.
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Appendix A. Proofs of Theorems 1 and 2

This section gives proofs of Theorems 3 and 6.

A.1 Proof of Theorem 3

The key idea behind the proof of Theorem 3 is to show that the algorithms in Figures 4 and 5
compute the same quantities as the conventional version of the inside outside algorithms,
as shown in Figures 2 and 3.

First, the following lemma leads directly to the correctness of the algorithm in Figure 4:

Lemma 9 Assume that conditions 1-3 of Theorem 3 are satisfied, and that the input to the
algorithm in Figure 4 is an s-tree r1 . . . rN . Define ai for i P rN s to be the non-terminal
on the left-hand-side of rule ri. For all i P rN s, define the row vector bi P Rp1ˆmq to be
the vector computed by the conventional inside-outside algorithm, as shown in Figure 2,
on the s-tree r1 . . . rN . Define f i P Rp1ˆmq to be the vector computed by the tensor-based
inside-outside algorithm, as shown in Figure 4, on the s-tree r1 . . . rN .

Then for all i P rN s, f i “ bipGpaiqq´1. It follows immediately that

f1c1
a1 “ b1pGpa1qq´1Ga1πa1 “ b1πa1 “

ÿ

h

b1hπpa, hq.

Hence the output from the algorithms in Figures 2 and 4 is the same, and it follows that
the tensor-based algorithm in Figure 4 is correct.

This lemma shows a direct link between the vectors f i calculated in the algorithm, and
the terms bih, which are terms calculated by the conventional inside algorithm: each f i is a
linear transformation (through Gai) of the corresponding vector bi.
Proof: The proof is by induction.

First consider the base case. For any leaf—i.e., for any i such that ai P P—we have
bih “ qpri|h, aiq, and it is easily verified that f i “ bipGpaiqq´1.

The inductive case is as follows. For all i P rN s such that ai P I, by the definition in
the algorithm,

f i “ Cripfβ, fγq

“

´

T ripfβGaβ , fγGaγ q
¯

pGaiq´1

Assuming by induction that fβ “ bβpGpaβqq´1 and fγ “ bγpGpaγqq´1, this simplifies to

f i “
´

T ripbβ, bγq
¯

pGaiq´1. (22)

By the definition of the tensor T ri ,
”

T ripbβ, bγq
ı

h
“

ÿ

h2Prms,h3Prms

tpri, h2, h3|ai, hqb
β
h2
bγh3

But by definition (see the algorithm in Figure 2),

bih “
ÿ

h2Prms,h3Prms

tpri, h2, h3|ai, hqb
β
h2
bγh3 ,
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hence bi “ T ripbβ, bγq and the inductive case follows immediately from Eq. 22. �
Next, we give a similar lemma, which implies the correctness of the algorithm in Figure 5:

Lemma 10 Assume that conditions 1-3 of Theorem 3 are satisfied, and that the input to
the algorithm in Figure 5 is a sentence x1 . . . xN . For any a P N , for any 1 ď i ď j ď N ,
define ᾱa,i,j P Rp1ˆmq, β̄a,i,j P Rpmˆ1q and µ̄pa, i, jq P R to be the quantities computed
by the conventional inside-outside algorithm in Figure 3 on the input x1 . . . xN . Define
αa,i,j P Rp1ˆmq, βa,i,j P Rpmˆ1q and µpa, i, jq P R to be the quantities computed by the
algorithm in Figure 3.

Then for all i P rN s, αa,i,j “ ᾱa,i,jpGaq´1 and βa,i,j “ Gaβ̄a,i,j. It follows that for all
pa, i, jq,

µpa, i, jq “ αa,i,jβa,i,j “ ᾱa,i,jpGaq´1Gaβ̄a,i,j “ ᾱa,i,j β̄a,i,j “ µ̄pa, i, jq.

Hence the outputs from the algorithms in Figures 3 and 5 are the same, and it follows that
the tensor-based algorithm in Figure 5 is correct.

Thus the vectors αa,i,j and βa,i,j are linearly related to the vectors ᾱa,i,j and β̄a,i,j , which
are the inside and outside terms calculated by the conventional form of the inside-outside
algorithm.

Proof: The proof is by induction, and is similar to the proof of Lemma 9.

First, we prove that the inside terms satisfy the relation αa,i,j “ ᾱa,i,jpGaq´1.

The base case of the induction is as follows. By definition, for any a P P, i P rN s, h P rms,
we have ᾱa,i,ih “ qpa Ñ xi|h, aq. We also have for any a P P, i P rN s, αa,i,i “ c8aÑxi “
qaÑxipG

aq´1. It follows directly that αa,i,i “ ᾱa,i,ipGaq´1 for any a P P, i P rN s.
The inductive case is as follows. By definition, we have @a P I, 1 ď i ă j ď N,h P rms

ᾱa,i,jh “

j´1
ÿ

k“i

ÿ

b,c

ÿ

h2Prms

ÿ

h3Prms

tpaÑ b c, h2, h3|h, aq ˆ ᾱ
b,i,k
h2

ˆ ᾱc,k`1,j
h3

.

We also have @a P I, 1 ď i ă j ď N,

αa,i,j “

j´1
ÿ

k“i

ÿ

b,c

CaÑb cpαb,i,k, αc,k`1,jq (23)

“

j´1
ÿ

k“i

ÿ

b,c

´

T aÑb cpαb,i,kGb, αc,k`1,jGcq
¯

pGaq´1 (24)

“

j´1
ÿ

k“i

ÿ

b,c

´

T aÑb cpᾱb,i,k, ᾱc,k`1,j
¯

pGaq´1 (25)

“ ᾱa,i,jpGaq´1. (26)

Eq. 23 follows by the definitions in algorithm 5. Eq. 24 follows by the assumption in the
theorem that

CaÑb cpy1, y2q “

´

T aÑb cpy1Gb, y2Gcq
¯

pGaq´1
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Eq. 25 follows because by the inductive hypothesis,

αb,i,k “ ᾱb,i,kpGbq´1

and
αc,k`1,j “ ᾱc,k`1,jpGcq´1.

Eq. 26 follows because

”

T aÑb cpᾱb,i,k, ᾱc,k`1,jq

ı

h
“

ÿ

h2,h3

tpaÑ b c, h2, h3|h, aqᾱ
b,i,k
h2

ᾱc,k`1,j
h3

hence
j´1
ÿ

k“i

ÿ

b,c

T aÑb cpᾱb,i,k, ᾱc,k`1,jq “ ᾱa,i,j .

We now turn the outside terms, proving that βa,i,j “ Gaβ̄a,i,j . The proof is again by
induction.

The base case is as follows. By the definitions in the algorithms, for all a P I, βa,1,n “
c1
a “ Gaπa, and for all a P I, h P rms, β̄a,1,nh “ πpa, hq. It follows directly that for all a P I,
βa,1,n “ Gaβ̄a,1,n.

The inductive case is as follows. By the definitions in the algorithms, we have @a P
N , 1 ď i ď j ď N,h P rms

β̄a,i,jh “ γ1,a,i,j
h ` γ2,a,i,j

h

where

γ1,a,i,j
h “

i´1
ÿ

k“1

ÿ

bÑc a

ÿ

h2Prms

ÿ

h3Prms

tpbÑ c a, h3, h|h2, bq ˆ β̄
b,k,j
h2

ˆ ᾱc,k,i´1
h3

γ2,a,i,j
h “

N
ÿ

k“j`1

ÿ

bÑa c

ÿ

h2Prms

ÿ

h3Prms

tpbÑ a c, h, h3|h2, bq ˆ β̄
b,i,k
h2

ˆ ᾱc,j`1,k
h3

and @a P N , 1 ď i ď j ď N,

βa,i,j “
i´1
ÿ

k“1

ÿ

bÑc a

CbÑc ap1,2q pβ
b,k,j , αc,k,i´1q `

N
ÿ

k“j`1

ÿ

bÑa c

CbÑa cp1,3q pβ
b,i,k, αc,j`1,kq.

Critical identities are

i´1
ÿ

k“1

ÿ

bÑc a

CbÑc ap1,2q pβ
b,k,j , αc,k,i´1q “ Gaγ1,a,i,j (27)

N
ÿ

k“j`1

ÿ

bÑa c

CbÑa cp1,3q pβ
b,i,k, αc,j`1,kq “ Gaγ2,a,i,j (28)

from which βa,i,j “ Gaβ̄a,i,j follows immediately.
The identities in Eq. 27 and 28 are proved through straightforward algebraic manipula-

tion, based on the following properties:

2425



Cohen, Stratos, Collins, Foster and Ungar

• By the inductive hypothesis, βb,k,j “ Gbβ̄b,k,j and βb,i,k “ Gbβ̄b,i,k.

• By correctness of the inside terms, as shown earlier in this proof, it holds that
αc,k,i´1 “ ᾱc,k,i´1pGcq´1 and αc,j`1,k “ ᾱc,j`1,kpGcq´1.

• By the assumptions in the theorem,

CaÑb cpy1, y2q “

´

T aÑb cpy1Gb, y2Gcq
¯

pGaq´1.

It follows (see Lemma 11) that

CbÑc ap1,2q pβ
b,k,j , αc,k,i´1q “ Ga

´

T bÑc ap1,2q ppG
bq´1βb,k,j , αc,k,i´1Gcq

¯

“ Ga
´

T bÑc ap1,2q pβ̄
b,k,j , ᾱc,k,i´1q

¯

and

CbÑa cp1,3q pβ
b,i,k, αc,j`1,kq “ Ga

´

T bÑa cp1,3q pβ̄
b,i,k, ᾱc,j`1,kq

¯

�
Finally, we give the following Lemma, as used above:

Lemma 11 Assume we have tensors C P Rmˆmˆm and T P Rmˆmˆm such that for any
y2, y3,

Cpy2, y3q “
`

T py2A, y3Bq
˘

D

where A,B,D are matrices in Rmˆm. Then for any y1, y2,

Cp1,2qpy
1, y2q “ B

`

Tp1,2qpDy
1, y2Aq

˘

(29)

and for any y1, y3,

Cp1,3qpy
1, y3q “ A

`

Tp1,3qpDy
1, y3Bq

˘

. (30)

Proof: Consider first Eq. 29. We will prove the following statement:

@y1, y2, y3, y3Cp1,2qpy
1, y2q “ y3B

`

Tp1,2qpDy
1, y2Aq

˘

This statement is equivalent to Eq. 29.
First, for all y1, y2, y3, by the assumption that Cpy2, y3q “

`

T py2A, y3Bq
˘

D,

Cpy2, y3qy1 “ T py2A, y3BqDy1

hence
ÿ

i,j,k

Ci,j,ky
1
i y

2
j y

3
k “

ÿ

i,j,k

Ti,j,kz
1
i z

2
j z

3
k (31)

where z1 “ Dy1, z2 “ y2A, z3 “ y3B.
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In addition, it is easily verified that

y3Cp1,2qpy
1, y2q “

ÿ

i,j,k

Ci,j,ky
1
i y

2
j y

3
k (32)

y3B
`

Tp1,2qpDy
1, y2Aq

˘

“
ÿ

i,j,k

Ti,j,kz
1
i z

2
j z

3
k (33)

where again z1 “ Dy1, z2 “ y2A, z3 “ y3B. Combining Eqs. 31, 32, and 33 gives

y3Cp1,2qpy
1, y2q “ y3B

`

Tp1,2qpDy
1, y2Aq

˘

,

thus proving the identity in Eq. 29.
The proof of the identity in Eq. 30 is similar, and is omitted for brevity. �

A.2 Proof of the Identity in Eq. 17

We now prove the identity in Eq. 17, repeated here:

DaÑb cpy1, y2q “

´

T aÑb cpy1Gb, y2Gcq
¯

diagpγaqpKaqJ.

Recall that
DaÑb c “ E

“

vR1 “ aÑ b cwZY J2 Y
J

3 |A1 “ a
‰

,

or equivalently
DaÑb c
i,j,k “ E rvR1 “ aÑ b cwZiY2,jY3,k|A1 “ as .

Using the chain rule, and marginalizing over hidden variables, we have

DaÑb c
i,j,k “ E rvR1 “ aÑ b cwZiY2,jY3,k|A1 “ as

“
ÿ

h1,h2,h3Prms

ppaÑ b c, h1, h2, h3|aqE rZiY2,jY3,k|R1 “ aÑ b c, h1, h2, h3s .

By definition, we have

ppaÑ b c, h1, h2, h3|aq “ γah1 ˆ tpaÑ b c, h2, h3|h1, aq

In addition, under the independence assumptions in the L-PCFG, and using the definitions
of Ka and Ga, we have

E rZiY2,jY3,k|R1 “ aÑ b c, h1, h2, h3s

“ E rZi|A1 “ a,H1 “ h1s ˆE rY2,j |A2 “ b,H2 “ h2s ˆE rY3,k|A3 “ c,H3 “ h3s

“ Ka
i,h1 ˆG

b
j,h2 ˆG

c
k,h3 .

Putting this all together gives

DaÑb c
i,j,k “

ÿ

h1,h2,h3Prms

γah1 ˆ tpaÑ b c, h2, h3|h1, aq ˆK
a
i,h1 ˆG

b
j,h2 ˆG

c
k,h3

“
ÿ

h1Prms

γah1 ˆK
a
i,h1 ˆ

ÿ

h2,h3Prms

tpaÑ b c, h2, h3|h1, aq ˆG
b
j,h2 ˆG

c
k,h3 .
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By the definition of tensors,

rDaÑb cpy1, y2qsi

“
ÿ

j,k

DaÑb c
i,j,k y1

j y
2
k

“
ÿ

h1Prms

γah1 ˆK
a
i,h1 ˆ

ÿ

h2,h3Prms

tpaÑ b c, h2, h3|h1, aq ˆ

˜

ÿ

j

y1
jG

b
j,h2

¸

ˆ

˜

ÿ

k

y2
kG

c
k,h3

¸

“
ÿ

h1Prms

γah1 ˆK
a
i,h1 ˆ

”

T aÑb cpy1Gb, y2Gcq
ı

h1
. (34)

The last line follows because by the definition of tensors,
”

T aÑb cpy1Gb, y2Gcq
ı

h1
“

ÿ

h2,h3

T aÑb ch1,h2,h3

”

y1Gb
ı

h2

“

y2Gc
‰

h3

and we have

T aÑb ch1,h2,h3 “ tpaÑ b c, h2, h3|h1, aq
”

y1Gb
ı

h2
“

ÿ

j

y1
jG

b
j,h2

“

y2Gc
‰

h3
“

ÿ

k

y2
kG

c
k,h3 .

Finally, the required identity

DaÑb cpy1, y2q “

´

T aÑb cpy1Gb, y2Gcq
¯

diagpγaqpKaqJ

follows immediately from Eq. 34. �

A.3 Proof of the Identity in Eq. 18

We now prove the identity in Eq. 18, repeated below:

d8aÑx “ qaÑxdiagpγaqpKaqJ.

Recall that by definition

d8aÑx “ E
“

vR1 “ aÑ xwZJ|A1 “ a
‰

,

or equivalently
rd8aÑxsi “ E rvR1 “ aÑ xwZi|A1 “ as .

Marginalizing over hidden variables, we have

rd8aÑxsi “ E rvR1 “ aÑ xwZi|A1 “ as

“
ÿ

h

ppaÑ x, h|aqErZi|H1 “ h,R1 “ aÑ xs.
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By definition, we have

ppaÑ x, h|aq “ γahqpaÑ x|h, aq “ γah rqaÑxsh .

In addition, by the independence assumptions in the L-PCFG, and the definition of Ka,

ErZi|H1 “ h,R1 “ aÑ xs “ ErZi|H1 “ h,A1 “ as “ Ka
i,h.

Putting this all together gives

rd8aÑxsi “
ÿ

h

γah rqaÑxshK
a
i,h

from which the required identity

d8aÑx “ qaÑxdiagpγaqpKaqJ

follows immediately. �

A.4 Proof of the Identity in Eq. 19

We now prove the identity in Eq. 19, repeated below:

Σa “ GadiagpγaqpKaqJ

Recall that by definition
Σa “ ErY1Z

J|A1 “ as

or equivalently
rΣasi,j “ ErY1,iZj |A1 “ as

Marginalizing over hidden variables, we have

rΣasi,j “ ErY1,iZj |A1 “ as

“
ÿ

h

pph|aqErY1,iZj |H1 “ h,A1 “ as

By definition, we have
γah “ pph|aq

In addition, under the independence assumptions in the L-PCFG, and using the definitions
of Ka and Ga, we have

ErY1,iZj |H1 “ h,A1 “ as “ ErY1,i|H1 “ h,A1 “ as ˆErZj |H1 “ h,A1 “ as

“ Gai,hK
a
j,h

Putting all this together gives

rΣasi,j “
ÿ

h

γahG
a
i,hK

a
j,h

from which the required identity

Σa “ GadiagpγaqpKaqJ

follows immediately. �
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A.5 Proof of the Identity in Eq. 20

We now prove the identity in Eq. 19, repeated below:

c1
a “ Gaπa.

Recall that by definition
c1
a “ E rvA1 “ awY1|B “ 1s ,

or equivalently
rc1
asi “ E rvA1 “ awY1,i|B “ 1s .

Marginalizing over hidden variables, we have

rc1
asi “ E rvA1 “ awY1,i|B “ 1s

“
ÿ

h

P pA1 “ a,H1 “ h|B “ 1qE rY1,i|A1 “ a,H1 “ h,B “ 1s .

By definition we have
P pA1 “ a,H1 “ h|B “ 1q “ πpa, hq

By the independence assumptions in the PCFG, and the definition of Ga, we have

E rY1,i|A1 “ a,H1 “ h,B “ 1s “ E rY1,i|A1 “ a,H1 “ hs

“ Gai,h.

Putting this together gives
rc1
asi “

ÿ

h

πpa, hqGai,h

from which the required identity
c1
a “ Gaπa

follows. �

Appendix B. Proof of Theorem 8

In this section we give a proof of Theorem 8. The proof relies on three lemmas:

• In Section B.1 we give a lemma showing that if estimates ĈaÑb c, ĉaÑx and ĉ1
a are

close (up to linear transforms) to the parameters of an L-PCFG, then the distribution
defined by the parameters is close (in l1-norm) to the distribution under the L-PCFG.

• In Section B.2 we give a lemma showing that if the estimates Ω̂a, D̂aÑb c, d̂8aÑx and
ĉ1
a are close to the underlying values being estimated, the estimates ĈaÑb c, ĉaÑx and
ĉ1
a are close (up to linear transforms) to the parameters of the underlying L-PCFG.

• In Section B.3 we give a lemma relating the number of samples in the estimation
algorithm to the errors in estimating Ω̂a, D̂aÑb c, d̂8aÑx and ĉ1

a.

The proof of the theorem is then given in Section B.4.
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B.1 A Bound on How Errors Propagate

In this section we show that if estimated tensors and vectors ĈaÑb c, ĉ8aÑx and ĉ1
a are

sufficiently close to the underlying parameters T aÑb c, q8aÑx, and πa of an L-PCFG, then
the distribution under the estimated parameters will be close to the distribution under the
L-PCFG. Section B.1.1 gives assumptions and definitions; Lemma 12 then gives the main
lemma; the remainder of the section gives proofs.

B.1.1 Assumptions and Definitions

We make the following assumptions:

• Assume we have an L-PCFG with parameters T aÑb c P Rmˆmˆm, qaÑx P Rm, πa P Rm.
Assume in addition that we have an invertible matrix Ga P Rmˆm for each a P N .
For convenience define Ha “ pGaq´1 for all a P N .

• We assume that we have parameters ĈaÑb c P Rmˆmˆm, ĉ8aÑx P R1ˆm and ĉ1
a P Rmˆ1

that satisfy the following conditions:

– There exists some constant ∆ ą 0 such that for all rules aÑ b c, for all y1, y2 P

Rm,
||ĈaÑb cpy1Hb, y2HcqGa ´ T aÑb cpy1, y2q||8 ď ∆||y1||2||y

2||2.

– There exists some constant δ ą 0 such that for all a P P, for all h P rms,
ÿ

x

|rĉ8aÑxG
ash ´ rq

8
aÑxsh| ď δ.

– There exists some constant κ ą 0 such that for all a,

||pGaq´1ĉ1
a ´ π

a||1 ď κ.

We give the following definitions:

• For any skeletal tree t “ r1 . . . rN , define biptq to be the quantities computed by the
algorithm in Figure 4 with t together with the parameters T aÑb c, q8aÑx, πa as input.
Define f̂ iptq to be the quantities computed by the algorithm in Figure 4 with t together
with the parameters ĈaÑb c, ĉ8aÑx, ĉ1

a as input. Define

ξptq “ b1ptq,

and
ξ̂ptq “ f1ptqGa1 .

where as before a1 is the non-terminal on the left-hand-side of rule r1. Define p̂ptq to
be the value returned by the algorithm in Figure 4 with t together with the parameters
ĈaÑb c, ĉ8aÑx, ĉ1

a as input. Define pptq to be the value returned by the algorithm in
Figure 4 with t together with the parameters T aÑb c, q8aÑx, πa as input.

• Define T pa,Nq to be the set of of all skeletal trees with N binary rules (hence 2N ` 1
rules in total), with non-terminal a at the root of the tree.
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• Define

Zpa, h,Nq “
ÿ

tPT pa,Nq
rξptqsh,

Dpa, h,Nq “
ÿ

tPT pa,Nq
|rξ̂ptqsh ´ rξptqsh|,

F pa, h,Nq “
Dpa, h,Nq

Zpa, h,Nq
.

• Define

γ “ min
a,b,cPN ,h1,h2,h3Prms

tpaÑ b c, h2, h3|a, h1q.

• For any aÑ b c define the tensor

T̂ aÑb cpy1, y2q “ ĈaÑb cpy1Hb, y2HcqGa.

B.1.2 The Main Lemma

Lemma 12 Given the assumptions in Section B.1.1, for any a, N ,

ÿ

tPT pa,Nq
|p̂ptq ´ pptq| ď m

˜

p1` κq

ˆ

1`
∆

γ

˙N´1

p1` δqN ´ 1

¸

. (35)

Proof: By definition we have

ÿ

tPT pa,Nq
|p̂ptq ´ pptq| “

ÿ

tPT pa,Nq

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

h

rξ̂ptqshrpG
aq´1ĉ1

ash ´
ÿ

h

rξptqshπ
a
h

ˇ

ˇ

ˇ

ˇ

ˇ

“
ÿ

tPT pa,Nq

ˇ

ˇ

ˇ
ξ̂ptq ¨ rpGaq´1ĉ1

as ´ ξptq ¨ π
a
ˇ

ˇ

ˇ
.

Define e “ rpGaq´1ĉ1
as ´ π

a. Then by the triangle inequality,

ˇ

ˇ

ˇ
ξ̂ptq ¨ rpGaq´1ĉ1

as ´ ξptq ¨ π
a
ˇ

ˇ

ˇ
ď |ξ̂ptq ¨ πa ´ ξptq ¨ πa| ` |ξ̂ptq ¨ e´ ξptq ¨ e| ` |ξptq ¨ e|

We bound each of the three terms as follows:

|ξ̂ptq ¨ πa ´ ξptq ¨ πa| ď ||ξ̂ptq ´ ξptq||8||π
a||1 ď ||ξ̂ptq ´ ξptq||8 ď

ÿ

h

ˇ

ˇ

ˇ
rξ̂ptqsh ´ rξptqsh|

ˇ

ˇ

ˇ

|ξ̂ptq ¨ e´ ξptq ¨ e| ď ||ξ̂ptq ´ ξptq||8||e||1 ď κ||ξ̂ptq ´ ξptq||8 ď κ
ÿ

h

ˇ

ˇ

ˇ
rξ̂ptqsh ´ rξptqsh|

ˇ

ˇ

ˇ

|ξptq ¨ e| ď ||ξptq||8||e||1 ď κ||ξptq||8 ď κ
ÿ

h

rξptqsh.
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Combining the above gives

ÿ

tPT pa,Nq
|p̂ptq ´ pptq| ď p1` κq

ÿ

tPT pa,Nq

ÿ

h

ˇ

ˇ

ˇ
rξ̂ptqsh ´ rξptqsh|

ˇ

ˇ

ˇ
` κ

ÿ

tPT pa,Nq

ÿ

h

rξptqsh

ď mp1` κq

˜

ˆ

1`
∆

γ

˙N

p1` δqN`1 ´ 1

¸

`mκ

“ m

˜

p1` κq

ˆ

1`
∆

γ

˙N

p1` δqN`1 ´ 1

¸

where the second inequality follows because
ř

tPT pa,Nq
ř

hrξptqsh ď m, and because Lemma 13
gives

ÿ

tPT pa,Nq

ÿ

h

ˇ

ˇ

ˇ
rξ̂ptqsh ´ rξptqsh|

ˇ

ˇ

ˇ
ď m

˜

ˆ

1`
∆

γ

˙N

p1` δqN`1 ´ 1

¸

.

�
We now give a crucial lemma used in the previous proof:

Lemma 13 Given the assumptions in Section B.1.1, for any a, h, N ,

Dpa, h,Nq “
ÿ

tPT pa,Nq

ˇ

ˇ

ˇ
rξ̂ptqsh ´ rξptqsh

ˇ

ˇ

ˇ
ď Zpa, h,Nq

˜

ˆ

1`
∆

γ

˙N

p1` δqN`1 ´ 1

¸

.

Proof: A key identity is the following, which holds for anyN ě 1 (recall that F pa, h,Nq “
Dpa, h,Nq{Zpa, h,Nq):

F pa, h,Nq

ď ´1`
N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

gpa, b, c, k, h1, h2qp1` F pb, h1, kqqp1` F pc, h2, N ´ k ´ 1qq

`∆
Y pNq

Zpa, h,Nq

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

hpb, c, k, h1, h2qp1` F pb, h1, kqqp1` F pc, h2, N ´ k ´ 1qq,

(36)

where

gpa, b, c, k, h1, h2q “ tpaÑ b c, h1, h2|a, hq
Zpb, h1, kqZpc, h2, N ´ k ´ 1q

Zpa, h,Nq

Y pNq “

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

Zpb, h1, kqZpc, h2, N ´ k ´ 1q

hpb, c, k, h1, h2q “
Zpb, h1, kqZpc, h2, N ´ k ´ 1q

Y pNq
.
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The proof of Eq. 36 is in Section B.1.3. Note that we have

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

gpa, b, c, k, h1, h2q “

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

hpb, c, k, h1, h2q “ 1.

The rest of the proof follows through induction. For the base case, for N “ 0 we have

Zpa, h,Nq

˜

ˆ

1`
∆

γ

˙N

p1` δqN`1 ´ 1

¸

“ δZpa, h,Nq “ δ

where the last equality follows because Zpa, h, 0q “ 1 for any a, h. For N “ 0 we also have

ÿ

tPT pa,Nq

ˇ

ˇ

ˇ
rξ̂ptqsh ´ rξptqsh

ˇ

ˇ

ˇ
“

ÿ

x

|rĉ8aÑxG
ash ´ rq

8
aÑxsh| ď δ.

The base case follows immediately.

For the recursive case, by the inductive hypothesis we have

1` F pb, h1, kq ď

ˆ

1`
∆

γ

˙k

p1` δqk`1

and

1` F pc, h2, N ´ k ´ 1q ď

ˆ

1`
∆

γ

˙N´k´1

p1` δqN´k.

It follows from Eq. 36 that

F pa, h,Nq ď ´1`

ˆ

1`∆
Y pNq

Zpa, h,Nq

˙ˆ

1`
∆

γ

˙N´1

p1` δqN`1

ď ´1`

ˆ

1`
∆

γ

˙N

p1` δqN`1

where the second inequality follows because

Y pNq

Zpa, h,Nq
“

řN´1
k“0

ř

b,c

ř

h1,h2
Zpb, h1, kqZpc, h2, N ´ k ´ 1q

řN´1
k“0

ř

b,c

ř

h1,h2
tpaÑ b c, h1, h2|a, hqZpb, h1, kqZpc, h2, N ´ k ´ 1q

ď
1

γ
.

This completes the proof. �

B.1.3 Proof of Eq. 36

Any tree t P T pa,Nq where N ě 1 can be decomposed into the following: 1) A choice b, c,
implying the rule aÑ b c is at the root; 2) A choice of 0 ď k ď N´1, implying that the tree
dominated by b is of size k, the tree dominated by c is of size N ´1´k; 3) A choice of trees
t1 P T pb, kq and t2 P T pc,N ´ 1´ kq. The resulting tree has ξhptq “ T aÑb ch pξpt1q, ξpt2qq.
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Define dptq “ ξptq ´ ξ̂ptq. We then have the following:

ÿ

tPT pa,Nq
|ξ̂hptq ´ ξhptq|

“

N´1
ÿ

k“0

ÿ

b,c

ÿ

t1PT pb,kq

ÿ

t2PT pc,N´1´kq

|T̂ aÑb ch pξ̂pt1q, ξ̂pt2qq ´ T
aÑb c
h pξpt1q, ξpt2qq|

ď ∆
N´1
ÿ

k“0

ÿ

b,c

ÿ

t1PT pb,kq

ÿ

t2PT pc,N´1´kq

p||ξpt1q||2 ` ||dpt1q||2qp||ξpt2q||2 ` ||dpt2q||2q

`

N´1
ÿ

k“0

ÿ

b,c

ÿ

t1PT pb,kq

ÿ

t2PT pc,N´1´kq

|T aÑb ch pξpt1q, dpt2qq|

`

N´1
ÿ

k“0

ÿ

b,c

ÿ

t1PT pb,kq

ÿ

t2PT pc,N´1´kq

|T aÑb ch pdpt1q, ξpt2qq|

`

N´1
ÿ

k“0

ÿ

b,c

ÿ

t1PT pb,kq

ÿ

t2PT pc,N´1´kq

|T aÑb ch pdpt1q, dpt2qq|. (37)

The inequality follows because by Lemma 14,

|T̂ aÑb ch pξ̂pt1q, ξ̂pt2qq ´ T
aÑb c
h pξpt1q, ξpt2qq|

ď ∆p||ξpt1q||2 ` ||dpt1q||2qp||ξpt2q||2 ` ||dpt2q||2q

`|T aÑb ch pξpt1q, dpt2qq| ` |T
aÑb c
h pdpt1q, ξpt2qq| ` |T

aÑb c
h pdpt1q, dpt2qq|.

We first derive an upper bound on the last three terms of Eq. 37. Note that we have
the identity

Zpa, h,Nq

“

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

tpaÑ b c, h1, h2|a, hq
ÿ

t1PT pb,kq
ξh1pt1q

ÿ

t2PT pc,N´1´kq

ξh2pt2q

“

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

tpaÑ b c, h1, h2|a, hqZpb, h1, kqZpc, h2, N ´ k ´ 1q.
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It follows that

N´1
ÿ

k“0

ÿ

b,c

ÿ

t1PT pb,kq

ÿ

t2PT pc,N´1´kq

`

|T aÑb c
h pξpt1q, dpt2qq| ` |T

aÑb c
h pdpt1q, ξpt2qq|

`|T aÑb c
h pdpt1q, dpt2qq|

˘

“

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

tpaÑ b c, h1, h2|a, hq
ÿ

t1PT pb,kq

ξpt1qh1

ÿ

t2PT pc,N´1´kq

|dpt2qh2 |

`

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

tpaÑ b c, h1, h2|a, hq
ÿ

t1PT pb,kq

|dpt1qh1
|

ÿ

t2PT pc,N´1´kq

ξpt2qh2

`

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

tpaÑ b c, h1, h2|a, hq
ÿ

t1PT pb,kq

|dpt1qh1
|

ÿ

t2PT pc,N´1´kq

|dpt2qh2
|

“

˜

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

tpaÑ b c, h1, h2|a, hq

ˆ

ˆ

ÿ

t1PT pb,kq

ÿ

t2PT pc,N´1´kq

pξpt1qh1
` |dpt1qh1

|qpξpt2qh2
` |dpt2qh2

|q

˙˙

´ Zpa, h,Nq

“

˜

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

tpaÑ b c, h1, h2|a, hqpZpb, h1, kq`

Dpb, h1, kqqpZpc, h2, N ´ k ´ 1q `Dpc, h2, N ´ k ´ 1qq

˙

´ Zpa, h,Nq

“

˜

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

tpaÑ b c, h1, h2|a, hqZpb, h1, kqZpc, h2, N ´ k ´ 1q

ˆp1`
Dpb, h1, kq

Zpb, h1, kq
qp1`

Dpc, h2, N ´ k ´ 1q

Zpc, h2, N ´ k ´ 1q

˙

´ Zpa, h,Nq

“ Zpa, h,Nq

˜

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

gpa, b, c, k, h1, h2qp1` F pb, h1, kqqp1` F pc, h2, N ´ k ´ 1qq

¸

´Zpa, h,Nq (38)

where gpa, b, c, k, h1, h2q “
tpaÑb c,h1,h2|a,hqZpb,h1,kqZpc,h2,N´k´1q

Zpa,h,nq .
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We next derive a bound on the first term as follows:

∆
N´1
ÿ

k“0

ÿ

b,c

ÿ

t1PT pb,kq

ÿ

t2PT pc,N´1´kq

p||ξpt1q||2 ` ||dpt1q||2qp||ξpt2q||2 ` ||dpt2q||2q

ď ∆
N´1
ÿ

k“0

ÿ

b,c

ÿ

t1PT pb,kq

ÿ

t2PT pc,N´1´kq

p||ξpt1q||1 ` ||dpt1q||1qp||ξpt2q||1 ` ||dpt2q||1q

“ ∆
N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

pZpb, h1, kq `Dpb, h1, kqqpZpc, h2, N ´ k ´ 1q `Dpc, h2, N ´ k ´ 1qq

“ ∆
N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

Zpb, h1, kqZpc, h2, N ´ k ´ 1qp1` F pb, h1, kqqp1` F pc, h2, N ´ k ´ 1qq

“ ∆Y pNq
N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

hpk, b, c, h1, h2qp1` F pb, h1, kqqp1` F pc, h2, N ´ k ´ 1qq (39)

where

hpk, b, c, h1, h2q “
Zpb, h1, kqZpc, h2, N ´ k ´ 1q

Y pNq

and Y pNq “
řN´1
k“0

ř

b,c

ř

h1,h2
Zpb, h1, kqZpc, h2, N ´ k ´ 1q.

Combining Eqs. 37, 38 and 39 gives the inequality in Eq. 36, repeated below:

F pa, h,Nq

ď ´1

`

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

gpa, b, c, k, h1, h2qp1` F pb, h1, kqqp1` F pc, h2, N ´ k ´ 1qq

`∆
Y pNq

Zpa, h,Nq

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

hpb, c, k, h1, h2qp1` F pb, h1, kqqp1` F pc, h2, N ´ k ´ 1qq.

�
The following lemma was used in the previous proof:

Lemma 14 Assume we have tensors T̂ and T and that there is some constant ∆ such that
for any y1, y2 P Rm,

||T̂ py1, y2q ´ T py1, y2q||8 ď ∆||y1||2||y
2||2

Then for any y1, y2, ŷ1, ŷ2, for any h, it follows that

|T̂hpŷ
1, ŷ2q ´ Thpy

1, y2q| ď ∆p||y1||2 ` ||d
1||2qp||y

2||2 ` ||d
2||2q

`|Thpy
1, d2q| ` |Thpd

1, d2q| ` |Thpd
1, y2q|

where d1 “ ŷ1 ´ y1, and d2 “ ŷ2 ´ y2.
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Proof: Define
ĝpy1q “ T̂hpy

1, ŷ2q,

gpy1q “ Thpy
1, y2q.

Define d1 “ pŷ1 ´ y1q, d2 “ pŷ2 ´ y2q. For any v P Rm,

|ĝpvq ´ gpvq| “ |T̂hpv, ŷ
2q ´ Thpv, y

2q|

ď |T̂hpv, y
2q ´ Thpv, y

2q| ` |T̂hpv, d
2q ´ Thpv, d

2q| ` |Thpv, d
2q|.

We can then derive the following bound:

|T̂hpŷ
1, ŷ2q ´ Thpy

1, y2q| “ |ĝpŷ1q ´ gpy1q|

ď |ĝpy1q ´ gpy1q| ` |ĝpd1q ´ gpd1q| ` |gpd1q|

ď |T̂hpy
1, y2q ´ Thpy

1, y2q| ` |T̂hpy
1, d2q ´ Thpy

1, d2q| ` |Thpy
1, d2q|

`|T̂hpd
1, y2q ´ Thpd

1, y2q| ` |T̂hpd
1, d2q ´ Thpd

1, d2q| ` |Thpd
1, d2q|

`|Thpd
1, y2q|

ď ∆p||y1||2 ` ||d
1||2qp||y

2||2 ` ||d
2||2q

`|Thpy
1, d2q| ` |Thpd

1, d2q| ` |Thpd
1, y2q|.

�

B.2 Relating ∆, δ, κ to Estimation Errors

We now give a lemma that relates estimation errors in the algorithm to the values for ∆, δ
and κ as defined in the previous section.

Throughout this section, in addition to the estimates D̂aÑb c, d̂8aÑx, Σ̂a, ĈaÑb c, ĉ8aÑx,
ĉ1
a computed by the algorithm in Figure 7, we define quantities

Σa “ ErY1Z
J|A1 “ as

DaÑb c “ E
“

vR1 “ aÑ b cwZY J2 Y
J

3 |A1 “ a
‰

d8aÑx “ E
“

vR1 “ aÑ xwZJ|A1 “ a
‰

CaÑb cpy1, y2q “ DaÑb cpy1, y2qpΣaq´1

c8aÑx “ d8aÑxpΣ
aq´1

c1
a “ E rvA1 “ awY1|B “ 1s

where
Y1 “ pÛ

a1qJφpT1q Z “ pV̂
a1qJψpOq

Y2 “ pÛ
a2qJφpT2q Y3 “ pÛ

a3qJφpT3q.

Note that these definitions are identical to those given in Section 7.2, with the additional
detail that the projection matrices used to define random variables Y1, Y2, Y3, Z are Ûa and
V̂ a, that is, the projection matrices estimated in the first step of the algorithm in Figure 7.

The lemma is as follows:
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Lemma 15 Assume that under a run of the algorithm in Figure 7 there are constants
ε1Ω, ε

2
Ω, εD, εd, επ such that

@a P P, ||Ω̂a ´ Ωa||F ď ε1Ω

@a P I, ||Ω̂a ´ Ωa||F ď ε2Ω

@aÑ b c, ||D̂aÑb c ´DaÑb c||F ď εD

@a P P,
c

ÿ

x

||d̂8aÑx ´ d
8
aÑx||

2
2 ď εd

@a, ||ĉ1
a ´ c

1
a||2 ď επ.

Assume in addition that ε1Ω ď minaPP
σmpΩaq

3 and ε2Ω ď minaPI
σmpΩaq

3 . For all a define

Ga “ pÛaqJIa and Ha “ pGaq´1. Then:

• For all a, Ga is invertible.

• For all y1, y2 P Rm, for all rules of the form aÑ b c

||ĈaÑb cpy1Hb, y2HcqGa ´ CaÑb cpy1Hb, y2HcqGa||8 ď ∆||y1||2||y
2||2

where

∆ “
16

3

1

σmpIbqσmpIcq

ˆ

ε2Ω
σmpΩaq2

`
εD

3σmpΩaq

˙

.

• For all a P P, for all h P rms,
ÿ

x

|rĉ8aÑxG
ash ´ rc

8
aÑxG

ash| ď δ

where

δ “ 4

ˆ

ε1Ω
σmpΩaq2

`
εd
?
n

3σmpΩaq

˙

.

• For all a,
||pGaq´1ĉ1

a ´ pG
aq´1c1

a||1 ď κ

where

κ “
2
?

3

?
m

σmpΩaq
επ.

B.2.1 Proof of Lemma 15

We first prove three necessary lemmas, then give a proof of Lemma 15.

Lemma 16 Assume we have vectors and matrices d P R1ˆm, Σ P Rmˆm, d̂ P R1ˆm,
Σ̂ P Rmˆm, U P Rdˆm, I P Rdˆm. We assume that Σ, Σ̂, and pUJIq are invertible.

In addition, define

c “ dΣ´1

ĉ “ d̂Σ̂´1

Ga “ UJI.

We assume:
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• For h “ 1 . . .m, ||Ih||2 ď 1, where Ih is the h’th column of Ia.

• ||U ||2,o ď 1 where ||U ||2,o is the spectral norm of the matrix U .

• ||Σ̂´ Σ||2,o ď ε1

It follows that

||ĉGa ´ cGa||8 ď
1`

?
5

2

ε1||d̂||2

mintσmpΣq, σmpΣ̂qu2
`
||d̂´ d||2
σmpΣq

.

Proof:

||ĉGa ´ cGa||8

“ ||pĉ´ cqUJI||8

(By definition Ga “ UJI)

ď ||pĉ´ cqUJ||2

(By ||Ih||2 ď 1)

ď ||ĉ´ c||2

(By ||U ||2,o ď 1)

“ ||d̂Σ̂´1 ´ dΣ´1||2

(By definitions of c, ĉ)

ď ||d̂pΣ̂´1 ´ Σ´1q||2 ` ||pd̂´ dqΣ
´1||2

(By triangle inequality)

ď ||d̂||2||Σ̂
´1 ´ Σ´1||2,o ` ||d̂´ d||2||Σ

´1||2,o

(By definition of ||.||2,o)

ď ||d̂||2
1`

?
5

2

ε1

mintσmpΣq, σmpΣ̂qu2
`
||d̂´ d||2
σmpΣq

(By Lemma 23 of Hsu et al. 2009, and ||Σ´1||2,o “ 1{σmpΣq)

Lemma 17 Assume we have vectors c, ĉ P Rmˆ1, and we have a matrix Ga P Rmˆm that
is invertible. It follows that

||pGaq´1ĉ´ pGaq´1c||1 ď

?
m||ĉ´ c||2
σmpGaq

.

Proof:

||pGaq´1ĉ´ pGaq´1c||1 ď
?
m||pGaq´1ĉ´ pGaq´1c||2 ď

?
m||ĉ´ c||2
σmpGaq

.

The first inequality follows because ||.||1 ď
?
m||.||2. The second inequality follows because

||pGaq´1||2,o “ 1{σmpG
aq.
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Lemma 18 Assume we have matrices and tensors D P Rmˆmˆm, Σ P Rmˆm, D̂ P Rmˆmˆm,
Σ̂ P Rmˆm, U P Rdˆm, I P Rdˆm, Gb P Rmˆm, Gc P Rmˆm. We assume that Σ, Σ̂, Gb, Gc,
and UJI are invertible.

In addition define

Cpy1, y2q “ Dpy1, y2qΣ´1

Ĉpy1, y2q “ D̂py1, y2qΣ̂´1

Ga “ UJI

Hb “ pGbq´1

Hc “ pGcq´1

We assume:

• For h “ 1 . . .m, ||Ih||2 ď 1, where Ih is the h’th column of Ia.

• ||U ||2,o ď 1

• ||Σ̂´ Σ||2,o ď ε1

It follows that for any y1, y2 P Rm,

||Ĉpy1Hb, y2HcqGa ´ Cpy1Hb, y2HcqGa||8

ď
||y1||2||y

2||2

σmpGbqσmpGcq

˜

1`
?

5

2
ˆ

ε1||D̂||F

mintσmpΣq, σmpΣ̂qu2
`
||D̂ ´D||F
σmpΣq

¸

.

Proof:

||Ĉpy1Hb, y2HcqGa ´ Cpy1Hb, y2HcqGa||8

ď ||D̂py1Hb, y2Hcq||2
1`

?
5

2

ε1

mintσmpΣq, σmpΣ̂qu2
`
||D̂py1Hb, y2Hcq ´Dpy1Hb, y2Hcq||2

σmpΣq

(By Lemma 16, using d̂ “ D̂py1Hb, y2Hcq, d “ Dpy1Hb, y2Hcq.)

ď ||y1Hb||2||y
2Hc||2

˜

||D̂||F
1`

?
5

2

ε1

mintσmpΣq, σmpΣ̂qu2
`
||D̂ ´D||F
σmpΣq

¸

(By ||Dpv1, v2q||2 ď ||D||F ||v
1||2||v

2||2 for any tensor D, vectors v1, v2.)

ď
||y1||2||y

2||2

σmpGbqσmpGcq

˜

||D̂||F
1`

?
5

2

ε1

mintσmpΣq, σmpΣ̂qu2
`
||D̂ ´D||F
σmpΣq

¸

(By Hb “ pGbq´1 hence ||Hb||2,o “ 1{σmpG
bq. Similar for Hc.)

Proof of Lemma 15: By Lemma 9 of Hsu et al. (2009), assuming that εΩ ď mina
σmpΩaq

3
gives for all a

σmpΣ̂
aq ě

2

3
σmpΩ

aq

σmpΣ
aq ě

?
3

2
σmpΩ

aq
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σmpG
aq ě

?
3

2
σmpI

aq

The condition that σmpI
aq ą 0 implies that σmpG

aq ą 0 and hence Ga is invertible. The
values for ∆ and κ follow from lemmas 18 and and 17 respectively.

The value for δ is derived as follows. By Lemma 16 we have for any rule aÑ x, for any
h P rms,

|rĉ8aÑxG
ash ´ rc

8
aÑxG

ash| ď
1`

?
5

2

ε1||d̂
8
aÑx||2

mintσmpΣaq, σmpΣ̂aqu2
`
||d̂8aÑx ´ d

8
aÑx||2

σmpΣaq
. (40)

By definition

d̂8aÑx “

˜

řM
i“1vr

pi,1q “ aÑ xw
řM
i“1vai “ aw

¸

ˆ

˜

řM
i“1vr

pi,1q “ aÑ xwpzpiqqJ
řM
i“1vr

pi,1q “ aÑ xw

¸

In addition zpiq “ pV̂ aiqJψptpi,1qq and ||V̂ ai ||2,o ď 1, ||ψptpi,1qq||2 ď 1, hence ||zpiq||2 ď 1, and

||d̂8aÑx||2 ď

řM
i“1vr

pi,1q “ aÑ xw
řM
i“1vai “ aw

.

It follows that
ÿ

x

||d̂8aÑx||2 ď 1. (41)

In addition we have

ÿ

x

||d̂8aÑx ´ d
8
aÑx||2 ď

?
n
c

ÿ

x

||d̂8aÑx ´ d
8
aÑx||

2
2 ď

?
nεd. (42)

Combining Eqs. 41, 42 and 40 gives for any a P P, for any h P rms,

ÿ

x

|rĉ8aÑxG
ash ´ rc

8
aÑxG

ash| ď
1`

?
5

2

ε1

mintσmpΣaq, σmpΣ̂aqu2
`

?
n
b

ř

x ||d̂
8
aÑx ´ d

8
aÑx||

2
2

σmpΣaq

from which the lemma follows.
�

B.3 Estimation Errors

The next lemma relates estimation errors to the number of samples in the algorithm in
Figure 4:

Lemma 19 Consider the algorithm in Figure 7. With probability at least 1´δ, the following
statements hold:

@a P I,
d

ÿ

b,c

||D̂aÑb c ´DaÑb c||2F ď

c

1

Ma
`

d

2

Ma
log

2|N | ` 1

δ
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@a P P,
c

ÿ

x

||d̂8aÑx ´ d
8
aÑx||

2
2 ď

c

1

Ma
`

d

2

Ma
log

2|N | ` 1

δ

@a P N , ||Ω̂a ´ Ωa||F ď

c

1

Na
`

d

2

Na
log

2|N | ` 1

δ

c

ÿ

a

||ĉ1
a ´ c

1
a||

2
2 ď

c

1

R
`

c

2

R
log

2|N | ` 1

δ

B.3.1 Proof of Lemma 19

We first need the following lemma:

Lemma 20 Assume i.i.d. random vectors X1 . . . XN where each Xi P Rd, and for all i with
probability 1, ||Xi||2 ď 1. Define

q “ ErXis

for all i and

Q̂ “

řN
i“1Xi

N
.

Then for any ε ą 0,

Pp||Q̂´ q||2 ě 1{
?
N ` εq ď e´Nε

2{2.

Proof: The proof is very similar to the proof of proposition 19 of Hsu et al. (2009).
Consider two random samples x1 . . . xn and y1 . . . yn where xi “ yi for all i ‰ k. define

q̂ “

řN
i“1 xi
N

and

p̂ “

řN
i“1 yi
N

.

Then

||q̂ ´ q||2 ´ ||p̂´ q||2 ď ||q̂ ´ p̂||2 “
||xk ´ yk||2

N
ď
||xk||2 ` ||yk||2

N
ď

2

N
.

It follows through McDiarmid’s inequality (McDiarmid, 1989) that

Prp||Q̂´ q||2 ě E||Q̂´ q||2 ` εq ď e´Nε
2{2
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In addition,

E
”

||Q̂´ q||2

ı

“ E

«

||

řN
i“1Xi

N
´ q||2

ff

“
1

N
E

«

||

N
ÿ

i“1

pXi ´ qq||2

ff

ď
1

N

g

f

f

eE

«

||

N
ÿ

i“1

pXi ´ qq||22

ff

(By Jensen’s inequality)

“
1

N

g

f

f

e

N
ÿ

i“1

E
“

||pXi ´ qq||22
‰

(By independence of the Xi’s)

“
1

N

g

f

f

e

N
ÿ

i“1

E
“

||Xi||
2
2

‰

´N ||q||22

ď
1

N

b

Np1´ ||q||22q

(By ||Xi||2 ď 1.)

ď
1
?
N
,

which completes the proof. �
Proof of Lemma 19: For each aÑ b c, i, j, k P rms, define a random variable

AaÑb ci,j,k “ vR1 “ aÑ b cwZiY
2
j Y

3
k .

It follows that

DaÑb c
i,j,k “ ErAaÑb ci,j,k |A1 “ as.

Note that

||Z||2 “ ||pV
aqJψpOq||2 ď 1

because ||V a||2,o ď 1, and ||ψpOq||2 ď 1. Similarly ||Y 2||2 ď 1 and ||Y 3||2 ď 1.

In addition we have for all a P I,

ÿ

b,c

m
ÿ

i“1

m
ÿ

j“1

m
ÿ

k“1

|AaÑb ci,j,k |2 “
ÿ

b,c

m
ÿ

i“1

m
ÿ

j“1

m
ÿ

k“1

|Zi|
2|Y 2

j |
2|Y 3

k |
2vR1 “ aÑ b cw2

“ ||Z||22||Y
2||22||Y

3||22p
ÿ

b,c

vR1 “ aÑ b cw2q ď 1
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It follows by an application of Lemma 20 that for the definitions of DaÑb c and D̂aÑb c in
Figure 7, for all a,

Pp

d

ÿ

b,c

ÿ

i,j,k

|D̂aÑb c
i,j,k ´DaÑb c

i,j,k |2 ě 1{
a

Ma ` ε1q ď e´Maε21{2,

or equivalently,

P

¨

˝

d

ÿ

b,c

||D̂aÑb c ´DaÑb c||2F ě
1

?
Ma

`

d

2

Ma
log

2|N | ` 1

δ

˛

‚ď
δ

2|N | ` 1
. (43)

By a similar argument, if for each a P P, x P rns, i P rms we define the random variable

BaÑx
i “ ZivR1 “ aÑ xw

then

d8aÑx “ ErBaÑx
i |A1 “ as

and
ÿ

x

m
ÿ

i“1

|BaÑx
i |2 “

ÿ

x

m
ÿ

i“1

|Zi|
2vR1 “ aÑ xw2 ď 1

It follows by an application of Lemma 20 that for the definitions of d8aÑx and d̂8aÑx in
Figure 7, for all a,

Pp

d

ÿ

x

ÿ

i

|rd̂8aÑxsi ´ rd
8
aÑxsi|

2 ě 1{
a

Na ` ε2q ď e´Maε22{2

or equivalently

P

˜

c

ÿ

x

||d̂8aÑx ´ d
8
aÑx||

2
2 ě

1
?
Ma

`

d

2

Ma
log

2|N | ` 1

δ

¸

ď
δ

2|N | ` 1
. (44)

A similar argument can be used to show that for all a, for the definitions of Ωa and Ω̂a

in Figure 7,

Pp

d

ÿ

i,j

|Ω̂a
i,j ´ Ωa

i,j |
2 ě 1{

a

Na ` ε3q ď e´Naε
2
3{2

or equivalently

P

˜

||Ω̂a ´ Ωa||F ě
1

?
Na

`

d

2

Na
log

2|N | ` 1

δ

¸

ď
δ

2|N | ` 1
(45)

Finally, if we define the random variable

F ai “ Y 1
i vA1 “ aw
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then
ÿ

a

ÿ

i

|F ai |
2 “

ÿ

a

ÿ

i

|Y 1
i |

2vA1 “ aw2 ď 1.

In addition
c1
a “ ErF ai |B “ 1s.

It follows by an application of Lemma 20 that for the definitions of c1
a and ĉ1

a in Figure 7,

Pp

d

ÿ

a

ÿ

i

|rĉ1
asi ´ rc

1
asi|

2 ě 1{
?
R` ε4q ď e´Rε

2
4{2

or equivalently

P

˜

c

ÿ

a

||ĉ1
a ´ c

1
a||

2
2 ě

1
?
R
`

c

2

R
log

2|N | ` 1

δ

¸

ď
δ

2|N | ` 1
. (46)

Finally, applying the union bound to the 2|N | ` 1 events in Eqs. 43, 44, 45 and 46 proves
the theorem. �

B.4 Proof of Theorem 8

Under the assumptions of the theorem, we have constants C1, C2, C3, C4 and C5 such that

@a P I, Na ě Lˆ

ˆ

C1
N

γε

m

ξ2σ2

˙2

@a P P, Na ě Lˆ

ˆ

C2Nm

εσ2

˙2

@a P I,Ma ě Lˆ

ˆ

C3
N

γε

m

ξ2σ

˙2

@a P P,Ma ě Lˆ

ˆ

C4
Nm

?
n

εσ

˙2

R ě Lˆ

ˆ

C5
Nm

?
m

εσ

˙2

It follows from Lemma 19 that with probability at least 1´ δ,

@a P I, ||Ω̂a ´ Ωa||F ď ε1Ω

@a P P, ||Ω̂a ´ Ωa||F ď ε2Ω

@aÑ b c, ||D̂aÑb c ´DaÑb c||F ď εD

@a P P,
c

ÿ

x

||d̂8aÑx ´ d
8
aÑx||2 ď εd

@a, ||ĉ1
a ´ c

1
a||2 ď επ

where

ε1Ω ď 3ˆ
1

C2
ˆ σ2 ˆ

ε

Nm

ε2Ω ď 3ˆ
1

C1
ˆ ξ2σ2 ˆ

γε

Nm

εD ď 3ˆ
1

C3
ˆ ξ2σ ˆ

γε

Nm
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εd ď 3ˆ
1

C4
ˆ σ ˆ

ε
?
nNm

επ ď 3ˆ
1

C5
ˆ

σ
?
m
ˆ

ε

Nm
.

It follows from Lemma 15 that with suitable choices of C1 . . . C5, the inequalities in Lemma 15
hold with values

∆ ď
γε

4Nm

δ ď
ε

4Nm

κ ď
ε

4Nm
.

It follows from Lemma 12 that

ÿ

tPT pa,Nq
|p̂ptq ´ pptq| ď m

ˆ

´

1`
ε

4Nm

¯2N
´ 1

˙

ď ε

where the second inequality follows because p1` a{tqt ď 1` 2a for a ď 1{2.

References

S. Arora, R. Ge, Y. Halpern, D. M. Mimno, A. Moitra, D. Sontag, Y. Wu, and M. Zhu. A
practical algorithm for topic modeling with provable guarantees. In Proceedings of ICML,
2013.

R. Bailly, A. Habrar, and F. Denis. A spectral approach for probabilistic grammatical
inference on trees. In Proceedings of ALT, 2010.

R. Bailly, Carreras P. X., F. M. Luque, and A. J. Quattoni. Unsupervised spectral learning
of WCFG as low-rank matrix completion. In Proceedings of EMNLP, 2013.

J. Baker. Trainable grammars for speech recognition. In Proceedings of ASA, 1979.

B. Balle, A. Quattoni, and X. Carreras. A spectral learning algorithm for finite state
transducers. In Proceedings of ECML, 2011.

P.J. Bickel and K.A. Doksum. Mathematical Statistics: Basic Ideas And Selected Topics.
Mathematical Statistics: Basic Ideas and Selected Topics. Pearson Prentice Hall, 2006.

E. Charniak. Statistical parsing with a context-free grammar and word statistics. In Pro-
ceedings of AAAI-IAAI, 1997.

S. B. Cohen and M. Collins. A provably correct learning algorithm for latent-variable
PCFGs. In Proceedings of ACL, 2014.

S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and L. Ungar. Spectral learning of
latent-variable PCFGs. In Proceedings of ACL, 2012.

2447



Cohen, Stratos, Collins, Foster and Ungar

S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and L. Ungar. Experiments with spectral
learning of latent-variable PCFGs. In Proceedings of NAACL, 2013.

M. Collins. Three generative, lexicalised models for statistical parsing. In Proceedings of
ACL, 1997.

S. Dasgupta. Learning mixtures of Gaussians. In Proceedings of FOCS, 1999.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood estimation from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society B, 39:1–38, 1977.

P. Dhillon, D. Foster, and L. Ungar. Multi-view learning of word embeddings via CCA. In
Proceedings of NIPS, 2011.

P. Dhillon, J. Rodu, M. Collins, D. P. Foster, and L. H. Ungar. Spectral dependency parsing
with latent variables. In Proceedings of EMNLP, 2012.

D. P. Foster, J. Rodu, and L. H. Ungar. Spectral dimensionality reduction for HMMs.
arXiv:1203.6130, 2012.

J. Goodman. Parsing algorithms and metrics. In Proceedings of ACL, 1996.

D. Hsu, S. M. Kakade, and T. Zhang. A spectral algorithm for learning hidden Markov
models. In Proceedings of COLT, 2009.

H. Jaeger. Observable operator models for discrete stochastic time series. Neural Compu-
tation, 12(6), 2000.

M. Johnson. PCFG models of linguistic tree representations.

D. Klein and C.D. Manning. Accurate Unlexicalized Parsing. In Proceedings of ACL, pages
423–430, 2003.

F. M. Luque, A. Quattoni, B. Balle, and X. Carreras. Spectral learning for non-deterministic
dependency parsing. In Proceedings of EACL, 2012.

M.P. Marcus, B. Santorini, and M.A. Marcinkiewicz. Building a large annotated corpus of
english: The penn treebank. Computational Linguistics, 19(2):313–330, 1993.

T. Matsuzaki, Y. Miyao, and J. Tsujii. Probabilistic CFG with latent annotations. In
Proceedings of ACL, 2005.

C. McDiarmid. On the method of bounded differences. Surveys in Combinatorics, pages
148–188, 1989.

A. Moitra and G. Valiant. Settling the polynomial learnability of mixtures of Gaussians.
IEEE Annual Symposium on Foundations of Computer Science, pages 93–102, 2010. ISSN
0272-5428.

A. Parikh, L. Song, and E. P. Xing. A spectral algorithm for latent tree graphical models.
In Proceedings of ICML, 2011.

2448



Spectral Learning of L-PCFGs: Algorithms and Sample Complexity

S. Petrov, L. Barrett, R. Thibaux, and D. Klein. Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of COLING-ACL, 2006.

S. Siddiqi, B. Boots, and G. Gordon. Reduced-rank hidden Markov models. Journal of
Machine Learning Research, 9:741–748, 2010.

L. Song, B. Boots, S. M. Siddiqi, G. J. Gordon, and A. J. Smola. Hilbert space embeddings
of hidden Markov models. In Proceedings of ICML, 2010.

L. Song, A. P. Parikh, and E. P. Xing. Kernel embeddings of latent tree graphical models.
In NIPS, pages 2708–2716, 2011.

K. Stratos, A. M. Rush, S. B. Cohen, and M. Collins. Spectral learning of refinement
HMMs. In Proceedings of CoNLL, 2013.

S. A. Terwijn. On the learnability of hidden Markov models. In Grammatical Inference: Al-
gorithms and Applications (Amsterdam, 2002), volume 2484 of Lecture Notes in Artificial
Intelligence, pages 261–268, Berlin, 2002. Springer.

A. Tropp, N. Halko, and P. G. Martinsson. Finding structure with randomness: Stochastic
algorithms for constructing approximate matrix decompositions. In Technical Report No.
2009-05, 2009.

L. Valiant. A theory of the learnable. Communications of the ACM, 27:1134–1142, 1984.

S. Vempala and G. Wang. A spectral algorithm for learning mixtures of distributions.
Journal of Computer and System Sciences, 68(4):841–860, 2004.

2449



 



Journal of Machine Learning Research 15 (2014) 2451-2487 Submitted 7/13; Revised 1/14; Published 7/14

On Multilabel Classification and Ranking with Bandit
Feedback

Claudio Gentile claudio.gentile@uninsubria.it
DiSTA, Università dell’Insubria
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Abstract

We present a novel multilabel/ranking algorithm working in partial information settings.
The algorithm is based on 2nd-order descent methods, and relies on upper-confidence
bounds to trade-off exploration and exploitation. We analyze this algorithm in a partial
adversarial setting, where covariates can be adversarial, but multilabel probabilities are
ruled by (generalized) linear models. We show O(T 1/2 log T ) regret bounds, which improve
in several ways on the existing results. We test the effectiveness of our upper-confidence
scheme by contrasting against full-information baselines on diverse real-world multilabel
data sets, often obtaining comparable performance.

Keywords: contextual bandits, structured prediction, ranking, online learning, regret
bounds, generalized linear

1. Introduction

Consider a book recommendation system. Given a customer’s profile, the system recom-
mends a few possible books to the user by means of, e.g., a limited number of banners
placed at different positions on a webpage. The system’s goal is to select books that the
user likes and possibly purchases. Typical feedback in such systems is the actual action of
the user or, in particular, what books he has bought/preferred, if any. The system cannot
observe what would have been the user’s actions had other books got recommended, or had
the same book ads been placed in a different order within the webpage.

Such problems are collectively referred to as learning with partial feedback. As opposed
to the full information case, where the system (the learning algorithm) knows the outcome
of each possible response (e.g., the user’s action for each and every possible book recom-
mendation placed in the largest banner ad), in the partial feedback setting the system only
observes the response to very limited options and, specifically, the option that was actually
recommended.

In this and many other examples of this sort, it is reasonable to assume that recom-
mended options are not given the same treatment by the system, e.g., large banners which

c©2014 Claudio Gentile and Francesco Orabona.
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are displayed on top of the page should somehow be more committing as a recommendation
than smaller ones placed elsewhere. Moreover, it is often plausible to interpret the user
feedback as a preference (if any) restricted to the displayed alternatives.

In this paper, we consider instantiations of this problem in the multilabel and learning-
to-rank settings. Learning proceeds in rounds: in round t, the algorithm receives an instance
xt and outputs an ordered subset Ŷt of labels from a finite set of possible labels [K] =
{1, 2, . . . ,K}. Restrictions might apply to the size of Ŷt (due, e.g., to the number of available
slots in the webpage, or to the specifics of the targeted user). The set Ŷt corresponds to the
aforementioned recommendations, and is intended to approximate the true set of preferences
associated with xt. However, the latter set is never observed. In its stead, the algorithm
receives Yt ∩ Ŷt, where Yt ⊆ [K] is a noisy version of the true set of user preferences on xt.
When we are restricted to |Ŷt| = 1 for all t, this becomes a multiclass classification problem
with bandit feedback—see below.

1.1 Related Work

This paper lies at the intersection between online learning with partial feedback and mul-
tilabel classification/ranking. Both fields include a substantial amount of work, so we can
hardly do it justice here. In the sequel, we outline some of the main contributions in the
two fields, with an emphasis on those we believe are the most related to this paper.

A well-known tool for facing the problem of partial feedback in online learning is to
trade off exploration and exploitation through upper confidence bounds. This technique
has been introduced by Lai and Robbins (1985), and can by now be considered a standard
tool. In the so-called bandit setting with contextual information (sometimes called bandits
with side information or bandits with covariates, e.g., Auer 2002; Dani et al. 2008; Filippi
et al. 2010; Crammer and Gentile 2011; Krause and Ong 2011, and references therein) an
online algorithm receives at each time step a context (typically, in the form of a feature
vector x) and is compelled to select an action (e.g., a label), whose goodness is quantified
by a predefined loss function. Full information about the loss function (one that would
perhaps allow to minimize the total loss over the contexts seen so far) is not available. The
specifics of the interaction model determines which pieces of loss will be observed by the
algorithm, e.g., the actual value of the loss on the chosen action, some information on more
profitable directions on the action space, noisy versions thereof, etc. The overall goal is
to compete against classes of functions that map contexts to (expected) losses in a regret
sense, that is, to obtain sublinear cumulative regret bounds.

All these algorithms share the common need to somehow trade off an exploratory atti-
tude for gathering loss information on unchosen directions of the context-action space, and
an exploitatory attitude for choosing actions that are deemed best according to the available
data. For instance, Auer (2002); Dani et al. (2008); Filippi et al. (2010); Abbasi-Yadkori
et al. (2011) work in a finite action space where the mappings context-to-loss for each action
are linear (or generalized linear, as Filippi et al., 2010’s) functions of the features. They all
obtain T 1/2-like regret bounds, where T is the time horizon. This is extended by Krause and
Ong (2011), where the loss function is modeled as a sample from a Gaussian process over
the joint context-action space. We are using a similar (generalized) linear modeling here.
An earlier (but somehow more general) setting that models such mappings by VC-classes
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is considered by Langford and Zhang (2008), where a T 2/3 regret bound has been proven
under i.i.d. assumptions. Linear multiclass classification problems with bandit feedback
are considered by, e.g., Kakade et al. (2008); Crammer and Gentile (2011); Hazan and Kale
(2011), where either T 2/3 or T 1/2 or even logarithmic regret bounds are proven, depending
on the noise model and the underlying loss functions.

All the above papers do not consider structured action spaces, where the learner is
allowed to select sets of actions, which is more suitable to multilabel and ranking problems.
Along these lines are the papers by Hazan and Kale (2009); Streeter et al. (2009); Kale et al.
(2010); Slivkins et al. (2010); Shivaswamy and Joachims (2012); Amin et al. (2011). The
general problem of online minimization of a submodular loss function under both full and
bandit information without covariates is considered by Hazan and Kale (2009), achieving a
regret T 2/3 in the bandit case. Streeter et al. (2009) consider the problem of online learning
of assignments, where at each round an algorithm is requested to assign positions (e.g.,
rankings) to sets of items (e.g., ads) with given constraints on the set of items that can be
placed in each position. Their problem shares similar motivations as ours but, again, the
bandit version of their algorithm does not explicitly take side information into account, and
leads to a T 2/3 regret bound. Another paper with similar goals but a different mathematical
model is by Kale et al. (2010), where the aim is to learn a suitable ordering (an “ordered
slate”) of the available actions. Among other things, the authors prove a T 1/2 regret bound
in the bandit setting with a multiplicative weight updating scheme. Yet, no contextual
information is incorporated. Slivkins et al. (2010) motivate the ability of selecting sets of
actions by a problem of diverse retrieval in large document collections which are meant to
live in a general metric space. In contrast to our paper, that approach does not lead to
strong regret guarantees for specific (e.g., smooth) loss functions. Shivaswamy and Joachims
(2012) use a simple linear model for the hidden utility function of users interacting with
a web system and providing partial feedback in any form that allows the system to make
significant progress in learning this function (this is called an α-informative feedback by the
authors). Under these assumptions, a regret bound of T 1/2 is again provided that depends on
the degree of informativeness of the feedback, as measured by the progress made during the
learning process. It is experimentally argued that this feedback is typically made available
by a user that clicks on relevant URLs out of a list presented by a search engine. Despite
the neatness of the argument, no formal effort is put into relating this information to the
context information at hand or, more generally, to the way data are generated. The recent
paper by Amin et al. (2011) investigates classes of graphical models for contextual bandit
settings that afford richer interaction between contexts and actions leading again to a T 2/3

regret bound.

Finally, further interesting recent works that came to our attention at the time of writing
this extended version of our conference paper (Gentile and Orabona, 2012) are the papers
by Bartók and Szepesvári (2012), by Bartók (2013), and by Agarwal (2013). In Bartók
and Szepesvári (2012), the authors provide sufficient conditions (“local observability”) that
insure rates of the form T 1/2 in partial monitoring games with side information. Partial
monitoring is an attempt to formalize through a unifying language the partial information
settings where the algorithm is observing only partial information about the loss of its
action, in the form of some kind of feedback or “signal”. The results presented by Bartók
and Szepesvári (2012) do not seem to conveniently extend to the structured action space
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setting we are interested in (or, if they do, we do not see it in the current version of their
paper). Moreover, being very general in scope, that paper is missing a tight dependence of
the regret bound on the number of available actions, which can be very large in structured
action spaces. Progress in this directions has very recently been made by Bartók (2013),
where the dependence on the number of actions is replaced by a quantity depending on
the structure of the action space in the locally observable game. Yet, no side information
is considered in that paper. The paper by Agarwal (2013) investigates multiclass selective
sampling settings (similar to Cavallanti et al., 2011; Cesa-Bianchi et al., 2009; Dekel et al.,
2012; Orabona and Cesa-Bianchi, 2011) with essentially the same generalized linear models
as the ones we consider here. As such, that paper is close to ours only from a technical
viewpoint.

The literature on multilabel learning and learning to rank is overwhelming. The wide at-
tention this literature attracts is often motivated by its web-search-engine or recommender-
system applications, and many of the papers are experimental in nature. Relevant references
include the work by Tsoumakas et al. (2011); Furnkranz et al. (2008); Dembczynski et al.
(2012), along with references therein. Moreover, when dealing with multilabel, the typical
assumption is full supervision, an important concern being modeling correlations among
classes. In contrast to that, the specific setting we are considering here need not face such
a modeling issue (Dembczynski et al., 2012). The more recent work by Wang et al. (2012)
reduces any online algorithm working on pairwise loss functions (like a ranking loss) to a
batch algorithm with generalization bound guarantees. But, again, only fully supervised
settings are considered. Other related references are the papers by Herbrich et al. (2000);
Freund et al. (2003), where learning is by pairs of examples. Yet, these approaches need i.i.d.
assumptions on the data, and typically deliver batch learning procedures. Finally, more re-
cent efforts related to proving consistency of pairwise ranking methods are Clémençon et al.
(2005); Cossock and Zhang (2006); Duchi et al. (2010); Buffoni et al. (2011); Lan et al.
(2012) where, unlike this paper, multi-level user ratings are assumed to be available.

To summarize, whereas we are technically closer to the linear modeling approaches by
Auer (2002); Dani et al. (2008); Dekel et al. (2012); Crammer and Gentile (2011); Filippi
et al. (2010); Abbasi-Yadkori et al. (2011); Krause and Ong (2011); Bartók and Szepesvári
(2012); Agarwal (2013), from a motivational standpoint we are perhaps closest to Streeter
et al. (2009); Kale et al. (2010); Shivaswamy and Joachims (2012).

1.2 Our Results

We investigate the multilabel and learning-to-rank problems in a partial feedback scenario
with contextual information, where we assume a probabilistic linear model over the labels,
although the contexts can be chosen by an adaptive adversary. We consider two families of
loss functions, one is a cost-sensitive multilabel loss that generalizes the standard Hamming
loss in several respects, the other is a kind of (unnormalized) ranking loss. In both cases, the
learning algorithm is maintaining a (generalized) linear predictor for the probability that
a given label occurs, the ranking being produced by upper confidence-corrected estimated
probabilities. In such settings, we prove T 1/2 log T cumulative regret bounds, which are
essentially optimal (up to log factors) in some cases. A distinguishing feature of our user
feedback model is that, unlike previous papers (e.g., Hazan and Kale 2009; Streeter et al.
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2009; Abbasi-Yadkori et al. 2011; Krause and Ong 2011), we are not assuming the algorithm
is observing a noisy version of the risk function on the currently selected action. In fact,
when a generalized linear model is adopted, the mapping context-to-risk turns out to be
nonconvex in the parameter space. Furthermore, when operating on structured action
spaces this more traditional form of bandit model does not seem appropriate to capture
the typical user preference feedback. Our approach is based on having the loss decoupled
from the label generating model, the user feedback being a noisy version of the gradient of
a surrogate convex loss associated with the model itself. As a consequence, the algorithm
is not directly dealing with the original loss when making exploration. In this sense, we
are more similar to the multiclass bandit algorithm by Crammer and Gentile (2011). Yet,
our work is a substantial departure from Crammer and Gentile’s (2011) in that we lift their
machinery to nontrivial structured action spaces, and we do so by means of generalized
linear models. On one hand, these extensions pose several extra technical challenges; on
the other, they provide additional modeling power and practical advantage.

Though the emphasis is on theoretical results, we also validate our algorithms on real-
world multilabel data sets under several experimental conditions: data set size, label set
size, loss functions, training mode and performance (online vs. batch), label generation
model (linear vs. logistic). Under all such conditions, our algorithms are contrasted against
the corresponding multilabel/ranking baselines that operate with full information, often
showing (surprisingly enough) comparable prediction performance.

1.3 Structure of the Paper

The paper is organized as follows. In Section 2 we introduce our learning model, our first
loss function, the label generation model, and some preliminary results and notation used
throughout the rest of the paper. In Section 3 we describe our partial feedback algorithm
working under the loss function introduced in Section 2, along with the associated regret
analysis. In Section 4 we show that a very similar machinery applies to ranking with partial
feedback, where the loss function is a kind of pairwise ranking loss (with partial feedback).
Similar regret bounds are then presented that work under additional modeling restrictions.
In Section 5 we provide our experimental comparison. Section 6 gives proof ideas and
technical details. The paper is concluded with Section 7, where possible directions for
future research are mentioned.

2. Model and Preliminaries

We consider a setting where the algorithm receives at time t the side information vector
xt ∈ Rd, is allowed to output a (possibly ordered) subset1 Ŷt ⊆ [K] of the set of possible
labels, then the subset of labels Yt ⊆ [K] associated with xt is generated, and the algorithm
gets as feedback Ŷt ∩ Yt. The loss suffered by the algorithm may take into account several
things: the distance between Yt and Ŷt (both viewed as sets), as well as the cost for playing
Ŷt. The cost c(Ŷt) associated with Ŷt might be given by the sum of costs suffered on
each class i ∈ Ŷt, where we possibly take into account the order in which i occurs within
Ŷt (viewed as an ordered list of labels). Specifically, given constant a ∈ [0, 1] and costs

1. An ordered subset is like a list with no repeated items.
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c = {c(i, s), i = 1, . . . , s, s ∈ [K]}, such that 1 ≥ c(1, s) ≥ c(2, s) ≥ . . . c(s, s) ≥ 0, for all
s ∈ [K], we consider the loss function

`a,c(Yt, Ŷt) = a |Yt \ Ŷt|+ (1− a)
∑

i∈Ŷt\Yt

c(ji, |Ŷt|),

where ji is the position of class i in Ŷt, and c(ji, ·) depends on Ŷt only through its size
|Ŷt|. In the above, the first term accounts for the false negative mistakes, hence there is no
specific ordering of labels therein. The second term collects the loss contribution provided
by all false positive classes, taking into account through the costs c(ji, |Ŷt|) the order in
which labels occur in Ŷt. The constant a serves as weighting the relative importance of
false positive vs. false negative mistakes.2 As a specific example, suppose that K = 10,
the costs c(i, s) are given by c(i, s) = (s − i + 1)/s, i = 1, . . . , s, the algorithm plays the
ordered list Ŷt = (4, 3, 6), but Yt is the (unordered) set {1, 3, 8}. In this case, |Yt \ Ŷt| = 2,
and

∑
i∈Ŷt\Yt c(ji, |Ŷt|) = 3/3 + 1/3, i.e., the cost for mistakenly playing class 4 in the top

slot of Ŷt is more damaging than mistakenly playing class 6 in the third slot. In the special
case when all costs are unitary, there is no longer need to view Ŷt as an ordered collection,
and the above loss reduces to a standard Hamming-like loss between sets Yt and Ŷt, i.e.,
a |Yt \ Ŷt| + (1 − a) |Ŷt \ Yt|. Notice that the partial feedback Ŷt ∩ Yt allows the algorithm
to know which of the chosen classes in Ŷt are good or bad (and to what extent, because of
the selected ordering within Ŷt).

The reader should also observe the asymmetry between the label set Ŷt produced by the
algorithm and the true label set Yt: the algorithm predicts an ordered set of labels, but the
true set of labels is unordered. In fact, it is often the case in, e.g., recommender system
practice, that the user feedback does not contain preference information in the form of an
ordered set of items. Still, in such systems we would like to get back to the user with an
appropriate ranking over the items.

Working with the above loss function makes the algorithm’s output Ŷt become a ranked
list of classes, where ranking is restricted to the deemed relevant classes only. In this sense,
the above problem can be seen as a partial information version of the multilabel ranking
problem (see the work by Furnkranz et al., 2008, and references therein). In a standard
multilabel ranking problem a classifier has to provide for any given instance xt, both a
separation between relevant and irrelevant classes and a ranking of the classes within the
two sets (or, perhaps, over the whole set of classes, as long as ranking is consistent with the
relevance separation). In our setting, instead, ranking applies to the selected classes only,
but the information gathered by the algorithm while training is partial. That is, only a
relevance feedback among the selected classes is observed (the set Yt∩Ŷt), but no supervised
ranking information (e.g., in the form of pairwise preferences) is provided to the algorithm
within this set. Alternatively, we can think of a ranking framework where restrictions on
the size of Ŷt are set by an exogenous (and possibly time-varying) parameter of the problem,
and the algorithm is required to provide a ranking complying with these restrictions. In
this sense, an alternative interpretation of the ranking-sensitive term

∑
i∈Ŷt\Yt c(ji, |Ŷt|) in

`a,c(Yt, Ŷt) is a Discounted Cumulative Gain (DCG) difference between the optimal ranking

2. Parameter a is not redundant here, since the costs c(i, s) have been normalized to [0,1].
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(i.e., the one sorting the |Yt| classes in Yt according to decreasing value of c(i, |Ŷt|)) and
the actual ranking contained in Ŷt, the discounting function being just the coefficients
c(i, |Ŷt|), i = 1, . . . |Ŷt|. DCG is a standard metric for measuring the effectiveness of Web
search engine algorithms (e.g., Jarvelin and Kekalainen, 2002).

Another important concern we would like to address with our loss function `a,c is to
avoid combinatorial explosions due to the exponential number of possible choices for Ŷt.
As we shall see below, this is guaranteed by the chosen structure for costs c(i, s). Another
loss function providing similar guarantees (though with additional modeling restrictions) is
the (pairwise) ranking loss considered in Section 4, where more on the connection to the
ranking setting with partial feedback is given.

The problem arises as to which noise model we should adopt so as to encompass sig-
nificant real-world settings while at the same time affording efficient implementation of
the resulting algorithms. For any subset Yt ⊆ [K], we let (y1,t, . . . , yK,t) ∈ {0, 1}K be the
corresponding indicator vector. Then it is easy to see that

`a,c(Yt, Ŷt) = a
∑
i/∈Ŷt

yi,t + (1− a)
∑
i∈Ŷt

c(ji, |Ŷt|) (1− yi,t)

= a
K∑
i=1

yi,t + (1− a)
∑
i∈Ŷt

(
c(ji, |Ŷt|)−

(
a

1−a + c(ji, |Ŷt|)
)
yi,t

)
.

Moreover, because the first sum does not depend on Ŷt, for the sake of optimizing over Ŷt
(but also for the sake of defining the regret RT—see below) we can equivalently define

`a,c(Yt, Ŷt) = (1− a)
∑
i∈Ŷt

(
c(ji, |Ŷt|)−

(
a

1−a + c(ji, |Ŷt|)
)
yi,t

)
. (1)

Note that the algorithm can evaluate the value of this loss, using the feedback received.
Let Pt(·) be a shorthand for the conditional probability P(· |xt), where the side information
vector xt can in principle be generated by an adaptive adversary as a function of the past.
Then

Pt(y1,t, . . . , yK,t) = P(y1,t, . . . , yK,t |xt).

We will assume that the marginals Pt(yi,t = 1) satisfy3

Pt(yi,t = 1) =
g(−u>i xt)

g(u>i xt) + g(−u>i xt)
, i = 1, . . . ,K, (2)

for some K vectors u1, . . . ,uK ∈ Rd, and a (known) function g : D ⊆ R → R+, that
is the negative derivative of a suitable convex and nonincreasing function. The model is
well defined if u>i x ∈ D for all i and all x ∈ Rd chosen by the adversary. We assume for
the sake of simplicity that ||xt|| = 1 for all t. Notice that here the variables yi,t need not
be conditionally independent. We are only defining a family of allowed joint distributions

3. The reader familiar with generalized linear models will recognize the derivative of the function p(∆) =
g(−∆)

g(∆)+g(−∆)
as the (inverse) link function of the associated canonical exponential family of distributions

(McCullagh and Nelder, 1989).
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Pt(y1,t, . . . , yK,t) through the properties of their marginals Pt(yi,t). A classical result in the
theory of copulas (Sklar, 1959) makes one derive all allowed joint distributions starting from
the corresponding one-dimensional marginals. It is also important to point out the arbitrary
dependence of xt on the past, since the typical scenarios we are modeling here (human
interaction) are producing data sequences which are nonstationary in nature, implying that
traditional statistical inference methods (e.g., empirical risk minimization) should be used
cautiously.

Our algorithm will be based on the loss function L, which is such that the function
g above is equal to the negative derivative of L. For instance, if L is the square loss
L(∆) = (1−∆)2/2, then g(∆) = 1−∆, resulting in Pt(yi,t = 1) = (1 +u>i xt)/2, under the
assumption D = [−1, 1]. If L is the logistic loss L(∆) = ln(1 + e−∆), then g(∆) = 1

e∆+1
,

and Pt(yi,t = 1) = eu
>
i xt/(eu

>
i xt + 1), with domain D = R. Observe that in both cases

Pt(yi,t = 1) is an increasing function of u>i xt. This will be true in general.
Set for brevity ∆i,t = u>i xt. Taking into account (1), this model allows us to write the

(conditional) expected loss of the algorithm playing Ŷt as

Et[`a,c(Yt, Ŷt)] = (1− a)
∑
i∈Ŷt

(
c(ji, |Ŷt|)−

(
a

1−a + c(ji, |Ŷt|)
)
pi,t

)
, (3)

where we introduced the shorthands

pi,t = p(∆i,t), p(∆) =
g(−∆)

g(∆) + g(−∆)
,

and the expectation Et in (3) is w.r.t. the generation of labels Yt, conditioned on both xt,
and all previous x and Y .

A key aspect of this formalization is that the Bayes optimal ordered subset

Y ∗t = argminY=(j1,j2,...,j|Y |)⊆[K]Et[`a,c(Yt, Y )]

can be computed efficiently when knowing ∆1,t, . . . ,∆K,t. This is handled by the next
lemma. In words, this lemma says that, in order to minimize (3), it suffices to try out all
possible sizes s = 0, 1, . . . ,K for Y ∗t and, for each such value, determine the sequence Y ∗s,t
that minimizes (3) over all sequences of size s. In turn, Y ∗s,t can be computed just by sorting
classes i ∈ [K] in decreasing order of pi,t, sequence Y ∗s,t being given by the first s classes in
this sorted list.

Lemma 1 With the notation introduced so far, let pi1,t ≥ pi2,t ≥ . . . piK ,t be the sequence
of pi,t sorted in nonincreasing order. Then we have that

Y ∗t = argmins=0,1,...KEt[`a,c(Yt, Y ∗s,t)],

where Y ∗s,t = (i1, i2, . . . , is), and Y ∗0,t = ∅.

Proof First observe that, for any given size s, the sequence Y ∗s,t must contain the s top-
ranked classes in the sorted order of pi,t. This is because, for any candidate sequence Ys =

{j1, j2, . . . , js}, we have Et[`a,c(Y ∗t , Ys)] = (1− a)
∑

i∈Ys

(
c(ji, s)−

(
a

1−a + c(ji, s)
)
pi,t

)
. If
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there exists i ∈ Ys which is not among the s-top ranked ones, then we could replace class i
in position ji within Ys with class k /∈ Ys such that pk,t > pi,t obtaining a smaller loss.

Next, we show that the optimal ordering within Y ∗s,t is precisely ruled by the nonincreas-
ing order of pi,t. By the sake of contradiction, assume there are i and k in Y ∗s,t such that i
precedes k in Y ∗s,t but pk,t > pi,t. Specifically, let i be in position j1 and k be in position j2
with j1 < j2 and such that c(j1, s) > c(j2, s). Then, disregarding the common (1−a)-factor,
switching the two classes within Y ∗s,t yields an expected loss difference of

c(j1, s)−
(

a
1−a + c(j1, s)

)
pi,t + c(j2, s)−

(
a

1−a + c(j2, s)
)
pk,t

−
(
c(j1, s)−

(
a

1−a + c(j1, s)
)
pk,t

)
−
(
c(j2, s)−

(
a

1−a + c(j2, s)
)
pi,t

)
= (pk,t − pi,t) (c(j1, s)− c(j2, s)) > 0,

since pk,t > pi,t and c(j1, s) > c(j2, s). Hence switching would get a smaller loss which leads
as a consequence to Y ∗s,t = (i1, i2, . . . , is).

Notice the way costs c(i, s) influence the Bayes optimal computation. We see from (3)
that placing class i within Ŷt in position ji is beneficial (i.e., it leads to a reduction of loss)
if and only if pi,t > c(ji, |Ŷt|)/( a

1−a + c(ji, |Ŷt|)). Hence, the higher is the slot ij in Ŷt the

larger should be pi,t in order for this inclusion to be convenient.4

It is Y ∗t above that we interpret as the true set of user preferences on xt. We would like
to compete against Y ∗t in a cumulative regret sense, i.e., we would like to bound

RT =
T∑
t=1

Et[`a,c(Yt, Ŷt)]− Et[`a,c(Yt, Y ∗t )]

with high probability.

We use a similar but largely more general analysis than Crammer and Gentile (2011)’s to
devise an online second-order descent algorithm whose updating rule makes the comparison
vector U = (u1, . . . ,uK) ∈ RdK defined through (2) be Bayes optimal w.r.t. a surrogate
convex loss L(·) such that g(∆) = −L′(∆). Observe that the expected loss function defined
in (3) is, generally speaking, nonconvex in the margins ∆i,t (consider, for instance the
logistic case g(∆) = 1

e∆+1
). Thus, we cannot directly minimize this expected loss.

3. Algorithm and Regret Bounds

In Figure 2 is our bandit algorithm for (ordered) multiple labels. In order to acquaint the
reader with this algorithm, a simplified version of it is first presented (Figure 1) which
applies to the linear model p(∆) = 1+∆

2 , g(∆) = 1 −∆, under the simplifying assumption
||ui|| ≤ 1, for i ∈ [K].

4. Notice that this depends on the actual size of Ŷt, so we cannot decompose this problem into K inde-
pendent problems. The decomposition does occur if the costs c(i, s) are constants, independent of i and
s, the criterion for inclusion becoming pi,t ≥ θ, for some constant threshold θ.
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Parameters:

• Loss parameters a ∈ [0, 1], and cost values c(i, s);

• Confidence level δ ∈ [0, 1].

Initialization: Ai,0 = I ∈ Rd×d, i = 1, . . . ,K, wi,1 = 0 ∈ Rd, i = 1, . . . ,K;

For t = 1, 2 . . . , T :

1. Get instance xt ∈ Rd : ||xt|| = 1;

2. For i ∈ [K], set ∆̂′i,t = x>t w
′
i,t, where

w′i,t =


wi,t if w>i,txt ∈ [−1, 1],

wi,t −
(

w>i,txt−1
x>t A−1

i,t−1xt

)
A−1i,t−1xt if w>i,txt > 1,

wi,t −
(

w>i,txt+1

x>t A−1
i,t−1xt

)
A−1i,t−1xt if w>i,txt < −1;

3. Output

Ŷt = argmin
Y=(j1,j2,...j|Y |)⊆[K]

(∑
i∈Y

(
c(ji, |Y |)−

(
a

1−a + c(ji, |Y |)
)
p̂i,t

))
,

where

p̂i,t =
1 + [∆̂′i,t + εi,t][−1,1]

2
,

ε2i,t = x>t A
−1
i,t−1xt

(
1 + 4 d ln

(
1 +

t− 1

d

)
+ 48 ln

K(t+ 4)

δ

)
;

4. Get feedback Yt ∩ Ŷt;
5. For i ∈ [K], update:

Ai,t = Ai,t−1 + |si,t|xtx
>
t , wi,t+1 = w′i,t −A−1i,t ∇i,t,

where

si,t =


1 if i ∈ Yt ∩ Ŷt,
−1 if i ∈ Ŷt \ Yt = Ŷt \ (Yt ∩ Ŷt),
0 otherwise;

and
∇i,t = (si,t ∆̂′i,t − 1) si,t xt.

Figure 1: The partial feedback algorithm in the (ordered) multiple label setting—the linear
model case.

Both algorithms are based on replacing the unknown model vectors u1, . . . ,uK with
prototype vectors w′1,t, . . . ,w

′
K,t, being w′i,t the time-t approximation to ui, satisfying sim-
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Parameters:

• Loss parameters a ∈ [0, 1], and cost values c(i, s);

• Interval D = [−R,R], function g : D → R;

• Confidence level δ ∈ [0, 1], and norm upper bound U > 0.

Initialization: Ai,0 = I ∈ Rd×d, i = 1, . . . ,K, wi,1 = 0 ∈ Rd, i = 1, . . . ,K;

For t = 1, 2 . . . , T :

1. Get instance xt ∈ Rd : ||xt|| = 1;

2. For i ∈ [K], set ∆̂′i,t = x>t w
′
i,t, where

w′i,t =


wi,t if w>i,txt ∈ [−R,R],

wi,t −
(

w>i,txt−R
x>t A−1

i,t−1xt

)
A−1i,t−1xt if w>i,txt > R,

wi,t −
(

w>i,txt+R

x>t A−1
i,t−1xt

)
A−1i,t−1xt if w>i,txt < −R;

3. Output

Ŷt = argmin
Y=(j1,j2,...j|Y |)⊆[K]

(∑
i∈Y

(
c(ji, |Y |)−

(
a

1−a + c(ji, |Y |)
)
p̂i,t

))
,

where

p̂i,t = p
(

[∆̂′i,t + εi,t]D

)
=

g
(
−[∆̂′i,t + εi,t]D

)
g
(

[∆̂′i,t + εi,t]D

)
+ g

(
−[∆̂′i,t + εi,t]D

) ,
ε2i,t = x>t A

−1
i,t−1xt

(
U2 +

d c′L
(c′′L)2

ln

(
1 +

t− 1

d

)
+

12

c′′L

(
c′L
c′′L

+ 3L(−R)

)
ln
K(t+ 4)

δ

)
;

4. Get feedback Yt ∩ Ŷt;
5. For i ∈ [K], update:

Ai,t = Ai,t−1 + |si,t|xtx
>
t , wi,t+1 = w′i,t −

1

c′′L
A−1i,t ∇i,t,

where

si,t =


1 if i ∈ Yt ∩ Ŷt,
−1 if i ∈ Ŷt \ Yt = Ŷt \ (Yt ∩ Ŷt),
0 otherwise;

and
∇i,t = ∇wL(si,t w

>xt)|w=w′i,t
= −g(si,t ∆̂′i,t) si,t xt.

Figure 2: The partial feedback algorithm in the (ordered) multiple label setting—the gen-
eralized linear model case.
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ilar constraints we set for the ui vectors. For the sake of brevity, we let ∆̂′i,t = x>t w
′
i,t, and

∆i,t = u>i xt, i ∈ [K].

The algorithms use ∆̂′i,t as proxies for the underlying ∆i,t according to the (upper

confidence) approximation scheme ∆i,t ≈ [∆̂′i,t + εi,t]D, where εi,t ≥ 0 is a suitable upper-
confidence level for class i at time t, and [·]D denotes the clipping-to-D operation: if D =
[−R,R], then

[x]D =


R if x > R

x if −R ≤ x ≤ R
−R if x < −R.

The algorithms’ prediction at time t has the same form as the computation of the Bayes
optimal sequence Y ∗t , where we replace the true (and unknown) pi,t = p(∆i,t) with the
corresponding upper confidence proxy

p̂i,t = p([∆̂′i,t + εi,t]D),

being

Ŷt = argmin
Y=(j1,j2,...j|Y |)⊆[K]

(∑
i∈Y

(
c(ji, |Y |)−

(
a

1−a + c(ji, |Y |)
)
p̂i,t

))
.

Computing Ŷt above can be done by mimicking the computation of the Bayes optimal
ordered subset Y ∗t (just replace pi,t by p̂i,t). From a computational viewpoint, this essentially
amounts to sorting classes i ∈ [K] in decreasing value of p̂i,t, i.e., order of K logK running
time per prediction. Thus the algorithms are producing a ranked list of relevant classes
based on upper-confidence-corrected scores p̂i,t. Class i is deemed relevant and ranked high

among the relevant ones when either ∆̂′i,t is a good approximation to ∆i,t and pi,t is large,
or when the algorithms are not very confident on their own approximation about i (that is,
the upper confidence level εi,t is large).

Specifically, the algorithm in Figure 1 receives in input the loss parameters a and c(i, s),
and the desired confidence level δ, and maintains both K positive definite matrices Ai,t of
dimension d (initially set to the d × d identity matrix), and K weight vectors wi,t ∈ Rd
(initially set to the zero vector). At each time step t, upon receiving the d-dimensional
instance vector xt the algorithm uses the weight vectors wi,t to compute the prediction
vectors w′i,t. These vectors can easily be seen as the result of projecting wi,t onto interval
[−1, 1] w.r.t. the distance function di,t−1, i.e.,

w′i,t = argmin
w∈Rd :w>xt∈[−1,1]

di,t−1(w,wi,t), i ∈ [K],

where

di,t−1(u,w) = (u−w)>Ai,t−1 (u−w).

Vectors w′i,t are then used to produce prediction values ∆̂′i,t involved in the upper-confidence

calculation of the predicted ordered subset Ŷt ⊆ [K]. Next, the feedback Yt∩ Ŷt is observed,
and the algorithm in Figure 1 promotes all classes i ∈ Yt ∩ Ŷt (sign si,t = 1), demotes all
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classes i ∈ Ŷt \ Yt (sign si,t = −1), and leaves all remaining classes i /∈ Ŷt unchanged (sign
si,t = 0). Promotion of class i on xt implies that if the new vector xt+1 is close to xt then
i will be ranked higher on xt+1. The update w′i,t → wi,t+1 is based on the gradients ∇i,t of

the square loss function L(∆) = (1−∆)2/2. On the other hand, the update Ai,t−1 → Ai,t
uses the rank-one matrix5 xtx

>
t . The matrix Ai,t−1 is used to calculate the upper confidence

level on each prediction. Matrix Ai,t−1 is the empirical covariance matrix of the samples
on which we received some feedback, either positive (si,t = 1) or negative (si,t = −1), and
is used in the expression for the confidence ε2i,t involving the quadratic form x>t A

−1
i,t−1xt.

Notice that ε2i,t will be small when the current sample xt is in the span of the previous
samples on which we received feedback, and will be large otherwise. In both the update of
w′i,t and the one involving Ai,t−1, the reader should observe the role played by the signs si,t.

The algorithm contained in Figure 2 is just a more general version of the one in Figure
1, where we also receive in input the specifics of the generalized linear model through the
model function g(·) and the associated margin domain D = [−R,R], and the norm upper
bound U , such that ‖ui‖ ≤ U for all i ∈ [K]. The update w′i,t → wi,t+1 in Figure 2 is
based on the gradients ∇i,t of a loss function L(·) satisfying L′(∆) = −g(∆). On the other
hand, the update Ai,t−1 → Ai,t uses again the rank-one matrix xtx

>
t . The constants c′L

and c′′L occurring in the expression for ε2i,t in Figure 2 are related to smoothness properties

of L(·). In particular, ε2i,t in Figure 1 is obtained from ε2i,t in Figure 2 by setting R = 1,

L(−R) = L(−1) = 0, along with c′L = 4 and c′′L = 1, as explained in the next theorem.6

Theorem 2 Let L : D = [−R,R] ⊆ R → R+ be a C2(D) convex and nonincreasing
function of its argument, (u1, . . . ,uK) ∈ RdK be defined in (2) with g(∆) = −L′(∆) for all
∆ ∈ D, and such that ‖ui‖ ≤ U for all i ∈ [K]. Assume there are positive constants cL, c′L
and c′′L such that

i. L′(∆)L′′(−∆)+L′′(∆)L′(−∆)
(L′(∆)+L′(−∆))2 ≥ −cL,

ii. (L′(∆))2 ≤ c′L,

iii. L′′(∆) ≥ c′′L

simultaneously hold for all ∆ ∈ D. Then the cumulative regret RT of the algorithm in
Figure 2 satisfies, with probability at least 1− δ,

RT = O

(
(1− a) cLK

√
T C d ln

(
1 +

T

d

))
,

where

C = O

(
U2 +

d c′L
(c′′L)2

ln

(
1 +

T

d

)
+

(
c′L

(c′′L)2
+
L(−R)

c′′L

)
ln
KT

δ

)
.

5. The rank-one update is based on xtx
>
t rather than ∇i,t∇>i,t, as in , e.g., the paper by Hazan et al. (2007).

This is due to technical reasons that will be made clear in Section 6. This feature tells this algorithm
slightly apart from the Online Newton step algorithm (Hazan et al., 2007), which is the starting point
of our analysis. The very same comment applies to the algorithm in Figure 2.

6. The proof is given in Section 6.

2463



Gentile and Orabona

It is easy to see that when L(·) is the square loss L(∆) = (1 −∆)2/2 and D = [−1, 1], we
have cL = 1/2, c′L = 4 and c′′L = 1; when L(·) is the logistic loss L(∆) = ln(1 + e−∆) and

D = [−R,R], we have cL = 1/4, c′L ≤ 1 and c′′L = 1
2(1+cosh(R)) , where cosh(x) = ex+e−x

2 .
The following remarks are in order at this point.

Remark 3 A drawback of Theorem 2 is that, in order to properly set the upper confidence
levels εi,t, we assume prior knowledge of the norm upper bound U . Because this information
is often unavailable, we present here a simple modification to the algorithm that copes with
this limitation, similar to the one proposed in Orabona and Cesa-Bianchi (2011). We change
the definition of ε2i,t in Figure 2 to

ε2i,t = max

{
x>A−1

i,t−1x

(
2 d c′L
(c′′L)2

ln

(
1 +

t− 1

d

)
+

12

c′′L

(
c′L
c′′L

+ 3L(−R)

)
ln
K(t+ 4)

δ

)
, 4R2

}
,

that is, we substitute U2 by
d c′L

(c′′L)2 ln
(
1 + t−1

d

)
, and cap the maximal value of ε2i,t to 4R2.

This immediately leads to the following result.7

Theorem 4 With the same assumptions and notation as in Theorem 2, if we replace ε2i,t
as explained above we have that, with probability at least 1− δ, RT satisfies

RT = O

(
(1− a) cLK

√
T C d ln

(
1 +

T

d

)
+ (1− a) cLKRd

(
exp

(
(c′′L)2 U2

c′L d

)
− 1

))
.

Remark 5 From a computational standpoint, the most demanding operation in Figure 2
is computing the upper confidence levels εi,t involving the inverse matrices A−1

i,t−1, i ∈ [K].
Note that the matrices can be safely inverted because they are full rank, being initialized
with identity matrices. The matrix inversion can be done incrementally in O(K d2) time
per round. This can be hardly practical if both d and K are large. In practice (as explained,
e.g., by Crammer and Gentile, 2011), one can use an approximated version of the algorithm
which maintains diagonal matrices Ai,t instead of full ones. All the steps remain the same
except Step 5 of Algorithm 2 where one defines the rth diagonal element of matrix Ai,t as
(Ai,t)r,r = (Ai,t−1)r,r +x2

r,t, being xt = (x1,t, x2,t, . . . , xr,t, . . . , xK,t)
>. The resulting running

time per round (including prediction and update) becomes O(dK +K logK). In fact, when
a limitation on the size of Ŷt is given, the running time may be further reduced, see Remark
8.

4. On Ranking with Partial Feedback

As Lemma 1 points out, when the cost values c(i, s) in the loss function `a,c are strictly
decreasing i.e., c(1, s) > c(2, s) > . . . > c(s, s), for all s ∈ [K], then the Bayes optimal
ordered sequence Y ∗t on xt is unique can be obtained by sorting classes in decreasing values
of pi,t, and then decide on a cutoff point8 induced by the loss parameters, so as to tell relevant

classes apart from irrelevant ones. In turn, because p(∆) = g(−∆)
g(∆)+g(−∆) is increasing in ∆,

7. The proof is deferred to Section 6.
8. This is called the zero point by Furnkranz et al. (2008).
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this ordering corresponds to sorting classes in decreasing values of ∆i,t. Now, if parameter
a in `a,c is very close9 to 1, then |Y ∗t | = K, and the algorithm itself will produce ordered
subsets Ŷt such that |Ŷt| = K. Moreover, it does so by receiving full feedback on the
relevant classes at time t (since Yt ∩ Ŷt = Yt). As is customary (e.g., Dembczynski et al.
2012), one can view any multilabel assignment Y = (y1, . . . , yK) ∈ {0, 1}K as a ranking
among the K classes in the most natural way: i precedes j if and only if yi > yj . The
(unnormalized) ranking loss function `rank(Y, f) between the multilabel Y and a ranking
function f : Rd → RK , representing degrees of class relevance sorted in a decreasing order
fj1(xt) ≥ fj2(xt) ≥ . . . ≥ fjK (xt) ≥ 0, counts the number of class pairs that disagree in the
two rankings:

`rank(Y, f) =
∑

i,j∈[K] : yi>yj

(
{fi(xt) < fj(xt)}+ 1

2 {fi(xt) = fj(xt)}
)
,

where {. . .} is the indicator function of the predicate at argument. As pointed out by
Dembczynski et al. (2012), the ranking function f(xt) = (p1,t, . . . , pK,t) is also Bayes optimal
w.r.t. `rank(Y, f), no matter if the class labels yi are conditionally independent or not. Hence
we can use the algorithm in Figure 2 with a close to 1 for tackling ranking problems derived
from multilabel ones, when the measure of choice is `rank and the feedback is full.

We now consider a partial information version of the above ranking problem. Suppose
that at each time t, the environment discloses both xt and a maximal size St for the ordered
subset Ŷt = (j1, j2, . . . , j|Ŷt|) (both xt and St can be chosen adaptively by an adversary).
Here St might be the number of available slots in a webpage or the maximal number of
URLs returned by a search engine in response to query xt. Then it is plausible to compete
in a regret sense against the best time-t offline ranking of the form

f∗(xt) = f∗(xt;St) = (f∗1 (xt), f
∗
2 (xt), . . . , f

∗
K(xt)),

where the number of strictly positive f∗i (xt) values is at most St. Further, the ranking loss
could be reasonably restricted to count the number of class pairs disagreeing within Ŷt plus
a quantity related to the number of false negative mistakes. If Ŷt is the sequence of length
St associated with a ranking function f , we consider the loss function `p−rank,t (“partial
information `rank at time t”)

`p−rank,t(Y, f) =
∑

i,j∈Ŷt : yi>yj

(
{fi(xt) < fj(xt)}+ 1

2 {fi(xt) = fj(xt)}
)

+ St |Yt \ Ŷt|.

In this loss function, the factor St multiplying |Yt\Ŷt| serves as balancing the contribution of
the double sum

∑
i,j∈Ŷt : yi>yj

(potentially involving a quadratic number of terms) with the

contribution of false negative mistakes |Yt\Ŷt|. As for loss `a,c, we can rewrite `p−rank,t(Y, f)
as

`p−rank,t(Y, f) =
∑

i,j∈Ŷt : yi>yj

(
{fi(xt) < fj(xt)}+ 1

2 {fi(xt) = fj(xt)}
)
−St |Yt∩ Ŷt|+St |Yt|,

9. If a = 1, the algorithm only cares about false negative mistakes, the best strategy being always predicting
Ŷt = [K]. Unsurprisingly, this yields zero regret in both Theorems 2 and 4.
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where the first two terms can be calculated by the algorithm, and the last one does not
depend on Ŷt. For convenience, we will interchangeably use the notations `p−rank,t(Y, f) and

`p−rank,t(Y, Ŷt), whenever it is clear from the surrounding context that Ŷt is the sequence
corresponding to f .

The next lemma10 is the ranking counterpart to Lemma 1. It shows that the Bayes
optimal ranking for `p−rank,t is given by

f∗(xt;St) = (p′1,t, p
′
2,t, . . . , p

′
K,t),

where p′j,t = pj,t if pj,t is among the St largest values in the sequence (p1,t, . . . , pK,t), and
0 otherwise. That is, f∗(xt;St) is the function that ranks classes according to decreasing
values of pi,t and cuts off exactly at position St. This is in contrast to what happens for loss
`a,c, where, depending on the cost parameters c(i, s), the cut off point can even be smaller
than the total number of available slots—see Lemma 1 and surrounding comments. In
order for this result to go through, we need to restrict model (2) to the case of conditionally
independent classes, i.e., to the case when

Pt(y1,t, . . . , yK,t) =
∏
i∈[K]

pi,t . (4)

This is a significant departure from the full information setting, where the Bayes optimal
ranking only depends on the marginal distribution values pi,t (Dembczynski et al., 2012).
Due to the interaction between the two terms in the definition of `p−rank,t, the Bayes optimal
ranking for `p−rank,t turns out to depend on both marginal and pairwise correlation values of
the joint class distribution. Assumption (4) may be avoided by maintaining O(K2) upper
confidence values εi,j , one for each pair (i, j), i < j, leading to an extra computational
burden which can become prohibitive even in the presence of a moderate number of classes
K.

Lemma 6 With the notation introduced so far, let the joint distribution Pt(y1,t, . . . , yK,t)
factorize as in (4). Then f∗(xt;St) introduced above satisfies

f∗(xt;St) = argmin
Y=(i1,i2,...ih) ,h≤St

Et[`p−rank,t(Yt, Y )].

If we add to the argmin of our algorithm (Step 3 in Figure 2) the further constraint |Y | ≤ St
(notice that the resulting computation is still about sorting classes according to decreasing
values of p̂i,t), we are defining a partial information ranking algorithm that ranks classes

according to decreasing values of p̂i,t up to position St (i.e., |Ŷt| = St). Let f̂(xt, St) be the
resulting ranking. We can then define the cumulative regret RT w.r.t. `p−rank,t as

RT =

T∑
t=1

Et[`p−rank,t(Yt, f̂(xt, St))]− Et[`p−rank,t(Yt, f∗(xt, St)], (5)

that is, the extent to which the conditional `p−rank,t-risk of f̂(xt, St) exceeds the one of the
Bayes optimal ranking f∗(xt;St), accumulated over time.

We have the following ranking counterpart to Theorem 2.

10. We postpone its lengthy proof to Section 6.
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Theorem 7 With the same assumptions and notation as in Theorem 2, combined with the
independence assumption (4), let the cumulative regret RT w.r.t. `p−rank,t be defined as in
(5). Then, with probability at least 1 − δ, we have that the algorithm in Figure 2 working
with a→ 1 and strictly decreasing cost values c(i, s) (i.e., the algorithm computing in round
t the ranking function f̂(xt, St)) achieves

RT = O

(
cL

√
S K T C d ln

(
1 +

T

d

))
,

where S = maxt=1,...,T St.

The proof (see Section 6) is very similar to the one of Theorem 2. This suggests that, to
some extent, we are decoupling the label generating model from the loss function ` under
consideration.

Remark 8 As is typical in many multilabel classification settings, the number of classes K
can be very large and/or have an inner structure (e.g., a hierarchical or DAG-like structure).
It is often the case that in such a large label space, many classes are relatively rare. This
has lead researchers to consider methods that are specifically tailored to leverage the label
sparsity of the chosen classifier (e.g., Hsu et al. 2009 and references therein) and/or the
specific structure of the set of labels (e.g., Cesa-Bianchi et al. 2006a; Bi and Kwok 2011,
and references therein). Though our algorithm is not designed to exploit the label structure,
we would like to stress that the restriction |Ŷt| ≤ St ≤ S in Theorem 7 allows us to replace
the linear dependence on the total number of classes K (which is often much larger than S)
by
√
SK. It is very easy to see that this restriction would bring similar benefits to Theorem

2.

In fact, the above restriction is not only beneficial from a “statistical” point of view,
but also from a computational one. As is by now standard, algorithms like the one in
Figure 2 can easily be cast in dual variables (i.e., in a RKHS). This comes with at least two
consequences:

1. We can depart from the (generalized) linear modeling assumption (2), and allow for
more general nonlinear dependencies of pi,t on the input vectors xt, possibly resorting
to the universal approximation properties of Gaussian RKHS (e.g., Steinwart, 2002).

2. We can maintain a dual variable representation for margins ∆̂′i,t and quadratic forms

x>t A
−1
i,t−1xt, so that computing each one of them takes O(N2

i,t−1) inner products, where
Ni,t is the number of times class i has been updated up to time t, each inner product
being O(d). Now, each of the (at most St ≤ S) updates is O(N2

i,t−1). Hence, the overall

running time in round t is coarsely overapproximated by O(d
∑

i∈[K]N
2
i,T +K logK).

From
∑

i∈[K]Ni,T ≤ ST , we see that when S is small compared to K, then Ni,t−1 tends

to be small as well. For instance, if S ≤
√
K this leads to a running time per round

of the form SdT 2, which can be smaller than the bound Kd2 mentioned in Remark 5.

Finally, observe that one can also combine Theorem 7 with the argument contained in
Remark 1.
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Task Train+Test d K Avg Avg + std 95% 99%

Mediamill 30,993+12,914 120 101 5 7 8 10
Sony 16,452+16,519 98 632 38 44 48 52
Yeast 1,500+917 103 14 5 6 7 8

Table 1: Main statistics related to the three data sets used in our experiments. The last
four columns give information on the distribution of the number of labels per
instance. “Avg” denotes the (rounded) average number of labels over the training
examples, and “Avg+std” gives the average augmented by one unit of standard
deviation. So, for instance, in the Mediamill data set, the average number of labels
per instance in the training set is 5, with a standard deviation of 2. The columns
tagged “95%” and “99%” give an idea of the quantiles of this distribution. E.g.,
on Mediamill, 95% of the training examples have at most 8 classes (out of 101),
on the Sony data set, 99% of the training examples have at most 52 classes (out
of 632).

5. Experiments

The experiments we report here are meant to validate the exploration-exploitation tradeoff
implemented by our algorithm along different axes: data set size, label set size, loss function,
label generation model, training mode of operation, and restrictions on the total number of
classes predicted. Moreover, we explicitly tested the effectiveness of ranking classes based
on upper confidence-corrected probability estimates.

5.1 Data Sets

We used three diverse multilabel data sets, intended to represent different real-world condi-
tions. The first one, called Mediamill, was introduced in a video annotation challenge (Snoek
et al., 2006). It comprises 30, 993 training samples and 12, 914 test ones. The number of
features d is 120, and the number of classes K is 101. The second data set is the music
annotated Sony CSL Paris data set (Pachet and Roy, 2009), made up of 16, 452 training
samples and 16,519 test samples, each sample being described by d = 98 features. The
number of classes K is 632, which is significantly larger than Mediamill’s. The third one is
the smaller Yeast data set (Elisseeff and Weston, 2002), made up of 1, 500 training samples,
917 test samples, with d = 103 and K = 14. In all cases, the feature vectors have been
normalized to unit Euclidean norm. Table 1 summarizes relevant statistics about these data
sets. This table also gives an idea of the distribution of the number of classes per instance.

5.2 Parameter Setting and Loss Measures

For the practical implementation of the algorithm in Figure 2, we simplified the formula
for ε2i,t. This is justified by the fact that the actual constants in the definition of ε2i,t are
artifacts of our high-probability upper bounds. Hence, we used

ε2i,t = αx>t A
−1
i,t−1xt log(t+ 1),
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where α is a parameter that we found by cross-validation on each data set across the range
α = 2−8, 2−7, . . . , 27, 28, for each choice of the label-generation model, loss setting, and
value of S—see below. We have considered two different loss functions L, the square loss
and the logistic loss (denoted by “Log Loss” in our plots). Correspondingly, the two label-
generation models we tested are the linear model Pt(yi,t = 1) = (1 + u>i xt)/2 with domain

D = [−1, 1], and the logistic model Pt(yi,t = 1) = eu
>
i xt/(eu

>
i xt + 1). In the logistic case, it

makes sense in practice not to place any restrictions on the margin domain D, so that we set
R =∞. Again, because our upper bounding analysis would yield as a consequence c′′L = 0,
we instead set c′′L to a small positive constant, specifically c′′L = 0.1, with no special attention
to its fine-tuning. The setting of the cost function c(i, s) depends on the task at hand, and
we decided to evaluate two possible settings. The first one, denoted by “decreasing” is
c(i, s) = s−i+1

s , i = 1, . . . , s, the second one, denoted by “constant”, is c(i, s) = 1, for all
i and s. In all experiments with `a,c, the a parameter was set to 0.5 (so that `a,c with
constant c reduces to half the Hamming loss). In the decreasing c scenario, we evaluated
the performance of the algorithm on the loss `a,c that the algorithm is minimizing, but also
its ability to produce meaningful (partial) rankings through `p−rank,t. In the constant c
scenario, we only evaluated the Hamming loss, its natural loss function.

As is typical of multilabel problems, the label density of our data sets, i.e., the average
fraction of labels associated with the examples, is quite small. Hence, it is clearly beneficial
to our learning algorithm to bias its inference process so as to produce short ranked lists
Ŷt. We did so by imposing, for all t, an upper bound St = S on |Ŷt|. For each of the three
data sets, we tried out the four different values of S reported in the last four columns of
Table 1: the average number of labels; the average plus one standard deviation, the number
of labels that covers 95% of the examples, and the number of labels that covers 99% of the
examples, all figures only referring to the corresponding training sets.

5.3 Baselines

As a baseline, we considered a full information version of Algorithm 2, denoted by “Full
Info”, that receives after each prediction the full array of true labels Yt for each sam-
ple. Comparing to full information algorithms stresses the effectiveness of the explo-
ration/exploitation rule above and beyond the details of underlying generalized linear pre-
dictor. We also compared against the random predictor (denoted by “Random”) that simply
outputs at time t a ranked list Ŷt made up of S labels chosen (and ranked) at random. Fi-
nally, an interesting ranking baseline which targets the ranking ability of our algorithm is
one that lets our partial feedback algorithm select which classes to include in Ŷt, and then
shuffles them at random within Ŷt to produce the ranked list. This baseline we only used
with the ranking loss `p−rank,t, and is denoted by “Shuffled” in our plots.

5.4 Results

Our results are summarized in Figures 3, 4, and 5. The top row of each figure shows the
results in the online setting, while the bottom row is for the batch setting. Each column
corresponds to a different data set. In both the online and batch cases, the algorithms were
fed with the training set in a sequential fashion, sweeping over it only once.
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The plots report online or batch loss measures as a function of S,11 averaged over 5
random permutation of the training sequence. Specifically, whereas the online measure of
performance (“Final Average ... Loss”) is the cumulative loss accumulated during training,
divided by the number of samples in the training set, the batch measure (“Test ...”) is
simply the average loss over the test set achieved by the last solution produced by train-
ing. For the partial-feedback algorithms (“Square Loss”, “Log Loss” and, in the ranking
case, also “Square Loss Shuffled” and ”Log Loss Shuffled”), only the best α-cross-validated
performances are shown. Moreover, in the ranking experiments, because of the explicit de-
pendence of `p−rank,t on S, we instead considered the scaled version of the loss `p−rank,t/S.
Notice that the theoretical results contained in Section 4 still apply to this scaled loss
function.

The first thing to observe from the evidence we collected is that performance in the batch
setting closely follows the one in the online setting, across all the data sets, conditions and
losses. In a sense, this is to be expected, since the order of samples in the training set is
randomly shuffled.

The optimal value of S that allows us to best balance exploration and the exploitation
of the algorithm seems to be depending on the particular data set and task at hand. So, for
instance, on Mediamill with Hamming loss, this value is S = 8, corresponding to the 95%
coverage of the training set, while on Yeast it is the average value S = 5, covering around
50% of the training examples. When the loss is `a,c, the best value of S clearly depends
on the costs c. In the ranking case, performance increases as S gets larger, but this is very
likely to be due to the scaling factor 1/S in the loss we plotted. Notice that, from our
theoretical analysis in Section 3, the algorithm (e.g., in the special case on Hamming loss)
should in principle be able to determine the best size of Ŷt at each round, so that setting
St = K for all t is still a fair choice. Yet, this conservative setting makes the algorithm
face an unnecessarily large action space (of size K!), and correspondingly a harder inference
problem, rather than the substantially smaller space (of size K(K−1)(K−2) . . . (K−S+1))
obtained by setting St = S. This is evinced by the fact that all plots (regarding both partial
and full information algorithms) in Figure 4 tend to be increasing with S. For the very
sake of this inference, the fact that all algorithms see the examples only once seems to be
a severe limitation.12

The performance of our partial information algorithms are always pretty close to those
of the corresponding full information algorithms. This empirically validates the explo-
ration/exploitation scheme we used. Also, in all cases, all algorithms clearly outperform
the random predictor. In most of the experiments, the linear model (“Square Loss”) seems
to deliver slightly better results in the bandit setting than the logistic model (“Log Loss”),
while the performance of the two models is very similar in the full information case. Ex-
ceptions are the constant and the decreasing cost settings in the batch case on the Yeast
data set (Figure 3, bottom right, and Figure 4, bottom right), where the bandit algorithm
has an even better performance than the full information one. This is perhaps due to the

11. The plots are actually piecewise linear interpolations with knots corresponding to the 4 values of S
mentioned in the main text.

12. Training for a single epoch is a restriction needed to carry out a fair comparison between full and
partial information algorithms: Cycling more than once on a training set may turn a partial information
algorithm into a full information one.
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Figure 3: Experiments with `a,c and decreasing costs.

noise introduced during exploration, that acts as a kind of regularization, improving gener-
alization performance in such a small data set. In general, however, the comparison linear
vs. logistic is somewhat mixed.

In the ranking setting (Figure 5) we also show the performance of our algorithm when the
order of predicted labels is randomly permuted (“Shuffled”). It is shown that, uniformly over
all settings, shuffling causes performance degradation, thereby proving that our algorithm
is indeed learning a meaningful ranking over the labels in the set Ŷt, even without receiving
any ranking feedback within this set from the user.

6. Technical Details

This section contains all proofs missing from the main text, along with ancillary results and
comments.

The algorithm in Figure 2 works by updating through the gradients ∇i,t of a modular

margin-based loss function
∑K

i=1 L(w>i x) associated with the label generation model (2),
i.e., associated with function g, so as to make the parameters (u1, . . . ,uK) ∈ RdK therein
achieve the Bayes optimality condition

(u1, . . . ,uK) = arg min
w1,...,wK :w>i xt∈D

Et

[
K∑
i=1

L(si,tw
>
i xt)

]
, (6)

where Et[·] above is over the generation of Yt in producing the sign value si,t ∈ {−1, 0,+1},
conditioned on the past (in particular, conditioned on Ŷt). The requirement in (6) is akin
to the classical construction of proper scoring rules in the statistical literature (e.g., Savage,
1973).
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Figure 4: Experiments with `a,c and constant costs (Hamming loss).

The above is combined with the ability of the algorithm to guarantee the high probability
convergence of the prototype vectors w′i,t to the corresponding ui (Lemma 13). The rate of
convergence is ruled by the fact that the associated upper confidence values εi,t shrink to
zero as 1√

t
when t grows large. In order for this convergence to take place, it is important to

insure that the algorithm is observing informative feedback (either “correct”, i.e., si,t = 1,
or “mistaken”, i.e., si,t = −1) for each class i contained in the selected Ŷt. This in turn
implies regret bounds for both `a,c (Lemma 11) and `p−rank,t (Lemma 12).

The following lemma faces the problem of hand-crafting a convenient loss function L(·)
such that (6) holds.

Lemma 9 Let w1, . . . ,wK ∈ RdK be arbitrary weight vectors such that w>i xt ∈ D, i ∈ [K],
(u1, . . . ,uK) ∈ RdK be defined in (2), si,t be the updating signs computed by the algorithm
at the end (Step 5) of time t, L : D = [−R,R] ⊆ R → R+ be a convex and differentiable
function of its argument, with g(∆) = −L′(∆). Then for any t we have

Et

[
K∑
i=1

L(si,tw
>
i xt)

]
≥ Et

[
K∑
i=1

L(si,t u
>
i xt)

]
,

i.e., (6) holds.

Proof Let us introduce the shorthands ∆i = u>i xt, ∆̂i = w>i,txt, si = si,t, and pi =

P(yi,t = 1 |xt) = L′(−∆i)
L′(∆i)+L′(−∆i)

= g(−∆i)
g(∆i)+g(−∆i)

. Moreover, let Pt(·) be an abbreviation

for the conditional probability P(· | (y1,x1), . . . , (yt−1,xt−1),xt). Recalling the way si,t is
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Figure 5: Experiments with the ranking loss `p−rank,t. In order to obtain “scale-
independent” results, in this figure we actually used `p−rank,t/S rather than
`p−rank,t itself.

constructed (Figure 2), we can write

Et

[
K∑
i=1

L(si,t ∆̂i)

]
=
∑
i∈Ŷt

(
Pt(si,t = 1)L(∆̂i) + Pt(si,t = −1)L(−∆̂i)

)
+ (K − |Ŷt|)L(0)

=
∑
i∈Ŷt

(
pi L(∆̂i) + (1− pi)L(−∆̂i)

)
+ (K − |Ŷt|)L(0),

For similar reasons,

Et

[
K∑
i=1

L(si,t ∆i)

]
=
∑
i∈Ŷt

(pi L(∆i) + (1− pi)L(−∆i)) + (K − |Ŷt|)L(0).

Since L(·) is convex, so is Et
[∑K

i=1 L(si,t ∆̂i)
]

when viewed as a function of the ∆̂i. We

have that
∂ Et[

∑K
i=1 L(si,t ∆̂i)]
∂∆̂i

= 0 if and only if for all i ∈ Ŷt we have that ∆̂i satisfies

pi =
L′(−∆̂i)

L′(∆̂i) + L′(−∆̂i)
.

Since pi = L′(−∆i)
L′(∆i)+L′(−∆i)

, we have that Et
[∑K

i=1 L(si,t ∆̂i)
]

is minimized when ∆̂i = ∆i for

all i ∈ [K]. The claimed result immediately follows.
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Let now V art(·) be a shorthand for V ar(· | (y1,x1), . . . , (yt−1,xt−1),xt). The following
lemma shows that under additional assumptions on the loss L(·), we can bound the variance
of a difference of losses L(·) by the expectation of this difference. This will be key to proving
the fast rates of convergence contained in the subsequent Lemma 13.

Lemma 10 Let (w′1,t, . . . ,w
′
K,t) ∈ RdK be the weight vectors computed by the algorithm

in Figure 2 at the beginning (Step 2) of time t, si,t be the updating signs computed at the
end (Step 5) of time t, and (u1, . . . ,uK) ∈ RdK be the comparison vectors defined through
(2). Let L : D = [−R,R] ⊆ R → R+ be a C2(D) convex function of its argument, with
g(∆) = −L′(∆) and such that there are positive constants c′L and c′′L with (L′(∆))2 ≤ c′L
and L′′(∆) ≥ c′′L for all ∆ ∈ D. Then for any i ∈ Ŷt

0 ≤ V art
(
L(si,t x

>
t w
′
i,t)− L(si,t u

>
i xt)

)
≤

2c′L
c′′L

Et
[
L(si,t x

>
t w
′
i,t)− L(si,t u

>
i xt)

]
.

Proof Let us introduce the shorthands ∆i = x>t ui, ∆̂i = x>t w
′
i,t, si = si,t, and pi =

P(yi,t = 1 |xt) = L′(−∆i)
L′(∆i)+L′(−∆i)

= g(−∆i)
g(∆i)+g(−∆i)

. Then, for any i ∈ [K],

V art

(
L(si,t x

>
t w
′
i,t)− L(si,t u

>
i xt)

)
≤ Et

((
L(si ∆̂i)− L(si ∆i)

)2
)
≤ c′L (∆̂i −∆i)

2. (7)

Moreover, for any i ∈ Ŷt we can write

Et
[
L(si ∆̂i)− L(si ∆i)

]
= pi (L(∆̂i)− L(∆i)) + (1− pi) (L(−∆̂i)− L(−∆i))

≥ pi
(
L′(∆i)(∆̂i −∆i) +

c′′L
2

(∆̂i −∆i)
2

)
+ (1− pi)

(
L′(−∆i)(∆i − ∆̂) +

c′′L
2

(∆̂i −∆i)
2

)
= pi

c′′L
2

(∆̂i −∆i)
2 + (1− pi)

c′′L
2

(∆̂i −∆i)
2

=
c′′L
2

(∆̂i −∆i)
2, (8)

where the second equality uses the definition of pi. Combining (7) with (8) gives the desired
bound.

We continue by showing a one-step regret bound for our original loss `a,c. The precise
connection to loss L(·) will be established with the help of a later lemma (Lemma 13).

Lemma 11 Let L : D = [−R,R] ⊆ R → R+ be a convex, twice differentiable, and
nonincreasing function of its argument. Let (u1, . . . ,uK) ∈ RdK be defined in (2) with
g(∆) = −L′(∆) for all ∆ ∈ D. Let also cL be a positive constant such that

L′(∆)L′′(−∆) + L′′(∆)L′(−∆)

(L′(∆) + L′(−∆))2
≥ −cL
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holds for all ∆ ∈ D. Finally, let ∆i,t denote u>i xt, and ∆̂′i,t denote x>t w
′
i,t, where w′i,t is

the i-the weight vector computed by the algorithm at the beginning (Step 2) of time t. If
time t is such that |∆i,t − ∆̂′i,t| ≤ εi,t for all i ∈ [K], then

Et[`a,c(Yt, Ŷt)]− Et[`a,c(Yt, Y ∗t )] ≤ 2 (1− a) cL
∑
i∈Ŷt

εi,t.

Proof Recall the shorthand notation p(∆) = g(−∆)
g(∆)+g(−∆) . We can write

Et[`a,c(Yt, Ŷt)]− Et[`a,c(Yt, Y ∗t )]

= (1− a)
∑
i∈Ŷt

(
c(ĵi, |Ŷt|)−

(
a

1−a + c(ĵi, |Ŷt|)
)
p(∆i,t)

)
− (1− a)

∑
i∈Y ∗t

(
c(j∗i , |Y ∗t |)−

(
a

1−a + c(j∗i , |Y ∗t |)
)
p(∆i,t)

)
,

where ĵi denotes the position of class i in Ŷt and j∗i is the position of class i in Y ∗t . Now,

p′(∆) =
−g′(−∆) g(∆)− g′(∆) g(−∆)

(g(∆) + g(−∆))2
=
−L′(∆)L′′(−∆)− L′(−∆)L′′(∆)

(L′(∆) + L′(−∆))2
≥ 0

since g(∆) = −L′(∆), and L(·) is convex and nonincreasing. Hence p(∆) is itself a non-
decreasing function of ∆. Moreover, the extra condition on L involving L′ and L′′ is a
Lipschitz condition on p(∆) via a uniform bound on p′(∆). Hence, from |∆i,t − ∆̂′i,t| ≤ εi,t
and the definition of Ŷt we can write

Et[`a,c(Yt, Ŷt)]− Et[`a,c(Yt, Y ∗t )]

≤ (1− a)
∑
i∈Ŷt

(
c(ĵi, |Ŷt|)−

(
a

1−a + c(ĵi, |Ŷt|)
)
p([∆̂′i,t − εi,t]D)

)
− (1− a)

∑
i∈Y ∗t

(
c(j∗i , |Y ∗t |)−

(
a

1−a + c(j∗i , |Y ∗t |)
)
p([∆̂′i,t + εi,t]D)

)
≤ (1− a)

∑
i∈Ŷt

(
c(ĵi, |Ŷt|)−

(
a

1−a + c(ĵi, |Ŷt|)
)
p([∆̂′i,t − εi,t]D)

)
− (1− a)

∑
i∈Ŷt

(
c(ĵi, |Ŷt|)−

(
a

1−a + c(ĵi, |Ŷt|)
)
p([∆̂′i,t + εi,t]D)

)
= (1− a)

∑
i∈Ŷt

(
c(ĵi, |Ŷt|)

(
p([∆̂′i,t + εi,t]D)− p([∆̂′i,t − εi,t]D)

))
≤ 2 (1− a) cL

∑
i∈Ŷt

εi,t,

the last inequality deriving from c(i, s) ≤ 1 for all i ≤ s ≤ K, and

p([∆̂′i,t + εi,t]D)− p([∆̂′i,t − εi,t]D) ≤ cL
(
[∆̂′i,t + εi,t]D − [∆̂′i,t − εi,t]D

)
≤ 2 cL εi,t.
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Now, we first give a proof of Lemma 6, and then provide a one step regret for the partial
information ranking loss.

Proof [Lemma 6] Recall the notation Pt(·) = P(· |xt), and pi,t = p(∆i,t) =
g(−∆i,t)

g(∆i,t)+g(−∆i,t)
.

For notational convenience, in this proof we drop subscript t from pi,t, St, yi,t, Ŷt, and
`p−rank,t. A simple adaptation of Dembczynski et al. (2012) (proof of Theorem 1 therein)
shows that for a generic sequence â = (â1, . . . , âK) with at most S nonzero values âi and
associated set of indices Ŷ , one has

Et[`p−rank(Yt, â)] =
∑

i,j∈Ŷ , i<j

(r̂i,j + r̂j,i) + S

∑
i∈[K]

pi −
∑
i∈Ŷ

pi


where

r̂i,j = r̂i,j(â) = Pt(yi > yj)
(
{âi < âj}+ 1

2 {âi = âj}
)
.

Moreover, if p∗ denotes the sequence made up of at most S nonzero values taken from
{pi , i ∈ [K]}, where i ranges again in Ŷ , we have

Et[`p−rank(Yt, p∗)] =
∑

i,j∈Ŷ , i<j

(ri,j + rj,i) + S

∑
i∈[K]

pi −
∑
i∈Ŷ

pi


with

ri,j = ri,j(p
∗) = Pt(yi > yj)

(
{pi < pj}+ 1

2 {pi = pj}
)
.

Hence

Et[`p−rank(Yt, â)]− Et[`p−rank(Yt, p∗)] =
∑

i,j∈Ŷ , i<j

(r̂i,j − ri,j + r̂j,i − rj,i) .

Since

Pt(yi > yj)− Pt(yj > yi) = Pt(yi = 1)− Pt(yj = 1) = pi − pj ,

a simple (but lengthy) case analysis reveals that

r̂i,j − ri,j + r̂j,i − rj,i =


1
2 (pi − pj) If âi < âj , pi = pj or âi = âj , pi > pj
1
2 (pj − pi) If âi = âj , pi < pj or âi > âj , pi = pj

pi − pj If âi < âj , pi > pj

pj − pi If âi > âj , pi < pj .

Notice that the above quantity is always nonnegative, and is strictly positive if the pi are all
different. The nonnegativity implies that whatever set of indices Ŷ we select, the best way
to sort them within Ŷ in order to minimize Et[`p−rank(Yt, ·)] is by following the ordering of
the corresponding pi.
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We are left to show that the best choice for Ŷ is to collect the S largest13 values in
{pi , i ∈ [K]}. To this effect, consider again Et[`p−rank(Yt, p∗)] = Et[`p−rank(Yt, Ŷ )], and
introduce the shorthand pi,j = pi pj = pi − Pt(yi > yj). Disregarding the term S

∑
i∈[K] pi,

which is independent of Ŷ , we can write

Et[`p−rank(Yt, Ŷ )] =
∑

i,j∈Ŷ , i<j

Pt(yi > yj)
(
{pi < pj}+ 1

2 {pi = pj}
)

+
∑

i,j∈Ŷ , i<j

Pt(yj > yi)
(
{pj < pi}+ 1

2 {pj = pi}
)
− S

∑
i∈Ŷ

pi

=
∑

i,j∈Ŷ , i<j

(pi − pi,j){pi < pj}+ (pi − pi,j)1
2 {pi = pj}

+
∑

i,j∈Ŷ , i<j

(pj − pi,j){pj < pi}+ (pj − pi,j)1
2 {pj = pi} − S

∑
i∈Ŷ

pi

=
∑

i,j∈Ŷ , i<j

(pi − pj){pi < pj}+ 1
2 (pi − pj) {pi = pj}+ pj − pi,j − S

∑
i∈Ŷ

pi

=
∑

i,j∈Ŷ , i<j

(min{pi, pj} − pipj)− S
∑
i∈Ŷ

pi

which can be finally seen to be equal to

−
∑
i∈Ŷ

(S + 1− ĵi) pi −
∑

i,j∈Ŷ , i<j

pi pj , (9)

where ĵi is the position of class i within Ŷt in decreasing order of pi.
Now, rename the indices in Ŷ as 1, 2, . . . , S, in such a way that p1 > p2 > . . . > pS (so

that ĵi = i), and consider the way to increase (9) by adding to Ŷ item k /∈ Ŷ such that
pS > pk and removing from Ŷ the item in position `. Denote the resulting sequence by Ŷ ′.
From (9), it is not hard to see that

Et[`p−rank(Yt, Ŷ )]− Et[`p−rank(Yt, Ŷ ′)]

= (`− 1) p` +
S∑

i=`+1

pi −
`−1∑
i=1

pi p` −
S∑

i=`+1

p` pi − (S − 1) pk +
S∑

i=1,i 6=`
pi pk − S(p` − pk)

= (`− 1) p` +
S∑

i=`+1

pi − (p` − pk)
S∑

i=1,i 6=`
pi − (S − 1) pk − S(p` − pk)

≤ (S − 1) p` − (p` − pk)
S∑

i=1,i 6=`
pi − (S − 1) pk − S(p` − pk)

= (pk − p`)

1 +
S∑

i=1,i 6=`
pi

 (10)

13. It is at this point that we need the conditional independence assumption over the classes.
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which is smaller than zero since, by assumption, p` > pk. Reversing the direction, if we
maintain a sequence Ŷ of size S, we can always reduce (9) by removing its smallest element
and replacing it with a larger element outside the sequence. We continue until no element
outside the current sequence exists which is larger than the smallest one in the sequence.
Clearly, we end up collecting the S largest elements in {pi , i ∈ [K]}.

Finally, from (9) it is very clear that removing an element from a sequence Ŷ of length
h ≤ S can only increase the value of (9). Since this holds for an arbitrary Ŷ and an arbitrary
h ≤ S, this shows that, no matter which set Ŷ we start off from, we always converge to
the same set containing exactly the S largest elements in {pi , i ∈ [K]}. This concludes the
proof.

Lemma 12 Under the same assumptions and notation as in Lemma 11, combined with
the independence assumption (4), let the Algorithm in Figure 2 be working with a→ 1 and
strictly decreasing cost values c(i, s), i.e., the algorithm is computing in round t the ranking
function f̂(xt;St) defined in Section 4. Let w′i,t be the i-th weight vector computed by this

algorithm at the beginning (Step 2) of time t. If time t is such that |∆i,t − ∆̂′i,t| ≤ εi,t for
all i ∈ [K], then

Et[`rank,t(Yt, f̂(xt;St)]− Et[`rank,t(Yt, f∗(xt;St)] ≤ 4St cL
∑
i∈Ŷt

εi,t.

Proof We use the same notation as in the proof of Lemma 6, where â is now Ŷt, the
sequence produced by ranking f̂(xt;St) operating on p̂i,t. Denote by Y ∗t the sequences
determined by f∗(xt;St), and let ĵi and j∗i be the position of class i in decreasing order of
pi,t within Ŷt and Y ∗t , respectively.

Proceeding as in Lemma 11 and recalling (9) we can write

Et[`p−rank,t(Yt, f̂(xt;St))]− Et[`p−rank,t(Yt, f∗(xt;St)]

=
∑
i∈Y ∗t

(St + 1− j∗i ) pi +
∑

i,j∈Y ∗t , i<j
pi pj −

∑
i∈Ŷt

(St + 1− ĵi) pi −
∑

i,j∈Ŷt, i<j

pi pj

≤
∑
i∈Y ∗t

(St + 1− j∗i ) p([∆̂′i,t + εi,t]D) +
∑

i,j∈Y ∗t , i<j
p([∆̂′i,t + εi,t]D) p([∆̂′j,t + εj,t]D)

−
∑
i∈Ŷt

(St + 1− ĵi) p([∆̂′i,t − εi,t]D)−
∑

i,j∈Ŷt, i<j

p([∆̂′i,t − εi,t]D) p([∆̂′j,t − εj,t]D)

≤
∑
i∈Ŷt

(St + 1− ĵi)
(
p([∆̂′i,t + εi,t]D)− p([∆̂′i,t − εi,t]D)

)
+

∑
i,j∈Ŷt, i<j

(
p([∆̂′i,t + εi,t]D) p([∆̂′j,t + εj,t]D)− p([∆̂′i,t − εi,t]D) p([∆̂′j,t − εj,t]D)

)
.
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This, in turn, can be upper bounded by

2StcL
∑
i∈Ŷt

εi,t +
∑

i,j∈Ŷt, i<j

2cL (εi,t + εj,t) = 2St cL
∑
i∈Ŷt

εi,t + 2 (St − 1) cL
∑
i∈Ŷt

εi,t

< 4St cL
∑
i∈Ŷt

εi,t ,

as claimed.

Lemma 13 Let L : D = [−R,R] ⊆ R → R+ be a C2(D) convex and nonincreasing
function of its argument, (u1, . . . ,uK) ∈ RdK be defined in (2) with g(∆) = −L′(∆) for all
∆ ∈ D, and such that ‖ui‖ ≤ U for all i ∈ [K]. Assume there are positive constants c′L
and c′′L with (L′(∆))2 ≤ c′L and L′′(∆) ≥ c′′L for all ∆ ∈ D. With the notation introduced in
Figure 2, we have that

(x>w′i,t − u>i x)2 ≤ x>A−1
i,t−1x

(
U2 +

d c′L
(c′′L)2

ln

(
1 +

t− 1

d

)
+

12

c′′L

(
c′L
c′′L

+ 3L(−R)

)
ln
K(t+ 4)

δ

)
holds with probability at least 1 − δ for any δ < 1/e, uniformly over i ∈ [K], t = 1, 2, . . . ,
and x ∈ Rd.

Proof For any given class i, the time-t update rule w′i,t → wi,t+1 → w′i,t+1 in Figure 2
allows us to start off from the paper by Hazan et al. (2007) (proof of Theorem 2 therein),
from which one can extract the following inequality

di,t−1(ui,w
′
i,t)

≤ U2 +
1

(c′′L)2

t−1∑
k=1

ri,k −
2

c′′L

t−1∑
k=1

(
∇>i,k(w′i,k − ui)−

c′′L
2

(
si,k x

>
k (w′i,k − ui)

)2
)
, (11)

where we set ri,k = ∇>i,k A
−1
i,k ∇i,k.

We now observe that we can construct a quadratic lower bound to L, using the lower
bound on the second derivative of L. More explicitly, using the Taylor expansion of L, we
have

L(x) ≥ L(y) + L′(y)(x− y) +
c′′L
2

(x− y)2,

for any x, y in D. Hence, setting y = si,k x
>
kw
′
i,k and x = si,k u

>
i xk, we have

L(si,k x
>
kw
′
i,k)− L(si,k u

>
i xk)

≤ L′(si,k x>kw′i,k)(si,kx>kw′i,k − si,k u>i xk)−
c′′L
2

(si,k x
>
kw
′
i,k − si,k u>i xk)2

= ∇>i,k(w′i,k − ui)−
c′′L
2

(
si,k x

>
k (w′i,k − ui)

)2
.
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Plugging back into (11) yields

di,t−1(ui,w
′
i,t) ≤ U2 +

1

(c′′L)2

t−1∑
k=1

ri,k −
2

c′′L

t−1∑
k=1

(
L(si,k x

>
kw
′
i,k)− L(si,k u

>
i xk)

)
. (12)

We now borrow a proof technique from Dekel et al. (2012) (see also the papers by Crammer
and Gentile 2011; Abbasi-Yadkori et al. 2011 and references therein). Define

Li,k = L(si,k x
>
kw
′
i,k)− L(si,k u

>
i xk),

and L′i,k = Ek[Li,k]−Li,k. Notice that the sequence of random variables L′i,1, L′i,2, . . . , forms

a martingale difference sequence such that, for any i ∈ Ŷk:

i. Ek[Li,k] ≥ 0, by Lemma 10 (or Lemma 9);

ii. |L′i,k| ≤ 2L(−R), since L(·) is nonincreasing over D, and si,k x
>
kw
′
i,k, si,k u

>
i xk ∈ D;

iii. V ark(L
′
i,k) = V ark(Li,k) ≤

2c′L
c′′L

Ek[Li,k] (again, because of Lemma 10).

On the other hand, when i /∈ Ŷk then si,k = 0, and the above three properties are trivially
satisfied. Under the above conditions, we are in a position to apply any fast concentration
result for bounded martingale difference sequences. For instance, setting for brevity B =
B(t, δ) = 3 ln K(t+4)

δ , a result contained in the paper by Kakade and Tewari (2009) allows
us derive the inequality

t−1∑
k=1

Ek[Li,k]−
t−1∑
k=1

Li,k ≥ max


√√√√8c′L

c′′L
B

t−1∑
k=1

Ek[Li,k], 6L(−R)B

 ,

that holds with probability at most δ
Kt(t+1) for any t ≥ 1. We use the inequality

√
cb ≤

1
2(c+ b) with c =

4c′L
c′′L

B, and b = 2
∑t−1

k=1 Ek[Li,k], and simplify. This gives

−
t−1∑
k=1

Li,k ≤
(

2c′L
c′′L

+ 6L(−R)

)
B

with probability at least 1− δ
Kt(t+1) . Using the Cauchy-Schwarz inequality

(x>w′i,t − u>i x)2 ≤ x>A−1
i,t−1 x di,t−1(ui,w

′
i,t)

holding for any x ∈ Rd, and replacing back into (12) allows us to conclude that

(x>w′i,t − u>i x)2 ≤ x>A−1
i,t−1x

(
U2 +

1

(c′′L)2

t−1∑
k=1

ri,k +
12

c′′L

(
c′L
c′′L

+ 3L(−R)

)
ln
K(t+ 4)

δ

)
(13)

holds with probability at least 1− δ
Kt(t+1) , uniformly over x ∈ Rd.
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The bounds on
∑t−1

k=1 ri,k can be obtained in a standard way. Applying known inequal-
ities (Azoury and Warmuth, 2001; Cesa-Bianchi et al., 2002, 2009; Cavallanti et al., 2011;
Hazan et al., 2007; Dekel et al., 2012), and using the fact that ∇i,k = L′(si,k x

>
kw
′
i,k) si,kxk

we have

t−1∑
k=1

ri,k =

t−1∑
k=1

|si,j | (L′(si,k x>kw′i,k))2 x>k A
−1
i,kxk ≤ c

′
L

t−1∑
k=1

|si,k|x>k A−1
i,kxk

≤ c′L
t−1∑
k=1

ln
|Ai,k|
|Ai,k−1|

= c′L ln
|Ai,t−1|
|Ai,0|

≤ d c′L ln

(
1 +

t− 1

d

)
.

Combining as in (13) and stratifying over t = 1, 2, . . ., and i ∈ [K] concludes the proof.

We are now ready to put all pieces together.
Proof [Theorem 2] From Lemma 11 and Lemma 13, we see that with probability at least
1− δ,

RT ≤ 2 (1− a) cL

T∑
t=1

∑
i∈Ŷt

εi,t , (14)

when ε2i,t is the one given in Figure 2. We continue by proving a pointwise upper bound on

the sum in the RHS. More in detail, we will find an upper bound on
∑T

t=1

∑
i∈Ŷt ε

2
i,t, and

then derive a resulting upper bound on the RHS of (14).
From Lemma 13 and the update rule (Step 5) of the algorithm we can write14

ε2i,t ≤ C x>t A
−1
i,t−1xt = C

x>t (Ai,t−1 + |si,t|xtx>t )−1xt

1− |si,t|x>t (Ai,t−1 + |si,t|xtx>t )−1xt

= C
x>t A

−1
i,t xt

1− |si,t|x>t (Ai,t−1 + |si,t|xtx>t )−1xt

≤ C
x>t A

−1
i,t xt

1− |si,t|x>t (A0 + |si,t|xtx>t )−1xt
= C

x>t A
−1
i,t xt

1− 1
2

= 2C x>t A
−1
i,t xt.

Hence, if we set ri,t = x>t A
−1
i,t xt and proceed as in the proof of Lemma 13, we end up with

the upper bound
∑T

t=1 ε
2
i,t ≤ 2C d ln

(
1 + T

d

)
, holding for all i ∈ [K]. Denoting by M the

quantity 2C d ln
(
1 + T

d

)
, we conclude from (14) that

RT ≤ 2 (1− a) cL max

∑
i∈[K]

T∑
t=1

εi,t

∣∣∣ T∑
t=1

ε2i,t ≤M, i ∈ [K]

 = 2 (1− a) cLK
√
T M,

as claimed.

14. It is in this chain of inequalities that we exploit the rank-one update of Ai,t−1 based on xtx
>
t rather

than ∇i,t∇>i,t. Here we need to lower bound the eigenvalue of the rank-one matrix used in the update.
Using the ∇i,t∇>i,t (as in the worst-case analysis by Hazan et al. 2007), the lower bound would be zero.

This is due to the presence of the multiplicative factor g(si,t∆̂
′
i,t) (Step 5 in Figure 2) which can be

arbitrarily small.
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Proof [Theorem 4] As we said, we change the definition of ε2i,t in the Algorithm in Figure
2 to

ε2i,t =

max

{
x>A−1

i,t−1x

(
2 d c′L
(c′′L)2

ln

(
1 +

t− 1

d

)
+

12

c′′L

(
c′L
c′′L

+ 3L(−R)

)
ln
K(t+ 4)

δ

)
, 4R2

}
.

First, notice that the 4R2 cap seamlessly applies, since (x>w′i,t − u>i x)2 in Lemma 13

is bounded by 4R2 anyway. With this modification, we have that Theorem 2 only holds

for t such that
d c′L

(c′′L)2 ln
(
1 + t−1

d

)
≥ U2, i.e., for t ≥ d

(
exp

(
(c′′L)2 U2

c′L d

)
− 1
)

+ 1, while for

t < d
(

exp
(

(c′′L)2 U2

c′L d

)
− 1
)

+ 1 we have in the worst-case scenario the maximum amount of

regret at each step. From Lemma 11 we see that this maximum amount (the cap on ε2i,t is

needed here) can be bounded by 4 (1− a) cL |Ŷt|R ≤ 4 (1− a) cLKR.

Proof [Theorem 7] We start from the one step-regret delivered by Lemma 12, and proceed
as in the proof of Theorem 2. This yields

RT ≤ 4 cL

T∑
t=1

St
∑
i∈Ŷt

εi,t ≤ 4S cL

T∑
t=1

∑
i∈Ŷt

εi,t ≤ 4S cL

T∑
t=1

∑
i∈[K]

εi,t = 4S cL
∑
i∈[K]

T∑
t=1

εi,t ,

with probability at least 1− δ, where ε2i,t is the one given in Figure 2. Let M be as in the

proof of Theorem 2. We have that
∑T

t=1 ε
2
i,t ≤ M . If Ni,T denotes the total number of

times class i occurs in Ŷt, this implies
∑T

t=1 εi,t ≤
√
Ni,T M for all i ∈ [K]. Moreover, from∑

i∈[K]Ni,T ≤ ST we can write

RT ≤ 4S cL
∑
i∈K]

√
Ni,T M ≤ 4 cL

√
M SK T ,

as claimed.

7. Conclusions and Open Questions

In this paper, we have used generalized linear models to formalize the exploration-exploitation
tradeoff in a multilabel/ranking setting with partial feedback, providing T 1/2-like regret
bounds under semi-adversarial settings. Our analysis decouples the multilabel/ranking loss
at hand from the label-generation model, improving in various ways on the existing lit-
erature. Thanks to the usage of calibrated score values p̂i,t, our algorithm is capable of
automatically inferring where to split the ranking between relevant and nonrelevant classes
(Furnkranz et al., 2008), the split depending on the loss function under consideration. We
considered two partial-feedback loss functions: `a,c and `p−rank,t. The former can be seen
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as a Discounted Cumulative Gain difference, the latter a version of the standard (unnor-
malized) ranking loss, both being restricted to the chosen ranked list Ŷt. These two losses
are inherently different: whereas `p−rank,t has a pairwise component, `a,c does not; whereas
the Bayes optimal Y ∗t w.r.t. `p−rank,t has the maximal allowed length, the Bayes optimal
Y ∗t w.r.t. `a,c need not be full length; whereas Bayes optimality solely based on pi,t does
not require conditional independence assumptions when the loss is `a,c, such condition is
needed when the loss is `p−rank,t. Yet, both losses depend in a similar fashion on the classes

contained in Ŷt, as well as on the way such classes are ranked within Ŷt.

We have investigated the practically important case when Ŷt has to satisfy length con-
straints |Ŷt| ≤ St, which is a typical prior knowledge in the presence of large multilabel
action spaces. When St ≤ S for all t, our regret bounds turn the linear dependence on K
into a linear dependence on

√
SK.

Finally, we have presented experiments aimed at validating our upper-confidence-based
ranking scheme against several real-world conditions and modeling assumptions.

There are many directions along which this work could be extended. In what follows,
we briefly mention three of them.

• Multilabel and ranking algorithms are usually evaluated using an array of loss mea-
sures, including 0/1, Average Precision, F-measure, AUC, normalized ranking losses,
etc. It would be nice to extend the theory contained in this paper to such measures.
However, many of these losses are likely to require modeling pairwise correlations
among classes.

• In the case when St ≤ S, we showed regret bounds of the form
√
SK
√
T . Is it possible

to modify our theoretical arguments (possibly combining with the compressed sensing
machinery used by Hsu et al. 2009) so as to obtain the information-theoretic bound
(S logK)

√
T , instead? Clearly enough, it would be most interesting to do so via

computationally efficient algorithms.

• As a broader goal, it would be interesting to extend this theory to other practically
relevant structured action spaces. For instance, an interesting extension is to the
case when class labels yi,t are not binary, but real valued. Such values can in fact
be the results of click aggregations over time. In this case, we may want to interpret
Yt as a ranked list as well, and come up with appropriate (partial-information) losses
between pairs of such lists. Another interesting extension is to (multilabel) hierarchical
classification. To this effect, the Bayes optimality arguments developed by Cesa-
Bianchi et al. (2006a,b) may be of some relevance.
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G. Bartók. A near-optimal algorithm for finite partial-monitoring games against adversarial
opponents. In S. Shalev-Shwartz and I. Steinwart, editors, COLT, volume 30 of JMLR
Proceedings, pages 696–710. JMLR.org, 2013.
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A. Sklar. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ.
Paris, 8:229–231, 1959.

A. Slivkins, F. Radlinski, and S. Gollapudi. Learning optimally diverse rankings over large
document collections. pages 983–990. Omnipress, 2010.

C.G.M. Snoek, M. Worring, J.C. van Gemert, J.-M. Geusebroek, and A.W.M. Smeulders.
The challenge problem for automated detection of 101 semantic concepts in multime-
dia. In K. Nahrstedt, M. Turk, Y. Rui, W. Klas, and K. Mayer-Patel, editors, ACM
Multimedia, pages 421–430. ACM, 2006.

I. Steinwart. Support vector machines are universally consistent. J. Complexity, 18(3):
768–791, 2002.

M. Streeter, D. Golovin, and A. Krause. Online learning of assignments. In Y. Bengio,
D. Schuurmans, J.D. Lafferty, C.K.I. Williams, and A. Culotta, editors, Advances in
Neural Information Processing Systems 22, pages 1794–1802. Curran Associates, Inc.,
2009.

G. Tsoumakas, I. Katakis, and I. Vlahavas. Random k-labelsets for multilabel classification.
IEEE Transactions on Knowledge and Data Engineering, 23:1079–1089, 2011.

Y. Wang, R. Khardon, D. Pechyony, and R. Jones. Generalization bounds for online learning
algorithms with pairwise loss functions. In S. Mannor, N. Srebro, and R.C. Williamson,
editors, COLT, volume 23 of JMLR Proceedings, pages 13.1–13.22. JMLR.org, 2012.

2487



 



Journal of Machine Learning Research 15 (2014) 2489-2512 Submitted 4/13; Revised 3/14; Published 7/14

Beyond the Regret Minimization Barrier: Optimal
Algorithms for Stochastic Strongly-Convex Optimization

Elad Hazan∗ ehazan@ie.technion.ac.il
Technion - Israel Inst. of Tech.
Haifa 32000, Israel

Satyen Kale satyen@yahoo-inc.com

Yahoo! Labs

111 W 40th St, 9th Floor, New York, NY 10018

Editor: Nicolo Cesa-Bianchi

Abstract

We give novel algorithms for stochastic strongly-convex optimization in the gradient oracle
model which return a O( 1

T )-approximate solution after T iterations. The first algorithm
is deterministic, and achieves this rate via gradient updates and historical averaging. The
second algorithm is randomized, and is based on pure gradient steps with a random step
size.

This rate of convergence is optimal in the gradient oracle model. This improves upon

the previously known best rate of O( log(T )
T ), which was obtained by applying an online

strongly-convex optimization algorithm with regret O(log(T )) to the batch setting.
We complement this result by proving that any algorithm has expected regret of

Ω(log(T )) in the online stochastic strongly-convex optimization setting. This shows that
any online-to-batch conversion is inherently suboptimal for stochastic strongly-convex opti-
mization. This is the first formal evidence that online convex optimization is strictly more
difficult than batch stochastic convex optimization.1

Keywords: stochastic gradient descent, convex optimization, regret minimization, online
learning

1. Introduction

Stochastic convex optimization has an inherently different flavor than standard convex
optimization. In the stochastic case, a crucial resource is the number of data samples from
the function to be optimized. This resource limits the precision of the output: given few
samples there is simply not enough information to compute the optimum up to a certain
precision. The error arising from this lack of information is called the estimation error.

The estimation error is independent of the choice of optimization algorithm, and it is
reasonable to choose an optimization method whose precision is of the same order of mag-
nitude as the sampling error: lesser precision is suboptimal, whereas much better precision
is pointless. This issue is extensively discussed by Bottou and Bousquet (2007) and by

∗. Supported by ISF Grant 810/11 and the Microsoft-Technion EC Center.
1. An extended abstract of this work appeared in COLT 2011 (Hazan and Kale, 2011). In this version

we have included a new randomized algorithm which is based on pure gradient steps, and extended the
results to strong convexity with respect to general norms.
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Shalev-Shwartz and Srebro (2008). This makes first-order methods ideal for stochastic con-
vex optimization: their error decreases as a polynomial in the number of iterations, usually
make only one iteration per data point, and each iteration is extremely efficient.

In this paper we consider first-order methods for stochastic convex optimization. For-
mally, the problem of stochastic convex optimization is the minimization of a convex (pos-
sibly non-smooth) function on a convex domain K:

min
x∈K

F (x).

The stochasticity is in the access model: the only access to F is via a stochastic subgradient
oracle, which given any point x ∈ K, produces a random vector ĝ whose expectation is a
subgradient of F at the point x, i.e., E[ĝ] ∈ ∂F (x), where ∂F (x) denotes the subdifferential
set of F at x.

We stress that F may be non-smooth. This is important for the special case when
F (x) = EZ [f(x, Z)] (the expectation being taken over a random variable Z), where for
every fixed z, f(x, z) is a convex function of x. The goal is to minimize F while given a
sample z1, z2, . . . drawn independently from the unknown distribution of Z. A prominent
example of this formulation is the problem of support vector machine (SVM) training (see
Shalev-Shwartz et al., 2009). For SVM training, the function F is convex but non-smooth.

An algorithm for stochastic convex optimization is allowed a budget of T calls to the gra-
dient oracle. It sequentially queries the gradient oracle at consecutive points x1,x2, . . . ,xT ,
and produces an approximate solution x̄. The rate of convergence of the algorithm is the
expected excess cost of the point x̄ over the optimum, i.e. E[F (x̄)] −minx∈K F (x), where
the expectation is taken over the randomness in the gradient oracle and the internal random
seed of the algorithm. The paramount parameter for measuring this rate is in terms of T ,
the number of gradient oracle calls.

Our first and main contribution is the first algorithm to attain the optimal rate of
convergence in the case where F is λ-strongly convex, and the gradient oracle is G-bounded
(see precise definitions in Section 2.1). After T gradient updates, the algorithm returns
a solution which is O( 1

T )-close in cost to the optimum. Formally, we prove the following
theorem.

Theorem 1 Assume that F is λ-strongly convex and the gradient oracle is G-bounded.
Then there exists a deterministic algorithm that after at most T gradient updates returns a
vector x̄ such that for any x? ∈ K we have

E[F (x̄)]− F (x?) ≤ O
(
G2

λT

)
.

This matches the lower bound of Agarwal et al. (2012) up to constant factors.

The previously best known rate was O( log(T )T ), and follows by converting a more general
online convex optimization algorithm of Hazan et al. (2007) to the batch setting. This
standard online-to-batch reduction works as follows. In the online convex optimization
setting, in each round t = 1, 2, . . . , T , a decision maker (represented by an algorithm A)
chooses a point xt in convex domain K, and incurs a cost ft(xt) for an adversarially chosen
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convex cost function ft. In this model performance is measured by the regret, defined as

Regret(A) :=
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x). (1)

A regret minimizing algorithm is one that guarantees that the regret grows like o(T ). Given
such an algorithm, one can perform batch stochastic convex optimization by setting ft to
be the function f(·, zt). A simple analysis then shows that the cost of the average point,
x̄ = 1

T

∑T
t=1 xt, converges to the optimum cost at the rate of the average regret, which

converges to zero.

The best previously known convergence rates for stochastic convex optimization were
obtained using this online-to-batch reduction, and thus these rates were equal to the average
regret of the corresponding online convex optimization algorithm. While it is known that
for general convex optimization, this online-to-batch reduction gives the optimal rate of
convergence, such a result was not known for stochastic strongly-convex functions. In this
paper we show that for stochastic strongly-convex functions, minimizing regret is strictly
more difficult than batch stochastic strongly-convex optimization.

More specifically, the best known regret bound for λ-strongly-convex cost functions with

gradients bounded in norm by G is O(G
2 log(T )
λ ) (Hazan et al., 2007). This regret bound

holds even for adversarial, not just stochastic, strongly-convex cost functions. A matching
lower bound was obtained by Takimoto and Warmuth (2000) for the adversarial setting.

Our second contribution in this paper is a matching lower bound for strongly-convex
cost functions that holds even in the stochastic setting, i.e., if the cost functions are sampled
i.i.d from an unknown distribution. Formally:

Theorem 2 For any online decision-making algorithm A, there is a distribution over λ-
strongly-convex cost functions with norms of gradients bounded by G such that

E[Regret(A)] = Ω

(
G2 log(T )

λ

)
.

Hence, our new rate of convergence of O(G
2

λT ) is the first to separate the complexity of
stochastic and online strongly-convex optimization. The following table summarizes our
contribution with respect to the previously known bounds. The setting is assumed to be
stochastic λ-strongly-convex functions with expected subgradient norms bounded by G.

Previously known bound New bound here

Convergence rate O
(
G2 log(T )

λT

)
(Hazan et al., 2007) O

(
G2

λT

)
Regret Ω

(
G2

λ

)
(Trivial bound2) Ω

(
G2 log(T )

λ

)
2. The lower bound follows from the work of Agarwal et al. (2012), but a simple lower bound example is

the following. Consider an adversary that plays a fixed function, either λ
2
x2 or λ

2
(x− G

λ
)2, for all rounds,

with K = [0, G
λ

]. On the first round, the loss of the algorithm’s point x1 for one of these two functions

is at least G2

8λ
: this is because λ

2
x21 + λ

2
(x1 − G

λ
)2 = λ(x1 − G

2λ
)2 + G2

4λ
≥ G2

4λ
. Clearly the best point in

hindsight has 0 loss, so the regret of the algorithm is at least G2

8λ
for one of the two functions.
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We also sharpen our results: Theorem 1 bounds the expected excess cost of the solution
over the optimum by O( 1

T ). We can also show high probability bounds. In situations where
it is possible to evaluate F at any given point efficiently, simply repeating the algorithm a

number of times and taking the best point found bounds the excess cost by O(
G2 log( 1

δ
)

λT ) with
probability at least 1− δ. In more realistic situations where it is not possible to evaluate F
efficiently, we can still modify the algorithm so that with high probability, the actual excess
cost of the solution is bounded by O( log log(T )T ):

Theorem 3 Assume that F is λ-strongly convex, and the gradient oracle is strongly G-
bounded. Then for any δ > 0, there exists an algorithm that after at most T gradient
updates returns a vector x̄ such that with probability at least 1− δ, for any x? ∈ K we have

F (x̄)− F (x?) ≤ O

(
G2(log(1δ ) + log log(T ))

λT

)
.

The algorithm attaining the convergence rate claimed in Theorem 1 is deterministic,
albeit not a pure gradient-step algorithm: it proceeds in epochs; each epoch performs
gradient steps only. However, the initialization of any epoch is given by the average iterate
of the previous epoch. A natural question that arises is whether there exists a pure gradient
step algorithm, that performs only gradient steps with carefully controlled step size. We
also give an algorithm achieving this (although using random step sizes).

1.1 Related Work

For an in depth discussion of first-order methods, the reader is referred to the book by
Bertsekas (1999).

The study of lower bounds for stochastic convex optimization was undertaken by Ne-
mirovski and Yudin (1983), and recently extended and refined by Agarwal et al. (2012).

Online convex optimization was introduced by Zinkevich (2003). Optimal lower bounds
for the convex case, even in the stochastic setting, of Ω(

√
T ) are simple and given in the

book by Cesa-Bianchi and Lugosi (2006). For exp-concave cost functions, Ordentlich and
Cover (1998) give a Ω(log T ) lower bound on the regret, even when the cost functions are
sampled according to a known distribution. For strongly convex functions, no non-trivial
stochastic lower bound was known. Takimoto and Warmuth (2000) give a Ω(log T ) lower
bound in the regret for adaptive adversaries. Abernethy et al. (2009) put this lower bound
in a general framework for min-max regret minimization.

It has been brought to our attention that Juditsky and Nesterov (2010) and Ghadimi
and Lan (2010) have recently published technical reports that have very similar results to
ours, and also obtain an O( 1

T ) convergence rate. Our work was done independently and a
preliminary version was published on arXiv (Hazan and Kale, 2010) before the technical
reports of Juditsky and Nesterov (2010) and Ghadimi and Lan (2010) were made available.
Note that the high probability bound in this paper has better dependence on T than the
result of Ghadimi and Lan (2010): we lose an additional log log T factor vs. the log2 log T
factor lost in the paper of Ghadimi and Lan (2010). Our lower bound on the regret for
stochastic online strongly-convex optimization is entirely new.

Following our work, a number of other works have appeared which obtain the optimal
O( 1

T ) convergence rate using other methods. Rakhlin et al. (2012) show that for strongly
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convex cost functions that are also smooth, a O( 1
T ) rate is attainable by vanilla stochastic

gradient descent (SGD), and further that SGD with special averaging of the last iterates
recovers this optimal rate even in the non-smooth case. They also show that empirically,
our algorithm indeed performs better than vanilla averaged SGD; though it is slightly worse
than the suffix-averaging variant of SGD in their paper. Shamir and Zhang (2013) later
considered the last iterate of vanilla SGD, for which they show O( log TT ) convergence rate in
the strongly convex case. This complements the bound of O( 1

T ) on the suboptimality of a
random iterate from the random SGD variant we give in this paper.

2. Setup and Background

In this section we give basic definitions and describe the optimization framework for our
results.

2.1 Stochastic Convex Optimization

We work in a Euclidean space3 H with norm ‖ · ‖ with the dual norm ‖ · ‖?. For x,w ∈ H,
let w · x denote their inner product. For a convex and differentiable function f , we denote
by ∇f its gradient at a given point. Consider the setting of stochastic convex optimization
of a convex (possibly non-smooth) function F over a convex (possibly non-compact) set
K ⊆ H. Let x? be a point in K where F is minimized. We make the following assumptions:

1. We assume that we have a convex and differentiable function R : H → R∪{−∞,+∞}
with its corresponding Bregman divergence defined as:

BR(y,x) := R(y)−R(x)−∇R(x) · (y − x).

By direct substitution, this definition implies that for any vectors x,y, z ∈ H,

(∇R(z)−∇R(y)) · (x− y) = BR(x,y)−BR(x, z) +BR(y, z). (2)

We assume further that R is strongly-convex w.r.t. the norm ‖ · ‖, i.e., for any two
points x,y ∈ H, we have

BR(y,x) ≥ 1

2
‖x− y‖2.

2. We assume that F is λ-strongly convex w.r.t. BR: i.e., for any two points x,y ∈ K
and any α ∈ [0, 1], we have

F (αx + (1− α)y) ≤ αF (x) + (1− α)F (y)− λα(1− α)BR(y,x).

A sufficient condition for F to be λ-strongly-convex w.r.t. BR is if F (x) = EZ [f(x, Z)]
and f(·, z) is λ-strongly-convex w.r.t. BR for every z in the support of Z.

This implies F satisfies the following inequality:

F (x)− F (x?) ≥ λBR(x?,x). (3)

3. In this paper, we work in a Euclidean space for simplicity. Our results extend without change to any
real Banach space B with norm ‖ · ‖ with the dual space B? and the dual norm ‖ · ‖?, with the additional
assumption that K is compact.
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This follows by setting y = x?, dividing by α, taking the limit as α→ 0+, and using
the fact that x? is the minimizer of F . This inequality holds even if x? is on the
boundary of K. In fact, (3) is the only requirement on the strong convexity of F for
the analysis to work; we will simply assume that (3) holds.

3. Assume that we have a stochastic subgradient oracle for F , i.e., we have black-box
access to an algorithm that computes an unbiased estimator ĝ of some subgradient
of F at any point x, i.e., E[ĝ] ∈ ∂F (x). We assume that each call to the oracle uses
randomness that is independent of all previously made calls. Further, we assume that
at any point x ∈ K, the stochastic subgradient ĝ output by the oracle satisfies one of
the assumptions below:

(a) E[‖ĝ‖2?] ≤ G2.

(b) E
[
exp

(
‖ĝ‖2?
G2

)]
≤ exp(1).

It is easy to see that assumption 3b implies assumption 3a by Jensen’s inequality. We
will need the stronger assumption 3b to prove high probability bounds. We call an
oracle satisfying the weaker assumption 3a G-bounded, and an oracle satisfying the
stronger assumption 3b strongly G-bounded. For a G-bounded oracle, note that
by Jensen’s inequality, we also have that ‖E[ĝ]‖2? ≤ G2, so in particular, at all points
x ∈ K, there is a subgradient of F with ‖ · ‖? norm bounded by G.

For example, in the important special case F (x) = EZ [f(x, Z)] where f(·, z) is convex
for every z in the support of Z, we can obtain such a stochastic subgradient oracle
simply by taking a subgradient of f(·, z).

4. The Fenchel conjugate of R is the function R? : H → R ∪ {−∞,+∞}

R?(w) := sup
x

w · x−R(x).

By the properties of Fenchel conjugacy (see Borwein and Lewis, 2006, for more details),
we have that ∇R? = ∇R−1. We assume that the following “Bregman update and
projection” operations can be carried out efficiently over the domain K, for any x,g ∈
H:

y = ∇R?(∇R(x)− ηg).

x′ = arg min
z∈K

{BR(z,y)} .

In general this is a convex optimization problem and can be solved efficiently; however
the method described in this paper is really useful when this operation can be carried
very efficiently (say linear time).

For example, if R(x) = 1
2‖x‖

2
2, where ‖ · ‖2 is the usual Euclidean `2 norm, then

BR(x,y) = 1
2‖x− y‖22, and the Bregman update and projection operations reduce to

the usual projected gradient algorithm:

x′ = arg min
z∈K

1

2
‖(x− ηg)− z‖22.
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The above assumptions imply the following lemma:

Lemma 4 For all x ∈ K, and x? the minimizer of F , we have F (x)− F (x?) ≤ 2G2

λ .

Proof For any x ∈ K, let g ∈ ∂F (x) be a subgradient of F at x such that ‖g‖? ≤ G
(the existence of g is guaranteed by assumption 3a). Then by the convexity of F , we
have F (x) − F (x?) ≤ g · (x − x?), so that by the Cauchy-Schwarz inequality, we have
F (x)− F (x?) ≤ G‖x− x?‖. But assumption 1 and 2 imply that

F (x)− F (x?) ≥ λBR(x?,x) ≥ λ

2
‖x? − x‖2.

Putting these together, we get that ‖x− x?‖ ≤ 2G
λ . Finally, we have

F (x)− F (x?) ≤ G‖x− x?‖ ≤ 2G2

λ
.

2.2 Online Convex Optimization and Regret

Recall the setting of online convex optimization given in the introduction. In each round
t = 1, 2, . . . , T , a decision-maker needs to choose a point xt ∈ K, a convex set. Then nature
provides a convex cost function ft : K → R, and the decision-maker incurs the cost ft(xt).
The (adversarial) regret of the decision-maker is defined to be

AdversarialRegret :=
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x). (4)

When the cost functions ft are drawn i.i.d. from some unknown distribution D, (stochastic)
regret is traditionally defined measured with respect to the expected cost function, F (x) =

ED[f1(x)]:

StochasticRegret := E
D

[
T∑
t=1

F (xt)

]
− T min

x∈K
F (x). (5)

In either case, if the decision-making algorithm is randomized, then we measure the per-
formance by the expectation of the regret taken over the random seed of the algorithm in
addition to any other randomness.

When cost functions are drawn i.i.d. from an unknown distribution D, it is easy to
check that

E
D

[
min
x∈K

T∑
t=1

ft(x)

]
≤ min

x∈K
E
D

[
T∑
t=1

ft(x)

]
,

by considering the point x? = arg minx∈K ED
[∑T

t=1 ft(x)
]
. So

E
D

[AdversarialRegret] ≥ StochasticRegret.
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Thus, for the purpose of proving lower bounds on the regret (expected regret in the case
of randomized algorithms), it suffices to prove such bounds for StochasticRegret. We prove
such lower bounds in Section 5. For notational convenience, henceforth the term “regret”
refers to StochasticRegret.

3. The Optimal Algorithm and its Analysis

Our algorithm is an extension of stochastic gradient descent. The new feature is the in-
troduction of “epochs” inside of which standard stochastic gradient descent is used, but in
each consecutive epoch the learning rate decreases exponentially.

Algorithm 1 Epoch-GD

1: Input: parameters η1, T1 and total time T .
2: Initialize x1

1 ∈ K arbitrarily, and set k = 1.
3: while

∑k
i=1 Ti ≤ T do

4: // Start epoch k
5: for t = 1 to Tk do
6: Query the gradient oracle at xkt to obtain ĝt
7: Update

ykt+1 = ∇R?(∇R(xkt )− ηkĝt),

xkt+1 = arg min
x∈K

{
BR(x,ykt+1)

}
.

8: end for
9: Set xk+1

1 = 1
Tk

∑Tk
t=1 x

k
t

10: Set Tk+1 ← 2Tk and ηk+1 ← ηk/2.
11: Set k ← k + 1
12: end while
13: return xk1.

Our main result is the following theorem, which immediately implies Theorem 1.

Theorem 5 Set the parameters T1 = 4 and η1 = 1
λ in the Epoch-GD algorithm. The

final point xk1 returned by the algorithm has the property that

E[F (xk1)]− F (x?) ≤ 16G2

λT
.

The total number of gradient updates is at most T .

The intra-epoch use of online mirror decent is analyzed using the following lemma, which
follows the ideas of Zinkevich (2003); Bartlett et al. (2007), and given here for completeness:

Lemma 6 Starting from an arbitrary point x1 ∈ K, apply T iterations of the update

yt+1 = ∇R?(∇R(xt)− ηĝt),
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xt+1 = arg min
x∈K

{BR(x,yt+1)} .

Then for any point x? ∈ K, we have

T∑
t=1

ĝt · (xt − x?) ≤ η

2

T∑
t=1

‖ĝt‖2? +
BR(x?,x1)

η
.

Proof Since ∇R? = ∇R−1, we have ∇R(yt+1) = ∇R(xt)− ηĝt. Thus, we have

ĝt · (xt − x?) =
1

η
(∇R(yt+1)−∇R(xt)) · (x? − xt)

=
1

η
[BR(x?,xt)−BR(x?,yt+1) +BR(xt,yt+1)] via (2)

≤ 1

η
[BR(x?,xt)−BR(x?,xt+1) +BR(xt,yt+1)],

where the last inequality follows from the Pythagorean Theorem for Bregman divergences
(see Bregman, 1967): since xt+1 is the Bregman projection of yt+1 on the convex set K,
and x? ∈ K, we have BR(x?,xt+1) ≤ BR(x?,yt+1). Summing over all iterations, and using
the non-negativity of the Bregman divergence, we get

T∑
t=1

ĝt · (xt − x?) ≤ 1

η
[BR(x?,x1)−BR(x?,xT+1)] +

1

η

T∑
t=1

BR(xt,yt+1)]

≤ 1

η
BR(x?,x1) +

1

η

T∑
t=1

BR(xt,yt+1). (6)

We proceed to bound BR(xt,yt+1). By the definition of Bregman divergence, we get

BR(xt,yt+1) +BR(yt+1,xt) = (∇R(xt)−∇R(yt+1)) · (xt − yt+1)

= ηĝt · (xt − yt+1)

≤ 1

2
η2‖ĝt‖2? +

1

2
‖xt − yt+1‖2.

The last inequality uses the fact that since ‖ · ‖ and ‖ · ‖? are dual norms, we have

w · v ≤ ‖w‖?‖v‖ ≤
1

2
‖w‖2? +

1

2
‖v‖2.

Thus, by our assumption BR(x,y) ≥ 1
2‖x− y‖2, we have

BR(xt,yt+1) ≤
1

2
η2‖ĝt‖2? +

1

2
‖xt − yt+1‖2 −BR(yt+1,xt) ≤

η2

2
‖ĝt‖2?.

Plugging this bound into (6), we get the required bound.
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Lemma 7 Starting from an arbitrary point x1 ∈ K, apply T iterations of the update

yt+1 = ∇R?(∇R(xt)− ηĝt),

xt+1 = arg min
x∈K

{BR(x,yt+1)} ,

where ĝt is an unbiased estimator for a subgradient gt of F at xt satisfying assumption 3a.
Then for any point x? ∈ K, we have

1

T
E

[
T∑
t=1

F (xt)

]
− F (x?) ≤ ηG2

2
+
BR(x?,x1)

ηT
.

By convexity of F , we have the same bound for E[F (x̄)]− F (x?), where x̄ = 1
T

∑T
t=1 xt.

Proof For a random variable X measurable w.r.t. the randomness until round t, let

Et−1[X] denote its expectation conditioned on the randomness until round t − 1. By the
convexity of F , we get

F (xt)− F (x?) ≤ gt · (xt − x?) = E
t−1

[ĝt · (xt − x?)],

since Et−1[ĝt] = gt and Et−1[xt] = xt. Taking expectations of the inequality, we get that

E[F (xt)]− F (x?) ≤ E[ĝt · (xt − x?)].

Summing up over all t = 1, 2, . . . , T , and taking the expectation on both sides of the in-
equality in Lemma 6, we get the required bound.

Define Vk = G2

2k−2λ
and ∆k = F (xk1) − F (x?). The choice of initial parameters T1 = 4

and η1 = 1
λ was specified in Theorem 5, and by definition Tk = T12

k−1 and ηk = η12
−(k−1).

Using Lemma 7 we prove the following key lemma:

Lemma 8 For any k, we have E[∆k] ≤ Vk.

Proof We prove this by induction on k. The claim is true for k = 1 since ∆k ≤ 2G2

λ by
Lemma 4. Assume that E[∆k] ≤ Vk for some k ≥ 1 and now we prove it for k + 1. For a
random variable X measurable w.r.t. the randomness defined up to epoch k + 1, let Ek[X]
denote its expectation conditioned on all the randomness up to epoch k. By Lemma 7 we
have

E
k
[F (xk+1

1 )]− F (x?) ≤ ηkG
2

2
+
BR(x?,xk1)

ηkTk

≤ ηkG
2

2
+

∆k

ηkTkλ
,

since ∆k = F (xk1)− F (x?) ≥ λBR(x?,xk1) by λ-strong convexity of F with respect to BR.
Hence, we get

E[∆k+1] ≤
ηkG

2

2
+

E[∆k]

ηkTkλ
≤ ηkG

2

2
+

Vk
ηkTkλ

=
η1G

2

2k
+

Vk
η1T1λ

= Vk+1,
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as required. The second inequality uses the induction hypothesis, and the last two equali-
ties use the definition of Vk, the equalities Tk = T12

k−1 and ηk = η12
−(k−1), and the initial

values T1 = 4 and η1 = 1
λ .

We can now prove our main theorem:

Proof [Proof of Theorem 5.] The number of epochs made are given by the largest value of
k satisfying

∑k
i=1 Ti ≤ T , i.e.,

k∑
i=1

2i−1T1 = (2k − 1)T1 ≤ T.

This value is k† = blog2(
T
T1

+1)c. The final point output by the algorithm is xk
†+1

1 . Applying

Lemma 8 to k† + 1 we get

E[F (xk
†+1

1 )]− F (x?) = E[∆k†+1] ≤ Vk†+1 =
G2

2k†−1λ
≤ 4T1G

2

λT
=

16G2

λT
,

as claimed. The while loop in the algorithm ensures that the total number of gradient
updates is naturally bounded by T .

3.1 A Randomized Stopping Variant

In this section we describe a pure stochastic gradient descent algorithm with random step
sizes that has the same (expected) rate of convergence.

Our main theorem of this section is:

Theorem 9 Set the parameters T1 = 4 and η1 = 1
λ in the Random-Step-GD algorithm.

The final point xt returned by the algorithm has the property that

E[F (xt)]− F (x?) ≤ 16G2

λT

where the expectation is taken over the gradient estimates as well as the internal random-
ization of the algorithm.

Proof The proof of this theorem is on the same lines as before. In particular, we divide up
the entire time period into (possibly overlapping) epochs. For k = 1, 2, . . ., epoch k consists
of the following sequence of Tk rounds: {Bk, Bk + 1, . . . , Bk + Tk − 1}. Note that Bk+1 is
a uniformly random time in the above sequence. The behavior of the algorithm in rounds
Bk, Bk + 1, . . . , Bk+1 − 1 can be simulated by the following thought-experiment: starting
with xBk , run Tk iterations of stochastic mirror descent, i.e.,

∇R(yt+1) = ∇R(xt)− ηkĝt,

xt+1 = arg min
x∈K

{BR(x,yt+1)} ,
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Algorithm 2 Random-Step-GD

1: Input: parameters η1, T1 and total time T .
2: Initialize x1 ∈ K arbitrarily, and set k = 1, B1 = 1, B2 ∈ {1, 2, . . . , T1} uniformly at

random.
3: for t = 1, 2, . . . do
4: if t = Bk+1 then
5: Set k ← k + 1.
6: Set Tk ← 2Tk−1 and ηk ← ηk−1/2.
7: Set Bk+1 ∈ {Bk, Bk + 1, . . . , Bk + Tk − 1} uniformly at random.
8: if Bk+1 > T then
9: Break for loop.

10: end if
11: end if
12: Query the gradient oracle at xt to obtain ĝt.
13: Update

yt+1 = ∇R?(∇R(xt)− ηkĝt)

xt+1 = arg min
x∈K

{BR(x,yt+1)}

14: end for
15: return xt.

for t = Bk, . . . , Bk + Tk − 1, and return xBk+1
. Conditioning on xBk−1

, and taking ex-
pectations, since Bk+1 was chosen uniformly at random from a sequence of Tk rounds, we
get

E[F (xBk+1
)] =

1

Tk

Bk+Tk−1∑
t=Bk

E[F (xt)].

Now, by Lemma 7, we conclude that

E[F (xBk+1
)]− F (x?) ≤ ηkG

2

2
+
BR(x?,xBk)

ηkTk
. (7)

Now, just as before, we define Vk = G2

2k−2λ
and ∆k = F (xBk)− F (x?). Recall the choice of

initial parameters T1 = 4 and η1 = 1
λ as specified in Theorem 9. Now, arguing exactly as

in Lemma 8

Lemma 10 For any k, we have E[∆k] ≤ Vk.

Proof We prove this by induction on k. The claim is true for k = 1 since ∆k ≤ 2G2

λ by
Lemma 4. Assume that E[∆k] ≤ Vk for some k ≥ 1 and now we prove it for k + 1. For a
random variable X measurable w.r.t. the randomness defined up to epoch k + 1, let Ek[X]
denote its expectation conditioned on all the randomness up to epoch k. By Lemma 7 we
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have

E
k
[F (xk+1

1 )]− F (x?) ≤ ηkG
2

2
+
BR(x?,xk1)

ηkTk

≤ ηkG
2

2
+

∆k

ηkTkλ
,

since ∆k = F (xk1) − F (x?) ≥ λBR(x?,xk1) by λ-strong convexity of F with respect to R.
Hence, we get

E[∆k+1] ≤
ηkG

2

2
+

E[∆k]

ηkTkλ
≤ ηkG

2

2
+

Vk
ηkTkλ

=
η1G

2

2k
+

Vk
η1T1λ

= Vk+1,

as required. As before, the second inequality above uses the induction hypothesis, and the
last two equalities use the definition of Vk, the equalities Tk = T12

k−1 and ηk = η12
−(k−1),

and the initial values T1 = 4 and η1 = 1
λ .

Now just as in the proof of Theorem 5, since we output xt = xB
k†+1

, where k†, the

number of epochs, is at least4 blog2(
T
T1

+ 1)c, we conclude that E[F (xt)]−F (x?) ≤ 16G2

λT as
required.

4. High Probability Bounds

While Epoch-GD algorithm has a O( 1
T ) rate of convergence, this bound is only on the

expected excess cost of the final solution. In applications we usually need the rate of
convergence to hold with high probability. Markov’s inequality immediately implies that
with probability 1−δ, the actual excess cost is at most a factor of 1

δ times the stated bound.
While this guarantee might be acceptable for not too small values of δ, it becomes useless
when δ gets really small.

There are two ways of remedying this. The easy way applies if it is possible to evaluate
F efficiently at any given point. Then we can divide the budget of T gradient updates
into ` = log2(1/δ) consecutive intervals of T

` rounds each, and run independent copies of
Epoch-GD in each. Finally, we take the ` solutions obtained, and output the best one
(i.e., the one with the minimum F value). Applying Markov’s inequality to every run
of Epoch-GD, with probability at least 1/2, we obtain a point with excess cost at most
64G2`
λT = 64G2 log2(1/δ)

λT , and so with probability at least 1 − 2−` = 1 − δ, the best point has

excess cost at most 64G2 log2(1/δ)
λT . This finishes the description of the easy way to obtain

high probability bounds.

The easy way fails if it is not possible to evaluate F efficiently at any given point. For this
situation, we now describe how using essentially the same algorithm with slightly different
parameters, we can get a high probability guarantee on the quality of the solution. To prove

4. Here we have an inequality rather than an equality as in the previous algorithm since we may have more
epochs due to the random early stopping of epochs.
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the high probability bound, we need to make the stronger assumption 3b, i.e., for all points

x ∈ K, the stochastic subgradient ĝ output by the oracle satisfies E[exp(‖ĝ‖
2
?

G2 )] ≤ e.
The only differences in the new algorithm, dubbed Epoch-GD-Proj, are as follows.

The algorithm takes a new parameter, D1. The update in line 7 requires a projection onto
a smaller set, and becomes

ykt+1 = ∇R?(∇R(xkt )− ηkĝt),

xkt+1 = arg min
x∈K∩B(xk1 ,Dk)

{
BR(x,ykt+1)

}
. (8)

Here B(x, D) = {y : ‖y − x‖ ≤ D} denotes the ball of radius D around the point x, and
Dk is computed in the algorithm. The update in line 10 now becomes:

Set Tk+1 ← 2Tk, ηk+1 ← ηk/2, and Dk+1 ← Dk/
√

2.

Since the intersection of two convex sets is also a convex set, the above projection can be
computed via a convex program.5 A completely analogous version of Random-Step-GD
is an easy extension; it enjoys the same high probability bound as given below. We prove
the following high probability result, which in turn directly implies Theorem 3.

Theorem 11 Given δ > 0 for success probability 1− δ, set δ̃ = δ
k†

for k† = blog2(
T
450 + 1)c.

Set the parameters T1 = 450, η1 = 1
3λ , and D1 = 2G

√
log(2/δ̃)

λ in the Epoch-GD-Proj

algorithm. The final point xk1 returned by the algorithm has the property that with probability
at least 1− δ, we have

F (xk1)− F (x?) ≤ 1800G2 log(2/δ̃)

λT
.

The total number of gradient updates is at most T .

The following lemma is analogous to Lemma 7, but provides a high probability guaran-
tee.

Lemma 12 For any given x? ∈ K, let D be an upper bound on ‖x1 − x?‖. Apply T
iterations of the update

yt+1 = ∇R?(∇R(xt)− ηĝt),

xt+1 = arg min
x∈K∩B(x1,D)

{BR(x,yt+1)} .

5. It was suggested to us by a referee that in practice, computing xkt+1 by taking a Bregman projection on
K ∩B′(xk1 , Dk), where B′(x, r) = {y : BR(y,x) ≤ D2/2} is the “Bregman ball of radius D around the
point x”, might be more efficient than a projection on K ∩ B(xk1 , Dk). This depends on the application,
but it is easy to see that all the proofs (and thus the high-probability guarantees) go through simply
because the Bregman balls are a subset of the norm ‖ · ‖ balls, i.e., B′(x, D) ⊆ B(x, D), by the strong-
convexity of R w.r.t. the norm ‖ · ‖. We prefer to leave the update in terms of the norm ‖ · ‖ balls
since generally speaking projections on larger sets are easier; the specific choice can be tailored to the
application.

2502



Optimal Stochastic Strongly-Convex Optimization

where ĝt is an unbiased estimator for the subgradient of F at xt satisfying assumption 3b.
Then for any δ ∈ (0, 1), with probability at least 1− δ we have

1

T

T∑
t=1

F (xt)− F (x?) ≤ ηG2 log(2/δ)

2
+
BR(x?,x1)

ηT
+

4GD
√

3 log(2/δ)√
T

.

By the convexity of F , the same bound also holds for F (x̄)− F (x?), where x̄ = 1
T

∑T
t=1 xt.

Proof First, note that since the oracle uses independent randomness in every call to it,
we conclude that that for all t, ĝt is independent of ĝ1, . . . , ĝt−1 given xt, and thus by
assumption 3b we have

E
t

[
exp

(
‖ĝt‖2?
G2

)]
= E

[
exp

(
‖ĝt‖2?
G2

)∣∣∣xt] ≤ exp(1). (9)

The proof proceeds on similar lines as that of Lemma 7, except that we use high-
probability bounds rather than expected bounds. Using the same notation as in the proof
of Lemma 7, let Et−1[ĝt] = gt, a subgradient of F at xt. We now need to bound

∑T
t=1 ĝt ·

(xt − x?) in terms of
∑T

t=1 gt · (xt − x?), and
∑T

t=1 ‖ĝt‖2? in terms of G2T .
As before, Et−1[ĝt · (xt−x?)] = gt · (xt−x?), and thus the following defines a martingale

difference sequence:
Xt := gt · (xt − x?)− ĝt · (xt − x?).

Note that ‖gt‖? = ‖Et−1[ĝt]‖? ≤ Et−1[‖ĝt‖?] ≤ G, and so we can bound |Xt| as follows:

|Xt| ≤ ‖gt‖?‖xt − x?‖+ ‖ĝt‖?‖xt − x?‖ ≤ 2GD + 2D‖ĝt‖?,

where the last inequality uses the fact that since x?,xt ∈ B(x1, D), we have ‖xt − x?‖ ≤
‖xt − x1‖+ ‖x1 − x?‖ ≤ 2D. This implies that

E
t

[
exp

(
X2
t

16G2D2

)]
≤ E

t

[
exp

(
4D2(2G2+2‖ĝt‖2?)

16G2D2

)]
≤ exp(12)

√
E
t

[
exp

(
‖ĝt‖2?
G2

)]
≤ exp(1),

where the second inequality follows by Jensen’s inequality and the inequality (a + b)2 ≤
2a2 + 2b2, and the last by (9).

By Lemma 14, with probability at least 1−δ/2, we have
∑T

t=1Xt ≤ 4GD
√

3 log(2/δ)T ,
which implies that

1

T

T∑
t=1

F (xt)−F (x?) ≤ 1

T

T∑
t=1

gt ·(xt−x?)−
1

T

T∑
t=1

ĝt ·(xt−x?) ≤
4GD

√
3 log(2/δ)√
T

, (10)

where the first inequality follows by convexity of F .

Next, consider E[exp(
∑T
t=1 ‖ĝt‖2?
G2 )]. We can upper bound this as follows:

E
[
exp

(∑T
t=1 ‖ĝt‖2?
G2

)]
= E

[
E
T

[
exp

(∑T
t=1 ‖ĝt‖2?
G2

)]]
= E

[
exp

(∑T−1
t=1 ‖ĝt‖2?
G2

)
E
T

[
exp

(
‖ĝT ‖2?
G2

)]]
≤ E

[
exp

(∑T−1
t=1 ‖ĝt‖2?
G2

)
· exp(1)

]
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by (9). Continuing inductively, we conclude that E[exp(
∑T
t=1 ‖ĝt‖2?
G2 )] ≤ exp(T ), which implies

(via Markov’s inequality) that with probability at least 1− δ/2, we have

T∑
t=1

‖ĝt‖2? ≤ G2T log(2/δ). (11)

Then, by using Lemma 6 and inequalities (10) and (11), we get the claimed bound.

We now prove the analogue of Lemma 8. In this case, the result holds with high
probability. As before, define Vk = G2

2k−2λ
and ∆k = F (xk1) − F (x?). Recall the choice of

initial parameters T1 = 450 and η1 = 1
3λ as specified in Theorem 3.

Lemma 13 For any k, with probability (1− δ̃)k−1 we have ∆k ≤ Vk log(2/δ̃).

Proof For notational convenience, in the following we define:

L := log(2/δ̃).

We prove the lemma by induction on k. The claim is true for k = 1 since ∆k ≤ 2G2L
λ by

Lemma 4. Assume that ∆k ≤ VkL for some k ≥ 1 with probability at least (1 − δ̃)k−1
and now we prove the corresponding statement for k + 1. We condition on the event that
∆k ≤ VkL. Since ∆k ≥ λ

2‖x
k
1 − x?‖2 by λ-strong convexity, this conditioning implies that

‖xk1 − x?‖ ≤
√

2VkL/λ = Dk. So Lemma 12 applies with D = Dk and hence we have with
probability at least 1− δ̃,

∆k+1 = F (xk+1
1 )− F (x?)

≤ ηkG
2L

2
+
BR(x?,xk1)

ηkTk
+ 10G

√
VkL

λTk
(by Lemma 12)

≤ ηkG
2L

2
+

∆k

ηkTk
+ 10G

√
VkL

λTk
(by λ-strong convexity of F )

≤ ηkG
2L

2
+

VkL

ηkTkλ
+ 10G

√
VkL

λTk
(by induction hypothesis)

=
η1G

2L

2k
+

VkL

η1T1λ
+ 10G

√
VkL

λT12k−1
(by definition of Tk, ηk)

=
VkL

12
+
VkL

150
+
Vk
√
L

3
(using values of T1, η1, Vk)

≤ VkL

2
= Vk+1L.

Factoring in the conditioned event, which happens with probability at least (1 − δ̃)k−1,
overall, we get that ∆k+1 ≤ Vk+1 with probability at least (1− δ̃)k.

2504



Optimal Stochastic Strongly-Convex Optimization

We can now prove our high probability theorem:

Proof [Theorem 11] Proceeding exactly as in the proof of Theorem 1, we get that final

epoch is k† = blog2(
T
T1

+ 1)c. The final point output is xk
†+1

1 . By Lemma 13, we have with

probability at least (1− δ̃)k† that

F (xk
†+1

1 )− F (x?) = ∆k†+1 ≤ Vk†+1 log(2/δ̃)

=
G2 log(2/δ̃)

2k†−1λ
≤ 4T1G

2 log(2/δ̃)

λT
=

1800G2 log(2/δ̃)

λT
,

as claimed. Since δ̃ = δ
k†

, and hence (1 − δ̃)k† ≥ 1 − δ as needed. The while loop in the
algorithm ensures that the total number of gradient updates is bounded by T .

In the analysis, we used the following well-known martingale inequality, a restatement
of Lemma 2 of Lan et al. (2012). Here, Et[·] denotes the expectation at time t conditioned
on all the randomness till time t− 1.

Lemma 14 Let X1, . . . , XT be a martingale difference sequence, i.e., Et[Xt] = 0 for all t.

Suppose that for some values σt, for t = 1, 2, . . . , T , we have Et[exp(
X2
t

σ2
t

)] ≤ exp(1). Then

with probability at least 1− δ, we have

T∑
t=1

Xt ≤

√√√√3 log(1/δ)

T∑
t=1

σ2t .

5. Lower Bounds on Stochastic Strongly Convex Optimization

In this section we prove Theorem 2 and show that any algorithm (deterministic or ran-
domized) for online stochastic strongly-convex optimization must have Ω(log(T )) regret on
some distribution. We start by proving a Ω(log T ) lower bound for the case when the cost
functions are 1-strongly convex with respect to the Euclidean norm and the gradient oracle
is 1-bounded, and fine tune these parameters in the next subsection by way of reduction.

In our analysis, we need the following standard lemma, which we reprove here for
completeness. Here, for two distributions P, P ′ defined on the same probability space,
dTV (P, P ′) is the total variation distance, i.e.

dTV (P, P ′) = sup
A
|P (A)− P ′(A)|

where the supremum ranges over all events A in the probability space.
Let Bp be the Bernoulli distribution on {0, 1} with probability of obtaining 1 equal to p.

Let Bn
p denote the product measure on {0, 1}n induced by taking n independent Bernoulli

trials according to Bp (thus, B1
p = Bp).

Lemma 15 Let p, p′ ∈ [14 ,
3
4 ] such that |p′ − p| ≤ 1/8. Then

dTV (Bn
p , B

n
p′) ≤

1

2

√
(p′ − p)2n.
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Proof Pinsker’s inequality says that dTV (Bn
p , B

n
p′) ≤

√
1
2RE(Bn

p ‖Bn
p′), where RE(Bn

p ‖Bn
p′) =

EX∼Bnp [ln
Bnp (X)

Bn
p′ (X) ] is the relative entropy between Bn

p and Bn
p′ . To bound RE(Bn

p ‖Bn
p′), note

that the additivity of the relative entropy for product measures implies that

RE(Bn
p ‖Bn

p′) = nRE(Bp‖Bp′) = n

[
p log

(
p

p′

)
+ (1− p) log

(
1− p
1− p′

)]
. (12)

Without loss of generality, assume that p′ ≥ p, and let p′ = p+ε, where 0 ≤ ε ≤ 1/8. Using
the Taylor series expansion of log(1 + x), we get the following bound

p log

(
p

p′

)
+ (1− p) log

(
1− p
1− p′

)
=
∞∑
i=1

[
(−1)i

pi−1
+

1

(1− p)i−1

]
εi ≤

∞∑
i=2

4i−1εi ≤ ε2

2
,

for ε ≤ 1/8. Plugging this (12) and using Pinsker’s inequality, we get the stated bound.

We now turn to showing our lower bound on expected regret. We consider the following
online stochastic strongly-convex optimization setting: the domain is K = [0, 1]. For every
p ∈ [14 ,

3
4 ], define a distribution over strongly-convex cost functions parameterized by p as

follows: choose X ∈ {0, 1} from Bp, and return the cost function

f(x) = (x−X)2.

With some abuse of notation, we use Bp to denote this distribution over cost functions.
Under distribution Bp, the expected cost function F is

F (x) := E[f(x)] = p(x− 1)2 + (1− p)x2 = x2 + 2px+ p = (x− p)2 + cp,

where cp = p−p2. The optimal point is therefore x? = p, with expected cost cp. The regret
for playing a point x (i.e., excess cost over the minimal expected cost) is

F (x)− F (x?) = (x− p)2 + cp − cp = (x− p)2.

Now let A be a deterministic6 algorithm for online stochastic strongly-convex optimiza-
tion. Since the cost functions until time t are specified by a bit string X ∈ {0, 1}t−1 (i.e.,
the cost function at time t is (x−Xt)

2), we can interpret the algorithm as a function that
takes a variable length bit string, and produces a point in [0, 1], i.e., with some abuse of
notation,

A : {0, 1}≤T −→ [0, 1],

where {0, 1}≤T is the set of all bit strings of length up to T .
Now suppose the cost functions are drawn from Bp. Fix a round t. Let X be the

t − 1 bit string specifying the cost functions so far. Note that X has distribution Bt−1
p .

For notational convenience, denote by Prp[·] and Ep[·] the probability of an event and the
expectation of a random variable when the cost functions are drawn from Bp, and since
these are defined by the bit string X, they are computed over the product measure Bt−1

p .

6. We will remove the deterministic requirement shortly and allow randomized algorithms.
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Let the point played by A at time t be xt = A(X). The regret (conditioned on the
choice of X) in round t is then

regrett := (A(X)− p)2,

and thus the expected (over the choice of X) regret of A in round t is Ep[regrett] =

Ep[(A(X)− p)2].
We now show that for any round t, for two distributions over cost functions Bp and Bp′

that are close (in terms of |p− p′|), but not too close, the regret of A on at least one of the
two distributions must be large.

Lemma 16 Fix a round t. Let ε ≤ 1
8
√
t

be a parameter. Let p, p′ ∈ [14 ,
3
4 ] such that

2ε ≤ |p− p′| ≤ 4ε. Then we have

E
p
[regrett] + E

p′
[regrett] ≥

1

4
ε2.

Proof Assume without loss of generality that p′ ≥ p + 2ε. Let X and X ′ be (t − 1)-bit
vectors parameterizing the cost functions drawn from Bt−1

p and Bt−1
p′ respectively. Then

E
p
[regrett] + E

p′
[regrett] = E

p
[(A(X)− p)2] + E

p′
[(A(X ′)− p′)2].

Now suppose the stated bound does not hold. Then by Markov’s inequality, we have

Pr
p

[(A(X)− p)2 < ε2] ≥ 3/4,

or in other words,
Pr
p

[A(X) < p+ ε] ≥ 3/4. (13)

Similarly, we can show that

Pr
p′

[A(X ′) > p+ ε] ≥ 3/4, (14)

since p′ ≥ p+ 2ε. Now define the event

A := {Y ∈ {0, 1}t−1 : A(Y ) > p+ ε}.

Now (13) implies that Prp(A) < 1/4 and (14) implies that Prp′(A) ≥ 3/4. But then by
Lemma 15 we have

1

2
< |Pr

p
(A)− Pr

p′
(A)| ≤ dTV (Bt−1

p , Bt−1
p′ ) ≤ 1

2

√
(p′ − p)2(t− 1)

≤ 1

2

√
16ε2(t− 1) ≤ 1

4
,

a contradiction.

We now show how to remove the deterministic requirement on A:
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Corollary 17 The bound of Lemma 16 holds even if A is randomized:

E
p,R

[regrett] + E
p′,R

[regrett] ≥
1

4
ε2,

where Ep,R[·] denotes the expectation computed over the random seed R of the algorithm as
well as the randomness in the cost functions.

Proof Fixing the random seedR ofA, we get a deterministic algorithm, and then Lemma 16
gives the following bound on the sum of the conditional expected regrets:

E
p
[regrett|R] + E

p′
[regrett|R] ≥ 1

4
ε2.

Now taking expectations over the random seed R, we get the desired bound.

Thus, from now on we allow A to be randomized. We now show the desired lower bound
on the expected regret:

Theorem 18 The expected regret for algorithm A is at least Ω(log(T )).

Proof We prove this by showing that there is one value of p ∈ [14 ,
3
4 ] such that regret of A

when cost functions are drawn from Bp is at least Ω(log(T )).
We assume that T is of the form 16 + 162 + · · · 16k = 1

15(16k+1− 16) for some integer k:
if it isn’t, we ignore all rounds t > T ′, where T ′ = 1

15(16k
?+1 − 16) for k? = blog16(15T +

16)− 1c, and show that in the first T ′ rounds the algorithm can be made to have Ω(log(T ))
regret. We now divide the time periods t = 1, 2, . . . , T ′ into consecutive epochs of length
16, 162, . . . , 16k

?
. Thus, epoch k, denoted Ek, has length 16k, and consists of the time periods

t = 1
15(16k − 16) + 1, . . . , 1

15(16k+1 − 16). We prove the following lemma momentarily:

Lemma 19 There exists a collection of nested intervals, [14 ,
3
4 ] ⊇ I1 ⊇ I2 ⊇ I3 ⊇ · · · , such

that interval Ik corresponds to epoch k, with the property that Ik has length 4−(k+3), and
for every p ∈ Ik, for at least half the rounds t in epoch k, algorithm A has Ep,R[regrett] ≥
1
8 · 16−(k+3).

As a consequence of this lemma, we get that there is a value of p ∈
⋂
k Ik such that in

every epoch k, the total regret is∑
t∈Ek

1

8
· 16−(k+3) ≥ 1

2
16k · 1

8
· 16−(k+3) =

1

164
.

Thus, the regret in every epoch is Ω(1). Since there are k? = Θ(log(T )) epochs total, the
regret of the algorithm is at least Ω(log(T )).

We now turn to prove Lemma 19.
Proof [Lemma 19] We build the nested collection of intervals iteratively as follows. For
notational convenience, define I0 to be some arbitrary interval of length 4−3 inside [14 ,

3
4 ].

Suppose for some k ≥ 0 we have found the interval Ik = [a, a + 4−(k+3)]. We want to find
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the interval Ik+1 now. For this, divide up Ik into 4 equal quarters of length ε = 4−(k+4), and
consider the first and fourth quarters, viz. L = [a, a+ 4−(k+4)] and R = [a+ 3 · 4−(k+4), a+
4−(k+3)]. We now show that one of L or R is a valid choice for Ik+1, and so the construction
can proceed.

Suppose L is not a valid choice for Ik+1, because there is some point p ∈ L such that for
more than half the rounds t in Ek+1, we have Ep,R[regrett] < 16−(k+1). Then we show that
R is a valid choice for Ik+1 as follows. Let H = {t ∈ Ek+1 : Ep,R[regrett] <

1
8 · 16−(k+4)}.

Now, we claim that for all p′ ∈ R, and all t ∈ H, we must have Ep′,R[regrett] >
1
8 · 16−(k+4),

which would imply that R is a valid choice for Ik+1, since by assumption, |H| ≥ 1
2 |Ek+1|.

To show this we apply Lemma 16. Fix any p′ ∈ R and t ∈ H. First, note that
ε = 4−(k+4) ≤ 1

8
√
t
, since t ≤ 16k+2. Next, we have p′ − p ≥ 2ε (since we excluded the

middle two quarters of Ik), and |p− p′| ≤ 4ε (since Ik has length 4−(k+3)). Then Lemma 16
implies that

E
p,R

[regrett] + E
p′,R

[regrett] ≥
1

4
· 16−(k+4),

which implies that Ep′,R[regrett] ≥ 1
8 ·16−(k+4) since Ep,R[regrett] <

1
8 ·16−(k+4), as required.

5.1 Dependence on the Gradient Bound and on Strong Convexity

A simple corollary of the previous proof gives us tight lower bounds in terms of the natural
parameters of the problem: the strong-convexity parameter λ and the upper bound on the
norm of the subgradients G. The following Corollary implies Theorem 2.

Corollary 20 For any algorithm A, there is distribution over λ-strongly convex cost func-
tions over a bounded domain K ⊂ R with gradients bounded in norm by G such that the

expected regret of A is Ω
(
G2 log(T )

λ

)
.

Proof The online convex optimization setting we design is very similar: let λ,G ≥ 0 be
given parameters. The domain is K = [0, Gλ ]. In round t, we choose Xt ∈ {0, 1} from Bp,
and return

ft(x) =
λ

2

(
x− G

λ
Xt

)2

as the cost function. Notice that the cost functions are always λ-strongly convex, and in
addition, for any x ∈ K, the gradient of the cost function at x is bounded in norm by G.

Denote x′ = λx
G to be the scaled decision x, mapping it from K to [0, 1]. The expected

cost when playing x ∈ K is given by

E[ft(x)] = E
X∼Bp

[
λ

2

(
x− G

λ
Xt

)2
]

=
G2

2λ
E[(x′ −Xt)

2]. (15)

Given an algorithm A for this online convex optimization instance, we derive another algo-
rithm, A′, which plays points x′ ∈ K′ = [0, 1] and receives the cost function (x′ −Xt)

2 in
round t (i.e., the setting considered in Section 5). When A plays xt in round t and obtains
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cost function λ
2

(
x− G

λXt

)2
, the algorithm A′ plays the point x′t = λ

Gxt and receives the
cost function (x′ −Xt)

2.

The optimum point for the setting of A is G
λ p, with expected cost G2

2λ times the expected

cost for the optimum point p for the setting of A′. By equation (15), the cost of A is G2

2λ

times that of A′. Hence, the regret of A is G2

2λ times that of A′.
By Theorem 18, there is a value of p such that the expected regret of A′ is Ω(log T ),

and hence the expected regret of A is Ω
(
G2 log(T )

λ

)
, as required.

6. Conclusions

We have given an algorithm for stochastic strongly-convex optimization with an optimal
rate of convergence O( 1

T ). The Epoch-GD algorithm has an appealing feature of returning
the average of the most recent points (rather than all points visited by the algorithm as in
previous approaches). This is an intuitive feature which, as demonstrated by Rakhlin et al.
(2012), works well in practice for important applications such as support vector machine
training.

Our analysis deviates from the common template of designing a regret minimization
algorithm and then using online-to-batch conversion. In fact, we show that the latter
approach is inherently suboptimal by our new lower bound on the regret of online algorithms
for stochastic cost functions. This combination of results formally shows that the batch
stochastic setting is strictly easier than its online counterpart, giving us tighter bounds.

A few questions remain open. The high-probability bound algorithm Epoch-GD-Proj
has an extra factor of O(log log(T )) in its convergence rate. Is it possible to devise an
algorithm that has O( 1

T ) convergence rate with high probability? We believe the answer is
yes; the O(log log(T )) is just an artifact of the analysis. In fact, as we mention in Section 4,
if it is possible to evaluate F efficiently at any given point, then this dependence can be
removed. Also, our lower bound proof is somewhat involved. Are there easier information
theoretic arguments that give similar lower bounds?
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Abstract

The purpose of this paper is to describe one-shot-learning gesture recognition systems
developed on the ChaLearn Gesture Dataset (ChaLearn). We use RGB and depth im-
ages and combine appearance (Histograms of Oriented Gradients) and motion descriptors
(Histogram of Optical Flow) for parallel temporal segmentation and recognition. The
Quadratic-Chi distance family is used to measure differences between histograms to cap-
ture cross-bin relationships. We also propose a new algorithm for trimming videos—to
remove all the unimportant frames from videos. We present two methods that use a com-
bination of HOG-HOF descriptors together with variants of a Dynamic Time Warping
technique. Both methods outperform other published methods and help narrow the gap
between human performance and algorithms on this task. The code is publicly available in
the MLOSS repository.

Keywords: ChaLearn, histogram of oriented gradients, histogram of optical flow, dy-
namic time warping

1. Introduction

Gesture recognition can be seen as a way for computers to understand human body language.
Improving state-of-the-art algorithms for gesture recognition facilitates human-computer
communication beyond primitive text user interfaces or GUIs (graphical user interfaces).
With rapidly improving comprehension of human gestures we can start building NUIs (nat-
ural user interfaces) for controlling computers or robots. With the availability of such
technologies, conventional input devices, such as a keyboard or mouse, could be replaced in
situations in which they are inconvenient in future. Other applications of gesture recognition
include sign language recognition, socially assistive robotics and game technology.

In this paper, we focus on the one-shot learning gesture recognition problem, in partic-
ular the ChaLearn Gesture Dataset (ChaLearn). The data set was released jointly with a
competition, where the goal was to develop a system capable of learning to recognize new
categories of gestures from a single training example of each gesture. The large data set
of hand and arm gestures was pre-recorded using an infrared sensor, KinectTM , providing
both RGB and depth images (Guyon et al., 2012, 2013).

∗. Current affiliation: University of Edinburgh
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The purpose of this work is to describe methods developed during the ChaLearn Gesture
Challenge by the Turtle Tamers team (authors of this paper). We finished in 2nd place in
round 2 and were invited to present our solution at the International Conference on Pattern
Recognition 2012, Tsukuba, Japan. The code has been made publicly available in the
MLOSS repository.1

Since the goal of the challenge was to provide solid baseline methods for this data set,
our methods were specifically tailored for this particular competition and data set. Hence,
they lack a certain generality, and we discuss and suggest changes for more general settings
later.

The rest of this work is organised as follows. Related work is summarized in Section 2.
In Section 3 we describe the data set and the problem in detail. In Section 4 we focus on the
preprocessing needed to overcome some of the problems in the data set. Section 5 covers
feature representation, using Histogram of Oriented Gradients and Histogram of Optical
Flow, as well as a method used to compare similarities between these representations. In
Section 6 we describe the actual algorithms, and in Section 7 we briefly describe algorithms
of other participants and compare their results with ours, as well as with other published
works. In Section 8 we summarize our paper and suggest an area for future work.

2. Related Work

In this section we provide a brief literature review in the area of gesture and action recog-
nition and motivate our choices of models.

One possible approach to the problem of gesture recognition consists of analyzing motion
descriptors obtained from video. Ikizler and Forsyth (2007) use the output of Human
Motion Capture systems in combination with Hidden Markov Models. Wu et al. (2012)
use Extended Motion History Image as a motion descriptor and apply the method to the
ChaLearn Gesture Dataset. They fuse dual modalities inherent in the Kinect sensor using
Multiview Spectral Embedding (Xia et al., 2010) in a physically meaningful manner.

A popular recent approach is to use Conditional Random Fields (CRF). Wang et al.
(2006) introduce the discriminative hidden state approach, in which they combine the ability
of CRFs to use long range dependencies and the ability of Hidden Markov Models to model
latent structure. More recent work (Chatzis et al., 2012) describes joint segmentation
and classification of sequences in the framework of CRFs. The method outperforms other
popular related approaches with no sacrifices in terms of the imposed computational costs.

An evolution of Bag-of-Words (Lewis, 1998), a method used in document analysis, where
each document is represented using the apparition frequency of each word in a dictionary,
is one of the most popular in Computer Vision. In the image domain, these words become
visual elements of a certain visual vocabulary. First, each image is decomposed into a large
set of patches, obtaining a numeric descriptor. This can be done, for example, using SIFT
(Lowe, 1999), or SURF (Bay et al., 2006). A set of N representative visual words are
selected by means of a clustering process over the descriptors in all images. Once the visual
vocabulary is defined, each image can be represented by a global histogram containing the
frequencies of visual words. Finally, this histogram can be used as input for any classification
technique. Extensions to image sequences have been proposed, the most popular being

1. The code is available at https://mloss.org/software/view/448.
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Space-Time Interest Points (Laptev, 2005). Wang et al. (2009) have evaluated a number of
feature descriptors and bag-of-features models for action recognition. This study concluded
that different sampling strategies and feature descriptors were needed to achieve the best
results on alternative action data sets. Recently an extension of these models to the RGB-D
images, with a new depth descriptor was introduced by Hernández-Vela et al. (2012).

The methods outlined above usually ignore particular spatial position of a descriptor.
We wanted to exploit the specifics of the data set, particularly the fact that user position
does not change within the same batch, thus also the important parts of the same gestures
will occur roughly at the same place. We use a combination of appearance descriptor,
Histogram of Oriented Gradients (Dalal and Triggs, 2005) and local motion direction de-
scriptor, Histogram of Optical Flow (Kanade and Lucas, 1981). We adopted Quadratic-Chi
distance (Pele and Werman, 2010) to measure differences between these histograms. This
approach only works well at high resolutions of descriptors. An alternative may be to use
a non-linear support vector machine with a χ2 kernel (Laptev et al., 2008). Another possi-
ble feature descriptor that includes spatio-temporal position of features could be HOG3D
(Klaser and Marszalek, 2008), which was applied to this specific data set by Fanello et al.
(2013).

3. Data and Problem Setting

In this section, we discuss the easy and difficult aspects of the data set and state the goal
of the competition.

The purpose of the ChaLearn Gesture Challenge2 was to develop an automated system
capable of learning to recognize new categories of gestures from a single training example
of each gesture. A large data set of gestures was collected before the competition, which
includes more than 50, 000 gestures recorded with the KinectTM sensor, providing both
RGB and depth videos. The resolution of these videos is 240 × 320 pixels, at 10 frames
per second. The gestures are grouped into more than 500 batches of 100 gestures, each
batch including 47 sequences of 1 to 5 gestures drawn from small gesture vocabularies from
8 to 14 gestures. The gestures come from over 30 different gesture vocabularies, and were
performed by 20 different users.

During the challenge, development batches devel01-480 were available, with truth labels
of gestures provided. Batches valid01-20 and final01-40 were provided with labels for only
one example of each gesture class in each batch (training set). These batches were used
for evaluation purposes. The goal is to automatically predict the gesture labels for the
unlabelled gesture sequences (test set). The gesture vocabularies were selected from nine
categories corresponding to various settings or applications, such as body language gestures,
signals or pantomimes.

Easy aspects of the data set include the use of a fixed camera and the availability of
the depth data. Within each batch, there is a single user, only homogeneous recording
conditions and a small vocabulary. In every sequence, different gestures are separated by
the user returning to a resting position. Gestures are usually performed by hands and arms.
In particular, we made use of the fact that the user is always at the same position within
one batch.

2. Details and website: http://gesture.chalearn.org/.
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The challenging aspects of the data are that within a single batch there is only one
labelled example of each gesture. Between different batches there are variations in recording
conditions, clothing, skin color and lightning. Some users are less skilled than others, thus
there are some errors or omissions in performing the gestures. And in some batches, parts
of the body may be occluded.

For the evaluation of results the Levenshtein distance was used, provided as the metric
for the competition. That is the minimum number of edit operations (insertion, deletion or
substitution) needed to be performed to go from one vector to another. For each unlabelled
video, the distance D(T, L) was computed, where T is the truth vector of labels, and L
is our predicted vector of labels. This distance is also known as the “edit distance”. For
example, D([1, 2], [1]) = 1, D([1, 2, 3], [2, 4]) = 2, D([1, 2, 3], [3, 2]) = 2.

The overall score for a batch was computed as a sum of Levenshtein distances divided
by the total number of gestures performed in the batch. This is similar to an error rate (but
can exceed 1). We multiply the result by a factor of 100 to resemble the fail percentage.
For simplicity, in the rest of this work, we call it the error rate.

4. Preprocessing

In this Section we describe how we overcame some of the challenges with the given data set
as well as the solutions we propose. In Section 4.1 we focus on depth noise removal. Later
we describe the need for trimming the videos—removing set of frames—and the method
employed.

4.1 Depth Noise Removal

One of the problems with the given data set is the noise (or missing values) in the depth
data. Whenever the Kinect sensor does not receive a response from a particular point, the
sensor outputs a 0, resulting in the black areas shown in Figure 1. This noise usually occurs
along the edges of objects or, particularly in this data set, humans. The noise is also visible
if the object is out of the range of the sensor (0.8 to 3.5 meters).

Figure 1: Examples of depth images with various levels of noise

The level of noise is usually the same within a single batch. However, there is a big
difference in the noise level across different batches. If the level is not too high, it looks like
‘salt and pepper’ noise.
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Later, in Section 5, we use Histograms of Oriented Gradients (HOGs), which work best
with sharp edges, so we need a filter that preserves the edges. One of the best filters for
removing this kind of noise is the median filter, and also has our desired property. Median
filter replaces every pixel with the median of pixels in small area around itself. The effect of
the median filter is shown in Figure 2. We can see this filter does not erase big areas of noise,
however, this is not a problem in our methods. As mentioned earlier, HOG features are
sensitive to the edges, but these large areas usually occur along the edges, so the difference
in computed features will not be significant.

Figure 2: Effect of median filter on depth image

4.2 Trimming

In most batches we can find videos with quite long parts, at the beginning or at the end
of the video, where nothing important happens. Sometimes the user is not moving at all,
sometimes trying to turn on/off the recorder.3 Another problem occurring less often is in
batches, where gestures are rather static. There is often variation in time the user stays in
a particular gesture setting.4 This is a problem for most possible approaches for tackling
the one-shot-learning problem. A solution can be to remove frames from the beginning and
end of the videos, as well as any part with too much inactivity.

One possible approach to removing parts of inactivity can be to watch the amount of
motion in the video, and remove parts where nothing happens. This is the idea we employed.

A naive but effective way is to take the depth video and compute differences for every
pixel between two consecutive frames. Taking depth videos allows us to ignore problems
of texture of clothing or background. We then simply count the number of pixels whose
change exceeds a given threshold, or we can simply sum the differences. After numerous
experiments we ended up with Algorithm 1. Suppose we have a video, n frames long. First
we remove the background5 from individual frames and apply the median filter. Then we do

3. An example is batch devel12, video 23.
4. An example is batch devel39, particularly video 18.
5. Using an algorithm bgremove provided in sample code of the Challenge (ChaLearn).
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Konečný and Hagara

not compute differences of consecutive frames, but rather between frames i and i+3. This is
to make the motion curve smoother and thus the method more robust. We also found that
it was important to even out the amount of motion between, for instance, hand in front of
body and hand in front of background. To that end, we set an upper boundary constraint
on the difference at 15 (on a scale 0 to 255). Then we computed the actual motion as an
average of differences between the chosen frames, as previously described, above particular
frame, for example

motion(2)← (mot(1) +mot(2))/2,

motion(12)← (mot(9) +mot(10) +mot(11) +mot(12))/4. (1)

In the mot variable we store the average change across all pixels. Then we scaled the motion
to range [0, 1].

Algorithm 1 Trimming a video

n← length(video)
gap← 3 maxDiff ← 15 threshold← 0.1 minTrim← 5
for i = 1→ n do

video(i)← bgremove(video(i)) . Background removal
video(i)← medfilt(video(i)) . Median filter

end for
for i = 1→ (n− gap) do

diff(i)← abs(video(i)− video(i+ gap))
diff(i)← min{diff(i),maxDiff}
mot(i)← mean(diff(i)) . Mean across all pixels

end for
motion← avgMotion(mot) . As in Equation 1
motion← scale(motion) . Scale motion so its range is 0 to 1
frames← vector(1 : n)
if |beginSequence(motion < threshold)| ≥ minTrim then

frames← trimBegin(frames) . Remove all frames
end if
if |endSequence(motion < threshold)| ≥ minTrim then

frames← trimEnd(frames) . Remove all frames
end if
for all |sequence(motion < threshold)| > minTrim do

frames← trimMiddle(sequence, frames) . Remove all frames but minTrim
end for
return video(frames)

Once we have the motion in the expected range, we can start actually removing frames.
At first, we remove sequences from the beginning and the end of the video with motion below
a threshold (set to 0.1), under the condition that they are of length at least minTrim (set
to 5) frames. Then we find all sequences in the middle of the video with motion below the
threshold of length more than 5, and uniformly choose 5 frames to remain in the video.
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For example if we were to trim a sequence of length 13, only frames {1, 4, 7, 10, 13} would
remain. Then we return the video with the remaining frames. Figure 3 illustrates the
threshold and the motion computed by this algorithm on a particular video.

One possible modification of this algorithm is in the step in which we scale the mo-
tion to the range of [0, 1]. In this case, we simply subtract min(motion), and divide by
(max(motion) −min(motion)). However, especially in videos with 4 or 5 gestures, some-
times large outliers cause problems, because the threshold is too big. Since the motion
curve tends to be relatively smooth, instead of choosing max(motion) we could choose the
value of the second highest local maximum. This scaling performs slightly better on long
videos, but does not work well on short videos. Since, we do not know how many gestures
to expect in advance, we used the simpler method.

It is not straightforward to generalize this approach to color videos, since there is no
easy way to distinguish the background from the foreground. Additionally, the texture of
clothing could cause big problems to this approach. This could be overcome by adding an
algorithm that would subtract the background after seeing the whole video, but we have
not tried this.

Figure 3: Example of a motion graph, batch devel11, video 32

5. Feature Representation and Distance Measure

In this section, we briefly describe the tools we propose for extracting features. Gestures
differ from each other, both in appearance and the amount of motion while performing a
particular gesture. A good descriptor of the static part of a gesture is the Histogram of
Oriented Gradients, proposed by Dalal and Triggs (2005). A good method for capturing the
size and direction of motion is computing the Optical Flow using the Lucas-Kanade method
(Kanade and Lucas, 1981; Lucas, 1984) and creating a histogram of flow. Motivation for
these choices is explained in Section 2. Finally, we describe the Quadratic-Chi distance
family proposed by Pele and Werman (2010) for measuring distances between histograms.
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Konečný and Hagara

5.1 Histogram of Oriented Gradients

In this section we briefly describe the HOG features. The underlying idea is that the appear-
ance and shape of a local object can often be characterized rather well by the distribution
of local intensity gradient (or edge) directions, even without precise knowledge of the cor-
responding gradient (or edge) positions. In practice this is implemented by dividing the
image window into small spatial regions (“cells”), for each cell accumulating a local 1-D
histogram of gradient directions (or edge orientations) over the pixels of the cell. It is also
useful to contrast-normalize the local responses before using them. This can be done by
accumulating a measure of local histogram “energy” over larger spatial regions (“blocks”)
and using the results to normalize all of the cells in the block.

We used a simple [−1, 0, 1] gradient filter, applied in both directions and discretized the
gradient orientations into 16 orientation bins between 0◦ and 180◦. We had cells of size
40 × 40 pixels and blocks of size 80 × 80 pixels, each containing 4 cells. The histogram
in each cell is normalized with sum of Euclidean norms of histograms in the whole block.
Each cell (except cells on the border) belongs to 4 blocks, thus for one cell we have 4 locally
normalized histograms, the sum of which is used as the resulting histogram for the cell.
Since this method cannot be used to normalize histograms of marginal cells, from 240×320
image we get only 4 × 6 spatial cells of 16 orientation bins each. Figure 4 provides a
visual example of the HOG features at their actual resolution. The space covered is smaller
than the original image, but that is not a problem, since the gestures from the data set
are not performed on the border of the frames. Dalal and Triggs (2005) conclude, that
fine-scale gradients, fine orientation binning, relatively coarse spatial cells, and high-quality
local contrast normalization in overlapping descriptor blocks are all important for obtaining
good performance.

Figure 4: Example visualisation of the HOG features

As in Figure 4, we computed the HOG features from depth images, since it captures
only the edges we are interested in, and not textures of clothing and so on. We used the
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efficient implementation from Piotr’s toolbox (Dollár), function
hog(image, 40, 16).

5.2 Histogram of Optical Flow

In this section we describe the general optical flow principle and the Lucas-Kanade method
(Kanade and Lucas, 1981; Lucas, 1984) for estimating the actual flow. For details we refer
the reader to these works. Here we present only a brief description of the method.

The optical flow methods try to estimate the motion between two images, at times t
and t + ∆t at every position (in our case two consecutive frames of video). In general,
the optical flow equation is formulated as a single equation with two variables. All optical
flow methods introduce additional conditions for estimating the flow. The Lucas-Kanade
method assumes that the flow is essentially constant in a local neighbourhood of the pixel
under consideration, and solves the equation for all the pixels in the neighbourhood. The
solution is obtained using the least squares principle.

After obtaining the optical flow in every point of the image we divide the image (of
240× 320 pixels) to a grid of 6× 8 spatial cells. We then put each optical flow vector into
one of 16 orientation bins in each spatial cell, and scale them so that they sum to 1 to get a
histogram of 6× 8× 16 fields. We also tried to scale in each spatial cell separately, and the
difference of error rate in our methods on all development batches was less than 0.5. We
computed the optical flow from color videos, converted to grayscale, again using efficient
implementation of the Flow estimation from Piotr’s toolbox (Dollár), function
optFlowLk(image1, image2, [] , 4, 2, 9e−5);

5.3 Measuring Distance of the Histograms

Our method relies on making comparisons between pairs of frames in two videos, which
requires as a component, to measure differences between histograms. The relatively simple
methods based on the sum of bin-to-bin distances suffer from the following limitation: If
the number of bins is too small, the measure is not discriminative and if it is too large it
is not robust. Distances, that take into account cross-bin relationships, can be both robust
and discriminative. With the HOG and HOF feature at the resolution that we selected,
simple bin-to-bin comparisons are not robust, as exemplified in Figure 5. Thus we would
like a measure that would look into surrounding orientation bins and, after experimenting,
also to surrounding spatial cells. Thus we would also like a measure, that would reduce
the effect of big differences, and also look into surrounding spatial cells. We adopted the
following Quadratic-Chi distance family introduced by Pele and Werman (2010).

Let P and Q be two histograms. Let A be a non-negative symmetric bounded bin-
similarity matrix, such that each diagonal element is bigger or equal to every other element
in its row. Let 0 ≤ m < 1 be a normalization factor. A Quadratic-Chi histogram distance
is defined as:

QCA
m (P,Q) =

√√√√∑
i,j

(
(Pi −Qi)

(
∑

c (Pc +Qc)Aci)
m

)(
(Pj −Qj)

(
∑

c (Pc +Qc)Acj)
m

)
Aij ,
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Figure 5: Example of need for cross-bin similarities: the same moment in performance of
the same gesture in two different videos. The right hand stays at the same place,
the left hand is moving. This illustrates how the same element can result in
different neighbouring orientation bins in HOG being big in different cases.

where we define 0
0 = 0. The normalization factor m reduces the effect of big differences

(the bigger it is, the bigger reduction; in our methods set to 0.5). While comparing the ith

orientation bins of two histograms, we want to look into the matching orientation bins, to
4 surrounding orientation bins (2 left, 2 right), and into the same orientation bins within 8
surrounding spatial cells. MATLAB code for creating the matrix A which captures these
properties is in Appendix B.

6. Recognition

In this section we describe the two methods we propose for one-shot-learning gesture recog-
nition. We create a single model and look for the shortest path of a new video through the
model in our first method. For the second method we create a separate model for every
training video and using sliding frame window to look for similar parts of training videos.

6.1 Single Model—Dynamic Time Warping

In this method (we will call it SM) we use both Histograms of Oriented Gradients and
Histograms of Optical Flow and perform temporal segmentation simultaneously with recog-
nition.

At first, we create a model illustrated in Figure 6 for the whole batch in the following
way: Every row in the figure represents a single training video. Every node represents a
single frame of the video. In a node we store HOG and HOF features belonging to the
particular frame. Recall that the HOF needs two consecutive frames. Thus if a video has f
frames, the representation of this video has f−1 nodes, ignoring the HOG of first frame. We
add an arbitrary node, called Resting Position (RP), obtained as the average representation
of first frames of each video.
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Figure 6: Model for SM—Dynamic Time Warping. Each node represents a single frame
of a train video. Each row (on the Figure) represents single train video. We
add a new node—RP, or Resting Position—representing state where the user is
not performing any particular gesture. The arrows indicate possible transitions
between states (nodes).

Since we want to capture the variation in the speed of performing the gestures, we set
the transitions in the following way. When being in a particular node n at time t, moving
to time t+ 1 we can either stay in the same node (slower performance), move to node n+ 1
(the same speed of performance), or move to node n+ 2 (faster performance). Experiments
suggested allowing transition to node n + 3 is not needed with the trimming described in
Section 4. It even made the whole method perform worse. From the node we call RP
(Resting Position) we can move to the first three nodes of any video, and from the last
three nodes of every video we can move to the RP.

When we have this model, we can start inferring the gestures present in a new video.
First, we compute representations of all the frames in the new video. Then we compute
similarities of every node of our model with every frame representation of the new video. We
compute similarities of both matching HOGs and HOFs, using the Quadratic-Chi distance
described in Section 5.3, and simply sum the distances. This makes sense since the empirical
distribution functions of distances of HOGs and HOFs are similar. We can represent these
distances as a matrix of size N × (f − 1), where N is the number of all nodes in the model,
and f is the number of frames in the new video. Using the Viterbi algorithm we find the
shortest path through this matrix (we constrain the algorithm to begin in RP or in any of
the first three nodes of any gesture). Every column is considered a time point, and in every
time point we are in one state (row of the matrix). Between neighbouring time points the
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states can change only along the transitions in the model. This approach is also known as
Dynamic Time Warping, Berndt and Clifford (1994).

The result of the Viterbi algorithm is a path, a sequence of nodes which correspond
to states in which our new video was in time. From this path we can easily infer which
gestures were present (which rows in Figure 6), and in what order. The flow of states in
time is displayed in Figure 7 (the color represents the cumulative cost up to a particular
point—the darker the color, the larger the cumulative cost).

Figure 7: Example of flow of states in model—devel01, video number 11—true labels are
{9, 4, 4, 9}. The gray levels represent the shortest cumulative path ending in a
particular point.

6.2 Multiple Models—Sliding Frame

The second method we propose is the MM . Here we used only the Histogram of Oriented
Gradients and perform temporal segmentation prior to recognition. We created a similar
model as in SM , but separately for every training video, illustrated in Figure 8. Again,
every node represents HOG features of a single frame. Thus if we have k different gestures,
we have k similar models. We do not need an RP node, since we will be looking for short
sequences in these models similar to short sequences of frames of a new video. Again,
the possible transitions between states in the models, capture variation in the speed of
performing gestures.
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Figure 8: Model for every training video in MM . Every node represents a single frame of
that video. The arrows indicate possible transitions between states (nodes).

MM differs from SM mainly in its approach to inferring the gestures that are present.
First, we compute all the HOG representations of a new video and compute their similarities
with all the nodes in k models. Then we employ the idea of a sliding frame. The idea is to
take a small sequence of the new video and monitor the parts of the training videos that it
resembles. First we select frames 1 to l (we set l = 10) and treat this similarly as in SM .
We look for the shortest path through our first model without constraint on where to begin
or end. We do the same with every model. This results in numerical values representing
the resemblance of a small part of our new video with any part of every training video, and
optionally also the number of nodes resembling it. Then we select frames 2 to (l+1), repeat
the whole process, and move forward through the whole video.

Finally we obtain a matrix of size k×(f− l+1), where k is the number of gestures and f
is the number of frames in the new video. Every column represents a time instance and every
row a gesture. An example of such a matrix is shown in Figure 9. Humans can fairly easily
learn to recognize where and which gestures are present, but this is a bit more challenging
task for a computer. We tried to treat columns as feature vectors and feed it to SM and
tried to build a Hidden Markov Model to infer gestures present. We also tried to include
information of what nodes of a particular model were present for every time instant, so we
can prefer gestures where most of the nodes were included. That was difficult to take into
account, because the start and end of most videos are very similar (Resting Position). All
the methods had problems identifying two identical gestures occurring after each other, and
also two similar gestures occurring after each other. We did not find satisfactory solutions
to these problems without deteriorating performance.

Figure 9: Example of sliding frame matrix—devel01, video number 11.
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Neither of these methods manages to beat the naive approach. We resorted to first
segment the video using an algorithm provided by the organizers in the sample code called
dtw segment. The algorithm is very fast and segments the videos very well. After segment-
ing, we simply summed along the rows in corresponding parts of the scores matrix and
picked the minimum. An improvement was to perform a weighed sum that emphasizes the
center of the video, since the important information is usually in the middle.

We used only HOG features in this method because every attempt to include HOF
features resulted in considerably worse results. An explanation for this behaviour is we do
not need to focus on the overall movement while looking only for short segments of videos,
but it is more important to capture the static element. Thus the motion information is
redundant in this setting.

7. Results

The performance of the two methods (SM & MM) on the data set is reported in this
section. We also compare our results with those of other challenge participants as well
as with other already published methods with experiments on this data set. Finally we
summarize our contributions and suggest an area for future work.

7.1 Experimental Results

All our experiments were conducted on an Intel Core i7 3610QM processor, with 2 × 4GB
DDR3 1600 MHz memory. The running time of SM was approximately 115% of real-time
(takes longer to process than to record), while MM was approximately 90% of real-time.
However, none of our methods could be trivially converted to an online method, since we
need to have the whole video in advance.

The performance of our methods on all available data sets is presented in Table 1.
The results show that our preprocessing steps positively influence the final results. The
MM works better on the first 20 development batches, but performs worse overall. All
other published works provides results only on the first 20 batches—too few for any reliable
conclusions. Therefore we suggest providing results on all the batches for bigger relevance.

Batches SM MM

devel01-20 23.78 21.99
devel01-480 29.40 34.43
valid01-20 20.01 24.48
final01-20 17.02 23.08
final21-40 10.98 18.47

devel01-20 (without trimming) 26.24 22.82
devel01-20 (without medfilt) 24.70 23.92

devel01-20 (SM ; only HOG) 24.53
devel01-20 (MM ; HOG and HOF) 28.73

Table 1: Overview of our results on data sets. The numbers are normalized Levenshtein
distances described in Section 3.
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As mentioned in Section 2, we chose our descriptors to exploit specific properties of
the data set—the user stays at the same place, and thus the important parts of gestures
occur roughly in the same position within the image. Hence it is not surprising that our
model is not translation nor scale invariant. Guyon et al. (2013) created 20 translated and
scaled data batches, and analyzed the robustness of methods of top ranking participants.
In general, the bag-of-features models have this property, but they are usually rather slow.
If we wanted to incorporate translation invariance, one method could be to extract body
parts from the image (the algorithm is provided within Kinect Development Toolkit6) and
align the images so that the user is at the same position.

Figure 10: Scores of our methods on first 20 development batches. The numbers on y-axis
are normalized Levenshtein distances described in Section 3.

The results of our method on each of the first 20 batches is displayed in Figure 10. Often
our methods perform similarly, but one can spot significant differences in batches devel06
(SM—11.11, MM—36.67), devel10 (SM—54.95, MM—29.67) and devel17 (SM—34.78,
MM—9.78). In batches devel10 and devel17, the gestures are only static and all occur
in the same place in space. In this particular setting, the information about any motion
(HOF) can be redundant. This could be a reason why MM performs better, since we do
not include any motion descriptors in the representation. In devel06, the problem is, the
gestures are performed very quickly, thus the videos are often very short. This is a problem
since the matrix in Figure 9 has only a few columns, resulting in poor performance of MM .

The above analysis brings us to a new preprocessing step. Suppose we have many
algorithms for solving this one-shot-learning task. If we knew in advance which algorithm
was best at recognizing particular gestures, then we could boost the overall performance
by selecting the ‘best’ algorithms in advance, after seeing the training videos. This is a
problem we have unsuccessfully tried to solve, and which remains open for future work. If

6. Available at http://www.microsoft.com/en-us/kinectforwindows/develop/.
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we always pick the better from our two methods, we would achieve score of 19.04 on the
batches devel01-20.

The methods used by other challenge participants—alfnie, Pennect, Joewan (Wan et al.,
2013), OneMillionMonkeys, Manavender (Malgireddy et al., 2012)—are summarized by
Guyon et al. (2012, 2013). We briefly describe other published works applied on this data
set. We provide a comparison of all of these methods in Table 2.

Method / team devel01-20 valid01-20 final01-20 final21-40

SM (ours) 23.78 20.01 17.02 10.98
MM (ours) 21.99 24.48 23.08 18.47

alfnie NA 9.51 7.34 7.10
Pennect NA 17.97 16.52 12.31
Joewan 19.45 16.69 16.80 14.48
OneMillionMonkeys NA 26.97 16.85 18.19
Mananender 26.34 23.32 21.64 19.25

Wu et al. 26.00 25.43 18.46 18.53
BoVDW 26.62 NA NA NA
Lui 28.73 NA NA NA
Fanello et al. 25.11 NA NA NA

Table 2: Comparison of results of methods from the competition as well as published meth-
ods. The numbers are normalized Levenshtein distances described in Section 3.

Wu et al. (2012) pre-segment videos and represent motions of users by Extended-Motion-
History-Image and use a maximum correlation coefficient classifier. The Multi-view Spectral
Embedding algorithm is used to fuse duo modalities in a physically meaningful manner.

Hernández-Vela et al. (2012) present a Bag-of-Visual-and-Depth-Words (BoVDW) model
for gesture recognition, that benefits from the multimodal fusion of visual and depth fea-
tures. They combine HOG and HOF features with a new proposed depth descriptor.

Tensor representation of action videos is proposed by Lui (2012). The aim of his work is
to demonstrate the importance of the intrinsic geometry of tensor space which yields a very
discriminating structure for action recognition. The method is assessed using three gesture
databases, including Chalearn gesture challenge data set.

Fanello et al. (2013) develop a real-time learning and recognition system for RGB-D
images. The proposed method relies on descriptors based on 3D Histogram of Flow, Global
Histogram of Oriented Gradient and adaptive sparse coding. The effectiveness of sparse
coding techniques to represent 3D actions is highlighted in their work.

7.2 Contributions

Let us now summarize our contributions. As part of the competition we managed to create
solid state-of-the-art methods for the new data set—the goal of the competition—which will
serve as a reference point for future works. Although the crucial elements of our methods
are not novel, they provide a new perspective on the possibilities of using well studied
techniques, namely capturing the cross-bin relationships using the Quadratic-Chi distance.
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Further we present a novel algorithm for trimming videos, based only on depth data. As
a preprocessing step we remove frames that bring little or no additional information, and
thus make the method more robust. Experimental results show that this method does
not only boost our performance, but also those of other published methods. Our detailed
experiments with two very well performing methods suggest that different kinds of settings
require different methods for the best performance. In particular, the possibility of choosing
from more different types of models (like ours and bag-of-features) under different motion
conditions remain unstudied and an open problem.

8. Discussion and Conclusions

In this paper we presented two methods for solving the one-shot-learning gesture recognition
task introduced in the ChaLearn Gesture Challenge (ChaLearn). We have significantly
helped narrow the gap between human and machine performance (the baseline method
achieved 50% error rate on final evaluation set, our method 11%, while the human error
rate is under 2%). Our methods outperform other published methods and we suggest that
other authors provide results on the whole data set for greater relevance of achieved results.

We combine static—Histograms of Oriented Gradients—and dynamic—Histogram of
Optical Flow—descriptors in the first method, where we create one model and perform
temporal segmentation simultaneously with recognition using Dynamic Time Warping. We
use only static descriptors and use pre-segmentation as a preprocessing step in the second
method, where we look for similar parts in the training videos using a sliding frame.

Our first method is similar to the one developed by team Pennect in the Challenge, and
also performs similarly. They also used HOG features, but at different scales, and used
a one-vs-all linear classifier, while we use the Quadratic-Chi distance (Pele and Werman,
2010) to measure distances between individual frames. The recognition was also parallel
with temporal segmentation using a DTW model. Surprisingly, the Pennect team used only
the color images.

Bag-of-features models provide comparable (Wan et al., 2013) or slightly worse results
than ours (Hernández-Vela et al., 2012). The advantage of these models is that they are
scale and translation invariant - which is necessary for real-world applications like in gaming
industry. On the other hand, these methods rely on presegmentation of videos to single
gestures, and are considerably slower, hence are currently not applicable. An interesting
property of these methods is their results seem to have lower variance—error rate at difficult
data sets (for instance devel10) is smaller, but struggle to obtain strong recognition rate on
easy data sets (devel08, devel09).

We present a novel video trimming technique, based on the amount of motion. Its
motivation is to remove unimportant segments of videos and thus reduce the probability
of confusing gestures. The method improves overall results of our methods (Table 1), and
small improvement was confirmed by Wu et al. (2012)—2% and Wan et al. (2013)—0.5%.

Finally, we suggest an area for future work. Having more well working methods at
our disposal, we can analyse their results on different types of gesture vocabularies, users
and other settings. Overall performance could be boosted if we were able to decide which
recognizer to use in advance. Especially, deeper analysis of the differences of results be-
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tween Bag-of-words models and Dynamic Time Warping models is needed to obtain better
description of their behaviour on different types of gesture recognition tasks.

Appendix A.

In this appendix, we analyse the computational complexity of our methods.

Let us first describe the computational complexity of the building blocks of our algo-
rithms. Let r, c be the resolution of our videos. For this data set we have r = 240, c = 320.
Let P denote number of pixels (P = rc). Computing both HOG and HOF features requires
performing a fixed number of iterations for every pixel. Creating histograms in spatial cells
requires a fixed number of operations with respect to the size of these cells. Thus the com-
plexity of computing HOG and HOF descriptors for one example requires O(P ) operations.
Let m be the number of pixels used in the median filter for every pixel. Since computing
the median requires ordering, the complexity of filtering an image requires O(Pm logm)
operations. In total, for both SM and MM , the whole training on a batch of N frames in
total requires O(NPm log(m)) operations.

Before evaluating a new video of F frames, we have to compute the representations of
the frames, which is done in O(FPm logm) operations. In both methods we then perform
a Viterbi search. In MM this is divided into several searches, but the total complexity
stays the same. The most time consuming part is computing the Quadratic-Chi distances
(Subsection 5.3) between all FN pairs of frames from the new video and model. Computing
the distance needs sum over elements over sparse H ×H matrix (H being the size of the
histograms used) described in Algorithm 2. The number of non-zero elements is linear in
H. Thus, the overall complexity of evaluating a new video is O(NPm log(m) +NFH).

To summarize, the running time of our methods is linear in the number of training
frames, number of frames of a new video, number of pixels of a single frame, and size of
histogram (number of spatial cell times number of orientation bins). Dependence on size of
the filtering region for every pixel is linearithmic since it requires sorting.

Appendix B.

In this Appendix, we provide MATLAB algorithm for creating similarity matrix used in
the Quadratic-Chi distance described in Section 5.3. We have histograms of h × w spatial
cells, and p orientation bins in each of the spatial bins. The size of the final matrix is H×H,
where H = hwp.
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Abstract

In a multi-armed bandit (MAB) problem, an online algorithm makes a sequence of choices.
In each round it chooses from a time-invariant set of alternatives and receives the payoff
associated with this alternative. While the case of small strategy sets is by now well-
understood, a lot of recent work has focused on MAB problems with exponentially or
infinitely large strategy sets, where one needs to assume extra structure in order to make
the problem tractable. In particular, recent literature considered information on similarity
between arms.

We consider similarity information in the setting of contextual bandits, a natural ex-
tension of the basic MAB problem where before each round an algorithm is given the
context—a hint about the payoffs in this round. Contextual bandits are directly motivated
by placing advertisements on web pages, one of the crucial problems in sponsored search. A
particularly simple way to represent similarity information in the contextual bandit setting
is via a similarity distance between the context-arm pairs which bounds from above the
difference between the respective expected payoffs.

Prior work on contextual bandits with similarity uses “uniform” partitions of the sim-
ilarity space, so that each context-arm pair is approximated by the closest pair in the
partition. Algorithms based on “uniform” partitions disregard the structure of the payoffs
and the context arrivals, which is potentially wasteful. We present algorithms that are
based on adaptive partitions, and take advantage of ”benign” payoffs and context arrivals
without sacrificing the worst-case performance. The central idea is to maintain a finer par-
tition in high-payoff regions of the similarity space and in popular regions of the context
space. Our results apply to several other settings, e.g., MAB with constrained temporal
change (Slivkins and Upfal, 2008) and sleeping bandits (Kleinberg et al., 2008a).

Keywords: multi-armed bandits, contextual bandits, regret, Lipschitz-continuity, metric
space

1. Introduction

In a multi-armed bandit problem (henceforth, “multi-armed bandit” will be abbreviated as
MAB), an algorithm is presented with a sequence of trials. In each round, the algorithm
chooses one alternative from a set of alternatives (arms) based on the past history, and
receives the payoff associated with this alternative. The goal is to maximize the total payoff
of the chosen arms. The MAB setting has been introduced in Robbins (1952) and studied
intensively since then in operations research, economics and computer science. This setting
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is a clean model for the exploration-exploitation trade-off, a crucial issue in sequential
decision-making under uncertainty.

One standard way to evaluate the performance of a bandit algorithm is regret, defined as
the difference between the expected payoff of an optimal arm and that of the algorithm. By
now the MAB problem with a small finite set of arms is quite well understood, e.g., see Lai
and Robbins (1985); Auer et al. (2002b,a). However, if the arms set is exponentially or
infinitely large, the problem becomes intractable unless we make further assumptions about
the problem instance. Essentially, a bandit algorithm needs to find a needle in a haystack;
for each algorithm there are inputs on which it performs as badly as random guessing.

Bandit problems with large sets of arms have been an active area of investigation in
the past decade (see Section 2 for a discussion of related literature). A common theme in
these works is to assume a certain structure on payoff functions. Assumptions of this type
are natural in many applications, and often lead to efficient learning algorithms (Kleinberg,
2005). In particular, a line of work started in Agrawal (1995) assumes that some information
on similarity between arms is available.

In this paper, we consider similarity information in the setting of contextual bandits
(Woodroofe, 1979; Auer, 2002; Wang et al., 2005; Pandey et al., 2007; Langford and Zhang,
2007), a natural extension of the basic MAB problem where before each round an algorithm
is given the context—a hint about the payoffs in this round. Contextual bandits are di-
rectly motivated by the problem of placing advertisements on web pages, one of the crucial
problems in sponsored search. One can cast it as a bandit problem so that arms correspond
to the possible ads, and payoffs correspond to the user clicks. Then the context consists of
information about the page, and perhaps the user this page is served to. Furthermore, we
assume that similarity information is available on both the context and the arms. Following
the work in Agrawal (1995); Kleinberg (2004); Auer et al. (2007); Kleinberg et al. (2008b)
on the (non-contextual) bandits, a particularly simple way to represent similarity informa-
tion in the contextual bandit setting is via a similarity distance between the context-arm
pairs, which gives an upper bound on the difference between the corresponding payoffs.

1.1 Our Model: Contextual Bandits with Similarity Information

The contextual bandits framework is defined as follows. Let X be the context set and Y be
the arms set, and let P ⊂ X × Y be the set of feasible context-arms pairs. In each round
t, the following events happen in succession:

1. a context xt ∈ X is revealed to the algorithm,

2. the algorithm chooses an arm yt ∈ Y such that (xt, yt) ∈ P,

3. payoff (reward) πt ∈ [0, 1] is revealed.

The sequence of context arrivals (xt)t∈N is fixed before the first round, and does not depend
on the subsequent choices of the algorithm. With stochastic payoffs, for each pair (x, y) ∈ P
there is a distribution Π(x, y) with expectation µ(x, y), so that πt is an independent sample
from Π(xt, yt). With adversarial payoffs, this distribution can change from round to round.
For simplicity, we present the subsequent definitions for the stochastic setting only, whereas
the adversarial setting is fleshed out later in the paper (Section 8).
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In general, the goal of a bandit algorithm is to maximize the total payoff
∑T

t=1 πt,
where T is the time horizon. In the contextual MAB setting, we benchmark the algorithm’s
performance in terms of the context-specific “best arm”. Specifically, the goal is to minimize
the contextual regret :

R(T ) ,
∑T

t=1 µ(xt, yt)− µ∗(xt), where µ∗(x) , supy∈Y : (x,y)∈P µ(x, y).

The context-specific best arm is a more demanding benchmark than the best arm used
in the “standard” (context-free) definition of regret.

The similarity information is given to an algorithm as a metric space (P,D) which we
call the similarity space, such that the following Lipschitz condition1 holds:

|µ(x, y)− µ(x′, y′)| ≤ D((x, y), (x′, y′)). (1)

Without loss of generality, D ≤ 1. The absence of similarity information is modeled as
D = 1.

An instructive special case is the product similarity space (P,D) = (X × Y,D), where
(X,DX) is a metric space on contexts (context space), and (Y,DY) is a metric space on arms
(arms space), and

D((x, y), (x′, y′)) = min(1, DX(x, x′) +DY(y, y′)). (2)

1.2 Prior Work: Uniform Partitions

Hazan and Megiddo (2007) consider contextual MAB with similarity information on con-
texts. They suggest an algorithm that chooses a “uniform” partition SX of the context
space and approximates xt by the closest point in SX, call it x′t. Specifically, the algorithm
creates an instance A(x) of some bandit algorithm A for each point x ∈ SX, and invokes
A(x′t) in each round t. The granularity of the partition is adjusted to the time horizon, the
context space, and the black-box regret guarantee for A. Furthermore, Kleinberg (2004)
provides a bandit algorithm A for the adversarial MAB problem on a metric space that has
a similar flavor: pick a “uniform” partition SY of the arms space, and run a k-arm bandit
algorithm such as exp3 (Auer et al., 2002b) on the points in SY. Again, the granularity
of the partition is adjusted to the time horizon, the arms space, and the black-box regret
guarantee for exp3.

Applying these two ideas to our setting (with the product similarity space) gives a simple
algorithm which we call the uniform algorithm. Its contextual regret, even for adversarial
payoffs, is

R(T ) ≤ O(T 1−1/(2+dX+dY))(log T ), (3)

where dX is the covering dimension of the context space and dY is that of the arms space.

1. In other words, µ is a Lipschitz-continuous function on (X,P), with Lipschitz constant KLip = 1.
Assuming KLip = 1 is without loss of generality (as long as KLip is known to the algorithm), since we
can re-define D ← KLipD.
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1.3 Our Contributions

Using “uniform” partitions disregards the potentially benign structure of expected payoffs
and context arrivals. The central topic in this paper is adaptive partitions of the similarity
space which are adjusted to frequently occurring contexts and high-paying arms, so that
the algorithms can take advantage of the problem instances in which the expected payoffs
or the context arrivals are “benign” (“low-dimensional”), in a sense that we make precise
later.

We present two main results, one for stochastic payoffs and one for adversarial payoffs.
For stochastic payoffs, we provide an algorithm called contextual zooming which “zooms in”
on the regions of the context space that correspond to frequently occurring contexts, and
the regions of the arms space that correspond to high-paying arms. Unlike the algorithms
in prior work, this algorithm considers the context space and the arms space jointly—it
maintains a partition of the similarity space, rather than one partition for contexts and
another for arms. We develop provable guarantees that capture the “benign-ness” of the
context arrivals and the expected payoffs. In the worst case, we match the guarantee (3) for
the uniform algorithm. We obtain nearly matching lower bounds using the KL-divergence
technique from Auer et al. (2002b); Kleinberg (2004). The lower bound is very general as
it holds for every given (product) similarity space and for every fixed value of the upper
bound.

Our stochastic contextual MAB setting, and specifically the contextual zooming algo-
rithm, can be fruitfully applied beyond the ad placement scenario described above and
beyond MAB with similarity information per se. First, writing xt = t one can incorpo-
rate “temporal constraints” (across time, for each arm), and combine them with “spatial
constraints” (across arms, for each time). The analysis of contextual zooming yields con-
crete, meaningful bounds this scenario. In particular, we recover one of the main results
in Slivkins and Upfal (2008). Second, our setting subsumes the stochastic sleeping bandits
problem (Kleinberg et al., 2008a), where in each round some arms are “asleep”, i.e., not
available in this round. Here contexts correspond to subsets of arms that are “awake”.
Contextual zooming recovers and generalizes the corresponding result in Kleinberg et al.
(2008a). Third, following the publication of a preliminary version of this paper, contextual
zooming has been applied to bandit learning-to-rank in Slivkins et al. (2013).

For the adversarial setting, we provide an algorithm which maintains an adaptive parti-
tion of the context space and thus takes advantage of “benign” context arrivals. We develop
provable guarantees that capture this “benign-ness”. In the worst case, the contextual re-
gret is bounded in terms of the covering dimension of the context space, matching (3). Our
algorithm is in fact a meta-algorithm: given an adversarial bandit algorithm Bandit, we
present a contextual bandit algorithm which calls Bandit as a subroutine. Our setup is
flexible: depending on what additional constraints are known about the adversarial payoffs,
one can plug in a bandit algorithm from the prior work on the corresponding version of
adversarial MAB, so that the regret bound for Bandit plugs into the overall regret bound.

1.4 Discussion

Adaptive partitions (of the arms space) for context-free MAB with similarity information
have been introduced in Kleinberg et al. (2008b); Bubeck et al. (2011a). This paper further

2536



Contextual Bandits with Similarity Information

explores the potential of the zooming technique in Kleinberg et al. (2008b). Specifically,
contextual zooming extends this technique to adaptive partitions of the entire similarity
space, which necessitates a technically different algorithm and a more delicate analysis. We
obtain a clean algorithm for contextual MAB with improved (and nearly optimal) bounds.
Moreover, this algorithm applies to several other, seemingly unrelated problems and unifies
some results from prior work.

One alternative approach is to maintain a partition of the context space, and run a
separate instance of the zooming algorithm from Kleinberg et al. (2008b) on each set in this
partition. Fleshing out this idea leads to the meta-algorithm that we present for adversarial
payoffs (with Bandit being the zooming algorithm). This meta-algorithm is parameterized
(and constrained) by a specific a priori regret bound for Bandit. Unfortunately, any a
priori regret bound for zooming algorithm would be a pessimistic one, which negates its
main strength—the ability to adapt to “benign” expected payoffs.

1.5 Map of the Paper

Section 2 is related work, and Section 3 is Preliminaries. Contextual zooming is presented
in Section 4. Lower bounds are in Section 5. Some applications of contextual zooming are
discussed in Section 6. The adversarial setting is treated in Section 8.

2. Related Work

A proper discussion of the literature on bandit problems is beyond the scope of this paper.
This paper follows the line of work on regret-minimizing bandits; a reader is encouraged to
refer to Cesa-Bianchi and Lugosi (2006); Bubeck and Cesa-Bianchi (2012) for background.
A different (Bayesian) perspective on bandit problems can be found in Gittins et al. (2011).

Most relevant to this paper is the work on bandits with large sets of arms, specifically
bandits with similarity information (Agrawal, 1995; Kleinberg, 2004; Auer et al., 2007;
Pandey et al., 2007; Kocsis and Szepesvari, 2006; Munos and Coquelin, 2007; Kleinberg
et al., 2008b; Bubeck et al., 2011a; Kleinberg and Slivkins, 2010; Maillard and Munos,
2010). Another commonly assumed structure is linear or convex payoffs (e.g., Awerbuch
and Kleinberg, 2008; Flaxman et al., 2005; Dani et al., 2007; Abernethy et al., 2008; Hazan
and Kale, 2009; Bubeck et al., 2012). Linear/convex payoffs is a much stronger assumption
than similarity, essentially because it allows to make strong inferences about far-away arms.
Other assumptions have been considered (e.g., Banks and Sundaram, 1992; Berry et al.,
1997; Wang et al., 2008; Bubeck and Munos, 2010). The distinction between stochastic and
adversarial payoffs is orthogonal to the structural assumption (such as Lipschitz-continuity
or linearity). Papers on MAB with linear/convex payoffs typically allow adversarial pay-
offs, whereas papers on MAB with similarity information focus on stochastic payoffs, with
notable exceptions of Kleinberg (2004) and Maillard and Munos (2010).2

The notion of structured adversarial payoffs in this paper is less restrictive than the
one in Maillard and Munos (2010) (which in turn specializes the notion from linear/convex
payoffs), in the sense that the Lipschitz condition is assumed on the expected payoffs rather
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than on realized payoffs. This is a non-trivial distinction, essentially because our notion
generalizes stochastic payoffs whereas the other one does not.

2.1 Contextual MAB

In Auer (2002) and Chu et al. (2011)2 payoffs are linear in context, which is a feature vector.
Woodroofe (1979); Wang et al. (2005) and Rigollet and Zeevi (2010)2 study contextual MAB
with stochastic payoffs, under the name bandits with covariates: the context is a random
variable correlated with the payoffs; they consider the case of two arms, and make some
additional assumptions. Lazaric and Munos (2009)2 consider an online labeling problem
with stochastic inputs and adversarially chosen labels; inputs and hypotheses (mappings
from inputs to labels) can be thought of as “contexts” and “arms” respectively. Bandits with
experts advice (e.g., Auer 2002) is the special case of contextual MAB where the context
consists of experts’ advice; the advice of a each expert is modeled as a distributions over
arms. All these papers are not directly applicable to the present setting.

Experimental work on contextual MAB includes (Pandey et al., 2007) and (Li et al.,
2010, 2011).2

Lu et al. (2010)2 consider the setting in this paper for a product similarity space and,
essentially, recover the uniform algorithm and a lower bound that matches (3). The same
guarantee (3) can also be obtained as follows. The “uniform partition” described above can
be used to define “experts” for a bandit-with-expert-advice algorithm such as exp4 (Auer
et al., 2002b): for each set of the partition there is an expert whose advise is simply an
arbitrary arm in this set. Then the regret bound for exp4 yields (3). Instead of exp4
one could use an algorithm in McMahan and Streeter (2009)2 which improves over exp4
if the experts are not “too distinct”; however, it is not clear if it translates into concrete
improvements over (3).

If the context xt is time-invariant, our setting reduces to the Lipschitz MAB problem
as defined in Kleinberg et al. (2008b), which in turn reduces to continuum-armed ban-
dits (Agrawal, 1995; Kleinberg, 2004; Auer et al., 2007) if the metric space is a real line,
and to MAB with stochastic payoffs (Auer et al., 2002a) if the similarity information is
absent.

3. Preliminaries

We will use the notation from the Introduction. In particular, xt will denote the t-th
context arrival, i.e., the context that arrives in round t, and yt will denote the arm chosen
by the algorithm in that round. We will use x(1..T ) to denote the sequence of the first T

context arrivals (x1 , . . . , xT ). The badness of a point (x, y) ∈ P is defined as ∆(x, y) ,
µ∗(x)− µ(x, y). The context-specific best arm is

y∗(x) ∈ argmaxy∈Y : (x,y)∈P µ(x, y), (4)

where ties are broken in an arbitrary but fixed way. To ensure that the max in (4) is
attained by some y ∈ Y , we will assume that the similarity space (P,D) is compact.

2. This paper is concurrent and independent work w.r.t. the preliminary publication of this paper on
arxiv.org.
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Metric spaces. Covering dimension and related notions are crucial throughout this paper.
Let P be a set of points in a metric space, and fix r > 0. An r-covering of P is a collection
of subsets of P, each of diameter strictly less than r, that cover P. The minimal number
of subsets in an r-covering is called the r-covering number3 of P and denoted Nr(P). The
covering dimension of P (with multiplier c) is the smallest d such that Nr(P) ≤ c r−d for
each r > 0. In particular, if S is a subset of Euclidean space then its covering dimension is
at most the linear dimension of S, but can be (much) smaller.

Covering is closely related to packing. A subset S ⊂ P is an r-packing of P if the distance
between any two points in S is at least r. The maximal number of points in an r-packing is
called the r-packing number and denotedN

pack
r (P). It is well-known that r-packing numbers

are essentially the same as r-covering numbers, namely N2r(P) ≤ Npack
r (P) ≤ Nr(P).

The doubling constant cdbl(P) of P is the smallest k such that any ball can be covered
by k balls of half the radius. The doubling constant (and doubling dimension log cdbl) was
introduced in Heinonen (2001) and has been a standard notion in theoretical computer
science literature since Gupta et al. (2003). It was used to characterize tractable problem
instances for a variety of problems (e.g., see Talwar, 2004; Kleinberg et al., 2009; Cole and
Gottlieb, 2006). It is known that cdbl(P) ≥ c 2d if d is the covering dimension of P with
multiplier c, and that cdbl(P) ≤ 2d if P is a bounded subset of d-dimensional Euclidean
space. A useful observation is that if distance between any two points in S is > r, then any
ball of radius r contains at most cdbl points of S.

A ball with center x and radius r is denoted B(x, r). Formally, we will treat a ball as
a (center, radius) pair rather than a set of points. A function f : P → R if a Lipschitz
function on a metric space (P,D), with Lipschitz constant KLip, if the Lipschitz condition
holds: |f(x)− f(x′)| ≤ KLipD(x, x′) for each x, x′ ∈ P.

Accessing the similarity space. We assume full and computationally unrestricted access to
the similarity information. While the issues of efficient representation thereof are important
in practice, we believe that a proper treatment of these issues would be specific to the
particular application and the particular similarity metric used, and would obscure the
present paper. One clean formal way to address this issue is to assume oracle access: an
algorithm accesses the similarity space via a few specific types of queries, and invokes an
“oracle” that answers such queries.

Time horizon. We assume that the time horizon is fixed and known in advance. This
assumption is without loss of generality in our setting. This is due to the well-known
doubling trick which converts a bandit algorithm with a fixed time horizon into one that
runs indefinitely and achieves essentially the same regret bound. Suppose for any fixed time
horizon T there is an algorithm ALGT whose regret is at most R(T ). The new algorithm
proceeds in phases i = 1, 2, 3, . . . of duration 2i rounds each, so that in each phase i a fresh
instance of ALG2i is run. This algorithm has regret O(log T )R(T ) for each round T , and
O(R(T )) in the typical case when R(T ) ≥ T γ for some constant γ > 0.

3. The covering number can be defined via radius-r balls rather than diameter-r sets. This alternative
definition lacks the appealing “robustness” property: Nr(P ′) ≤ Nr(P) for any P ′ ⊂ P, but (other than
that) is equivalent for this paper.
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4. The Contextual Zooming Algorithm

In this section we consider the contextual MAB problem with stochastic payoffs. We present
an algorithm for this problem, called contextual zooming, which takes advantage of both
the “benign” context arrivals and the “benign” expected payoffs. The algorithm adaptively
maintains a partition of the similarity space, “zooming in” on both the “popular” regions
on the context space and the high-payoff regions of the arms space.

Contextual zooming extends the (context-free) zooming technique in Kleinberg et al.
(2008b), which necessitates a somewhat more complicated algorithm. In particular, selec-
tion and activation rules are defined differently, there is a new notion of “domains” and the
distinction between “pre-index” and “index”. The analysis is more delicate, both the high-
probability argument in Claim 3 and the subsequent argument that bounds the number of
samples from suboptimal arms. Also, the key step of setting up the regret bounds is very
different, especially for the improved regret bounds in Section 4.4.

4.1 Provable Guarantees

Let us define the notions that express the performance of contextual zooming. These notions
rely on the packing number Nr(·) in the similarity space (P,D), and the more refined
versions thereof that take into account “benign” expected payoffs and “benign” context
arrivals.

Our guarantees have the following form, for some integer numbers {Nr}r∈(0,1):

R(T ) ≤ C0 infr0∈(0,1)

(
r0T +

∑
r=2−i: i∈N, r0≤r≤1

1
r Nr log T

)
. (5)

Here and thereafter, C0 = O(1) unless specified otherwise. In the pessimistic version,
Nr = Nr(P) is the r-packing number4 of P. The main contribution is refined bounds in
which Nr is smaller.

For every guarantee of the form (5), call it Nr-type guarantee, prior work (e.g., Kleinberg
2004; Kleinberg et al. 2008b; Bubeck et al. 2011a) suggests a more tractable dimension-type
guarantee. This guarantee is in terms of the covering-type dimension induced by Nr, defined
as follows:5

dc , inf{d > 0 : Nr ≤ c r−d ∀r ∈ (0, 1)}. (6)

Using (5) with r0 = T−1/(dc+2), we obtain

R(T ) ≤ O(C0) (c T 1−1/(2+dc) log T ) (∀c > 0). (7)

For the pessimistic version (Nr = Nr(P)), the corresponding covering-type dimension dc
is the covering dimension of the similarity space. The resulting guarantee (7) subsumes the
bound (3) from prior work (because the covering dimension of a product similarity space is

4. Then (5) can be simplified to R(T ) ≤ infr∈(0,1)O
(
rT + 1

r
Nr(P) log T

)
, asl Nr(P) is non-increasing in

r.
5. One standard definition of the covering dimension is (6) for Nr = Nr(P) and c = 1. Following Kleinberg

et al. (2008b), we include an explicit dependence on c in (6) to obtain a more efficient regret bound
(which holds for any c).
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dX + dY), and extends this bound from product similarity spaces (2) to arbitrary similarity
spaces.

To account for “benign” expected payoffs, instead of r-packing number of the entire
set P we consider the r-packing number of a subset of P which only includes points with
near-optimal expected payoffs:

Pµ,r , {(x, y) ∈ P : µ∗(x)− µ(x, y) ≤ 12 r}. (8)

We define the r-zooming number as Nr(Pµ,r), the r-packing number of Pµ,r. The corre-
sponding covering-type dimension (6) is called the contextual zooming dimension.

The r-zooming number can be seen as an optimistic version of Nr(P): while equal to
Nr(P) in the worst case, it can be much smaller if the set of near-optimal context-arm pairs
is “small” in terms of the packing number. Likewise, the contextual zooming dimension is
an optimistic version of the covering dimension.

Theorem 1 Consider the contextual MAB problem with stochastic payoffs. There is an
algorithm (namely, Algorithm 1 described below) whose contextual regret R(T ) satisfies (5)
with Nr equal to Nr(Pµ,r), the r-zooming number. Consequently, R(T ) satisfies the dimension-
type guarantee (7), where dc is the contextual zooming dimension.

In Theorem 1, the same algorithm enjoys the bound (7) for each c > 0. This is a useful
trade-off since different values of c may result in drastically different values of the dimension
dc. On the contrary, the “uniform algorithm” from prior work essentially needs to take the
c as input.

Further refinements to take into account “benign” context arrivals are deferred to Sec-
tion 4.4.

4.2 Description of the Algorithm

The algorithm is parameterized by the time horizon T . In each round t, it maintains a finite
collection At of balls in (P,D) (called active balls) which collectively cover the similarity
space. Adding active balls is called activating ; balls stay active once they are activated.
Initially there is only one active ball which has radius 1 and therefore contains the entire
similarity space.

At a high level, each round t proceeds as follows. Context xt arrives. Then the algorithm
selects an active ball B and an arm yt such that (xt, yt) ∈ B, according to the “selection
rule”. Arm yt is played. Then one ball may be activated, according to the “activation rule”.

In order to state the two rules, we need to put forward several definitions. Fix an active
ball B and round t. Let r(B) be the radius of B. The confidence radius of B at time t is

conft(B) , 4

√
log T

1 + nt(B)
, (9)

where nt(B) is the number of times B has been selected by the algorithm before round t.
The domain of ball B in round t is a subset of B that excludes all balls B′ ∈ At of strictly
smaller radius:

dom t(B) , B \
(⋃

B′∈At: r(B′)<r(B) B
′
)
. (10)
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Algorithm 1 Contextual zooming algorithm.

1: Input: Similarity space (P,D) of diameter ≤ 1, P ⊂ X × Y . Time horizon T .
2: Data: collection A of “active balls” in (P,D); counters n(B), rew(B) for each B ∈ A.

3: Init: B ← B(p, 1); // center p ∈ P is arbitrary
4: A ← {B}; n(B) = rew(B) = 0
5: Main loop: for each round t // use definitions (9-12)
6: Input context xt.
7: // activation rule
8: relevant← {B ∈ A : (xt, y) ∈ dom (B,A) for some arm y}.
9: B ← argmaxB∈relevant It(B). // ball B is selected

10: y ← any arm y such that (xt, y) ∈ dom (B,A).
11: Play arm y, observe payoff π.
12: Update counters: n(B)← n(B) + 1, rew(B)← rew(B) + π.
13: // selection rule
14: if conf(B) ≤ radius(B) then
15: B′ ← B((xt, y), 1

2 radius(B)) // new ball to be activated
16: A ← A∪ {B′}; n(B′) = rew(B′) = 0.

We will also denote (10) as dom (B,At). Ball B is called relevant in round t if (xt, y) ∈
dom t(B) for some arm y. In each round, the algorithm selects one relevant ball B. This
ball is selected according to a numerical score It(B) called index. (The definition of index
is deferred to the end of this subsection.)

Now we are ready to state the two rules, for every given round t.

• selection rule. Select a relevant ball B with the maximal index (break ties arbitrar-
ily). Select an arbitrary arm y such that (xt, y) ∈ dom t(B).

• activation rule. Suppose the selection rule selects a relevant ball B such that
conft(B) ≤ r(B) after this round. Then, letting y be the arm selected in this round,
a ball with center (xt, y) and radius 1

2 r(B) is activated. (B is then called the parent
of this ball.)

See Algorithm 1 for the pseudocode.
It remains to define the index It(B). Let rewt(B) be the total payoff from all rounds

up to t − 1 in which ball B has been selected by the algorithm. Then the average payoff
from B is νt(B) , rewt(B)

max(1, nt(B)) . The pre-index of B is defined as the average νt(B) plus an
“uncertainty term”:

Ipre
t (B) , νt(B) + r(B) + conft(B). (11)

The “uncertainty term” in (11) reflects both uncertainty due to a location in the metric
space, via r(B), and uncertainty due to an insufficient number of samples, via conft(B).

The index of B is obtained by taking a minimum over all active balls B′:

It(B) , r(B) + min
B′∈At

(
Ipre
t (B′) +D(B,B′)

)
, (12)
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where D(B,B′) is the distance between the centers of the two balls.

Discussion. The meaning of index and pre-index is as follows. Both are upper confidence
bound (UCB, for short) for expected rewards in B. Pre-index is a UCB for µ(B), the
expected payoff from the center of B; essentially, it is the best UCB on µ(B) that can be
obtained from the observations of B alone. The min expression in (12) is an improved UCB
on µ(B), refined using observations from all other active balls. Finally, index is, essentially,
the best available UCB for the expected reward of any pair (x, y) ∈ B.

Relevant balls are defined through the notion of the “domain” to ensure the following
property: in each round when a parent ball is selected, some other ball is activated. This
property allows us to “charge” the regret accumulated in each such round to the corre-
sponding activated ball.

Running time. The running time is dominated by determining which active balls are
relevant. Formally, we assume an oracle that inputs context x and a finite sequence
(B,B1 , . . . , Bn) of balls in the similarity space, and outputs an arm y such that (x, y) ∈
B \∪nj=1Bj if such arm exists, and null otherwise. Then each round t can be implemented
via nt oracle calls with n < nt balls each, where nt is the current number of active balls.
Letting f(n) denote the running time of one oracle call in terms of n, the running time for
each round the algorithm is at most nT f(nT ).

While implementation of the oracle and running time f(·) depend on the specific sim-
ilarity space, we can provide some upper bounds on nT . First, a crude upper bound is
nT ≤ T . Second, letting Fr be the collection of all active balls of radius r, we prove that
|Fr| is at most Nr, the r-zooming number of the problem instance. Third, |Fr| ≤ cdbl Tr2,
where cdbl is the doubling constant of the similarity space. (This is because each active ball
must be played at least r−2 times before it becomes a parent ball, and each parent ball can
have at most cdbl children.) Putting this together, we obtain nT ≤

∑
r min(cdbl Tr

2, Nr),
where the sum is over all r = 2−j , j ∈ N.

4.3 Analysis of the Algorithm: Proof of Theorem 1

We start by observing that the activation rule ensures several important invariants.

Claim 2 The following invariants are maintained:
• (confidence) for all times t and all active balls B,

conft(B) ≤ r(B) if and only if B is a parent ball.

• (covering) in each round t, the domains of active balls cover the similarity space.
• (separation) for any two active balls of radius r, their centers are at distance ≥ r.

Proof The confidence invariant is immediate from the activation rule.
For the covering invariant, note that ∪B∈A dom (B,A) = ∪B∈AB for any finite collection

A of balls in the similarity space. (For each v ∈ ∪B∈AB, consider a smallest radius ball
in A that contains B. Then v ∈ dom (B,A).) The covering invariant then follows since At
contains a ball that covers the entire similarity space.

To show the separation invariant, let B and B′ be two balls of radius r such that B is
activated at time t, with parent Bpar, and B′ is activated before time t. The center of B
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is some point (xt, yt) ∈ dom (Bpar,At). Since r(Bpar) > r(B′), it follows that (xt, yt) 6∈ B′.

Throughout the analysis we will use the following notation. For a ball B with center
(x, y) ∈ P, define the expected payoff of B as µ(B) , µ(x, y). Let Bsel

t be the active ball
selected by the algorithm in round t. Recall that the badness of (x, y) ∈ P is defined as
∆(x, y) , µ∗(x)− µ(x, y).

Claim 3 If ball B is active in round t, then with probability at least 1− T−2 we have that

|νt(B)− µ(B)| ≤ r(B) + conft(B). (13)

Proof Fix ball V with center (x, y). Let S be the set of rounds s ≤ t when ball B
was selected by the algorithm, and let n = |S| be the number of such rounds. Then
νt(B) = 1

n

∑
s∈S πs(xs, ys).

Define Zk =
∑

(πs(xs, ys)− µ(xs, ys)), where the sum is taken over the k smallest el-
ements s ∈ S. Then {Zk∧n}k∈N is a martingale with bounded increments. (Note that n
here is a random variable.) So by the Azuma-Hoeffding inequality with probability at least
1 − T−3 it holds that 1

k |Zk∧n| ≤ conft(B), for each k ≤ T . Taking the Union Bound, it
follows that 1

n |Zn| ≤ conft(B). Note that |µ(xs, ys) − µ(B)| ≤ r(B) for each s ∈ S, so
|νt(B)− µ(B)| ≤ r(B) + 1

n |Zn|, which completes the proof.

Note that (13) implies Ipre(B) ≥ µ(B), so that Ipre(B) is indeed a UCB on µ(B).

Call a run of the algorithm clean if (13) holds for each round. From now on we will
focus on a clean run, and argue deterministically using (13). The heart of the analysis is
the following lemma.

Lemma 4 Consider a clean run of the algorithm. Then ∆(xt, yt) ≤ 14 r(Bsel
t ) in each

round t.

Proof Fix round t. By the covering invariant, (xt, y
∗(xt)) ∈ B for some active ball B.

Recall from (12) that It(B) = r(B)+Ipre(B′)+D(B,B′) for some active ball B′. Therefore

It(B
sel
t ) ≥ It(B) = Ipre(B′) + r(B) +D(B,B′) (selection rule, defn of index (12))

≥ µ(B′) + r(B) +D(B,B′) (“clean run”)

≥ µ(B) + r(B) ≥ µ(xt, y
∗(xt)) = µ∗(xt). (Lipschitz property (1), twice)

(14)

On the other hand, letting Bpar be the parent of Bsel
t and noting that by the activation

rule

max(D(Bsel
t , Bpar), conft(B

par)) ≤ r(Bpar), (15)
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we can upper-bound It(B
sel
t ) as follows:

Ipre(Bpar) = νt(B
par) + r(Bpar) + conft(B

par) (defn of preindex (11))

≤ µ(Bpar) + 2 r(Bpar) + 2 conft(B
par) (“clean run”)

≤ µ(Bpar) + 4 r(Bpar) (“parenthood” (15))

≤ µ(Bsel
t ) + 5 r(Bpar) (Lipschitz property (1)) (16)

It(B
sel
t ) ≤ r(Bsel

t ) + Ipre(Bpar) +D(Bsel
t , Bpar) (defn of index (12))

≤ r(Bsel
t ) + Ipre(Bpar) + r(Bpar) (“parenthood” (15))

≤ r(Bsel
t ) + µ(Bsel

t ) + 6 r(Bpar) (by (16))

≤ µ(Bsel
t ) + 13 r(Bsel

t ) (r(Bpar) = 2 r(Bsel
t ))

≤ µ(xt, yt) + 14 r(Bsel
t ) (Lipschitz property (1)). (17)

Putting the pieces together, µ∗(xt) ≤ It(Bsel
t ) ≤ µ(xt, yt) + 14 r(Bsel

t ).

Corollary 5 In a clean run, if ball B is activated in round t then ∆(xt, yt) ≤ 10 r(B).

Proof By the activation rule, Bsel
t is the parent of B. Thus by Lemma 4 we immediately

have ∆(xt, yt) ≤ 14 r(Bsel
t ) = 28 r(B).

To obtain the constant of 10 that is claimed here, we prove a more efficient special case
of Lemma 4:

if Bsel
t is a parent ball then ∆(xt, yt) ≤ 5 r(Bsel

t ). (18)

To prove (18), we simply replace (17) in the proof of Lemma 4 by similar inequality in
terms of Ipre(Bsel

t ) rather than Ipre(Bpar):

It(B
sel
t ) ≤ r(Bsel

t ) + Ipre(Bsel
t ) (defn of index (12))

= νt(B
sel
t ) + 2 r(Bsel

t ) + conft(B
sel
t ) (defns of pre-index (11))

≤ µ(Bsel
t ) + 3 r(Bsel

t ) + 2 conft(B
sel
t ) (“clean run”)

≤ µ(xt, yt) + 5 r(Bsel
t )

For the last inequality, we use the fact that conft(B
sel
t ) ≤ r(Bsel

t ) whenever Bsel
t is a

parent ball.

Now we are ready for the final regret computation. For a given r = 2−i, i ∈ N, let Fr
be the collection of all balls of radius r that have been activated throughout the execution
of the algorithm. Note that in each round, if a parent ball is selected then some other ball
is activated. Thus, we can partition the rounds among active balls as follows: for each ball
B ∈ Fr, let SB be the set of rounds which consists of the round when B was activated
and all rounds t when B was selected and was not a parent ball.6 It is easy to see that

6. A given ball B can be selected even after it becomes a parent ball, but in such round some other ball B
is activated, so this round is included in SB′ .
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|SB| ≤ O(r−2 log T ). Moreover, by Lemma 4 and Corollary 5 we have ∆(xt, yt) ≤ 15 r in
each round t ∈ SB.

If ball B ∈ Fr is activated in round t, then Corollary 5 asserts that its center (xt, yt)
lies in the set Pµ,r, as defined in (8). By the separation invariant, the centers of balls in Fr
are within distance at least r from one another. It follows that |Fr| ≤ Nr, where Nr is the
r-zooming number.

Fixing some r0 ∈ (0, 1), note that in each rounds t when a ball of radius < r0 was
selected, regret is ∆(xt, yt) ≤ O(r0), so the total regret from all such rounds is at most
O(r0 T ). Therefore, contextual regret can be written as follows:

R(T ) =
∑T

t=1 ∆(xt, yt)

= O(r0 T ) +
∑

r=2−i: r0≤r≤1

∑
B∈Fr

∑
t∈SB

∆(xt, yt)

≤ O(r0 T ) +
∑

r=2−i: r0≤r≤1

∑
B∈Fr

|SB|O(r)

≤ O
(
r0T +

∑
r=2−i: r0≤r≤1

1
r Nr log(T )

)
.

The Nr-type regret guarantee in Theorem 1 follows by taking inf on all r0 ∈ (0, 1).

4.4 Improved Regret Bounds

Let us provide regret bounds that take into account “benign” context arrivals. The main
difficulty here is to develop the corresponding definitions; the analysis then carries over
without much modification. The added value is two-fold: first, we establish the intuition
that benign context arrivals matter, and then the specific regret bound is used in Section 6.2
to match the result in Slivkins and Upfal (2008).

A crucial step in the proof of Theorem 1 is to bound the number of active radius-r balls
by Nr(Pµ,r), which is accomplished by observing that their centers form an r-packing S of
Pµ,r. We make this step more efficient, as follows. An active radius-r ball is called full if
conft(B) ≤ r for some round t. Note that each active ball is either full or a child of some
other ball that is full. The number of children of a given ball is bounded by the doubling
constant of the similarity space. Thus, it suffices to consider the number of active radius-r
balls that are full, which is at most Nr(Pµ,r), and potentially much smaller.

Consider active radius-r active balls that are full. Their centers form an r-packing S
of Pµ,r with an additional property: each point p ∈ S is assigned at least 1/r2 context
arrivals xt so that (xt, y) ∈ B(p, r) for some arm y, and each context arrival is assigned
to at most one point in S.7 A set S ⊂ P with this property is called r-consistent (with

context arrivals). The adjusted r-packing number of a set P ′ ⊂ P, denoted Nadj
r (P ′), is the

maximal size of an r-consistent r-packing of P ′. It can be much smaller than the r-packing
number of P ′ if most context arrivals fall into a small region of the similarity space.

We make one further optimization, tailored to the application in Section 6.2. Infor-
mally, we take advantage of context arrivals xt such that expected payoff µ(xt, y) is ei-
ther optimal or very suboptimal. A point (x, y) ∈ P is called an r-winner if for each
(x′, y′) ∈ B((x, y), 2r) it holds that µ(x′, y′) = µ∗(x′). Let Wµ,r be the set of all r-winners.
It is easy to see that if B is a radius-r ball centered at an r-winner, and B or its child is se-

7. Each point p ∈ S is assigned all contexts xt such that the corresponding ball is chosen in round t.
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lected in a given round, then this round does not contribute to contextual regret. Therefore,
it suffices to consider (r-consistent) r-packings of Pµ,r \Wµ,r.

Our final guarantee is in terms of Nadj(Pµ,r \ Wµ,r), which we term the adjusted r-
zooming number.

Theorem 6 Consider the contextual MAB problem with stochastic payoffs. The contextual
regret R(T ) of the contextual zooming algorithm satisfies (5), where Nr is the adjusted r-
zooming number and C0 is the doubling constant of the similarity space times some absolute
constant. Consequently, R(T ) satisfies the dimension-type guarantee (7), where dc is the
corresponding covering-type dimension.

5. Lower Bounds

We match the upper bound in Theorem 1 up to O(log T ) factors. Our lower bound is
very general: it applies to an arbitrary product similarity space, and moreover for a given
similarity space it matches, up to O(log T ) factors, any fixed value of the upper bound (as
explained below).

We construct a distribution I over problem instances on a given metric space, so that
the lower bound is for a problem instance drawn from this distribution. A single problem
instance would not suffice to establish a lower bound because a trivial algorithm that picks
arm y∗(x) for each context x will achieve regret 0.

The distribution I satisfies the following two properties: the upper bound in Theorem 1
is uniformly bounded from above by some number R, and any algorithm must incur regret
at least Ω(R/ log T ) in expectation over I. Moreover, we constrict such I for every possible
value of the upper bound in Theorem 1 on a given metric space, i.e., not just for problem
instances that are “hard” for this metric space.

To formulate our result, let RUB
µ (T ) denote the upper bound in Theorem 1, i.e., is the

right-hand side of (5) where Nr = Nr(Pµ,r) is the r-zooming number. Let RUB(T ) denote
the pessimistic version of this bound, namely right-hand side of (5) where Nr = Nr(P) is
the packing number of P.

Theorem 7 Consider the contextual MAB problem with stochastic payoffs, Let (P,D) be
a product similarity space. Fix an arbitrary time horizon T and a positive number R ≤
RUB(T ). Then there exists a distribution I over problem instances on (P,D) with the
following two properties:

(a) RUB
µ (T ) ≤ O(R) for each problem instance in support(I).

(b) for any contextual bandit algorithm it holds that EI [R(T )] ≥ Ω(R/ log T ),

To prove this theorem, we build on the lower-bounding technique from Auer et al.
(2002b), and its extension to (context-free) bandits in metric spaces in Kleinberg (2004). In
particular, we use the basic needle-in-the-haystack example from Auer et al. (2002b), where
the “haystack” consists of several arms with expected payoff 1

2 , and the “needle” is an arm
whose expected payoff is slightly higher.
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5.1 The Lower-Bounding Construction

Our construction is parameterized by two numbers: r ∈ (0, 1
2 ] and N ≤ Nr(P), where

Nr(P) is the r-packing number of P. Given these parameters, we construct a collection
I = IN,r of Θ(N) problem instances as follows.

Let NX,r be the r-packing number of X in the context space, and let NY,r be the r-
packing number of Y in the arms space. Note that Nr(P) = NX,r × NY,r. For simplicity,
let us assume that N = nX nY, where 1 ≤ nX ≤ NX,r and 2 ≤ nY ≤ NY,r.

An r-net is the set S of points in a metric space such that any two points in S are at
distance > r from each other, and each point in the metric space is within distance ≤ r
from some point in S. Recall that any r-net on the context space has size at least NX,r. Let
SX be an arbitrary set of nX points from one such r-net. Similarly, let SY be an arbitrary
set of nY points from some r-net on the arms space. The sequence x(1..T ) of context arrivals
is any fixed permutation over the points in SX, repeated indefinitely.

All problem instances in I have 0-1 payoffs. For each x ∈ SX we construct a needle-
in-the-haystack example on the set SY. Namely, we pick one point y∗(x) ∈ SY to be the
“needle”, and define µ(x, y∗(x)) = 1

2 + r
4 , and µ(x, y) = 1

2 + r
8 for each y ∈ SY \ {y∗(x)}.

We smoothen the expected payoffs so that far from SX×SY expected payoffs are 1
2 and the

Lipschitz condition (1) holds:

µ(x, y) , max
(x0, y0)∈SX×SY

max
(

1
2 , µ(x0, y0)−DX(x, x0)−DY(y, y0)

)
. (19)

Note that we obtain a distinct problem instance for each function y∗(·) : SX → SY. This
completes our construction.

5.2 Analysis

The useful properties of the above construction are summarized in the following lemma:

Lemma 8 Fix r ∈ (0, 1
2 ] and N ≤ Nr(P). Let I = IN,r and T0 = N r−2. Then:

(i) for each problem instance in I it holds that RUB
µ (T0) ≤ O(N/r)(log T0).

(ii) any contextual bandit algorithm has regret EI [R(T0)] ≥ Ω(N/r) for a problem
instance chosen uniformly at random from I.

For the lower bound in Lemma 8, the idea is that in T rounds each context in SX

contributes Ω(|SY|/r) to contextual regret, resulting in total contextual regret Ω(N/r).
Before we proceed to prove Lemma 8, let us use it to derive Theorem 7. Fix an arbitrary

time horizon T and a positive number R ≤ RUB(T ). Recall that since Nr(P) is non-
increasing in r, for some constant C > 0 it holds that

RUB(T ) = C × infr∈(0,1)

(
rT + 1

r Nr(P) log T
)
. (20)

Claim 9 Let r = R
2C T (1+log T ) . Then r ≤ 1

2 and Tr2 ≤ Nr(P).

Proof Denote k(r) = Nr(P) and consider function f(r) , k(r)/r2. This function is non-
increasing in r; f(1) = 1 and f(r) → ∞ for r → 0. Therefore there exists r0 ∈ (0, 1) such
that f(r0) ≤ T ≤ f(r0/2). Re-writing this, we obtain

k(r0) ≤ T r2
0 ≤ 4 k(r0/2).
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It follows that

R ≤ RUB(T ) ≤ C(Tr0 + 1
r0
k(r0) log T ) ≤ C Tr0(1 + log T ).

Thus r ≤ r0/2 and finally T r2 ≤ T r2
0/4 ≤ k(r0/2) ≤ k(r) = Nr(P).

So, Lemma 8 with r , R
2C T (1+log T ) and N , T r2. implies Theorem 7.

5.3 Proof of Lemma 8

Claim 10 Collection I consists of valid instances of contextual MAB problem with simi-
larity space (P,D).

Proof We need to prove that each problem instance in P satisfies the Lipschitz condi-
tion (1). Assume the Lipschitz condition (1) is violated for some points (x, y), (x′, y′) ∈
X × Y . For brevity, let p = (x, y), p′ = (x′, y′), and let us write µ(p) , µ(x, y). Then
|µ(p)− µ(p′)| > D(p, p′).

By (19), µ(·) ∈ [1
2 ,

1
2 + r

4 ], so D(p, p′) < r
4 .

Without loss of generality, µ(p) > µ(p′). In particular, µ(p) > 1
2 . Therefore there exists

p0 = (x0, y0) ∈ SX × SY such that D(p, p0) < r
4 . Then D(p′, p0) < r

2 by triangle inequality.
Now, for any other p′0 ∈ SX × SY it holds that D(p0, p

′
0) > r, and thus by triangle

inequality D(p, p′0) > 3r
4 and D(p′, p′0) > r

2 . It follows that (19) can be simplified as follows:{
µ(p) = max(1

2 , µ(p0)−D(p, p0)),

µ(p′) = max(1
2 , µ(p0)−D(p′, p0)).

Therefore

|µ(p)− µ(p′)| = µ(p)− µ(p′)

= (µ(p0)−D(p, p0))−max(1
2 , µ(p0)−D(p′, p0))

≤ (µ(p0)−D(p, p0))− (µ(p0)−D(p′, p0)))

= D(p′, p0)−D(p, p0) ≤ D(p, p′).

So we have obtained a contradiction.

Claim 11 For each instance in P and T0 = N r−2 it holds that RUB
µ (T0) ≤ O(N/r)(log T0).

Proof Recall that RUB
µ (T0) is the right-hand side of (5) with Nr = Nr(Pµ,r), where Pµ,r

is defined by (8).
Fix r′ > 0. It is easy to see that

Pµ, r′ ⊂ ∪p∈SX×SY
B(p, r4).

It follows that Nr′(Pµ,r′) ≤ N whenever r′ ≥ r
4 . Therefore, taking r0 = r

4 in (5), we obtain

RUB
µ (T0) ≤ O(rT0 + N

r log T0) = O(N/r)(log T0).
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Claim 12 Fix a contextual bandit algorithm A. This algorithm has regret EI [R(T0)] ≥
Ω(N/r) for a problem instance chosen uniformly at random from I, where T0 = N r−2.

Proof Let R(x, T ) be the contribution of each context x ∈ SX to contextual regret:

R(x, T ) =
∑
t:xt=x

µ∗(x)− µ(x, yt),

where yt is the arm chosen by the algorithm in round t. Our goal is to show that R(x, T0) ≥
Ω(r nY).

We will consider each context x ∈ SX separately: the rounds when x arrives form an
instance Ix of a context-free bandit problem that lasts for T0/nX = nY r

−2 rounds, where
expected payoffs are given by µ(x, ·) as defined in (19). Let Ix be the family of all such
instances Ix.

A uniform distribution over I can be reformulated as follows: for each x ∈ SX, pick the
“needle” y∗(x) independently and uniformly at random from SY. This induces a uniform
distribution over instances in Ix, for each context x ∈ SX. Informally, knowing full or
partial information about y∗(x) for some x reveals no information whatsoever about y∗(x′)
for any x′ 6= x.

Formally, the contextual bandit algorithm A induces a bandit algorithm Ax for Ix, for
each context x ∈ SX: the Ax simulates the problem instance for A for all contexts x′ 6= x
(starting from the “needles” y∗(x′) chosen independently and uniformly at random from
SY). Then Ax has expected regret Rx(T ) which satisfies E[R(T ) ] = E[R(x, T ) ], where
the expectations on both sides are over the randomness in the respective algorithm and the
random choice of the problem instance (resp., from Ix and from I).

Thus, it remains to handle each Ix separately: i.e., to prove that the expected regret
of any bandit algorithm on an instance drawn uniformly at random from Ix is at least
Ω(r nY). We use the KL-divergence technique that originated in Auer et al. (2002b). If
the set of arms were exactly SY, then the desired lower bound would follow from Auer
et al. (2002b) directly. To handle the problem instances in Ix, we use an extension of the
technique from Auer et al. (2002b), which is implicit in Kleinberg (2004) and encapsulated
as a stand-alone theorem in Kleinberg et al. (2013). We restate this theorem as Theorem 26
in Appendix A.

It is easy to check that the family Ix of problem instances satisfies the preconditions in
Theorem 26. Fix x ∈ SX. For a given choice of the “needle” y∗ = y∗(x) ∈ SY, let µ(x, y | y∗).
be the expected payoff of each arm y, and let νy∗(·) = µ(x, · | y∗) be the corresponding payoff
function for the bandit instance Ix. Then {νy∗}, y∗ ∈ SY is an “(ε, k)-ensemble” for ε = r

8
and k = |SY|.

6. Applications of Contextual Zooming

We describe several applications of contextual zooming: to MAB with slow adversarial
change (Section 6.1), to MAB with stochastically evolving payoffs (Section 6.2), and to
the “sleeping bandits” problem (Section 6.3). In particular, we recover some of the main
results in Slivkins and Upfal (2008) and Kleinberg et al. (2008a). Also, in Section 6.4 we
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discuss a recent application of contextual zooming to bandit learning-to-rank, which has
been published in Slivkins et al. (2013).

6.1 MAB with Slow Adversarial Change

Consider the (context-free) adversarial MAB problem in which expected payoffs of each
arm change over time gradually. Specifically, we assume that expected payoff of each arm
y changes by at most σy in each round, for some a-priori known volatilities σy. The algo-
rithm’s goal here is continuously adapt to the changing environment, rather than converge
to the best fixed mapping from contexts to arms. We call this setting the drifting MAB
problem.

Formally, our benchmark is a fictitious algorithm which in each round selects an arm
that maximizes expected payoff for the current context. The difference in expected payoff
between this benchmark and a given algorithm is called dynamic regret of this algorithm.
It is easy to see that the worst-case dynamic regret of any algorithm cannot be sublinear
in time.8 We are primarily interested in algorithm’s long-term performance, as quantified
by average dynamic regret R̂(T ) , R(T )/T . Our goal is to bound the limit limT→∞ R̂(T )
in terms of the parameters: the number of arms and the volatilities σy. (In general, such
upper bound is non-trivial as long as it is smaller than 1, since all payoffs are at most 1.)

We restate this setting as a contextual MAB problem with stochastic payoffs in which
the t-th context arrival is simply xt = t. Then µ(t, y) is the expected payoff of arm y at
time t, and dynamic regret coincides with contextual regret specialized to the case xt = t.
Each arm y satisfies a “temporal constraint”:

|µ(t, y)− µ(t′, y)| ≤ σy |t− t′| (21)

for some constant σy. To set up the corresponding similarity space (P,D), let P = [T ]×Y ,
and

D((t, y), (t′, y′)) = min(1, σy |t− t′|+ 1{y 6=y′}). (22)

Our solution for the drifting MAB problem is the contextual zooming algorithm parame-
terized by the similarity space (P,D). To obtain guarantees for the long-term performance,
we run contextual zooming with a suitably chosen time horizon T0, and restart it every
T0 rounds; we call this version contextual zooming with period T0. Periodically restarting
the algorithm is a simple way to prevent the change over time from becoming too large; it
suffices to obtain strong provable guarantees.

The general provable guarantees are provided by Theorem 1 and Theorem 6. Below we
work out some specific, tractable corollaries.

Corollary 13 Consider the drifting MAB problem with k arms and volatilities σy ≡ σ.
Contextual zooming with period T0 has average dynamic regret R̂(T ) = O(kσ log T0)1/3,
whenever T ≥ T0 ≥ ( k

σ2 )1/3 log k
σ .

8. For example, consider problem instances with two arms such that the payoff of each arm in each round is
either 1

2
or 1

2
+σ (and can change from round to round). Over this family of problem instances, dynamic

regret in T rounds is at least 1
2
σT .
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Proof It suffices to upper-bound regret in a single period. Indeed, if R(T0) ≤ R for any
problem instance, then R(T ) ≤ R dT/T0e for any T > T0. It follows that R̂(T ) ≤ 2 R̂(T0).
Therefore, from here on we can focus on analyzing contextual zooming itself, rather than
contextual zooming with a period.

The main step is to derive the regret bound (5) with a specific upper bound on Nr. We
will show that

dynamic regret R(·) satisfies (5) with Nr ≤ k dTσr e. (23)

Plugging Nr ≤ k (1 + Tσ
r ) into (5) and taking r0 = (kσ log T )1/3 we obtain9

R(T ) ≤ O(T )(kσ log T )1/3 +O(k
2

σ )1/3(log T ) ∀T ≥ 1.

Therefore, for any T ≥ ( k
σ2 )1/3 log k

σ we have R̂(T ) = O(kσ log T )1/3.

It remains to prove (23). We use a pessimistic version of Theorem 1: (5) with Nr =
Nr(P), the r-packing number of P. Fix r ∈ (0, 1]. For any r-packing S of P and each arm
y, each time interval I of duration ∆r , r/σ provides at most one point for S: there exists
at most one time t ∈ I such that (t, y) ∈ S. Since there are at most dT/∆re such intervals
I, it follows that Nr(P) ≤ k dT/∆re ≤ k (1 + T σ

r ).

The restriction σy ≡ σ is non-essential: it is not hard to obtain the same bound with
σ = 1

k

∑
y σy. Modifying the construction in Section 5 (details omitted from this version)

one can show that Corollary 13 is optimal up to O(log T ) factors.

Drifting MAB with spatial constraints. The temporal version (xt = t) of our contextual
MAB setting with stochastic payoffs subsumes the drifting MAB problem and furthermore
allows to combine the temporal constraints (21) described above (for each arm, across time)
with “spatial constraints” (for each time, across arms). To the best of our knowledge, such
MAB models are quite rare in the literature.10 A clean example is

D((t, y), (t′, y′)) = min(1, σ |t− t′|+DY(y, y′)), (24)

where (Y,DY) is the arms space. For this example, we can obtain an analog of Corollary 13,
where the regret bound depends on the covering dimension of the arms space (Y,DY).

Corollary 14 Consider the drifting MAB problem with spatial constraints (24), where σ
is the volatility. Let d be the covering dimension of the arms space, with multiplier k.

Contextual zooming with period T0 has average dynamic regret R̂(T ) = O(k σ log T0)
1
d+3 ,

whenever T ≥ T0 ≥ k
1
d+3 σ

−d+2
d+3 log k

σ .

Remark. We obtain Corollary 13 as a special case by setting d = 0.

9. This choice of r0 minimizes the inf expression in (5) up to constant factors by equating the two summands.
10. The only other MAB model with this flavor that we are aware of, found in Hazan and Kale (2009),

combines linear payoffs and bounded “total variation” (aggregate temporal change) of the cost functions.
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Proof It suffices to bound R̂(T0) for (non-periodic) contextual zooming. First we bound
the r-covering number of the similarity space (P,D):

Nr(P) = NX
r (X)×NY

r (Y ) ≤ dTσr e k r
−d,

where NX
r (·) is the r-covering number in the context space, and NY

r (·) is that in the arms
space. We worked out the former for Corollary 13. Plugging this into (5) and taking
r0 = (k σ log T )1/(3+d), we obtain

R(T ) ≤ O(T )(kσ log T )
1
d+3 +O

(
k

2
d+3 σ

d+1
d+3 log T

)
∀T ≥ 1.

The desired bound on R̂(T0) follows easily.

6.2 Bandits with Stochastically Evolving Payoffs

We consider a special case of drifting MAB problem in which expected payoffs of each arm
evolve over time according to a stochastic process with a uniform stationary distribution.
We obtain improved regret bounds for contextual zooming, taking advantage of the full
power of our analysis in Section 4.

In particular, we address a version in which the stochastic process is a random walk
with step ±σ. This version has been previously studied in Slivkins and Upfal (2008) under
the name “Dynamic MAB”. For the main case (σi ≡ σ), our regret bound for Dynamic
MAB matches that in Slivkins and Upfal (2008).

To improve the flow of the paper, the proofs are deferred to Appendix 7.

Uniform marginals. First we address the general version that we call drifting MAB with
uniform marginals. Formally, we assume that expected payoffs µ(·, y) of each arm y evolve
over time according to some stochastic process Γy that satisfies (21). We assume that the
processes Γy, y ∈ Y are mutually independent, and moreover that the marginal distributions
µ(t, y) are uniform on [0, 1], for each time t and each arm y.11 We are interested in EΓ[R̂(T )],
average dynamic regret in expectation over the processes Γy.

We obtain a stronger version of (23) via Theorem 6. To use this theorem, we need to
bound the adjusted r-zooming number, call it Nr. We show that

EΓ[Nr] = O(kr)dTσr e and
(
r < σ1/3 ⇒ Nr = 0

)
. (25)

Then we obtain a different bound on dynamic regret, which is stronger than Corollary 13
for k < σ−1/2.

Corollary 15 Consider drifting MAB with uniform marginals, with k arms and volatilities
σy ≡ σ. Contextual zooming with period T0 satisfies EΓ[R̂(T )] = O(k σ2/3 log T0), whenever
T ≥ T0 ≥ σ−2/3 log 1

σ .

11. For example, this assumption is satisfied by any Markov Chain on [0, 1] with stationary initial distribu-
tion.
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The crux of the proof is to show (25). Interestingly, it involves using all three opti-

mizations in Theorem 6: Nr(Pµ,r), Nr(Pµ,r \ Wµ,r) and Nadj
r (·), whereas any two of them

do not seem to suffice. The rest is a straightforward computation similar to the one in
Corollary 13.

Dynamic MAB. Let us consider the Dynamic MAB problem from Slivkins and Upfal (2008).
Here for each arm y the stochastic process Γy is a random walk with step ±σy. To ensure
that the random walk stays within the interval [0, 1], we assume reflecting boundaries.
Formally, we assume that 1/σy ∈ N, and once a boundary is reached, the next step is
deterministically in the opposite direction.12

According to a well-known fact about random walks,13

Pr
[
|µ(t, y)− µ(t′, y)| ≤ O(σy |t− t′|1/2 log T0)

]
≥ 1− T−3

0 if |t− t′| ≤ T0. (26)

We use contextual zooming with period T0, but we parameterize it by a different similarity
space (P,DT0) that we define according to (26). Namely, we set

DT0((t, y), (t′, y′)) = min(1, σy |t− t′|1/2 log T0 + 1{y 6=y′}). (27)

The following corollary is proved using the same technique as Corollary 15:

Corollary 16 Consider the Dynamic MAB problem with k arms and volatilities σy ≡ σ.
Let ALGT0 denote the contextual zooming algorithm with period T0 which is parameterized
by the similarity space (P,DT0). Then ALGT0 satisfies EΓ[R̂(T )] = O(k σ log2 T0), whenever
T ≥ T0 ≥ 1

σ log 1
σ .

6.3 Sleeping Bandits

The sleeping bandits problem Kleinberg et al. (2008a) is an extension of MAB where in each
round some arms can be “asleep”, i.e., not available in this round. One of the main results
in Kleinberg et al. (2008a) is on sleeping bandits with stochastic payoffs. We recover this
result using contextual zooming.

We model sleeping bandits as contextual MAB problem where each context arrival xt
corresponds to the set of arms that are “awake” in this round. More precisely, for every
subset S ⊂ Y of arms there is a distinct context xS , and P = {(xS , y) : y ∈ S ⊂ Y }. is
the set of feasible context-arm pairs. The similarity distance is simply D((x, y), (x′, y′)) =
1{y 6=y′}. Note that the Lipschitz condition (1) is satisfied.

For this setting, contextual zooming essentially reduces to the “highest awake index”
algorithm in Kleinberg et al. (2008a). In fact, we can re-derive the result Kleinberg et al.
(2008a) on sleeping MAB with stochastic payoffs as an easy corollary of Theorem 1.

Corollary 17 Consider the sleeping MAB problem with stochastic payoffs. Order the arms
so that their expected payoffs are µ1 ≤ µ2 ≤ . . . ≤ µn, where n is the number of arms. Let
∆i = µi+1 − µi. Then

R(T ) ≤ inf
r>0

rT +
∑

i: ∆i>r

O(log T )

∆i

 .

12. Slivkins and Upfal (2008) has a slightly more general setup which does not require 1/σy ∈ N.
13. For example, this follows as a simple application of Azuma-Hoeffding inequality.
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Proof The r-zooming number Nr(Pµ,r) is equal to the number of distinct arms in Pµ,r,
i.e., the number of arms i ∈ Y such that ∆(x, i) ≤ 12r for some context x. Note that for a
given arm i, the quantity ∆(x, i) is minimized when the set of awake arms is S = {i, i+ 1}.
Therefore, Nr(Pµ,r) is equal to the number of arms i ∈ Y such that ∆i ≤ 12r. It follows
that

Nr>r0(Pµ,r) =
∑n

i=1 1{∆i≤12r}.∑
r>r0

1
rNr>r0(Pµ,r) =

∑
r>r0

∑n
i=1

1
r 1{∆i≤12r}

=
∑n

i=1

∑
r>r0

1
r 1{∆i≤12r}

=
∑

i: ∆i>r0
O( 1

∆i
).

R(T ) ≤ inf
r0>0

(
r0 T +O(log T )

∑
r>r0

1
rNr(Pµ,r)

)
≤ inf

r0>0

(
r0 T +O(log T )

∑
i: ∆i>r0

O( 1
∆i

)
)
,

as required. (In the above equations,
∑

r>r0
denotes the sum over all r = 2−j > r0 such

that j ∈ N.)

Moreover, the contextual MAB problem extends the sleeping bandits setting by incorpo-
rating similarity information on arms. The contextual zooming algorithm (and its analysis)
applies, and is geared to exploit this additional similarity information.

6.4 Bandit Learning-to-Rank

Following a preliminary publication of this paper on arxiv.org, contextual zooming has
been applied in Slivkins et al. (2013) to bandit learning-to-rank. Interestingly, the “con-
texts” studied in Slivkins et al. (2013) are very different from what we considered so far.

The basic setting, motivated by web search, was introduced in Radlinski et al. (2008).
In each round a new user arrives. The algorithm selects a ranked list of k documents and
presents it to the user who clicks on at most one document, namely on the first document
that (s)he finds relevant. A user is specified by a binary vector over documents. The goal
is to minimize abandonment : the number of rounds with no clicks.

Slivkins et al. (2013) study an extension in which metric similarity information is avail-
able. They consider a version with stochastic payoffs: in each round, the user vector is
an independent sample from a fixed distribution, and assume a Lipschitz-style condition
that connects expected clicks with the metric space. They run a separate bandit algo-
rithm (e.g., contextual zooming) for each of the k “slots” in the ranking. Without loss of
generality, in each round the documents are selected sequentially, in the top-down order.
Since a document in slot i is clicked in a given round only if all higher ranked documents
are not relevant, they treat the set of documents in the higher slots as a context for the
i-th algorithm. The Lipschitz-style condition on expected clicks suffices to guarantee the
corresponding Lipschitz-style condition on contexts.
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7. Bandits with Stochastically Evolving Payoffs: Missing Proofs

We prove Corollary 15 and Corollary 16 which address the performance of contextual zoom-
ing for the stochastically evolving payoffs. In each corollary we bound from above the av-
erage dynamic regret R̂(T ) of contextual zooming with period T0, for any T ≥ T0. Since
R̂(T ) ≤ 2R̂(T0), it suffices to bound R̂(T0), which is the same as R̂(T0) for (non-periodic)
contextual zooming. Therefore, we can focus on analyzing the non-periodic algorithm.

We start with two simple auxiliary claims.

Claim 18 Consider the contextual MAB problem with a product similarity space. Let
∆(x, y) , µ∗(x)− µ(x, y) be the “badness” of point (x, y) in the similarity space. Then

|∆(x, y)−∆(x′, y)| ≤ 2DX(x, x′) ∀x, x′ ∈ X, y ∈ Y. (28)

Proof First we show that the benchmark payoff µ(·) satisfies a Lipschitz condition:

|µ∗(x)− µ∗(x′)| ≤ DX(x, x′) ∀x, x′ ∈ X. (29)

Indeed, it holds that µ∗(x) = µ(x, y) and µ∗(x′) = µ(x, y′) for some arms y, y′ ∈ Y . Then

µ∗(x) = µ(x, y) ≥ µ(x, y′) ≥ µ(x′, y′)−DX(x, x′) = µ∗(x′)−DX(x, x′),

and likewise for the other direction. Now,

|∆(x, y)−∆(x′, y)| ≤ |µ∗(x)− µ∗(x′)|+ |µ(x, y)− µ(x′, y)| ≤ 2DX(x, x′).

Claim 19 Let Z1, . . . , Zk be independent random variables distributed uniformly at random
on [0, 1]. Let Z∗ = maxi Zi. Fix r > 0 and let S = {i : Z∗ > Zi ≥ Z∗ − r}. Then
E[ |S| ] = kr.

This is a textbook result; we provide a proof for the sake of completeness.
Proof Conditional on Z∗, it holds that

E[ |S| ] = E
[∑

i1{Zi∈S}
]

= k Pr[Zi ∈ S]

= k Pr[Zi ∈ S |Zi < Z∗]× Pr[Zi < Z∗]

= k r
Z∗

k−1
k = (k − 1)r/Z∗.

Integrating over Z∗, and letting F (z) , Pr[Z∗ ≤ z] = zk, we obtain that

E[ 1
Z∗ ] =

∫ 1
0

1
z F
′(z)dz = k

k−1

E[ |S| ] = (k − 1)r E[ 1
Z∗ ] = kr.
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Proof of Corollary 15 It suffices to bound R̂(T0) for (non-periodic) contextual zooming.
Let DX(t, t′) , σ|t− t′| be the context distance implicit in the temporal constraint (21).

For each r > 0, pick a number Tr such that DX(t, t′) ≤ r ⇐⇒ |t−t′| ≤ Tr. Clearly, Tr , r
σ .

The crux is to bound the adjusted r-zooming number, call it Nr, namely to show (25).
For the sake of convenience, let us restate it here (and let us use the notation Tr):

EΓ[Nr] = O(kr)d TTr e and
(
Tr < 1/r2 ⇒ Nr = 0

)
. (30)

Recall that Nr = Nadj(Pµ,r\Wµ,r), whereWµ,r is the set of all r-winners (see Section 4.4
for the definition). Fix r ∈ (0, 1] and let S be some r-packing of Pµ,r \ Wµ,r. Partition
the time into d TTr e intervals of duration Tr. Fix one such interval I. Let SI , {(t, y) ∈
S : t ∈ I}, the set of points in S that correspond to times in I. Recall the notation
∆(x, y) , µ∗(x)− µ(x, y) and let

YI , {y ∈ Y : ∆(tI , y) ≤ 14 r}, where tI , min(I). (31)

All quantities in (31) refer to a fixed time tI , which will allow us to use the uniform marginals
property.

Note that YI contains at least one arm, namely the best arm y∗(tI). We claim that

|SI | ≤ 2 |YI \ {y∗(tI)}|. (32)

Fix arm y. First, DX(t, t′) ≤ r for any t, t′ ∈ I, so there exists at most one t ∈ I such that
(t, y) ∈ S. Second, suppose such t exists. Since S ⊂ Pµ,r, it follows that ∆(t, y) ≤ 12 r. By
Claim 18 it holds that

∆(tI , y) ≤ ∆(t, y) + 2DX(t, t′) ≤ 14 r.

So y ∈ YI . It follows that |SI | ≤ |YI |.
To obtain (32), we show that SI = 0 whenever |YI | = 1. Indeed, suppose YI = {y} is

a singleton set, and |SI | > 0. Then SI = {(t, y)} for some t ∈ I. We will show that (t, y)
is an r-winner, contradicting the definition of S. For any arm y′ 6= y and any time t′ such
that DX(t, t′) ≤ 2r it holds that

µ(tI , y) = µ∗(tI) > µ(tI , y
′) + 14r

µ(t′, y) ≥ µ(tI , y)−DX(t′, tI) ≥ µ(tI , y)− 3r

> µ(tI , y
′) + 11r

≥ µ(t′, y′)−DX(t′, tI) + 11r

≥ µ(t′, y′) + 8r.

and so µ(t′, y) = µ∗(t′). Thus, (t, y) is an r-winner as claimed. This completes the proof
of (32).

Now using (32) and Claim 19 we obtain that

EΓ[ |SI | ] ≤ 2EΓ[ |YI \ {y∗(tI)}| ] ≤ O(kr)

EΓ[ |S| ] ≤ d TTr e E[ |SI | ] ≤ O(kr) d TTr e.
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Taking the max over all possible S, we obtain EΓ[Pµ,r \ Wµ,r] ≤ O(kr) d TTr e. To complete

the proof of (30), we note that S cannot be r-consistent unless |I| ≥ 1/r2.
Now that we have (30), the rest is a simple computation. We use Theorem 6, namely

we take (5) with r0 → 0, plug in (30), and recall that Tr ≥ 1/r2 ⇐⇒ r ≥ σ1/3.

R(T ) ≤
∑

r=2i≥σ1/3
1
r Nr O(log T )

EΓ[R(T )] ≤
∑

r=2i≥σ1/3 O(k log T )(Tσr + 1)

≤ O(k log T )(Tσ2/3 + log 1
σ ).

It follows that EΓ[R̂(T )] ≤ O(k σ2/3 log T ) for any T ≥ σ−2/3 log 1
σ .

Proof of Corollary 16 It suffices to bound R̂(T0) for (non-periodic) contextual zooming.
Recall that expected payoffs satisfy the temporal constraint (26). Consider the high-

probability event that

|µ(t, y)− µ(t′, y)| ≤ σ |t− t′|1/2 log T0 ∀t, t′ ∈ [1, T0], y ∈ Y. (33)

Since expected regret due to the failure of (33) is negligible, from here on we will assume
that (33) holds deterministically.

Let DX(t, t′) , σ |t− t′|1/2 log T0 be the distance on contexts implicit in (33). For each
r > 0, define Tr , ( r

σ log T0
)2. Then (30) follows exactly as in the proof of Corollary 15.

We use Theorem 6 similarly: we take (5) with r0 → 0, plug in (30), and note that Tr ≥
1/r2 ⇐⇒ r ≥ (σ log T0)1/2. We obtain

EΓ[R(T0)] ≤
∑

r=2i≥(σ log T0)1/2

O(k log T0)(T0Tr + 1)

≤ O(k log2 T0)(T0 σ + log 1
σ ).

It follows that EΓ[R̂(T )] ≤ O(k σ log2 T0) as long as T0 ≥ 1
σ log 1

σ .

8. Contextual Bandits with Adversarial Payoffs

In this section we consider the adversarial setting. We provide an algorithm which maintains
an adaptive partition of the context space and thus takes advantage of “benign” context
arrivals. It is in fact a meta-algorithm: given a bandit algorithm Bandit, we present a
contextual bandit algorithm, called ContextualBandit, which calls Bandit as a subroutine.

8.1 Our Setting

Recall that in each round t, the context xt ∈ X is revealed, then the algorithm picks an
arm yt ∈ Y and observes the payoff πt ∈ [0, 1]. Here X is the context set, and Y is the arms
set. In this section, all context-arms pairs are feasible: P = X × Y .

Adversarial payoffs are defined as follows. For each round t, there is a payoff function
π̂t : X×Y → [0, 1] such that πt = π̂t(xt, yt). The payoff function π̂t is sampled independently
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from a time-specific distribution Πt over payoff functions. Distributions Πt are fixed by the
adversary in advance, before the first round, and not revealed to the algorithm. Denote
µt(x, y) , E[Πt(x, y)].

Following Hazan and Megiddo (2007), we generalize the notion of regret for context-free
adversarial MAB to contextual MAB. The context-specific best arm is

y∗(x) ∈ argmaxy∈Y
∑T

t=1 µt(x, y), (34)

where the ties are broken in an arbitrary but fixed way. We define adversarial contextual
regret as

R(T ) ,
∑T

t=1 µt(xt, yt)− µ∗t (xt), where µ∗t (x) , µt(x, y
∗(x)). (35)

Similarity information is given to an algorithm as a pair of metric spaces: a metric
space (X,DX) on contexts (the context space) and a metric space (Y,DY) on arms (the
arms space), which form the product similarity space (X × Y,DX +DY). We assume that
for each round t functions µt and µ∗t are Lipschitz on (X × Y,DX + DY) and (X,DX),
respectively, both with Lipschitz constant 1 (see Footnote 1). We assume that the context
space is compact, in order to ensure that the max in (34) is attained by some y ∈ Y .
Without loss of generality, diameter(X,DX) ≤ 1.

Formally, a problem instance consists of metric spaces (X,DX) and (Y,DY), the sequence
of context arrivals (denoted x(1..T )), and a sequence of distributions (Πt)t≤T . Note that for
a fixed distribution Πt = Π, this setting reduces to the stochastic setting, as defined in
Introduction. For the fixed context case (xt = x for all t) this setting reduces to the
(context-free) MAB problem with a randomized oblivious adversary.

8.2 Our Results

Our algorithm is parameterized by a regret guarantee for Bandit for the fixed context case,
namely an upper bound on the convergence time.14 For a more concrete theorem statement
we will assume that the convergence time of Bandit is at most T0(r) , cY r

−(2+dY) log(1
r )

for some constants cY and dY that are known to the algorithm. In particular, an algorithm
in Kleinberg (2004) achieves this guarantee if dY is the c-covering dimension of the arms
space and cY = O(c2+dY).

This is a flexible formulation that can leverage prior work on adversarial bandits. For
instance, if Y ⊂ Rd and for each fixed context x ∈ X distributions Πt randomize over
linear functions π̂t(x, ·) : Y → R, then one could take Bandit from the line of work on
adversarial bandits with linear payoffs. In particular, there exist algorithms with dY = 0
and cY = poly(d) (Dani et al., 2007; Abernethy et al., 2008; Bubeck et al., 2012). Likewise,
for convex payoffs there exist algorithms with dY = 2 and cY = O(d) (Flaxman et al., 2005).
For a bounded number of arms, algorithm exp3 (Auer et al., 2002b) achieves dY = 0 and
cY = O(

√
|Y |).

From here on, the context space (X,DX) will be only metric space considered; balls and
other notions will refer to the context space only.

14. The r-convergence time T0(r) is the smallest T0 such that regret is R(T ) ≤ rT for each T ≥ T0.
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To quantify the “goodness” of context arrivals, our guarantees are in terms of the cover-
ing dimension of x(1..T ) rather than that of the entire context space. (This is the improve-
ment over the guarantee (3) for the uniform algorithm.) In fact, use a more refined notion
which allows to disregard a limited number of “outliers” in x(1..T ).

Definition 20 Given a metric space and a multi-set S, the (r, k)-covering number of S is
the r-covering number of the set {x ∈ S : |B(x, r) ∩ S| ≥ k}.15 Given a constant c and
a function k : (0, 1) → N, the relaxed covering dimension of S with slack k(·) is the
smallest d > 0 such that the (r, k(r))-covering number of S is at most c r−d for all r > 0.

Our result is stated as follows:

Theorem 21 Consider the contextual MAB problem with adversarial payoffs, and let Bandit
be a bandit algorithm. Assume that the problem instance belongs to some class of prob-
lem instances such that for the fixed-context case, convergence time of Bandit is at most
T0(r) , cY r

−(2+dY) log(1
r ) for some constants cY and dY that are known to the algorithm.

Then ContextualBandit achieves adversarial contextual regret R(·) such that for any time
T and any constant cX > 0 it holds that

R(T ) ≤ O(c2
dbl (cX cY)1/(2+dX+dY)) T 1−1/(2+dX+dY)(log T ), (36)

where dX is the relaxed covering dimension of x(1..T ) with multiplier cX and slack T0(·), and
cdbl is the doubling constant of x(1..T ).

Remarks. For a version of (36) that is stated in terms of the “raw” (r, kr)-covering numbers
of x(1..T ), see (38) in the analysis (page 2563).

8.3 Our Algorithm

The contextual bandit algorithm ContextualBandit is parameterized by a (context-free)
bandit algorithm Bandit, which it uses as a subroutine, and a function T0(·) : (0, 1)→ N.

The algorithm maintains a finite collection A of balls, called active balls. Initially there
is one active ball of radius 1. Ball B stays active once it is activated. Then a fresh instance
ALGB of Bandit is created, whose set of “arms” is Y . ALGB can be parameterized by the
time horizon T0(r), where r is the radius of B.

The algorithm proceeds as follows. In each round t the algorithm selects one active ball
B ∈ A such that xt ∈ B, calls ALGB to select an arm y ∈ Y to be played, and reports the
payoff πt back to ALGB. A given ball can be selected at most T0(r) times, after which it is
called full. B is called relevant in round t if it contains xt and is not full. The algorithm
selects a relevant ball (breaking ties arbitrarily) if such ball exists. Otherwise, a new ball
B′ is activated and selected. Specifically, let B be the smallest-radius active ball containing
xt. Then B′ = B(xt,

r
2), where r is the radius of B. B is then called the parent of B′. See

Algorithm 2 for the pseudocode.

15. By abuse of notation, here |B(x, r)∩ S| denotes the number of points x ∈ S, with multiplicities, that lie
in B(x, r).
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Algorithm 2 Algorithm ContextualBandit.

1: Input:
2: Context space (X,DX) of diameter ≤ 1, set Y of arms.
3: Bandit algorithm Bandit and a function T0(·) : (0, 1)→ N.
4: Data structures:
5: A collection A of “active balls” in (X,DX).
6: ∀B ∈ A: counter nB, instance ALGB of Bandit on arms Y .
7: Initialization: B ← B(x, 1); // center x ∈ X is arbitrary
8: A ← {B}; nB ← 0; initiate ALGB.
9: A∗ ← A // active balls that are not full

10: Main loop: for each round t
11: Input context xt.
12: relevant← {B ∈ A∗ : xt ∈ B}.
13: if relevant 6= ∅ then
14: B ← any B ∈ relevant.
15: else // activate a new ball:
16: r ← minB∈A: xt∈B rB.
17: B ← B(xt, r/2). // new ball to be added
18: A ← A∪ {B}; A∗ ← A∗ ∪ {B}; nB ← 0; initiate ALGB.
19: y ← next arm selected by ALGB.
20: Play arm y, observe payoff π, report π to ALGB.
21: nB ← nB + 1.
22: if nB = T0(radius(B)) then A∗ ← A∗ \ {B}. // ball B is full

8.4 Analysis: Proof of Theorem 21

First let us argue that algorithm ContextualBandit is well-defined. Specifically, we need to
show that after the activation rule is called, there exists an active non-full ball containing
xt. Suppose not. Then the ball B′ = B(xt,

r
2) activated by the activation rule must be

full. In particular, B′ must have been active before the activation rule was called, which
contradicts the minimality in the choice of r. Claim proved.

We continue by listing several basic claims about the algorithm.

Claim 22 The algorithm satisfies the following basic properties:
(a) (Correctness) In each round t, exactly one active ball is selected.
(b) Each active ball of radius r is selected at most T0(r) times.
(c) (Separation) For any two active balls B(x, r) and B(x′, r) we have DX(x, x′) > r.
(d) Each active ball has at most c2

dbl children, where cdbl is the doubling constant of
x(1..T ).

Proof Part (a) is immediate from the algorithm’s specification. For (b), simply note that
by the algorithms’ specification a ball is selected only when it is not full.

To prove (c), suppose that DX(x, x′) ≤ r and suppose B(x′, r) is activated in some round
t while B(x, r) is active. Then B(x′, r) was activated as a child of some ball B∗ of radius 2r.
On the other hand, x′ = xt ∈ B(x, r), so B(x, r) must have been full in round t (else no ball
would have been activated), and consequently the radius of B∗ is at most r. Contradiction.
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For (d), consider the children of a given active ball B(x, r). Note that by the activa-
tion rule the centers of these children are points in x(1..T ) ∩ B(x, r), and by the separation
property any two of these points lie within distance > r

2 from one another. By the doubling
property, there can be at most c2

dbl such points.

Let us fix the time horizon T , and letR(T ) denote the contextual regret of ContextualBandit.
Partition R(T ) into the contributions of active balls as follows. Let B be the set of all balls
that are active after round T . For each B ∈ B, let SB be the set of all rounds t when B has
been selected. Then

R(T ) =
∑

B∈B RB(T ), where RB(T ) ,
∑

t∈SB
µ∗t (xt)− µt(xt, yt).

Claim 23 For each ball B = B(x, r) ∈ B, we have RB ≤ 3 r T0(r).

Proof By the Lipschitz conditions on µt and µ∗t , for each round t ∈ SB it is the case that

µ∗t (xt) ≤ r + µ∗t (x) = r + µt(x, y
∗(x)) ≤ 2rn+ µt(xt, y

∗(x)).

The t-round regret of Bandit is at most R0(t) , t T−1
0 (t). Therefore, letting n = |SB| be

the number of times algorithm ALGB has been invoked, we have that

R0(n) +
∑

t∈SB
µt(xt, yt) ≥

∑
t∈SB

µt(xt, y
∗(x)) ≥

∑
t∈SB

µ∗t (xt)− 2rn.

Therefore RB(T ) ≤ R0(n) + 2rn. Recall that by Claim 22(b) we have n ≤ T0(r). Thus,
by definition of convergence time R0(n) ≤ R0(T0(r)) ≤ r T0(r), and therefore RB(T ) ≤
3 r T0(r).

Let Fr be the collection of all full balls of radius r. Let us bound |Fr| in terms the
(r, k)-covering number of x(1..T ) in the context space, which we denote N(r, k).

Claim 24 There are at most N(r, T0(r)) full balls of radius r.

Proof Fix r and let k = T0(r). Let us say that a point x ∈ x(1..T ) is heavy if B(x, r)
contains at least k points of x(1..T ), counting multiplicities. Clearly, B(x, r) is full only
if its center is heavy. By definition of the (r, k)-covering number, there exists a family S
of N(r, k) sets of diameter ≤ r that cover all heavy points in x(1..T ). For each full ball
B = B(x, r), let SB be some set in S that contains x. By Claim 22(c), the sets SB, B ∈ Fr
are all distinct. Thus, |Fr| ≤ |S| ≤ N(r, k).

Let Br be the set of all balls of radius r that are active after round T . By the algorithm’s
specification, each ball in Fr has been selected T0(r) times, so |Fr| ≤ T/T0(r). Then using
Claim 22(b) and Claim 24, we have

|Br/2| ≤ c2
dbl |Fr| ≤ c2

dbl min(T/T0(r), N(r, T0(r)))∑
B∈Br/2RB ≤ O(r)T0(r) |Br/2| ≤ O(c2

dbl) min(rT, r T0(r)N(r, T0(r))). (37)
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Trivially, for any full ball of radius r we have T0(r) ≤ T . Thus, summing (37) over all such
r, we obtain

R(T ) ≤ O(c2
dbl)

∑
r=2−i: i∈N and T0(r)≤T min(rT, r T0(r)N(r, T0(r))). (38)

Note that (38) makes no assumptions on N(r, T0(r)). Now, plugging in T0(r) = cY r
−(2+dY)

and N(r, T0(r)) ≤ cX r
−dX into (38) and optimizing it for r it is easy to derive the desired

bound (36).

9. Conclusions

We consider a general setting for contextual bandit problems where the algorithm is given
information on similarity between the context-arm pairs. The similarity information is
modeled as a metric space with respect to which expected payoffs are Lipschitz-continuous.
Our key contribution is an algorithm which maintains a partition of the metric space and
adaptively refines this partition over time. Due to this “adaptive partition” technique,
one can take advantage of “benign” problem instances without sacrificing the worst-case
performance; here “benign-ness” refers to both expected payoffs and context arrivals. We
essentially resolve the setting where expected payoff from every given context-arm pair either
does not change over time, or changes slowly. In particular, we obtain nearly matching
lower bounds (for time-invariant expected payoffs and for an important special case of slow
change).

We also consider the setting of adversarial payoffs. For this setting, we design a dif-
ferent algorithm that maintains a partition of contexts and adaptively refines it so as to
take advantage of “benign” context arrivals (but not “benign” expected payoffs), without
sacrificing the worst-case performance. Our algorithm can work with, essentially, any given
off-the-shelf algorithm for standard (non-contextual) bandits, the choice of which can then
be tailored to the setting at hand.

The main open questions concern relaxing the requirements on the quality of similarity
information that are needed for the provable guarantees. First, it would be desirable to
obtain similar results under weaker versions of the Lipschitz condition. Prior work (Klein-
berg et al., 2008b; Bubeck et al., 2011a) obtained several such results for the non-contextual
version of the problem, mainly because their main results do not require the full power of
the Lipschitz condition. However, the analysis in this paper appears to make a heavier use
of the Lipschitz condition; it is not clear whether a meaningful relaxation would suffice.
Second, in some settings the available similarity information might not include any numeric
upper bounds on the difference in expected payoffs; e.g., it could be given as a tree-based
taxonomy on context-arm pairs, without any explicit numbers. Yet, one wants to recover
the same provable guarantees as if the numerical information were explicitly given. For the
non-contextual version, this direction has been explored in (Bubeck et al., 2011b; Slivkins,
2011).16

Another open question concerns our results for adversarial payoffs. Here it is desirable
to extend our “adaptive partitions” technique to also take advantage of “benign” expected

16. (Bubeck et al., 2011b; Slivkins, 2011) have been published after the preliminary publication of this paper
on arxiv.org.
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payoffs (in addition to “benign” context arrivals). However, to the best of our knowledge
such results are not even known for the non-contextual version of the problem.
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Appendix A. The KL-divergence Technique, Encapsulated

To analyze the lower-bounding construction in Section 5, we use an extension of the KL-
divergence technique from Auer et al. (2002b), which is implicit in Kleinberg (2004) and
encapsulated as a stand-alone theorem in Kleinberg et al. (2013). To make the paper
self-contained, we state the theorem from Kleinberg et al. (2013), along with the relevant
definitions. The remainder of this section is copied from Kleinberg et al. (2013), with minor
modifications.

Consider a very general MAB setting where the algorithm is given a strategy set X and
a collection F of feasible payoff functions; we call it the feasible MAB problem on (X,F).
For example, F can consist of all functions µ : X → [0, 1] that are Lipschitz with respect
to a given metric space. The lower bound relies on the existence of a collection of subsets
of F with certain properties, as defined below. These subsets correspond to children of a
given tree node in the ball-tree

Definition 25 Let X be the strategy set and F be the set of all feasible payoff functions.
An (ε, k)-ensemble is a collection of subsets F1 , . . . ,Fk ⊂ F such that there exist mutually
disjoint subsets S1 , . . . , Sk ⊂ X and a number µ0 ∈ [1

3 ,
2
3 ] which satisfy the following. Let

S = ∪ki=1Si. Then

• on X \ S, any two functions in ∪iFi coincide, and are bounded from above by µ0.
• for each i and each function µ ∈ Fi it holds that µ = µ0 on S \ Si and sup(µi, Si) =
µ0 + ε.

Assume the payoff function µ lies in ∪iFi. The idea is that an algorithm needs to play
arms in Si for at least Ω(ε−2) rounds in order to determine whether µ ∈ Fi, and each such
step incurs ε regret if µ 6∈ Fi. In our application, subsets S1 , . . . , Sk correspond to children
u1 , . . . , uk of a given tree node in the ball-tree, and each Fi consists of payoff functions
induced by the ends in the subtree rooted at ui.

Theorem 26 (Theorem 5.6 in Kleinberg et al. (2013)) Consider the feasible MAB
problem with 0-1 payoffs. Let F1, . . . ,Fk be an (ε, k)-ensemble, where k ≥ 2 and ε ∈ (0, 1

12).
Then for any t ≤ 1

32 k ε
−2 and any bandit algorithm there exist at least k/2 distinct i’s such

that the regret of this algorithm on any payoff function from Fi is at least 1
60 εt.
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In Auer et al. (2002b), the authors analyzed a special case of an (ε, k)-ensemble in
which there are k arms u1 , . . . , uk, and each Fi consists of a single payoff function that
assigns expected payoff 1

2 + ε to arm ui, and 1
2 to all other arms.
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Abstract

The problem of learning classifier cascades is considered. A new cascade boosting algorithm,
fast cascade boosting (FCBoost), is proposed. FCBoost is shown to have a number of
interesting properties, namely that it 1) minimizes a Lagrangian risk that jointly accounts
for classification accuracy and speed, 2) generalizes adaboost, 3) can be made cost-sensitive
to support the design of high detection rate cascades, and 4) is compatible with many
predictor structures suitable for sequential decision making. It is shown that a rich family
of such structures can be derived recursively from cascade predictors of two stages, denoted
cascade generators. Generators are then proposed for two new cascade families, last-stage
and multiplicative cascades, that generalize the two most popular cascade architectures in
the literature. The concept of neutral predictors is finally introduced, enabling FCBoost
to automatically determine the cascade configuration, i.e., number of stages and number
of weak learners per stage, for the learned cascades. Experiments on face and pedestrian
detection show that the resulting cascades outperform current state-of-the-art methods in
both detection accuracy and speed.

Keywords: complexity-constrained learning, detector cascades, sequential decision-making,
boosting, ensemble methods, cost-sensitive learning, real-time object detection

1. Introduction

There are many applications where a classifier must be designed under computational con-
straints. A prime example is object detection, in computer vision, where a classifier must
process hundreds of thousands of sub-windows per image, extracted from all possible im-
age locations and scales, at a rate of several images per second. One possibility to deal
with this problem is to adopt sophisticated search strategies, such as branch-and-bound
or divide-and-conquer, to reduce the number of sub-windows to classify (Lampert et al.,
2009; Vijayanarasimhan and Grauman, 2011; Lampert, 2010). While these methods are
compatible with popular classification architectures, e.g., the combination of a support vec-
tor machine (SVM) and the bag-of-words image representation, they do not speed up the
classifier itself. An alternative solution is to examine all sub-windows but adapt the com-
plexity of the classifier to the difficulty of their classification. This strategy has been the
focus of substantial attention since the introduction of the detector cascade architecture
(Viola and Jones, 2001). As illustrated in Figure 1 a) this architecture is implemented as
a sequence of binary classifiers h1(x), . . . hm(x), known as the cascade stages. These stages
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Figure 1: (a) detector cascade and (b) examples of weak learners used for face detection
(Viola and Jones, 2001).

have increasing complexity, ranging from a few machine operations for h1(x) to extensive
computation for hm(x). An example x is declared a target by the cascade if and only if
it is declared a target by all its stages. Since the overwhelming majority of sub-windows
in an image do not contain the target object, a very large portion of the image is usually
rejected by the early cascade stages. This makes the average detection complexity quite
low. However, because the later stages can be arbitrarily complex, the cascade can have
very good classification accuracy. This was convincingly demonstrated by using the cascade
architecture to design the first real-time face detector with state-of-the-art classification ac-
curacy (Viola and Jones, 2001). This detector has since found remarkable practical success,
and is today popular in applications of face detection involving low-complexity processors,
such as digital cameras or cell phones.

In the method of Viola and Jones (2001), cascade stages are designed sequentially, by
simply training each detector on the examples rejected by its predecessors. Each stage is
designed by boosting decision stumps that operate on a space of Haar wavelet features, such
as those shown in Figure 1-b). Hence, each stage is a linear combination of weak learners,
each consisting of a Haar wavelet and a threshold. This has two appealing properties.
First, because it is possible to evaluate each Haar wavelet with a few machine operations,
cascade stages can be very efficient. Second, it is possible to control the complexity of each
stage by controlling its number of weak learners. However, while fast and accurate, this
detector is not optimal under any sensible definition of cascade optimality. For example, it
does not address the problems of 1) how to automatically determine the optimal cascade
configuration, e.g., the numbers of cascade stages and weak learners per stage, 2) how to
design individual stages so as to guarantee optimality of the cascade as a whole, or 3) how to
factor detection speed as an explicit variable of the optimization process. These limitations
have motivated many enhancements to the various components of cascade design, including
1) new features (Lienhart and Maydt, 2002; Dalal and Triggs, 2005; Pham et al., 2010; Dollár
et al., 2009), 2) faster feature selection procedures (Wu et al., 2008; Pham and Cham, 2007),
3) post-processing procedures to optimize cascade performance (Lienhart and Maydt, 2002;
Luo, 2005; Sun et al., 2004), 4) extensions of adaboost for improved design of the cascade
stages (Viola and Jones, 2002; Masnadi-Shirazi and Vasconcelos, 2007; Sochman and Matas,
2005; Schneiderman, 2004; Li and Zhang, 2004; Tuzel et al., 2008), 5) alternative cascade
structures (Xiao et al., 2003; Bourdev and Brandt, 2005; Xiao et al., 2007; Sochman and
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Matas, 2005), and 6) joint, rather than sequential stage design (Dundar and Bi, 2007;
Lefakis and Fleuret, 2010; Sochman and Matas, 2005; Bourdev and Brandt, 2005). While
these advances improved the performance, the optimal design of a whole cascade is still an
open problem. Most existing solutions rely on assumptions, such as the independence of
cascade stages, that do not hold in practice.

In this work, we address the problem of automatically learning both the configuration
and the stages of a high detection rate detector cascade, under a definition of optimality
that accounts for both classification accuracy and speed. This is accomplished with the fast
cascade boosting (FCBoost) algorithm, an extension of adaboost derived from a Lagrangian
risk that trades-off detection performance and speed. FCBoost optimizes this risk with
respect to a predictor that complies with the sequential decision making structure of the
cascade architecture. These predictors are called cascade predictors, and it is shown that
a rich family of such predictors can be derived recursively from a set of cascade generator
functions, which are cascade predictors of two stages. Boosting algorithms are derived for
two elements of this family, last-stage and multiplicative cascades. These are shown to
generalize the cascades of embedded (Xiao et al., 2003; Bourdev and Brandt, 2005; Xiao
et al., 2007; Sochman and Matas, 2005; Masnadi-Shirazi and Vasconcelos, 2007; Pham et al.,
2008) or independent (Viola and Jones, 2001; Schneiderman, 2004; Brubaker et al., 2008; Wu
et al., 2008; Shen et al., 2011, 2010) stages commonly used in the literature. The search for
the cascade configuration is naturally integrated in FCBoost by the introduction of neutral
predictors. This allows FCBoost to automatically determine 1) number of cascade stages
and 2) number of weak learners per stage, by simple minimization of the Lagrangian risk.
The procedure is compatible with existing cost-sensitive extensions of boosting (Viola and
Jones, 2002; Masnadi-Shirazi and Vasconcelos, 2007; Pham et al., 2008; Masnadi-Shirazi and
Vasconcelos, 2010) that guarantee cascades of high detection rate, and generalizes adaboost
in a number of interesting ways. A detailed experimental evaluation on face and pedestrian
detection shows that the resulting cascades outperform current state-of-the-art methods in
both detection accuracy and speed.

The paper is organized as follows. Section 2 reviews the challenges of cascade learning
and previously proposed solutions. Section 3 briefly reviews adaboost, the most popular
stage learning algorithm, and proposes its generalization for the learning of detector cas-
cades. Section 4 studies the structure of cascade predictors, introducing the concept of
cascade generators. Two generators are then proposed, from which two cascade families
(last-stage and multiplicative) are derived. The search for the cascade configuration is then
studied in Section 5. In this section the Lagrangian extension of the cascade boosting algo-
rithm is introduced, so as to account for detector complexity in the cascade optimization,
and a procedure for the automatic addition of cascade stages during boosting is developed,
using neutral predictors. All these contributions are consolidated into the FCBoost algo-
rithm in Section 6, whose specialization to last-stage and multiplicative cascades is shown
to generalize the two main previous approaches to cascade design. A number of interesting
properties of the algorithm are also discussed, and a cost-sensitive extension is derived.
Finally, an experimental evaluation is presented in Section 7 and some conclusions drawn in
Section 8. An early version of this work was presented in NIPS (Saberian and Vasconcelos,
2010).
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2. Prior Work

A large literature on detector cascade learning has emerged over the past decade. In this
section, we briefly review the main problems in this area and their current solutions.

2.1 The Problems of Cascade Learning

As illustrated in Figure 1, a cascaded detector is a sequence of detector stages. The aim
is to detect instances from a target class. Examples from this class are denoted positives
while all others are denoted negatives. An example rejected, i.e., declared a negative, by
any stage is rejected by the cascade. Examples classified as positives are propagated to
subsequent stages. To be computationally efficient, the cascade must use simple classifiers
in the early stages and complex ones later on. Under the procedure proposed by Viola
and Jones (2001), the cascade designer must first select a number of stages and the target
detection/false-positive rate for each stage. A high detection rate is critical, since improperly
rejected positives cannot be recovered. The false-positive rate is less critical, since the
cascade false-positive rate can be decreased by addition of stages, although at the price of
extra computation. The stages are designed with adaboost. The target detection rate is
met by manipulating the stage threshold, and the target false-positive rate by increasing
the number of weak learners. This frequently leads to an exceedingly complex learning
procedure. One difficulty is that the optimal cascade configuration (number of stages and
stage target rates) is unknown. We refer to this as the cascade configuration problem.
While some configurations have evolved by default, e.g., 20 stages, with a detection rate
of 99.5% and a false-positive rate of 50%, there is nothing special about these values.
This problem is compounded by the fact that, for late stages where negative examples
are close to the classification boundary, it may be impossible to meet the target rates. In
this case, the designer must backtrack (redesign some of the previous stages). Frequently,
various iterations of parameter tuning are needed to reach a satisfactory cascade. Since
each iteration requires boosting over a large set of examples and features, the process can
be tedious and time consuming. We refer to this as the design complexity problem.

Even when a cascade is successfully designed, the process has no guarantees of opti-
mal classification performance. One problem is that, while computationally efficient, the
Haar wavelet features lacks discriminant power for many applications. This is the fea-
ture design problem. This problem is frequently compounded by lack of convergence of
adaboost. Note that while adaboost is consistent (Bartlett and Traskin, 2007), there are
no guarantees that a classifier with small number of boosting iterations, e.g., early stages
of a cascade, will produce classifiers that generalize well. We refer to this as the conver-
gence problem. This problem is magnified by the mismatch between the adaboost risk,
which penalizes misses/false-positives equally, and the asymmetry of the target detection
and false-positive rates used in practice. Although a stage can always meet the target
detection rate by threshold manipulation, the resulting false-positive rate can be strongly
sub-optimal (Masnadi-Shirazi and Vasconcelos, 2010). In general, better performance is
obtained with asymmetric learning algorithms, that optimize the detector explicitly for the
target detection rate. This is the cost-sensitive learning problem. Besides classification
optimality, the learned cascade is rarely the fastest possible. This is not surprising, since
speed is not an explicit variable of the cascade optimization process. While the specification
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of stage false-positive rates can be used to shuffle computation between stages, there is no
way to predict the amount of computation corresponding to a particular rate. This is the
complexity optimization problem.

2.2 Previous Solutions

Over the last ten years, significant research has been devoted to all of the above problems.

Feature design: Viola and Jones introduced a very efficient set of Haar wavelets (Viola
and Jones, 2001). They showed that these features could be extracted, with a few operations,
from an integral image (cumulative image sum). While all features in the original Haar set
were axis-aligned, it is possible to extent it for 45◦ rectangles, (Lienhart and Maydt, 2002).
Similarly, several authors pursued extensions to other orientations (Carneiro et al., 2008; Du
et al., 2006; Messom and Barczak, 2006). More recently, this has been extended to compute
integral images over arbitrary polygonal regions (Pham et al., 2010). Beyond these features,
integral images can also be used to efficiently compute histograms (Porikli, 2005). This
reduces to quantizing the image into a set of channels (associated with the histogram bins)
and computing an integral image per channel. For example, a computationally efficient
version of the HOG descriptor (Dalal and Triggs, 2005) was then developed and used to
design a real-time pedestrian detector cascade (Zhu et al., 2006). More recently, this idea
has been extended to multiple other channels (Dollár et al., 2009). Finally, extensions have
been developed for more general statistical descriptors, e.g., the covariance features (Tuzel
et al., 2008). While the algorithms proposed in this work support any of these features, we
adopt the Haar set (Viola and Jones, 2001). This is mostly for consistency with the cascade
learning literature, where Haar wavelets are predominant.

Design of stage classifiers: A number of enhancements to the stage learning method
of Viola and Jones detector have been proposed specifically to address the problems of
convergence rate, cost-sensitive learning, and training complexity. One potential solution
to the convergence problem is to adopt recent extensions of adaboost, which converge with
smaller numbers of weak learners. Since adaboost is a greedy feature selection algorithm,
the effective number of weak learners can be reduced by using forward-backward feature
selection procedures (Zhang, 2011) or reweighing weak learners by introduction of sparsity
constraints in the optimization (Collins et al., 2002; Duchi and Singer, 2009). This results
in more accurate classification with less weak learners, i.e., a faster classifier. While these
algorithms have not been used in the cascade learning literature, several authors have
used similar ideas to improve stage classifiers. For example, augmenting adaboost with a
floating search that eliminates weak learners of small contribution to classifier performance
(Li and Zhang, 2004) or by using linear discriminant analysis (LDA) (Shen et al., 2011,
2010). Moreover, by interpreting the boosted classifier as a hyperplane in the space of
weak learner outputs, several authors have shown how to refine the hyperplane normal so
as to maximize class discrimination. Procedures that recompute the weight of each weak
learner have been implemented with SVMs (Xiao et al., 2003), variants of LDA (Wu et al.,
2008; Shen et al., 2011, 2010), and non-linear feature transformations (Schneiderman, 2004).
The hyperplane refinement usually optimizes classification error directly, rather than the
exponential loss of adaboost, further improving the match between learning objective and
classification performance. Finally, faster convergence is usually possible with different weak
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learners, e.g., linear SVMs (Zhu et al., 2006) or decision trees of depth two (Dollár et al.,
2009), and boosting algorithms such as realboost or logitboost (Sochman and Matas, 2005;
Schneiderman, 2004; Li and Zhang, 2004; Tuzel et al., 2008).

Beyond classification performance, some attention has been devoted to design complex-
ity. Since the bulk of the learning time is spent on weak learner selection, low-complexity
methods have been proposed for this. For example, it is possible to trade off memory for
computational efficiency (Wu et al., 2008) or to model Haar wavelet responses as Gaus-
sian variables, whose statistics can be computed efficiently (Pham and Cham, 2007). While
speeding up the design of each stage, these methods do not eliminate all aspects of threshold
tuning, stage backtracking, etc. It could be argued that this is the worst component of design
complexity, since these operations require manual supervision. A number of enhancements
have been proposed in this area. While Viola and Jones proposed stage-specific threshold
adjustments (Viola and Jones, 2001), it is possible to formulate threshold adjustments as an
a-posteriori optimization of the whole cascade (Luo, 2005; Sun et al., 2004). These methods
are hampered by the limited effectiveness of threshold adjustments when stage detectors
have poor ROC performance (Masnadi-Shirazi and Vasconcelos, 2010). Better performance
is usually achieved with cost-sensitive extensions of boosting, which optimize a cost-sensitive
risk directly (Viola and Jones, 2002; Masnadi-Shirazi and Vasconcelos, 2007; Pham et al.,
2008). More recently, Masnadi-Shirazi et al. proposed Bayes consistent cost-sensitive ex-
tensions of adaboost, logitboost, and realboost (Masnadi-Shirazi and Vasconcelos, 2010).
These algorithms were shown to substantially improve the false-positive performance of
cascades of high detection rate (Masnadi-Shirazi and Vasconcelos, 2007). These could be
combined with the methods which devise a predictor of the optimal false positive and de-
tection rate for each stage, from statistics of the previous stages, so as to design a cascade
of cost-sensitive stages automatically (Brubaker et al., 2008; Dundar and Bi, 2007).

Cascade configuration: Most of the above enhancements assume a known cascade
configuration and sequential stage learning. This is a suboptimal design strategy and the
assumed cascade configuration may not be attainable in practice. An alternative is to adopt
cascades of embedded stages where each stage is the starting point for the design of the next
(Xiao et al., 2003; Bourdev and Brandt, 2005; Xiao et al., 2007; Sochman and Matas, 2005;
Masnadi-Shirazi and Vasconcelos, 2007; Pham et al., 2008). The main advantage of this
structure is that the whole cascade can be designed with a single boosting run, and adding
exit points to a standard classifier ensemble. This also minimizes the convergence rate
problems of individual stage design. Using Wald’s theory of sequential decision making, it
is possible to derive a method for learning embedded stages (Sochman and Matas, 2005).
While attempting to optimize the whole cascade, these approaches do not fully address the
configuration problem. Some simply add an exit point per weak learner (Masnadi-Shirazi
and Vasconcelos, 2007; Xiao et al., 2007; Sochman and Matas, 2005), while others use post-
processing (Bourdev and Brandt, 2005; Xiao et al., 2003) or pre-specified detection and
false-positive rates (Pham et al., 2008) to determine exit point locations. More recently,
it is proposed to learn all stages simultaneously, by modeling a cascade as the product, or
logical “AND”, of its stages (Lefakis and Fleuret, 2010; Raykar et al., 2010).

Overall, despite substantial progress, no method addresses all problems of cascade learn-
ing. Since few approaches explicitly optimize the cascade configuration, fewer among these
rely on cost-sensitive learning, and no method optimizes detection speed explicitly, cas-
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cade learning can require extensive trial and error. This can be quite expensive from a
computational point of view and leads to a tedious design procedure, which can produce
sub-optimal cascades. In the following sections we propose an alternative framework, which
is fully automated and jointly determines 1) the number of cascade stages, 2) the number
of weak learners per stage, and 3) the predictor of each stage, by minimizing a Lagrangian
risk that is cost-sensitive and explicitly accounts for detection speed.

3. An Extension of Adaboost for the Design of Classifier Cascades

We start with a brief review of boosting.

3.1 Boosting

A binary classifier h : X → {−1, 1} maps an example x into a class label y(x). A learning
algorithm seeks the classifier of minimum probability of error, PX(h(x) 6= y(x)), in the
space of binary mappings

H = {h|h : X → {−1, 1}} .

Since H is not convex and h ∈ H not necessarily differentiable, this is usually done by
restricting the search to mappings of the form

h(x) = sign[f(x)],

where f : X → R, is a predictor. The goal is then to learn the optimal f(x) in a set of
predictors

F = {f |f : X → R} .

This is the predictor which minimizes the classification risk, RE : F→ R,

RE [f ] = EX,Y {L(y(x), f(x))} ' 1

|St|
∑
i

L(yi, f(xi)), (1)

where L : {+1,−1} × R→ R is a loss function, and St = {(x1, y1), . . . , (xn, yn)} is a set of
training examples xi of labels yi.

Boosting algorithms are iterative procedures that learn f as a combination of simple
predictors, known as weak learners, from a set G = {g1(x), . . . , gn(x)} ⊂ F. The optimal
combination is the solution of {

minf(x) RE [f ]

s.t : f(x) ∈ span(G).
(2)

Each boosting iteration reweights the training set and adds the weak learner of lowest
weighted error rate to the weak learner ensemble. When G is rich enough, i.e., contains a
predictor with better than chance-level weighted error rate for any distribution over training
examples, the boosted classifier can be arbitrarily close to the minimum probability of error
classifier (Freund and Schapire, 1997). For most problems of practical interest, G is an
overcomplete set and the solution of (2) can have many decompositions in span(G). In this
case, sparser decompositions are likely to have better performance, i.e., faster computation
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and better generalization. Boosting can be interpreted as a greedy forward feature selection
procedure to find such sparse solutions.

Although the ideas proposed in this work can be combined with most boosting al-
gorithms, we limit the discussion to adaboost (Freund and Schapire, 1997). This is an
algorithm that learns a predictor f by minimizing the risk of (1) when L is the negative
exponential of the margin y(x)f(x)

L(y(x), f(x)) = e−y(x)f(x). (3)

This is known as the exponential loss function (Schapire and Singer, 1999).

The boosting algorithms proposed in this paper are inspired by the statistical view of
adaboost (Mason et al., 2000; Friedman, 1999). Under this view, each iteration of boosting
computes the functional derivatives of the risk along the directions of the weak learners
gk(x), at the current solution f(x). This can be written as

< δRE [f ], g > =
d

dε
RE [f + εg]

∣∣∣∣
ε=0

=
1

|St|
∑
i

[
d

dε
e−yi(f(xi)+εg(xi))

]
ε=0

= − 1

|St|
∑
i

yiwig(xi), (4)

where yi = y(xi) and

wi = w(xi) = e−yif(xi), (5)

is the weight of example xi. The latter measures how well xi is classified by the current
predictor f(x). The predictor is then updated by selecting the direction (weak learner) of
steepest descent

g∗(x) = arg max
g∈G

< −δRE [f ], g >

= arg max
g∈G

1

|St|
∑
i

yiwig(xi), (6)

and computing the optimal step size along this direction

α∗ = arg min
α∈R
RE [f + αg∗]. (7)

While the optimal step size has a closed form for adaboost (Freund and Schapire, 1997), it
can also be found by a line search. The predictor is finally updated according to

f(x) = f(x) + α∗g∗(x), (8)

and the procedure iterated, as summarized in Algorithm 1.
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Algorithm 1 adaboost

Input: Training set St = {(x1, y1), . . . , (xn, yn)}, where yi ∈ {1,−1} is the class label of
example xi, and number of iterations N .
Initialization: Set f(x) = 0.
for t = 1 to N do

Compute < −δRE [f ], g > for all weak learners using (4).
Select the best weak learner g∗(x) using (6).
Find the optimal step size α∗ along g∗(x) using (7).
Update f(x) = f(x) + α∗g∗(x).

end for
Output: decision rule: sign[f(x)]

3.2 Cascade Boosting

In this work, we consider the question of whether boosting can be extended to learn a
detector cascade. We start by introducing some notation. As shown in Figure 1-a), a
classifier cascade is a binary classifier H(x) ∈ H implemented as a sequence of classifiers

hi(x) = sgn[fi(x)] i = 1, . . . ,m, (9)

where the predictors fi(x) can be any real functions, e.g., linear combinations of weak
learners. The cascade implements the mapping H : X → {−1, 1} where

H(x) = Hm[h1, . . . , hm](x) =

{
−1 if ∃ k : hk(x) < 0
+1 otherwise,

(10)

and Hm[h1, . . . , hm] is a classifier cascading (CC) operator, i.e., a functional mapping Hm :
Hm → H of the stage classifiers h1, . . . , hm into the cascaded classifier H.1

Similarly, it is possible to define a cascade predictor F (x) for H(x), i.e., a mapping
F : X → R such that

H(x) = sign[F (x)], (11)

where
F (x) = Fm[f1, . . . , fm](x), (12)

and Fm : Fm → F is a predictor cascading (PC) operator, i.e., a functional mapping of the
stage predictors f1, . . . , fm into the cascade predictor F . We will study the structure of this
operator in Section 4. For now, we consider the problem of learning a cascade, given that
the operator Fm is known.

To generalize adaboost to this problem it suffices to use the predictor F (x) in the
exponential loss of (3) and solve the optimization problem

minm,f1,...fm RE [F ] = 1
|St|
∑

i e
−yiF (xi)

s.t : F (x) = Fm[f1, . . . , fm](x)
∀i fi(x) ∈ span(G)

(13)

1. The notation Hm[h1, . . . , hm](x) should be read as: the value at x of the image of (h1, . . . , hm) under
operator Hm.
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by gradient descent in span(G). The main difference with respect to adaboost is that, since
any of the cascade stages can be updated, multiple gradient steps are possible per iteration.
The directional gradient for updating the predictor of the kth stage is

< δRE [F ], g >k=
d

dε
RE [Fm[f1, . . . fk + εg, . . . fm]]

∣∣∣∣
ε=0

=
1

|St|
∑
i

[
d

dε
e−yiF

m[f1,...fk+εg,...fm](xi)

]
ε=0

=
1

|St|
∑
i

{
(−yi)e−yiF

m[f1,...fm](xi)

[
d

dε
Fm[f1, . . . fk + εg, . . . fm]

]
ε=0

(xi)

}
= − 1

|St|
∑
i

yiw(xi)bk(xi)g(xi), (14)

with

w(xi) = e−yiF
m[f1,...fm](xi) = e−yiF (xi) (15)

bk(xi) =
d

dε
Fm[f1, . . . fk + εg, . . . fm]

∣∣∣∣
ε=0

(xi). (16)

The optimal descent direction for the kth stage is then

g∗k = arg max
g∈G

< −δRE [F ], g >k

= arg max
g∈G

1

|St|
∑
i

yiw(xi)bk(xi)g(xi), (17)

the optimal step size along this direction is

α∗k = arg min
α∈R
RE [Fm[f1, .., fk + αg∗k, ..fm]], (18)

and the optimal stage update is

fk(x) = fk(x) + α∗g∗(x). (19)

The steps of (15), (17), and (19) constitute a functional gradient descent algorithm for
learning a detector cascade, which generalizes adaboost. In particular, the weight of (15)
generalizes that of (5), reweighing examples by how well the current cascade classifies them.
The weak learner selection rule of (17) differs from that of (6) only in that this weight is
multiplied by coefficient bk(xi). Finally, (19) is an additive update, similar to that of (8). If
the structure of the optimal cascade were known, namely how many stages it contains, these
steps could be used to generalize Algorithm 1. It would suffice to, at each iteration t, select
the stage k such that g∗k achieves the smallest risk in (18) and update the predictor of that
stage. This only has a fundamental difference with respect to adaboost: the introduction of
the coefficients bk(xi) in the weak learner selection. We will see that the procedure above
can also be extended into an algorithm that learns the cascade configuration. Since these
extensions depend on the PC operator F of (12), we start by studying its structure.
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4. The Structure of Cascade Predictors

In this section, we derive a general form for Fm. We show that any cascade is compatible
with an infinite set of predictors and that these can be computed recursively. This turns out
to be important for the efficient implementation of the learning algorithm of the previous
section. We next consider a class of PC operators synthesized by recursive application of
a two-stage PC operator, denoted the generator of the cascade. Two generators are then
proposed, from which we derive two new cascade predictor families that generalize the two
most common cascade structures in the literature.

4.1 Cascade Predictors

From (10), a classifier cascade implements the logical-AND of the outputs of its stage
classifiers, i.e., Hm is the pointwise logical-AND of h1, . . . , hm,

Hm[h1, . . . , hm](x) = h1(x) ∧ . . . ∧ hm(x), (20)

where ∧ is the logical-AND operation. Since, from (10)-(12),

Hm[h1, . . . , hm](x) = sgn[Fm[f1, . . . , fm](x)], (21)

it follows from (9) that

sign[Fm[f1, . . . , fm](x)] = sgn[f1(x)] ∧ . . . ∧ sgn[fm(x)]. (22)

This holds if and only if{
Fm[f1, . . . , fm](x) < 0 if ∃ k : fk(x) < 0
Fm[f1, . . . , fm](x) > 0 otherwise.

(23)

Since (22) holds for any operator with this property, any such Fm is denoted a pointwise
soft-AND of its arguments. In summary, while a cascade implements the logical-AND
of its stage decisions, the cascade predictor implements a soft-AND of the corresponding
stage predictions. Note that there is an infinite number of soft-AND operators which will
implement the same logical-AND operator, once thresholded according to (21). This makes
the set of cascade predictors much richer than that of cascades.

4.2 Recursive Implementation

For any m, it follows from (20) and the associative property of the logical-AND that

Hm[h1, . . . , hm] =

{
H2[h1, h2], m = 2
H2
[
h1,Hm−1[h2, . . . , hm]

]
m > 2.

(24)

A similar decomposition holds for the soft-AND operator of (23), since

sgn [Fm[f1, . . . , fm](x)] =

{
sgn

[
F2[f1, f2](x)

]
, m = 2

sgn
[
F2
[
f1,Fm−1[f2, . . . , fm]

]
(x)
]

m > 2.
(25)

The main difference between the two recursions is that, while there is only one logical-AND
H2[f1, f2], an infinite set of soft-AND operators F2[f1, f2] can be used in (25). In fact, it is
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possible to use a different operator F2 at each level of the recursion, i.e., replace F2 by F2
m,

to synthesize all possible sequences of soft-AND operators {F i}mi=2 for which the left-hand
side of (25) is the same. For simplicity, we only consider soft-AND operators of the form
of (25) in this work.

The recursions above make it possible to derive a recursive decomposition of both the
cascade and the sign of its predictor. In particular, defining

Hk(x) = Hm−k+1[hk, . . . , hm](x),

(24) leads to the cascade recursion

Hk(x) =

{
hm(x), k = m
H2 [hk, Hk+1] (x), 1 ≤ k < m,

with H1(x) = H(x). Similarly, for any sequence of soft-AND operators {F i}mi=2 compatible
with (25), defining

Fk(x) = Fm−k+1[fk, . . . , fm](x),

leads to the predictor recursion

sgn[Fk(x)] =

{
sgn[fm(x)], k = m
sgn

[
F2 [fk, Fk+1] (x)

]
, 1 ≤ k < m,

(26)

with sgn[F1(x)] = sgn[F (x)]. Simplifying (26), in the remainder of this work we consider
predictors of the form

Fk(x) =

{
fm(x), k = m
F2 [fk, Fk+1] (x), 1 ≤ k < m.

(27)

Since the core of this recursion is the two-stage predictor

G[f1, f2] = F2[f1, f2], (28)

this is denoted the generator of the cascade. We will show that the two most popular cascade
architectures can be derived from two such generators. For each, we will then derive the
cascade predictors Fk(x), the cascade boosting weights w(xi) of (15), and the coefficients
bk(xi) of (16). We start by defining some notation to be used in these derivations.

4.3 Some Definitions

Some of the computations of the following sections involve derivatives of Heaviside step
functions u(.), which are not differentiable. As is common in the neural network literature,
this problem is addressed with the sigmoidal approximation

u(x) ≈ σ(x) =
1

2
(tanh(µx) + 1). (29)

The parameter µ controls the sharpness of the sigmoid. This approximation is well known
to have the symmetry σ(−x) = 1 − σ(x) and derivative σ′(x) = 2µσ(x)σ(−x). We also
introduce the sequence of cascaded Heaviside functions

γk(x) =

{
1, k = 1∏
j<k u[fj(x)], k > 1,

(30)
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and cascaded rectification functions

ξk(x) =

{
1, k = 1∏
j<k fj(x)u[fj(x)], k > 1,

(31)

where u(.) is the Heaviside step. The former generalize the Heaviside step, in the sense
that γk(x) = 1 if fj(x) > 0 for all j < k and γk(x) = 0 otherwise. The latter generalize
the half-wave rectifier, in the sense that γk(x) =

∏
j<k fj(x) if fj(x) > 0 for all j < k and

γk(x) = 0 otherwise.

4.4 Last Stage Cascades

The first family of cascade predictors that we consider is derived from the generator

G1[f1, f2](x) = f1(x)u[−f1(x)] + u[f1(x)]f2(x)

=

{
f1(x) if f1(x) < 0
f2(x) if f1(x) ≥ 0,

(32)

Using (27), the associated predictor recursion is

Fk(x) =

{
fm(x), k = m
fk(x)u[−fk(x)] + u[fk(x)]Fk+1(x), 1 ≤ k < m.

(33)

The kth stage of the associated cascade passes example x to stage k + 1 if fk(x) ≥ 0.
Otherwise, the example is rejected with prediction fk(x). Hence,

Fm[f1, . . . , fm](x) =


fj(x) if fj(x) < 0 and

fi(x) ≥ 0 i = 1, . . . , j − 1
fm(x) if fi(x) ≥ 0 i = 1 . . . ,m− 1,

i.e., the cascade prediction is that of the last stage visited by the example. For this reason,
the cascade is denoted a last-stage cascade.

This property makes it trivial to compute the weights w(x) of the cascade boosting
algorithm, using (15). It suffices to evaluate

w(xi) = e−yifj∗ (xi), (34)

where j∗ is the smallest k for which fk(xi) is negative and j∗ = m if there is no such k.
The computation of bk(x) with (16) requires a differentiable form of Fm[f1, . . . , fm] with

2581



Saberian and Vasconcelos

respect to fk. This can be obtained by recursive application of (33), since

Fm[f1, . . . , fm](x) = F1(x)

= f1(x)u[−f1(x)] + u[f1(x)]F2(x)

= f1(x)u[−f1(x)] + u[f1(x)] {f2(x)u[−f2(x)] + u[f2(x)]F3(x)}

=

k−1∑
i=1

fi(x)u[−fi(x)]
∏
j<i

u[fj(x)]

+ Fk(x)
∏
j<k

u[fj(x)]

=

[
k−1∑
i=1

fi(x)u[−fi(x)]γi(x)

]
+ Fk(x)γk(x) k = 1 . . .m

=

[
k−1∑
i=1

fi(x)u[−fi(x)]γi(x)

]
+ γk(x) {fk(x)u[−fk(x)] + u[fk(x)]Fk+1(x)} k < m

=

[
k−1∑
i=1

fi(x)u[−fi(x)]γi(x)

]
+ γk(x) {fk(x) + u[fk(x)][Fk+1(x)− fk(x)]}

≈

[
k−1∑
i=1

fi(x)u[−fi(x)]γi(x)

]
+ γk(x)fk(x) + γk(x)σ[fk(x)][Fk+1(x)− fk(x)] (35)

where γk(x) are the cascaded Heaviside functions of (30) and we used the differentiable
approximation of (29) in (35). Note that neither the first term on the right-hand side of
(35) nor γk or Fk+1 depend on fk. It follows from (16) that

bk(x) =

{
γk(x), k = m
γk(x){1 + 2µσ[fk(x)][Fk+1(x)− fk(x)]}σ[−fk(x)] 1 ≤ k < m,

(36)

where σ(.) is defined in (29). Given x, all these quantities can be computed with a sequence
of a forward, a backward, and a forward pass through the cascade. The initial forward
pass computes γk(x) for all k according to (30). The backward pass then computes Fk+1(x)
using (33). The final forward pass computes the weight w(x) and coefficients bk(x) using
(34) and (36). These steps are summarized in Algorithm 2. The procedure resembles the
back-propagation algorithm for neural network training (Rumelhart et al., 1968).

4.5 Multiplicative Cascades

The second family of cascade predictors has generator

G2[f1, f2](x) = f1(x)u[−f1(x)] + u[f1(x)]f1(x)f2(x)

=

{
f1(x) if f1(x) < 0
f1(x)f2(x) if f1(x) ≥ 0.

(37)

Using (27), the associated predictor recursion is

Fk(x) =

{
fm(x), k = m
fk(x)u[−fk(x)] + u[fk(x)]fk(x)Fk+1(x), 1 ≤ k < m

(38)
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Algorithm 2 Last-stage cascade

Input: Training example (x, y), stage predictors fk(x), k = 1, . . . ,m, sigmoid parameter
µ.
Evaluation:
Set γ1(x) = 1.
for k = 2 to m do

Set γk(x) = γk−1(x)u[fk(x)].
end for
Set Fm(x) = fm(x).
for k = m− 1 to 1 do

Set Fk(x) = fk(x)u[−fk(x)] + u[fk(x)]Fk+1(x).
end for
Learning:
Set w(x) = e−yfj∗ (x) where j∗ is the smallest k for which fk(xi) < 0 and j∗ = m if there
is no such k.
for k = 1 to m− 1 do

Set bk(x) = γk(x){1 + 2µσ[fk(x)][Fk+1(x)− fk(x)]}σ[−fk(x)].
end for
Set bk(x) = γm(x).
Output: w(x), {Fk(x), bk(x)}mk=1.

and

Fm[f1, . . . , fm](x) =


∏
i≤j fi(x) if fj(x) < 0 and

fi(x) ≥ 0 i = 1..j − 1∏m
i=1 fi(x) if fi(x) ≥ 0 i = 1..m− 1.

Hence, the cascade predictor is the product of all stage predictions up-to and including that
where the example is rejected. This is denoted a multiplicative cascade.

The weights w(x) of the cascade boosting algorithm are

w(xi) = e−yi
∏

k≤j∗ fk(xi),

where j∗ is the smallest k for which fk(xi) is negative and j∗ = m if there is no such k.
The computation of bk(x) with (16) requires a differentiable form of Fm[f1, . . . , fm] with
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respect to fk. This can be obtained by recursive application of (38), since

Fm[f1, . . . , fm](x) = F1(x)

= f1(x)u[−f1(x)] + u[f1(x)]f1(x)F2(x)

= f1(x)u[−f1(x)] + u[f1(x)]f1(x){f2(x)u[−f2(x)] + u[f2(x)]f2(x)F3(x)}

=

k−1∑
i=1

fi(x)u[−fi(x)]
∏
j<i

fj(x)u[fj(x)]

+ Fk(x)
∏
j<k

fj(x)u[fj(x)]

=

[
k−1∑
i=1

fi(x)u[−fi(x)]ξi(x)

]
+ Fk(x)ξk(x) k = 1 . . .m

=

[
k−1∑
i=1

fi(x)u[−fi(x)]ξi(x)

]
+ ξk(x) {fk(x)u[−fk(x)] + u[fk(x)]fk(x)Fk+1(x)} k < m

=

[
k−1∑
i=1

fi(x)u[−fi(x)]ξi(x)

]
+ ξk(x)fk(x) {1 + u[fk(x)][Fk+1(x)− 1]}

≈

[
k−1∑
i=1

fi(x)u[−fi(x)]ξi(x)

]
+ ξk(x)fk(x) {1 + σ[fk(x)][Fk+1(x)− 1]} , (39)

where ξi(x) are the rectification functions of (31) and we used (38) and the differentiable
approximation of (29) in (39). Since neither the first term on the right hand side, ξk, or
Fk+1 depend on fk, it follows from (16) that

bk(x) =

{
ξm(x), k = m
ξk(x){1 + σ[fk(x)][Fk+1(x)− 1]}{1 + 2µfk(x)σ[−fk(x)]} 1 ≤ k < m,

(40)

where σ(.) is defined in (29). Again, these coefficients can be computed with a forward, a
backward, and a forward pass through the cascade, which resembles back-propagation, as
summarized in Algorithm 3.

5. Learning the Cascade Configuration

Given a cascade configuration, Algorithms 2 or 3, could be combined with the algorithm
of Section 3.2 to extend adaboost to the design of last-stage or multiplicative cascades,
respectively. However, the cascade configuration is usually not known and must be learned.
This consists of determining the number of cascade stages and the number of weak learners
per stage.

5.1 Complexity Loss

We start by assuming that the number of cascade stages is known and concentrate on the
composition of these stages. So far, we have proposed to simply update, at each boosting
iteration, the stage k with the weak learner g∗k that achieves the smallest risk in (18). While
this will produce cascades with good detection accuracy, there is no incentive for the cascade
configuration to be efficient, i.e., achieve an optimal trade-off between detection accuracy
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Algorithm 3 multiplicative cascade

Input: Training example (x, y), stage predictors fk(x), k = 1, . . . ,m, sigmoid parameter
µ.
Evaluation:
Set ξ1 = 1.
for k = 2 to m do

Set ξk(x) = ξk−1(x)fk(x)u[fk(x)].
end for
Set Fm(x) = fm(x).
for k = m− 1 to 1 do

Set Fk(x) = fk(x)u[−fk(x)] + u[fk(x)]fk(x) F k+1(x).
end for
Learning:
Set w(x) = e−y

∏
k≤j∗ fk(x) where j∗ is the smallest k for which fk(xi) < 0 and j∗ = m if

there is no such k.
for k = 1 to m− 1 do

Set bk(x) = ξk(x){1 + σ[fk(x)][Fk+1(x)− 1]}{1 + 2µfk(x)σ[−fk(x)]}.
end for
Set bm(x) = ξm(x).
Output: w(x), {Fk(x), bk(x)}mk=1.

and classification speed. To guarantee such a trade-off it is necessary to search for the
most accurate detector under a complexity constraint. This can be done by minimizing the
Lagrangian

L[F ] = RE [F ] + ηRC [F ], (41)

where F (x) and RE [F ] are the cascade predictor and classification risk of (13), respectively,

RC [F ] = EX|Y {LC(F, x)|y(x) = −1} ' 1

|S−t |
∑
xi∈S−

t

LC(F, xi),

is a complexity risk and η a Lagrange multiplier that determines the trade-off between
accuracy and computational complexity. RC [F ] is the empirical average of a computa-
tional loss LC(F, x), which reflects the number of machine operations required to evaluate
F (x) = Fm[f1, . . . , fm](x), over the set S−t of negatives in St. The restriction to negative
examples is not necessary but common in the classifier cascade literature, where computa-
tional complexity is usually defined as the average computation required to reject negative
examples. This is mostly because positives are rare and contribute little to the overall
computation.

As is the case for the classification risk, where the loss of (3) is an upper bound on
the margin and not the margin itself, the computational loss LC [F ] is a surrogate for the
computational cost C(F, x) of evaluating the cascade prediction F (x) for example x. Using
the predictor recursions of Section 4.2, this cost can itself be computed recursively. Since,
by definition of cascade, example x is either rejected by the predictor fk of stage k or passed
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to the remaining stages,

C(Fk, x) =

{
Ω(fk) + u[fk(x)]C(Fk+1, x), k < m
Ω(fm), k = m,

(42)

where Fk(x) is as defined in (27) and Ω(fk) is the computational cost of evaluating stage k.
Defining C(Fm+1, x) = 0, it follows that

C(F, x) = Ω(f1) + u[f1(x)]C(F2, x)

= Ω(f1) + u[f1(x)][Ω(f2) + u[f2(x)]C(F3, x)]

=

k−1∑
i=1

Ω(fi)
∏
j<i

u[fj(x)]

+ C(Fk, x)
∏
j<k

u[fj(x)]

=

[
k−1∑
i=1

Ω(fi)γi(x)

]
+ Ω(fk)γk(x) + u[fk(x)]C(Fk+1, x)γk(x)

= δk(x) + Ω(fk)γk(x) + θk(x)u[fk(x)], (43)

where γi(x) are the cascaded Heaviside functions of (30) and

δk(x) =

k−1∑
i=1

Ω(fi)γi(x),

θk(x) = C(Fk+1, x)γk(x). (44)

This relates the cascade complexity to the complexity of the kth stage, Ω(fk). The surrogate
computational loss LC [F, x] is inspired by the surrogate classification loss of adaboost, which
upper bounds the zero-one loss u[−yf(x)] by the exponential e−yf(x). Using the bound
u[f(x)] ≤ ef(x) on (43) leads to

LC [F, x] = δk(x) + Ω(fk)γk(x) + θk(x)efk(x),

and the computational risk

RC [F ] =
1

|S−t |
∑
xi∈S−

t

δk(xi) + Ω(fk)γk(xi) + θk(xi)e
fk(xi). (45)

To evaluate this risk, it remains to determine the computational cost Ω(fk) of the
predictor of the kth cascade stage. Since fk(x) =

∑
l αlgl(x), gl ∈ G, is a linear combination

of weak learners, we define

Ω(fk) =
∑
l

Ω(gl). (46)

LetW(fk) ⊂ G be the set of weak learners, gl, that appear in (46). In this work, we restrict
our attention to the case where all gl have the same complexity and Ω(fk) is proportional
to |W(fk)|. This is the most common scenario in computer vision problems, such as face
detection, where all weak learners are thresholded Haar wavelet features (Viola and Jones,
2001) and have similar computational cost. We will, however, account for the fact that
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there is no cost in the repeated evaluation of a weak learner. For this, W(fk) is split into
two sets. The first, O(fk), contains the weak learners used in some earlier cascade stage
fj , j ≤ k. Since the outputs of these learners can be kept in memory, they require minimal
computation (multiplication by αl and addition to cumulative sum). The second is the set
N (fk) of weak learners unused in prior stages. The computational cost of fk is then

Ω(fk) = |N (fk)|+ λ|O(fk)|, (47)

where λ < 1 is the ratio of computation required to evaluate a used vs. new weak learner.
This implies that when updating the kth stage predictor

Ω(fk + εg) = Ω(fk) + ρ(g, fk),

with

ρ(g, fk) =

{
λ if g ∈ O(fk)
1 if g ∈ N (fk).

(48)

5.2 Boosting with Complexity Constraints

Given the computational risk of (45), it is possible to derive a boosting algorithm that
accounts for cascade complexity. We start by deriving the steepest descent direction of the
Lagrangian of (41), with respect to stage k

< −δL[F ], g >k = < −δ (RE [F ] + ηRC [F ]) , g >k

= < −δRE [F ], g >k +η < −δRC [F ], g >k .

The first term is given by (14), the second requires the descent direction with respect to
the complexity risk RC [F ]. Using (45),

< δRC [F ], g >k=
d

dε
RC(Fm[f1, .., fk + εg, ..fm])

∣∣∣∣
ε=0

=
1

|S−t |
∑
i

ysi
d

dε
LC [Fm[f1, .., fk + εg, ..fm], xi]

∣∣∣∣
ε=0

=
1

|S−t |
∑
i

ysi
d

dε

[
δk(xi) + [Ω(fk) + ρ(fk, g)]γk(xi) + θk(xi)e

fk(xi)+εg(xi)
]∣∣∣∣
ε=0

=
1

|S−t |
∑
i

ysiψk(xi)θk(xi)g(xi), (49)

where ysi = I(yi = −1), I(x) is the indicator function, θk(xi) as in (44) and

ψk(xi) = efk(xi). (50)

Finally, combining (14) and (49),

< −δL[F ], g >k =
∑
i

(
yiw(xi)bk(xi)

|St|
− ηy

s
iψk(xi)θk(xi)

|S−t |

)
g(xi), (51)
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Algorithm 4 BestStageUpdate

Input: Training set St, trade-off parameter η, cascade [f1, . . . , fm], index k of the stage
to update, sigmoid parameter µ.
for each pair (xi, yi) in St do

Compute w(xi), bk(xi), Fk(xi) e.g., using Algorithm 2 for last-stage or Algorithm 3 for
multiplicative cascades.
Compute θk(xi), ψk(xi) with (44) and (50).

end for
Find the best update (α∗k, g

∗
k(x)) for the kth stage using (51)-(54).

Output: α∗k, g
∗
k(x)

where w(xi) = e−yiF (xi) and bk(xi) is given by (36) for last-stage and by (40) for multiplica-
tive cascades.

It should be noted that, although (51) does not depend on ρ(fk, g), the complexity of
the optimal weak learner g∗ affects the computational risk in (45) and thus the magnitude
of the steepest descent step. To account for this, we find the best update for fk in two
steps. The first step searches for the best update within O(fk) and N (fk)

g∗1,k = arg max
g∈O(fk)

< −δL[F ], g >k (52)

g∗2,k = arg max
g∈N (fk)

< −δL[F ], g >k, (53)

and computes the corresponding optimal steps sizes

α∗j,k = arg min
α∈R
L[Fm[f1, ..fk + αgj,k, ..fm]], (54)

for j = 1, 2. The second step chooses the update that most reduces L[F ] as the best update
for the kth stage. The overall procedure is summarized in Algorithm 4. Using this procedure
to cycle through all cascade stage updates within each iteration of the algorithm of Section
3.2 and selecting the one that most reduces L[F ] produces an extension of adaboost for
cascade learning that optimizes the trade-off between detection accuracy and complexity.

5.3 Growing a Detector Cascade

So far, we have assumed that the number of cascade stages is known. Since this is usually
not the case, there is a need for a procedure that learns this component of the cascade
configuration. In this work, we adopt a greedy strategy, where cascade stages are added
by the boosting algorithm itself, whenever this leads to a reduction of the risk. It is as-
sumed that a new stage, or predictor g, can only be added at the end of the existing
cascade, i.e., transforming a m-stage predictor Fm[f1, . . . , fm](x) into a m+ 1-stage predic-
tor Fm+1[f1, . . . , fm, g](x). This is consistent with current cascade design practices, where
stages are appended to the cascade when certain heuristics are met.

The challenge of a risk-minimizing formulation of this process is to pose the addition of
a new stage as a possible gradient step. Recall that, at each iteration of a gradient descent
algorithm, the current solution, vt, is updated by

vt+1 = vt + αv,
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where v is the gradient update and α is step size found by a line search. An immediate
consequence is that, if no update is taken in an iteration, i.e., α = 0 or v = 0, the value of the
objective function should remain unaltered. For the proposed cascade boosting algorithms
this condition is not trivial to guarantee when a new stage is appended to the current
cascade. For example, choosing g(x) = 0 may change the current solution since, in general,

Fm+1[f1, . . . , fm, 0](x) 6= Fm[f1, . . . , fm](x).

To address this problem, we introduce the concept of neutral predictors. A stage predictor
n(x) : X → R is neutral for a cascade of predictor Fm[f1, . . . , fm] if and only if

Fm+1[f1, . . . , fm, n](x) = Fm[f1, . . . , fm](x). (55)

If such a neutral predictor exists, then it is possible to grow a cascade by defining the new
stage as

fm+1(x) = n(x) + g(x),

where g(x) is the best update found by gradient descent. In this case, it follows from (55)
that a step of g(x) = 0 will leave the cascade risk unaltered. Given a cascade generator, a
predictor n that satisfies (55) can usually be found with (28), i.e., it suffices that n satisfies

fm(x) = G[fm, n](x), (56)

where G is the generator that defines the PC operator Fm. For example, from (32), the
neutral predictor of a last-stage cascade must satisfy

fm(x) = fm(x)u[−fm(x)] + u[fm(x)]n(x),

a condition met by
n(x) = fm(x). (57)

Similarly, from (37), the neutral predictor of a multiplicative cascade must satisfy

fm(x) = fm(x)u[−fm(x)] + u[fm(x)]fm(x)n(x),

which is met by
n(x) = 1. (58)

These neutral predictors are also computationally efficient. In fact, (57) and (58) add
no computation to the evaluation of predictor fm+1(x), i.e., to the computation of g(x)
itself. This is obvious for (58) which is a constant, and follows from the fact that fm(x)
has already been computed in stage m for (57). This computation can simply be reused at
stage m+ 1 with no additional cost. Hence, for both models

C(Fm+1[f1, . . . , fm, n], x) = C(Fm[f1, . . . , fm], x),

and
L[Fm+1[f1, . . . , fm, n]] = L[Fm[f1, . . . , fm]].

In summary, the addition of stages does not require special treatment in the proposed
cascade learning framework. It suffices to append a neutral predictor to the cascade and
find the best update for this new stage. If this reduces the objective function of (41) further
than updating other stages, the new stage is automatically created and appended to the
cascade. In this way, the cascade grows organically, as a side effect of the risk optimization,
and there is no need for heuristics.
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Algorithm 5 FCBoost

Input: Training set S = {(x1, y1) . . . , (xn, yn)}, trade-off parameter η, sigmoid parameter
µ, and number of iterations N .
Initialization: Set m = 0 and f1(x) = n(x), e.g., using (57) for last-stage and (58) for
multiplicative cascade.
for t = 1 to N do

for k = 1 to m do
(α∗k, g

∗
k) = BestStageUpdate(S, η, [f1, ...fm], k, µ).

end for
(α∗m+1, g

∗
m+1) = BestStageUpdate(S, η, [f1, ...fm+1],m+ 1, µ).

for k = 1 to m do
Set L̂(k) = L [Fm(f1, .., fk + α∗kg

∗
k, .., fm)] using (41).

end for
Set L̂(m+ 1) = L

[
Fm+1(f1, .., fm, fm+1 + α∗m+1g

∗
m+1(x))

]
using (41).

Find k∗ = arg mink∈{1,...,m+1} L̂(k).
Set fk∗ = fk∗ + α∗k∗g

∗
k∗ .

if k∗ = m+ 1 then
Set m = m+ 1 .
Set fm+1(x) = n(x).

end if
end for
Output: decision rule: sgn[Fm(f1, . . . , fm)].

6. The FCBoost Cascade Learning Algorithm

In this section, we combine the contributions from the previous sections into the Fast
Cascade Boosting (FCBoost) algorithm, discuss its connections with the previous literature
and some interesting properties.

6.1 FCBoost

FCBoost is initialized with a neutral predictor. At each iteration, it finds the best update
g∗k(x) for each of the cascade stages and the best stage to add at the end of the cascade.
It then selects the stage k∗ whose update g∗k∗(x) most reduces the Lagrangian L[F ]. If
k∗ is the newly added stage, a new stage is created and appended to the cascade. The
procedure is summarized in Algorithm 5. Note that the only parameters are the multiplier
η of (41), which encodes the relative importance of cascade speed vs. accuracy for the
cascade designer, and the sigmoid parameter µ that controls the smoothness of the Heaviside
approximation. In our implementation we always use µ = 5. Given these parameters,
FCBoost will automatically determine both the cascade configuration (number of stages
and number of weak learners per stage) and the predictor of each stage, so as to optimize
the trade-off between detection accuracy and complexity which is specified through η.
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(a) (b)

Figure 2: Illustration of the different configurations produced by identical steps of (a) last-
stage and (b) multiplicative cascade learning.

6.2 Connections to the Previous Cascade Learning Literature

FCBoost supports a large variety of cascade structures. The cascade structure is defined by
the generator G of (28), since this determines the neutral predictor n(x), according to (56),
and consequently how the cascade grows as boosting progresses. The two cascade predictors
used in this work, last-stage and multiplicative, cover the two predominant cascade struc-
tures in the literature. The first is the independent stage (IS) structure, (Viola and Jones,
2001). In this structure stage predictors are designed independently,2 in the sense that the
learning of fk starts from an empty predictor which is irrespective of the composition of
the previous stages, fj , j < k. The second structure is the embedded stage (ES) structure
where predictors of consecutive stages are related by

fk+1(x) = fk(x) + w(x),

and w(x) is a single or linear combination of weak learners (Xiao et al., 2003). Under
this structure, each stage predictor contains the predictor of the previous stage, which is
augmented with some weak learners.

The connection between these structures and the models proposed in this paper can be
understood by considering the neutral predictors of the latter. For multiplicative cascades,
it follows from (58) that

fm+1(x) = 1 + αg(x),

and there is no dependence between consecutive stages. Hence, multiplicative cascades have
the IS structure. For last stage cascades, it follows from (57) that

fm+1(x) = fm(x) + αg(x).

If FCBoost always updates the last two stages, this produces a cascade with the ES struc-
ture. Since FCBoost is free to update any stage, it can produce more general cascades, i.e.,
a superset of the set of cascades with the ES structure.

It is interesting that two predictors with the very similar generators of (32) and (37)
produce very different cascade structures. This is illustrated in Figure 2, where we consider
the cascades resulting from the following sequence of operations:

2. Note that the predictors are always statistically dependent, since the role of hi+1 is to classify examples
not rejected by hi.
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• iteration 1: start form an empty classifier, create first stage.

• iteration 2: add a new stage.

• iteration 3: update first stage.

• iteration 4: add a new stage.

Note that while the last-stage cascade of a) has substantial weak learner sharing across
stages, this is not true for the multiplicative cascade of b), which is similar to the Viola and
Jones cascade (Viola and Jones, 2001).

6.3 Properties

Beyond these connections to the literature, FCBoost has various interesting properties as a
cascade boosting algorithm. First, its example weighing is very similar to that of adaboost
(Freund and Schapire, 1997). A comparison of (5) and (15) shows that FCBoost reweights
examples by how well they are classified by the current cascade. As in adaboost, this
is measured by the classification margin, but now with respect to the cascade predictor,
F , (margin yF ) rather than a simple predictor f (margin yf). Second, the weak learner
selection rule of FCBoost is very similar to that of adaboost. While in (6) adaboost selects
the weak learner g that maximizes

1

|St|
∑
i

yiwig(xi),

in (52)-(53) FCBoost selects the stage k and weak learner g that maximize

∑
i

(
yiw(xi)bk(xi)

|St|
− ηy

s
iψk(xi)θk(xi)

|S−t |

)
g(xi). (59)

When η = 0, the only significant difference is the inclusion of bk(xi) in (59). To understand
the role of this term note that, from (36) and (40), bk(xi) = 0 whenever γk(xi) = 0 in (30),
and ξk(xi) = 0 in (31). This implies that there is at least one stage j < k such that fj(xi) <
0, i.e., where xi is rejected. When this holds, bk(xi) = 0 prevents xi from influencing
the update of fk(x). This is sensible: since xi will not reach the kth stage, it should not
affect its learning. Hence, the coefficients bk(xi) can be seen as gating coefficients, which
prevent examples rejected by earlier stages from affecting the learning of stage k. If η 6= 0,
a similar role is played by θk(xi) in the second term of (59) since, from (44), θk(xi) = 0
whenever γk(xi) = 0. Thus, if xi is rejected by a stage j < k, its processing complexity is
not considered for any stage posterior to j. Due to the gating coefficients bk(xi) and θk(xi),
FCBoost emulates the bootstrapping procedure commonly used in cascade design. This is
a procedure that eliminates the examples rejected by each stage from the training set of
subsequent stages. These examples are replaced with new false positives (Viola and Jones,
2001; Sung and Poggio, 1998). While FCBoost emulates “example discarding” with the
gating coefficients bk(xi) and θk(xi), it does not seek new false positives. This still requires
the “training set augmentation” of bootstrapping.
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A third interesting property of FCBoost is the complexity penalty (second term) of (59).
From (44) and (50) this is, up to constants,

− ysi γk(xi)efk(xi)C(Fk+1, xi)g(xi).

Given example xi and cascade stage k, all factors in this product have a meaningful in-
terpretation. First, since ysi γk(xi) is non-zero only for negative examples which have not
been rejected by earlier cascade stages (j < k), it acts as a selector of the false-positives
that reach stage k. Second, since fk(xi) measures how deeply xi penetrates the positive
side of the stage k classification boundary, efk(xi) is large for the false-positives that stage
k confidently assigns to the positive class. Third, since C(Fk+1, xi) is the complexity of
processing xi by the stages beyond k, it measures how deeply xi penetrates the cascade,
if not rejected by stage k. Finally, g(xi) is the label given to xi by weak learner g(x).
Since only g(xi) can be negative, the product is maximized when g(xi) = −1, γk(xi) = 1
and fk(xi) and C(Fk+1, xi) are as large as possible. Hence, the best weak learner is that
which, on average, declares as negatives the examples which 1) are false-positives of the
earlier stages, 2) are most confidently accepted as false-positives by the current stage, and
3) penetrate the cascade most deeply beyond this stage. This is intuitive, in the sense that
it encourages the selection of the weak learner that most contradicts the current cascade on
its most costly mistakes.

In summary, FCBoost is a generalization of adaboost with similar example weighting,
gating coefficients that guarantee consistency with the cascade structure, and a cost func-
tion that accounts for classifier complexity. This encourages the selection of weak learners
that correct the false-positives of greatest computational cost. It should be mentioned that
while we have used adaboost to derive FCBoost, similar algorithms could be derived from
other forms of boosting, e.g., logitboost, gentle boost (Friedman et al., 1998), KLBoost (Liu
and Shum, 2003) or float boost (Li and Zhang, 2004). This would amount to replacing the
exponential loss, (3), with other loss functions. While the resulting algorithms would be
different, the fundamental properties (example reweighing, additive updates, gating coeffi-
cients) would not. We next exploit this to develop a cost-sensitive extension of FCBoost.

6.4 Cost-Sensitive FCBoost

While positive examples rejected by a cascade stage cannot be recovered by subsequent
stages, the cascade false positive rate can always be reduced through addition of stages.
Hence, in cascade learning, maintaining a high detection rate across stages is more critical
than maintaining a low false positive rate. This is difficult to guarantee with the risk of
(1), which is an upper bound on the error rate, treating misses and false positives equally.
Several approaches have been proposed to enforce asymmetry during cascade learning. One
possibility is to manipulate the thresholds of the various detector stages to guarantee the
desired detection rate (Viola and Jones, 2001; Sochman and Matas, 2005; Luo, 2005). This
is usually sub-optimal, since boosting predictors are not well calibrated outside a small
neighborhood of the classification boundary (Mease and Wyner, 2008). Threshold tuning
merely changes the location of the boundary and can perform poorly (Masnadi-Shirazi
and Vasconcelos, 2010). An alternative is to use cost sensitive boosting algorithms (Viola
and Jones, 2002; Masnadi-Shirazi and Vasconcelos, 2007), derived from asymmetric losses
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that weigh miss-detections more than false-positives, optimizing the cost-sensitive boundary
directly. This usually outperforms threshold tuning.

In this work we adopt the cost sensitive risk of

RcE(f) =
C

|S+
t |

∑
xi∈S+

t

e−yif(xi) +
1− C
|S−t |

∑
xi∈S−

t

e−yif(xi)

=
∑
xi∈St

yci e
−yif(xi), (60)

where C ∈ [0, 1] is a cost factor,

yci =
C

|S+
t |
I(yi = 1) +

1− C
|S−t |

I(yi = −1),

I(.) the indicator function, and the relative importance of positive vs. negative examples
is determined by the ratio C

1−C (Viola and Jones, 2002). This leads to the cost-sensitive
Lagrangian

Lc[F ] = RcE [F ] +RC [F ]. (61)

A derivation similar to that of (14) can be used to show that

< δRcE [F ], g >k= −
∑
i

yiy
c
iw(xi)bk(xi)g(xi), (62)

where w(xi) = e−yiF (xi) and bk(xi) is given by (36) for last-stage and by (40) for multiplica-
tive cascades. Finally, combining (61), (62), and (49),

< −δLc[F ], g >k =
∑
i

(
yiy

c
iw(xi)bk(xi)− η

ysiψk(xi)θk(xi)

|S−t |

)
g(xi). (63)

The cost-sensitive version of FCBoost replaces (51) with (63) in (52)-(53) and L by Lc
in (54).

6.5 Open Issues

One subtle difference between adaboost and FCBoost, with η = 0, is the feasible set of the
underlying optimization problems. Rewriting the FCBoost problem of (13) as{

minf RE [f ]
s.t : f ∈ ΩG,

(64)

where

ΩG = {f |∃f1, ...fm ∈ G such that f(x) = Fm[f1, . . . , fm](x) ∀x} .

and comparing (64) to (2), the two problems differ in their feasible sets, span(G) for
adaboost vs. ΩG for FCBoost. Since any f̂ ∈ span(G) is equivalent to a one-stage cascaded
predictor, it follows that f̂ ∈ ΩG and

span(G) ⊂ ΩG.
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Hence, the feasible set of FCBoost is larger than that of adaboost, and FCBoost can, in
principle, find detectors of lower risk. Hence, all generalization guarantees of adaboost hold,
in principle, for cascades learned with FCBoost. There is, however, one significant difference.
Since span(G) is a convex set, the optimization problem of (2) is convex whenever RE(f)
is a convex function of f . This is the case for the adaboost risk, and adaboost is thus
guaranteed to converge to a global minimum. However, since ΩG can be a non-convex set,
no such guarantees exist for FCBoost. Hence, FCBoost can converge to a local minimum.
We illustrate this with an example in Section 7.1. In general, the convexity of ΩG depends on
the PC operator Fm and the set of weak learners G. There is currently little understanding
on what conditions are necessary to guarantee convexity.

7. Evaluation

In this section, we report on several experiments conducted to evaluate FCBoost. We
start with a set of experiments designed to illustrate the properties of the algorithm. We
then report results on its use to build face and pedestrian detectors with state-of-the-art
performance in terms of detection accuracy and complexity. In all cases, the training set for
face detection contained 4, 500 faces (along with their flipped replicas) and 9, 000 negative
examples, of size 24× 24 pixels, while pedestrian detection relied on a training set of 2, 347
positive and 2, 000 negatives examples, of size 72 × 30, from the Caltech Pedestrian data
set (Dollár et al., 2012). All weak learners were decision-stumps on Haar wavelets (Viola
and Jones, 2001).

7.1 Effect of η

We started by studying the impact of the Lagrange multiplier η, of (41), on the accuracy
vs. complexity performance of FCBoost cascades. The test set consisted of 832 faces (along
with their flipped replicas) and 1, 664 negatives. All detectors were trained for 50 iterations.
The unit computational cost was set to the cost of evaluating a new Haar feature. This
resulted in a cost of 1

5 units for feature recycling, i.e., λ = 1
5 in (47). Figure 3 quantifies

the structure of the cascades learned by FCBoost with η = 0 and η = 0.04: multiplicative
in a) and last-stage in b). The top plots summarize the number of features assigned to
each cascade stage, and those at the bottom the computational cost per stage. Note that
since, from (57), the neutral predictor of the last-stage cascade is its last stage, each of
the last-stage cascade stages benefits from the features evaluated in the previous stages.
Hence, as shown in the top plot of Figure 3-b, the number of weak learners per stage is
monotonically increasing. However, because most features are recycled, the cost is still
dominated by the early stages, when η = 0. With respect to the impact of η, its is clear
that, for both structures, a small η produces short cascades whose early stages contain
many weak learners. On the other hand, a large η leads to much deeper cascades, and a
more uniform distribution of weak learners and computation. This is sensible, since larger
η place more emphasis on computational efficiency and this requires that the early stages,
which tend to be evaluated for most examples, be very efficient. Hence, long cascades with
a few weak learners per stage tend to be computationally more efficient than short cascades
with many learners per stage.
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Figure 3: Number of features (top) and computational cost (bottom) per stage of an FC-
Boost cascade: (a) multiplicative, (b) last-stage.

The accuracy vs. complexity trade-off of these cascades was compared to those of a
non-cascaded adaboost detector and a cascade of embedded stages derived from this detec-
tor (Masnadi-Shirazi and Vasconcelos, 2007). This converts the detector into a cascade by
inserting a rejection point per weak learner. The resulting cascade has embedded stages
which add a single weak learner to their predecessors and is equivalent to the chain boost
cascade (Xiao et al., 2003). Figure 4 depicts the trade-off between computation and ac-
curacy of adaboost, chain boost, and FCBoost cascades with η ∈ [0, 0.04]. The left-most
(right-most) point on the FCBoost curves corresponds to η = 0 (η = 0.04). adaboost and
ChainBoost points were obtained by limiting the number of weak learners, with a single
weak learner (full detector) for the right-most (left-most) point. Several observations can
be made from the figure. First, as expected, increasing the trade-off parameter η produces
FCBoost cascades with less computation and higher error. Second, FCBoost has a better
trade-off between complexity and accuracy (curves closer to the origin). Third, among FC-
Boost models, last-stage cascades have uniformly better trade-off than their multiplicative
counterparts. Since last-stage are generalized embedded cascades, this confirms previous
reports on the advantages of embedded over independent stages (Pham et al., 2008; Xiao
et al., 2003). Finally, it is interesting to note that, when η = 0, the Lagrangian of (41)
is equivalent to the adaboost risk, i.e., FCBoost and adaboost minimize the same objec-
tive. However, due to their different feasible sets, they can learn very different detectors
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Figure 4: Computational cost vs. error rate of the detectors learned with adaboost, chain
boost, and FCBoost with the last-stage and multiplicative structures.

adaboost FCBoost+last-stage FCBoost+multiplicative

Err. rate 4.03% 4.51% 4.15%

Eval. cost 50 11.74 42.54

Table 1: Performance comparison between adaboost and FCBoost, for η = 0.

(see Section 6.5). While the larger feasible set of FCBoost suggests that it should produce
detectors of smaller risk than adaboost, this did not happen in our experiments.

Table 1 summarizes the error and cost of adaboost and the two FCBoost methods for
η = 0. Note that the adaboost detector has a slightly lower error. The weaker accuracy of
the FCBoost detectors suggests that the latter does get trapped in local minima. This is,
in fact, intuitive as the decision to add a cascade stage makes it impossible for the gradient
descent procedure to revert back to a non-cascaded detector. By making such a decision,
FCBoost can compromise the global optimality of its solution, if the global optimum is a
non-cascaded detector. Interestingly, FCBoost sometimes decides to add stages even when
η = 0 (see Figure 3). As shown in Table 1, this leads to a slightly more error-prone but
much more efficient detector than adaboost. In summary, even without pressure to minimize
complexity (η = 0), FCBoost may trade-off error for complexity. This may be desirable or
not, depending on the application. In the experiment of Table 1, FCBoost seems to make
sensible choices. For the last-stage structure, it trades a small increase in error (0.48%) for
a large decrease in computation (76.5%). For the multiplicative structure, it trades-off a
very small increase in error (0.12%) for a moderate (16%) decrease in computation.

7.2 Cost-Sensitive FCBoost

We next consider the combination of FCBoost and the cost sensitive risk of (60). Since the
advantages of cost-sensitive boosting over threshold tuning are now well established (Viola
and Jones, 2002; Masnadi-Shirazi and Vasconcelos, 2010), we limit the discussion to the
effect of the cost factor C on the behavior of FCBoost cascades. Cascaded face detectors
were learned for cost factors C ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}. Figure 5 a) presents
the trade-off between detection and false positive rate for last-stage and multiplicative
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Figure 5: Performance of cascades learned with cost-sensitive FCBoost, using different cost
factors C. (a) ROC curves, (b) computational complexity.

cascades. In both cases, the leftmost (rightmost) point corresponds to C = 0.5 (C = 0.99).
Figure 5 b) presents the equivalent plot for computational cost. Several observations can
be made. First, as expected, larger cost factors C produce detectors of higher detection
and higher false-positive rate. Second, they lead to cascades of higher complexity. This
is intuitive since, for large cost factors, FCBoost aims for a high detection rate and is
very conservative about rejecting examples. Hence, many negatives penetrate deep into
the cascade, and computation increases. Third, comparing the curves of the last-stage and
multiplicative cascades, the former again has better performance. In particular, last-stage
cascades combine higher ROC curves in Figure 5 a) with lower computational cost in Figure
5 b).

7.3 Face and Pedestrian Detection

Over the last decade, there has been significant interest in the problem of real-time object
detection from video streams. In particular, the sub-problems of face and pedestrian de-
tection have been the focus of extensive research, due to the demand for face detection in
low-power consumer electronics (e.g., cameras or smart-phones) and pedestrian detection
in intelligent vehicles. In this section, we compare the performance of FCBoost cascades
with those learned by several state of the art methods in the face and pedestrian detection
literatures.

We start with face detection, where cascaded detectors have become predominant, com-
paring FCBoost to the method of Viola and Jones (VJ) (Viola and Jones, 2001), Wald
boost (Sochman and Matas, 2005) and multi-exit (Pham et al., 2008). Since extensive re-
sults on these and other methods are available on the MIT-CMU test set, all detectors were
evaluated on this data set. The methods above have been shown to outperform a number
of other cascade learning algorithms (Pham et al., 2008) and, to the best of our knowledge,
hold the best results in this data set. In all cases, the target detection rate was set to
DT = 95%. For Wald boost, multi-exit, and VJ, the training set was bootstrapped when
a new stage was added to the cascade, for FCBoost when the false positive rate dropped
below 95%. For VJ and multi-exit cascades, which require the specification of the number
of cascade stages and a target false-positive and detection rate per stage, we used 20 stages,
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Figure 6: ROCs of various face detectors on MIT-CMU. The number in the legend is the av-
erage evaluation cost, i.e., average number of features evaluated per sub-window.

and the popular strategy of setting the false positive rate to 50% and the detection rate

to D
1
20
T . For FCBoost we used a last-stage cascade, since this structure achieved the best

balance between accuracy and speed in the previous experiment. We did not attempt to
optimize η, simply using η = 0.02. The cost factor C was initialized with C = 0.99. If after
a boosting update the cascade did not meet the detection rate, C was increased to

Cnew =
Cold + 1

2
. (65)

This placed more emphasis on avoiding misses than false positives, and was repeated until
the updated cascade satisfied the rate constraint. The final value of C was used as the
initial value for the next boosting update.

Figure 6 show the ROCs of all detectors. The average evaluation cost, i.e., average
number of features evaluated per sub-window, is shown in the legend for each method.
Note that the FCBoost cascade is simultaneously more accurate and faster than those of
all other methods. For example, at 100 false positives, FCBoost has a detection rate of
91% as opposed to 88% for multi-exit, 83% for VJ, and 80% for Wald boost. With regards
to computation, FCBoost is 7.1, 4, and 2.5 times faster than multi-exit, VJ, and Wald
boost, respectively. Overall, when compared to the FCBoost cascade, the closest cascade
in terms of detection rate (multi-exit, 3% drop) is significantly slower (7 times) and the
closest cascade in terms of detection speed (Wald boost, 2.5 times slower) has a very poor
detection rate (11% smaller).

We next considered the problem of pedestrian detection, comparing results to a large
set of state-of-the-art pedestrian detectors on the Caltech Pedestrian data set (Dollár et al.,
2012). In this literature, it is well known that a good representation for pedestrians must
account for both edge orientation and color (Dalal and Triggs, 2005; Dollár et al., 2009).
Similarly to Dollar et al. (Dollár et al., 2009), we adopted an image representation based on
a 10 channel decomposition. This included 3 color channels (YUV color space), 6 gradient
orientation channels, and a gradient magnitude channel. In all other aspects, the cascade
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86% VJ(2.24)

38% HOG(4.18)

59% FtrMine(12.5)

77% Shapelet(19.60)

72% PoseInv

43% MultiFtr(13.89)

39% HikSvm(5.41)

50% LatSvm−V1(2.55)

28% LatSvm−V2(1.59)

30% ChnFtrs(0.85)

33% FPDW(0.15)

36% Pls(55.56)

23% HogLbp(16.13)

23% FCBoost(0.80)

36% MultiFtr+CSS(37.4)

16% MultiFtr+Motion(50)

Figure 7: Accuracy curves and complexity of various pedestrian detectors on the Caltech
data set. Legend: (left) miss rates at 0.1 FPPI, (right) average time, in seconds,
required to process 480× 640 frame.

architecture was as before, e.g., using Haar wavelet features and decision stumps as weak
learners, the previously used values for parameters DT , and η, etc. When compared to
the face detection experiments, the only difference is that the set of weak learners was
replicated for each channel. At each iteration, FCBoost chose the best weak learner and
the best channel to add to the cascade predictor. The performance of the FCBoost cascade
was evaluated with the toolbox of (Dollár et al., 2012). Figure 7 compares its complexity
and curve of miss-detection rate vs number of false positives per image (FPPI) to those
of a number of recent pedestrian detectors. The comparison was restricted to the popular
near scale-large setting, which evaluates the detection of pedestrians with more than 100
pixels in height. The numbers shown in the left of the legend summarize the detection
performance by the miss rate at 0.1 FPPI. The numbers shown in the right indicated the
average time, in seconds, required for processing a 480 × 640 video frame. Note that the
evaluation is not restricted to fast detectors, including the most popular architectures for
object detection in computer vision, such as the HOG detector (Dalal and Triggs, 2005) or
the latent SVM (Felzenszwalb et al., 2010). For more information on the curves and other
methods the reader is referred to Dollár et al. (2012).

Two sets of conclusions can be derived from these results. First, they confirm the
observation that the FCBoost cascade significantly outperforms previous cascaded detectors.
A direct comparison is in fact possible against the ChnFtrs method (Dollár et al., 2009).
This work introduced the multi channel features that we adopt but uses the SoftCascade
algorithm (Bourdev and Brandt, 2005) for cascade learning. The resulting detector is among
the top methods on this data set, missing 30% of the pedestrians at 0.1 FPPI and using
0.85 seconds to process a frame. Nevertheless, the FCBoost cascade has substantially better
accuracy, missing only 23% of the pedestrians at 0.1 FPPI, and requires less time (a 6%
speed up). Second, the results of Figure 7 show that the FCBoost cascade is one of the most
accurate pedestrian detectors in the literature, and significantly faster than the detectors of
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comparable accuracy. In fact, only two detectors have been reported to achieve equivalent
or lower miss rates. The Hog-Lbp detector (Wang et al., 2009) has the same miss rate (23%
at 0.1 FPPI) but is 20 times slower. The MultiFtr+Motion (Walk et al., 2010) detector
has a smaller miss rate of 16% (at 0.1 FPPI) but is 62 times slower (almost 1 minute per
frame). The inclusion of this method in Figure 7 is somewhat unfair, since it is the only
approach that exploits motion features. All other detectors, including the FCBoost cascade,
operate on single-frames. We did not investigate the impact of adding motion features to
FCBoost. Finally, it should be noted that the FCBoost cascade could be enhanced with
various computational speed ups proposed in the design of the FPDW detector (Dollár
et al., 2010). This is basically a fast version of the ChnFtrs detector, using several image
processing speed-ups to reduce the time necessary to produce the image channels on which
the classifier operates. These speed-ups lead to a significant increase in speed (0.15 vs 0.85
seconds) at a marginal cost in terms of detection accuracy (33% vs. 30% miss rate at 0.1
FPPI). Since these enhancements are due to image processing, not better cascade design,
we have not considered them in our implementation. We would expect, however, to see
similar computational gains in result of their application to the FCBoost cascade.

8. Conclusions

In this work we have addressed the problem of detector cascade learning by introducing
the FCBoost algorithm. This algorithm optimizes a Lagrangian risk that accounts for both
detector speed and accuracy with respect to a predictor that complies with the sequential
decision making structure of the cascade architecture. By exploiting recursive properties
of the latter, it was shown that many cascade predictors can be derived from generator
functions, which are cascade predictors of two stages. Variants of FCBoost were derived
for two members of this family, last-stage and multiplicative cascades, which were shown to
generalize the popular independent and embedded stage cascade architectures. The concept
of neutral predictors was exploited to integrate the search for cascade configuration into the
boosting algorithm. In result, FCBoost can automatically determine 1) the number of cas-
cade stages and 2) the number of weak learners per stage, by minimizing the Lagrangian
risk. It was also shown that FCBoost generalizes adaboost, and is compatible with exist-
ing cost-sensitive extensions of boosting. Hence, it can be used to learn cascades of high
detection rate. Experimental evaluation has shown that the resulting cascades outperform
current state-of-the-art methods in both detection accuracy and speed.
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Abstract

In this paper, we propose an approach for learning regression models efficiently in an
environment where multiple features and data-points are added incrementally in a multi-
step process. At each step, any finite number of features maybe added and hence, the
setting is not amenable to low rank updates. We show that our approach is not only
efficient and optimal for ordinary least squares, weighted least squares, generalized least
squares and ridge regression, but also more generally for generalized linear models and lasso
regression that use iterated re-weighted least squares for maximum likelihood estimation.
Our approach instantiated to linear settings has close relations to the partitioned matrix
inversion mechanism based on Schur’s complement. For arbitrary regression methods, even
a relaxation of the approach is no worse than using the model from the previous step or using
a model that learns on the additional features and optimizes the residual of the model at
the previous step. Such problems are commonplace in complex manufacturing operations
consisting of hundreds of steps, where multiple measurements are taken at each step to
monitor the quality of the final product. Accurately predicting if the finished product will
meet specifications at each or, at least, important intermediate steps can be extremely
useful in enhancing productivity. We further validate our claims through experiments on
synthetic and real industrial data sets.

Keywords: linear regression, logistic regressions, lasso, group lasso, feature selection,
manufacturing

1. Introduction

Complex manufacturing is a multi-billion dollar industry, which encompasses diverse do-
mains ranging from semiconductor to pharmaceutical to consumer and snack products.
Each of these industries undertake complex operations that consist of hundreds of steps
from the beginning to the very end when the final product is produced. In each of these
steps, multiple measurements are made to monitor the process. Thus, every product has an
incremental history of measurements accumulated over time. The hope is that the final fin-
ished product will meet the necessary specifications. However, in each of these industries,
there are millions (to even billions) of dollars of losses every year because of out-of-spec
products. It would thus be extremely useful if one could efficiently utilize the accrued in-
termediate measurements or features to accurately predict the quality of the final product.
For example, in the semiconductor industry, wafers—which are a collection of chips—travel
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together in groups called lots through hundreds of processing steps with thousands of mea-
surements being accrued as the wafers reach the end. At this point, the quality of the wafers
is determined by either checking their speed or power. It can be extremely useful if one
could, at least at critical intermediate steps, provide an accurate estimate of the final speed
so as to possibly take corrective actions or avoid further processing.

In particular, the data flows through K steps as groups of data-points or a batch with
the target becoming available almost simultaneously for each member of the group at the
very end. We want to efficiently build a model at each step based on this data so as to
estimate the performance of forthcoming batches at these steps. There are multiple such
batches that flow through the processing steps and hence, we also want to update our model
at each step based on recently acquired data. Therefore, in our problem, both features and
data-points are added as batches move through the process and as new batches are created.
The notation used throughout the paper is given in Table 1 and an illustration of our
problem setting is shown in Figure 1.

The methods we propose for incremental updates with new feature additions are by
no means constrained only to manufacturing. They also are applicable to feature selection
algorithms such as least angle regression (Efron et al., 2004), the homotopy method for lasso
(Tibshirani and Taylor, 2011), or orthogonal matching pursuit (Hastie et al., 2009). These
feature selection methods must efficiently update the model whenever a new feature is added.
The most common approach is to keep a QR factorization of the regression matrix. This
factorization can be updated with every new feature added using either Givens rotations
or Householder reflections, which are both computationally efficient and numerically stable
(Golub and Loan, 1996).

The problem we study differs from the typical feature selection setting in two important
aspects. First, while most feature selection methods add one feature at a time, our method
is more suitable when many features are to be added at a time. Second, the QR factorization
can only be used with linear regressors, while our method also works with generalized linear
models. As a result, our methods can also be applied in more sophisticated settings, such
as to efficiently update regression models in non-linear group variable selection techniques
(Lozano et al., 2009, 2011).

Our method when instantiated to the linear regression case, where we minimize a least
squares objective, is closely related to the partitioned matrix inverse mechanism based on
Schur’s complement (Boyd and Vandenberghe, 2004). Although both absolve the need for
computing matrix inverses over the entire currently available feature set, our procedure has
an intuitive explanation. Moreover, our method is a meta-technique applicable to any base
regression method, and as you will see later, is an essential component in optimally updating
generalized linear models such as logistic regression, which as we know are non-linear.

In the rest of the paper, we first formally define our problem. We then propose a novel
algorithm, which we show to be optimal for generalized least squares and ridge regression.
We discuss its relation to the partitioned matrix inversion mechanism. We provide an
extension of our algorithm, which is efficient and optimal for generalized linear models.
We provide a relaxation of our algorithm, which can be used to efficiently update other
regression techniques and whose performance is no worse than using the model from the
previous step or using a model that learns on the additional features and optimizes the
residual of the model at the previous step.
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Term/Symbol Description

Step/Epoch The instant when new features become available.

Batch A set of data points that move through all the steps.

di Number of features accumulated till (and including) step i.

Xb
i ,xbi Input data from batch b with di and (di − di−1) features respectively.

M b
i ,mb

i Model built on the first di features with all the data till batch b

and only data in batch b respectively.

Y b Outputs corresponding to batch b.

Ŷ p
q ,Rp

q Matrix of predictions and the matrix of residuals respectively,

obtained by regressing inputs q on columns of p.

Table 1: The notation used in the paper. In much of the paper we drop the batch b from
the superscript since, we propose methods for efficient updates to models with
feature additions that are applicable to any batch.

M1
1 · · · M1

i · · · M1
K

...
...

...

M b
1 · · · M b

i · · · M b
K

mb
1 · · · mb

i · · · mb
K





1 i K
Step

1

b

B
at

ch

N1

Nb

Figure 1: Process where features and data-points are added, with new models being learned
at each step.

2. Problem Statement

Before describing the problem statement, we will introduce some notation. Let K denote
the number of steps in the process. Let di denote the number of features Fi = {f1, ..., fdi}
present at step i. It is important to note that Fi ⊃ Fi−1,∀i ∈ {2, ...,K} which implies
di > di−1,∀i ∈ {2, ...,K}. There are multiple batches that flow through the K steps and
we denote the size of one such batch b, by Nb. Based on a particular learning algorithm,
we denote the model learned at step i trained on data from batch b, by mb

i (local model).
Let M b

i (global model) denote the model based on all the data accumulated till batch b in
step i. For efficiency reasons, though we may not learn from scratch in step i using all the
available data, M b

i is obtained by potentially learning over a sample of size
∑b

j=1Nj . Thus,
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mb
i is a local model learned over just recent data, while M b

i is the model we will use to
predict the outcomes of the data points in the (b+ 1)th batch when they reach step i. Note
that for batch 1, the local and global models are the same, i.e., m1

i = M1
i ,∀i ∈ {1, ...,K}.

A pictorial representation of the process with notation is shown in Figure 1.
Let Xb

i (Nb × di matrix) and xbi (Nb × (di − di−1) matrix) denote all the input data
available1 in step i batch b and the input data for only the additional features in step
i batch b, i.e., {fdi−1+1, ..., fdi} respectively. Let Y b denote the final outcomes or target

in batch b. Let Ŷ p
q and Rpq denote the matrix of predictions and the matrix of residuals

respectively, obtained by regressing inputs q on columns of p based on a chosen regression
technique. Thus, if p is a matrix, each of its columns is considered a target and q is regressed
separately on each of them. Consequently, Ŷ Y

Xb
i

and RY
Xb

i
are the predictions and residuals

of the model mb
i respectively. Let Ij denote an identity matrix of rank j.

Given our dual goal of efficiently learning with i) new features and ii) with new data
points being added, we address each of these issues in isolation. With this, we have the
following two problems that we need to tackle:

I During any batch b of the K step process, given a model at step i ∈ {1, ...,K−1} learned
over di features {f1, ..., fdi} and a sample size Nb, how do we update this model at step
i + 1 with di+1 features {f1, ..., fdi , ..., fdi+1

} such that the resultant model is (a) no
less accurate than the model at step i? (b) no less accurate than the composite model
which consists of the model learned using only the additional features {fdi+1, ..., fdi+1

}
on the residuals of the model at step i? and (c) more efficient to learn than learning
from scratch over all the features available at step i+ 1 i.e., {f1, ..., fdi+1

}?

II At any step i in the K step process, given the model M b
i and the model mb+1

i , how do
we efficiently obtain the model M b+1

i ?

Though not completely solved, there has been extensive work to handle Question II
(Blum, 1996; Smale and Yao, 2005; Bottou and Cun, 2003). We thus focus our attention
on question I. Given this and for simplicity of notation, from here on, we do not refer to
the batch any more; that is, we drop b from the notation, since the methods we describe
are applicable to any batch in the process.

3. Methodology

In this section, we first suggest a meta-algorithm to successfully tackle question I. We then
show that not only can this algorithm be realized efficiently for ordinary least squares,
weighted least squares, generalized least squares and ridge regression, but it is also optimal
for these techniques. We also show that the algorithm can be used as a core function
to efficiently and optimally solve iterated re-weighted least squares procedures, which are
used to find the maximum likelihood estimates for Generalized Linear Models (McCullagh
and Nelder, 1990) and sometimes even Lasso (Tibshirani, 1994). For arbitrary regression
algorithms, it can be shown that even a relaxation of our technique results in a positive
response to questions I(a), I(b) and I(c). We refer to the optimal model in any step that

1. This includes the constant term.
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Algorithm 1 Proposed meta-algorithm—which can be embedded as a core function in
other algorithms—to update model built in step i during the next step i + 1. ζi are other
regression algorithm specific parameters.

Input: mi, R
Y
Xi

, Xi+1, Y and ζi.

Output: mi+1, R
Y
Xi+1

and ζi+1

Compute R
xi+1

Xi
{Use Xi to predict columns of xi+1 and compute the residual matrix.}

Regress R
xi+1

Xi
on RYXi

→ m̄i+1 {Regressing the residuals outputs the model on the right.}

Regress Xi on Y − Ŷ
RY

Xi

R
xi+1
Xi

→ m̂i {Regressing the input of step i with the previous residual

yields the model on the right.}
mi+1 = (m̂i; m̄i+1) {Composing these models, i.e., for example concatenating their pa-
rameter vectors, gives the final model.}
if i+ 1 == K then
{If i+ 1 is the last step.}
Return mi+1

else
Return mi+1, R

Y
Xi+1

and ζi+1

end if

is learned from scratch by method Standard. We refer to the model that learns on the
additional features and optimizes the residue of a model at the previous step by method
AFOR.

Algorithm 1 can be described as follows: First, we find the portion of the target that
was not modeled by the regression algorithm (residuals) in the previous step. We then try
to find the additional information that the new features in the current step contain. Using
this additional information we fit to the residuals in the previous step. The residuals from
this model are subtracted from the original target and the features in the previous step are
fit to this modified target. The final model is a composition of these two latter models.

Loosely speaking, the intuition behind Algorithm 1 is to find what additional benefit
the new features bring us in predicting the portion of the target that was not modeled
by the previously available set of features, and after the removal of their effect, we focus
on modeling this new modified target using the previously available set of features. This
procedure thus uses the old and new set of features to model, as much as possible, the
parts of the target that are not explained by the other, resulting in significantly reduced
redundancy in the final model.

We now see how effectively this method can be applied to different regression algorithms.
A comparison of the different approaches using different regression methods is shown in
Table 2. The computational complexity of each algorithm depends on the method used
to invert the matrices. The most suitable method depends on the size and sparsity of
the matrix (Golub and Loan, 1996; Saad, 1997). The fastest known algorithms have a time
complexity ofO(d2.3) but are generally not useful in practice because of a large multiplicative
constant (Coppersmith and Winograd, 1990).

2611



Dhurandhar and Petrik

OLS WLS GLS Ridge IRLS (for GLM and Lasso)

Efficiency, Optimality

Our Method (di+1 − di)× (di+1 − di) inverse, Optimal Smaller problem size, Optimal

Standard di+1 × di+1 inverse, Optimal Optimal

AFOR (di+1 − di)× (di+1 − di) inverse, Sub-optimal Sub-optimal

Table 2: Comparison of three meta-approaches across different regression algorithms in step
i+ 1. Standard denotes learning from scratch.

3.1 Generalized Least Squares and Ridge Regression

In least squares regression (Hastie et al., 2009), we minimize a quadratic loss function
wherein each datapoint may be weighted or unweighted (i.e., equi-weighted). Based on the
weighting scheme, we have the following three variants with each successive variant being a
generalization of the ones before. Ordinary Least Squares (OLS) is the unweighted variant.
Weighted Least Squares (WLS) is the variant, where the weight matrix is diagonal. Gener-
alized Least Squares (GLS) is the most general variant, wherein we have a full weight matrix
W . Ridge regression on the other hand is regularized OLS with a quadratic penalty (Hoerl
and Kennard, 1970).

We now instantiate Algorithm 1 for GLS with a quadratic penalty. We could refer to
this method as Generalized Ridge (GR) regression. Eliminating the penalty term or setting
W to the identity matrix in GR would give us instantiations for GLS and ridge regression
respectively.

The objective function minimized in step i for GR is

Qgr = (Y −Xiβi)
TW (Y −Xiβi) + λβi

Tβi,

where βi is the parameter vector we wish to estimate2 and λ > 0 is the regularization
parameter. The optimal βi is given by mi = (Xi

TWXi + λIdi)
−1Xi

TWY , where Idi is a
di × di identity matrix. To estimate βi+1 we use Algorithm 1 as follows:

• Rxi+1

Xi
= (IN −Hi)xi+1. Here ζi = Hi = Xi(Xi

TWXi + λIdi)
−1Xi

TW .

• m̄i+1 = (xi+1
TW (IN−Hi)xi+1+λI(di+1−di))

−1xi+1
T (IN−Hi)Y . This is a consequence

of the fact that Hi is idempotent.

• m̂i = (Xi
TWXi+λIdi)

−1Xi
TW (Y−xi+1m̄i+1) = mi−αim̄i+1, where αi = (Xi

TWXi+
λIdi)

−1Xi
TWxi+1.

• mi+1 = (m̂i; m̄i+1). Now mi+1 can be immediately used to obtain predictions for new
batches whose target is currently unknown and have reached step i+ 1.

• If i + 1 < K, then return mi+1, R
Y
Xi+1

and Hi+1. Here Hi+1—which also deter-

mines (Xi+1
TWXi+1 + λIdi+1

)−1—can be computed from (Xi
TWXi + λIdi)

−1 and

2. For simplicity of notation assume the data has zero intercept or the constant term is included in Xi.
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(xi+1
TW (IN − Hi)xi+1 + λI(di+1−di))

−1 using standard partitioned matrix inversion
property with only matrix multiplications but no more inversions (Boyd and Vanden-
berghe, 2004).

Let us now see why this method is more efficient than performing regression from scratch
in step i+1. If we performed regression from scratch we would have had to invert a di+1×di+1

matrix. In our case however, we have to invert only a (di+1 − di) × (di+1 − di) matrix in
step i + 1. The reason for this is that (Xi

TWXi + λIdi)
−1, which is a di × di matrix, is

already available from step i. Moreover, our method is also more efficient at obtaining
the current step model than applying the partitioned matrix inversion property based on
Schur’s complement directly, because although no more inversions are required by it there
are many more matrix multiplications that have to be performed.

For instance, based on Schur’s complement and the partitioned matrix inversion mech-
anism we would compute the optimal estimate for βi+1 denoted by βopti+1 as follows

βopti+1 =

[
Xi

TWXi + λIdi Xi
TWxi+1

xTi+1WXi xTi+1Wxi+1 + λI(di+1−di)

]−1(
Xi

T

xTi+1

)
Y

=

[
A−1 +A−1UC−1V A−1 −A−1UC−1

−C−1V A−1 C−1

](
Xi

T

xTi+1

)
Y

, (1)

where A = Xi
TWXi+λIdi , U = Xi

TWxi+1, V = xTi+1WXi and C = xTi+1W (IN−Hi)xi+1+
λI(di+1−di). Here C is the Schur’s complement.

It turns out that our estimate mi+1 = βopti+1 and is thus optimal for GR regression as
seen below.

Theorem 1 If we use GR regression in our process, then in any step i + 1, where i ∈
1, ...,K − 1, mi+1 is the optimal GR estimator.

Proof Equation (1) can be expanded and rewritten as follows

βopti+1 =

[
A−1 +A−1Xi

TWxi+1C
−1xTi+1WXiA

−1 −A−1Xi
TWxi+1C

−1

−C−1xTi+1WXiA
−1 C−1

](
Xi

T

xTi+1

)
Y

=

(
A−1Xi

TW (Y −A−1Xi
TWxi+1

TC−1xi+1
T (IN −Hi)Y )

C−1xi+1
T (IN −Hi)Y

)
=

(
(Xi

TWXi + λIdi)
−1Xi

TW (Y − xi+1m̄i+1)
(xi+1

TW (IN −Hi)xi+1 + λI(di+1−di))
−1xi+1

T (IN −Hi)Y

)
=

(
m̂i

m̄i+1

)
= mi+1

.

Remark 1 The result in Theorem 1 implies that using Algorithm 1, we get efficient and
optimal estimates for OLS, WLS, GLS and ridge regression in step i+ 1.
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Algorithm 2 Method to update model built using IRLS in step i during the next step
i+ 1, using Algorithm 1.

Input: mi or βi, R
z
ti
i
Xi

, Xi+1, Y , ztii , Hti
i , W ti

i , εD ∈ (0, 1] and εβ ≥ 0.

Output: mi+1 or βi+1, R
z
ti+1
i+1

Xi+1
and H

ti+1

i+1

Run Algorithm 1 with inputs mi, R
z
ti
i
Xi

, Xi+1, z
ti
i , Hti

i and W ti
i

if P [Di+1 > −2(L(mi+1|Xi+1, Y )− L)] ≤ εD then
{Checking deviance, where L is the max possible log-likelihood value.}
z
ti+1

i+1 = ztii+1, W
ti+1

i+1 = W ti
i

else if maxj∈{1,...,di}|mi+1(j)−mi(j)| ≤ εβ then

Let m̂i+1 = (mi+1(1), ...,mi+1(di))
T

Run IRLS only on xi+1 from this point onward with m̂i+1 fixed
Let m̄i+1 be the optimal solution of the above IRLS run
mi+1 = (m̂i+1; m̄i+1)

else

Run IRLS using output from Algorithm 1 i.e., mi+1, R
z
ti
i+1

Xi+1
and Hti

i+1

end if

Return mi+1, R
z
ti+1
i+1

Xi+1
and H

ti+1

i+1

W 1
1 , z

1
1 , Xi W 1

1 , z
1
1 , Xi+1

W ti
i , z

ti
i , Xi W ti

i , z
ti
i , Xi+1

standard after

ti iterations

Algorithm 1

Taylor approx.

after ti itera-

tions

Figure 2: The figure shows where Algorithm 1 can be used to efficiently transform the
optimal solution in step i to a solution in step i+ 1.

3.2 Generalized Linear Models and Lasso using IRLS

Generalized Linear Models (GLMs) assume that the target is generated from certain specific
distributions belonging to the exponential family. Normal, Poisson, binomial, gamma and
exponential are some of the distributions that are considered. The target is related to
a linear combination of the inputs through a linear or non-linear function called the link
function. Formally, if we learned a GLM in step i, we would have the following relationship

E[Y ] = Ŷ Y
Xi

= g−1(Xiβi),

where g(.) is the link function. For a normal distribution g(.) is identity and the resultant
regression method is just OLS. For a binomial g(.) is the logit function and if values of the
target lie in [0, 1], then the resultant regression method is logistic regression.
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Lasso (Tibshirani, 1994) is L1 regularized OLS. It is usually used to solve under-
determined systems of equations, where we have more features than data points. The
idea here is to avoid over-fitting and choose features that are truly predictive. Formally, a
lasso in step i would minimize the following objective

QL = (Y −Xiβi)
T (Y −Xiβi) + λ|βi|1.

3.2.1 Iteratively Re-weighted Least Squares

Both of the above classes of regression methods can be solved using iterative procedures.
Iteratively Re-weighted Least Squares (IRLS) is a popular technique used to find the max-
imum likelihood estimates (MLE) for GLMs. Although there are other preferred methods
to solve lasso, IRLS is still an effective method in this context. IRLS usually uses Newton
Raphson updates, where the updated predictions at each iteration determine the weight
matrix and the target in the next iteration. In particular, if W

tj
i and z

tj
i are the weight

matrix and target in step i, and in the tthj iteration respectively, then the weight matrix
is a N × N diagonal matrix whose diagonal elements correspond to the reciprocal of the
variances computed from predictions in the previous iteration (tj − 1). z

tj
i on the other

hand is given by Xiβ
tj−1
i +W

tj
i (Y − Ŷ z

tj−1

i
Xi

).
On the left hand portion of Figure 2, we see that in step i if we run IRLS, we get

the optimal solution after ti iterations. This optimal solution corresponds to an optimal
weight matrix W ti

i and an optimal target z
tj
i . Using this weight matrix and target we can

efficiently obtain the corresponding WLS solution in step i + 1 using Algorithm 1. This
solution relates to performing IRLS in step i + 1, where at each iteration we approximate
(zeroth order) the predictions around R

xi+1

Xi
xi+1 using Taylor expansion

Ŷ
z
tj
i+1

Xi+1
= Ŷ

z
tj
i

Xi
+R

xi+1

Xi
xi+1s(Xi+1, z

tj
i+1),

where s(.) is a function denoting higher order terms. Hence, at each iteration if we take
the zeroth order approximation, then the WLS problem solved has the same weight matrix
and target as that solved in step i at the same iteration. This is depicted on the right hand
side of Figure 2.

3.2.2 Understanding Algorithm 2

In Algorithm 2, we first use Algorithm 1 to find the optimal solution in the current step
i + 1 of the WLS problem at iteration ti in step i. The weight matrix and target in this
WLS problem correspond to the optimal IRLS solution in step i. We then check to see if
the probability of deviance Di+1 (McCullagh and Nelder, 1990) being greater than twice
the difference between the max possible log-likelihood value (i.e., if Ŷ Y

Xi+1
= Y ) and the

log-likelihood of the current solution is less than a small constant εD. Deviance is a statistic
that measures goodness of fit. For any step i, Di = −2(L(mi|Xi, Y )−L), where mi denotes
a corresponding optimal model. Asymptotically, Di has a χ2 distribution with N − di
degrees of freedom. Using this fact we can compute the required probability in Algorithm
2 and check for the specified condition. A small value of the probability indicates that we
are already near an optimal solution and hence, we have a satisfactory solution.
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If this condition is not satisfied, we then check to see what is the maximum change in the
di parameter values going from the optimal IRLS solution in step i to our current solution
in step i+ 1. If the maximum change is small, i.e., ≤ εβ, we fix these parameters and only
run IRLS on the remaining set. A small change in the previous step parameters indicates
that the new set of features in step i + 1 are practically orthogonal to step i features and
hence, the previous step parameters will change little as we approach the optimal solution
in the current step.

If neither of the above conditions are satisfied we simply run IRLS, starting at the
current solution.

3.2.3 Analysis

It is easy to see that if the first condition in Algorithm 2 is satisfied, then we have reached our
desired solution and hence, this is definitely more efficient than starting from the beginning.
The question is, are we doing better in the other two cases, namely, when only the second
condition is satisfied or when neither condition is satisfied? The latter scenario is probably
worse since, we are solving at each iteration a WLS problem with di+1 features rather than
di+1 − di features. We cannot claim for certain that these two scenarios are more efficient
than learning afresh in step i+ 1, but the following two results along with experiments on
real industrial data lead us to strongly believe that this is the case.

As the log-likelihood of the predictions increases after each iteration in step i, the vari-
ances and hence, the weight matrix approach the true weight matrix. Hence, the optimal
weight matrix in step i represents the variances much more accurately than starting with
the default, which is uniform weights.

Remark 2 Using the optimal weight matrix and target of step i as a starting point for step
i+ 1 has a higher log-likelihood solution than starting with the defaults, i.e., uniform weight
matrix and the original target (Pregibon, 1981; Wang, 1987; McCullagh and Nelder, 1990).

Based on Remark 2, one might ask, does starting from a higher likelihood point guar-
antee us faster convergence or fewer iterations? Loosely speaking, in the proposition that
follows, we show that better initialization leads to no worse a solution after the same number
of iterations.

Proposition 1 When using IRLS, if two feasible points β1 and β2 are in the neighborhood
of the same local optimum γ of a log-likelihood function where the Hessians exist and the
first partial derivatives are non-zero, with L(β1|X,Y ) ≥ L(β2|X,Y ), then a tight upper
bound on the distance of the solutions starting at each of these points to γ after t iterations
has the following relationship, ηt(β1) ≤ ηt(β2), where ηt(.) is a function that takes as input
the starting point and outputs the required upper bound on the distance at iteration t.

Proof Let γ be the root of the log-likelihood function L(.). The log-likelihood is always
conditioned on inputs and outputs but for notational conciseness we do not repeatedly write
this here. Let βtj denote the solution of IRLS at iteration t starting from the initial point
βj . Thus, by Taylor expansion starting from β1 at iteration t we have

L(γ) = L(βt1) +5L(βt1)
T (γ − βt1) +

1

2
(γ − βt1)TF (βt1)(γ − βt1),
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where 5 denotes the gradient and F (.) denotes the hessian. Since, γ is the root of the
above function and after pre-multiplying by the inverse of the Jacobian at βt1 we have

γ − βt1 + J−1(βt1)L(βt1) = −1

2
J−1(βt1)(γ − βtj)TF (βt1)(γ − βt1)

γ − βt+1
1 = −1

2
J−1(βt1)(γ − βtj)TF (βt1)(γ − βt1)

,

since, βt+1
1 = βt1 − J−1(βt1)L(βt1). Now if we take norm on both sides we get

|γ − βt+1
1 | = 1

2
|J−1(βt1)F (βt1)||γ − βt1|2.

Let ∆t
1 = |γ − βt1|. Thus

∆t+1
1 =

1

2
|J−1(βt1)F (βt1)|∆t

1
2
.

Let Nj denote the neighborhood around γ such that Nj = {β|L(β) ≥ L(βj)}. Let
uj = supβ∈Nj

1
2 |J
−1(β)F (β)|. We thus have

∆t+1
1 ≤ u1∆t

1
2

≤ ut1∆1
1
2

= ηt+1(β1)
,

where ηt+1(β1) = ut1∆
1
1
2
. Similarly, if we started at β2 we would have

∆t+1
2 ≤ ηt+1(β2).

Now if L(β1) ≥ L(β2), then N1 ⊂ N2 and hence, u1 ≤ u2. Moreover, ∆1
1 ≤ ∆1

2. Based
on these two facts we would have

ηt+1(β1) ≤ ηt+1(β2).

The assumptions in Proposition 1 about local Hessians and the Jacobian matrix are stan-
dard assumptions used in proving convergence of Newton-Raphson’s method (Luenberger,
1984). These are not additional assumptions that we make.

Based on Remark 2 and Proposition 1, we can say that starting from the optimal weight
matrix and target of the previous step i will lead to fewer iterations in the current step i+1,
which means faster convergence.

Note that our suggested technique is also more efficient than doing a warm start in
the current step using the optimal weight matrix and target from the previous step. This
is because even in the worst case where none of the conditions are satisfied, finding the
solution of the corresponding WLS problem in the current step is, as discussed before, more
efficient using Algorithm 1 rather than learning from scratch.
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3.3 Other Regression Techniques

In the previous sections, we showed that using Algorithm 1 just by itself or using it as
a core function in other algorithms can lead to optimally and efficiently solving regression
problems that use a rich class of regression techniques. This naturally implies that questions
I(a), I(b) and I(c) in Section 2 have been answered positively for these cases. In this section,
we try to answer these questions for arbitrary linear or non-linear regression algorithms.

If we again use Algorithm 1 for an arbitrary regression algorithm, it may very well
provide accurate predictions but is likely to be inefficient. The most expensive computation
in Algorithm 1 would be computing the residual of fitting Xi onto each column of xi+1. This
could potentially lead to running the chosen regression algorithm di+1− di times. We want
to save on these computations and therefore, we relax Algorithm 1, where we simply fit
xi+1 to RYXi

rather than fitting R
xi+1

Xi
to RYXi

. Let us refer to this new version of Algorithm

1 by Algorithm 1(r). Let us now see if Algorithm 1(r) also results in a positive response to
questions I(a), I(b) and I(c).

Let us denote the error or residual of the optimal model built in step i (previous step)
by δprev. If AFOR optimizes the residual of this model—which leads to the best AFOR
model—based on xi+1, then we denote its error by δbstAFOR. Let the error of our relaxed
method be denoted by δ1(r) . With this, we have the following result,

Proposition 2 Algorithm 1(r) in step i+ 1 is no less accurate than the model in step i and
AFOR in step i+ 1, i.e., δ1(r) ≤ δbstAFOR ≤ δprev.

Proof We have δprev = RYXi
and δbstAFOR = R

RY
Xi

xi+1 . Thus, δbstAFOR can be written as,

δbstAFOR = R
δprev
xi+1 . Since in AFOR we optimize the residual of the model at the previous

step, we have
δprev ≥ δbstAFOR.

In our relaxed method, we first fit xi+1 to RYXi
. We then fit Xi to Y (r) = Y − Ŷ

RY
Xi

xi+1 and

whose error maybe denoted by δ1(r) = RY
(r)

Xi
. Thus, δ1(r) can be written as, δ1(r) = R

δbstAFOR
Xi

and since we optimize the residual of AFOR we have

δbstAFOR ≥ δ1(r) .

Proposition 2 implies a positive response to questions I(a) and I(b). It is also easy to
see that Algorithm 1(r) is more efficient than learning over the whole space and hence, we
also have a positive response for I(c). If we further relax Algorithm 1 to exclude fitting Xi

to Y (r), then our method is reduced to AFOR.

4. Addressing Question II

In the previous sections we provided techniques to update an existing model based on a
new set of available features. In this section, we want to tackle the complimentary problem
of updating a model in a particular step based on a new batch.

2618



Methods for Updating Models with Multiple Feature Additions

0 200 400 600 800 1000
0

100

200

300

400

d

T
im

e
 (

s
e

c
.)

AFOR

Our Method

Standard

QR

Figure 3: Total training time for OLS summed over the three steps for the different methods
with different number of features d added at each step.

There are numerous works in online learning (Blum, 1996; Smale and Yao, 2005; Bottou
and Cun, 2003), where existing models are updated using stochastic techniques in time
proportional to the newly added information. A common update procedure for many para-
metric models is to perform additive updates. Thus, in step i and based on the data up
until batch b, if we have a model Mi and we learn a model based on batch b+ 1, mb+1

i , then
the model based on data up until batch b+ 1 would be given by

M b+1
i = M b

i + ν(mb+1
i −M b

i ),

where νb ∈ [0, 1] is the learning rate when batch b+ 1 becomes available. It is reasonable to
make νb a function of Nb+1 and S =

∑b
j=1Nj , where the learning rate is higher when mb+1

i

is obtained by learning over a relatively larger data set. For example, νb =
Nb+1

Sb+1
. Other

possible updates are multiplicative updates (Arora et al., 2005), where the original model
M b
i can be updated based on its error in relation to the error of mb+1

i .

5. Experiments

In this section, we empirically validate our claims through synthetic and real data experi-
ments.

5.1 Synthetic Experiments

We consider the setting where we have three feature subsets or steps (i.e., K = 3) each
of d dimensions. We generate data from a 3d + 1 dimensional Gaussian, where the first d
dimensions make up the first representation X1, the next d make up the next representation
X2, while the remaining but the last make up the third representation X3. The final
dimension corresponds to the target. We set the variances of each of the variables to 1.
Since we want to model a realistic scenario, where the correlation between the target and
the features is low and non-uniform, we set the correlation of the target with the features in
the a) first representation to 0.1, b) second representation to 0.2 and c) third representation
to 0.3. The other off-diagonal entries in the correlation matrix are set to 0.5. With this
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Figure 4: Average log-likelihood of the final model for the different methods with different
number of features d added at each step for OLS.
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Figure 5: Total training time summed over the three steps for the different methods with
different number of features d added at each step for logistic regression.
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Figure 6: Average log-likelihood of the final model for the different methods with different
number of features d added at each step for logistic regression.
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correlation matrix and the mean set to zero we generate 100 data sets of 10000 points for
each of the three values of d, namely: a) d = 100, b) d = 500 and c) d = 1000.

We compare the performance of our algorithms with a) learning from scratch i.e., stan-
dard, b) AFOR and c) QR decomposition based updates using Givens rotations (Stewart,
2001; Golub and Loan, 1996) or warm starting (QR and WS), for two regression methods
namely, OLS regression and logistic regression (εβ = εD = 0.1). QR decomposition (Stew-
art, 2001) is only efficient in the OLS case since for logistic regression we have to perform
the decomposition—not simply update—at every step as the optimal weight matrix and
target keep changing. Thus, we use QR only for OLS, while warm starts are only applicable
for logistic regression. For logistic regression, we discretize the target where we insert a
value of 1 if the target has value ≥ 0, otherwise we insert a 0. We perform 10-fold cross
validation and report the total training time summed over the three steps and the average
test likelihood of the final model for each value of d with a 95% confidence interval.

In Figure 3, we see that the standard method takes significantly more time than the
other methods. Our method is almost as fast as AFOR which is very promising and much
faster than QR based updates. The performance gain of our method compared to the other
optimal methods improves as d increases. In Figure 4, we see that AFOR is significantly
worse in terms of accuracy than the other methods which are all optimal. In Figure 5, we
see a similar trend as in the OLS case. However, the speedup of our method is greater and
for the case with the highest d, our method is even faster than AFOR. A possible reason
for this is that in one or more steps the updating using Algorithm 1 is much better than
starting from the default even with just the added features. Here again, as seen in Figure
6, AFOR has much lower accuracy than the other methods that are optimal.

5.2 Real Data Experiments

We evaluate our methods on two real industrial data sets obtained from diverse domains.
The first experiment is on a chip production data set obtained from the semiconductor
industry. In this empirical study we compare the different updating strategies mentioned
in this paper to learn a regression model. In the second experiment, we consider a finance
data set, where we want to find which sources of information (or feature sets) are predictive
of the final revenue. In this case, we run LogitGOMP (Lozano et al., 2011) to select the
feature sets. When a feature set is selected, we update the current model using the different
updating strategies. We then compare the runs of LogitGOMP based on these different
strategies. Through this experiment we show that our method can also be effectively used
to speed up sophisticated group variable selection techniques in real world settings. In both
the experiments we add another straw man, which learns only on the features available at
the particular step. We refer to this method, which learns only on the additional features
as AF.

5.3 Regression in Chip Manufacturing

We first provide some background of the chip manufacturing process and describe the
general setup. We then discuss the major takeaways from the conducted experiments.
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Figure 7: Test set accuracy of the methods in classifying wafers as in spec or out of spec at
the respective steps for OLS.
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Figure 8: Test set accuracy of the methods in classifying wafers as in spec or out of spec at
the respective steps for logistic regression.
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Figure 9: Training set accuracy of the different methods in classifying wafers as in spec or
out of spec at the respective steps for OLS.
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Step 2 Step 3

Time Ltr(.) Ltst(.) Time Ltr(.) Ltst(.)
Our Method 20.6 -1991.8 -2156.2 17.8 -1742.1 -1895.5

Standard 100.1 -1991.8 -2156.2 145.9 -1742.1 -1895.5

AFOR 20.4 -2693.4 -3482.5 17.5 -2176.7 -3285.2

AF 20.2 -3793.7 -4755.5 17.4 -3893.7 -4712.3

QR 72.3 -1991.8 -2156.2 67.5 -1742.1 -1895.5

Table 3: Average time (in sec.) the least squares methods take to train in each of the
steps, the average training log-likelihood value Ltr(.) in the respective steps and
the average test log-likelihood value Ltst(.) in the respective steps.

Step 2 Step 3

Time Ltr(.) Ltst(.) Time Ltr(.) Ltst(.)
Our Method 216.2 -0.5 -1.7 385.7 -0.1 -1.2

Standard 2085.8 -0.5 -1.7 3960.9 -0.1 -1.2

AFOR 206.2 -8.9 -12.8 374.7 -7.3 -11.4

AF 206.2 -20.9 -22.8 374.4 -27.3 -31.4

WS 556.7 -0.5 -1.7 791.2 -0.1 -1.2

Table 4: Average time (in sec.) the logistic regression approaches take to train in each of
the steps, the average training log-likelihood value Ltr(.) in the respective steps
and the average test log-likelihood value Ltst(.) in the respective steps.

5.3.1 Setup

We consider a real semiconductor process of microprocessor or chip production. In our
data, a single data point is a wafer, which is a group of chips, and measurements which
correspond to input features that are made on this wafer throughout its production. The
target that is used to evaluate the quality of the wafer, in this case, is the speed of the
wafer, which is the median of the speeds of its chips. Speed is usually used to diagnose
the health of a wafer and needs to be within specifications. A slow wafer is undesirable
for obvious reasons, but a fast wafer is also bad since it consumes too much power and
can lead to overheating. The wafer speed prediction problem is quite challenging since the
measurements are noisy and the speeds vary considerably from wafer to wafer relative to
the spec. The wafers indicated as out of spec are usually discarded to save time and money
in downstream processing. In some cases, they are re-routed for corrective action. In some
isolated cases, wafers that are not too far out of spec may even be processed further and
queued for low-end products. It takes a few months to produce a wafer as it goes through
many complex high precision steps. Though the overall processing time maybe in the order
of months, as each process takes a significant amount of time, the wafers move from one
step to the next within a few minutes. It is thus important that we quickly estimate the

2623



Dhurandhar and Petrik

1 1.5 2 2.5 3
85

90

95

100

Step
T

ra
in

in
g

 A
c

c
u

ra
c

y

AFOR

Our Method, Standard, QR

AF

Figure 10: Training set accuracy of the methods in classifying wafers as in spec or out of
spec at the respective steps for logistic regression.

speed after measurements from the finished step become available if we are to take any of
the previously mentioned remedial actions.

We consider three critical steps in the manufacturing process with our data spanning
over three batches. The first is the wafer polishing step referred to as chemical-mechanical
planarization. Here the wafer is smoothed with removal of unnecessary material. During
this step, various pressures—viz. condition head pressure, head zone pressures, etc.—and
torques are measured indicating the amount of force the wafer is subjected to. The second
step we consider is the etching step, where any remaining abnormalities in the photo-
resistance on the wafer are removed by plasma ashing. Here the quantity and temperature
of the plasma are controlled among other things and corresponding temperatures, pressures
and concentrations are measured. The third and final step we consider is the rapid thermal
processing step. In this step the electrical properties such as the material dielectric are
altered. To alter the electrical properties, the wafer is subjected to sudden temperature
ramps at tightly controlled pressures and chemical flows. Hence, here ramp up temperatures,
ramp up rates, cool-down rates and various pressures and flows are measured.

By the time the wafer reaches the first step, 2287 measurements are taken. By the
second step we have 3317 measurements. Finally we have 4284 measurements by the third
step. Each of the three batches have 8926 wafers. In each of the steps, we train over the
first batch and test over the second. We then train over the second batch and test over the
third. We report the average training time and the average train and test log-likelihoods3

for each step in Tables 3 and 4.

In this experiment, we compare the performance of our algorithms with a) learning from
scratch, i.e., standard, b) AFOR, c) AF and d) QR decomposition based updates (Stewart,
2001) or warm starting (QR and WS), for two regression methods, namely, OLS regression
and logistic regression (εβ = εD = 0.1) as in the synthetic case. The metric we use to
evaluate the approaches is the time it takes for the local models to find the solution and the
corresponding log-likelihood value at the solution. The higher the log-likelihood and the
less time it takes to get to it, the better the method. For logistic regression, we discretize

3. We do not report the confidence intervals since, the variances are insignificant.
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Approaches Time Ltr(.) Ltst(.)
Our Method 2.2 ± 0.1 -561.3 ± 1.1 -782.2 ± 1.3

Standard 10.4 ± 0.2 -561.3 ± 1.1 -782.2 ± 1.3

AFOR 2.9 ± 0.1 -605.2 ± 1.3 -841.6 ± 1.9

AF 2.8 ± 0.1 -1605.2 ± 1.8 -1841.6 ± 2.1

WS 7.8 ± 0.2 -561.3 ± 1.1 -782.2 ± 1.3

Table 5: Average running time (in seconds) of LogitGOMP, the average training log-
likelihood value Ltr(.) and the average test log-likelihood value Ltst(.) with a 95%
confidence interval.

the target based on specifications to denote either within spec by 1 or out of spec by 0. In
all the three batches, roughly 20% of the wafers are out of spec.

5.3.2 Observations

In Tables 3 and 4, we see the results for step 2 and step 3 across the three batches. We do
not show step 1 since we have to learn from scratch for all the models. The results show
that our methods are optimal and significantly more efficient than the standard method.
Our methods are also more efficient than QR and WS. AF and AFOR are efficient since
they learn only on the additional features but are sub-optimal. Our methods are almost as
efficient as AF and AFOR, which is very encouraging.

In Figures 7, 8, 9 and 10 we observe the test and training set accuracy in classifying
wafers as within spec or out of spec based on the predictions obtained from OLS and
logistic regression. The OLS predictions of the wafer speed are easily categorized into the
two classes by considering the acceptable speed range given in the specification. In all the
four figures we see that our method, which is optimal, performs significantly better than
AFOR and AF as new features become available, even though it has comparable running
time to both of them, as is seen in Tables 3 and 4. The poor performance of AF and AFOR
indicates that the features across the various steps are correlated and are required to build
an accurate predictive model.

5.4 Group Feature Selection in Finance

We consider a financial data set which is composed of three sources of information. Each
of the three sources spans over two years and the data we have is at a weekly level. Thus,
the number of data points is 104. The first source contains aging information of different
deals, that is, how much time the different deals were in different financial stages before
they were either won or lost. There are 105 features in this group. The second source is
competitive information about different size bids made and how many of those were won.
There are 21 features that characterize this group. The third source has information about
important product launches over this two year period. There are five important product
lines leading to five features. We want to find which of these groups have a significant
effect in determining the revenue. Given that we run LogitGOMP, which learns a logistic
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regression model, we normalize the revenue, our target, using the sum over the two year
period. We divide the data into 8 quarters and perform 8-fold cross-validation as predicting
an entire quarter is of more interest than predicting randomly scattered weeks.

Table 5 shows that our method (εβ = εD = 0.1) is almost 5 times faster than the
standard method and about 3.5 times faster than WS. Interestingly, it is also faster than
AF and AFOR. The reason for this is that, in the second step, condition two in Algorithm
2 is satisfied and we have the optimal weight matrix and target from the previous update
step in LogitGOMP, which is a better starting point than starting from the default during
updates.

6. Discussion

It is important to note that the problem addressed in this paper is somewhat complimentary
to stagewise learning. Stagewise learning mainly addresses the problem of feature selection,
where coefficients are estimated for one feature at a time. Forward selection (Weisberg,
1980) and least angle regression (Efron et al., 2004) are examples of stagewise learning
techniques. On the other hand, ours is a meta-learning technique—not limited to any
particular regression algorithm—that considers all new features simultaneously with the
final goal of learning a predictive model accurately and efficiently.

Our methods are also more general than the incremental feature learning method based
on autoencoders to update an existing model(Zhou et al., 2012). This method makes the
strong assumption of bounded input and output and the number of features considered
at each step is a free parameter. The method is somewhat similar to AFOR as only new
features are used to optimize the residual of the model learned over old features. Moreover,
our methods are also more general than QR decomposition (Stewart, 2001), which is mainly
used for efficient updates in OLS problems.

In the future, it would be interesting to update an existing model simultaneously based
on added features and data points rather than doing it sequentially. One may be able to
merge the ideas in this paper with the vast online learning literature. However, the main
challenge in developing such a method would be guaranteeing accuracy while maintaining
efficiency.
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Abstract

Several existing methods have been shown to consistently estimate causal direction assum-
ing linear or some form of nonlinear relationship and no latent confounders. However,
the estimation results could be distorted if either assumption is violated. We develop
an approach to determining the possible causal direction between two observed variables
when latent confounding variables are present. We first propose a new linear non-Gaussian
acyclic structural equation model with individual-specific effects that are sometimes the
source of confounding. Thus, modeling individual-specific effects as latent variables allows
latent confounding to be considered. We then propose an empirical Bayesian approach for
estimating possible causal direction using the new model. We demonstrate the effectiveness
of our method using artificial and real-world data.

Keywords: structural equation models, Bayesian networks, estimation of causal direc-
tion, latent confounding variables, non-Gaussianity

1. Introduction

Aids to uncover the causal structure of variables from observational data are welcomed
additions to the field of machine learning (Pearl, 2000; Spirtes et al., 1993). One conventional
approach makes use of Bayesian networks (Pearl, 2000; Spirtes et al., 1993). However, these
suffer from the identifiability problem. That is, many different causal structures give the
same conditional independence between variables, and in many cases one cannot uniquely
estimate the underlying causal structure without prior knowledge (Pearl, 2000; Spirtes et al.,
1993).

To address these issues, Shimizu et al. (2006) proposed LiNGAM (Linear Non-Gaussian
Acyclic Model), a variant of Bayesian networks (Pearl, 2000; Spirtes et al., 1993) and struc-
tural equation models (Bollen, 1989). Unlike conventional Bayesian networks, LiNGAM is a
fully identifiable model (Shimizu et al., 2006), and has recently attracted much attention in
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machine learning (Spirtes et al., 2010; Moneta et al., 2011). If causal relations exist among
variables, LiNGAM uses their non-Gaussian distributions to identify the causal structure
among the variables. LiNGAM is closely related to independent component analysis (ICA)
(Hyvärinen et al., 2001b); the identifiability proof and estimation algorithm are partly based
on the ICA theory. The idea of LiNGAM has been extended in many directions, including
to nonlinear cases (Hoyer et al., 2009; Lacerda et al., 2008; Hyvärinen et al., 2010; Zhang
and Hyvärinen, 2009; Peters et al., 2011a).

Many causal discovery methods including LiNGAM make the strong assumption of no
latent confounders (Spirtes and Glymour, 1991; Dodge and Rousson, 2001; Shimizu et al.,
2006; Hyvärinen and Smith, 2013; Hoyer et al., 2009; Zhang and Hyvärinen, 2009). These
methods have been used in various application fields (Ramsey et al., 2014; Rosenström
et al., 2012; Smith et al., 2011; Statnikov et al., 2012; Moneta et al., 2013). However, in
many areas of empirical science, it is often difficult to accept the estimation results because
latent confounders are ignored. In theory, we could take a non-Gaussian approach (Hoyer
et al., 2008b) that uses an extension of ICA with more latent variables than observed
variables (overcomplete ICA) to formally consider latent confounders in the framework of
LiNGAM. Unfortunately, current versions of the overcomplete ICA algorithms are not very
computationally reliable since they often suffer from local optima (Entner and Hoyer, 2011).

Thus, in this paper, we propose an alternative Bayesian approach to develop a method
that is computationally simple in the sense that no iterative search in the parameter space
is required and it is capable of finding the possible causal direction of two observed vari-
ables in the presence of latent confounders. We first propose a variant of LiNGAM with
individual-specific effects. Individual differences are sometimes the source of confounding
(von Eye and Bergman, 2003). Thus, modeling certain individual-specific effects as latent
variables allows a type of latent confounding to be considered. A latent confounding vari-
able is an unobserved variable that exerts a causal influence on more than one observed
variables (Hoyer et al., 2008b). The new model is still linear but allows any number of latent
confounders. We then present a Bayesian approach for estimating the model by integrating
out some of the large number of parameters, which is of the same order as the sample size.
Such a Bayesian approach is often used in the field of mixed models (Demidenko, 2004) and
multilevel models (Kreft and De Leeuw, 1998), although estimation of causal direction is
not a topic studied within it.

Granger causality (Granger, 1969) is another popular method to aid detection of causal
direction. His method depends on the temporal ordering of variables whereas our method
does not. Therefore, our method can be applied to cases where temporal information is
not available, i.e., cross-sectional data, as well as those where it is available, i.e., time-series
data.

The remainder of this paper is organized as follows. We first review LiNGAM (Shimizu
et al., 2006) and its extension to latent confounder cases (Hoyer et al., 2008b) in Section 2.
In Section 3, we propose a new mixed-LiNGAM model, which is a variant of LiNGAM with
individual-specific effects. We also propose an empirical Bayesian approach for learning
the model. We empirically evaluate the performance of our method using artificial and
real-world sociology data in Sections 4 and 5, respectively, and present our conclusions in
Section 6.
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2. Background

In this section, we first review the linear non-Gaussian structural equation model known as
LiNGAM (Shimizu et al., 2006). We then discuss an extension of LiNGAM to cases where
latent confounding variables exist (Hoyer et al., 2008b).

In LiNGAM (Shimizu et al., 2006), causal relations between observed variables xl (l =
1, · · · , d) are modeled as

xl = µl +
∑

k(m)<k(l)

blmxm + el, (1)

where k(l) is a causal ordering of the variables xl. The causal orders k(l) (l = 1, · · · , d)
are unknown and to be estimated. In this ordering, the variables xl form a directed acyclic
graph (DAG) so that no later variable determines, i.e., has a directed path to, any earlier
variable in the DAG. The variables el are latent continuous variables called error variables,
µl are intercepts or regression constants, and blm are connection strengths or regression
coefficients.

In matrix form, the LiNGAM model in Equation (1) is written as

x = µ+ Bx+ e, (2)

where the vector µ collects constants µl, the connection strength matrix B collects regression
coefficients (or connection strengths) blm, and the vectors x and e collect observed variables
xl and error variables el, respectively. The zero/non-zero pattern of blm corresponds to the
absence/existence pattern of directed edges (direct effects). It can be shown that it is always
possible to perform simultaneous, equal row and column permutations on the connection
strength matrix B to cause it to become strictly lower triangular, based on the acyclicity
assumption (Bollen, 1989). Here, strict lower triangularity is defined as a lower triangular
structure with the diagonal consisting entirely of zeros. Errors el follow non-Gaussian
distributions with zero mean and non-zero variance, and are jointly independent. This
model without assuming non-Gaussianity distribution is called a fully recursive model in
conventional structural equation models (Bollen, 1989). The non-Gaussianity assumption
on el enables the identification of a causal ordering k(l) and the coefficients blm based only on
x (Shimizu et al., 2006), unlike conventional Bayesian networks based on the Gaussianity
assumption on el (Spirtes et al., 1993). To illustrate the LiNGAM model, the following
example is considered, whose corresponding directed acyclic graph is provided in Figure 1: x1

x2

x3

 =

 0 0 3
−5 0 0
0 0 0

 x1

x2

x3

+

 e1

e2

e3

 .
In this example, x3 is equal to error e3 and is exogenous since it is not affected by either
of the other two variables x1 and x2. Thus, x3 is in the first position of such a causal
ordering such that B is strictly lower triangular, x1 is in the second, and x2 is the third,
i.e., k(3) = 1, k(1) = 2, and k(2) = 3. If we permute the variables x1 to x3 according to
the causal ordering, we have x3

x1

x2

 =

 0 0 0
3 0 0
0 −5 0

 x3

x1

x2

+

 e3

e1

e2

 .
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Figure 1: An example graph of LiNGAMs

It can be seen that the resulting connection strength (or regression coefficient) matrix is
strictly lower triangular.

Several computationally efficient algorithms for estimating the model have been pro-
posed (Shimizu et al., 2006, 2011; Hyvärinen and Smith, 2013). As with ICA, LiNGAM
is identifiable under the assumptions of non-Gaussianity and independence among error
variables (Shimizu et al., 2006; Comon, 1994; Eriksson and Koivunen, 2003).1 However, for
the estimation methods to be consistent, additional assumptions, e.g., the existence of their
moments or some other statistic, must be made to ensure that the statistics computed in
the estimation algorithms exist. The idea of LiNGAM can be generalized to nonlinear cases
(Hoyer et al., 2009; Tillman et al., 2010; Zhang and Hyvärinen, 2009; Peters et al., 2011b).

The assumption of independence among el means that there is no latent confounding
variable (Shimizu et al., 2006). A latent confounding variable is an unobserved variable
that contributes to the values of more than one observed variable (Hoyer et al., 2008b).
However, in many applications, there often exist latent confounding variables. If such latent
confounders are completely ignored, the estimation results can be seriously biased (Pearl,
2000; Spirtes et al., 1993; Bollen, 1989). Therefore, in Hoyer et al. (2008b), LiNGAM with
latent confounders, called latent variable LiNGAM, was proposed, and the model can be
formulated as follows:

xl = µl +
∑

k(m)<k(l)

blmxm +

Q∑
q=1

λlqfq + el,

where fq are non-Gaussian individual-specific effects fq with zero mean and unit variance
and λlq denote the regression coefficients (connection strengths) from fq to xl. This model
is written in matrix form as follows:

x = µ+ Bx+ Λf + e, (3)

where the difference from LiNGAM in Equation (2) is the existence of a latent confounding
variable vector f . The vector f collects fq. The matrix Λ collects λlq and is assumed to

1. Comon (1994) and Eriksson and Koivunen (2003) established the identifiability of ICA based on the
characteristic functions of variables. Moments of some variables may not exist, but their characteristic
functions always exist.
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be of full column rank. Another way to represent latent confounder cases would be to use
dependent error variables. Denoting Λf + e in Equation (3) by ẽ, we have

x = µ+ Bx+ Λf + e

= µ+ Bx+ ẽ,

where ẽi are dependent due to the latent confounders fq. Observed variables that are equal
to dependent errors ẽi are connected by bi-directed arcs in their graphs. An example graph
is given in Figure 4. This representation can be more general since it is easier to extend it to
represent nonlinearly dependent errors. In this paper, however, we use the aforementioned
representation using independent errors and latent confounders since linear relations of the
observed variables, latent confounders, and errors are necessary for our approach.

Without loss of generality, the latent confounders fq are assumed to be jointly indepen-
dent since any dependent latent confounders can be remodeled by linear combinations of
independent latent variables if the underlying model is linear acyclic and the error variables
are independent (Hoyer et al., 2008b). To illustrate this, the following example model is
considered:

f̄1 = ef̄1 (4)

f̄2 = ω21f̄1 + ef̄2 (5)

x1 = λ11f̄1 + e1

x2 = λ21f̄1 + e2

x3 = λ32f̄2 + e3

x4 = b43x3 + λ42f̄2 + e4,

where errors ef̄1(=f̄1), ef̄2 , and e1–e4 are non-Gaussian and independent. The associated
graph is shown in Figure 2. The relations of f̄1, f̄2, and x1–x4 are represented by a directed
acyclic graph and latent confounders f̄1 and f̄2 are dependent. In matrix form, this example
model can be written as


x1

x2

x3

x4

 =


0 0 0 0
0 0 0 0
0 0 0 0
b43 0 0 0



x1

x2

x3

x4

+


λ11 0
λ21 0
0 λ32

0 λ42

[ f̄1

f̄2

]
+


e1

e2

e3

e4

 .

The relations of f̄1 and f̄2 to ef̄1 and ef̄2 in Equations (4)–(5):

[
f̄1

f̄2

]
=

[
1 0
ω21 1

] [
ef̄1
ef̄2

]
,
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e1

x1

f1 f2

ef2

x2 x3 x4

e4e3e2

ef1

e1

x1

ef2

x2 x3 x4

e4e3e2

ef1 f2f1 ::

Figure 2: An example graph to illustrate the idea of independent latent confounders.

we obtain


x1

x2

x3

x4


︸ ︷︷ ︸
x

=


0 0 0 0
0 0 0 0
0 0 0 0
b43 0 0 0


︸ ︷︷ ︸

B


x1

x2

x3

x4


︸ ︷︷ ︸
x

+


λ11 0
λ21 0

λ32ω21 λ32

λ42ω21 λ42


︸ ︷︷ ︸

Λ

[
ef̄1
ef̄2

]
︸ ︷︷ ︸
f

+


e1

e2

e3

e4


︸ ︷︷ ︸
e

.

This is a latent variable LiNGAM in Equation (3) taking f1 = ef̄1 and f2 = ef̄2 since ef̄1
and ef̄2 are non-Gaussian and independent.

Moreover, the faithfulness of xl and fq to the generating graph is assumed. The faith-
fulness assumption (Spirtes et al., 1993) here means that when multiple causal paths exist
from one variable to another, their combined effect does not equal exactly zero (Hoyer
et al., 2008b). The faithfulness assumption can be considered to be not very restrictive
from the Bayesian viewpoint (Spirtes et al., 1993) since the probability of having exactly
the parameter values that do not satisfy faithfulness is zero (Meek, 1995).

In the framework of latent variable LiNGAM, it has been shown (Hoyer et al., 2008b)
that the following three models are distinguishable based on observed data,2 i.e., the three

2. If one or more error variables or latent confounders are Gaussian, it cannot be ensured that Models 3 to
5 will be distinguishable. Hoyer et al. (2008a) considered cases with one or more Gaussian error variables
in the context of basic LiNGAM.
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different causal structures induce different data distributions:

Model 3 :

{
x1 =

∑Q
q=1 λ1qfq + e1

x2 =
∑Q

q=1 λ2qfq + e2,

Model 4 :

{
x1 =

∑Q
q=1 λ1qfq + e1

x2 = b21x1 +
∑Q

q=1 λ2qfq + e2,

Model 5 :

{
x1 = b12x2 +

∑Q
q=1 λ1qfq + e1

x2 =
∑Q

q=1 λ2qfq + e2,
,

where λ1qλ2q 6= 0 due to the definition of latent confounders, that is, that they contribute
to determining the values of more than two variables.

An estimation method based on overcomplete ICA (Lewicki and Sejnowski, 2000) explic-
itly modeling all the latent confounders fq was proposed (Hoyer et al., 2008b). However,
in current practice, overcomplete ICA estimation algorithms often get stuck in local op-
tima and are not sufficiently reliable (Entner and Hoyer, 2011). A Bayesian approach for
estimating the latent variable LiNGAM in Equation (3) has been proposed in Henao and
Winther (2011). These previous approaches that explicitly model latent confounders (Hoyer
et al., 2008b; Henao and Winther, 2011) need to select the number of latent confounders,
and which can be quite large. This could lead to further computational difficulty and
statistically unreliable estimates.

In Chen and Chan (2013), a simple approach based on fourth-order cumulants for esti-
mating latent variable LiNGAM was proposed. Their approach does not need to explicitly
model the latent confounders, however it requires the latent confounders fq to be Gaus-
sian. The development of nonlinear methods that incorporate latent confounders is ongoing
(Zhang et al., 2010).

None of these latent confounder methods incorporate the individual-specific effects that
we model in the next section to consider latent confounders fq in the latent variable
LiNGAM of Equation (3).

3. Linear Non-Gaussian Acyclic Structural Equation Model with
Individual-specific Effects

In this section, we propose a new Bayesian method for learning the possible causal direction
of two observed variables in the presence of latent confounding variables, assuming that the
causal relations are acyclic, i.e., there is not a feedback relation.

3.1 Model

The LiNGAM (Shimizu et al., 2006) for observation i can be described as follows:

x
(i)
l = µl +

∑
k(m)<k(l)

blmx
(i)
m + e

(i)
l .
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The random variables e
(i)
l are non-Gaussian and independent. The distributions of e

(i)
l (i =

1, · · · , n) are commonly assumed to be identical3 for every l. A linear non-Gaussian acyclic
structural equation model with individual-specific effects for observation i is formulated as
follows:

x
(i)
l = µl + µ̃

(i)
l +

∑
k(m)<k(l)

blmx
(i)
m + e

(i)
l ,

where the difference from LiNGAM is the existence of individual-specific effects µ̃
(i)
l . The

parameters µ̃
(i)
l are independent of e

(i)
l and are correlated with x

(i)
l through the structural

equations in our Bayesian approach, introduced below. This means that the observations
are generated from the identifiable LiNGAM, possibly with different parameter values of

the means µl+µ̃
(i)
l . We call this a mixed-LiNGAM, named after mixed models (Demidenko,

2004), as it has effects µl and blm that are common to all the observations and individual-

specific effects µ̃
(i)
l . We note that causal orderings of variables k(l) (l = 1, · · · , d) are

identical for all the observations in the sample.

To use a Bayesian approach for estimating the mixed-LiNGAM, we need to model
the distributions of error variables el and prior distributions of the parameters includ-

ing individual-specific effects µ̃
(i)
l , unlike previous LiNGAM methods (Shimizu et al., 2006;

Hoyer et al., 2008b). These individual-specific effects, whose number is of the same order as
the sample size, are integrated out in the Bayesian method developed in Section 3.2, assum-
ing an informative prior for them similar to the estimation of conventional mixed models
(Demidenko, 2004). More details on the distributions of error variables and prior distribu-
tions of parameters are given in Section 3.2. These distributional assumptions were implied
to be robust to some extent to their violations, at least in the artificial data experiments of
Section 4.

We now relate the mixed-LiNGAM model above with the latent variable LiNGAM
(Hoyer et al., 2008b). The latent variable LiNGAM in Equation (3) for observation i is
written as follows:

x
(i)
l = µl +

∑
k(m)<k(l)

blmx
(i)
m +

Q∑
q=1

λlqf
(i)
q︸ ︷︷ ︸

µ̃
(i)
l

+e
(i)
l .

This is a mixed-LiNGAM taking µ̃
(i)
l =

∑Q
q=1 λlqf

(i)
q . In contrast to the previous approaches

for latent variable LiNGAM (Hoyer et al., 2008b; Henao and Winther, 2011), we do not

explicitly model the latent confounders fq and rather simply include their sums µ̃
(i)
l =∑Q

q=1 λlqf
(i)
q in our model as its parameters since our main interest lies in estimation of

the causal relation of observed variables xl and not in the estimation of their relations
with latent confounders fq. Our method does not estimate λlq or the number of latent
confounders Q.

3. Relaxing this identically distributed assumption would lead to more general modeling of individual
differences, however, this goes beyond the scope of the paper.
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3.2 Estimation of Possible Causal Direction

We apply a Bayesian approach to estimate the possible causal direction of two observed
variables using the mixed-LiNGAM proposed above. We compare the following two mixed-
LiNGAM models with opposite possible directions of causation. Model 1 is

x
(i)
1 = µ1 + µ̃

(i)
1 + e

(i)
1

x
(i)
2 = µ2 + µ̃

(i)
2 + b21x

(i)
1 + e

(i)
2 ,

where b21 is non-zero. In Model 1, x2 does not cause x1. The second model, Model 2, is

x
(i)
1 = µ1 + µ̃

(i)
1 + b12x

(i)
2 + e

(i)
1

x
(i)
2 = µ2 + µ̃

(i)
2 + e

(i)
2 ,

where b12 is non-zero. In Model 2, x1 does not cause x2. The two models have the same
number of parameters, but opposite possible directions of causation.

Once the possible causal direction is estimated, one can see if the common causal co-
efficient (connection strength) b21 or b12 is likely to be zero by examining its posterior
distribution.4 We focus here on estimating the possible direction of causation as in many
previous works (Dodge and Rousson, 2001; Hoyer et al., 2009; Zhang and Hyvärinen, 2009;
Chen and Chan, 2013; Hyvärinen and Smith, 2013), and do not go to the computation of
the posterior distribution5 since estimation of the possible causal direction of two observed
variables in the presence of latent confounders has been a very challenging problem in causal
inference and is the main topic of this paper.

We apply standard Bayesian model selection techniques to help assess the causal direc-
tion of x1 and x2. We use the log-marginal likelihood for comparing the two models. The
model with the larger log-marginal likelihood is regarded as the closest to the true model
(Kass and Raftery, 1995).

Let D be the observed data set [x(1)T , · · · ,x(n)T ]T , where x(i) = [x
(i)
1 , x

(i)
2 ]T . Denote

Models 1 and 2 by M1 and M2. The log-marginal likelihoods of M1 and M2 are

log{p(Mr|D)} = log{p(D|Mr)p(Mr)/p(D)}
= log{p(D|Mr)}+ log{p(Mr)} − log p(D)

= log{
∫
p(D|θr,Mr)p(θr|Mr,ηr)dθr}

+ log p(Mr)− log p(D) (r = 1, 2),

where η1,η2 are the hyper-parameter vectors regarding the distributions of the parameters
θ1 and θ2, respectively. Since the last term log p(D) is constant with respect to Mr, we can
drop it. To select suitable values for these hyper-parameters, we take an ordinary empirical
Bayesian approach. First, we compute the log-marginal likelihood for every combination

4. Chickering and Pearl (1996) considered a discrete variable model with known possible causal direction
and proposed a Bayesian approach for computing the posterior distributions of causal effects in the
presence of latent confounders.

5. Point estimates of the parameters including the common causal connection strengths b12 and b21 can be
obtained by taking their posterior means based on their posterior distributions, for example.
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of the two models Mr and a number of candidate hyper-parameter values of ηr. Next, we
take the model and hyper-parameter values that give the largest log-marginal likelihood,
and finally estimate that the model with the largest log-marginal likelihood is better than
the other model.

In basic LiNGAM (Shimizu et al., 2006), we have (Hyvärinen et al., 2010; Hoyer and
Hyttinen, 2009)

p(x) =
∏
l

pel

xl − µl − ∑
k(m)<k(l)

blmxm

 .

Thus, in the same manner, the likelihoods under mixed-LiNGAM p(D|θr,Mr) (r = 1, 2)
are given by

p(D|θr,Mr) = Πn
i=1 p(x

(i)|θr,Mr)

=



Πn
i=1 pe(i)1

(x
(i)
1 − µ1 − µ̃(i)

1 |θ1,M1)

× p
e
(i)
2

(x
(i)
2 − µ2 − µ̃(i)

2 − b21x
(i)
1 |θ1,M1) for M1

Πn
i=1 pe(i)1

(x
(i)
1 − µ1 − µ̃(i)

1 − b12x
(i)
2 |θ2,M2)

× p
e
(i)
2

(x
(i)
2 − µ2 − µ̃(i)

2 |θ2,M2) for M2

.

We model the parameters and their prior distributions as follows.6 The prior probabil-
ities of M1 and M2 are uniform:

p(M1) = p(M2).

The distributions of the error variables e
(i)
1 and e

(i)
2 are modeled by Laplace distributions

with zero mean and variances of var(e
(i)
1 ) = h2

1 and var(e
(i)
2 ) = h2

2 as follows:

p
e
(i)
1

= Laplace(0, |h1|/
√

2)

p
e
(i)
2

= Laplace(0, |h2|/
√

2).

Here, we simply use a symmetric super-Gaussian distribution, i.e., the Laplace distribution,
to model p

e
(i)
1

and p
e
(i)
2

, as suggested in Hyvärinen and Smith (2013). Such super-Gaussian

distributions have been reported to often work well in non-Gaussian estimation methods in-
cluding independent component analysis and LiNGAM (Hyvärinen et al., 2001b; Hyvärinen
and Smith, 2013). In some cases, a wider class of non-Gaussian distributions might provide
a better model for p

e
(i)
1

and p
e
(i)
2

, e.g., the generalized Gaussian family (Hyvärinen et al.,

2001b), a finite mixture of Gaussians, or an exponential family distribution combining the
Gaussian and Laplace distributions (Hoyer and Hyttinen, 2009).

The parameter vectors θ1 and θ2 are written as follows:

θ1 = [µl, b21, hl, µ̃
(i)
l ]T (l = 1, 2; i = 1, · · · , n)

θ2 = [µl, b12, hl, µ̃
(i)
l ]T (l = 1, 2; i = 1, · · · , n).

6. This is an example. The modeling method could depend on the domain knowledge.
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The prior distributions of common effects are Gaussian as follows:

µ1 ∼ N(0, τ cmmnµ1 )

µ2 ∼ N(0, τ cmmnµ2 )

b12 ∼ N(0, τ cmmnb12 )

b21 ∼ N(0, τ cmmnb21 )

h1 ∼ N(0, τ cmmnh1 )

h2 ∼ N(0, τ cmmnh2 ),

where τ cmmnµ1 , τ cmmnµ2 , τ cmmnb12
, τ cmmnb21

, τ cmmnh1
and τ cmmnh2

are constants.

Generally speaking, we could use various informative prior distributions for the individual-
specific effects and then compare candidate priors using the standard model selection ap-
proach based on the marginal likelihoods. Below we provide two examples.

If the data is generated from a latent variable LiNGAM, a special case of mixed-
LiNGAM, as shown in Section 3.1, the individual-specific effects are the sums of many
non-Gaussian independent latent confounders fq and are dependent. The central limit
theorem states that the sum of independent variables becomes increasingly close to the
Gaussian (Billingsley, 1986). Therefore, in many cases, it could be practical to approxi-
mate the non-Gaussian distribution of a variable that is the sum of many non-Gaussian and
independent variables by a bell-shaped curve distribution (Sogawa et al., 2011; Chen and
Chan, 2013). This motivates us to model the prior distribution of individual-specific effects
by the multivariate t-distribution as follows:[

µ̃
(i)
1

µ̃
(i)
2

]
= diag

([√
τ indvdl1 ,

√
τ indvdl2

]T)
C−1/2u, (6)

where τ indvdl1 and τ indvdl2 are constants, u ∼ tν(0,Σ) and Σ = [σab] is a symmetric scale
matrix whose diagonal elements are 1s. A random variable vector u that follows the mul-
tivariate t-distribution tν(0,Σ) can be created by

y√
v/ν

, where y follows the Gaussian

distribution N(0,Σ), v follows the chi-squared distribution with ν degrees of freedom, and
y and v are statistically independent (Kotz and Nadarajah, 2004). Note that ui have energy
correlations (Hyvärinen et al., 2001a), i.e., correlations of squares cov(u2

i , u
2
j ) > 0 due to

the common variable v. C is a diagonal matrix whose diagonal elements give the variance
of elements of u, i.e., C = ν

ν−2diag(Σ) for ν > 2. The degree of freedom ν is here taken to
be six. The kurtosis of the univariate Student’s t-distribution with six degrees of freedom
is three, the same as that of the Laplace distribution.

The hyper-parameter vectors η1 and η2 are

ηl = [τ cmmnµ1 , τ cmmnµ2 , τ cmmnb12 , τ cmmnb21 , τ cmmnh1 , τ cmmnh2 , τ indvdl1 , τ indvdl2 , σ21]T (l = 1, 2).

We want to take the constants τ cmmnµ1 , τ cmmnµ2 , τ cmmnb12
, τ cmmnb21

, τ cmmnh1
and τ cmmnh2

to
be sufficiently large so that the priors for the common effects are not very informative.
It depends on the scales of variables when these constants are sufficiently large. In the
experiments in Sections 4–5, we set τ cmmnµ1 = τ cmmnb12

= τ cmmnh1
= 102 × v̂ar (x1) and τ cmmnµ2 =
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τ cmmnb21
= τ cmmnh2

= 102 × v̂ar (x2) so that they reflect the scales of the corresponding
variables.

Moreover, we take an empirical Bayesian approach for the individual-specific effects. We
test τ indvdll = 0, 0.22×v̂ar(xl), ..., 0.8

2×v̂ar(xl), 1.0
2×v̂ar(xl) (l = 1, 2). That is, we uniformly

vary the hyper-parameter value from that with no individual-specific effects, i.e., 0, to a
larger value, i.e., 1.02× v̂ar(xl), which implies very large individual differences. Further, we
test σ12 = 0,±0.3,±0.5,±0.7,±0.9, i.e., the value with zero correlation and larger values
with stronger correlations. This means that we test uncorrelated individual-specific effects
as well as correlated ones. We take the ordinary Monte Carlo sampling approach to compute
the log-marginal likelihoods with 1000 samples for the parameter vectors θr (r = 1, 2).

The assumptions for our model are summarized in Table 1. Generally speaking, if the
actual probability density function of individual-specific effects is unimodal and most often
provides zero or very small absolute values and with few large values, i.e., many of the
individual-specific effects are close to zero and many individuals have similar intercepts, the
estimation is likely to work. If the individuals have very different intercepts, the estimation
will not work very well.

An alternative way of modeling the prior distribution of individual-specific effects would
be to use the multivariate Gaussian distribution as follows:[

µ̃
(i)
1

µ̃
(i)
2

]
= diag

([√
τ indvdl1 ,

√
τ indvdl2

]T)
z,

where τ indvdl1 and τ indvdl2 are constants, z ∼ N(0,Σ) and Σ = [σab] is a symmetric scale
matrix whose diagonal elements are 1s. This Gaussian prior would be effective if the Gaus-
sian approximation based on the central limit theorem works well, although a non-Gaussian
prior would be more consistent with the non-Gaussian latent variable LiNGAM in Equa-
tion (3). Gaussian individual-specific effects or latent confounders would not lead to losing
the identifiability (Chen and Chan, 2013) since each observation still is generated by the
identifiable non-Gaussian LiNGAM. However, if errors are Gaussian, there is no guarantee
that our method can find correct possible causal direction. We could detect their Gaus-
sianity by comparing our mixed-LiNGAM models with Gaussian error models based on
their log-marginal likelihoods. If the errors are actually Gaussian or close to be Gaussian,
Gaussian error models would provide larger log-marginal likelihoods. This would detect
situations where our approach cannot find causal direction.

4. Experiments on Artificial Data

We compared our method with seven methods for estimating the possible causal direction
between two variables: i) LvLiNGAM7 (Hoyer et al., 2008b); ii) SLIM8(Henao and Winther,
2011) iii) LiNGAM-GC-UK (Chen and Chan, 2013); iv) ICA-LiNGAM9 (Shimizu et al.,
2006); v) DirectLiNGAM10 (Shimizu et al., 2011); vi) Pairwise LiNGAM11 (Hyvärinen

7. The code is available at http://www.cs.helsinki.fi/u/phoyer/code/lvlingam.tar.gz.
8. The code is available at http://cogsys.imm.dtu.dk/slim/.
9. The code is available at http://www.cs.helsinki.fi/group/neuroinf/lingam/lingam.tar.gz.

10. The code is available at http://www.ar.sanken.osaka-u.ac.jp/~sshimizu/code/Dlingamcode.html.
11. The code is available at http://www.cs.helsinki.fi/u/ahyvarin/code/pwcausal/.
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Model: x
(i)
l = µl + µ̃

(i)
l +

∑
k(m)<k(l) blmx

(i)
m + e

(i)
l (l,m = 1, 2; l 6= m),

where blm are non-zero.

e
(i)
l (l = 1, 2; i = 1, · · · , n) are i.i.d..
el (l = 1, 2) are mutually independent.
el (l = 1, 2) follow Laplace distributions with zero mean and standard deviations |hl|.

Prior distributions:
µl, blm and hl (l = 1, 2;m = 1, 2; l 6= m) follow Gaussian distributions with zero mean and variance τcmmnµl

,

τcmmnblm
and τcmmnhl

.

µ̃
(i)
l (l = 1, 2; i = 1, · · · , n) are the sum of latent confounders f

(i)
q :

∑Q
q=1 λlqf

(i)
q and are independent of e

(i)
l .

µ̃
(i)
l (l = 1, 2; i = 1, · · · , n) are i.i.d..
µl (l = 1, 2) follow multivariate t-distributions with ν degrees of freedom, zero mean, variances τ indvdll
and correlation σ12 (here, ν = 6).

Hyper-parameters:
τcmmnµl

, τcmmnblm
and τcmmnhl

(l = 1, 2;m = 1, 2; l 6= m) are set to be large values so that the priors are not

very informative.
τ indvdll (l = 1, 2) are uniformly varied from zero to large values.
σ12 are uniformly varied in the interval between -0.9 and 0.9.

Table 1: Summary of the assumptions for our mixed-LiNGAM model

and Smith, 2013); vii) Post-nonlinear causal model (PNL) 12 (Zhang and Hyvärinen, 2009).
Their assumptions are summarized in Table 2. The first seven methods assume linearity, and
the eighth allows a very wide variety of nonlinear relations. The last four methods assume
that there are no latent confounders. We tested the prior t- and Gaussian distributions
for individual-specific effects in our approach. LvLiNGAM and SLIM require to specify
the number of latent confounders. We tested 1 and 4 latent confounder(s) for LvLiNGAM
since its current implementation cannot handle more than four latent confounders, whereas
we tested 1, 4 and 10 latent confounders(s) for SLIM. LiNGAM-GC-UK (Chen and Chan,
2013) assumes that errors are simultaneously super-Gaussian or sub-Gaussian and that
latent confounders are Gaussian.

Functional Latent Number of Iterative search Distributional
form? confounders latent confounders in the parameter assumptions

allowed? necessary space required? necessary?
to be specified?

Our approach Linear Yes No No Yes
LvLiNGAM Linear Yes Yes Yes No13

SLIM Linear Yes Yes No Yes
LiNGAM-GC-UK Linear Yes No No Yes
ICA-LiNGAM Linear No N/A Yes No
DirectLiNGAM Linear No N/A No No
Pairwise LiNGAM Linear No N/A No No
PNL Nonlinear No N/A Yes No

Table 2: Summary of the assumptions of eight methods

12. The code is available at http://webdav.tuebingen.mpg.de/causality/CauseOrEffect_NICA.rar.
13. Their current implementation of LvLiNGAM in Footnote 7 assumes a non-Gaussian distribution, which

is a mixture of two Gaussian distributions.
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e1

x1

f1

x2

e2

Figure 3: The associated graph of the model used to generate artificial data when the
number of latent confounders Q = 1.

We generated data using the following latent variable LiNGAM with Q latent confound-
ing variables, which is a mixed-LiNGAM:

x
(i)
1 = µ1 +

Q∑
q=1

λ1qf
(i)
q + e

(i)
1

x
(i)
2 = µ2 + b21x

(i)
1 +

Q∑
q=1

λ2qf
(i)
q + e

(i)
2 ,

where µ1 and µ2 were randomly generated from N(0, 1), and b21, λ1q, λ2q were randomly
generated from the interval (−1.5,−0.5) ∪ (0.5, 1.5). We tested various numbers of latent
confounders Q = 0, 1, 6, 12. The zero values indicate that there are no latent confounders.
An example graph used to generate artificial data is given in Figure 3.

The distributions of the error variables e1, e2, and latent confounders fq were identical
for all observations. The distributions of the error variables e1, e2, and latent confounders
fq were randomly selected from the 18 non-Gaussian distributions used in Bach and Jordan
(2002) to see if the Laplace distribution assumption on error variables and t- or Gaus-
sian distribution assumption on individual-specific effects in our method were robust to
different non-Gaussian distributions. These include symmetric/non-symmetric distribu-
tions, super-Gaussian/sub-Gaussian distributions, and strongly/weakly non-Gaussian dis-
tributions. The variances of e1 and e2 were randomly selected from the interval (0.52, 1.52).
The variances of fq were 1s.

We permuted the variables according to a random ordering and inputted them to the
eight estimation methods. We conducted 100 trials, with sample sizes of 50, 100, and 200.
For the data with the number of latent confounders Q = 0, all the methods should find the
correct causal direction for large enough sample sizes, as there were no latent confounders,
which here means no individual-specific effects. The last four comparative methods should
find the data with the number of latent confounders Q = 1, 6, 12 very difficult to analyze,
because, unlike the other approaches, they assume no latent confounders.

To evaluate the performance of the algorithms, we counted the number of successful
discoveries of possible causal direction and estimated their standard errors.
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Looking at Table 3 as a whole there are several general observations that we can make.
First though none of the procedures is infallible, several of them do quite well in that they
choose the correct causal direction about 90% of the time. Second, overall our approach is
the most successful across the conditions of the simulation. Specifically, in all but the cases
of no confounding variables, one or both of our approaches have the highest percentages of
success. In the situation of no confounding variables, ICA-LiNGAM, DirectLiNGAM, and
Pairwise LINGAM have higher success percentages than our procedures. These generaliza-
tions need qualifications in that there are sampling errors that affect the estimates. Formal
tests of significance across all conditions would be complicated. It would require taking
account of multiple testing and the dependencies of the simulated samples under the same
sample size and number of confounders. However, the standard errors of the estimated per-
centages serve to caution the reader not to judge the percentages alone without recognizing
sampling variability. For instance, when there are no confounders and a sample size of 50,
the ICA-LiNGAM procedure appears best with 93% success, but the success percentages of
our two approaches fall within two standard errors of the 93% estimate. Alternatively, in
the rows with 6 confounders and sample size 50 our approach with 88% success and a stan-
dard error of 3.25 appears sufficiently far from the success percentages of the other methods
besides ours to make sampling fluctuations an unlikely explanation. In sum, taking all the
evidence together, our approaches performed quite well and deserve further investigation
under additional simulation conditions.

Table 4 shows the average computational times. The computational complexity of the
current implementation of our methods is clearly larger than that of the other linear methods
ICA-LiNGAM, DirectLiNGAM, Pairwise LiNGAM, LvLiNGAM with 1 latent confounder,
SLIM and LiNGAM-GC-UK and comparable to LvLiNGAM with 4 latent confounders and
the nonlinear method PNL.

The MATLAB code for performing these experiments is available on our website.14

5. An Experiment on Real-world Data

We analyzed the General Social Survey data set, taken from a sociological data repository
(http://www.norc.org/GSS+Website/). The data consisted of six observed variables: x1:
prestige of father’s occupation, x2: son’s income, x3: father’s education, x4: prestige of
son’s occupation, x5: son’s education, and x6: number of siblings.15 The sample selection
was conducted based on the following criteria: i) non-farm background; ii) ages 35–44; iii)
white; iv) male; v) in the labor force at the time of the survey; vi) not missing data for any
of the covariates; and vii) data taken from 1972–2006. The sample size was 1380.

The possible directions were determined based on the domain knowledge in Duncan
et al. (1972), shown in Figure 4. Note that there is no direct causal link from x1, x3, and
x6 to x2 in the figure, however it is expected that each of these variables has non-zero total
causal effects on x2 given their indirect effects on x2. The causal relations of x1, x3, and x6

usually are not modeled in the literature since there are many other determinants of these
three exogenous observed variables that are not part of the model. However, the possible

14. The URL is http://www.ar.sanken.osaka-u.ac.jp/~sshimizu/code/mixedlingamcode.html.
15. Although x6 is discrete, it can be considered as continuous because it is an ordinal scale with many

points.
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Sample size
50 100 200

Number of latent confounders Q = 0:
Our approach (t-distributed individual-specific effects) 88 (3.25) 91 (2.86) 86 (3.47)
Our approach (Gaussian individual-specific effects) 91 (2.86) 87 (3.36) 91 (2.86)
LvLiNGAM (1 latent confounder) 73 (4.44) 83 (3.76) 83 (3.76)
LvLiNGAM (4 latent confounders) 52 (5.00) 68 (4.66) 66 (4.74)
SLIM (1 latent confounder) 29 (4.54) 30 (4.58) 25 (4.33)
SLIM (4 latent confounders) 34 (4.74) 31 (4.62) 36 (4.80)
SLIM (10 latent confounders) 30 (4.58) 29 (4.54) 30 (4.58)
LiNGAM-GC-UK 33 (4.70) 28 (4.49) 35 (4.77)
ICA-LiNGAM 93 (2.55) 93 (2.55) 96 (1.96)
DirectLiNGAM 87 (3.36) 95 (2.18) 97 (1.71)
Pairwise LiNGAM 89 (3.13) 95 (2.18) 95 (2.18)
Post-nonlinear causal model 74 (4.39) 71 (4.54) 75 (4.33)

Number of latent confounders Q = 1:
Our approach (t-distributed individual-specific effects) 83 (3.76) 80 (4.00) 80 (4.00)
Our approach (Gaussian individual-specific effects) 79 (4.07) 87 (3.36) 69 (4.62)
LvLiNGAM (1 latent confounder) 66 (4.74) 71 (4.54) 73 (4.44)
LvLiNGAM (4 latent confounders) 63 (4.83) 58 (4.94) 67 (4.70)
SLIM (1 latent confounder) 40 (4.90) 47 (4.99) 25 (4.33)
SLIM (4 latent confounders) 40 (4.90) 34 (4.74) 44 (4.96)
SLIM (10 latent confounders) 47 (4.99) 39 (4.88) 41 (4.92)
LiNGAM-GC-UK 24 (4.27) 32 (4.66) 32 (4.66)
ICA-LiNGAM 74 (4.39) 71 (4.54) 67 (4.70)
DirectLiNGAM 48 (5.00) 52 (5.00) 54 (4.98)
Pairwise LiNGAM 54 (4.98) 58 (4.94) 61 (4.88)
Post-nonlinear causal model 55 (4.97) 58 (4.94) 57 (4.95)

Number of latent confounders Q = 6:
Our approach (t-distributed individual-specific effects) 88 (3.25) 81 (3.92) 87 (3.36)
Our approach (Gaussian individual-specific effects) 84 (3.67) 85 (3.57) 87 (3.36)
LvLiNGAM (1 latent confounder) 58 (4.94) 70 (4.58) 70 (4.58)
LvLiNGAM (4 latent confounders) 64 (4.80) 61 (4.88) 63 (4.83)
SLIM (1 latent confounder) 50 (5.00) 63 (4.83) 47 (4.99)
SLIM (4 latent confounders) 45 (4.97) 47 (4.99) 43 (4.95)
SLIM (10 latent confounders) 58 (4.94) 48 (5.00) 58 (4.94)
LiNGAM-GC-UK 29 (4.54) 28 (4.49) 21 (4.07)
ICA-LiNGAM 74 (4.39) 72 (4.49) 47 (4.99)
DirectLiNGAM 37 (4.83) 48 (5.00) 39 (4.88)
Pairwise LiNGAM 48 (5.00) 51 (5.00) 37 (4.83)
Post-nonlinear causal model 55 (4.97) 42 (4.94) 46 (4.98)

Number of latent confounders Q = 12:
Our approach (t-distributed individual-specific effects) 88 (3.25) 86 (3.47) 89 (3.13)
Our approach (Gaussian individual-specific effects) 91 (2.86) 89 (3.13) 91 (2.86)
LvLiNGAM (1 latent confounder) 52 (5.00) 55 (4.97) 65 (4.77)
LvLiNGAM (4 latent confounders) 65 (4.77) 58 (4.94) 64 (4.80)
SLIM (1 latent confounder) 51 (5.00) 55 (4.97) 60 (4.90)
SLIM (4 latent confounders) 45 (4.97) 51 (5.00) 63 (4.83)
SLIM (10 latent confounders) 61 (4.88) 54 (4.98) 54 (4.98)
LiNGAM-GC-UK 21 (4.07) 25 (4.33) 29 (4.54)
ICA-LiNGAM 68 (4.66) 72 (4.49) 72 (4.49)
DirectLiNGAM 37 (4.83) 39 (4.88) 38 (4.85)
Pairwise LiNGAM 56 (4.96) 42 (4.94) 43 (4.95)
Post-nonlinear causal model 51 (5.00) 43 (4.95) 46 (4.98)

Largest numbers of successful discoveries were underlined.
Standard errors are shown in parentheses, which are computed assuming that the number
of successes follow a binomial distribution.

Table 3: Number of successful discoveries (100 trials)
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Sample size
50 100 200

Number of latent confounders Q = 0
Our approach (t-distributed individual-specific effects) 27.20 56.93 141.84
Our approach (Gaussian individual-specific effects) 35.48 69.59 117.10
LvLiNGAM (1 latent confounder) 2.41 2.55 9.91
LvLiNGAM (4 latent confounders) 22.25 30.12 87.96
SLIM (1 latent confounder) 5.89 6.25 6.81
SLIM (4 latent confounders) 7.60 8.14 9.13
SLIM (10 latent confounders) 10.88 12.02 13.96
LiNGAM-GC-UK 0.00 0.00 0.00
ICA-LiNGAM 0.04 0.03 0.02
DirectLiNGAM 0.00 0.01 0.01
Pairwise LiNGAM 0.00 0.00 0.00
Post-nonlinear causal model 19.59 27.68 57.37

Number of latent confounders Q = 1:
Our approach (t-distributed individual-specific effects) 35.87 65.55 131.25
Our approach (Gaussian individual-specific effects) 37.12 75.11 114.37
LvLiNGAM (1 latent confounder) 2.40 2.53 13.93
LvLiNGAM (4 latent confounders) 21.50 29.50 92.19
SLIM (1 latent confounder) 5.88 6.01 6.69
SLIM (4 latent confounders) 7.59 8.19 8.96
SLIM (10 latent confounders) 10.96 11.79 13.68
LiNGAM-GC-UK 0.00 0.00 0.00
ICA-LiNGAM 0.05 0.03 0.03
DirectLiNGAM 0.01 0.01 0.01
Pairwise LiNGAM 0.00 0.00 0.00
Post-nonlinear causal model 18.17 28.83 51.63

Number of latent confounders Q = 6:
Our approach (t-distributed individual-specific effects) 42.66 76.29 132.43
Our approach (Gaussian individual-specific effects) 33.13 69.07 104.83
LvLiNGAM (1 latent confounder) 2.40 2.56 9.38
LvLiNGAM (4 latent confounders) 22.17 30.12 83.01
SLIM (1 latent confounder) 5.89 6.22 6.77
SLIM (4 latent confounders) 7.58 8.18 9.11
SLIM (10 latent confounders) 11.03 12.02 13.91
LiNGAM-GC-UK 0.00 0.00 0.00
ICA-LiNGAM 0.06 0.05 0.05
DirectLiNGAM 0.01 0.01 0.01
Pairwise LiNGAM 0.00 0.00 0.00
Post-nonlinear causal model 18.71 29.62 52.21

Number of latent confounders Q = 12:
Our approach (t-distributed individual-specific effects) 29.16 59.30 134.89
Our approach (Gaussian individual-specific effects) 32.18 68.14 104.76
LvLiNGAM (1 latent confounder) 2.35 2.50 13.58
LvLiNGAM (4 latent confounders) 21.51 30.10 94.08
SLIM (1 latent confounder) 5.90 6.03 6.62
SLIM (4 latent confounders) 7.58 7.99 8.97
SLIM (10 latent confounders) 10.92 11.68 13.74
LiNGAM-GC-UK 0.00 0.00 0.00
ICA-LiNGAM 0.07 0.08 0.07
DirectLiNGAM 0.01 0.02 0.02
Pairwise LiNGAM 0.00 0.00 0.00
Post-nonlinear causal model 18.21 29.21 51.89

Table 4: Average CPU time (s)
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Figure 4: Status attainment model based on domain knowledge. Usually, the relations of
x1, x3, and x6, represented by bi-directed arcs, are not modeled.

causal directions among the three variables would be x1 ← x3, x6 ← x1, and x6 ← x3 based
on their temporal orders.

Table 5 shows the numbers of successes and precisions. Our mixed-LiNGAM approach
with the t-distributed individual-specific effects gave the largest number of successful discov-
eries 12 and achieved the highest precision, i.e., num. successes / num. pairs = 12/15 = 0.80.
The second best method was our mixed-LiNGAM approach with the Gaussian individual-
specific effects, which found one less correct possible directions than the t-distribution ver-
sion. The third best method was LvLiNGAM with 1 latent confounder, which found two less
correct possible directions than the t-distribution version. This would be mainly because
our two methods allow individual-specific effects and the other methods do not.

Table 6 shows the estimated hyper-parameter values of our mixed-LiNGAM approach
with the t-distributed individual-specific effects that performed best in the sociology data
experiment. Either the estimated hyper-parameter τ̂ indvdl1 or τ̂ indvdl2 that represents the
magnitudes of individual differences was non-zero in all pairs except (x4, x5). The non-
ignorable influence of latent confounders was implied between the pairs (x2, x4), (x2, x6)
and (x3, x6) since both τ̂ indvdl1 or τ̂ indvdl2 were non-zero for the pairs. In addition, for the
pair (x2, x6), there might exist some nonlinear influence of latent confounders, since σ̂12 is
zero, i.e., the individual-specific effects were linearly uncorrelated but dependent.16 If σ̂12

were larger, it would have implied a larger linear influence of the latent confounders on the
pair (x2, x6). The estimates of the hyper-parameter τ indvdl1 were very large for the pairs
(x2, x6) and (x4, x1), which implied very large individual differences regarding x2 and x4

respectively. This might imply that the estimated directions could be less reliable, although
they were correct in this example.

Another point is that both our methods with t-distributed and Gaussian individual-
specific effects failed to find the possible direction x5 ← x1, although the causal relation is

16. Two variables that follow the multivariate t-distribution are dependent, even when they are uncorrelated,
as stated in Section 3.2.
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expected to occur from the domain knowledge (Duncan et al., 1972). This failure would
be attributed to the model misspecification since the sample size was very large. Since
the estimate of the hyper-parameter τ indvdl1 regarding x5 was zero, the influence of latent
confounders might be small for this pair, although the estimate of τ indvdl2 was not small and
the individual difference regarding x5 seemed substantial. Modeling both latent confounders
and nonlinear relations and/or allowing a wider class of non-Gaussian distributions might
lead to better performance. This is an important line of future research.

Possible directions Our approach LvLiNGAM SLIM
t-dist. Gaussian Num. lat. conf. Num. lat. conf.

1 4 1 4 10
x1(FO)← x3(FE) X X X X
x2(SI)← x1(FO) X X X X
x2(SI)← x3(FE) X X X X X
x2(SI)← x4(SO) X X X X
x2(SI)← x5(SE) X X X X X X
x2(SI)← x6(NS) X X X X
x4(SO)← x1(FO) X X X X X X X
x4(SO)← x3(FE) X X X X X X
x4(SO)← x5(SE) X X X X
x4(SO)← x6(NS) X X X X X
x5(SE)← x1(FO) X
x5(SE)← x3(FE) X X X X X
x5(SE)← x6(NS) X X X X X
x6(NS)← x1(FO) X X
x6(NS)← x3(FE) X X X X
Num. of successes 12 11 10 9 9 7 8
Precisions 0.80 0.73 0.67 0.60 0.60 0.47 0.53
Possible directions LiNGAM-GC-UK ICA Direct Pairwise PNL
x1(FO)← x3(FE) X X
x2(SI)← x1(FO) X X X
x2(SI)← x3(FE) X X
x2(SI)← x4(SO) X X X
x2(SI)← x5(SE) X X
x2(SI)← x6(NS) X X
x4(SO)← x1(FO) X X
x4(SO)← x3(FE) X X
x4(SO)← x5(SE) X X
x4(SO)← x6(NS) X
x5(SE)← x1(FO) X X X
x5(SE)← x3(FE) X X
x5(SE)← x6(NS)
x6(NS)← x1(FO) X X
x6(NS)← x3(FE) X X X
Num. of successes 3 8 9 2 9
Precisions 0.20 0.53 0.60 0.13 0.60

FO: Father’s Occupation ICA: ICA-LiNGAM (Shimizu et al., 2006)
FE: Father’s Education Direct: DirectLiNGAM (Shimizu et al., 2011)
SI: Son’s Income Pairwise: Pairwise LiNGAM (Hyvärinen and Smith, 2013)
SO: Son’s Occupation PNL: Post-nonlinear causal model
SE: Son’s Education (Zhang and Hyvärinen, 2009)
NS: Number of Siblings

Table 5: Comparison of eight methods
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Pairs analyzed Possible Estimated τ̂ indvdl1 τ̂ indvdl2 σ̂12
directions directions

(x1(FO), x3(FE)) ← ← 0.42v̂ar(x1) 0 -0.7
(x2(SI), x1(FO)) ← ← 0.82v̂ar(x2) 0 0.3
(x2(SI), x3(FE)) ← ← 0.82v̂ar(x2) 0 -0.5
(x2(SI), x4(SO)) ← ← 0.22v̂ar(x2) 0.42v̂ar(x4) -0.5
(x2(SI), x5(SE)) ← ← 0 0.42v̂ar(x5) 0
(x2(SI), x6(NS)) ← ← 1.02v̂ar(x2) 0.62v̂ar(x6) 0
(x4(SO), x1(FO)) ← ← 1.02v̂ar(x4) 0 0.9
(x4(SO), x3(FE)) ← ← 0 0.22v̂ar(x3) -0.3
(x4(SO), x5(SE)) ← ← 0 0 -0.3
(x4(SO), x6(NS)) ← ← 0.62v̂ar(x4) 0 -0.7
(x5(SE), x1(FO)) ← → 0 0.82v̂ar(x1) 0.3
(x5(SE), x3(FE)) ← ← 0.62v̂ar(x5) 0 -0.5
(x5(SE), x6(NS)) ← ← 0.22v̂ar(x5) 0 -0.3
(x6(NS), x1(FO)) ← → 0.22v̂ar(x6) 0 -0.9
(x6(NS), x3(FE)) ← → 0.22v̂ar(x6) 0.62v̂ar(x3) 0.5

FO: Father’s Occupation
FE: Father’s Education
SI: Son’s Income
SO: Son’s Occupation
SE: Son’s Education
NS: Number of Siblings

τ indvdl1 and τ indvdl2 represent the variances of the individual-specific effects for
the variable pairs in the left-most column.
σ12 represents the correlation parameter value of the individual-specific effects for
the variable pairs in the left-most column.

Table 6: Estimated hyper-parameter values of our method with t-distributed individual-
specific effects
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6. Conclusions and Future Work

We proposed a new variant of LiNGAM that incorporated individual-specific effects in
order to allow latent confounders. We further proposed an empirical Bayesian approach to
estimate the possible causal direction of two observed variables based on the new model. In
experiments on artificial data and real-world sociology data, the performance of our method
was better than or at least comparable to that of existing methods.

For more than two variables, one approach would be to apply our method on every pair
of the variables. Then, we can estimate a causal ordering of all the variables by integrating
the estimation results. This approach is computationally much simper than trying all the
possible causal orderings. Once a causal ordering of the variables is estimated, the remaining
problem is to estimate regression coefficients or their posterior distributions. Then, one can
see if there are direct causal connections between these variables. Although this could still
be computationally challenging for large numbers of variables, the problem reduces to a
significantly simpler one by identifying their causal orders. Thus, it is sensible to develop
methods that can estimate causal direction of two variables allowing latent confounders.

A reviewer suggested that we can generalize our model to more than two variables.
Instead of a two-equation system in Table 1 we could have any number of equations each with
an individual-specific confounder variable, although this approach would be computationally
challenging.

Future work will focus on extending the model to allow cyclic and nonlinear relations
and a wider class of non-Gaussian distributions as well as evaluating our method on various
real-world data. Another important direction is to investigate the degree to which the model
selection is sensitive to the choice of prior distributions.
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Abstract

We study inference and learning based on a sparse coding model with ‘spike-and-slab’ prior.
As in standard sparse coding, the model used assumes independent latent sources that
linearly combine to generate data points. However, instead of using a standard sparse prior
such as a Laplace distribution, we study the application of a more flexible ‘spike-and-slab’
distribution which models the absence or presence of a source’s contribution independently
of its strength if it contributes. We investigate two approaches to optimize the parameters
of spike-and-slab sparse coding: a novel truncated EM approach and, for comparison, an
approach based on standard factored variational distributions. The truncated approach can
be regarded as a variational approach with truncated posteriors as variational distributions.
In applications to source separation we find that both approaches improve the state-of-the-
art in a number of standard benchmarks, which argues for the use of ‘spike-and-slab’ priors
for the corresponding data domains. Furthermore, we find that the truncated EM approach
improves on the standard factored approach in source separation tasks—which hints to
biases introduced by assuming posterior independence in the factored variational approach.
Likewise, on a standard benchmark for image denoising, we find that the truncated EM
approach improves on the factored variational approach. While the performance of the
factored approach saturates with increasing numbers of hidden dimensions, the performance
of the truncated approach improves the state-of-the-art for higher noise levels.
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Sheikh, Shelton and Lücke

1. Introduction

Much attention has recently been devoted to studying sparse coding models with ‘spike-and-
slab’ distribution as a prior over the latent variables (Goodfellow et al., 2013; Mohamed
et al., 2012; Lücke and Sheikh, 2012; Titsias and Lazaro-Gredilla, 2011; Carbonetto and
Stephen, 2011; Knowles and Ghahramani, 2011; Yoshida and West, 2010). In general, a
‘spike-and-slab’ distribution is comprised of a binary (the ‘spike’) and a continuous (the
‘slab’) part. The distribution generates a random variable by multiplying together the two
parts such that the resulting value is either exactly zero (due to the binary random variable
being zero) or it is a value drawn from a distribution governing the continuous part. In
sparse coding models, employing spike-and-slab as a prior allows for modeling the presence
or absence of latents independently of their contributions in generating an observation. For
example, piano keys (as latent variables) are either pressed or not (binary part), and if they
are pressed, they result in sounds with different intensities (continuous part). The sounds
generated by a piano are also sparse in the sense that of all keys only a relatively small
number is pressed on average.

Spike-and-slab distributions can flexibly model an array of sparse distributions, making
them desirable for many types of data. Algorithms based on spike-and-slab distributions
have successfully been used, e.g., for deep learning and transfer learning (Goodfellow et al.,
2013), regression (West, 2003; Carvalho et al., 2008; Carbonetto and Stephen, 2011; Titsias
and Lazaro-Gredilla, 2011), or denoising (Zhou et al., 2009; Titsias and Lazaro-Gredilla,
2011), and often represent the state-of-the-art on given benchmarks (compare Titsias and
Lazaro-Gredilla, 2011; Goodfellow et al., 2013).

The general challenge with spike-and-slab sparse coding models lies in the optimization
of the model parameters. Whereas the standard Laplacian prior used for sparse coding
results in uni-modal posterior distributions, the spike-and-slab prior results in multi-modal
posteriors (see, e.g., Titsias and Lazaro-Gredilla, 2011; Lücke and Sheikh, 2012). Figure
1 shows typical posterior distributions for spike-and-slab sparse coding (the model will be
formally defined in the next section). The figure illustrates posterior examples for the case
of a two-dimensional observed and a two-dimensional hidden space. As can be observed,
the posteriors have multiple modes; and the number modes increases exponentially with the
dimensionality of the hidden space (Titsias and Lazaro-Gredilla, 2011; Lücke and Sheikh,
2012). The multi-modal structure of the posteriors argues against the application of the
standard maximum a-posteriori (MAP) approaches (Mairal et al., 2009; Lee et al., 2007; Ol-
shausen and Field, 1997) or Gaussian approximations of the posterior (Seeger, 2008; Ribeiro
and Opper, 2011) because they rely on uni-modal posteriors. The approaches that have
been proposed in the literature are, consequently, MCMC based methods (e.g., Carvalho
et al., 2008; Zhou et al., 2009; Mohamed et al., 2012) and variational EM methodologies
(e.g., Zhou et al., 2009; Titsias and Lazaro-Gredilla, 2011; Goodfellow et al., 2013). While
MCMC approaches are more general and more accurate given sufficient computational re-
sources, variational approaches are usually more efficient. Especially in high dimensional
hidden spaces, the multi-modality of the posteriors is a particular challenge for MCMC
approaches; consequently, recent applications to large hidden spaces have been based on
variational EM optimization (Titsias and Lazaro-Gredilla, 2011; Goodfellow et al., 2013).
The variational approaches applied to spike-and-slab models thus far (see Rattray et al.,
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Figure 1: Left figures visualize observations generated by two different instantiations of
the spike-and-slab sparse coding model (1) to (3). Solid lines are the generating
bases vectors. Right figures illustrate the corresponding exact posteriors over
latents computed using (13) and (15) given observations and generating model
parameters. The probability mass seen just along the axes or around the origin
actually lies exactly on the axis. Here we have spread the mass for visualization
purposes by slightly augmenting zero diagonal entries of the posterior covariance
matrix in (15).

2009; Yoshida and West, 2010; Titsias and Lazaro-Gredilla, 2011; Goodfellow et al., 2013)
assume a factorization of the posteriors over the latent dimensions, that is the hidden di-
mensions are assumed to be independent a-posteriori. This means that any dependencies
such as explaining-away effects including correlations (compare Figure 1) are ignored and
not accounted for. But what consequences does such a negligence of posterior structure
have? Does it result in biased parameter estimates and is it relevant for practical tasks?
Biases induced by factored variational inference in latent variable models have indeed been
observed before (MacKay, 2001; Ilin and Valpola, 2005; Turner and Sahani, 2011). For
instance, in source separation tasks, optimization through factored inference can be bi-
ased towards finding mixing matrices that represent orthogonal sparse directions, because
such solutions are most consistent with the assumed a-posteriori independence (see Ilin and
Valpola, 2005, for a detailed discussion). Therefore, the posterior independence assumption
in general may result in suboptimal solutions.
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In this work we study an approximate EM approach for spike-and-slab sparse coding
which does not assume a-posteriori independence and which can model multiple modes. The
novel approach can be considered as a variational EM approach but instead of using factored
distributions or Gaussians, it is based on posterior distributions truncated to regions of
high probability mass (Lücke and Eggert, 2010). Such truncated EM approaches have
recently been applied to different models (see e.g., Puertas et al., 2010; Shelton et al.,
2011; Dai and Lücke, 2012; Bornschein et al., 2013). In contrast to the previously studied
factored variational approaches (Titsias and Lazaro-Gredilla, 2011; Mohamed et al., 2012;
Goodfellow et al., 2013), the truncated approach will furthermore take advantage of the fact
that in the case of a Gaussian slab and Gaussian noise model, integrals over the continuous
latents can be obtained in closed-form (Lücke and Sheikh, 2012). This implies that the
posteriors over latent space can be computed exactly if the sums over the binary part are
exhaustively evaluated over exponentially many states. This enumeration of the binary
part becomes computationally intractable for high-dimensional hidden spaces. However, by
applying the truncated variational approach exclusively to the binary part of the hidden
space, we can still fully benefit from the analytical tractability of the continuous integrals.

In this study, we systematically compare the truncated approach to a recently suggested
factored variational approach (Titsias and Lazaro-Gredilla, 2011). A direct comparison
of the two variational approaches will allow for answering the questions about potential
drawbacks and biases of both optimization procedures. As approaches assuming factored
variational approximations have recently shown state-of-the-art performances (Titsias and
Lazaro-Gredilla, 2011; Goodfellow et al., 2013), understanding their strengths and weak-
nesses is crucial for further advancements of sparse coding approaches and their many
applications. Comparison with other approaches that are not necessarily based on the
spike-and-slab model will allow for accessing the potential advantages of the spike-and-slab
model itself.

In Section 2 we will introduce the used spike-and-slab sparse coding generative model,
and briefly discuss the factored variational approach which has recently been applied for
parameter optimization. In Section 3 we derive the closed-form EM parameter update
equations for the introduced spike-and-slab model. Based on these equations, in Section 4
we derive the truncated EM algorithm for efficient learning in high dimensions. In Section
5, we numerically evaluate the algorithm and compare it to factored variational and other
approaches. Finally, in Section 6 we discuss the results. The Appendix present details of
the derivations and experiments.

2. Spike-and-slab Sparse Coding

The spike-and-slab sparse coding model assumes like standard sparse coding a linear super-
position of basis functions, independent latents, and Gaussian observation noise. The main
difference is that a spike-and-slab distribution is used as a prior. Spike-and-slab distribu-
tions have long been used for different models (e.g., Mitchell and Beauchamp, 1988, among
many others) and also variants of sparse coding with spike-and-slab priors have been studied
previously (compare West, 2003; Garrigues and Olshausen, 2007; Knowles and Ghahramani,
2007; Teh et al., 2007; Carvalho et al., 2008; Paisley and Carin, 2009; Zhou et al., 2009). In
this work we study a generalization of the spike-and-slab sparse coding model studied by
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Lücke and Sheikh (2012). The data generation process in the model assumes an indepen-
dent Bernoulli prior for each component of the the binary latent vector ~s ∈ {0, 1}H and a
multivariate Gaussian prior for the continuous latent vector ~z ∈ RH :

p(~s |Θ) = B(~s;~π) =
H∏
h=1

πshh (1− πh)1−sh , (1)

p(~z |Θ) = N (~z; ~µ,Ψ), (2)

where πh defines the probability of sh being equal to one and where ~µ and Ψ parameterize
the mean and covariance of ~z, respectively. The parameters ~µ ∈ RH and Ψ ∈ RH×H
parameterizing the Gaussian slab in (2) generalize the spike-and-slab model used in (Lücke
and Sheikh, 2012). A point-wise multiplication of the two latent vectors, i.e., (~s�~z)h = sh zh
generates a ‘spike-and-slab’ distributed variable (~s� ~z), which has either continuous values
or exact zero entries. Given such a latent vector, a D-dimensional observation ~y ∈ RD is
generated by linearly superimposing a set of basis functions W and by adding Gaussian
noise:

p(~y |~s, ~z,Θ) = N (~y; W (~s� ~z),Σ), (3)

where each column of the matrix W ∈ RD×H is a basis function W = (~w1, . . . , ~wH) and
where the matrix Σ ∈ RD×D parameterizes the observation noise. Full rank covariances
Σ can flexibly parametrize noise and have been found beneficial in noisy environments
(Dalen and Gales, 2008; Ranzato and Hinton, 2010; Dalen and Gales, 2011). Nevertheless
the model can also be constrained to have homoscedastic noise (i.e., Σ = σ2I). We use
Θ = (W,Σ, ~π, ~µ,Ψ) to denote all the model parameters. Having a spike-and-slab prior
implies that for high levels of sparsity (low values of πh) the latents assume exact zeros with
a high probability. This is an important distinction compared to the Laplace or Cauchy
distributions used for standard sparse coding (Olshausen and Field, 1997).

The spike-and-slab sparse coding algorithm we derive in this work is based on the model
(1) to (3). The factored variational approach (Multi–Task and Multiple Kernel Learning,
MTMKL; Titsias and Lazaro-Gredilla, 2011) that we use for detailed comparison is based
on a similar model. The MTMKL model is both a constrained and generalized version of
the model we study. On one hand, it is more constrained by assuming the same sparsity
for each latent, i.e., πh = πh′ (for all h, h′); and by using a diagonal covariance matrix for
the observation noise, Σ = diag(σ2

1, . . . , σ
2
D). On the other hand, it is a generalization by

drawing the basis functions W from Gaussian processes. The model (1) to (3) can then
be recovered as a special case of the MTMKL model if the Gaussian processes are Dirac
delta functions. For parameter optimization, the MTMKL model uses a standard factored
variational optimization. In the case of spike-and-slab models, this factored approach means
that the exact posterior p(~s, ~z | ~y) is approximated by a variational distribution qn(~s, ~z; Θ)
which assumes the combined latents to be independent a-posteriori (compare Zhou et al.,
2009; Titsias and Lazaro-Gredilla, 2011; Goodfellow et al., 2013):

qn(~s, ~z; Θ) =

H∏
h=1

q(h)
n (sh, zh; Θ),
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where q
(h)
n are distributions only depending on sh and zh and not on any of the other latents.

A detailed account of the MTMKL optimization algorithm is given by Titsias and Lazaro-
Gredilla (2011) and for later numerical experiments on the model, we used the source code
provided along with that publication.1 Further comparisons will include the spike-and-slab
sparse coding model by Zhou et al. (2009). The generative model is similar to the spike-and-
slab model in Equations (1) to (3) but uses a Beta process prior to parameterize the Bernoulli
(the “spike”) distribution and assumes homoscedastic observation noise. Inference in their
model is based on factored variational EM or Gibbs sampling. As this model is closely
related to ours, we use it as another instance for comparison in our numerical experiments
in order to assess the influence of different inference method choices. This comparison
allows us to explore differences of training the model with a sampling-based approach, as
they yield many of the same benefits of our inference method (e.g., flexible representation
of uncertainty), but where generally more computational resources are necessary.

3. Expectation Maximization for Parameter Optimization

In order to learn the model parameters Θ given a set of N independent data points
{~y (n)}n=1,...,N with ~y (n) ∈ RD, we maximize the data likelihood L =

∏N
n=1 p(~y

(n) |Θ) by
applying the Expectation Maximization (EM) algorithm. Instead of directly maximizing
the likelihood, the EM algorithm (in the form studied by Neal and Hinton, 1998) maximizes
the free-energy, a lower bound of the log-likelihood given by:

F(Θold,Θ) =
N∑
n=1

〈
log p(~y (n), ~s, ~z |Θ)

〉
n

+H(Θold), (4)

where 〈 · 〉n denotes the expectation under the posterior over the latents ~s and ~z given ~y (n)〈
f(~s, ~z)

〉
n

=
∑
~s

∫
~z
p(~s, ~z | ~y (n),Θold) f(~s, ~z) d~z (5)

and H(Θold) = −
∑

~s

∫
~z p(~s, ~z | ~y

(n),Θold) log(p(~s, ~z | ~y (n),Θold)) d~z is the Shannon entropy,
which only depends on parameter values held fixed during the optimization of F w.r.t. Θ
in the M-step. Here

∑
~s is a summation over all possible binary vectors ~s.

The EM algorithm iteratively optimizes the free-energy by alternating between two
steps. First, in the E-step given the current parameters Θold, the relevant expectation values
under the posterior p(~s, ~z | ~y (n),Θold) are computed. Next, the M-step uses these posterior
expectations and maximizes the free-energy F(Θold,Θ) w.r.t. Θ. Iteratively applying E- and
M-steps locally maximizes the data likelihood. In the following section we will first derive
the M-step equations which themselves will require expectation values over the posteriors
(5). The required expressions and approximations for these expectations (the E-step) will
be derived afterwards.

3.1 M-step Parameter Updates

The M-step parameter updates of the model are canonically obtained by setting the deriva-
tives of the free-energy (4) w.r.t. the second argument to zero. Details of the derivations

1. We downloaded the code from http://www.well.ox.ac.uk/~mtitsias/code/varSparseCode.tar.gz.
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are given in Appendix A and the resulting update equations are as follows:

W =

∑N
n=1 ~y

(n)
〈
~s� ~z

〉T

n∑N
n=1

〈
(~s� ~z)(~s� ~z)T

〉
n

, (6)

~π =
1

N

N∑
n=1

〈
~s
〉
n
, (7)

~µ =

∑N
n=1

〈
~s� ~z

〉
n∑N

n=1

〈
~s
〉
n

, (8)

Ψ =

N∑
n=1

[〈
(~s� ~z)(~s� ~z)T

〉
n
−
〈
~s~sT

〉
n
� ~µ~µT

]
�
( N∑
n=1

[〈
~s~sT

〉
n

])−1
, (9)

and Σ =
1

N

N∑
n=1

[
~y (n)(~y (n))T −W

[〈
(~s� ~z)

〉
n

〈
(~s� ~z)

〉T

n

]
WT

]
. (10)

3.2 E-step Expectation Values

The M-step equations (6) to (10) require expectation values w.r.t. the posterior distribution
be computed over the whole latent space, which requires either analytical solutions or
approximations of integrals/sums over the latent space. For the derivation of closed-form
E-step equations it is useful to know that the discrete latent variable ~s can be combined
with the basis function matrix W so that we can rewrite (3) as

p(~y |~s, ~z,Θ) = N (~y; W̃~s ~z,Σ),

where we have defined (W̃~s)dh = Wdhsh such that W (~s� ~z) = W̃~s ~z.
Here the data likelihood p(~y |Θ) can be derived in closed-form after marginalizing the

joint p(~y,~s, ~z |Θ) over ~z:

p(~y,~s|Θ) = B(~s;~π)

∫
N (~y; W̃~s ~z,Σ)N (~z; ~µ,Ψ) d~z

= B(~s;~π) N (~y; W̃~s ~µ,C~s), (11)

where C~s = Σ + W̃~s ΨW̃ T
~s . The second step follows from standard identities for Gaussian

random variables (e.g., Bishop, 2006). We can then sum the resulting expression over ~s to
obtain

p(~y |Θ) =
∑
~s

B(~s;~π) N (~y; W̃~s ~µ,C~s). (12)

Thus, the marginal distribution takes the form of a Gaussian mixture model with 2H mix-
ture components indexed by ~s. However, unlike in a standard Gaussian mixture model, the
mixing proportions and the parameters of the mixture components are not independent but
coupled together. Therefore, the following steps will lead to closed-form EM updates that
are notably not a consequence of closed-form EM for classical Gaussian mixtures. In con-
trast, Gaussian mixture models assume independent mixing proportions and independent
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component parameters. By using Equations (11) and (12) the posterior over the binary
latents p(~s | ~y,Θ) is given by:

p(~s | ~y,Θ) =
p(~s, ~y |Θ)

p(~y |Θ)
=

B(~s;~π) N (~y; W̃~s ~µ,C~s)∑
~s′ B(~s′;~π) N (~y; W̃~s′~µ,C~s′)

. (13)

We can now consider the factorization of the posterior p(~s, ~z | ~y,Θ) into the posterior over
the binary part p(~s | ~y,Θ) and the posterior over the continuous part given the binary state
p(~z |~s, ~y,Θ):

p(~s, ~z | ~y,Θ) = p(~s | ~y,Θ) p(~z |~s, ~y,Θ). (14)

Like the first factor in (14), the second factor is also analytically tractable and given by:

p(~z |~s, ~y,Θ) =
p(~s |Θ) p(~z |Θ) p(~y |~z,~s,Θ)

p(~s |Θ)
∫
p(~y |~z,~s,Θ) p(~z |Θ)d~z

∝ N (~z; ~µ,Ψ)N (~y; W̃~s ~z,Σ)

= N (~z;~κ~s,Λ~s),

where the last step again follows from standard Gaussian identities with definitions

Λ~s = (W̃T
~s Σ−1 W̃~s + Ψ−1

~s )−1,

~κ
(n)
~s = (~s� ~µ) + Λ~s W̃

T
~s Σ−1 (~y (n) − W̃~s ~µ)

(15)

and with Ψ~s = Ψ
(
diag(~s)

)
. The full posterior distribution can thus be written as

p(~s, ~z | ~y (n),Θ) =
B(~s;~π)N (~y (n); W̃~s ~µ,C~s)N (~z; ~κ

(n)
~s ,Λ~s)∑

~s′ B(~s′;~π)N (~y (n); W̃~s′ ~µ,C~s′)
. (16)

Equation (16) represents the crucial result for the computation of the E-step below because,
first, it shows that the posterior does not involve analytically intractable integrals and,
second, for fixed ~s and ~y (n) the dependency on ~z follows a Gaussian distribution. This
special form allows for the derivation of analytical expressions for the expectation values as
required for the M-step updates. Because of the Gaussian form, the integrations over the
continuous part are straight-forward and the expectation values required for the M-step are
given as follows: 〈

~s
〉
n

=
∑
~s

qn(~s; Θ)~s, (17)

〈
~s~sT

〉
n

=
∑
~s

qn(~s; Θ)~s~sT, (18)

〈
~s� ~z

〉
n

=
∑
~s

qn(~s; Θ)~κ
(n)
~s , (19)

and
〈
(~s� ~z)(~s� ~z)T

〉
n

=
∑
~s

qn(~s; Θ)
(
Λ~s + ~κ

(n)
~s (~κ

(n)
~s )T

)
. (20)

In all of the expressions above, the left-hand-sides are expectation values over the full latent
space w.r.t. the posterior p(~s, ~z | ~y (n),Θ), whereas the right-hand-sides now take the form of
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expectation values only over the binary part w.r.t. the posterior p(~s | ~y (n),Θ) in Equation
(13). The derivations of E-step equations (17) to (20) are a generalization of the derivations
by Lücke and Sheikh (2012). While Gaussian identities and marginalization have been used
to obtain analytical results for mixture-of-Gaussians priors before (e.g. Moulines et al., 1997;
Attias, 1999; Olshausen and Millman, 2000; Garrigues and Olshausen, 2007), the above
equations are the first closed-form solutions for the spike-and-slab model (first appearing
in Lücke and Sheikh, 2012). The observation that the Gaussian slab and Gaussian noise
model allows for analytically tractable integrals has, in parallel work, also been pointed out
by Mohamed et al. (2012).

Iteratively computing the E-step equations (17) to (20) using the current parameters
Θ and the M-step equations (6) to (10), represents a closed-form and exact EM algorithm
which increases the data likelihood of the model to (possibly local) maxima.

4. Truncated EM

While being exact, the execution of the above EM algorithm results in considerable com-
putational costs for larger-scale problems. Without approximations, the computational
resources required scale exponentially with the number of hidden dimensions H. This can
be seen by considering the expected values w.r.t. the posterior p(~s | ~y,Θ) above, which each
require a summation over all binary vectors ~s ∈ {0, 1}H . For tasks involving low dimensional
hidden spaces, the exact algorithm is still applicable. For higher dimensional problems ap-
proximations are required, however. Still, we can make use of the closed-form EM solutions
by applying an approximation solely to the binary part. Instead of sampling-based or fac-
tored approximations to the posterior p(~s, ~z | ~y,Θ), we use a truncated approximation to the
posterior p(~s | ~y (n),Θ) in Equation (13). The truncated approximation is defined to be pro-
portional to the true posteriors on subspaces of the latent space with high probability mass
(compare Expectation Truncation, Lücke and Eggert, 2010). More concretely, a posterior
distribution p(~s | ~y (n),Θ) is approximated by a distribution qn(~s; Θ) that only has support
on a subset Kn ⊆ {0, 1}H of the state space:

qn(~s; Θ) =
p(~s, ~y (n) |Θ)∑

~s ′∈Kn

p(~s ′, ~y (n) |Θ)
δ(~s ∈ Kn), (21)

where δ(~s ∈ Kn) is an indicator function, i.e., δ(~s ∈ Kn) = 1 if ~s ∈ Kn and zero otherwise.
The basic assumption behind the approximation in (21) is that the posterior over the

entire hidden space is concentrated in small volumes, which is represented by the reduced
support of subset Kn. When using a spike-and-slab sparse coding model to gain a generative
understanding of the data, sparsity in the posterior distribution usually emerges naturally.
We can see an illustration of this in Figure 2 (generation details in Section 5.4). Figure
2A shows (for three typical data points) how much posterior mass is carried by each of
the H = 10 latent dimensions. Figure 2B shows (for the same data points) histograms
of the posterior mass marginalized across the whole range of hyperplanes spanned by the
10–dimensional latent space. Figure 2A indicates that only a subset of the H latents is
significantly relevant for encoding the posterior, while Figure 2B allows us to observe that
the posterior mass is primarily contained within low-dimensional hyperplanes of the H–
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Figure 2: Visualization of the exact posterior probabilities of the spike-and-slab model
with H = 10 latents, computed for three given data points ~y (n).
The model was trained on natural data (see Section 5.4 for more de-
tails). A Histograms of the posterior mass over the H latents: p(sh =
1 | ~y(n),Θ) =

∑
~swithsh=1 p(~s | ~y(n),Θ)/

∑
~s p(~s | ~y(n),Θ). Low values for most

h imply that these latents can be neglected (i.e., clamped to zero) for
a posterior approximation. B Histograms of the posterior mass over
the hyperplanes of increasing dimensionality i: p(|~s| = i | ~y(n),Θ) =∑

~swhere|~s|=i p(~s | ~y
(n),Θ)/

∑H
i′=0

∑
~swhere|~s|=i′ p(~s | ~y

(n),Θ). In case of all the three
examples presented here, subspaces with i > 4 can be neglected as another ap-
proximation step for posterior estimation.

dimensional hidden space. In other words, given a data point we find that most of the
posterior mass is concentrated in low-dimensional subspaces spanned by H ′ � H of the
latent dimensions. The sparse nature of the posterior as illustrated by Figure 2 allows us
to apply approximation (21), where we define the subsets Kn based on index sets In ⊆
{1, . . . ,H}, which contain the indices of H ′ most relevant sparse latents (compare Figure
2A) for the corresponding data points ~y (n):

Kn = {~s |
∑

h sh ≤ γ and ∀h 6∈ In : sh = 0} ∪ U , (22)

where the indices comprising In have the highest value of a selection (or scoring) function
Sh(~y (n),Θ) (which we define later). The set U is defined as U = {~s |

∑
h sh = 1} and ensures

that Kn contains all singleton states (compare Lücke and Eggert, 2010). Otherwise, Kn only
contains vectors with at most γ non-zero entries and with non-zero entries only permitted
for h ∈ In. The parameter γ 6 H ′ sets the maximal dimensionality of the considered
hyper-planes (compare Figure 2B). It was empirically shown by Lücke and Eggert (2010)
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that for appropriately defined subspaces Kn, the KL-divergence between the true posteriors
and their truncated approximations converges to values close to zero.

If we now use the concrete expressions of the sparse spike-and-slab model (Equations
(1) to (3)) for the variational distribution in Equation (21), the truncated approximation is
given by:

p(~s | ~y (n),Θ) ≈ qn(~s; Θ) =
N (~y (n); W̃~s ~µ,C~s)B(~s;~π)∑

~s ′∈Kn N (~y (n); W̃~s′~µ,C~s′)B(~s′;~π)
δ(~s ∈ Kn). (23)

The approximation can now be used to compute the expectation values which are required
for the M-step equations. If we use the variational distributions in Equation (23) for qn(~s; Θ)
on the right-hand-sides of Equations (17) to (20), we obtain:

∑
~s

qn(~s; Θ) f(~s) =

∑
~s∈Kn N (~y (n); W̃~s ~µ,C~s)B(~s;~π) f(~s)∑
~s ′∈Kn N (~y (n); W̃~s′~µ,C~s′)B(~s′;~π)

, (24)

where f(~s) denotes any of the (possibly parameter dependent) functions of (17) to (20).
Instead of having to compute sums over the entire binary state space with 2H states, only
sums over subsets Kn have to be computed. Since for many applications the posterior mass
is finally concentrated in small volumes of the state space, the approximation quality can
stay high even for relatively small sets Kn.

Note that the definition of qn(~s; Θ) in Equation (21) neither assumes uni-modality like
MAP approximations (Mairal et al., 2009; Lee et al., 2007; Olshausen and Field, 1997)
or Gaussian approximations of the posterior (Ribeiro and Opper, 2011; Seeger, 2008), nor
does it assume a-posteriori independence of the latents as factored approximations (Jordan
et al., 1999; Goodfellow et al., 2013; Titsias and Lazaro-Gredilla, 2011). The approximation
scheme we have introduced here exploits the inherent property of the sparse spike-and-
slab model to have posterior probabilities concentrated in low-dimensional subspaces. The
quality of our approximated posterior qn(~s; Θ) primarily depends on an appropriate selection
of the relevant subspaces Kn (see Section 4.2 below).

The truncated approximation is similar to factored variational approximations or MAP
approximations in the sense that it can be formulated as an approximate distribution
qn(~s; Θ) within the free-energy formulation by Neal and Hinton (1998). Within this formu-
lation, qn(~s; Θ) is often referred to as variational approximation, and we therefore refer to
our approximation as truncated variational EM. Like factored variational approaches, we
here aim to minimize the KL-divergence between the true posterior and the approximation
in Equation (21). However, we do not use variational parameters and a gradient based
optimization of such parameters for the minimization. Our approach is therefore not a
variational approach in the sense of classical variational calculus.

4.1 Computational Complexity

The truncated E-step defined by (17) to (20) with (24) scales with the approximation
parameters γ and H ′ which can be defined independently of the latent dimensionality H.
The complexity scales asO

(
N
∑γ

γ′=0

(
H′

γ′

)
(D+γ′)3

)
, where theD3 term can be dropped from

the cubic expansion if the observed noise Σ is considered to be diagonal or homoscedastic.
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Also the truncated approximation yields sparse matrices in Equations (21) and (23) which
results in more efficient and tractable matrix operations.

Although the total number of data points N above defines a theoretical upper bound,
in practice we can further benefit from the preselection step of the truncated approach to
achieve significantly improved runtime performances. Clustering the data points using the
index sets In saves us from redundantly performing various computationally expensive op-
erations involved in Equations (15) and (23), that given a state ~s ∈ Kn are independent of
individual data points sharing the same subspace Kn. Furthermore, such a batch processing
strategy is also readily parallelizable as the truncated E-step can be performed indepen-
dently for individual data clusters (see Appendix C for details). Using the batch execution
mode we have observed an average runtime speedup of up to an order of magnitude.

4.2 Selection Function

To compose appropriate subspaces Kn a selection function Sh(~y (n),Θ) is defined, which
prior to each E-step allows us to select the relevant H ′ hidden dimensions (i.e., the elements
of the index sets In) for a given observation ~y (n). A selection function is essentially a
heuristic-based scoring mechanism, that ranks all the latents based on their potential for
being among the generating causes of a given observation. Selection functions can be based
on upper bounds for probabilities p(sh = 1 | ~y (n),Θ) (compare Lücke and Eggert, 2010;
Puertas et al., 2010) or deterministic functions such as the scalar product between a basis
vector and a data point (derived from noiseless limits applied to observed space; compare
Lücke and Eggert, 2010; Bornschein et al., 2013).

For the sparse coding model under consideration we define a selection function as follows:

Sh(~y (n),Θ) = N (~y (n); W̃~sh~µ,C~sh) ∝ p(~y (n) |~s = ~sh,Θ), (25)

where ~sh represents a singleton state in which only the entry h is non-zero. The selection
function (25) is basically the data likelihood given a singleton state ~sh. The function does
not take into account the probability of the state itself (i.e., p(~sh |Θ)), as this may introduce
a bias against less active latent dimensions. Similar to previously used selection functions
(compare e.g., Lücke and Eggert, 2010; Puertas et al., 2010), in order to maintain a linear
scaling behavior w.r.t. the number of latents, the selection function introduced here avoids
computationally demanding higher-order combinatorics of the latents by only assessing one-
to-one correspondences between individual latents and an observed data point. In the next
section we empirically evaluate the efficacy of our selection function by means of numerical
experiments that are based on the KL-divergence between the exact and the approximated
posteriors computed from the subspaces Kn.

Equations (21) to (23) replace the computation of the expectation values w.r.t. the exact
posterior, and represent the approximate EM algorithm used in the experiments section.
The algorithm will be applied without any further mechanisms such as annealing as we
found it to be very robust in the form derived above. Furthermore, no data preprocessing
such as mean subtraction or variance normalization will be used in any of the experiments.
To distinguish the algorithm from others in comparative experiments, we will refer to it as
Gaussian Sparse Coding (GSC) algorithm in order to emphasize the special Gaussian case
of the spike-and-slab model used.
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5. Numerical Experiments

We investigate the performance of the GSC algorithm on artificial data as well as various re-
alistic source separation and denoising benchmarks. For all experiments the algorithm was
implemented to run in parallel on multiple CPUs with no dependency on their arrangement
as physically collocated arrays with shared memory or distributed among multiple compute
nodes (see Bornschein et al., 2010, for more details). We further extended the basic tech-
nique to make our implementation more efficient and suitable for parallelization by applying
the batch execution (the observation discussed in Section 4.1 on Computational Complexity
and Appendix C). In all the experiments, the GSC model parameters were randomly initial-
ized.2 The choice of GSC truncation parameters H ′ and γ is in general straight-forward: the
larger they are the closer the match to exact EM but the higher are also the computational
costs. The truncation parameters are therefore capped by the available computational re-
sources. However, empirically we observed that often much smaller values were sufficient
than those that are maximally affordable.3 Note that factored variational approaches do
not usually offer such a trade-off between the exactness and computational demand of their
inference schemes by means of a simple parameter adjustment.

5.1 Reliability of the Selection Function

To assess the reliability of the selection function we perform a number of experiments on
small scale artificial data generated by the model, such that we can compute both the exact
(13) and truncated (23) posteriors. To control for the quality of the truncated posterior
approximation—and thus the selection function—we compute the ratio between posterior
mass within the truncated space Kn and the overall posterior mass (compare Lücke and
Eggert, 2010):

Q(n) =

∑
~s∈Kn

∫
~z p(~s, ~z | ~y

(n),Θ) d~z∑
~s ′
∫
~z′ p(~s

′, ~z′ | ~y (n),Θ) d~z′
=

∑
~s∈Kn B(~s;~π)N (~y (n); W̃~s ~µ,C~s)∑
~s′ B(~s′;~π)N (~y (n); W̃~s′~µ,C~s′)

, (26)

where the integrals over the latent ~z in (26) are again given in closed-form. The metric
Q(n) ranges from zero to one and is directly related to the KL-divergence between the
approximation qn in Equation (23) and the true posterior:

DKL(qn(~s, ~z; Θ), p(~s, ~z | ~y (n),Θ)) = − log(Q(n)) .

If Q(n) is close to one, the KL-divergence is close to zero.

Data for the control experiments were generated by linearly superimposing basis func-
tions that take the form of horizontal and vertical bars (see e.g., Földiák, 1990; Hoyer,
2002) on a D = D2 ×D2 pixel grid, where D2 = H/2. This gives us D2 possible horizon-
tal as well as vertical locations for bars of length D2, which together form our generating
bases W gen. Each bar is then randomly assigned either a positive or negative value with

2. We randomly and uniformly initialized the πh between 0.05 and 0.95. ~µ was initialized with normally
distributed random values and the diagonal of Ψ was initialized with strictly positive uniformly dis-
tributed random values. We set Σ to the covariance across the data points, and the elements of W were
independently drawn from a normal distribution with zero mean and unit variance.

3. Compare Appendix B for trade-off between complexity and accuracy of the truncated EM approach.
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magnitude 10. We set the sparsity such that there are on average two active bars per
data point, i.e., πgen

h = 2/H for all h ∈ H. We assume homoscedastic4 observed noise
Σgen = σ2ID, where σ2 = 2.0. The mean of the generating slab is i.i.d. drawn from a Gaus-
sian: ~µgen ∼ N (0, 5), and the covariance of the slab is Ψgen = IH . We generate N = 1000
data points. We run experiments with different sets of values for the truncation parameters
(H ′, γ) ∈ {(4, 4), (5, 4), (5, 3)} for each H ∈ {10, 12}. Each run consists of 50 EM iterations
and after each run we compute the Q-value over all the data points. For all the experiments
we find the average Q-values to be above 0.99, which shows that the state subspaces (22)
constructed from the H ′ latents chosen through the selection function (25) contain almost
the entire posterior probability mass in this case. The small fraction of remaining poste-
rior mass lies in other discrete subspaces and its principle form is known to not contain
any heavy tails (see Equation (16)). The contribution of the truncated posterior mass to
parameter updates can therefore be considered negligible.

5.2 Consistency

Prior to delving into a comparative analysis of GSC with other methods, we assess the
consistency of the approach by applying both its exact and truncated variational inference
schemes on the task of recovering sparse latent directions w.r.t. increasing numbers of train-
ing data. For this experiment we work with synthetic data generated by the GSC model
itself. Moreover, we also apply the truncated variational inference on standard sparse cod-
ing data generated with a standard Laplace prior(Olshausen and Field, 1996; Lee et al.,
2007). Taking into account the computational demands of the exact inference, we set both
the hidden as well as observed dimensions (H and D respectively) to 10. For the experi-
ment we exponentially increase N from 1000 to 512000. For each trial in the experiment
we generate a new ground-truth mixing matrix W gen ∈ RD×H by randomly generating a
set of H orthogonal bases and perturbing them with a Gaussian noise with zero mean and
a variance of 2.0. We set the sparsity parameters πh to 1/H, while the observed noise is
assumed to be homoscedastic with σ = 1.0. When generating data with a spike-and-slab
prior, the slab is considered to have its mean at zero with an identity covariance matrix,
i.e., µh = 0.0 for all h ∈ H and Ψgen = IH , respectively. In each trial after performing 100
EM iterations and inferring the whole set of GSC parameters Θ, we quantify the quality of
the inference in terms of how well the inferred bases W align with the corresponding ground
truth bases W gen. As a measure of discrepancy between the generating and the recovered
bases we use the Amari index (Amari et al., 1995):

A(W ) =
1

2H(H − 1)

H∑
h,h′=1

( |Ohh′ |
maxh′′ |Ohh′′ |

+
|Ohh′ |

maxh′′ |Oh′′h′ |

)
− 1

H − 1
, (27)

where Ohh′ =
(
W−1W gen

)
hh′

. The Amari index is either positive or zero. It is zero only
when the basis vectors of W and W gen represent the same set of orientations, which in our
case implies a precise recovery of the (ground truth) sparse directions.

4. To infer homoscedastic noise we set in the M-step the updated noise matrix Σ to σ2ID where σ2 =
Tr

(
Σ
)
/D. This is equivalent to parameter update for σ2 if the model originally assumes homoscedastic

noise.
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Figure 3: Numerical experiment investigating the consistency of the exact as well as the
truncated variational GSC algorithm for increasing numbers of data points. The
curves show results for the recovery of sparse directions for different numbers
of data points. Data points were generated by both the spike-and-slab genera-
tive model (black and blue) and a standard sparse coding model with Laplace
prior (green). The curves show the mean Amari index and standard deviations
computed based on 15 repetitions of the learning algorithm.

Figure 3 summarizes the results of the experiment. Each error bar in the plot extends
one standard deviation on both sides of its corresponding mean Amari index, which is
computed from 15 repetitions. The black curve shows the results of the exact GSC inference
on spike-and-slab generated data, while the blue and green curves illustrate the results of
the truncated variational inference (H ′ = γ = 5) on data generated by spike-and-slab and
Laplace priors respectively. For data generated with the spike-and-slab prior, we observe
a gradually more accurate recovery of the sparse directions, as the mean Amari indices
gradually converge towards the minimum value of zero for increasing numbers of training
data. The minimum Amari index values that we obtain for the black and blue curves for
N ∈ {128K, 256K, 512K} are all below 6× 10−3. For the standard sparse coding data, we
also see an improvement in performance with more data; however, higher mean values of
the Amari index in this case can presumably be attributed to the model mismatch.

5.3 Recovery of Sparse Directions on Synthetic Data

In our first comparison with other methods, we measure the performances of GSC (using
the truncated variational approximation) and MTMKL (which uses a factored variational
approximation) approaches on the sparse latent direction recovery task given synthetic
data generated by standard sparse coding models. In one set of experiments we generate
data using sparse coding with Cauchy prior (Olshausen and Field, 1996), and in another
set of experiments we use the standard Laplace distribution as a prior (Olshausen and
Field, 1996; Lee et al., 2007). For each trial in the experiments a new mixing matrix
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20 40 60 80 100

0.1

0.2

0.3

20 40 60 80 100

Laplace

H = D

MTMKL
GSC Cauchy

A
m

a
ri

 i
n
d
e
x

Figure 4: Performance of GSC (with H ′ = γ = H
10) vs. MTMKL on data generated by stan-

dard sparse coding models both with Cauchy and Laplace priors. Performance
compared on the Amari index (27).

W gen was generated without any constraints on the sparse directions (i.e., matrices were
non-orthogonal in general). In both sets of experiments we simultaneously vary both the
observed and latent dimensions D and H between 20 and 100, and repeat 15 trials per given
dimensionality. For each trial we randomly generated a new data set of N = 5000 noisy
observations with Σgen = ID. Per trial, we perform 50 iterations of both algorithms. The
GSC truncation parameters H ′ and γ were set to H

10 . We assess the performances of the
algorithms w.r.t. the Amari index (27).

The results for GSC and MTMKL in Figure 4 show that both approaches do relatively
well in recovering the sparse directions, which shows that they are robust against the model
mismatch imposed by generating from models with other priors. Furthermore, we observe
that the GSC approach consistently recovers the sparse directions more accurately.

5.4 Source Separation

On synthetic data we have seen that spike-and-slab sparse coding can effectively recover
sparse directions such as those generated by standard sparse coding models. As many
signals such as acoustic speech data are sparse, and as different sources mix linearly, the
assumptions of sparse coding match such data well. Source separation is consequently a
natural application domain of sparse coding approaches, and well suited for benchmarking
novel spike-and-slab as well as other sparse coding algorithms. To systematically study
the a-posteriori independence assumption in factored variational approaches, we monitor
the recovery of sparse directions of GSC and MTMKL for an increasing degree of the
mixing matrix’s non-orthogonality. Figure 5 shows the performance of both the methods
based on three different source separation benchmarks obtained from (ICALAB; Cichocki
et al., 2007). The error bars show two standard deviations estimated based on 15 trials per
experiment. The x-axis in the figure represents the degree of orthogonality of the ground
truth mixing bases W gen. Starting from strictly orthogonal at the left, the bases were made
increasingly non-orthogonal by randomly generating orthogonal bases and adding Gaussian
distributed noise to them with σ ∈ {4, 10, 20}, respectively. For Figure 5 no observation
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Figure 5: Performance of GSC vs. MTMKL on source separation benchmarks with vary-
ing degrees of orthogonality of the mixing bases. The orthogonality on the x-
axis varies from being orthogonal ⊥ to increasingly non-orthogonal mixing as
randomly generated orthogonal bases are perturbed by adding Gaussian noise
N (0, σ) to them. No observation noise was assumed for these experiments. Per-
formances are compared on the Amari index (27).

noise was added to the mixed sources. For both the algorithms we performed 100 iterations
per run.5 The GSC truncation parameters H ′ and γ were set to 10 for all the following
experiments, therefore for 10halo the GSC inference was exact. As can be observed, both
approaches recover the sparse directions well. While performance on the EEG19 data set
is the same, GSC consistently performs better than MTMKL on 10halo and Speech20.
If observation noise is added, the difference can become still more pronounced for some
data sets. Figure 6 shows the performance in the case of Speech20 (with added Gaussian
noise with σ = 2.0), for instance. Along the x-axis orthogonality decreases, again. While
the performance of MTMKL decreases with decreasing orthogonality, performance of GSC
increases in this case. For other data sets increased observation noise may not have such
effects, however (see Appendix, Figure 12 for two examples).

Next we look at MAP based sparse coding algorithms for the source separation task.
Publicly available methods which we compare with are (SPAMS; Mairal et al., 2009) and
the efficient sparse coding algorithms (ESCA; Lee et al., 2007). These methods are based
on linear regression with lasso regularization, where sparsity is induced by introducing a
parameter-regulated penalty term in the objective function,6 which penalizes the L1−norm
of regressors (or latent variables). In a probabilistic context this is equivalent to assuming
a Laplace prior on the regressors. In this experiment we test the performance on another
set of ICALAB (Cichocki et al., 2007) benchmarks used previously (Suzuki and Sugiyama,
2011; Lücke and Sheikh, 2012). Following Suzuki and Sugiyama (2011) we use N = 200
and N = 500 data points from each benchmark and generate observed data by mixing the

5. For the MTMKL algorithm we observed convergence after 100 iterations while the GSC algorithm
continued to improve with more iterations. However, allowing the same number of iterations to both the
algorithms, the reported results are obtained with 100 iterations.

6. For both the algorithms compared here, optimal values for sparsity controlling regularization parameters
were chosen through cross-validation.
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Figure 6: Performance of GSC vs. MTMKL in terms of the Amari index (27) on the
Speech20 benchmark with varying degrees of orthogonality of the mixing bases
and Gaussian noise (with σ = 2) added to observed data. The orthogonality on
the x-axis varies from being orthogonal ⊥ to increasingly non-orthogonal mixing
as randomly generated orthogonal bases are perturbed by adding Gaussian noise
N (0, σ) to them.

benchmark sources with randomly generated orthogonal bases and adding no noise to the
observed data. For each experiment we performed 50 trials with a new randomly generated
orthogonal data mixing matrix W gen and new parameter initialization in each trial. The
GSC inference was exact for these experiments with better results obtained with observed
noise constrained to be homoscedastic. We performed up to 350 iterations of the GSC
algorithm (with more iterations continuing to improve the performance) while for the other
algorithms we observed convergence between 100 and 300 iterations.

Table 1 lists the performances of the algorithms. As can be observed, the spike-and-slab
based models perform better than the standard sparse coding models for all except of one
experiment (Sergio7, 200 data points) where SPAMS performs comparably well (or slightly
better). Among the spike-and-slab models, GSC performs best for all settings with 500 data
points, while MTMKL is better in two cases for 200 data points.7 Further improvements on
some settings in Table 1 can be obtained by algorithms constrained to assume orthogonal
bases (Suzuki and Sugiyama, 2011; Lücke and Sheikh, 2012). However, for 10halo and
speech4 GSC and MTMKL are better without such an explicit constraint.

Figure 2 was generated in a similar fashion on the 10halo data set. There we computed
the exact posterior (13) over H = 10 latent dimensions, thus the approximation parameters
were γ = H ′ = H (exact E-step). After performing 50 EM iterations and learning all
the model parameters, we then visualized marginalized posteriors for a given data point
along each column of the figure. The top row of the figure allows us get an idea of how

7. In Table 1 the results do not necessarily improve with an increased number of data points. However,
the data points considered here are not independent samples. Following Suzuki and Sugiyama (2011) we
always took consecutive 200 or 500 data points (after an offset) from each of the benchmarks. Therefore,
due to time-dependencies in the signals, the underlying data point statistics change with the number of
data points.
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data sets Amari index - mean (std.)

name H = D N GSC MTMKL SPAMS ESCA

10halo 10 200 0.27(.04) 0.21(.05) 0.28(0) 0.31(.02)

500 0.17(.03) 0.20(.03) 0.29(0) 0.29(.02)

Sergio7 7 200 0.19(.05) 0.19(.03) 0.18(0) 0.27(.04)

500 0.13(.04) 0.23(.04) 0.19(0) 0.18(.04)

Speech4 4 200 0.13(.04) 0.14(.03) 0.18(0) 0.23(.02)

500 0.10(.04) 0.14(.08) 0.16(0) 0.17(0)

c5signals 5 200 0.29(.08) 0.24(.08) 0.39(0) 0.47(.05)

500 0.31(.06) 0.32(.03) 0.42(0) 0.48(.05)

Table 1: Performance of GSC, MTMKL and other publicly available sparse coding algo-
rithms on benchmarks for source separation. Performances are compared based
on the Amari index (27). Bold values highlight the best performing algorithm(s).

concentrated and sparse a data point is in terms of the latents contributing to its posterior
mass. The bottom row of the figure on the other hand allows us to observe the sparsity in
the posterior w.r.t. the dimensionality of the hyperplanes spanned by the latents, with a
posterior mass accumulation in low-dimensional hyperplanes.

5.5 Computational Complexity vs. Performance

In terms of computational complexity, GSC and MTMKL algorithms are significantly differ-
ent, so we also looked at the trade-off between their computational costs versus performance.
Subfigures A and B in Figure 7 show performance against compute time for both algorithms.
The error bars for the Speech20 plot were generated from 15 trials per experiment. For
MTMKL we obtained the plot by increasing the number of iterations from 50 to 100 and
1000, while for the GSC plot we performed 100 iterations with H ′ = γ ∈ [2, 3, 5, 7, 10]. For
the image denoising task (described next), the MTMKL plot was generated from a run with
H = 64 latents and the number of iterations going up to 12K. The GSC plot was generated
from H = 400 latents with H ′ and γ being 10 and 5 respectively. The last point on the GSC
(blue) curve corresponds to the 120th EM iteration. As can be observed for both tasks, the
performance of MTMKL saturates from certain runtime values onwards. GSC on the other
hand continues to show improved performance with increasing computational resources.

For the denoising task we also compared the performance of both the algorithms against
an increasing number of latents H. While the computational cost of the MTMKL algorithm
increases linearly w.r.t. H, the runtime cost of the truncated variational GSC remains
virtually unaffected by it, since it scales w.r.t. the parameters H ′ and γ (see Section 4.1).
In this experiment we performed 65 iterations of the GSC algorithm for H ∈ {64, 256} and
up to 120 iterations for H = 400. For MTMKL we performed up to 120 iterations for each
given H. Figure 7C summarizes the results of this experiment. In the figure we can see
a constant performance increase for GSC, while for MTMKL we actually observe a slight
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Figure 7: A,B: Runtime vs. performance comparison of GSC (blue) and MTMKL (red)
on source separation and denoising tasks. Source separation is compared on the
Amari index (the lower the better) while the denoising is compared on the peak
signal-to-noise (PSNR) ratio (the higher the better). C: Performance of GSC
(blue) and MTMKL (red) on the denoising task against an increasing number of
latents.

decrease in performance. This is in conformity with what Titsias and Lazaro-Gredilla (2011)
report in their work that for the denoising task they observed no performance improvements
for larger number of latents.

5.6 Image Denoising

Finally, we investigate performance of the GSC algorithm on the standard “house” bench-
mark for denoising which has been used for the evaluation of similar approaches (e.g., Li
and Liu, 2009; Zhou et al., 2009) including the MTMKL spike-and-slab approach. The
MTMKL approach currently represents the state-of-the-art on this benchmark (see Titsias
and Lazaro-Gredilla, 2011). We also compare with the approach by Zhou et al. (2009) as
a representative sampling-based optimization scheme. For the task a noisy input image is
generated by adding Gaussian noise (with zero mean and standard deviation determining
the noise level) to the 256 × 256 image (see Figure 8). Following the previous studies, we
generated 62, 001 overlapping (shifted by 1 pixel) 8 × 8 patches from the noisy image. We
then applied 65 iterations of the GSC algorithm for H ∈ {64, 256} for different noise levels
σ ∈ {15, 25, 50}. The truncation parameters H ′ and γ for each run are listed in Table
2. We assumed homoscedastic observed noise with a priori unknown variance in all these
experiments (as the MTMKL model).

A comprehensive comparison of the denoising results of the various algorithms is shown
in Table 2, where performance is measured in terms of the peak signal-to-noise (PSNR) ratio.
We found that for the low noise level (σ = 15) GSC is competitive with other approaches
but with MTMKL performing slightly better. For the higher noise levels of σ = 25 and
σ = 50, GSC outperforms all the other approaches including the MTMKL approach that
represented the state-of-the-art. In Figure 8 we show our result for noise level σ = 25. The
figure contains both the noisy and the GSC denoised image along with the inferred sparsity
vector ~π and all bases with appearance probabilities significantly larger than zero (sorted
from high such probabilities to low ones). We also applied GSC with higher numbers of
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latent dimensions: Although for low noise levels of σ = 15 and σ = 25 we did not measure
significant improvements, we observed a further increase for σ = 50. For instance, with
H = 400, H ′ = 10 and γ = 8, we obtained for σ = 50 a PSNR of 28.48dB.

As for source separation described in Section 5.5, we also compared performance vs.
computational demand of both algorithms for the task of image denoising. As illustrated in
A and B of Figure 7, MTMKL performs better when computational resources are relatively
limited. However, when increasingly more computational resources are made available,
MTMKL does not improve much further on its performance while GSC performance con-
tinuously increases and eventually outperforms MTMKL on this task.

PSNR (dB)

Noise Noisy img MTMKLexp. K-SVDmis. *K-SVDmatch Beta pr. GSC (H=64) GSC (H=256)

σ=15 24.59 34.29 30.67 34.22 34.19 32.68 (H’=10,γ=8) 33.78 (H’=18,γ=3)

σ=25 20.22 31.88 31.52 32.08 31.89 31.10 (H’=10,γ=8) 32.01 (H’=18,γ=3)

σ=50 14.59 28.08 19.60 27.07 27.85 28.02 (H’=10,γ=8) 28.35 (H’=10,γ=8)

Table 2: Comparison of the GSC algorithm with other methods applied to the “house”
benchmark. The compared methods are: MTMKL (Titsias and Lazaro-Gredilla,
2011), K-SVD (Li and Liu, 2009), and Beta process (Zhou et al., 2009). Bold values
highlight the best performing algorithm(s). ∗High values for K-SVD matched are
not made bold-faced as the method assumes the noise variance to be known a-priori
(see Li and Liu, 2009).

6. Discussion

The last years have seen a surge in the application of sparse coding algorithms to different
research domains, along with developments of new sparse coding approaches with increased
capabilities. There are currently different lines of research followed for developing new
algorithms: one direction is based on the standard sparse coding algorithm (Olshausen and
Field, 1996) with Laplace prior and parameter optimization using maximum a-posteriori
(MAP) estimates of the latent posteriors for efficient training. This original approach
has since been made more efficient and precise. Many sparse coding algorithms based on
the MAP estimation are continuously being developed and are successfully applied in a
variety of settings (e.g., Lee et al., 2007; Mairal et al., 2009). Another line of research
aims at a fully Bayesian description of sparse coding and emphasizes greater flexibility
by using different (possibly non-Gaussian) noise models and estimations of the number
of hidden dimensions. The great challenge of these general models is the procedure of
parameter estimation. For instance, the model by Mohamed et al. (2012) uses Bayesian
methodology involving conjugate priors and hyper-parameters in combination with Laplace
approximation and different sampling schemes.

A line of research falling in between conventional and fully Bayesian approaches is repre-
sented by the truncated variational approach studied here and by other very recent develop-
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Figure 8: Top left: Noisy “house” image with σ = 25. Top right: GSC denoised im-
age. Middle: Inferred sparsity values πh in descending order indicate that finally
around 107 of in total 256 latent dimensions significantly contribute to model the
data. Bottom: Basis functions (ordered from left to right, top to bottom) corre-
sponding to the first 107 latent dimensions sorted w.r.t. the decreasing sparsity
values πh .
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ments (Titsias and Lazaro-Gredilla, 2011; Goodfellow et al., 2013). While these approaches
are all based on spike-and-slab generalizations of sparse coding (like fully Bayesian ap-
proaches), they maintain deterministic approximation procedures for parameter optimiza-
tion. Variational approximations allow for applications to large hidden spaces which pose a
challenge for sampling approaches especially in cases of multi-modal posteriors. Using the
novel and existing approaches in different experiments of this study, we have confirmed the
advantages of spike-and-slab priors for sparse coding, and the scalability of variational ap-
proximations for such models. The newly developed truncated variational algorithm scales
almost linearly with the number of hidden dimensions for fixed truncation parameters (see
for instance the scaling behavior in supplemental Figure 10 for H going up to 1024). The
MTMKL algorithm by Titsias and Lazaro-Gredilla (2011) has been applied on the same
scale. Using a similar approach also based on factored distributions Goodfellow et al. (2013)
report results for up to a couple of thousands latent dimensions (albeit on small input di-
mensions and having a more constrained generative model). Sampling based algorithms for
non-parametric and fully Bayesian approaches are more general but have not been applied
to such large scales.

A main focus of this work and reasoning behind the algorithm’s development is due to
the long-known biases introduced by factored variational approximations (MacKay, 2001;
Ilin and Valpola, 2005; Turner and Sahani, 2011). Our systematic comparison of the GSC
algorithm to the method by Titsias and Lazaro-Gredilla (2011) confirms the earlier ob-
servation (Ilin and Valpola, 2005) that factored variational approaches are biased towards
orthogonal bases. If we compare the performance of both algorithms on the recovery of
non-orthogonal sparse directions, the performance of the factored variational approach is
consistently lower than the performance of the truncated variational algorithm (Figure 4).
The same applies for experiments for unmixing real signals in which we increased the non-
orthogonality (Figure 5A,C; suppl. Figure 12); although for some data performance is very
similar (Figure 5B). Also if sources are mixed orthogonally, we usually observe better per-
formance of the truncated variational approach (Table 1), which is presumably due to the
more general underlying prior (i.e., a fully parameterized Gaussian slab). Overall, GSC is
the best performing algorithm on source separation tasks involving non-orthogonal sparse
directions (compare Suzuki and Sugiyama, 2011, for algorithms constrained to orthogonal
bases). For some data sets with few data points, we observed an equal or better perfor-
mance of the MTMKL approach, which can be explained by their Bayesian treatment of
the model parameters (see Table 1, performance with 200 data points). Notably, both ap-
proaches are consistently better on source separation benchmarks than the standard sparse
coding approaches SPAMS (Mairal et al., 2009) and ESCA (Lee et al., 2007) (see Table 1).
This may be taken as evidence for the better suitability of a spike-and-slab prior for such
types of data.

For source separation our approach (like conventional sparse coding or ICA) seeks to
infer sparse directions by capturing the sparse, latent structures from the spatial domain
of the input signals. However, when dealing with data that also carry a temporal struc-
ture (e.g., speech or EEG recordings), other approaches which explicitly model temporal
regularities such as Hidden Markov Models (HMMs) may as well be a more natural and
(depending on the task) a more suitable choice. Such methodologies can in principle be
combined with the sparse coding approaches studied and compared here to form more com-
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prehensive models for spatio-temporal data, which can yield improved performance on blind
source separation tasks (compare e.g., Gael et al., 2008; Mysore et al., 2010).

In the last experiment of this study, we finally compared the performance of factored
and truncated variational approximations on a standard image denoising task (see Table
2). The high PSNR values observed for both approaches again in general speak for the
strengths of spike-and-slab sparse coding. The MTMKL model represented the state-of-
the-art on this benchmark, so far. Differences of MTMKL to previous approaches are
small, but this is due to the nature of such long-standing benchmarks (compare, e.g., the
MNIST data set). For the same denoising task with standard noise levels of σ = 25 and
σ = 50 we found the GSC model to further improve the state-of-the-art (compare Table 2
with data by Li and Liu, 2009, Zhou et al., 2009, Titsias and Lazaro-Gredilla, 2011). While
we observed a continuous increase of performance with the number of hidden dimensions
used for GSC, the MTMKL algorithm (Titsias and Lazaro-Gredilla, 2011) is reported to
reach saturation at H = 64 latent dimensions. As the learned sparse directions become
less and less orthogonal the more over-complete the setting gets, this saturation may again
be due to the bias introduced by the factored approach. GSC with H = 256 improves the
state-of-the-art with 32.01dB for σ = 25 and with 28.35dB for σ = 50 (with even higher
PSNR for H = 400). As we assume an independent Bernoulli prior per latent dimension,
GSC can also prune out latent dimensions by inferring very low values of πh for the bases
that make negligible contribution in the inference procedure. This can be observed in Figure
8, where for the application of GSC to the denoising task with σ = 25, we found only about
107 of the 256 basis functions to have significant probabilities to contribute to the task.
This means that GSC with about 100 basis functions can be expected to achieve almost the
same performance as GSC with 256 basis functions. However, in practice we observed that
the average performance increases with more basis functions because local optima can more
efficiently be avoided. This observation is not limited to the particular approach studied
here; also for other approaches to sparse learning, efficient avoidance of local optima has been
reported if the number of assumed hidden dimensions was increased (e.g. Spratling, 2006;
Lücke and Sahani, 2008). In comparison to MTMKL, GSC can make use of significantly
more basis functions. It uses about 100 functions while MTMKL performance saturates
at about 64 as mentioned previously. On the other hand, we found MTMKL to perform
better on the low noise level setting (see σ = 15 in Table 2) or when relatively limited
computational resources are available (see Figure 7).

In conclusion, we have studied a novel learning algorithm for sparse coding with spike-
and-slab prior and compared it with a number of sparse coding approaches including other
spike-and-slab based methods. The results we obtained show that the truncated EM ap-
proach is a competitive method. It shows that posterior dependencies and multi-modality
can be captured by a scalable deterministic approximation. Furthermore, the direct com-
parison with a factored variational approach in source separation experiments confirms
earlier observations that assumptions of a-posteriori independence introduces biases, and
that avoiding such biases, e.g. by a truncated approach, improves the state-of-the-art on
source separation benchmarks as well as on standard denoising tasks. However, we also
find that under certain constraints and settings, factored variational learning for spike-and-
slab sparse coding may perform as well or better. In general, our results argue in favor of
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spike-and-slab sparse coding models and recent efforts for developing improved algorithms
for inference and learning in such models.
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Appendix A. Derivation of M-step Equations

Our goal is to optimize the free-energy w.r.t. Θ:

F(Θold,Θ) =
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The free-energy thus takes the form:
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where qn(~s, ~z; Θold) denotes the posterior p(~s, ~z | ~y (n),Θold). Now we can derive the M-step
equations (6) to (10) by canonically setting the derivatives of the free-energy above w.r.t.
each parameter in Θ to zero.

A.1 Optimization of the Data Noise

Let us start with the derivation of the M-step equation for Σ:
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where 〈 · 〉n denotes the expectation value in Equation (5).

A.2 Optimization of the Bases

We will now derive the M-step update for the basis functions W :
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A.3 Optimization of the Sparsity Parameter

Here we take the derivative of the free-energy w.r.t. ~π:
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A.4 Optimization of the Latent Mean

Now we derive the M-step update for the mean ~µ of the Gaussian slab:
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A.5 Optimization of the Latent Covariance

Lastly we derive the M-step update for the latent covariance Ψ:
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Appendix B. Performance vs. Complexity Trade-Off

If the approximation parameters H ′ and γ are held constant, the computational cost of the
algorithm scales with the computational cost of the selection function. If the latter cost
scales linearly withH (as is the case here), then so does the overall computational complexity
(compare complexity considerations by Lücke and Eggert, 2010)). This is consistent with
numerical experiments in which we measured the increase in computational demand (see
Figure 10). In experiments with H increasing from 16 to 1024, we observed a, finally, close
to linear increase of computational costs. However, a larger H implies a larger number
of parameters, and thus may require more data points to prevent over-fitting. Although
a larger data set increases computational demand, our truncated approximation algorithm
allows us to take advantage of parallel computing architecture in order to more efficiently
deal with large data sets (see Appendix C for details). Therefore in practice, we can
weaken the extent of an increase in computational cost due to a higher demand for data.
Furthermore, we examined the benefit of using GSC (in terms of average speedup over EM
iterations) versus the cost regarding algorithmic performance. We compared approximation
parameters in the range of H ′ = γ = [1, 10] and again observed the performance of the
algorithm on the task of source separation (with randomly generated orthogonal ground
truth mixing bases and no observed noise). Figure 9 shows that a high accuracy can still
be achieved for relatively small values of H ′ γ which, at the same time, results in strongly
reduced computational demands.

Appendix C. Dynamic Data Repartitioning for Batch/Parallel Processing

As described in Section 4, the truncated variational approach deterministically selects the
most likely H ′ causes of a given observation ~y for efficiently approximating the posterior
distribution over a truncated latent space. In practice one can also use the selected la-
tent causes for applying clustering to the observed data, which allows for an efficient and
parallelizable batch-mode implementation of the E-step of the truncated variational EM
algorithm.

In the batch processing mode, prior to each E-step the observed data can be partitioned
by clustering together the data points w.r.t. their selected latent causes. The resulting
clusters can then be processed individually (e.g., on multiple compute cores) to perform
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Figure 9: Performance of the GSC on 10halo, EEG19 and Speech20 benchmarks for decreas-
ing truncation parameters H ′ and γ. The right plot shows how the computational
demand of the truncated variational algorithm decreases with decreasing values
of the truncation parameters. The runtime plots are normalized by the runtime
value obtained for H ′ = γ = 10 for each of the benchmarks.
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the E-step (Equations (21) to (23)) for all data points in a given cluster. This approach
not only pursues a natural partitioning of data, but in a parallel execution environment,
it can prove to be more efficient than uniformly distributing data (as in Bornschein et al.,
2010) among multiple processing units. By maximizing the similarity (in latent space) of
individual data points assigned to each of the processing units, we can overall minimize the
number of redundant computations involved in Equations (15) and (23), that are tied to
specific states of the latents. This can be observed by considering Equation (21), which is
as follows:

p(~s, ~z | ~y (n),Θ) ≈
N (~y (n); ~µ~s, C~s)B(~s;~π)N (~z; ~κ

(n)
~s ,Λ~s)∑

~s ′∈Kn N (~y (n); ~µ~s′ , C~s′)B(~s′;~π)
δ(~s ∈ Kn). (28)

Here the parameters ~µ~s, C~s and Λ~s entirely depend on a particular latent state ~s. Also,

~κ
(n)
~s takes prefactors that can be precomputed given the ~s. It turns out that to compute

(28) our clustering-based, dynamic data repartitioning and redistribution strategy is more
efficient than the uniform data distribution approach of Bornschein et al. (2010). This
is illustrated in Figure 11, which shows empirical E-step speedup over the latter approach
taken as a baseline. The error bars were generated by performing 15 trials per given data size
N . For all the trials, model scale (i.e., data dimensionality) and truncation approximation
parameters were kept constant.8 Each trial was run in parallel on 24 computing nodes. The
red plot in the figure also shows the speedup as a result of an intermediate approach. There
we initially uniformly distributed the data samples which were then only locally clustered
by each processing unit at every E-step. The blue plot on the other hand shows the speedup
as a result of globally clustering and redistributing the data prior to every E-step. All the
reported results here also take into account the cost of data clustering and repartitioning.

In a parallel setup, we perform the data clustering process by having each processing
unit cluster its own data locally and then merging the resulting clusters globally. In order
to avoid uneven data distribution, we also bound the maximum size of a cluster. Currently
we pick (per iteration) top α percentile of occurring cluster sizes as the threshold.9 Any
cluster larger than α is evenly broken into smaller clusters of maximum size α. Moreover,
to minimize communication overhead among computational units, we actually only cluster
and redistribute the data indices. This entails that the actual data must reside in a shared
memory structure which is efficiently and dynamically accessible by all the computational
units. Alternatively, all the units require their own copy of the whole data set.

Here we have introduced and illustrated the gains of dynamic data repartitioning tech-
nique in the context of a specific sparse coding model, which in fact involves computa-
tionally expensive, state-dependent operations for computing posterior distributions. The
technique however is inherently generic and can be straight-forwardly employed for other
types of multi-causal models.

8. The observed and the latent dimensions of the GSC model were 25 and 20 respectively. The truncation
approximation parameters H ′ and γ (maximum number of active causes in a given latent state) were 8
and 5 respectively.

9. The α for the reported experiments was 5.
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Figure 11: Runtime speedup of the truncated variational E-step (Equations (21) to (23))
with the static data distribution strategy taken as a baseline. The red plot
shows the speedup when initially uniformly distributed data samples were only
clustered locally by each processing unit, while the blue plot shows the speedup
as a result of globally clustering and redistributing the data. The runtimes
include the time taken by clustering and repartitioning modules.
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Figure 12: Source separation with observation noise. Performance of GSC vs. MTMKL
on 10halo and EEG19 benchmarks with varying degrees of orthogonality of the
mixing bases and Gaussian noise added to observations. Performance of GSC vs.
MTMKL on the Speech20 benchmark with varying degrees of orthogonality of
the mixing bases with Gaussian noise added to observed data. The orthogonality
on the x-axis varies from being orthogonal ⊥ to increasingly non-orthogonal mix-
ing as randomly generated orthogonal bases are perturbed by adding Gaussian
noise N (0, σ) to them. Performance is compared on the Amari index (27).
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Abstract

We study unsupervised learning in a probabilistic generative model for occlusion. The
model uses two types of latent variables: one indicates which objects are present in the
image, and the other how they are ordered in depth. This depth order then determines how
the positions and appearances of the objects present, specified in the model parameters,
combine to form the image. We show that the object parameters can be learned from an
unlabeled set of images in which objects occlude one another. Exact maximum-likelihood
learning is intractable. Tractable approximations can be derived, however, by applying
a truncated variational approach to Expectation Maximization (EM). In numerical experi-
ments it is shown that these approximations recover the underlying set of object parameters
including data noise and sparsity. Experiments on a novel version of the bars test using
colored bars, and experiments on more realistic data, show that the algorithm performs
well in extracting the generating components. The studied approach demonstrates that the
multiple-causes generative approach can be generalized to extract occluding components,
which links research on occlusion to the field of sparse coding approaches.

Keywords: generative models, occlusion, unsupervised learning, sparse coding, expecta-
tion truncation
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1. Introduction

A key problem in image analysis is to learn the shape and form of objects directly from
unlabeled data. Many approaches to this unsupervised learning problem have been moti-
vated by the observation that, although the number of objects appearing across all images
is vast, the number appearing in any one image is far smaller. This property, a form of
sparsity, has motivated a number of algorithms including sparse coding (SC; Olshausen
and Field, 1996) and non-negative matrix factorization (NMF; Lee and Seung, 1999) with
its sparse variants (e.g., Hoyer, 2004). These approaches can be framed as latent-variable
models, where each possible object, or part of an object, is associated with a latent variable
controlling its presence or absence in a given image. Any individual “hidden cause” is rarely
active, corresponding to the small number of objects present in any one image. Despite this
plausible motivation, SC or NMF make severe assumptions which coarsely approximate the
physical process by which images are produced. Perhaps the most crucial assumption is
that in the underlying latent variable models, objects or parts thereof, combine linearly
to form the image. In real images the combination of individual objects depends on their
relative distance from the camera or eye. If two objects occupy the same region in planar
space, the nearer one occludes the other, i.e., the hidden causes non-linearly compete to
determine the pixel values in the region of overlap.

In this paper we extend multiple-causes models such as SC or NMF to handle occlusion.
The idea of using many hidden “cause” variables to control the presence or absence of ob-
jects is retained, but these variables are augmented by another set of latent variables which
determine the relative depth of the objects, much as in the z-buffer employed by computer
graphics. In turn, this enables the simplistic linear combination rule to be replaced by one
in which nearby objects occlude those that are more distant. One of the consequences of
moving to a richer, more complex model is that inference and learning become correspond-
ingly harder. One of the main contributions of this paper is to show how to overcome these
difficulties.

The problem of occlusion has been addressed in different contexts (Jojic and Frey, 2001;
Williams and Titsias, 2004; Fukushima, 2005; Eckes et al., 2006; Lücke et al., 2009; LeRoux
et al., 2011; Tajima and Watanabe, 2011). Probabilistic ‘sprite’ models (e.g., Jojic and Frey,
2001; Williams and Titsias, 2004) assign pixels in multiple images taken from the same scene
to a fixed number of image layers. The approach is most frequently applied to automatically
remove foreground and background objects. Those models are in many aspects more general
than the approach discussed here. However, in contrast to our approach, they model data
in which objects maintain a fixed position in depth relative to the other objects. Other
approaches study occlusion in the context of neural network models (Tajima and Watanabe,
2011) or generalized versions of restricted Boltzmann machines (RBMs) which incorporate
occlusion (LeRoux et al., 2011). This paper takes a new and different approach which can
be regarded as a generalization of sparse coding to model occlusion.

2. A Generative Model for Occlusion

The occlusion model contains three important elements. The first is a set of variables which
controls the presence or absence of objects in a particular image (this part will be analogous,
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e.g., to NMF or sparse coding). The second is a variable which controls the relative depths
of the objects that are present. The third is the combination rule which describes how
active objects which are closer occlude more distant ones. The second and third part are
the distinguishing features of the model. They describe how values of observed variables
are determined by the occlusion non-linearity given a set of hidden variables. While the
occlusion model will be applicable to the same data as NMF or sparse coding, and while
efficient inference and learning will require sparsity, explicitly modeled occlusions will define
solutions different from these models with linear combination rules. Furthermore, more
general features per observed variable such as color vectors can be taken into account.

   

  

BA
object

permutationobjects

ϕ

featuremaskfeaturemask

image(ϕ2)image(ϕ1)

Y

~s

image

Figure 1: A Illustration of how object masks and features combine to generate an image. If
two objects are randomly chosen (|~s | = 2), two different images with two different
depth-orders (denoted by ϕ1 and ϕ2) can be generated. B Graphical model of
the generation process with hidden variables ~s (object presence) and ϕ (depth
permutation).

To model the presence or absence of objects we use H binary hidden variables s1, . . . , sH .
We assume that the presence of one object is independent of the presence of the others and,
for simplicity, we also assume that each object is equally likely to be present in an image a
priori (we refer to this probability by π). The probability for the presence and absence of
objects is given by

p(~s |π) =

H∏
h=1

Bernoulli(sh;π) =

H∏
h=1

πsh (1− π)1−sh . (1)

Objects in a real image can be ordered by their depth and it is this ordering which determines
how the objects occlude each other in regions of overlap. The depth-ordering is captured
in the model by associating the active objects with a permutation. We randomly and
uniformly choose a member ϕ of the set G(|~s |) which contains all permutation functions
ϕ : {h̃1, . . . , h̃|~s |} → {1, . . . , |~s |}, with |~s | =

∑
h sh, where h̃1 to h̃|~s | are the indices of the

non-zero entries of ~s. More formally, the probability of ϕ given ~s (see Figure 1B) is defined
by

p(ϕ |~s ) = 1
|~s |! with ϕ ∈ G(|~s |) . (2)
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A B C
shh

τ(S, h)

τ

shh
τ(S, h)

τ

shh
τ(S, h)

τ

Figure 2: Visualization of the mapping τ(S) : {1, . . . ,H} → [0, 2] which represents different
permutations of objects in depth. The eye at the bottom illustrates the position
of the observer. A and B show the two possible mappings if two causes are
present. C shows one of the 24 mappings if four causes are present.

Note that we could have defined the prior over the order in depth (Equation 2) independently
of ~s, by choosing from G(H) with p(ϕ) = 1

H! . But then, because the depth of absent objects
(sh = 0) is irrelevant, no more than |~s |! distinct choices of ϕ would have resulted in different
images.

The final stage of the generative model describes how to produce the image given a
selection of active causes and an ordering in relative depth of these causes. One approach
would be to choose the closest object and to set the image equal to the feature vector
associated with this object. However, this would mean that every image generated from the
model would comprise just one object: the closest. What is missing from this description
is a notion of the extent of an object and the fact that it might only contribute to a subset
of pixels in an image. For this reason, our model contains two sets of object parameters.
One set of parameters, W ∈ RH×D, describes whether an object contributes to a pixel and
the strength of that contribution (D is the number of pixels). The vector (Wh1, . . . ,WhD)
is therefore described as the mask of object h. If an object is highly localized, this vector
will contain many zero elements. The other set of parameters, T ∈ RH×C , represents the
features of the objects. We define one vectorial feature per object h, ~Th ∈ RC , describing, for
instance, the object’s RGB color (C = 3 in that case). Figure 1A illustrates the combination
of masks and features, and Figure 1B shows the graphical model of the generation process.

Let us formalize how an image is generated given the parameters W and T and given
the hidden variables S = (~s, ϕ). To further abbreviate the notation, we will denote all
the model’s parameters by Θ = (W,T, π, σ). We define the generation of a noiseless image
~T (S,Θ) to be given by the following equations:

~T d(S,Θ) = Whod
~Tho

where ho = argmaxh{τ(S, h)Whd} ,
τ(S, h) =


0 if sh = 0
3
2 if sh = 1 and |~s | = 1
ϕ(h)−1
|~s|−1 + 1 otherwise

(3)
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In Equation 3 the order in depth is represented by the mapping τ which intuitively can
be thought of as the relative proximity of the objects. The form of this mapping has been
chosen to facilitate later algebraic steps. To illustrate the combination rule of Equation 3
and the mapping τ consider Figure 1A and Figure 2. Let us assume that the mask values
Whd are zero or one (although we will later also allow for continuous values). As depicted
in Figure 1A an object h with sh = 1 occupies all image pixels with Whd = 1 and does
not occupy pixels with Whd = 0. For all pixels with Whd = 1 the vector ~Th sets the pixels’
values to a specific feature, e.g., to a specific color. The function τ maps all causes h with
sh = 0 to zero while all other causes are mapped to values within the interval [1, 2] (see
Figure 2). In this way, it assigns a proximity value τ(S, h) > 0 to each present object. For
a given pixel d the combination rule in Equation 3 simply states that of all objects with
Whd = 1, the most proximal is used to set the pixel property. The interval [1,2] represents
a natural choice for proximity values, but any interval with boundaries greater zero would
result in an equivalent generative process.

Given the latent variables and the noiseless image ~T (S,Θ), we take the observed vari-
ables Y = (~y1, . . . , ~yD) to be drawn independently from a Gaussian distribution, i.e.,

p(Y |S,Θ) =

D∏
d=1

p(~yd | ~T d(S,Θ)), p(~y |~t ) = N (~y;~t, σ2
1) . (4)

Equations 1 to 4 represent a model for image generation that incorporates occlusion. We
will refer to the model as the Occlusive Components Analysis (OCA) generative model.

3. Maximum Likelihood

One approach to learning the parameters Θ = (W,T, π, σ) of this model from data
Y = {Y (n)}n=1,...,N is to use maximum likelihood learning, that is,

Θ∗ = argmaxΘ{L(Θ)} with L(Θ) = log
(
p(Y (1), . . . , Y (N) |Θ)

)
. (5)

However, as there is usually a large number of objects that can potentially be present in
the training images, and since the likelihood involves summing over all combinations of
objects and associated orderings, the computation of Equation 5 is typically intractable.
More concretely, given H components the number of different sets of objects that may be
present scales with 2H . Occlusion adds additional complexity: for any subset of size γ′ of
the H objects that may be present there are γ′! different depth orders. Formally, the total
number of hidden states to be considered is given by

Statesexact(H) =

H∑
γ′=0

(
H

γ′

)
γ′! . (6)

The need to consider depth-order to model occlusion means that the number of hidden states
scales super-exponentially with the number of potential components H. Moreover, even if
this computational tractability problem can be overcome, optimization of the likelihood is
made problematic by an analytical intractability arising from the fact that the occlusion
non-linearity is non-differentiable. The following section describes how to side-step both
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of these intractabilities within the standard Expectation Maximization (EM) formalism
for maximum likelihood learning. First, we will describe how the analytical intractability
may be avoided using an approximation that softens the occlusion non-linearity, and which
therefore allows parameter update equations (M-step equations) to be derived. Second,
we will describe how the computational intractability can be addressed by leveraging the
sparsity of visual scenes to reduce the space of solutions entertained by the posterior.

To find the maximum-likelihood parameters Θ∗, at least approximately, we use the
EM formalism in the form used by Neal and Hinton (1998) and introduce the free-energy
function F(Θ, q) which is a function of Θ and of an unknown distribution q(S(1), . . . , S(N))
over the hidden variables. F(Θ, q) is a lower bound of the likelihood L(Θ). Approximations
introduced later on can be interpreted as constraining the function q to lie within a specified
class. In the model described above each image is assumed to be drawn independently
and identically from an underlying distribution, q(S(1), . . . , S(N)) =

∏
n qn(S(n),Θ′), which

results in the free-energy

F(Θ, q) =

N∑
n=1

[∑
S

qn(S ; Θ′)
[

log
(
p(Y (n) |S,Θ)

)
+ log

(
p(S |Θ)

)] ]
+ H[q] , (7)

where the function H[q] = −
∑

n

∑
S qn(S ; Θ′) log(qn(S ; Θ′)) (the Shannon entropy) is in-

dependent of Θ. Note that
∑

S in Equation 7 sums over all possible states of S = (~s, ϕ),
i.e., over all binary vectors and all associated permutations in depth, so that the num-
ber of terms in the sum is given by Equation 6. These large sums are the source of the
computational intractability. In the EM scheme, F(Θ, q) is maximized alternately with
respect to the distribution q in the E-step (while the parameters Θ are kept fixed) and
with respect to parameters Θ in the M-step (while q is kept fixed). Θ′ refers to the model
parameters of the previous iteration of the algorithm. At the end of the M-step, we thus
set Θ′ ← Θ. Each EM iteration increases the free-energy or leaves it unchanged. If q is
unconstrained (or if any constraints imposed allow it) then the optimal setting of q in the
E-step is given by the posterior distribution over the hidden states at the current parameter
settings qn(S; Θ′) = p(S |Y (n),Θ′). In this case, each EM step increases the likelihood or
leaves it unchanged and this process converges to a (local) maximum of the likelihood.

3.1 M-Step Equations

The M-step of EM, in which the free-energy, F , is optimized with respect to the parameters,
is usually derived by taking derivatives of F with respect to the parameters. Unfortunately,
this standard procedure is not directly applicable because the occlusive combination rule
in Equation 3 is not differentiable. However, it is possible to soften the combination rule
using the differentiable approximation

~T ρd(S,Θ) :=

∑H
h=1(τ(S, h)Whd)

ρWhd
~Th∑H

h=1(τ(S, h)Whd)ρ
, (8)

which becomes equal to the combination rule in Equation 3 as ρ → ∞. Note that for
the softened combination rule with small values of ρ, the choice of the interval for the
proximity values (Equation 3) can now have an effect. According to Equation 8 the hidden
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states combine in the sense of a softmax operation, and different interval boundaries for the
proximity values τ(S, h) change how strongly the closest cause dominates the others. Such
effects can be counteracted by choosing corresponding finite values for ρ, however. For large
values of ρ, differences due to different intervals become negligible again.

~T ρd(S,Θ) is differentiable w.r.t. the parameters Whd and T ch (with c ∈ {1, . . . , C}). For
large ρ, the derivatives can be well approximated as follows:

∂
∂Wid

~T ρd(S,Θ) ≈ Aρid(S,W ) ~Ti,

∂
∂T ci

~T ρd(S,Θ) ≈ Aρid(S,W )Wid ~ec,
with

Aρid(S,W ) := (τ(S,i)Wid)ρ∑H
h=1(τ(S,h)Whd)ρ

,

Aid(S,W ) := lim
ρ→∞

Aρid(S,W ) ,
(9)

where ~ec is a unit vector in feature space with entry equal one at position c and zero
elsewhere. The approximations on the left-hand-side above become equalities for ρ → ∞.
Given the approximate combination rule in Equation 9, we can compute approximations to
the derivatives of F(Θ, q). For large values of ρ the following holds (see Appendix B):

∂

∂Wid
F(Θ, q) ≈

N∑
n=1

[∑
S

qn(S ; Θ′)

(
∂

∂Wid

~T ρd(S,Θ)

)T
~f
(
~y (n), ~T ρd(S,Θ)

)]
, (10)

∂

∂T ci
F(Θ, q) ≈

N∑
n=1

[∑
S

qn(S ; Θ′)
D∑
d=1

(
∂

∂T ci
~T ρd(S,Θ)

)T
~f
(
~y (n), ~T ρd(S,Θ)

)]
, (11)

where ~f(~y (n),~t ) :=
∂

∂~t
log
(
p(~y (n) |~t )

)
= −σ−2 (~y (n) − ~t ).

Setting the derivatives in Equations 10 and 11 to zero and inserting Equations 9 yields
the following necessary conditions for a maximum of the free-energy that hold in the limit
ρ→∞:

Wid =

∑
n

〈Aid(S,W )〉qn ~T Ti ~y
(n)
d∑

n

〈Aid(S,W )〉qn ~T Ti ~Ti
, ~Ti =

∑
n

∑
d

〈Aid(S,W )〉qn Wid ~y
(n)
d∑

n

∑
d

〈Aid(S,W )〉qn (Wid)
2
. (12)

Note that Equations 12 are not straightforward update rules. However, we can use them in
the fixed-point sense and approximate the parameters which appear on the right-hand-side
of the equations using the values from the previous iteration. For the update note that due
to the multiplication of the weights and the mask, Whd

~Th in Equation 3, there is degeneracy
for the object parameters: given h, the combination ~Td remains unchanged for the operation
~Th → ~Th/% and Whd → %Whd with % 6= 0. This transformation does not leave the selection
of the closest object unchanged (selection of ho in Equation 3) because the values of Whd

are not binary. To remove the degeneracy and to keep the values of Whd close to zero or
one, we rescale after each EM iteration as follows:

W new
hd = Whd/W h, ~T new

h = W h
~Th,

where W h =
1

|I|
∑
d∈I

Whd with I = {d | |Whd| > α} where α ∈ R.
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The use of W h instead of, e.g., Wmax
h = maxd{Whd} is advantageous for some data, although

for many other types of data Wmax
h works equally well. Through the influence of the scaling

on the selection of closest objects, small values of Whd tend to be suppressed for larger
values of α and converge to zero. In general, we find the algorithm to avoid local optima
more frequently if we initialize α at a small value and then slowly increase it over the EM
iterations to a value near 1

2 . The index set I thus contains all entries Whd at first, and only
later considers exclusively entries with higher values for normalization. In this way, smaller
values are suppressed only when the algorithm is already closer to an optimum than it is in
the beginning of learning.

If the derivatives of the free-energy in Equation 7 w.r.t. to σ (data noise) and π (ap-
pearance frequency) are set to zero, we obtain through straightforward derivations (see
Appendix B) the following two remaining update rules:

σnew =

√√√√ 1

NDC

N∑
n=1

〈
D∑
d=1

C∑
c=1

(
y

(n)
dc − Tdc(S,Θ)

)2
〉
qn

, (13)

πnew =
1

HN

N∑
n=1

〈|~s |〉qn . (14)

3.2 E-Step Equations

The crucial quantities that have to be computed for update Equations 12 to 14 are expec-
tation values w.r.t. the variational distributions qn(S ; Θ′) in the form

〈g(S,Θ)〉qn =
∑
S

qn(S ; Θ′) g(S,Θ) , (15)

where g(S,Θ) are functions that depend on the latent state and potentially the model pa-
rameters. The optimal choice for qn(S ; Θ′) is the exact posterior, qn(S ; Θ′) = p(S |Y (n),Θ′),

which is given by Bayes’ rule, p(S |Y (n),Θ′) = p(Y (n) |S,Θ′) p(S |Θ′)∑
S′ p(Y

(n) |S′,Θ′) p(S′|Θ′)
, with prior and noise

distributions given by the OCA generative model in Equations 1 to 4. Unfortunately, the
computation of the expectations or sufficient statistics in Equation 15 becomes compu-
tationally intractable in this case because of the large number of states that have to be
considered (see Equation 6). To derive tractable approximations, we can, however, make
use of typical properties of visual scenes: in any given scene the number of objects which
are present is far smaller than the set of all objects that can potentially be present in the
scene. As such, the sum over all states in Equation 15 is typically dominated by only a few
terms. More specifically, components which are compatible with the observed image are
the only ones to make a significant contribution to this sum, whilst components which are
incompatible make only a negligible contribution. Consequently, a good approximation to
the expectation values in Equation 15 can be obtained by identifying the states which carry
high posterior mass and retaining only these states.

It has recently been shown (Lücke and Eggert, 2010) that this general idea (see Yuille
and Kersten, 2006) can be considered as approximate variational EM. When the variational
distribution q in Equation 7 is imperfectly optimized, or optimized within a constrained
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space of functions, then the resulting variational EM algorithm is no longer guaranteed to
converge to a local maximum of the likelihood. However, it still increases a lower bound
on the likelihood, and frequently finds a good approximation to the maximum likelihood
solution. The most commonly used constraint is to decompose q into a product of disjoint
factors, for instance, one for each possible source object. By contrast, the approach adopted
here uses a distribution truncated to a limited set Kn of all possible source configurations,
i.e,

qn(S; Θ) =
p(S |Y (n),Θ)∑

S′∈Kn

p(S′ |Y (n),Θ)
δ(S ∈ Kn) with δ(S ∈ Kn) :=

{
1 if S ∈ Kn
0 if S 6∈ Kn

, (16)

where Kn is a subset of the space of all states. If Kn, indeed, contains most of the posterior
mass given a data point Y (n), then qn(S; Θ) approximates the exact posterior well. The
variational approximation qn(S; Θ) is a truncated posterior distribution that allows for
the efficient estimation of the necessary expected values. The approximation is, therefore,
referred to as Expectation Truncation (ET; Lücke and Eggert, 2010) or truncated EM.

In the case of the OCA generative model, we might expect good approximations if we
identified a small set of candidate objects which are likely to be present in the scene, and
then let Kn contain all of the combinations of the candidate objects. By using qn(S; Θ) in
Equation 16 as a variational distribution, the expectation values required for the M-step
are of the form

〈g(S,Θ)〉qn =
∑
S∈Kn

p(S |Y (n),Θ)∑
S′∈Kn

p(S′ |Y (n),Θ)
g(S,Θ) =

∑
S∈Kn

p(S, Y (n)|Θ′)g(S,Θ)∑
S′∈Kn

p(S′, Y (n)|Θ′) .
(17)

We compute Kn for a given data point Y (n) in two stages. In the first we use a computa-
tionally inexpensive selection or scoring function (see Lücke and Eggert, 2010) to identify
candidate objects. The selection function Sh

(
Y (n)

)
seeks to assign high values to states

corresponding to objects h present in the scene Y (n) and low values to states corresponding
to objects which are not present. An ideal selection function would be monotonically related
to the posterior probability of the object given the current image, but at the same time it
would also be efficient to compute. The top H ′ states are selected as candidates and placed
into an index set In. In the second stage we form the set Kn from the candidate objects.
The index set In is used to define the set Kn as containing the states of all likely object
combinations, i.e.,

Kn = {S |
(∑

h sh ≤ γ and ∀h 6∈ In : sh = 0
)

or
∑

j sj ≤ 1} . (18)

As an additional constraint, Kn does not contain combinations of more than γ objects.
Furthermore, we make sure that Kn contains all singleton states, which proved beneficial
in numerical experiments.

The selection function itself is defined as the squared distance between the observed
image and the image generated by the hth component alone,

Sh
(
Y (n)

)
= −

D∑
d=1

C∑
c=1

(
Y

(n)
cd − Tcd(S

(h); Θ)
)2

(19)
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where S(h) := (~s (h), ϕ) with ~s (h) being the state with only the hth object present.

Intuitively, the selection function can be thought of as a measure of the log-probability
that each singleton state accounts for the current data point (also see Appendix D). Since
we are only interested in the relative values of the selection function between the different
components, Equation 19 contains only the exponent of the strictly monotonic exponential
function without the normalization pre-factors.

3.3 Efficient EM Learning

The M-step Equations 12 to 14 together with the approximation of the expectation values
in Equation 17 represent a learning algorithm for the OCA generative model. Its efficiency
crucially depends on the approximation parameters H ′ and γ as they determine the number
of latent states in Kn that have to be considered, that is,

States ET(H,H ′, γ) =

γ∑
γ′=0

(
H ′

γ′

)
γ′! + (H −H ′) . (20)

Because of the preselection of H ′ candidates, the combinatorics no longer scales with H.
Only the number of singleton states scales linearly with H. Furthermore, the computation of
the selection functions scales with H, but for the selection function specified in Equation 19
this scaling is only linear.

The potentially strongly reduced number of states in Equation 20 allows for an efficient
optimization of the OCA model parameters (see Figure 8 in Appendix A for an example
of such a reduction). By choosing H ′ and γ large enough to approximate the posteriors of
the data points well, and small enough to sufficiently reduce the number of latent states
that must be considered, an efficient yet accurate optimization procedure can be obtained.
A crucial role for the efficiency / accuracy trade-off is played by the parameter γ which
constrains the maximal number of considered components per data point (also compare
Figure 8). If γ is too large, the large number of permutations that have to be considered
for occlusion quickly results in computational intractabilities (scaling with γ!). If γ is too
small, data points with more than γ components cannot be approximated well. Ideally we
would like to learn the component parameters using as small an active set as possible (i.e.,
using low values of γ). However, representations of the posterior distribution which are too
impoverished can result in strong biases in the parameter estimates (as is well-known, e.g.,
for factored variational approximations; Turner and Sahani, 2011). Since the approximation
methods considered here will be at their worst for data-points that contain a large number of
components, we simply discount these points and focus instead upon the data-points which
are simple to learn from, thereby reducing the biases and the computational demands. This
general approach was used by Lücke and Eggert (2010) who showed that such a discount-
ing within the truncated approximate EM approach still results in approximately optimal
solutions. Here we discount data-points that we believe contain more than γ components
and modify the M-step equations accordingly. If we denote byM the subset of the N data
points which are estimated to contain at most γ components, the new expressions are given
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by:

Wid =

∑
n∈M
〈Aid(S,W )〉qn ~T Ti ~y

(n)
d∑

n∈M
〈Aid(S,W )〉qn ~T Ti ~Ti

~Ti =

∑
n∈M

∑
d

〈Aid(S,W )〉qnWid ~y
(n)
d∑

n∈M

∑
d

〈Aid(S,W )〉qn (Wid)
2

(21)

σnew =

√√√√ 1

|M|CD
∑
n∈M

〈
D∑
d=1

C∑
c=1

(
y

(n)
dc − Tdc(S,Θ)

)2
〉
qn

(22)

πnew =
A(π)π

B(π)

1

|M|
∑
n∈M

〈|~s|〉qn with (23)

A(π) =

γ∑
γ′=0

(
H

γ′

)
πγ′ (1− π)H−γ′ and B(π) =

γ∑
γ′=0

γ′
(
H

γ′

)
πγ′ (1− π)H−γ′ .

These modified M-step equations can be derived from a truncated free-energy (Lücke and
Eggert, 2010) of the form

F(q,Θ) =
∑
n∈M

∑
S

qn(S ; Θ′) log
(
p(Y (n) |S,Θ)

p(S |Θ)∑
S′∈K p(S

′ |Θ)

)
, (24)

with qn(S ; Θ′) given in Equation 16 and with K being the set of all states S with at most
γ non-zero components, K = {S | |~s | ≤ γ}. Details of the derivations of the update rules
are given in Appendix B.

As can be observed, the update equations for W , T and σ remain essentially unchanged
except for averages now running over the subsetM instead of all data points (Equations 21
and 22). The reason is that the derivatives of the truncated free-energy w.r.t. these param-
eters are equal to the derivatives of the original free-energy except for reduced sums. For
the derivative w.r.t. the prior parameter, the situation is different. The additional term in
the denominator of the logarithm in Equation 24 results in a correction term for the update
equation for π (Equation 23). Intuitively, it is clear that discounting data points with more
than γ components has a direct impact on estimating the mean probability for a component
to appear in a data point. The additional term in Equation 23 corrects for this.

To complete the procedure, we must determine the set M of all data points which are
estimated to have γ active components or fewer. First note that the size of this set can be
estimated given the current estimate for π. It contains an expected number of

N cut = N
∑

S,|~s |≤γ

p(S|π) = N

γ∑
γ′=0

(
H

γ′

)
πγ

′
(1− π)H−γ

′

data points (analogously to the π correction factor in Appendix B.2). Following Lücke and
Eggert (2010), we now compute for all N data points the sums

∑
S∈Kn p(S, Y

(n)|Θ′), and
define the set M to consist of the N cut largest such values. The computation of M does
not significantly increase the complexity of the algorithm, and in numerical experiments the
set M is, indeed, found to contain almost all data points with at most γ components.
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Iterating the M-step (Equations 21 to 23) and the E-step (Equations 17) results in a
learning algorithm for the OCA generative model. As will be shown numerically in the next
section, the algorithm allows for a very accurate estimation of model parameters based on
a strongly reduced number of latent states.

4. Experiments

In order to evaluate the OCA learning algorithm, it has been applied to artificial and real-
world data. Artificial data allows for an evaluation based on ground-truth information and
for a comparison with other approaches. The use of real-world data enables us to test the
robustness of the method.

4.1 Initialization and Annealing

For all data points, a vector ~yd ∈ [0, 1]3 represented the RGB values of a pixel. In all trials of
the experiments we initialized the parameters Whd and T ch by independently and uniformly
drawing from the interval [0, 1]. The parameters for sparseness and standard deviation were
initialized as πinit = 1

H and σinit = 5, respectively.

Parameter optimization in multiple-cause models is usually a non-convex problem. For
the OCA model, the strongly non-linear combination rule seems to result in even more pro-
nounced local optima in parameter space than is the case for other models such as sparse
coding. To efficiently avoid convergence to local optima, we (A) applied deterministic
annealing (Ueda and Nakano, 1998; Sahani, 1999) and (B) added noise to model parame-
ters after each EM iteration. Annealing was implemented by introducing the temperature
T = 1

β . The inverse temperature β started near 0 and was gradually increased to 1 as iter-

ations progressed. It modified the EM updates by substituting π → πβ, (1−π)→ (1−π)β,
and 1

σ2 → β
σ2 in all E-step equations. We also annealed the occlusion non-linearity by set-

ting ρ = 1
1−β ; however, once β became greater than 0.95 we set ρ = 21 and did not increase

it further. We ran 100 iterations for each trial of learning. The inverse-temperature was
set to β = 2

D for the first 15 iterations, then linearly increased to β = 1 over the next 15
iterations, and then kept constant until termination of the algorithm.

Additive parameter noise was drawn randomly from a normal distribution with zero
mean. Its standard deviation was initially set to 0.3 for the mask parameters and at 0.05
for the prior and noise parameters. The value was kept constant for the first 10 iterations
and then linearly decreased to zero over the next 30 iterations. The degeneracy parameter
α was initialized at 0.2 and increased to 0.6 from iteration 25 to 35. The amount of data
points used for training was linearly reduced from N to N cut between iteration 15 to 30.
Approximation parameters were set to γ = 3 and H ′ = 5 unless stated otherwise.

4.2 Evaluation of Optimization Results

After optimizing the parameters using the derived EM approach, we obtain different sets
of parameters in different runs. In the case of available ground-truth parameters, a means
to identify the best run is a comparison of the learned parameters with the ground-truth.
It could, for instance, be asked if all generating components (all generating objects in
our case) have been recovered successfully. However, usually the ground-truth parameters
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Figure 3: A Histogram of values for the parameter σ (Equation 13) for 100 runs of the
algorithm on a standard bars test (see bars test section). The ground-truth value
for σ in these runs was 0.25, indicated by the red line. As can be observed,
most values lie close to this number while some values form a second mode at
higher values. By thresholding the σ parameter, we can identify local optima.
B Examples for the basis functions for the left and for the right cluster.

are not known and so another measure for the quality of a run has to be found. A good
indication of the quality of the learned parameters is provided by the learned noise parameter
σ (Equation 13). In fact, if we compute the derivative of the update rule for σ w.r.t. the
mask and feature parameters and set these equal to zero, we obtain the same update
rules for W and T as for the derivative of the free-energy. That is, maximizing the free-
energy corresponds to optimizing (minimizing) the noise which the model has to assume to
explain the data (see Appendix C). If this noise is small, the data are well explained by the
parameters (see Figure 3 for an application to artificial data).

4.3 Colored Bars Test

The component extraction capabilities of the model were tested using the colored bars test.
This test is a generalization of the classical bars test (Földiák, 1990) which has become a
popular benchmark task for non-linear component extraction. In the standard bars test
with H = 8 bars the input data are 16-dimensional vectors, representing a 4 × 4 grid of
pixels, i.e., D = 16. The single bars appear at the 4 vertical and 4 horizontal positions. For
the colored bars test, each of the bars has a different color. Feature values were initialized
such that the color values had maximal distance to each other in one brightness plane
of HSV color space. Once chosen, they remained fixed for the generation of the data
set. For each image a bar appeared independently with a probability π = 2

H = 0.25
which resulted in two bars per image on average (the standard value in the literature).
For the bars chosen to be active, a ranking in depth was randomly and uniformly chosen
from the permutation group to generate the image. The color of each (noiseless) image
pixel was determined by the least distant bar and was black, i.e., zero, if the pixel was
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Figure 4: A Example of ten noiseless and noisified data points. B Development of the
(reshaped) generative fields for the given iterations. For the first cause, mask ~Wh

and feature ~T Th are displayed separately. The other causes are shown as product
~Wh · ~T Th . C - D Development of data sparseness and standard deviation over the
100 iterations. E Magnitude of the noise which is added to the mask parameters
after each iteration. F Annealing temperature as chosen for the algorithm.

occupied by no bar. Gaussian data noise of σ = 0.25 was added to each data point.
N = 1000 images were generated for learning and Figure 4A shows a random selection
of 10 noiseless and 10 noisy examples. The learning algorithm was applied to the colored
bars test with H = 8 hidden units and D = 16 input units. The inferred approximate
maximum-likelihood parameters converged to values close to the generating parameters in
97 of 100 trials. The success rate, or reliability, was thus 97%. Lücke et al. (2009) achieved
a similar reliability of 96% with N = 500. Yet, here we learn, with the current version
of the algorithm, more parameters, namely the data noise and the sparseness parameter.
The values obtained for σ and π all lay in the interval [0.246, 0.252] and [0.241, 0.268],
respectively. Figure 4B shows the time-course of a typical trial during learning. As can
be observed, the mask values W and the feature values T converged to values close to the
generating ones. More specifically, the product of each mask ~Wh and its color value ~Th
represents a true underlying bar in the right color. Reliability is affected by changes in the
annealing and parameter noise schedules, i.e., by changes to those algorithmic parameters
which control the mechanisms for avoiding local optima. Furthermore, we observed an
effect of the approximation parameters H ′ and γ on the algorithm’s capability to avoid
local optima. Notably, smaller as well as much larger values for H ′ and γ lead to lower
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reliabilities. In addition to increasing efficiency, Expectation Truncation, therefore, helps
in avoiding local optima for this model, presumably because local optima corresponding to
broad posterior distributions are avoided. A similar observation was recently reported in
an application of ET to a sparse coding variant (Exarchakis et al., 2012).

4.4 Standard Bars Test

Instead of choosing the bar colors randomly as above, they can also be set to specific
values. In particular, if all bar colors are white, ~T = (1, 1, 1)T , the classical version of the
bars test is recovered. Note that the learning algorithm can be applied to this standard
form without modification, even though it is impossible to recover the relative depth of the
bars in this case. When the generating parameters were as above (eight bars, probability
of a bar to be present 2

8 , N = 1000), all bars were successfully extracted in 80 of 100 trials
(80% reliability). The estimated values of σ and π lay in the intervals [0.247, 0.254] and
[0.241, 0.263], respectively. When learning on noiseless data, we obtained a reliability of
95%. By increasing the approximation parameters to γ = 4 and H ′ = 6, reliability changed
to 91%.

For a standard setting of the parameters (N = 500, H = 10, D = 5×5, probability of 2
10

for each bar to be present) as was used in numerous previous studies (Saund, 1995; Dayan
and Zemel, 1995; Hochreiter and Schmidhuber, 1999; Lücke and Sahani, 2008; Lücke and
Eggert, 2010), the OCA algorithm with γ = 3 and H ′ = 5 achieved 83% for a noisy and
78% for a noiseless bars test. For N = 1000 data points reliability increased to 85%. For
comparison, earlier generative modeling approaches such as those reported by Saund (1995)
or Dayan and Zemel (1995) (both assuming a noisy-or like combination rule) achieved 27%
and 69% reliability, respectively. Maximal Causes Analysis (Lücke and Sahani, 2008; Lücke
and Eggert, 2010) achieved about 82% (MCA3) reliability. And the preliminary version
of the OCA algorithm (Lücke et al., 2009) achieved 86% for noiseless data. Approaches
such as PCA or ICA were reported to fail in this task (Hochreiter and Schmidhuber, 1999).
Furthermore, different types of objective functions and neural network approaches (Charles
et al., 2002; Lücke and Malsburg, 2004; Spratling, 2006) are also successful at this task, often
reporting close to 100% reliability (also see Frolov et al., 2014). The assumptions used (e.g.,
fixed bar appearance, noise level, parameter constraints, constraint on latent activities) are
often implicit but, at the same time, can significantly facilitate learning. NMF algorithms
can be successful in extracting all bars (with up to 100% reliability) but require hand-set
values for sparsity constraints on hidden variables and/or parameters (see Hoyer, 2004, and
for discussions Spratling, 2006, Lücke and Sahani, 2008). In general, the fewer assumptions
a model makes, the more difficult it becomes to infer the parameters from a given set of
data. For earlier generative models and in particular for the more general model discussed
in this paper, larger data sets directly translate into higher reliabilities. A reliability of 78%
for the noiseless bars test is, for the OCA algorithm discussed in this work, in this view
still relatively high. Reliabilities are comparable to values for MCA and to the preliminary
OCA algorithm (Lücke et al., 2009). Note, however, that the latter did use fixed values for
data noise σ and bar appearance π which may explain the higher reliability.

As the recovery of optimal model parameters is the goal of the approach, we can further
increase the rate of successfully recovered parameters that correspond to a representation of
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all bars by considering several runs of the algorithm simultaneously. That is, given a set of
N images, we can apply the algorithm M times, and use as the final result the parameters of
a run with the smallest σ value. For some data sets, we even obtain two clusters of σ values
(see Figure 3) where the cluster with smaller σ’s represents the runs which have terminated
in an optimum with parameters representing all bars. Note that clearly separable clusters
are not observed for all data sets and parameter settings. In general, however, runs with
small σ values tend to correspond to parameters reflecting the true underlying generative
process more accurately. For the standard settings of the bars test with D = 5×5, N = 500,
H = 10, and noiseless data, the algorithm with M = 20 extracts all components in 50 of
50 runs. But note that each run now consists of evaluating M = 20 subruns. The same
applies for values of M down to M = 10.

4.5 Inference

To briefly illustrate the algorithm’s performance on an inference task, i.e., the extraction
of the underlying causes and their depth order, and to show how inference can be applied
to data points exceeding γ components, let us consider data points generated according to
the colored bars test. Furthermore, consider the model after it has learned the parameters
to represent the bars, noise level, and sparsity. Given a data point, the trained model can
infer the hidden variables by applying the following procedure: We start by executing an
E-step with the same values for H ′ and γ as used during training (H ′ = 5 and γ = 3
in this case). We then determine the maximum a-posteriori (MAP) state ~s∗ based on the
approximate posterior computed in this E-step. If this state has |~s∗| = γ active components,
we repeat the E-step with values of H ′ and γ increased by one each (leaving H ′ unchanged
if H ′ = H). We terminate the procedure if the MAP state has less than γ states or
if γ = H ′ = H. Exemplarily, Figure 5 shows three data points and the corresponding
MAP states obtained with the described procedure. The data point with two components
terminated after the first E-step (Figure 5A), the data points with three after γ was increased
to four (Figure 5B), and the data point with four components terminated after γ was
increased to five (Figure 5C,D show result for initial and final γ). For ambiguous data
points, e.g., if the input contained two parallel bars, two states or more states can carry
equally large probability mass due to the fact that different depth permutations do not
change the image. The MAP estimate can still serve to illustrate the inference result but
the approximate distribution over states represents a more accurate description in this case.

4.6 More Realistic Data

To numerically investigate the algorithm for more realistic data, it was applied to data
based on pictures of objects from the COIL-100 database (Nene et al., 1996).1 Images
were scaled down to 20× 20 pixels and were placed at random planar positions on a black
background image of D = 35× 35 = 1225 pixels. The objects were then colored with their
mean color, weighted by pixel intensity (see Figure 6A). In 100 runs, we created N = 8000
data points by combining Hgen = 20 of these images according to the generative model with

1. We used objects 2, 3, 4, 25, 28, 34, 47, 48, 51, 56, 58, 60, 73, 74, 77, 85, 89, 94, 97, and 112 all at 0
degree rotation.
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Noiseless Noisy

Data point Inferred Causes

C

B

A

D

Figure 5: Examples of the inference procedure for the colored bars test. The second column
shows the data points used for inference (with their noiseless versions in the first
column). On the right, the causes inferred from the noisy data points are shown
arranged in their inferred depth order. A - D The algorithm reliably inferred
the causes for the three examples (C and D show two steps of the inference
procedure). Note that we have learned the basis functions from noisy data with
the same properties as those shown here.

prior parameter π = 2
Hgen

= 0.1, i.e., πHgen = 2 and data noise σ = 0.25 (see Figure 6B).

For learning, the algorithm was applied with H = 30 mask and feature parameters ~Wh

and ~Th, i.e., 50% more than we used for data generation. Figure 6C shows the resulting
mask and feature parameters for an example run (where we display each pair of feature and
mask combined into one image, compare Equation 3). We obtained all 20 underlying basis
functions along with 10 noisy fields in 44% of the trials. For the data noise we obtained
σ ∈ [0.251, 0.254] and for the sparseness parameter π ∈ [0.062, 0.070], i.e., πH ∈ [1.85, 2.11]
for all runs. The high discrepancy in the sparseness values can be explained by the fact
that we have introduced extra basis functions for learning. In the remaining 56 trials,
almost all objects were extracted with usually just one and at most three objects not being
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B

A

C

Figure 6: A 20 downscaled COIL images. B 10 noiseless and 10 noisy data points (obtained
from A according to Equation 3). C 30 extracted basis functions. The first two
rows display the clean extracted causes in the same order as in A. The third
row shows the additionally learned causes which are mostly noisy fields or noisy
combinations of more than one cause.

represented. Again, low values of the observation noise were found to indicate the successful
extraction of all objects. By performing a series of runs and retaining the parameters of
runs with the lowest learned observation noise, the reliability increased to close to 100%.

4.7 Real Data

Finally we tested the algorithm on a real world data set that includes a range of effects that
are not present in synthetic data, including real-world occlusion, lighting variability due to
shadows and specular variations, as well as some small translation effects. As such the data-
set provides an important test of the algorithm’s robustness. The data-set comprised 500
pictures of scenes consisting of up to five (toy) cars in front of a gray background. The cars
could appear at different positions in depth but always in the same position in planar space
(see Figure 7A). Pictures were taken from the side (as for instance a camera in a tunnel
might be positioned) such that moving a car in depth had almost no effect on its vertical
or horizontal position in the image (see Figure 7B). We then cut out the area of the images
that contained the cars and downscaled the cut-out images to 40×165 pixels. Subsequently,
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A

1

5

10

15

30

0

D Iteration
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y

Figure 7: Numerical experiment with photographic images of cars. A Five cars could ap-
pear in three lanes which account for the arbitrary position in depth (y). Position
in x-direction was fixed. B One of the 500 pictures taken of one state with three
active causes. C 10 data points after cutting and pre-processing. D Generative
fields (mask on top, feature below) at different iterations.

the images were normalized in luminance and the 5% lightest pixels were clamped to the
same maximal value for each color channel to remove reflection effects. Figure 7C shows
some example images. For learning, we then subtracted an image of an empty scene (i.e.,
the background) pixelwise from each input image such that pixels that did not belong to
a cause became almost zero. Note that these data points can now have negative values
while RGB values are usually defined to be positive. To interpret the data point as an
image, one can map the values in the three color channels back to [0, 1]. For a homogeneous
background, these images look almost the same as the original input images. We initialized
the masks as random noise and the features as RGB color vectors all equally far apart from
each other in color space (see Figure 7D). The inverse annealing temperature was set to
β = 1

15 and increased to 1 from iteration 5 to 25. Parameter noise was decreased between
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iterations 15 and 26. Over 30 iterations we extracted the masks of all five cars along with
data noise (σ = 0.05) and sparseness (π = 0.17 with πground-truth = 1

H = 0.2). The features
which had positive and negative values were mapped to [0, 1] to be interpreted as color. As
can be seen from the generative fields in iteration 30, not all masks were extracted cleanly.
This can be explained by the fact that a different position in depth still causes a slight shift
in planar space such that in some images one cause is higher or lower than in others. This
smearing effect leads to a change in color because a pixel then sometimes belongs to the
car and sometimes to the background which results in a color shift towards the background
color (black). Another reason is that one cause does not only consist of one color but rather
of a combination of the car color and background, shadow, window, and wheel color. For
the yellow car which is relatively similar to the background the mask almost only represents
the shadow of the car, which is the most salient part relative to the background. For the
other cars, the masks correspond to representations of whole cars.

5. Discussion

We have studied learning in a multiple-cause generative model which assumes an explicit
model of occlusion for component superposition. According to the OCA model assumptions,
an object can appear in different depth positions for different images. This aspect reflects
properties of real images and is complementary, e.g., to assumptions made by sprite models
(Jojic and Frey, 2001; Williams and Titsias, 2004). A combination of sprite models and
the OCA model is, therefore, a promising line of inquiry, e.g., towards systems that can
learn from video data in which objects change their positions in depth. Other lines of
research have also identified occlusions as an important property that has to be modeled
for applications to visual data. In the context of neural network modeling, Tajima and
Watanabe (2011) have recently addressed the problem (albeit with a very small number of
components and in a partly supervised setting), while restricted Boltzmann machines have
been augmented by LeRoux et al. (2011) to incorporate occlusions.

The directed graphical model studied here has a close connection to multiple-cause
approaches such as sparse coding, NMF or ICA. All of these standard approaches use linear
superpositions of elementary components to model component superposition. ICA and SC
have prominently been applied to explain neural response properties, and NMF is a popular
approach to learn components, e.g., for visual object recognition (e.g., Lee and Seung, 1999;
Wersing and Körner, 2003; Hoyer, 2004). In the class of multiple-cause approaches our
model is the first to generalize the combination rule to one that models occlusion explicitly.
While non-linear combination rules have been studied before by Saund (1995); Dayan and
Zemel (1995); Šingliar and Hauskrecht (2006); Frolov et al. (2014) (noisy-or), Valpola and
Karhunen (2002); Honkela and Valpola (2005) (post-linear sigmoidal function) or Lücke
and Sahani (2008); Puertas et al. (2010); Bornschein et al. (2013) (point-wise maximum),
we go a step further and model occlusion explicitly by making the component combination
dependent on an additional hidden variable for depth-ordering. As a consequence, the model
requires two sets of parameters: masks and features. Masks are required because the planar
space that a component occupies has to be defined. Parameterized masks are, therefore,
a feature of many approaches with explicit occlusion modeling (compare Jojic and Frey,
2001; Williams and Titsias, 2004; LeRoux et al., 2011; Tajima and Watanabe, 2011). For
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our model, the combination of masks and vectorial feature parameters, furthermore, allows
for applications to more general sets of data than the scalar values used for SC, NMF or
than in applications of sprite models (compare Jojic and Frey, 2001; Williams and Titsias,
2004). In numerical experiments we have used color images for instance. However, we
can also apply our algorithm to gray-level data such as used for other algorithms. This
allows for a direct quantitative comparison of the novel algorithm with state-of-the-art
component extraction approaches. The reported results for the standard bars test show
the competitiveness of our approach despite its larger set of parameters (compare, e.g.,
Spratling, 2006; Lücke and Sahani, 2008). For applications to visual data, color is the most
straightforward feature to model. Possible alternatives are Gabor feature vectors which
model object edges and textures, or further developments such as SIFT features (Lowe,
2004). Depending on the application, the generative model itself could also be generalized.
It is, for instance, straightforward to introduce several feature vectors per cause. Although
one feature (e.g., one color) per cause can represent a suitable model for many applications,
it might for other applications also make sense to use multiple feature vectors per cause.
In the extreme case, as many feature vectors as pixels could be used, i.e., ~Th → ~Thd.
The derivation of update rules for such features would proceed along the same lines as
the derivations for single features ~Th. Furthermore, individual prior parameters for the
frequency of object appearances could be introduced. Additional parameters could be used
to model different prior probabilities for different arrangements in depth. Finally, the most
interesting but also most challenging generalization direction would be the inclusion of
explicit invariance models. In its current form the model uses, in common with state-of-
the-art component extraction algorithms, the assumption that the component locations are
fixed. Especially for images of objects, changes in planar component positions have to be
addressed in general. Possible approaches that have been discussed in the literature have,
for instance, been investigated by Jojic and Frey (2001) and Williams and Titsias (2004) in
the context of occlusion modeling, by Eggert et al. (2004) and Wersing and Körner (2003) in
the context of NMF, or by Berkes et al. (2009), Gregor and LeCun (2011) and others in the
context of sparse coding. The crucial challenge of a generalization of the occlusion model
studied in this work is the further increase in the dimensionality of the hidden space. By
generalizing the methods as used here, such challenges could be overcome, however. On the
other hand, methods such as sparse coding or NMF have proven to be useful building blocks
in vision systems although they do not address translation invariance in an explicit way.
As a generalization of sparse coding, the model studied here can provide a more accurate
model in situations where the modeling of occlusions is important. Like for sparse coding,
no prior information about the two dimensional nature of images is used in the model, i.e.,
learning would not suffer from a (fixed) permutation of all pixels applied to all data points.
The tasks faced by the model may, therefore, appear easier for the human observer because
humans make (e.g., for the COIL data) use of additional object knowledge such as of the
gestalt law of proximity. This also illustrates that extensions of the model to incorporate
prior knowledge about objects would further improve the approach.

To investigate robustness, we have applied the developed algorithm to real images, and
observed that it is robust enough to work on non-artificial data. We do not regard this
work as providing a directly applicable algorithm, however. The main goal of this study
was rather to show that the challenges of a multiple-cause model with explicit occlusions can
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be overcome. Replacing the standard linear superposition of sparse coding by an occlusion
superposition resulted in a number of challenges that all had to be addressed:

1) The occlusion model required parameterized masks.

2) The learning equations are not closed-form.

3) Occlusion leads to a much larger combinatorial explosion of possible configurations.

4) Posterior probabilities are not unimodal.

5) Local optima in parameter space are more pronounced.

By generalizing the treatment of non-linear superpositions developed for maximal causes
analysis (see Lücke and Sahani, 2008), parameter update equations were derived for all pa-
rameters of the occlusion model: for masks and features as well as data noise and sparsity
(addressing points 1 and 2). The combinatoric challenge of the model’s large latent space
(point 3) was addressed using Expectation Truncation (ET; Lücke and Eggert, 2010) which,
furthermore, does not make any assumptions about unimodal posteriors (point 4). Com-
bined with deterministic annealing, the algorithm efficiently avoided local optima (point
5). Compared to the earlier version of the OCA learning algorithm (Lücke et al., 2009),
Expectation Truncation provides a further increase of efficiency by selecting relevant latent
causes using selection functions. In this way, the complexity was reduced from scaling poly-
nomially with H (usually with H to the power of 3 or 4) to a linear scaling with H. The
combinatorics of states instead only affects the much smaller space of the H ′ candidates
selected for each data point (compare Figure 8). Given H ′ and γ the combinatorics is
known exactly (Equation 20) and this is the main factor that determines the scalability of
the algorithm. How large the values of H ′ and γ have to be depends on the data. A large
number of objects per image will require higher values and consequently a large number
of states. If the average number of objects per data point remains constant, H ′ and γ
can be kept constant for increasing H, and the number of states that have to be evalu-
ated will scale only linearly with H. Secondary effects may lead to the algorithm scaling
super-linearly, however. Larger values of H mean a higher number of parameters which
may in turn require larger data sets to prevent overfitting. Such effects can be considered
as much less severe than combinatorial effects that increase the state space. Because of
the generally favorable scaling with H, we could handle numerical experiments with larger
numbers of latents than previously considered. For the COIL data set, the algorithm was
run with H = 30 hidden variables and D = 35×35 observed variables. For the colored bars
test the algorithm was run with up to H = 80 hidden and D = 40× 40 observed variables
(but extraction of all bars becomes increasingly challenging). In practice and depending
on the data, learning times may differ. For some data longer learning may be required for
the parameters to converge or in order to efficiently avoid local optima with slower anneal-
ing. A precise theoretical quantification of these data-dependent effects is, like for most
learning algorithms, difficult. In all our empirical evaluations we found that the mecha-
nisms in place to avoid local optima are important. We applied deterministic annealing and
parameter noise for the algorithm to converge to approximately optimal global solutions,
i.e., to solutions corresponding to parameters that all represented true data components
(in cases when these components were known). Without annealing or parameter noise the
algorithm converged to approximate global optima only in very few cases, and local optima
were usually reached after a small number of steps. Both annealing and parameter noise
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had an influence on the typical convergence points. With only parameter noise (i.e., with-
out annealing), the algorithm usually converged within few EM iterations to local optima
with a relatively large number of fields representing more than one component. With only
annealing (i.e., without parameter noise), the algorithm often converged to local optima in
which most components were represented correctly but where few generative fields repre-
sented two components. The combination of annealing and parameter noise resulted in a
frequent representation of all causes (see experiments). As stated earlier, we also observed
a positive effect of the approximation scheme in avoiding local optima presumably because
shallow local optima corresponding to solutions with dense states are not considered by the
truncated approximation.

A further improvement that followed from the application of Expectation Truncation is
the availability of learning rules for data noise and sparsity. While data noise could have
been inferred within the preliminary study of the occlusion model (Lücke et al., 2009),
inference of sparsity requires a correction term that compensates for considering a reduced
space of latent configurations, and Expectation Truncation provides a systematic way to
derive such a correction (compare Appendix B.2). Data noise and sparsity parameters are,
notably, not a consequence of modeling occlusion. They are potential parameters also of
standard sparse coding approaches or NMF objective functions. Nonetheless, most sparse
coding approaches only optimize the generative fields because of limitations induced by the
usual maximum a-posteriori based learning (but see Berkes et al., 2008; Henniges et al.,
2010, for exceptions). Likewise, NMF approaches focus on learning of generative fields /
basis functions. Sparsity is at most indirectly inferred by standard SC or NMF through
cross-validation.

To summarize, our study shows that the challenges of occlusion modeling with explicit
depth orders can be overcome, and that all model parameters can be efficiently inferred.
The approach complements established approaches of occlusion modeling in the literature
by generalizing standard approaches such as sparse coding or NMF to incorporate one of
the most salient properties of visual data.
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Appendix A. Illustration of Hidden State Combinatorics

after preselection
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for data point

StatesET(4, 3, 2) = 11

StatesET(H,H ′, γ) =
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Figure 8: This figure shows all possible combinations for hidden states with given basis
functions for exact EM as well as for a reduced number of combinations. The left-
hand-side corresponds to exact EM and thus displays all possible combinations
of H = 4 different causes separated for each value of γ′ = |~s |. On the right-
hand-side, we see all combinations of the three most relevant objects in which at
most two objects appear simultaneously. The reduced number of combinations
corresponds to the states evaluated by the used approximation (Equation 16)
with parameters H ′ = 3 and γ = 2 in Equation 18. Given a noisy data point,
the first, second, and fourth component are preselected for this example. Note
that we additionally consider all singleton states. The formulas for the number
of considered states are given on the bottom right.
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Appendix B. Derivation of Update Rules

Our goal is to optimize the free-energy, i.e.,

F(Θ, q) =
N∑
n=1
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log
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where
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More explicitly,
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and for the logarithm
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The prior term, we defined to be

p(S |Θ) = π|~s |(1− π)(H−|~s |) 1

|~s |!
,

such that

log (p(S |Θ)) = |~s | log(π) + (H − |~s |) log(1− π)−
|~s |∑
γ=1

log(γ) .

The free-energy thus takes the form

F(Θ, q) =

N∑
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]]
+ H[q] .
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B.1 Optimization of the Data Noise

Let us start be deriving the M-step equation for σ as follows:
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For ET, all we need to change is the amount of data points we consider. We thus obtain
for the update of the data noise that

σnew =
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B.2 Optimization of the Prior Parameter

Now we will derive the M-Step equation for the update of the parameter π as follows:

∂

∂π
F(Θ, q) =

N∑
n=1

[∑
S

qn(S ; Θ′)

[
∂

∂π
|~s | log(π) +

∂

∂π
(H − |~s |) log(1− π)

]]

=
N∑
n=1

[∑
S

qn(S ; Θ′)

[
|~s |
π
− H − |~s |

1− π

]]

=
N∑
n=1

∑
S

qn(S ; Θ′)
|~s | −Hπ
π(1− π)

!
= 0

⇒
N∑
n=1

∑
S

qn(S ; Θ′)|~s | = HπN

⇒ π =
1

NH

N∑
n=1

∑
S

qn(S ; Θ′)|~s |
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With ET, we have to introduce a normalization factor, A, which changes p(S|π) to

pET(S|π) =

{
1
A p(S|π), |~s | ≤ γ
0, |~s | > γ

.
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As we are going to need it below, we define
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and also calculate the derivative of A w.r.t. π as follows:
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As we now take the derivative of the ET prior, we find that
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We now have to set the free-energy with this expression equal to zero:∑
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⇒
∑
n∈M

∑
S∈Kn

q(n)(S,Θ′)|~s | = B(π)|M|
A(π)

⇔ A(π)

B(π)|M|
∑
n∈M

∑
S∈Kn

q(n)(S,Θ′)|~s | = 1

In a fixed-point sense, this expression can be multiplied with π on both sides, one repre-
senting the updated πnew and one the old π from the iteration before:

πnew =
A(π)π

B(π)

1

|M|
∑
n∈M

〈|~s |〉qn

B.3 Optimization of the Basis Functions

For the M-step equations of the mask and feature parameters, we observe that

∂

∂Wid
F(Θ, q) =

1

2σ2

N∑
n=1

∑
S

qn(S ; Θ′)
∂

∂Wid

D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(S,Θ)

)2

=− 1

σ2

N∑
n=1

∑
S

qn(S ; Θ′)

C∑
c=1

(
y

(n)
cd − Tcd(S,Θ)

) ∂

∂Wid
Tcd(S,Θ)

and

∂

∂Tic
F(Θ, q) =

1

2σ2

N∑
n=1

∑
S

qn(S ; Θ′)
∂

∂Tic

D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(S,Θ)

)2

=− 1

σ2

N∑
n=1

∑
S

qn(S ; Θ′)
D∑
d=1

(
y

(n)
cd − Tcd(S,Θ)

) ∂

∂Tic
Tcd(S,Θ) .
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We thus have to calculate the derivative of the combination rule. Since the original non-
linear combination rule is not differentiable, we calculate the derivative of the approximated
function and find that

∂

∂Wid
T ρcd(S,Θ) =

∂

∂Wid

∑H
h=1(τ(S, h)Whd)

ρWhd Thc∑H
h=1(τ(S, h)Whd)ρ

[
=
u′v

v2
− uv′

v2

]
=

(τ(S, i)Wid)
ρTic(ρ+ 1)×

∑H
h=1(τ(S, h)Whd)

ρ(∑H
h=1(τ(S, h)Whd)ρ

)2

−
∑H

h=1(τ(S, h)Whd)
ρWhd Thc × ρ (τ(S, i)Wid)

ρ−1 τ(S, i)(∑H
h=1(τ(S, h)Whd)ρ

)2

=
(τ(S, i)Wid)

ρTic(ρ+ 1)∑H
h=1(τ(S, h)Whd)ρ

− T ρcd(S,Θ)× ρ (τ(S, i)Wid)
ρ−1 τ(S, i)

= . . . .

As this derivation does not result in an analytically tractable solution, we introduce another
approximation: The prefactor (τ(S, h)Whd)

ρ together with the normalizing denominator∑H
h=1(τ(S, h)Whd)

ρ simulates a differentiable step-function, i.e., its derivative will be zero
almost everywhere, except for close to the point where the actual ’step’ is where it is
infinitely large. We will thus treat this entity as a constant prefactor. We obtain that

∂

∂Wid
T ρcd(S,Θ) =

∑H
h=1(τ(S, h)Whd)

ρ ∂
∂Wid

Whd Thc∑H
h=1(τ(S, h)Whd)ρ

=
(τ(S, i)Wid)

ρ Tic∑H
h=1(τ(S, h)Whd)ρ

=Aρid(S,W )Tic ,

where we defined for convenience that

Aρid(S,W ) :=
(τ(S, i)Wid)

ρ∑H
h=1(τ(S, h)Whd)ρ

with Aid(S,W ) := lim
ρ→∞

Aρid(S,W ) .

For the feature parameter, we find that

∂

∂Tic
T ρcd(S,Θ) = Aρid(S,W )Wid .

For large ρ, we find for a well-behaved function f(t) that

Aρid(S,W )f(T ρcd(S,Θ)) ≈ Aρid(S,W )f(WidTic) .

When we insert this, together with the derivations above, into the free-energy, we observe
that

∂

∂Wid
F(Θ, q) =

1

σ2

N∑
n=1

[∑
S

qn(S ; Θ′)

C∑
c=1

(
y

(n)
cd −WidTic

)
Aρid(S,W )Tic

]
!

= 0
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and

∂

∂Tic
F(Θ, q) =

1

σ2

N∑
n=1

[∑
S

qn(S ; Θ′)

D∑
d=1

(
y

(n)
cd −WidTic

)
Aρid(S,W )Wid

]
!

= 0 .

Then it follows that

N∑
n=1

∑
S

qn(S ; Θ′)Aρid(S,W )~T Ti ~y
(n)
d =

N∑
n=1

∑
S
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~T Ti ~Ti
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∑
S
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D∑
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(n)
cd Wid =

N∑
n=1

∑
S

qn(S ; Θ′)

D∑
d=1

Aρid(S,W )Tic(Wid)
2 .

After a transformation, we find that

N∑
n=1

〈
Aρid(S,W )

〉
qn
~T Ti ~y

(n)
d = Wid

N∑
n=1

〈
Aρid(S,W )

〉
qn
~T Ti ~Ti

and
N∑
n=1

D∑
d=1

〈
Aρid(S,W )

〉
qn
y

(n)
cd Wid = Tic

N∑
n=1

D∑
d=1

〈
Aρid(S,W )

〉
qn

(Wid)
2 .

Solving for the feature and mask parameters, we then obtain the necessary conditions for
a maximum of the free-energy that need to hold in the limit ρ → ∞. They are given as
follows:

Wid =

N∑
n=1

〈
Aρid(S,W )

〉
qn
~T Ti ~y

(n)
d

N∑
n=1

〈
Aρid(S,W )

〉
qn
~T Ti ~Ti

and

Tic =

N∑
n=1

D∑
d=1

〈
Aρid(S,W )

〉
qn
Wid y

(n)
cd

N∑
n=1

D∑
d=1

〈
Aρid(S,W )

〉
qn

(Wid)
2

.

For ET, we need to restrict the sums over the data points to only those summands corre-
sponding to data points which can be expected to be explained by less or equal γ causes, i.e.,
data points which are in the set M. The resulting update equations are given as follows:

W new
id =

∑
n∈M
〈Aid(S,W )〉qn ~T Ti ~y

(n)
d∑

n∈M
〈Aid(S,W )〉qn ~T Ti ~Ti

, ~T new
i =

∑
n∈M

∑
d

〈Aid(S,W )〉qnWid ~y
(n)
d∑

n∈M

∑
d

〈Aid(S,W )〉qn (Wid)
2
.

2718



Efficient Occlusive Components Analysis

Appendix C. Influence of the Basis Functions on the Data Noise

Notably, as we alter the mask and feature values during learning, these new values have an
effect on the value for σ. More specifically, we have seen that optimization runs resulting
in low values for sigma closely correspond to a representation of the true underlying causes
while runs with comparably high sigma values do not. For data such as provided by the
bars test the final sigma values for different runs may even form corresponding clusters
(Figure 3). The interplay between sigma values and object parameters will be investigated
here in more detail: As we compare the derivative of the free-energy w.r.t. the masks and
features

∂

∂Wid
F(Θ, q) = − 1

σ2

N∑
n=1

∑
S

qn(S ; Θ′)
D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(S,Θ)

) ∂

∂Wid
Tcd(S,Θ)

and

∂

∂Tic
F(Θ, q) = − 1

σ2

N∑
n=1

∑
S

qn(S ; Θ′)
D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(S,Θ)

) ∂

∂Tic
Tcd(S,Θ)

with the derivative of the obtained update rule for the data noise squared, again w.r.t. both
basis function parameters

∂

∂Wid
σ2 =

2

NCD

N∑
n=1

∑
S

qn(S ; Θ′)
D∑
d=1

C∑
c=1

(
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(n)
cd − Tcd(S,Θ)

) ∂

∂Wid
Tcd(S,Θ)

∂
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NCD
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∑
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qn(S ; Θ′)

D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(S,Θ)

) ∂

∂Tic
Tcd(S,Θ)

we find that these are virtually identical, except for a pre-factor which will disappear when
we set the derivatives equal to zero. The optimal values for the mask and feature vectors
in terms of the free-energy thus also optimize the data noise.

Appendix D. Selection Function

A straightforward selection function is given by the posterior for only one active cause which
we calculate through Bayes’ rule as, i.e.,

p(Sh|Y (n),Θ) =
p(Y (n) |Sh,Θ)p(Sh|Θ)

p(Y (n) |Θ)

where S(h) := (~s (h), ϕ) with ~s (h) being the state with only the hth object present.

Since we are only interested in comparing the numbers per data point, a normalization w.r.t.
p(Y (n) |Θ) is not required and does not have to be calculated for the selection function. Since
the prior p(Sh|Θ) is identical for all Sh, we can omit that entity as well. We are, therefore,
left with only the noise (or likelihood) term, i.e.,

p(Y (n) |Sh,Θ) =
(
2πσ2

)−CD
2

D∏
d=1

C∏
c=1

exp

(
− 1

2σ2

(
y

(n)
cd − Tcd(Sh,Θ)

)2
)
.
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Since the logarithm is a strictly monotonic function, we instead can consider

log
(
p(Y (n) |Sh,Θ)

)
= −CD

2
log
(
2πσ2

)
− 1

2σ2

D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(Sh,Θ)

)2
.

As the first term is constant for all causes, as is the prefactor − 1
2σ2 , we omit these and are

then left with

Sh
(
Y (n)

)
= −

D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(Sh; Θ)

)2
,

which is the function used to select the most likely hidden units given Y (n) (compare
Equation 19).
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Abstract

Consider a linear model Y = Xβ+σz, where X has n rows and p columns and z ∼ N(0, In).
We assume both p and n are large, including the case of p� n. The unknown signal vector
β is assumed to be sparse in the sense that only a small fraction of its components is
nonzero. The goal is to identify such nonzero coordinates (i.e., variable selection).

We are primarily interested in the regime where signals are both rare and weak so that
successful variable selection is challenging but is still possible. We assume the Gram matrix
G = X ′X is sparse in the sense that each row has relatively few large entries (diagonals
of G are normalized to 1). The sparsity of G naturally induces the sparsity of the so-
called Graph of Strong Dependence (GOSD). The key insight is that there is an interesting
interplay between the signal sparsity and graph sparsity: in a broad context, the signals
decompose into many small-size components of GOSD that are disconnected to each other.

We propose Graphlet Screening for variable selection. This is a two-step Screen and
Clean procedure, where in the first step, we screen subgraphs of GOSD with sequential
χ2-tests, and in the second step, we clean with penalized MLE. The main methodological
innovation is to use GOSD to guide both the screening and cleaning processes.

For any variable selection procedure β̂, we measure its performance by the Hamming
distance between the sign vectors of β̂ and β, and assess the optimality by the minimax
Hamming distance. Compared with more stringent criteria such as exact support recovery
or oracle property, which demand strong signals, the Hamming distance criterion is more
appropriate for weak signals since it naturally allows a small fraction of errors.

We show that in a broad class of situations, Graphlet Screening achieves the optimal
rate of convergence in terms of the Hamming distance. Unlike Graphlet Screening, well-
known procedures such as the L0/L1-penalization methods do not utilize local graphic
structure for variable selection, so they generally do not achieve the optimal rate of con-
vergence, even in very simple settings and even if the tuning parameters are ideally set.

c©2014 Jiashun Jin, Cun-Hui Zhang, and Qi Zhang.
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The the presented algorithm is implemented as R-CRAN package ScreenClean and in
matlab (available at http://www.stat.cmu.edu/~jiashun/Research/software/GS-matlab/).

Keywords: asymptotic minimaxity, graph of least favorables (GOLF), graph of
strong dependence (GOSD), graphlet screening (GS), Hamming distance, phase
diagram, rare and weak signal model, screen and clean, sparsity

1. Introduction

Consider a linear regression model

Y = Xβ + σz, X = Xn,p, z ∼ N(0, In). (1)

We write
X = [x1, x2, . . . , xp], and X ′ = [X1, X2, . . . , Xn], (2)

so that xj is the j-th design vector and Xi is the i-th sample. Motivated by the recent
interest in ‘Big Data’, we assume both p and n are large but p ≥ n (though this should not
be taken as a restriction). The vector β is unknown to us, but is presumably sparse in the
sense that only a small proportion of its entries is nonzero. Calling a nonzero entry of β a
signal, the main interest of this paper is to identify all signals (i.e., variable selection).

Variable selection is one of the most studied problem in statistics. However, there are
important regimes where our understanding is very limited.

One of such regimes is the rare and weak regime, where the signals are both rare (or
sparse) and individually weak. Rare and weak signals are frequently found in research
areas such as Genome-wide Association Study (GWAS) or next generation sequencing.
Unfortunately, despite urgent demand in applications, the literature of variable selection
has been focused on the regime where the signals are rare but individually strong. This
motivates a revisit to variable selection, focusing on the rare and weak regime.

For variable selection in this regime, we need new methods and new theoretical frame-
works. In particular, we need a loss function that is appropriate for rare and weak signals to
evaluate the optimality. In the literature, given a variable selection procedure β̂, we usually
use the probability of exact recovery P (sgn(β̂) 6= sgn(β)) as the measure of loss (Fan and
Li, 2001); sgn(β̂) and sgn(β) are the sign vectors of β̂ and β respectively. In the rare and
weak regime, the signals are so rare and weak that exact recovery is impossible, and the
Hamming distance between sgn(β̂) and sgn(β) is a more appropriate measure of loss.

Our focus on the rare and weak regime and the Hamming distance loss provides new
perspectives to variable selection, in methods and in theory.

Throughout this paper, we assume the diagonals of the Gram matrix

G = X ′X (3)

are normalized to 1 (and approximately 1 in the random design model), instead of n as
often used in the literature. The difference between two normalizations is non-essential, but
the signal vector β are different by a factor of n1/2.

We also assume the Gram matrix G is ‘sparse’ (aka. graph sparsity) in the sense that
each of its rows has relatively few large entries. Signal sparsity and graph sparsity can be
simultaneously found in the following application areas.
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• Compressive sensing. We are interested in a very high dimensional sparse vector β.
The goal is to store or transmit n linear functionals of β and then reconstruct it. For
1 ≤ i ≤ n, we choose a p-dimensional coefficient vector Xi and observe Yi = X ′iβ+σzi
with an error σzi. The so-called Gaussian design is often considered (Donoho, 2006a,b;

Bajwa et al., 2007), where Xi
iid∼ N(0,Ω/n) and Ω is sparse; the sparsity of Ω induces

the sparsity of G = X ′X.

• Genetic Regulatory Network (GRN). For 1 ≤ i ≤ n, Wi = (Wi(1), . . . ,Wi(p))
′ rep-

resents the expression level of p different genes of the i-th patient. Approximately,

Wi
iid∼ N(α,Σ), where the contrast mean vector α is sparse reflecting that only few

genes are differentially expressed between a normal patient and a diseased one (Peng
et al., 2009). Frequently, the concentration matrix Ω = Σ−1 is believed to be sparse,
and can be effectively estimated in some cases (e.g., Bickel and Levina, 2008 and Cai
et al., 2010), or can be assumed as known in others, with the so-called “data about
data” available (Li and Li, 2011). Let Ω̂ be a positive-definite estimate of Ω, the
setting can be re-formulated as the linear model (Ω̂)1/2Y ≈ Ω1/2Y ∼ N(Ω1/2β, Ip),
where β =

√
nα and the Gram matrix G ≈ Ω, and both are sparse.

Other examples can be found in Computer Security (Ji and Jin, 2011) and Factor Analysis
(Fan et al., 2011).

The sparse Gram matrix G induces a sparse graph which we call the Graph of Strong
Dependence (GOSD), denoted by G = (V,E), where V = {1, 2, . . . , p} and there is an edge
between nodes i and j if and only the design vectors xi and xj are strongly correlated. Let

S = S(β) = {1 ≤ j ≤ p : βj 6= 0}

be the support of β and GS be the subgraph of G formed by all nodes in S. The key insight
is that, there is an interesting interaction between signal sparsity and graph sparsity, which
yields the subgraph GS decomposable: GS splits into many “graphlet”; each “graphlet” is a
small-size component and different components are not connected (in GS).

While we can always decompose GS in this way, our emphasis in this paper is that,
in many cases, the maximum size of the graphlets is small; see Lemma 1 and related
discussions.

The decomposability of GS motivates a new approach to variable selection, which we
call Graphlet Screening (GS). GS is a Screen and Clean method (Wasserman and Roeder,
2009). In the screening stage, we use multivariate screening to identify candidates for all the
graphlets. Let Ŝ be all the nodes that survived the screening, and let GŜ be the subgraph

of GOSD formed by all nodes in Ŝ. Although Ŝ is expected to be somewhat larger than S,
the subgraph GŜ is still likely to resemble GS in structure in the sense that it, too, splits
into many small-size disconnected components. We then clean each component separately
to remove false positives.

The objective of the paper is two-fold.

• To propose a “fundamentally correct” solution in the rare and weak paradigm along
with a computationally fast algorithm for the solution.

• To show that GS achieves the optimal rate of convergence in terms of the Hamming
distance, and achieves the optimal phase diagram for variable selection.
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Phase diagram can be viewed as an optimality criterion which is especially appropriate for
rare and weak signals. See Donoho and Jin (2004) and Jin (2009) for example.

In the settings we consider, most popular approaches are not rate optimal; we explain
this in Sections 1.1-1.3. In Section 1.4, we explain the basic idea of GS and why it works.

1.1 Non-optimality of the L0-penalization Method for Rare and Weak Signals

When σ = 0, Model (1) reduces to the “noiseless” model Y = Xβ. In this model, Donoho
and Stark (1989) (see also Donoho and Huo, 2001) reveals a fundamental phenomenon on
sparse representation. Fix (X,Y ) and consider the equation Y = Xβ. Since p > n, the
equation has infinitely many solutions. However, a very sparse solution, if exists, is unique
under mild conditions on the design X, with all other solutions being much denser. In fact,
if the sparsest solution β0 has k elements, then all other solutions of the equation Y = Xβ
must have at least (rank(X) − k + 1) nonzero elements, and rank(X) = n when X is in a
“general position”.

From a practical viewpoint, we frequently believe that this unique sparse solution is the
truth (i.e., Occam’s razor). Therefore, the problem of variable selection can be solved by
some global methods designed for finding the sparsest solution to the equation Y = Xβ.

Since the L0-norm is (arguably) the most natural way to measure the sparsity of a vector,
the above idea suggests that the L0-penalization method is a “fundamentally correct” (but
computationally intractable) method for variable selection, provided some mild conditions
on the noise, signal and design matrix, e.g., noiseless, Signal-to-Noise Ratio (SNR) is high,
or signals are sufficiently sparse (Donoho and Stark, 1989; Donoho and Huo, 2001).

Motivated by this, in the past two decades, a long list of computationally tractable al-
gorithms have been proposed that approximate the solution of the L0-penalization method,
including the lasso, SCAD, MC+, and many more (Akaike, 1974; Candes and Tao, 2007;
Efron et al., 2004; Fan and Li, 2001; Schwarz, 1978; Tibshirani, 1996; Zhang, 2010, 2011;
Zhao and Yu, 2006; Zou, 2006).

With that being said, we must note that these methodologies were built upon a frame-
work with four tightly woven core components: “signals are rare but strong”, “the truth
is also the sparsest solution to Y = Xβ”, “probability of exact recovery is an appropriate
loss function”, and “L0-penalization method is a fundamentally correct approach”. Unfor-
tunately, when signals are rare and weak, such a framework is no longer suitable.

• When signals are “rare and weak”, the fundamental uniqueness property of the sparse
solution in the noiseless case is no longer valid in the noisy case. Consider the model
Y = Xβ + σz and suppose that a sparse β0 is the true signal vector. There are many
vectors β that are small perturbations of β0 such that the two models Y = Xβ + σz
and Y = Xβ0 + σz are indistinguishable (i.e., all tests are asymptotically powerless).
In the “rare and strong” regime, β0 is the sparsest solution among all such “eligible”
solutions of Y = Xβ+σz. However, this claim no longer holds in the “rare and weak”
regime and the principle of Occam’s razor may not be as relevant as before.

• The L0-penalization method is originally designed for “rare and strong” signals where
“exact recovery” is used to measure its performance (Donoho and Stark, 1989; Donoho
and Huo, 2001; Donoho, 2006a). When we must consider “rare and weak” signals and
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when we use the Hamming distance as the loss function, it is unclear whether the
L0-penalization method is still “fundamentally correct”.

In fact, in Section 2.8 (see also Ji and Jin, 2011), we show that the L0-penalization method
is not optimal in Hamming distance when signals are rare and weak, even with very simple
designs (i.e., Gram matrix is tridiagonal or block-wise) and even when the tuning param-
eter is ideally set. Since the L0-penalization method is used as the benchmark in the
development of many other penalization methods, its sub-optimality is expected to imply
the sub-optimality of other methods designed to match its performance (e.g., lasso, SCAD,
MC+).

1.2 Limitation of Univariate Screening and UPS

Univariate Screening (also called marginal regression or Sure Screening in Fan and Lv,
2008; Genovese et al., 2012) is a well-known variable selection method. For 1 ≤ j ≤
p, recall that xj is the j-th column of X. Univariate Screening selects variables with
large marginal correlations: |(xj , Y )|, where (·, ·) denotes the inner product. The method
is computationally fast, but it can be seriously corrupted by the so-called phenomenon
of “signal cancellation” (Wasserman and Roeder, 2009). In our model (1)-(3), the SNR
associated with (xj , Y ) is

1

σ

p∑
`=1

(xj , x`)β` =
βj
σ

+
1

σ

∑
`6=j

(xj , x`)β`.

“Signal cancellation” happens if SNR is significantly smaller than βj/σ. For this reason,
the success of Univariate Screening needs relatively strong conditions (e.g., Faithfulness
Condition Genovese et al., 2012), under which signal cancellation does not have a major
effect.

In Ji and Jin (2011), Ji and Jin proposed Univariate Penalized Screening (UPS) as a
refinement of Univariate Screening, where it was showed to be optimal in the rare and weak
paradigm, for the following two scenarios. The first scenario is where the nonzero effects
of variables are all positively correlated: (xjβj)

′(xkβk) ≥ 0 for all {j, k}. This guarantees
the faithfulness of the univariate association test. The second scenario is a Bernoulli model
where the “signal cancellation” only has negligible effects over the Hamming distance of
UPS.

With that being said, UPS attributes its success mostly to the cleaning stage; the
screening stage of UPS uses nothing but Univariate Screening, so UPS does not adequately
address the challenge of “signal cancellation”. For this reason, we should not expect UPS
to be optimal in much more general settings.

1.3 Limitations of Brute-force Multivariate Screening

One may attempt to overcome “signal cancellation” by multivariate screening, with Brute-
force Multivariate Screening (BMS) being the most straightforward version. Fix an integer
1 ≤ m0 � p. BMS consists of a series of screening phases, indexed by m, 1 ≤ m ≤ m0, that
are increasingly more ambitious. In Phase-m BMS, we test the significance of the association
between Y and any set of m different design variables {xj1 , xj2 , . . . , xjm}, j1 < j2 < . . . < jm,
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and retain all such design variables if the test is significant. The problem of BMS is, it enrolls
too many candidates for screening, which is both unnecessary and unwise.

• (Screening inefficiency). In Phase-m of BMS, we test about
(
p
m

)
hypotheses involving

different subsets of m design variables. The larger the number of hypotheses we
consider, the higher the threshold we need to set for the tests, in order to control the
false positives. When we enroll too many candidates for hypothesis testing, we need
signals that are stronger than necessary in order for them to survive the screening.

• (Computational challenge). Testing
(
p
m

)
hypotheses is computationally infeasible when

p is large, even when m is very small, e.g., (p,m) = (104, 3).

1.4 Graphlet Screening: How It Is Different and How It Works

Graphlet Screening (GS) uses a similar screening strategy as BMS does, except for a ma-
jor difference. When it comes to the test of significance between Y and design variables
{xj1 , xj2 , . . . , xjm}, j1 < j2 < . . . < jm, GS only carries out such a test if {j1, j2, . . . , jm} is
a connected subgraph of the GOSD. Otherwise, the test is safely skipped!

Fixing an appropriate threshold δ > 0, we let Ω∗,δ be the regularized Gram matrix:

Ω∗,δ(i, j) = G(i, j)1{|G(i, j)| ≥ δ}, 1 ≤ i, j ≤ p. (4)

The GOSD G ≡ G∗,δ = (V,E) is the graph where V = {1, 2, . . . , p} and there is an edge
between nodes i and j if and only if Ω∗,δ(i, j) 6= 0. See Section 2.6 for the choice of δ.

Remark. GOSD and G are generic terms which vary from case to case, depending on G
and δ. GOSD is very different from the Bayesian conditional independence graphs (Pearl,
2000).

Fixing m0 ≥ 1 as in BMS, we define

A(m0) = A(m0;G, δ) = {all connected subgraphs of G∗,δ with size ≤ m0}.

GS is a Screen and Clean method, consisting of a graphical screening step (GS-step) and a
graphical cleaning step (GC-step).

• GS-step. We test the significance of association between Y and {xj1 , xj2 , . . . , xjm} if
and only if {j1, j2, . . . , jm} ∈ A(m0) (i.e., graph guided multivariate screening). Once
{j1, . . . , jm} is retained, it remains there until the end of the GS-step.

• GC-step. The set of surviving nodes decompose into many small-size components,
which we fit separately using an efficient low-dimensional test for small graphs.

GS is similar to Wasserman and Roeder (2009) for both of them have a screening and a
cleaning stage, but is more sophisticated. For clarification, note that Univariate Screening or
BMS introduced earlier does not contain a cleaning stage and can be viewed as a counterpart
of the GS-step.

We briefly explain why GS works. We discuss the GS-step and GC-step separately.
Consider the GS-step first. Compared with BMS, the GS-step recruits far fewer can-

didates for screening, so it is able to overcome the two major shortcomings of BMS afore-
mentioned: high computational cost and low statistical efficiency. In fact, fix K ≥ 1 and
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suppose G∗,δ is K-sparse (see Section 1.5 for the definition). By a well-known result in
graph theory (Frieze and Molloy, 1999),

|A(m0)| ≤ Cm0p(eK)m0 . (5)

The right hand side is much smaller than the term
(
p
m0

)
as we encounter in BMS.

At the same time, recall that S = S(β) is the support of β. Let GS ≡ G∗,δS be the

subgraph of G∗,δ consisting all signal nodes. We can always split G∗,δS into “graphlets”
(arranged lexicographically) as follows:

G∗,δS = G∗,δS,1 ∪ G
∗,δ
S,2 . . . ∪ G

∗,δ
S,M , (6)

where each G∗,δS,i is a component (i.e., a maximal connected subgraph) of G∗,δS , and different

G∗,δS,i are not connected in G∗,δS . Let

m∗0 = m∗0(S(β), G, δ) = max
1≤i≤M

|G∗,δS,i |

be the maximum size of such graphlets. Note that M also depends on S(β), G and δ.

In many cases, m∗0 is small. One such case is when we have a Bernoulli signal model.

Lemma 1 Fix K ≥ 1 and ε > 0. If G∗,δ is K-sparse and sgn(|β1|), sgn(|β2|), . . . , sgn(|βp|)
are iid from Bernoulli(ε), then except for a probability p(eεK)m0+1, m∗0(S(β), G, δ) ≤ m0.

Lemma 1 is not tied to the Bernoulli model and holds more generally. For example, it holds
when {sgn(|βi|)}pi=1 are generated according to certain Ising models (Ising, 1925).

We recognize that in order for the GS-step to be efficient both in screening and in
computation, it is sufficient that

m0 ≥ m∗0. (7)

In fact, first, if (7) holds, then for each 1 ≤ ` ≤ M , G∗,δS,` ∈ A(m0). Therefore, at some
point of the screening process of the GS-step, we must have considered a significance test
between Y and the set of design variables {xj : j ∈ G∗,δS,`}. Consequently, the GS-step is able
to overcome the “signal cancellations” (the explanation is a little bit long, and we slightly
defer it). Second, since m∗0 is small in many situations, we could choose a relatively small
m0 such that (7) holds. When m0 is small, as long as K is small or moderately large, the
GS-step is computationally feasible. In fact, the right hand side of (5) is only larger than p
by a moderate factor. See Section 2.2 for more discussion on the computation complexity.

We now explain the first point above. The notations below are frequently used.

Definition 2 For X in Models (1)-(2) and any subset I ⊂ {1, 2, ..., p}, let P I = P I(X) be
the projection from Rn to the subspace spanned by {xj : j ∈ I}.

Definition 3 For an n× p matrix A and sets I ⊂ {1, . . . , n} and J ⊂ {1, . . . , p}, AI,J is
the |I| × |J | sub-matrix formed by restricting the rows of A to I and columns to J .
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When p = 1, A is a vector, and AI is the sub-vector of A formed by restricting the rows of
A to I . When I = {1, 2, . . . , n} (or J = {1, 2, . . . , p}), we write AI,J as A⊗,J (or AI,⊗).
Note that indices in I or J are not necessarily sorted ascendingly.

Recall that for each 1 ≤ ` ≤M , at some point of the GS-step, we must have considered
a significance test between Y and the set of design variables {xj : j ∈ G∗,δS,`}. By (6), we
rewrite Model (1) as

Y =
M∑
`=1

X⊗,G
∗,δ
S,`βG

∗,δ
S,` + σz, z ∼ N(0, In).

The key is the set of matrices {X⊗,G
∗,δ
S,` : 1 ≤ ` ≤ M} are nearly orthogonal (i.e., for any

column ξ of X⊗,G
∗,δ
S,k and any column η of X⊗,G

∗,δ
S,` , |(ξ, η)| is small when k 6= `).

When we test the significance between Y and {xj , j ∈ G∗,δS,`}, we are testing the null

hypothesis βG
∗,δ
S,` = 0 against the alternative βG

∗,δ
S,` 6= 0. By the near orthogonality aforemen-

tioned, approximately, (X⊗,G
∗,δ
S,` )′Y is a sufficient statistic for βG

∗,δ
S,` , and the optimal test is

based on the χ2-test statistic ‖P G
∗,δ
S,`Y ‖2.

The near orthogonality also implies that significant “signal cancellation” only happens
among signals within the same graphlet. When we screen each graphlet as a whole using
the χ2-statistic above, “signal cancellation” between different graphlets only has negligible
effects. In this way, GS-step is able to retain all nodes in G∗,δS,` in a nearly optimal way, and
so overcome the challenge of “signal cancellation”. This explains the first point.

Note that the GS-step consists of a sequence of sub-steps, each sub-step is associated
with an element of A(m0). When we screen G∗,δS,` as a whole, it is possible some of the nodes

have already been retained in the previous sub-steps. In this case, we implement the χ2-test
slightly differently, but the insight is similar. See Section 2.1 for details.

We now discuss the GC-step. Let Ŝ be all the surviving nodes of the GS-step, and let
G∗,δ
Ŝ

be the subgraph of G∗,δ formed by confining all nodes to Ŝ. Similarly, we have (a)

the decomposition G∗,δ
Ŝ

= G∗,δ
Ŝ,1
∪ G∗,δ

Ŝ,2
. . . ∪ G∗,δ

Ŝ,M̂
, (b) the near orthogonality between the M̂

different matrices, each is formed by {xj : j ∈ G∗,δ
Ŝ,`
}. Moreover, a carefully tuned screening

stage of the GS ensures that most of the components G∗,δ
Ŝ,`

are only small perturbations of

their counterparts in the decomposition of G∗,δS = G∗,δS,1 ∪ G
∗,δ
S,2 . . . ∪ G

∗,δ
S,M as in (6), and the

maximum size of G∗,δ
Ŝ,`

is not too much larger than m∗0 = m∗0(S(β), G, δ). Together, these

allow us to clean G∗,δ
Ŝ,`

separately, without much loss of efficiency. Since the maximum size

of G∗,δ
Ŝ,`

is small, the computational complexity in the cleaning stage is moderate.

1.5 Content

The remaining part of the paper is organized as follows. In Section 2, we show that GS
achieves the minimax Hamming distance in the Asymptotic Rare and Weak (ARW) model,
and use the phase diagram to visualize the optimality of GS, and to illustrate the advantage
of GS over the L0/L1-penalization methods. In Section 3, we explain that GS attributes

2730



Optimality of Graphlet Screening in High Dimensional Variable Selection

its optimality to the so-called Sure Screening property and the Separable After Screening
property, and use these two properties to prove our main result, Theorem 8. Section 4
contains numeric results, Section 5 discusses more connections to existing literature and
possible extensions of GS, and Section 6 contains technical proofs.

Below are some notations we use in this paper. Lp denotes a generic multi-log(p) term
that may vary from occurrence to occurrence; see Definition 5. For a vector β ∈ Rp, ‖β‖q
denotes the Lq-norm, and when q = 2, we drop q for simplicity. For two vectors α and β
in Rp, α ◦ β ∈ Rp denotes the vector in Rp that satisfies (α ◦ β)i = αiβi, 1 ≤ i ≤ p; “◦” is
known as the Hadamard product.

For an n×p matrix A, ‖A‖∞ denotes the matrix L∞-norm, and ‖A‖ denotes the spectral
norm (Horn and Johnson, 1990). Recall that for two sets I and J such that I ⊂ {1, 2, . . . , n}
and J ⊂ {1, 2, . . . , p}, AI,J denotes the submatrix of A formed by restricting the rows
and columns of A to I and J , respectively. Note that the indices in I and J are not
necessarily sorted in the ascending order. In the special case where I = {1, 2, . . . , n} (or
J = {1, 2, . . . , p}), we write AI,J as A⊗,J (or AI,⊗). In the special case where n = p
and A is positive definite, λ∗k(A) denotes the minimum eigenvalue of all the size k principal
submatrices of A, 1 ≤ k ≤ p. For X in (1), P I denotes the projection to the column space
of X⊗,I .

Recall that in Model (1), Y = Xβ + σz. Fixing a threshold δ > 0. Let G = X ′X
be the Gram matrix, and let Ω∗,δ be the regularized Gram matrix defined by Ω∗,δ(i, j) =
G(i, j)1{|G(i, j)| ≥ δ}, 1 ≤ i, j ≤ p. Let G∗,δ be the graph where each index in {1, 2, . . . , p}
is a node, and there is an edge between node i and node j if and only if Ω∗,δ(i, j) 6= 0. We

let S(β) be the support of β, and denote G∗,δS by the subgraph of G∗,δ formed by all nodes
in S(β). We call G∗,δ the Graph of Strong Dependence (GOSD) and sometimes write it
by G for short. The GOSD and G are generic notations which depend on (G, δ) and may
vary from occurrence to occurrence. We also denote G� by the Graph of Least Favorable
(GOLF). GOLF only involves the study of the information lower bound. For an integer
K ≥ 1, a graph G, and one of its subgraph I0, we write I0/G if and only if I0 is a component
of G (i.e., a maximal connected subgraph of G), and we call G K-sparse if its maximum
degree is no greater than K.

2. Main Results

In Section 2.1, we formally introduce GS. In Section 2.2, we discuss the computational
complexity of GS. In Sections 2.3-2.6, we show that GS achieves the optimal rate of con-
vergence in the Asymptotic Rare and Weak model. In Sections 2.7-2.8, we introduce the
notion of phase diagram and use it to compare GS with the L0/L1-penalization methods.
We conclude the section with a summary in Section 2.9.

2.1 Graphlet Screening: The Procedure

GS consists of a GS-step and a GC-step. We describe two steps separately. Consider the
GS-step first. Fix m0 ≥ 1 and δ > 0, recall that G∗,δ denotes the GOSD and A(m0) consists
of all connected subgraphs of G∗,δ with size ≤ m0.
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• Initial sub-step. Let U∗p = ∅. List all elements in A(m0) in the ascending order of
the number of nodes it contains, with ties broken lexicographically. Since a node is
thought of as connected to itself, the first p connected subgraphs on the list are simply
the nodes 1, 2, . . . , p. We screen all connected subgraphs in the order they are listed.

• Updating sub-step. Let I0 be the connected subgraph under consideration, and let U∗p
be the current set of retained indices. We update U∗p with a χ2 test as follows. Let

F̂ = I0 ∩ U∗p and D̂ = I0 \ U∗p , so that F̂ is the set of nodes in I0 that have already

been accepted, and D̂ is the set of nodes in I0 that is currently under investigation.
Note that no action is needed if D̂ = ∅. For a threshold t(D̂, F̂ ) > 0 to be determined,
we update U∗p by adding all nodes in D̂ to it if

T (Y, D̂, F̂ ) = ‖P I0Y ‖2 − ‖P F̂Y ‖2 > t(D̂, F̂ ), (8)

and we keep U∗p the same otherwise (by default, ‖P F̂Y ‖ = 0 if F̂ = ∅). We continue
this process until we finish screening all connected subgraphs on the list. The final
set of retained indices is denoted by U∗p .

See Table 1 for a recap of the procedure. In the GS-step, once a node is kept in any sub-
stage of the screening process, it remains there until the end of the GS-step (however, it
may be killed in the GC-step). This has a similar flavor to that of the Forward regression.

In principle, the procedure depends on how the connected subgraphs of the same size
are initially ordered, and different ordering could give different numeric results. However,
such differences are usually negligibly small. Alternatively, one could revise the procedure
so that it does not depend on the ordering. For example, in the updating sub-step, we
could choose to update U∗p only when we finish screening all connected sub-graphs of size
k, 1 ≤ k ≤ m0. While the theoretic results below continue to hold if we revise GS in this
way, we must note that from a numeric perspective, the revision would not produce a very
different result. For reasons of space, we skip discussions along this line.

The GS-step uses a set of tuning parameters:

Q ≡ {t(D̂, F̂ ) : (D̂, F̂ ) are as defined in (8)}.

A convenient way to set these parameters is to let t(D̂, F̂ ) = 2σ2q log p for a fixed q > 0
and all (D̂, F̂ ). More sophisticated choices are given in Section 2.6.

The GS-step has two important properties: Sure Screening and Separable After Screen-
ing (SAS). With tuning parameters Q properly set, the Sure Screening property says that
U∗p retains all but a negligible fraction of the signals. The SAS property says that as a

subgraph of G∗,δ, U∗p decomposes into many disconnected components, each has a size ≤ `0
for a fixed small integer `0. Together, these two properties enable us to reduce the original
large-scale regression problem to many small-size regression problems that can be solved
parallelly in the GC-step. See Section 3 for elaboration on these ideas.

We now discuss the GC-step. For any 1 ≤ j ≤ p, we have either j /∈ U∗p , or that there
is a unique connected subgraph I0 such that j ∈ I0 C U∗p . In the first case, we estimate βj
as 0. In the second case, for two tuning parameters ugs > 0 and vgs > 0, we estimate the
whole set of variables βI0 by minimizing the functional

‖P I0(Y −X⊗,I0ξ)‖2 + (ugs)2‖ξ‖0 (9)

2732



Optimality of Graphlet Screening in High Dimensional Variable Selection

GS-step: List G∗,δ-connected submodels I0,k with |I0,1| ≤ |I0,2| ≤ · · · ≤ m0

Initialization: U∗p = ∅ and k = 1

Test H0 : I0,k ∩ U∗p against H1 : I0,k with χ2 test (8)

Update: U∗p ← U∗p ∪ I0,k if H0 rejected, k ← k + 1

GC-step: As a subgraph of G∗,δ, U∗p decomposes into many components I0

Use the L0-penalized test (9) to select a subset Î0 of each I0

Return the union of Î0 as the selected model

Table 1: Graphlet Screening Algorithm.

over all |I0| × 1 vectors ξ, each nonzero coordinate of which ≥ vgs in magnitude. The
resultant estimator is the final estimate of GS, and we use β̂gs = β̂gs(Y ; δ,Q, ugs, vgs, X, p, n)
to denote it. See Section 1.5 for notations used in this paragraph.

Sometimes for linear models with random designs, the Gram matrix G is very noisy, and
GS is more effective if we use it iteratively for a few times (≤ 5). This can be implemented
in a similar way as that in Ji and Jin (2011, Section 3). Here, the main purpose of iteration
is to denoise G, not for variable selection. See Ji and Jin (2011, Section 3) and Section 4
for more discussion.

2.2 Computational Complexity

If we exclude the overhead of obtaining G∗,δ, then the computation cost of GS contains two
parts, that of the GS-step and that of the GC-step. In each part, the computation cost
hinges on the sparsity of G∗,δ. In Section 2.3, we show that with a properly chosen δ, for
a wide class of design matrices, G∗,δ is K-sparse for some K = Kp ≤ C logα(p) as p → ∞,
where α > 0 is a constant. As a result (Frieze and Molloy, 1999),

|A(m0)| ≤ pm0(eKp)
m0 ≤ Cm0p logm0α(p). (10)

We now discuss two parts separately.

In the GS-step, the computation cost comes from that of listing all elements in A(m0),
and that of screening all connected-subgraphs in A(m0). Fix 1 ≤ k ≤ m0. By (10) and the
fact that every size k (k > 1) connected subgraph at least contains one size k− 1 connected
subgraph, greedy algorithm can be used to list all sub-graphs with size k with computational
complexity ≤ Cp(Kpk)k ≤ Cp logkα(p), and screening all connected subgraphs of size k has
computational complexity ≤ Cnp logkα(p). Therefore, the computational complexity of the
GS-step ≤ Cnp(log(p))(m0+1)α.

The computation cost of the GC-step contains the part of breaking U∗p into disconnected
components, and that of cleaning each component by minimizing (9). As a well-known appli-
cation of the breadth-first search (Hopcroft and Tarjan, 1973), the first part ≤ |U∗p |(Kp+1).
For the second part, by the SAS property of the GS-step (i.e., Lemma 16), for a broad class
of design matrices, with the tuning parameters chosen properly, there is a fixed integer
`0 such that with overwhelming probability, |I0| ≤ `0 for any I0 C U∗p . As a result, the
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total computational cost of the GC-step is no greater than C(2`0 logα(p))|U∗p |n, which is
moderate.

The computational complexity of GS is only moderately larger than that of Univari-
ate Screening or UPS (Ji and Jin, 2011). UPS uses univariate thresholding for screen-
ing which has a computational complexity of O(np), and GS implements multivariate
screening for all connected subgraphs in A(m0), which has a computational complexity
≤ Cnp(log(p))(m0+1)α. The latter is only larger by a multi-log(p) term.

2.3 Asymptotic Rare and Weak Model and Random Design Model

To analyze GS, we consider the regression model Y = Xβ + σz as in (1), and use an
Asymptotic Rare and Weak (ARW) model for β and a random design model for X.

We introduce the ARW first. Fix parameters ε ∈ (0, 1), τ > 0, and a ≥ 1. Let
b = (b1, . . . , bp)

′ be the p× 1 random vector where

bi
iid∼ Bernoulli(ε). (11)

We model the signal vector β in Model (1) by

β = b ◦ µ, (12)

where “◦” denotes the Hadamard product (see Section 1.5) and µ ∈ Θ∗p(τ, a), with

Θ∗p(τ, a) = {µ ∈ Θp(τ), ‖µ‖∞ ≤ aτ}, Θp(τ) = {µ ∈ Rp : |µi| ≥ τ, 1 ≤ i ≤ p}. (13)

In this model, ε calibrates the sparsity level and τ calibrates the minimum signal strength.
We are primarily interested in the case where ε is small and τ is smaller than the required
signal strength for the exact recovery of the support of β, so the signals are both rare and
weak. The constraint of ‖µ‖∞ ≤ aτp is mainly for technical reasons (only needed for Lemma
16); see Section 2.6 for more discussions.

We let p be the driving asymptotic parameter, and tie (ε, τ) to p through some fixed
parameters. In detail, fixing 0 < ϑ < 1, we model

ε = εp = p−ϑ. (14)

For any fixed ϑ, the signals become increasingly sparser as p → ∞. Also, as ϑ ranges, the
sparsity level ranges from very dense to very sparse, and covers all interesting cases.

It turns out that the most interesting range for τ is τ = τp = O(
√

log(p)). In fact,
when τp � σ

√
log(p), the signals are simply too rare and weak so that successful variable

selection is impossible. On the other hand, exact support recovery requires τ & σ
√

2 log p
for orthogonal designs and possibly even larger τ for correlated designs. In light of this, we
fix r > 0 and calibrate τ by

τ = τp = σ
√

2r log(p). (15)

Next, consider the random design model. The use of random design model is mainly for
simplicity in presentation. The main results in the paper can be translated to fixed design
models with a careful modification of the notations; see Corollary 7 and Section 5.
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For any positive definite matrix A, let λ(A) be the smallest eigenvalue, and let

λ∗k(Ω) = min{λ(A) : A is a k × k principle submatrix of Ω}. (16)

For m0 as in the GS-step, let g = g(m0, ϑ, r) be the smallest integer such that

g ≥ max{m0, (ϑ+ r)2/(2ϑr)}. (17)

Fixing a constant c0 > 0, introduce

Mp(c0, g) = {Ω : p× p correlation matrix, λ∗g(Ω) ≥ c0}. (18)

Recall Xi is the i-th row of X; see (2). In the random design model, we fix an Ω ∈M(c0, g)
(Ω is unknown to us), and assume

Xi
iid∼ N(0,

1

n
Ω), 1 ≤ i ≤ n. (19)

In the literature, this is called the Gaussian design, which can be found in Compressive
Sensing (Bajwa et al., 2007), Computer Security (Dinur and Nissim, 2003), and other ap-
plication areas.

At the same time, fixing κ ∈ (0, 1), we model the sample size n by

n = np = pκ. (20)

As p→∞, np becomes increasingly large but is still much smaller than p. We assume

κ > (1− ϑ), (21)

so that np � pεp. Note pεp is approximately the total number of signals. Condition (21) is
almost necessary for successful variable selection (Donoho, 2006a,b).

Definition 4 We call model (11)-(15) for β the Asymptotic Rare Weak model
ARW(ϑ, r, a, µ), and call model (19)-(21) for X the Random Design model RD(ϑ, κ,Ω).

2.4 Minimax Hamming Distance

In many works on variables selection, one assesses the optimality by the ‘oracle property’,
where the probability of non-exact recovery P (sgn(β̂) 6= sgn(β)) is the loss function. When
signals are rare and weak, P (sgn(β̂) 6= sgn(β)) ≈ 1 and ‘exact recovery’ is usually impossible.
A more appropriate loss function is the Hamming distance between sgn(β̂) and sgn(β).

For any fixed β and any variable selection procedure β̂, we measure the performance by
the Hamming distance:

hp(β̂, β
∣∣X) = E

[ p∑
j=1

1
{

sgn(β̂j) 6= sgn(βj)
}∣∣X].

In the Asymptotic Rare Weak model, β = b ◦ µ, and (εp, τp) depend on p through (ϑ, r), so

the overall Hamming distance for β̂ is

Hp(β̂; εp, np, µ,Ω) = EεpEΩ

[
hp(β̂, β

∣∣X)
]
≡ EεpEΩ

[
hp(β̂, b ◦ µ

∣∣X)
]
,
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where Eεp is the expectation with respect to the law of b, and EΩ is the expectation with
respect to the law of X; see (11) and (19). Finally, the minimax Hamming distance is

Hamm∗p(ϑ, κ, r, a,Ω) = inf
β̂

sup
µ∈Θ∗p(τp,a)

{
Hp(β̂; εp, np, µ,Ω)

}
.

The Hamming distance is no smaller than the sum of the expected number of signal com-
ponents that are misclassified as noise and the expected number of noise components that
are misclassified as signal.

2.5 Lower Bound for the Minimax Hamming Distance, and GOLF

We first construct lower bounds for “local risk” at different j, 1 ≤ j ≤ p, and then aggregate
them to construct a lower bound for the global risk. One challenge we face is the least
favorable configurations for different j overlap with each other. We resolve this by exploiting
the sparsity of a new graph to be introduced: Graph of Least Favorable (GOLF).

To recap, the model we consider is Model (1), where

β is modeled by ARW(ϑ, r, a, µ), and X is modeled by RD(ϑ, κ,Ω).

Fix 1 ≤ j ≤ p. The “local risk” at an index j is the risk of estimating the set of variables
{βk : d(k, j) ≤ g}, where g is defined in (17) and d(j, k) denotes the geodesic distance
between j and k in the graph G∗,δ. The goal is to construct two subsets V0 and V1 and two
realizations of β, β(0) and β(1) such that j ∈ V0 ∪ V1 and

If k /∈ V0 ∪ V1, β
(0)
k = β

(1)
k ; otherwise, β

(i)
k 6= 0 if and only if k ∈ Vi, i = 0, 1,

where in the special case of V0 = V1, we require sgn(β(0)) 6= sgn(β(1)). In the literature,
it is known that how well we can estimate {βk : d(k, j) ≤ g} depends on how well we can
separate two hypotheses (where β(0) and β(1) are assumed as known):

H
(j)
0 : Y = Xβ(0) + σz vs. H

(j)
1 : Y = Xβ(1) + σz, z ∼ N(0, In). (22)

The least favorable configuration for the local risk at index j is the quadruple (V0, V1, β
(0), β(1))

for which two hypotheses are the most difficult to separate.
For any V ⊂ {1, 2, . . . , p}, let IV be the indicator vector of V such that for any 1 ≤ k ≤ p,

the k-th coordinate of IV is 1 if k ∈ V and is 0 otherwise. Define

BV = {IV ◦ µ : µ ∈ Θ∗p(τp, a)},

where we recall “◦” denotes the Hadamard product (see Section 1.5). Denote for short
θ(i) = IV0∪V1 ◦ β(i), and so β(1) − β(0) = θ(1) − θ(0) and θ(i) ∈ BVi , i = 0, 1. Introduce

α(θ(0), θ(1)) = α(θ(0), θ(1);V0, V1,Ω, a) = τ−2
p (θ(0) − θ(1))′Ω(θ(0) − θ(1)).

For the testing problem in (22), the optimal test is to reject H
(j)
0 if and only if (θ(1) −

θ(0))′X ′(Y −Xβ(0)) ≥ tστp
√
α(θ(0), θ(1)) for some threshold t > 0 to be determined. In the

ARW and RD models, P (βk 6= 0, ∀k ∈ Vi) ∼ ε|Vi|p , i = 0, 1, and (θ(0) − θ(1))′G(θ(0) − θ(1)) ≈
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(θ(0) − θ(1))′Ω(θ(0) − θ(1)), since the support of θ(0) − θ(1) is contained in a small-size set
V0 ∪ V1. Therefore the sum of Type I and Type II error of any test associated with (22) is
no smaller than (up to some negligible differences)

ε|V0|p Φ̄(t) + ε|V1|p Φ
(
t− (τp/σ)[α(θ(0), θ(1))]1/2

)
, (23)

where Φ̄ = 1− Φ is the survival function of N(0, 1).

For a lower bound for the “local risk” at j, we first optimize the quantity in (23) over
all θ(0) ∈ BV0 and θ(1) ∈ BV1 , and then optimize over all (V0, V1) subject to j ∈ V0 ∪ V1.
To this end, define α∗(V0, V1) = α∗(V0, V1; a,Ω), η(V0, V1) = η(V0, V1;ϑ, r, a,Ω), and ρ∗j =
ρ∗j (ϑ, r, a,Ω) by

α∗(V0, V1) = min
{
α(θ(0), θ(1);V0, V1,Ω, a) : θ(i) ∈ BVi , i = 0, 1, sgn(θ(0)) 6= sgn(θ(1))},

(24)

η(V0, V1) = max{|V0|, |V1|}ϑ+
1

4

[(√
α∗(V0, V1)r −

∣∣(|V1| − |V0|)
∣∣ϑ√

α∗(V0, V1)r

)
+

]2

,

and

ρ∗j (ϑ, r, a,Ω) = min
{(V0,V1):j∈V1∪V0}

η(V0, V1).

The following shorthand notation is frequently used in this paper, which stands for a generic
multi-log(p) term that may vary from one occurrence to another.

Definition 5 Lp > 0 denotes a multi-log(p) term such that when p → ∞, for any δ > 0,
Lpp

δ →∞ and Lpp
−δ → 0.

By (23) and Mills’ ratio (Wasserman and Roeder, 2009), a lower bound for the “local risk”
at j is

sup
{(V0,V1): j∈V0∪V1}

{
inf
t

[
ε|V0|p Φ̄(t) + ε|V1|p Φ

(
t− (τp/σ)[α∗(V0, V1)]1/2

)]}
= sup
{(V0,V1): j∈V0∪V1}

{
Lp exp

(
−η(V0, V1) · log(p)

)}
= Lp exp(−ρ∗j (ϑ, r, a,Ω) log(p)).

We now aggregate such lower bounds for “local risk” for a global lower bound. Since
the “least favorable” configurations of (V0, V1) for different j may overlap with each other,
we need to consider a graph as follows. Revisit the optimization problem in (24) and let

(V ∗0j , V
∗

1j) = argmin{(V0,V1):j∈V1∪V0}η(V0, V1;ϑ, r, a,Ω). (25)

When there is a tie, pick the pair that appears first lexicographically. Therefore, for any
1 ≤ j ≤ p, V ∗0j ∪ V ∗1j is uniquely defined. In Lemma 22 of the appendix, we show that

|V ∗0j ∪ V ∗1j | ≤ (ϑ+ r)2/(2ϑr) for all 1 ≤ j ≤ p.
We now define a new graph, Graph of Least Favorable (GOLF), G� = (V,E), where

V = {1, 2, . . . , p} and there is an edge between j and k if and only if (V ∗0j ∪ V ∗1j) and
(V ∗0k∪V ∗1k) have non-empty intersections. Denote the maximum degree of GOLF by dp(G�).
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Theorem 6 Fix (ϑ, κ) ∈ (0, 1)2, r > 0, and a ≥ 1 such that κ > (1 − ϑ), and let
Mp(c0, g) be as in (18). Consider Model (1) where β is modeled by ARW (ϑ, r, a, µ) and
X is modeled by RD(ϑ, κ,Ω) and Ω ∈ Mp(c0, g) for sufficiently large p. Then as p → ∞,

Hamm∗p(ϑ, κ, r, a,Ω) ≥ Lp
[
dp(G�)

]−1∑p
j=1 p

−ρ∗j (ϑ,r,a,Ω).

A similar claim holds for deterministic design models; the proof is similar so we omit it.

Corollary 7 For deterministic design models, the parallel lower bound holds for the mini-
max Hamming distance with Ω replaced by G in the calculation of ρ∗j (ϑ, r, a,Ω) and dp(G�).

Remark. The lower bounds contain a factor of
[
dp(G�)

]−1
. In many cases including

that considered in our main theorem (Theorem 8), this factor is a multi-log(p) term so it

does not have a major effect. In some other cases, the factor
[
dp(G�)

]−1
could be much

smaller, say, when the GOSD has one or a few hubs, the degrees of which grow algebraically
fast as p grows. In these cases, the associated GOLF may (or may not) have large-degree
hubs. As a result, the lower bounds we derive could be very conservative, and can be
substantially improved if we treat the hubs, neighboring nodes of the hubs, and other nodes
separately. For the sake of space, we leave such discussion to future work.

Remark. A similar lower bound holds if the condition µ ∈ Θ∗p(τp, a) of ARW is replaced
by µ ∈ Θp(τp). In (24), suppose we replace Θ∗p(τp, a) by Θp(τp), and the minimum is achieved

at (θ(0), θ(1)) = (θ
(0)
∗ (V0, V1; Ω), θ

(1)
∗ (V0, V1; Ω)). Let g = g(m0, ϑ, r) be as in (17) and define

a∗g(Ω) = max
{(V0,V1):|V0∪V1|≤g}

{‖θ(0)
∗ (V0, V1; Ω)‖∞, ‖θ(1)

∗ (V0, V1; Ω)‖∞}.

By elementary calculus, it is seen that for Ω ∈Mp(c0, g), there is a a constant C = C(c0, g)
such that a∗g(Ω) ≤ C. If additionally we assume

a > a∗g(Ω), (26)

then α∗(V0, V1) = α∗(V0, V1; Ω, a), η(V0, V1; Ω, a, ϑ, r), and ρ∗j (ϑ, r, a,Ω) do not depend on a.
Especially, we can derive an alternative formula for ρ∗j (ϑ, r, a,Ω); see Lemma 18 for details.

When (26) holds, Θ∗p(τp, a) is broad enough in the sense that the least favorable config-

urations (V0, V1, β
(0), β(1)) for all j satisfy ‖β(i)‖∞ ≤ aτp, i = 0, 1. Consequently, neither

the minimax rate nor GS needs to adapt to a. In Section 2.6, we assume (26) holds; (26) is
a mild condition for it only involves small-size sub-matrices of Ω.

2.6 Upper Bound and Optimality of Graphlet Screening

Fix constants γ ∈ (0, 1) and A > 0. Let Mp(c0, g) be as in (18). In this section, we further
restrict Ω to the following set:

M∗p(γ, c0, g, A) =
{

Ω ∈Mp(c0, g) :

p∑
j=1

|Ω(i, j)|γ ≤ A, 1 ≤ i ≤ p
}
.

Note that any Ω ∈ M∗p(γ, c0, g, A) is sparse in the sense that each row of Ω has relatively
few large coordinates. The sparsity of Ω implies the sparsity of the Gram matrix G, since
small-size sub-matrices of G approximately equal to their counterparts of Ω.
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In GS, when we regularize GOSD as in (4), we set the threshold δ by

δ = δp = 1/ log(p). (27)

Such a choice for threshold is mainly for convenience, and can be replaced by any term that
tends to 0 logarithmically fast as p→∞.

For any subsets D and F of {1, 2, . . . , p}, define ω(D,F ; Ω) = ω(D,F ;ϑ, r, a,Ω, p) by

ω(D,F ; Ω) = min
ξ∈R|D|,mini∈D |ξi|≥1

{
ξ′
(
ΩD,D − ΩD,F (ΩF,F )−1ΩF,D

)
ξ
}
, (28)

Write ω = ω(D̂, F̂ ; Ω) for short. We choose the tuning parameters in the GS-step in a way
such that

t(D̂, F̂ ) = 2σ2q(D̂, F̂ ) log p, (29)

where q = q(D̂, F̂ ) > 0 satisfies
√
q0 ≤

√
q ≤
√
ωr −

√
(ϑ+ωr)2

4ωr − |D̂|+1
2 ϑ, |D̂| is odd & ωr/ϑ > |D̂|+ (|D̂|2 − 1)1/2,

√
q0 ≤

√
q ≤
√
ωr −

√
1
4ωr −

1
2 |D̂|ϑ, |D̂| is even & ωr/ϑ ≥ 2|D̂|,

q is a constant such that q ≥ q0, otherwise.
(30)

We set the GC-step tuning parameters by

ugs = σ
√

2ϑ log p, vgs = τp = σ
√

2r log p. (31)

The main theorem of this paper is the following theorem.

Theorem 8 Fix m0 ≥ 1, (ϑ, γ, κ) ∈ (0, 1)3, r > 0, c0 > 0, g > 0, a > 1, A > 0 such that
κ > 1−ϑ and (17) is satisfied. Consider Model (1) where β is modeled by ARW (ϑ, r, a, µ),
X is modeled by RD(ϑ, κ,Ω), and where Ω ∈M∗p(γ, c0, g, A) and a > a∗g(Ω) for sufficiently

large p. Let β̂gs = β̂gs(Y ; δ,Q, ugs, vgs, X, p, n) be the Graphlet Screening procedure defined
as in Section 2.1, where the tuning parameters (δ,Q, ugs, vgs) are set as in (27)-(31). Then

as p→∞, supµ∈Θ∗p(τp,a)Hp(β̂
gs; εp, np, µ,Ω) ≤ Lp

[
p1−(m0+1)ϑ +

∑p
j=1 p

−ρ∗j (ϑ,r,a,Ω)
]

+ o(1).

Note that ρ∗j = ρ∗j (ϑ, r, a,Ω) does not depend on a. Also, note that in the most interesting

range,
∑p

j=1 p
−ρ∗j � 1. So if we choose m0 properly large, e.g., (m0 + 1)ϑ > 1, then

supµ∈Θ∗p(τp,a)Hp(β̂
gs; εp, np, µ,Ω) ≤ Lp

∑p
j=1 p

−ρ∗j (ϑ,r,a,Ω). Together with Theorem 6, this

says that GS achieves the optimal rate of convergence, adaptively to all Ω inM∗p(γ, c0, g, A)
and β ∈ Θ∗p(τp, a). We call this property optimal adaptivity. Note that since the diagonals
of Ω are scaled to 1 approximately, κ ≡ log(np)/ log(p) does not have a major influence over
the convergence rate, as long as (21) holds.

Remark. Theorem 8 addresses the case where (26) holds so a > a∗g(Ω). We now
briefly discuss the case where a < a∗g(Ω). In this case, the set Θ∗p(τp, a) becomes sufficiently
narrow and a starts to have some influence over the optimal rate of convergence, at least
for some choices of (ϑ, r). To reflect the role of a, we modify GS as follows: (a) in the
GC-step (9), limit ξ to the class where either ξi = 0 or τp ≤ |ξi| ≤ aτp, and (b) in the
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GS-step, replacing the χ2-screening by the likelihood based screening procedure; that is,
when we screen I0 = D̂ ∪ F̂ , we accept nodes in D̂ only when h(F̂ ) > h(I0), where for any
subset D ⊂ {1, 2, . . . , p}, h(D) = min

{
1
2‖P

D(Y − X⊗,Dξ)‖2 + ϑσ2 log(p)|D|
}

, where the
minimum is computed over all |D|×1 vectors ξ whose nonzero elements all have magnitudes
in [τp, aτp]. From a practical point of view, this modified procedure depends more on the
underlying parameters and is harder to implement than is GS. However, this is the price
we need to pay when a is small. Since we are primarily interested in the case of relatively
larger a where a > a∗g(Ω) holds, we skip further discussion along this line.

2.7 Phase Diagram and Examples Where ρ∗j (ϑ, r, a,Ω) Have Simple Forms

In general, the exponents ρ∗j (ϑ, r, a,Ω) may depend on Ω in a complicated way. Still, from
time to time, one may want to find a simple expression for ρ∗j (ϑ, r, a,Ω). It turns out that in
a wide class of situations, simple forms for ρ∗j (ϑ, r, a,Ω) are possible. The surprise is that,
in many examples, ρ∗j (ϑ, r, a,Ω) depends more on the trade-off between the parameters ϑ
and r (calibrating the signal sparsity and signal strength, respectively), rather than on the
large coordinates of Ω.

We begin with the following theorem, which is proved in Ji and Jin (2011, Theorem
1.1).

Theorem 9 Fix (ϑ, κ) ∈ (0, 1), r > 0, and a > 1 such that κ > (1−ϑ). Consider Model (1)
where β is modeled by ARW (ϑ, r, a, µ) and X is modeled by RD(ϑ, κ,Ω). Then as p→∞,

Hamm∗p(ϑ, κ, r, a,Ω)

p1−ϑ &

{
1, 0 < r < ϑ,

Lpp
−(r−ϑ)2/(4r), r > ϑ.

Note that p1−ϑ is approximately the number of signals. Therefore, when r < ϑ, the number
of selection errors can not get substantially smaller than the number of signals. This is the
most difficult case where no variable selection method can be successful.

In this section, we focus on the case r > ϑ, so that successful variable selection is
possible. In this case, Theorem 9 says that a universal lower bound for the Hamming
distance is Lpp

1−(ϑ+r)2/(4r). An interesting question is, to what extend, this lower bound is
tight.

Recall that λ∗k(Ω) denotes the minimum of smallest eigenvalues across all k×k principle
submatrices of Ω, as defined in (16). The following corollaries are proved in Section 6.

Corollary 10 Suppose the conditions of Theorem 8 hold, and that additionally, 1 < r/ϑ <
3 + 2

√
2 ≈ 5.828, and |Ω(i, j)| ≤ 4

√
2 − 5 ≈ 0.6569 for all 1 ≤ i, j ≤ p, i 6= j. Then as

p→∞, Hamm∗p(ϑ, κ, r, a,Ω) = Lpp
1−(ϑ+r)2/(4r).

Corollary 11 Suppose the conditions of Theorem 8 hold. Also, suppose that 1 < r/ϑ <
5 + 2

√
6 ≈ 9.898, and that λ∗3(Ω) ≥ 2(5 − 2

√
6) ≈ 0.2021, λ∗4(Ω) ≥ 5 − 2

√
6 ≈ 0.1011,

and |Ω(i, j)| ≤ 8
√

6 − 19 ≈ 0.5959 for all 1 ≤ i, j ≤ p, i 6= j. Then as p → ∞,
Hamm∗p(ϑ, κ, r, a,Ω) = Lpp

1−(ϑ+r)2/(4r).

In these corollaries, the conditions on Ω are rather relaxed. Somewhat surprisingly, the off-
diagonals of Ω do not necessarily have a major influence on the optimal rate of convergence,
as one might have expected.
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Figure 1: Phase diagram for Ω = Ip (left), for Ω satisfying conditions of Corollary 10
(middle), and for Ω satisfying conditions of Corollary 11 (right). Red line: r = ϑ.
Solid red curve: r = ρ(ϑ,Ω). In each of the last two panels, the blue line intersects
with the red curve at (ϑ, r) = (1/2, [3 + 2

√
2]/2) (middle) and (ϑ, r) = (1/3, [5 +

2
√

6]/3) (right), which splits the red solid curve into two parts; the part to the
left is illustrative for it depends on Ω in a complicated way; the part to the right,
together with the dashed red curve, represent r = (1+

√
1− ϑ)2 (in the left panel,

this is illustrated by the red curve).

Note also that by Theorem 8, under the condition of either Corollaries 10 or Corollary
11, GS achieves the optimal rate in that

sup
µ∈Θ∗p(τp,a)

Hp(β̂
gs; εp, np, µ,Ω) ≤ Lpp1−(ϑ+r)2/(4r). (32)

Together, Theorem 9, Corollaries 10-11, and (32) have an interesting implication on the so-
called phase diagram. Call the two-dimensional parameter space {(ϑ, r) : 0 < ϑ < 1, r > 0}
the phase space. There are two curves r = ϑ and r = ρ(ϑ,Ω) (the latter can be thought

of as the solution of
∑p

j=1 p
−ρ∗j (ϑ,r,a,Ω) = 1; recall that ρ∗j (ϑ, r, a,Ω) does not depend on a)

that partition the whole phase space into three different regions:

• Region of No Recovery. {(ϑ, r) : 0 < r < ϑ, 0 < ϑ < 1}. In this region, as p → ∞,
for any Ω and any procedures, the minimax Hamming error equals approximately to
the total expected number of signals. This is the most difficult region, in which no
procedure can be successful in the minimax sense.

• Region of Almost Full Recovery. {(ϑ, r) : ϑ < r < ρ(ϑ,Ω)}. In this region, as p→∞,
the minimax Hamming distance satisfies 1 � Hamm∗p(ϑ, κ, r, a,Ω) � p1−ϑ, and it is
possible to recover most of the signals, but it is impossible to recover all of them.

• Region of Exact Recovery. In this region, as p → ∞, the minimax Hamming dis-
tance Hamm∗p(ϑ, κ, r, a,Ω) = o(1), and it is possible to exactly recover all signals with
overwhelming probability.
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In general, the function ρ(ϑ,Ω) depends on Ω in a complicated way. However, by Theorem
9 and Corollaries 10-11, we have the following conclusions. First, for all Ω and a > 1,
ρ(ϑ,Ω) ≥ (1 +

√
1− ϑ)2 for all 0 < ϑ < 1. Second, in the simplest case where Ω = Ip,

Hamm∗p(ϑ, κ, r, a,Ω) = Lpp
1−(ϑ+r)2/(4r), and ρ(ϑ,Ω) = (1 +

√
1− ϑ)2 for all 0 < ϑ < 1.

Third, under the conditions of Corollary 10, ρ(ϑ,Ω) = (1 +
√

1− ϑ)2 if 1/2 < ϑ < 1. Last,
under the conditions of Corollary 11, ρ(ϑ,Ω) = (1 +

√
1− ϑ)2 if 1/3 < ϑ < 1. The phase

diagram for the last three cases are illustrated in Figure 1. The blue lines are r/ϑ = 3+2
√

2
(middle) and r/ϑ = 5 + 2

√
6 (right).

Corollaries 10-11 can be extended to more general situations, where r/ϑ may get arbi-
trary large, but consequently, we need stronger conditions on Ω. Towards this end, we note
that for any (ϑ, r) such that r > ϑ, we can find a unique integer N = N(ϑ, r) such that
2N − 1 ≤ (ϑ/r + r/ϑ)/2 < 2N + 1. Suppose that for any 2 ≤ k ≤ 2N − 1,

λ∗k(Ω) ≥ max
{(k+1)/2≤j≤min{k,N}}

{(r/ϑ+ ϑ/r)/2− 2j + 2 +
√

[(r/ϑ+ ϑ/r)/2− 2j + 2]2 − 1

(2k − 2j + 1)(r/ϑ)

}
,

(33)
and that for any 2 ≤ k ≤ 2N ,

λ∗k(Ω) ≥ max
{k/2≤j≤min{k−1,N}}

{(r/ϑ+ ϑ/r)/2 + 1− 2j

(k − j)(r/ϑ)

}
. (34)

Then we have the following corollary.

Corollary 12 Suppose the conditions in Theorem 8 and that in (33)-(34) hold. Then as
p→∞, Hamm∗p(ϑ, κ, r, a,Ω) = Lpp

1−(ϑ+r)2/(4r).

The right hand sides of (33)-(34) decrease with (r/ϑ). For a constant s0 > 1, (33)-(34) hold
for all 1 < r/ϑ ≤ s0 as long as they hold for r/ϑ = s0. Hence Corollary 12 implies a similar
partition of the phase diagram as do Corollaries 10-11.

Remark. Phase diagram can be viewed as a new criterion for assessing the optimality,
which is especially appropriate for rare and weak signals. The phase diagram is a partition of
the phase space {(ϑ, r) : 0 < ϑ < 1, r > 0} into different regions where statistical inferences
are distinctly different. In general, a phase diagram has the following four regions:

• An “exact recovery” region corresponding to the “rare and strong” regime in which
high probability of completely correct variable selection is feasible.

• An “almost full recovery” region as a part of the “rare and weak” regime in which
completely correct variable selection is not achievable with high probability but vari-
able selection is still feasible in the sense that with high probability, the number of
incorrectly selected variables is a small fraction of the total number of signals.

• A “detectable” region in which variable selection is infeasible but the detection of the
existence of a signal (somewhere) is feasible (e.g., by the Higher Criticism method).

• An “undetectable” region where signals are so rare and weak that nothing can be
sensibly done.
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In the sparse signal detection (Donoho and Jin, 2004) and classification (Jin, 2009)
problems, the main interest is to find the detectable region, so that the exact recovery and
almost full recovery regions were lumped into a single “estimable” region (e.g., Donoho and
Jin, 2004, Figure 1). For variable selection, the main interest is to find the boundaries of the
almost full discovery region so that the detectable and non-detectable regions are lumped
into a single “no recovery” region as in Ji and Jin (2011) and Figure 1 of this paper.

Variable selection in the “almost full recovery” region is a new and challenging problem.
It was studied in Ji and Jin (2011) when the effect of signal cancellation is negligible, but
the hardest part of the problem was unsolved in Ji and Jin (2011). This paper (the second
in this area) deals with the important issue of signal cancellation, in hopes of gaining a
much deeper insight on variable selection in much broader context.

2.8 Non-optimality of Subset Selection and the Lasso

Subset selection (also called the L0-penalization method) is a well-known method for vari-
able selection, which selects variables by minimizing the following functional:

1

2
‖Y −Xβ‖2 +

1

2
(λss)

2‖β‖0, (35)

where ‖β‖q denotes the Lq-norm, q ≥ 0, and λss > 0 is a tuning parameter. The AIC, BIC,
and RIC are methods of this type (Akaike, 1974; Schwarz, 1978; Foster and George , 1994).
Subset selection is believed to have good “theoretic property”, but the main drawback of this
method is that it is computationally NP hard. To overcome the computational challenge,
many relaxation methods are proposed, including but are not limited to the lasso (Chen
et al., 1998; Tibshirani, 1996), SCAD (Fan and Li, 2001), MC+ (Zhang, 2010), and Dantzig
selector (Candes and Tao, 2007). Take the lasso for example. The method selects variables
by minimizing

1

2
‖Y −Xβ‖2 + λlasso‖β‖1, (36)

where the L0-penalization is replaced by the L1-penalization, so the functional is convex
and the optimization problem is solvable in polynomial time under proper conditions.

Somewhat surprisingly, subset selection is generally rate non-optimal in terms of selec-
tion errors. This sub-optimality of subset selection is due to its lack of flexibility in adapting
to the “local” graphic structure of the design variables. Similarly, other global relaxation
methods are sub-optimal as well, as the subset selection is the “idol” these methods try
to mimic. To save space, we only discuss subset selection and the lasso, but a similar
conclusion can be drawn for SCAD, MC+, and Dantzig selector.

For mathematical simplicity, we illustrate the point with an idealized regression model
where the Gram matrix G = X ′X is diagonal block-wise and has 2× 2 blocks

G(i, j) = 1{i = j}+ h0 · 1{|j − i| = 1, max(i, j) is even}, |h0| < 1, 1 ≤ i, j ≤ p. (37)

Using an idealized model is mostly for technical convenience, but the non-optimality of
subset selection or the lasso holds much more broadly than what is considered here. On
the other hand, using a simple model is sufficient here: if a procedure is non-optimal in an
idealized case, we can not expect it to be optimal in a more general context.
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At the same time, we continue to model β with the Asymptotic Rare and Weak model
ARW(ϑ, r, a, µ), but where we relax the assumption of µ ∈ Θ∗p(τp, a) to that of µ ∈ Θp(τp)
so that the strength of each signal ≥ τp (but there is no upper bound on the strength).

Consider a variable selection procedure β̂?, where ? = gs, ss, lasso, representing GS, subset
selection, and the lasso and the tuning parameters for each method are ideally set. Note that
for the worst-case risk considered below, the ideal tuning parameters depend on (ϑ, r, p, h0)
but do not depend on µ. Since the index groups {2j − 1, 2j} are exchangeable in (37)
and the ARW models, the Hamming error of β? in its worst case scenario has the form of
sup{µ∈Θp(τp)}Hp(β̂

?; εp, µ,G) = Lpp
1−ρ?(ϑ,r,h0).

We now study ρ?(ϑ, r, h0). Towards this end, we first introduce ρ
(3)
lasso(ϑ, r, h0) ={

(2|h0|)−1[(1 − h2
0)
√
r −

√
(1− h2

0)(1− |h0|)2r − 4|h0|(1− |h0|)ϑ]
}2

and ρ
(4)
lasso(ϑ, r, h0) =

ϑ+ (1−|h0|)3(1+|h0|)
16h20

[
(1 + |h0|)

√
r −

√
(1− |h0|)2r − 4|h0|ϑ/(1− h2

0)
]2

. We then let

ρ(1)
ss (ϑ, r, h0) =

{
2ϑ, r/ϑ ≤ 2/(1− h2

0)
[2ϑ+ (1− h2

0)r]2/[4(1− h2
0)r], r/ϑ > 2/(1− h2

0)
,

ρ(2)
ss (ϑ, r, h0) =

{
2ϑ, r/ϑ ≤ 2/(1− |h0|)
2[
√

2(1− |h0|)r −
√

(1− |h0|)r − ϑ]2, r/ϑ > 2/(1− |h0|)
,

ρ
(1)
lasso(ϑ, r, h0) =

{
2ϑ, r/ϑ ≤ 2/(1− |h0|)2

ρ
(3)
lasso(ϑ, r, h0), r/ϑ > 2/(1− |h0|)2 ,

and

ρ
(2)
lasso(ϑ, r, h0) =

{
2ϑ, r/ϑ ≤ (1 + |h0|)/(1− |h0|)3

ρ
(4)
lasso(ϑ, r, h0), r/ϑ > (1 + |h0|)/(1− |h0|)3 .

The following theorem is proved in Section 6.

Theorem 13 Fix ϑ ∈ (0, 1) and r > 0 such that r > ϑ. Consider Model (1) where β
is modeled by ARW (ϑ, r, a, µ) and X satisfies (37). For GS, we set the tuning parameters
(δ,m0) = (0, 2), and set (Q, ugs, vgs) as in (29)-(31). For subset selection as in (35) and the
lasso as in (36), we set their tuning parameters ideally given that (ϑ, r) are known. Then
as p→∞,

ρgs(ϑ, r, h0) = min
{(ϑ+ r)2

4r
, ϑ+

(1− |h0|)
2

r, 2ϑ+
{[(1− h2

0)r − ϑ]+}2

4(1− h2
0)r

}
, (38)

ρss(ϑ, r, h0) = min
{(ϑ+ r)2

4r
, ϑ+

(1− |h0|)
2

r, ρ(1)
ss (ϑ, r, h0), ρ(2)

ss (ϑ, r, h0)
}
, (39)

and

ρlasso(ϑ, r, h0) = min{(ϑ+ r)2

4r
, ϑ+

(1− |h0|)r
2(1 +

√
1− h2

0)
, ρ

(1)
lasso(ϑ, r, h0), ρ

(2)
lasso(ϑ, r, h0)

}
. (40)
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It can be shown that ρgs(ϑ, r, h0) ≥ ρss(ϑ, r, h0) ≥ ρlasso(ϑ, r, h0), where depending
on the choices of (ϑ, r, h0), we may have equality or strict inequality (note that a larger
exponent means a better error rate). This fits well with our expectation, where as far as
the convergence rate is concerned, GS is optimal for all (ϑ, r, h0), so it outperforms the
subset selection, which in turn outperforms the lasso. Table 2 summarizes the exponents
for some representative (ϑ, r, h0). It is seen that differences between these exponents become
increasingly prominent when h0 increase and ϑ decrease.

ϑ/r/h0 .1/11/.8 .3/9/.8 .5/4/.8 .1/4/.4 .3/4/.4 .5/4/.4 .1/3/.2 .3/3/.2

? = gs 1.1406 1.2000 0.9000 0.9907 1.1556 1.2656 0.8008 0.9075
? = ss 0.8409 0.9047 0.9000 0.9093 1.1003 1.2655 0.8007 0.9075

? = lasso 0.2000 0.6000 0.7500 0.4342 0.7121 1.0218 0.6021 0.8919

Table 2: The exponents ρ?(ϑ, r, h0) in Theorem 13, where ? = gs, ss, lasso.

As in Section 2.7, each of these methods has a phase diagram plotted in Figure 2, where
the phase space partitions into three regions: Region of Exact Recovery, Region of Almost
Full Recovery, and Region of No Recovery. Interestingly, the separating boundary for the
last two regions are the same for three methods, which is the line r = ϑ. The boundary
that separates the first two regions, however, vary significantly for different methods. For
any h0 ∈ (−1, 1) and ? = gs, ss, lasso, the equation for this boundary can be obtained by
setting ρ?(ϑ, r, h0) = 1 (the calculations are elementary so we omit them). Note that the
lower the boundary is, the better the method is, and that the boundary corresponding to
the lasso is discontinuous at ϑ = 1/2. In the non-optimal region of either subset selection or
the lasso, the Hamming errors of the procedure are much smaller than pεp, so the procedure
gives “almost full recovery”; however, the rate of Hamming errors is slower than that of the
optimal procedure, so subset selection or the lasso is non-optimal in such regions.

Subset selection and the lasso are rate non-optimal for they are so-called one-step or
non-adaptive methods (Ji and Jin, 2011), which use only one tuning parameter, and which
do not adapt to the local graphic structure. The non-optimality can be best illustrated
with the diagonal block-wise model presented here, where each block is a 2 × 2 matrix.
Correspondingly, we can partition the vector β into many size 2 blocks, each of which is of
the following three types (i) those have no signal, (ii) those have exactly one signal, and
(iii) those have two signals. Take the subset selection for example. To best separate (i)
from (ii), we need to set the tuning parameter ideally. But such a tuning parameter may
not be the “best” for separating (i) from (iii). This explains the non-optimality of subset
selection.

Seemingly, more complicated penalization methods that use multiple tuning parameters
may have better performance than the subset selection and the lasso. However, it remains
open how to design such extensions to achieve the optimal rate for general cases. To save
space, we leave the study along this line to the future.

2.9 Summary

We propose GS as a new approach to variable selection. The key methodological innovation
is to use the GOSD to guide the multivariate screening. While a brute-force m-variate
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Figure 2: Phase diagrams for GS (top left), subset selection (top right), and the lasso
(bottom; zoom-in on the left and zoom-out on the right), where h0 = 0.5.

screening has a computation cost of O(pm + np), GS only has a computation cost of Lpnp
(excluding the overhead of obtaining the GOSD), by utilizing graph sparsity. Note that
when the design matrix G is approximately banded, say, all its large entries are confined to
a diagonal band with bandwidth ≤ K, the overhead of GS can be reduced to O(npK). One
such example is in Genome-Wide Association Study (GWAS), where G is the empirical
Linkage Disequilibrium (LD) matrix, and K can be as small as a few tens. We remark
that the lasso has a computational complexity of O(npk), where k, dominated by the
number steps requiring re-evaluation of the correlation between design vectors and updated
residuals, could be smaller than the Lp term for GS (Wang et al., 2013).

We use asymptotic minimaxity of the Hamming distance as the criterion for assessing
optimality. Compared with existing literature on variable selection where we use the oracle
property or probability of exact support recovery to assess optimality, our approach is math-
ematically more demanding, yet scientifically more relevant in the rare/weak paradigm.

We have proved that GS achieves the optimal rate of convergence of Hamming errors,
especially when signals are rare and weak, provided that the Gram matrix is sparse. Subset
selection and the lasso are not rate optimal, even with very simple Gram matrix G and
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even when the tuning parameters are ideally set. The sub-optimality of these methods is
due to that they do not take advantage of the ‘local’ graphical structure as GS does.

GS has three key tuning parameters: q for the threshold level t(D̂, F̂ ) = 2σ2q log p in the
GS-step, and (ugs, vgs) = (σ

√
2ϑ log p, σ

√
2r log p) in the GC-step. While the choice of q is

reasonably flexible and a sufficiently small fixed q > 0 is usually adequate, the choice of ugs

and vgs are more directly tied to the signal sparsity and signal strength. Adaptive choice
of these tuning parameters is a challenging direction of further research. One of our ideas
to be developed in this direction is a subsampling scheme similar to the Stability Selection
(Meinsausen and Buhlmann, 2010). On the other hand, as shown in our numeric results in
Section 4, the performance of GS is relatively insensitive to mis-specification of (εp, τp); see
details therein.

3. Properties of Graphlet Screening, Proof of Theorem 8

GS attributes the success to two important properties: the Sure Screening property and
the Separable After Screening (SAS) property.

The Sure Screening property means that in the m0-stage χ2 screening, by picking an
appropriate threshold, the set U∗p (which is the set of retained indices after the GS-step)
contains all but a small fraction of true signals. Asymptotically, this fraction is comparably
smaller than the minimax Hamming errors, and so negligible. The SAS property means
that except for a negligible probability, as a subgraph of the GOSD, U∗p decomposes into
many disconnected components of the GOSD, where the size of each component does not
exceed a fixed integer. These two properties ensure that the original regression problem
reduces to many small-size regression problems, and thus pave the way for the GC-step.

Below, we explain these ideas in detail, and conclude the section by the proof of Theorem
8. Since the only place we need the knowledge of σ is in setting the tuning parameters, so
without loss of generality, we assume σ = 1 throughout this section.

First, we discuss the GS-step. For short, write β̂ = β̂gs(Y ; δ,Q, ugs, vgs, X, p, n) through-
out this section. We first discuss the computation cost of the GS-step. As in Theorem 8,
we take the threshold δ in G∗,δ to be δ = δp = 1/ log(p). The proof of the following lemma
is similar to that of Ji and Jin (2011, Lemma 2.2), so we omit it.

Lemma 14 Suppose the conditions of Theorem 8 hold, where we recall δ = 1/ log(p),
and Ω∗,δ is defined as in (4). As p → ∞, with probability 1 − o(1/p2), ‖Ω − Ω∗,δ‖∞ ≤
C(log(p))−(1−γ), and G∗,δ is K-sparse, where K ≤ C(log(p))1/γ.

Combining Lemma 14 and Frieze and Molloy (1999), it follows that with probability 1 −
o(1/p2), G∗,δ has at most p(Ce(log(p))1/γ)m0 connected subgraphs of size ≤ m0. Note that
the second factor is at most logarithmically large, so the computation cost in the GS-step
is at most Lpp flops.

Consider the performance of the GS-step. The goal of this step is two-fold: on one
hand, it tries to retain as many signals as possible during the screening; on the other hand,
it tries to minimize the computation cost of the GC-step by controlling the maximum size
of all components of U∗p . The key in the GS-step is to set the collection of thresholds Q.
The tradeoff is that, setting the thresholds too high may miss too many signals during
the screening, and setting the threshold too low may increase the maximum size of the
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components in U∗p , and so increase the computational burden of the GC-step. The following
lemma characterizes the Sure Screening property of GS, and is proved in Section 6.

Lemma 15 (Sure Screening). Suppose the settings and conditions are as in Theorem 8.
In the m0-stage χ2 screening of the GS-step, if we set the thresholds t(D̂, F̂ ) as in (29),
then as p → ∞, for any Ω ∈ M∗p(γ, c0, g, A),

∑p
j=1 P (βj 6= 0, j /∈ U∗p ) ≤ Lp[p

1−(m0+1)ϑ +∑p
j=1 p

−ρ∗j (ϑ,r,a,Ω)] + o(1).

Next, we formally state the SAS property. Viewing it as a subgraph of G∗,δ, U∗p decom-

poses into many disconnected components I(k), 1 ≤ k ≤ N , where N is an integer that may
depend on the data.

Lemma 16 (SAS). Suppose the settings and conditions are as in Theorem 8. In the m0-
stage χ2 screening in the GS-step, suppose we set the thresholds t(D̂, F̂ ) as in (29) such
that q(D̂, F̂ ) ≥ q0 for some constant q0 = q0(ϑ, r) > 0. As p→∞, under the conditions of
Theorem 8, for any Ω ∈ M∗p(γ, c0, g, A), there is a constant `0 = `0(ϑ, r, κ, γ,A, c0, g) > 0

such that with probability at least 1− o(1/p), |I(k)| ≤ `0, 1 ≤ k ≤ N .

We remark that a more convenient way of picking q is to let{
q0 ≤ q ≤ (ωr+ϑ2ωr )2ωr, |D̂| is odd & ωr/ϑ > |D̂|+ (|D̂|2 − 1)1/2,

q0 ≤ q ≤ 1
4ωr, |D̂| is even & ωr/ϑ ≥ 2|D̂|,

and let q be any other number otherwise, with which both lemmas continue to hold with
this choice of q. Here, for short, ω = ω(D̂, F̂ ; Ω). Note that numerically this choice is
comparably more conservative.

Together, the above two lemmas say that the GS-step makes only negligible false non-
discoveries, and decomposes U∗p into many disconnected components, each has a size not
exceeding a fixed integer. As a result, the computation cost of the following GC-step is
moderate, at least in theory.

We now discuss the GC-step. The key to understanding the GC-step is that the original
regression problem reduces to many disconnected small-size regression problems. To see the
point, define Ỹ = X ′Y and recall that G = X ′X. Let I0 C U∗p be a component, we limit
our attention to I0 by considering the following regression problem:

Ỹ I0 = GI0,⊗β + (X ′z)I0 , (41)

where (X ′z)I0 ∼ N(0, GI0,I0) ≈ N(0,ΩI0,I0), and GI0,⊗ is a |I0|×p matrix according to our
notation. What is non-obvious here is that, the regression problem still involves the whole
vector β, and is still high-dimensional. To see the point, letting V = {1, 2, . . . , p} \ U∗p , we

write GI0,⊗β = GI0,I0βI0+I+II, where I =
∑
J0:J0CU∗p ,J0 6=I0 G

I0,J0βJ0 and II = GI0,V βV .

First, by Sure Screening property, βV contains only a negligible number of signals, so we
can think II as negligible. Second, for any J0 6= I0 and J0 C U∗p , by the SAS property, I0

and J0 are disconnected and so the matrix GI0,J0 is a small size matrix whose coordinates
are uniformly small. This heuristic is made precise in the proof of Theorem 8. It is now
seen that the regression problem in (41) is indeed low-dimensional:

Ỹ I0 ≈ GI0,I0βI0 + (X ′z)I0 ≈ N(ΩI0,I0βI0 ,ΩI0,I0), (42)
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The above argument is made precise in Lemma 17, see details therein. Finally, approxi-
mately, the GC-step is to minimize 1

2(Ỹ I0−ΩI0,I0ξ)′(ΩI0,I0)−1(Ỹ I0−ΩI0,I0ξ)+ 1
2(ugs)2‖ξ‖0,

where each coordinate of ξ is either 0 or ≥ vgs in magnitude. Comparing this with (42),
the procedure is nothing but the penalized MLE of a low dimensional normal model, and
the main result follows by exercising basic statistical inferences.

We remark that in the GC-step, removing the constraints on the coordinates of ξ will
not give the optimal rate of convergence. This is one of the reasons why the classical subset
selection procedure is rate non-optimal. Another reason why the subset selection is non-
optimal is that, the procedure has only one tuning parameter, but GS has the flexibility
of using different tuning parameters in the GS-step and the GC-step. See Section 2.8 for
more discussion.

We are now ready for the proof of Theorem 8.

3.1 Proof of Theorem 8

For notational simplicity, we write ρ∗j = ρ∗j (ϑ, r, a,Ω). By Lemma 15,

p∑
j=1

P (βj 6= 0, j /∈ U∗p ) ≤ Lp[p1−(m0+1)ϑ +

p∑
j=1

p−ρ
∗
j ] + o(1).

So to show the claim, it is sufficient to show
p∑
j=1

P (j ∈ U∗p , sgn(βj) 6= sgn(β̂j)) ≤ Lp[
p∑
j=1

p−ρ
∗
j + p1−(m0+1)ϑ] + o(1). (43)

Towards this end, let S(β) be the support of β, Ω∗,δ be as in (4), and G∗,δ be the GOSD.
Let U∗p be the set of retained indices after the GS-step. Note that when sgn(β̂j) 6= 0, there

is a unique component I0 such that j ∈ I0 C U∗p . For any connected subgraph I0 of G∗,δ,
let B(I0) = {k: k /∈ I0, Ω∗,δ(k, `) 6= 0 for some ` ∈ I0, 1 ≤ k ≤ p}. Note that when I0 is a
component of U∗p , we must have B(I0) ∩ U∗p = ∅ as for any node in B(I0), there is at least
one edge between it and some nodes in the component I0. As a result,

P (j ∈ I0 C U∗p , B(I0) ∩ S(β) 6= ∅) ≤
∑
I0:j∈I0

∑
k∈B(I0)

P (k /∈ U∗p , βk 6= 0), (44)

where the first summation is over all connected subgraphs that contains node j. By Lemma
16, with probability at least 1− o(1/p), G∗,δ is K-sparse with K = C(log(p))1/γ , and there
is a finite integer `0 such that |I0| ≤ `0. As a result, there are at most finite I0 such that
the event {j ∈ I0 C U∗p} is non-empty, and for each of such I0, B(I0) contains at most Lp
nodes. Using (44) and Lemma 15, a direct result is

p∑
j=1

P (j ∈ I0 C U∗p , B(I0) ∩ S(β) 6= ∅) ≤ Lp[
p∑
j=1

p−ρ
∗
j + p1−(m0+1)ϑ] + o(1). (45)

Comparing (45) with (43), to show the claim, it is sufficient to show that

p∑
j=1

P (sgn(βj) 6= sgn(β̂j), j ∈ I0CU∗p , B(I0)∩S(β) = ∅) ≤ Lp[
p∑
j=1

p−ρ
∗
j +p1−(m0+1)ϑ]+o(1).

(46)
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Fix 1 ≤ j ≤ p and a connected subgraph I0 such that j ∈ I0. For short, let S be the
support of βI0 and Ŝ be the support of β̂I0 . The event {sgn(βj) 6= sgn(β̂j), j ∈ I0 C U∗p}
is identical to the event of {sgn(βj) 6= sgn(β̂j), j ∈ S ∪ Ŝ}. Moreover, Since I0 has a finite
size, both S and Ŝ have finite possibilities. So to show (46), it is sufficient to show that for
any fixed 1 ≤ j ≤ p, connected subgraph I0, and subsets S0, S1 ⊂ I0 such that j ∈ S0 ∪ S1,

P (sgn(βj) 6= sgn(β̂j), S = S0, Ŝ = S1, j ∈ I0CU∗p , B(I0)∩S(β) = ∅) ≤ Lp[p−ρ
∗
j +p−(m0+1)ϑ].

(47)

We now show (47). The following lemma is proved in Ji and Jin (2011, A.4).

Lemma 17 Suppose the conditions of Theorem 8 hold. Over the event {j ∈ I0 C U∗p} ∩
{B(I0) ∩ S(β) = ∅}, ‖(Ωβ)I0 − ΩI0,I0βI0‖∞ ≤ Cτp(log(p))−(1−γ).

Write for short M̂ = GI0,I0 and M = ΩI0,I0 . By definitions, β̂I0 is the minimizer of the
following functional Q(ξ) ≡ 1

2(Ỹ I0 − M̂ξ)′M̂−1(Ỹ I0 − M̂ξ) + 1
2(ugs)2‖ξ‖0, where ξ is an

|I0|×1 vector whose coordinates are either 0 or ≥ vgs in magnitude, ugs =
√

2ϑ log(p), and

vgs =
√

2r log(p). In particular, Q(βI0) ≥ Q(β̂I0), or equivalently

(β̂I0 − βI0)′(Ỹ I0 − M̂βI0) ≥ 1

2
(β̂I0 − βI0)′M̂(β̂I0 − βI0) + (|S1| − |S0|)ϑ log(p). (48)

Now, write for short δ = τ−2
p (β̂I0 − βI0)′M(β̂I0 − βI0). First, by Schwartz inequality,

[(β̂I0 − βI0)′(Ỹ I0 − M̂βI0)]2 ≤ δτ2
p (Ỹ I0 − M̂βI0)′M−1(Ỹ I0 − M̂βI0). Second, by Lemma

17, Ỹ I0 = w + MβI0 + rem, where w ∼ N(0,M) and with probability 1 − o(1/p),
|rem| ≤ C(log(p))−(1−γ)τp. Last, with probability at least (1 − o(1/p)), ‖ M̂ −M ‖∞≤
C
√

log(p)p−[κ−(1−ϑ)]/2. Inserting these into (48) gives that with probability at least (1 −

o(1/p)), w′M−1w ≥ 1
4

[(√
δr + (|S1|−|S0|)ϑ√

δr

)
+

]2

(2 log(p)) + O((log(p))γ). Since γ < 1,

O((log(p))γ) is negligible. We note that w′M−1w ∼ χ2
|I0|(0). Inserting this back to (47),

the left hand side ≤ ε
|S0|
p P (χ2

|I0|(0) ≥ [(
√
δr + (|S1| − |S0|)ϑ/

√
δr)+]2(log(p)/2)) + o(1/p).

Assume sgn(βj) 6= sgn(β̂j), and fix all parameters except δ, S0 and S1. By arguments simi-
lar to the proof of Lemma 18, the above quantity cannot achieve its maximum in the cases
where S0 = S1. Hence we only need to consider the cases where S0 6= S1. We also only
need to consider the cases where max(|S0|, |S1|) ≤ m0, since the sum of the probabilities of
other cases is controlled by p1−(m0+1)ϑ. The claim follows by the definitions of ρ∗j . �

4. Simulations

We conduct a small-scale simulation study to investigate the numerical performance of
Graphlet Screening and compare it with the lasso and the UPS. The subset selection is not
included for comparison since it is computationally NP hard. We consider the experiments
for both random design and fixed design, where as before, the parameters (εp, τp) are tied
to (ϑ, r) by εp = p−ϑ and τp =

√
2r log(p) (we assume σ = 1 for simplicity in this section).

In random design settings where p is not very large, we follow the spirit of the refined
UPS in Ji and Jin (2011) and propose the iterative Graphlet Screening algorithm where we
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iterate Graphlet Screening for a few times (≤ 5). The main purpose for the iteration is to
denoise the Gram matrix; see Ji and Jin (2011, Section 3) for more discussion.

Even with the refinement as in Ji and Jin (2011, Section 3), UPS behaves poorly for
most examples presented below. Over close investigations, we find out that this is due to
the threshold choice in the initial U -step is too low, and increasing the threshold largely
increases the performance. Note that the purpose of this step is to denoise the Gram matrix
(Ji and Jin, 2011, Section 3), not for signal retainment, and so a larger threshold helps.

In this section, we use this improved version of refined UPS, but for simplicity, we still
call it the refined UPS. With that being said, recall that UPS is unable to resolve the
problem of signal cancellation, so it usually performs poorer than GS, especially when the
effect of signal cancellation is strong. For this reason, part of the comparison is between
GS and the lasso only.

The experiments with random design contain the following steps.

1. Fix (p, ϑ, r, µ,Ω) such that µ ∈ Θp(τp). Generate a vector b = (b1, b2, . . . , bp)
′ such

that bi
iid∼ Bernoulli(εp), and set β = b ◦ µ.

2. Fix κ and let n = np = pκ. Generate an n×p matrix with iid rows from N(0, (1/n)Ω).

3. Generate Y ∼ N(Xβ, In), and apply the iterative Graphlet Screening, the refined
UPS and the lasso.

4. Repeat 1-3 independently, and record the average Hamming distances or the Hamming
ratio, the ratio of the Hamming distance and the number of the signals.

The steps for fixed design experiments are similar, except for that np = p, X = Ω1/2 and
we apply GS and UPS directly.

GS uses tuning parameters (m0,Q, ugs, vgs). We set m0 = 3 for our experiments, which
is usually large enough due to signal sparsity. The choice of Q is not critical, as long as
the corresponding parameter q satisfies (30), and we use the maximal Q satisfying (30) in
most experiments. Numerical studies below (e.g., Experiment 5a) support this point. In
principle, the optimal choices of (ugs, vgs) depend on the unknown parameters (εp, τp), and
how to estimate them in general settings is a lasting open problem (even for linear models
with orthogonal designs). Fortunately, our studies (e.g., Experiment 5b-5d) show that
mis-specifying parameters (εp, τp) by a reasonable amount does not significantly affect the
performance of the procedure. For this reason, in most experiments below, assuming (εp, τp)
are known, we set (ugs, vgs) as (

√
2 log(1/εp), τp). For the iterative Graphlet Screening, we

use the same tuning parameters in each iteration.

For the UPS and the refined UPS, we use the tuning parameters (uups, vups) = (ugs, vgs).
For both the iterative Graphlet Screening and the refined UPS, we use the following as the
initial estimate: β̂i = sgn(Ỹi) · 1{|Ỹi| ≥ τp}, 1 ≤ i ≤ p, where Ỹ = X ′Y . The main purpose
of initial estimate is to denoise the Gram matrix, not for screening. We use glmnet package
(Friedman et al., 2010) to perform lasso. To be fair in comparison, we apply the lasso with
all tuning parameters, and we report the Hamming error associated with the “best” tuning
parameter.

The simulations contain 6 different experiments which we now describe separately.
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Experiment 1. The goal of this experiment is two-fold. First, we compare GS with
UPS and the lasso in the fixed design setting. Second, we investigate the minimum signal
strength levels τp required by these three methods to yield exact recovery, respectively.

Fixing p = 0.5 × 104, we let εp = p−ϑ for ϑ ∈ {0.25, 0.4, 0.55}, and τp ∈ {6, 7, 8, 9, 10}.
We use a fixed design model where Ω is a symmetric diagonal block-wise matrix, where
each block is a 2 × 2 matrix, with 1 on the diagonals, and ±0.7 on the off-diagonals (the
signs alternate across different blocks). Recall the β = b ◦ µ. For each pair of (εp, τp), we
generate b as p iid samples from Bernoulli(εp), and we let µ be the vector where the signs

of µi = ±1 with equal probabilities, and |µi|
iid∼ 0.8ντp + 0.2h, where ντp is the point mass at

τp and h(x) is the density of τp(1 +V/6) with V ∼ χ2
1. The average Hamming errors across

40 repetitions are tabulated in Table 3. For all (ϑ, τp) in this experiment, GS behaves more
satisfactorily than the UPS, which in turn behaves more satisfactorily than the lasso.

Suppose we say a method yields ‘exact recovery’ if the average Hamming error ≤ 3.
Then, when ϑ = 0.25, the minimum τp for GS to yield exact recovery is τp ≈ 8, but that for
UPS and the lasso are much larger (≥ 10). For larger ϑ, the differences are less prominent,
but the pattern is similar.

The comparison between GS and UPS is particularly interesting. Due to the block
structure of Ω, as ϑ decreases, the signals become increasingly less sparse, and the effects
of signal cancellation become increasingly stronger. As a result, the advantage of GS over
the UPS becomes increasingly more prominent.

τp 6 7 8 9 10

ϑ = 0.25
Graphic Screening 24.7750 8.6750 2.8250 0.5250 0.1250

UPS 48.5500 34.6250 36.3500 30.8750 33.4000
lasso 66.4750 47.7000 43.5250 35.2500 35.0500

ϑ = 0.40
Graphic Screening 6.9500 2.1500 0.4000 0.0750 0.0500

UPS 7.7500 4.0000 2.2000 2.7750 2.4250
lasso 12.8750 6.8000 4.3250 3.7500 2.6750

ϑ = 0.55
Graphic Screening 1.8750 0.8000 0.3250 0.2250 0.1250

UPS 1.8750 0.8000 0.3250 0.2250 0.1250
lasso 2.5000 1.1000 0.7750 0.2750 0.1250

Table 3: Comparison of average Hamming errors (Experiment 1).

Experiment 2. In this experiment, we compare GS, UPS and the lasso in the random
design setting, and investigate the effect of signal cancellation on their performances. We
fix (p, κ, ϑ, r) = (0.5× 104, 0.975, 0.35, 3), and assume Ω is blockwise diagonal. We generate
µ as in Experiment 1, but to better illustrate the difference between UPS and GS in the
presence of signal cancellation, we generate the vector b differently and allow it to depend
on Ω. The experiment contains 2 parts, 2a and 2b.

In Experiment 2a, Ω is the block-wise matrix where each block is 2 by 2 matrix with
1 on the diagonals and ±.5 on the off diagonals (the signs alternate on adjacent blocks).
According to the blocks in Ω, the set of indices {1, 2, . . . , p} are also partitioned into blocks
accordingly. For any fixed ϑ and η ∈ {0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.1, 0.2}, we ran-
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domly choose (1 − 2p−ϑ) fraction of the blocks (of indices) where b is 0 at both indices,
2(1− η)p−ϑ fraction of the blocks where b is 0 at one index and 1 at the other (two indices
are equally likely to be 0), 2ηp−ϑ faction of the blocks where b is 1 on both indices.

Experiment 2b has similar settings, where the difference is that (a) we choose Ω to be
a diagonal block matrix where each block is a 4 by 4 matrix (say, denoted by A) satisfying
A(i, j) = 1{i = j}+ 0.4 · 1{|i− j| = 1} · sgn(6− i− j) + 0.05{|i− j| ≥ 2} · sgn(5.5− i− j),
1 ≤ i, j ≤ 4, and (b) (1− 4p−ϑ) is the fraction of blocks where b is nonzero in k = 0 indices,
4(1− η)p−ϑ is that for k = 1, and 4ηp−ϑ is that for k ∈ {2, 3, 4} in total. In a block where
β is nonzero at k indices, all configurations with k = 1 are equally likely, and all those with
k ∈ {2, 3, 4} are equally likely.

The average Hamming ratio results across 40 runs for two Experiment 2a and 2b are
reported in Figure 3, where UPS and GS consistently outperform the lasso. Additionally,
when η is small, the effect of signal cancellation is negligible, so UPS and GS have similar
performances. However, when η increases, the effects of signal cancellation grows, and the
advantage of GS over UPS becomes increasingly more prominent.
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(a) Blockwise diagonal Ω in 2×2 blocks
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(b) Blockwise diagonal Ω in 4×4 blocks

Figure 3: Hamming ratio results in Experiment 2

Through Experiment 1-2, the comparison of UPS and GS is more or less understood.
For this reason, we do not include UPS for study in Experiment 3-5, but we include UPS
for study in Experiment 6 where we investigate robustness of all three methods.

Experiment 3. In this experiment, we investigate how different choices of signal vector
β affect the comparisons of GS and the lasso. We use a random design model, and Ω is a
symmetric tri-diagonal correlation matrix where the vector on each sub-diagonal consists
of blocks of (.4, .4,−.4)′. Fix (p, κ) = (0.5 × 104, 0.975) (note n = pκ ≈ 4, 000). We let
εp = p−ϑ with ϑ ∈ {0.35, 0.5} and let τp ∈ {6, 8, 10}. For each combination of (εp, τp), we
consider two choices of µ. For the first choice, we let µ be the vector where all coordinates
equal to τp (note β is still sparse). For the second one, we let µ be as in Experiment 1. The
average Hamming ratios for both procedures across 40 repetitions are tabulated in Table 4.

Experiment 4. In this experiment, we generate β the same way as in Experiment 1,
and investigate how different choices of design matrices affect the performance of the two
methods. Setting (p, ϑ, κ) = (0.5 × 104, 0.35, 0.975) and τp ∈ {6, 7, 8, 9, 10, 11, 12}, we use
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τp 6 8 10

Signal Strength Equal Unequal Equal Unequal Equal Unequal

ϑ = 0.35
Graphic Screening 0.0810 0.0825 0.0018 0.0034 0 0.0003

lasso 0.2424 0.2535 0.1445 0.1556 0.0941 0.1109

ϑ = 0.5
Graphic Screening 0.0315 0.0297 0.0007 0.0007 0 0

lasso 0.1107 0.1130 0.0320 0.0254 0.0064 0.0115

Table 4: Hamming ratio results of Experiment 3, where “Equal” and “Unequal” stand for
the first and the second choices of µ, respectively.

Gaussian random design model for the study. The experiment contains 3 sub-experiments
4a-4c.

In Experiment 4a, we set Ω as the symmetric diagonal block-wise matrix, where each
block is a 2 × 2 matrix, with 1 on the diagonals, and ±0.5 on the off-diagonals (the signs
alternate across different blocks). The average Hamming ratios of 40 repetitions are reported
in Figure 4.

In Experiment 4b, we set Ω as a symmetric penta-diagonal correlation matrix, where
the main diagonal are ones, the first sub-diagonal consists of blocks of (.4, .4,−.4)′, and the
second sub-diagonal consists of blocks of (.05,−.05)′. The average Hamming ratios across
40 repetitions are reported in Figure 4.

In Experiment 4c, we generate Ω as follows. First, we generate Ω using the function
sprandsym(p,K/p) in matlab. We then set the diagonals of Ω to be zero, and remove some
of entries so that Ω is K-sparse for a pre-specified K. We then normalize each non-zero
entry by the sum of the absolute values in that row or that column, whichever is larger,
and multiply each entry by a pre-specified positive constant A. Last, we set the diagonal
elements to be 1. We choose K = 3 and A = 0.7, draw 5 different Ω with this method, and
for each of them, we draw (X,β, z) 10 times independently. The average Hamming ratios
are reported in Figure 4. The results suggest that GS is consistently better than the lasso.
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Figure 4: x-axis: τp. y-axis: Hamming ratios. Left to right: Experiment 4a, 4b, and 4c.
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Experiment 5. In this experiment, we investigate how sensitive GS is with respect to the
tuning parameters. The experiment contains 4 sub-experiments, 5a-5d. In Experiment 5a,
we investigate how sensitive the procedure is with respect to the tuning parameter q in Q
where we assume (εp, τp) are known; recall that the main results hold as long as q fall into
the range given in (30). In Experiment 5b-5d, we mis-specify (εp, τp) by a reasonably small
amount, and investigate how the mis-specification affect the performance of the procedure.
For the whole experiment, we choose β the same as in Experiment 1, and Ω the same as
in Experiment 4b. We use a fixed design model in Experiment 5a-5c, and a random design
model in Experiment 5d. For each sub-experiment, the results are based on 40 independent
repetitions. We now describe the sub-experiments with details.

In Experiment 5a, we choose ϑ ∈ {0.35, 0.6} and r ∈ {1.5, 3}. In GS, let qmax =
qmax(D̂, F̂ ) be the maximum value of q satisfying (30). For each combination of (ϑ, r) and
(D̂, F̂ ), we choose q(D̂, F̂ ) = qmax(D̂, F̂ )×{0.7, 0.8, 0.9, 1, 1.1, 1.2} for our experiment. The
results are tabulated in Table 5, which suggest that different choices of q have little influence
over the variable selection errors. We must note that the larger we set q(D̂, F̂ ), the faster
the algorithm runs.

q(F̂ , D̂)/qmax(F̂ , D̂) 0.7 0.8 0.9 1 1.1 1.2

(ϑ, r) = (0.35, 1.5) 0.0782 0.0707 0.0661 0.0675 0.0684 0.0702

(ϑ, r) = (0.35, 3) 0.0066 0.0049 0.0036 0.0034 0.0033 0.0032

(ϑ, r) = (0.6, 1.5) 0.1417 0.1417 0.1417 0.1417 0.1417 0.1417

(ϑ, r) = (0.6, 3) 0.0089 0.0089 0.0089 0.0089 0.0089 0.0089

Table 5: Hamming ratio results in Experiment 5a.

In Experiment 5b, we use the same settings as in Experiment 5a, but we assume ϑ
(and so εp) is unknown (the parameter r is assumed as known, however), and let ϑ∗ is
the misspecified value of ϑ. We take ϑ∗ ∈ ϑ × {0.85, 0.925, 1, 1.075, 1.15, 1.225} for the
experiment.

In Experiment 5c, we use the same settings as in Experiment 5b, but we assume r
(and so τp) is unknown (the parameter ϑ is assumed as known, however), and let r∗ is the
misspecified value of r. We take r∗ = r × {0.8, 0.9, 1, 1.1, 1.2, 1.3} for the experiment.

In Experiment 5b-5c, we run GS with tuning parameters set as in Experiment 1, except
ϑ or r are replaced by the misspecified counterparts ϑ∗ and r∗, respectively. The results
are reported in Table 6, which suggest that the mis-specifications have little effect as long
as r∗/r and ϑ∗/ϑ are reasonably close to 1.

In Experiment 5d, we re-examine the mis-specification issue in the random design set-
ting. We use the same settings as in Experiment 5b and Experiment 5c, except for (a) while
we use the same Ω as in Experiment 5b, the design matrix X are generated according to
the random design model as in Experiment 4b, and (b) we only investigate for the case of
r = 2 and ϑ ∈ {0.35, 0.6}. The results are summarized in Table 7, which is consistent with
the results in 5b-5c.

Experiment 6. In this experiment, we investigate the robustness of all three methods
for the mis-specification of the linear model (1). We use the random design setting as
in Experiment 4b, except that we fix (ϑ, r) = (0.35, 3). The experiment contains 3 sub-
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ϑ∗/ϑ 0.85 0.925 1 1.075 1.15 1.225

(ϑ, r) = (0.35, 1.5) 0.0799 0.0753 0.0711 0.0710 0.0715 0.0746

(ϑ, r) = (0.35, 3) 0.0026 0.0023 0.0029 0.0030 0.0031 0.0028

(ϑ, r) = (0.6, 1.5) 0.1468 0.1313 0.1272 0.1280 0.1247 0.1296

(ϑ, r) = (0.6, 3) 0.0122 0.0122 0.0139 0.0139 0.0130 0.0147

r∗/r 0.8 0.9 1 1.1 1.2 1.3

(ϑ, r) = (0.35, 1.5) 0.0843 0.0731 0.0683 0.0645 0.0656 0.0687

(ϑ, r) = (0.35, 3) 0.0062 0.0039 0.0029 0.0030 0.0041 0.0054

(ϑ, r) = (0.6, 1.5) 0.1542 0.1365 0.1277 0.1237 0.1229 0.1261

(ϑ, r) = (0.6, 3) 0.0102 0.0076 0.0085 0.0059 0.0051 0.0076

Table 6: Hamming ratio results in Experiment 5b (top) and in Experiment 5c (bottom).

ϑ∗/ϑ 0.85 0.925 1 1.075 1.15 1.225

(ϑ, r) = (0.35, 2) 0.1730 0.1367 0.1145 0.1118 0.0880 0.0983

(ϑ, r) = (0.6, 2) 0.0583 0.0591 0.0477 0.0487 0.0446 0.0431

r∗/r 0.8 0.9 1 1.1 1.2 1.3

(ϑ, r) = (0.35, 2) 0.1881 0.1192 0.1275 0.1211 0.1474 0.1920

(ϑ, r) = (0.6, 2) 0.0813 0.0515 0.0536 0.0397 0.0442 0.0510

Table 7: Hamming ratio results in Experiment 5d.

experiments, 6a-6c, where we consider three scenarios where the linear model (1) is in
question: the presence of non-Gaussianity, the presence of missing predictors, and the
presence of non-linearity, correspondingly.

In Experiment 6a, we assume the noise vector z in Model (1) is non-Gaussian, where
the coordinates are iid samples from a t-distribution with the same degree of freedom (df)
(we assume that z is normalized so each coordinate has unit variance), where the df range
in {3, 4, 5, 6, 7, 8, 9, 10, 30, 50}. Figure 5a shows how the Hamming ratios (based on 40
independent repetitions) change when the df decreases. The results suggest that all three
methods are reasonably robust against non-Gaussianity, but GS continues to have the best
performance.

In Experiment 6b, we assume that the true model is Y = Xβ + z where (X,β, z) are
generated as in 4b, but the model that is accessible to us is a misspecified model where the
some of the true predictors are missing. Fix η ∈ (0, 1), and let S(β) be the support of β.
For each i ∈ S(β), we flip a coin that lands on head with probability η, and we retain i
if and only if the coin lands on tail. Let S∗ ⊂ S(β) be the set of retained indices, and let
R = S∗ ∪ Sc. The misspecified model we consider is then Y = X⊗,RβR + z.

For the experiment, we let η range in 0.02 × {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The average
Hamming ratios (based on 40 independent repetitions) are reported in Figure 5b. The
results suggest that all three results are reasonably robust to missing predictors, with the
lasso being the most robust. However, as long as the proportion of true predictors that are
missing is reasonably small (say, η ≤ .1), GS continues to outperform UPS and the lasso.
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Figure 5: Hamming ratio results in Experiment 6

In Experiment 6c, for i = 1, . . . , n, the true model is an additive model in the form of Yi =∑p
j=1 fj(Xij)βj + zi, but what is accessible to us is the linear model Yi =

∑p
j=1Xijβj + zi

(and thus misspecified; the true model is non-linear). For experiment, we let (X,β, z) be
generated as in 4b, and S(β) be the support of β. Fixing η ∈ (0, 1), for each i ∈ S(β), we
flip a coin that lands on head with probability η, and let Snl ⊂ S(β) be all indices of the
heads. We then randomly split Snl into two sets S1 and S2 evenly. For j = 1, . . . , p, we
define fj(x) = [sgn(x)x2 · 1{j ∈ S1}+ (e

√
nx − aj) · 1{j ∈ S2}+ x · 1{j ∈ Scnl}]/cj , where aj

and cj are constants such that {fj(X(i, j))}ni=1 has mean 0 and variance 1/n.

For the experiment, we let η range in .05 × {0, 1, 2, 3, 4, 5, 6, 7, 8}. The average Ham-
ming ratios (based on 40 independent repetitions) are reported in Figure 5c. The results
suggest that all three methods are reasonably robust to the presence of nonlinearity, and
GS continues to outperform UPS and the lasso when the degree of nonlinearly is moderate
(say, η < .2).

5. Connection to Existing Literature and Possible Extensions

Our idea of utilizing graph sparsity is related to the graphical lasso (Meinshausen and
Buhlmann, 2006; Friedman et al., 2008), which also attempts to exploit graph structure.
However, the setting we consider here is different from that in Meinshausen and Buhlmann
(2006); Friedman et al. (2008), and our emphasis on precise optimality and calibration is
also very different. Our method allows nearly optimal detection of very rare and weak
effects, because they are based on careful analysis that has revealed a number of subtle
high-dimensional effects (e.g., phase transitions) that we properly exploit. Existing method-
ologies are not able to exploit or capture these phenomena, and can be shown to fail at the
levels of rare and weak effects where we are successful.

The paper is closely related to the recent work by Fan and Lv (2008), Ji and Jin (2011)
and Genovese et al. (2012). Both Ji and Jin (2011) and this paper use a similar rare and
weak signal framework and a similar random design model. However, they are different
in important ways, since the technical devise developed in Ji and Jin (2011) can not be
extended to the current study. For example, the lower bound derived in this paper is
different and sharper than that in Ji and Jin (2011). Also, the procedure in Ji and Jin
(2011) relies on marginal regression for screening. The limitation of marginal regression
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is that it neglects the graph structure of GOSD for the regularized Gram matrix (1.5), so
that it is incapable of picking variables that have weak marginal correlation but significant
joint correlation to Y . Correct selection of such hidden significant variables, termed as the
challenge of signal cancellation (Wasserman and Roeder, 2009), is the difficulty at the heart
of the variable selection problem. One of the main innovation of GS is that it uses the graph
structure to guide the screening, so that it is able to successfully overcome the challenge of
signal cancellation.

Additionally, two papers have very different objectives, and consequently the underlying
analysis are very different. The main results of each of these two papers can not be deduced
from the other. For example, to assess optimality, Ji and Jin (2011) uses the criterion of
the partition of the phase diagram, while the current paper uses the minimax Hamming
distance. Given the complexity of the high dimensional variable selection, one type of
optimality does not imply the other, and vice versa. Also, the main result in Ji and Jin
(2011) focuses on conditions under which the optimal rate of convergence is Lpp

1−(ϑ+r)2/(4r)

for the whole phase space. While this overlaps with our Corollaries 10 and 11, we must note
that Ji and Jin (2011) deals with the much more difficult cases where r/ϑ can get arbitrary
large; and to ensure the success in that case, they assume very strong conditions on the
design matrix and the range of the signal strength. On the other hand, the main focus of
the current paper is on optimal variable selection under conditions (of the Gram matrix G
as well as the signal vector β) that are as general as possible.

While the study in this paper has been focused on the Random Design model RD(ϑ, κ,Ω),
extensions to deterministic design models are straightforward (in fact, in Corollary 7, we
have already stated some results on deterministic design models), and the omission of dis-
cussion on the latter is largely for technical simplicity and the sake of space. In fact, for
models with deterministic designs, since the likelihood ratio test in the derivation of the
lower bound matches the penalized MLE in the cleaning step of GS, the optimality of GS
follows from the Sure Screening and Separable After Screening properties of GS. The proof
of these properties, and therefore the optimality of GS, follows the same line as those for ran-
dom design as long as maxj |

∑
i βiG(i, j)I{Ω∗,δ(i, j) = 0}|/τp is small. This last condition

on G holds when p1−ϑ‖G − Ω‖∞ = o(1) with a certain Ω ∈ M∗p(γ, c0, g, A). Alternatively,

this condition holds when p1−ϑ‖G − Ω‖2∞ log p = o(1) with Ω ∈ M∗p(γ, c0, g, A), provided
that sgn(βj) are iid symmetric random variables as in Candes and Plan (2009).

In this paper, we assume the signal vector β is independent of the design matrix X, and
that β is modeled by a Bernoulli model through β = b◦µ. Both assumptions can be relaxed.
In fact, in order for GS to work, what we really need is some decomposability condition
similar to that in Lemma 1, where except for negligible probabilities, the maximum size of
the graphlets m∗0 = m∗0(S(β), G, δ) is small. In many situations, we can show that m∗0 does
not exceed a fixed integer. One of such examples is as follows. Suppose for any fixed integer
m ≥ 1 and size-m subset S of {1, 2, . . . , p}, there are constants C > 0 and d > 0 such that
the conditional probability P (βj 6= 0, ∀j ∈ S|X) ≤ Cp−dm. In fact, when such a condition
holds, the claim follows since G∗,δ has no more than C(eK)m size-m connected subgraphs
if it is K-sparse. See the proof of Lemma 1 for details. Note that when εp = p−ϑ as in the
ARW, then the condition holds for the Bernoulli model in Lemma 1, with d = ϑ. Note also
that the Bernoulli model can be replaced by some Ising models.
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Another interesting direction of future research is the extension of GS to more general
models such as logistic regression. The extension of the lower bound in Theorem 6 is
relatively simple since the degree of GOLF can be bounded using the true β. This indicates
the optimality of GS in logistic and other generalized linear models as long as proper
generalized likelihood ratio or Bayes tests are used in both the GS- and GC-steps.

6. Proofs

In this section, we provide all technical proofs. We assume σ = 1 for simplicity.

6.1 Proof of Lemma 1

When G∗,δS contains a connected subgraph of size ≥ m0 + 1, it must contain a connected
subgraph with size m0 + 1. By Frieze and Molloy (1999), there are ≤ p(eK)m0+1 connected

subgraph of size m0 + 1. Therefore, the probability that G∗,δS has a connected subgraph of
size (m0 + 1) ≤ p(eK)m0+1εm0+1

p . Combining these gives the claim. �

6.2 Proof of Theorem 6

Write for short ρ∗j = ρ∗j (ϑ, r, a,Ω). Without loss of generality, assume ρ∗1 ≤ ρ∗2 ≤ . . . ≤ ρ∗p.
We construct indices i1 < i2 < . . . < im as follows. (a) start with B = {1, 2, . . . , p} and let
i1 = 1, (b) updating B by removing i1 and all nodes j that are neighbors of i1 in GOLF,
let i2 be the smallest index, (c) defining i3, i4, . . . , im by repeating (b), and terminates the
process when no indices is left in B. Since each time we remove at most dp(G�) nodes, it
follows that

p∑
j=1

p−ρ
∗
j ≤ dp(G�)

m∑
k=1

p
−ρ∗ik . (49)

For each 1 ≤ j ≤ p, as before, let (V ∗0j , V
∗

1j) be the least favorable configuration, and let

(θ
(0)
∗j , θ

(1)
∗j ) = argmin{θ(0)∈BV ∗

0j
,θ(1)∈BV ∗

1j
,sgn(θ(0))6=sgn(θ(1))}α(θ(0), θ(1); Ω). By our notations,

it is seen that

ρ∗j = η(V ∗0j , V
∗

1j ; Ω), α∗(V ∗0j , V
∗

1j ; Ω) = α(θ
(0)
∗j , θ

(1)
∗j ; Ω). (50)

In case (θ
(0)
∗j , θ

(1)
∗j ) is not unique, pick one arbitrarily. We construct a p × 1 vector µ∗ as

follows. Fix j ∈ {i1, · · · , im}. For all indices in V ∗0j , set the constraint of µ∗ on these indices

to be θ
(0)
∗j . For any index i /∈ ∪mk=1V

∗
0ik

, set µ∗i = τp. Since

Hamm∗p(ϑ, κ, r, a,Ω) ≥ inf
β̂
Hp(β̂; εp, np, µ

∗,Ω) = inf
β̂

p∑
i=1

P (sgn(β̂j) 6= sgn(βj)), (51)

it follows that

Hamm∗p(ϑ, κ, r, a,Ω) ≥
m∑
k=1

∑
j∈V0ik∪V1ik

P (sgn(β̂j) 6= sgn(βj)), (52)
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where β = b ◦ µ∗ in (51)-(52). Combining (49) and (52), to show the claim, we only need
to show that for any 1 ≤ k ≤ m and any procedure β̂,∑

j∈V0ik∪V1ik

P (sgn(β̂j) 6= sgn(βj)) ≥ Lpp
−ρ∗ik . (53)

Towards this end, we write for short V0 = V0ik , V1 = V1ik , V = V0 ∪ V1, θ(0) = θ
(0)
∗ik , and

θ(1) = θ
(1)
∗ik . Note that by Lemma 22,

|V | ≤ (ϑ+ r)2/(2ϑr).

Consider a test setting where under the nullH0, β = β(0) = b◦µ∗ and IV ◦β(0) = IV ◦θ(0), and
under the alternative H1, β = β(1) which is constructed by keeping all coordinates of β(0)

unchanged, except those coordinates in V are perturbed in a way so that IV ◦β(1) = IV ◦θ(1).
In this construction, both β(0) and β(1) are assumed as known, but we don’t know which
of H0 and H1 is true. In the literature, it is known that inf β̂

∑
j∈V P (sgn(β̂j) 6= sgn(βj))

is not smaller than the minimum sum of Type I and Type II errors associated with this
testing problem.

Note that by our construction and (50), the right hand side is α∗(V0, V1; Ω). At the
same time, it is seen the optimal test statistic is Z ≡ (θ(1) − θ(0))′X ′(Y − Xβ(0)). It
is seen that up to some negligible terms, Z ∼ N(0, α∗(V0, V1; Ω)τ2

p ) under H0, and Z ∼
N(α∗(V0, V1; Ω)τ2

p , α
∗(V0, V1; Ω)τ2

p ) under H1. The optimal test is to reject H0 when Z ≥
t[α∗(V0, V1; Ω)]1/2τp for some threshold t, and the minimum sum of Type I and Type II
error is

inf
t

{
ε|V0|p Φ̄(t) + ε|V1|p Φ(t− [α∗(V0, V1; Ω)]1/2τp)

}
.

Here, we have used P (H0) ∼ ε|V0|p and P (H1) ∼ ε|V1|p , as a result of the Binomial structure in

β. It follows that
∑

j∈V P (sgn(β̂j) 6= sgn(βj)) & inft
{
ε
|V0|
p Φ̄(t)+ε

|V1|
p Φ(t−[α∗(V0, V1; Ω)]1/2τp)

}
.

Using Mills’ ratio and definitions, the right hand side ≥ Lpp−η(V0,V1;Ω), and (53) follows by
recalling (50). �

6.3 Proof of Corollaries 10, 11, and 12

When a > a∗g(Ω), ρ∗j (ϑ, r, a,Ω) does not depend on a, and have an alternative expression as
follows. For any subsets D and F of {1, 2, . . . , p}, let ω(D,F ; Ω) be as in (28). Introduce
ρ(D,F ; Ω) = ρ(D,F ;ϑ, r, a,Ω, p) by

ρ(D,F ; Ω) =
(|D|+ 2|F |)ϑ

2
+

{
1
4ω(D,F ; Ω)r, |D| is even,
ϑ
2 + 1

4

[
(
√
ω(D,F ; Ω)r − ϑ√

ω(D,F ;Ω)r
)+

]2
, |D| is odd.

(54)
The following lemma is proved in Section 6.3.4.

Lemma 18 Fix m0 ≥ 1, (ϑ, κ) ∈ (0, 1)2, r > 0, c0 > 0, and g > 0 such that κ >
(1− ϑ). Suppose the conditions of Theorem 6 hold, and that for sufficiently large p, (26) is
satisfied. Then as p→∞, ρ∗j (ϑ, r, a,Ω) does not depend on a, and satisfies ρ∗j (ϑ, r, a,Ω) =
min{(D,F ):j∈D∪F ,D∩F=∅,D 6=∅,|D∪F |≤g} ρ(D,F ; Ω).
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We now show Corollaries 10-12. Write for short ω = ρ(D,F ; Ω), T = r/ϑ, and λ∗k =
λ∗k(Ω). The following inequality is frequently used below, the proof of which is elementary
so we omit it:

ω ≥ λ∗k|D|, where k = |D|+ |F |. (55)

To show these corollaries, it is sufficient to show for all subsets D and F of {1, 2, . . . , p},

ρ(D,F ; Ω) ≥ (ϑ+ r)2/(4r), |D| ≥ 1, (56)

where ρ(D,F ; Ω) is as in (54). By basic algebra, (56) is equivalent to{
(ωT + 1/(ωT )− 2)1{ωT ≥ 1} ≥ (T + 1/T − 2(|D|+ 2|F |)), |D| is odd,
ω ≥ 2

T [(T + 1/T )/2 + 1− (|D|+ 2|F |)], |D| is even.
(57)

Note that when (|D|, |F |) = (1, 0), this claim holds trivially, so it is sufficient to consider
the case where

|D|+ |F | ≥ 2. (58)

We now show that (57) holds under the conditions of each of corollaries.

6.3.1 Proof of Corollary 10

In this corollary, 1 < (T + 1/T )/2 ≤ 3, and if either (a) |D| + 2|F | ≥ 3 and |D| is odd
or (b) |D| + 2|F | ≥ 4 and |D| is even, the right hand side of (57) ≤ 0, so the claim
holds trivially. Therefore, all we need to show is the case where (|D|, |F |) = (2, 0). In
this case, since each off-diagonal coordinate ≤ 4

√
2 − 5 ≡ ρ0, it follows from definitions

and basic algebra that ω ≥ 2(1 − ρ0) = 4(3 − 2
√

2), and (57) follows by noting that
2
T [(T + 1/T )/2 + 1− (|D|+ 2|F |)] = (1− 1/T )2 ≤ 4(3− 2

√
2). �

6.3.2 Proof of Corollary 11

In this corollary, 1 < (T + 1/T )/2 ≤ 5. First, we consider the case where |D| is odd. By
similar argument, (57) holds trivially when |D| + 2|F | ≥ 5, so all we need to consider is
the case (|D|, |F |) = (1, 1) and the case (|D|, |F |) = (3, 0). In both cases, |D| + 2|F | = 3.
By (55), when ωT < 1, there must be T < 1/min(λ∗2, 3λ

∗
3). By the conditions of this

corollary, it follows T < (5 + 2
√

6)/4 < 3 + 2
√

2. When 1 < T < 3 + 2
√

2, there is
T + 1/T − 6 < 0, and thus (57) holds for ωT < 1. When ωT ≥ 1, (57) holds if and only if
ωT + 1

ωT − 2 ≥ T + 1/T − 6. By basic algebra, this holds if

ω ≥ 1

4

[
(1− 1/T ) +

√
(1− 1/T )2 − 4/T

]2
. (59)

Note that the right hand side of (59) is a monotone in T and has a maximum of (3 +
2
√

2)(5 − 2
√

6) at T = (5 + 2
√

6). Now, on one other hand, when (|D|, |F |) = (1, 0),
by (55) and conditions of the corollary, ω ≥ 3λ∗3 > (3 + 2

√
2)(5 − 2

√
6). On the other

hand, when (|D|, |F |) = (1, 1), by basic algebra and that each off-diagonal coordinate of

Ω ≤
√

1 + (
√

6−
√

2)/(1 +
√

3/2) ≡ ρ1 in magnitude, ω ≥ 1 − ρ2
1 = (3 + 2

√
2)(5 − 2

√
6).

Combining these gives (57).
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We now consider the case where |D| is even. By similar argument, (57) holds when
|D| + 2|F | ≥ 6, so all we need is to show is that (57) holds for the following three cases:
(|D|, |F |) = (4, 0), (2, 1), (2, 0). Equivalently, this is to show that ω ≥ 2

T [(T + 1/T )/2 − 3]
in the first two cases and that ω ≥ 2

T [(T + 1/T )/2 − 1] in the last case. Similarly, by
the monotonicity of the right hand side of these inequalities, all we need to show is ω ≥
4(5 − 2

√
6) in the first two cases, and ω ≥ 8(5 − 2

√
6) in the last case. Now, on one

hand, using (55), ω ≥ 4λ∗4 in the first case, and ω ≥ 2λ∗3 in the second case, so by the
conditions of the corollary, ω ≥ 4(5 − 2

√
6) in the first two cases. On the other hand, in

the last case, since all off-diagonal coordinates of Ω ≤ 8
√

6 − 19 ≡ ρ0 in magnitude, and
ω ≥ 2(1− ρ0) = 8(5− 2

√
6). Combining these gives (57). �

6.3.3 Proof of Corollary 12

Let N be the unique integer such that 2N − 1 ≤ (T + 1/T )/2 < 2N + 1. First, we consider
the case where |D| is odd. Note that when |D| + 2|F | ≥ 2N + 1, the right hand side of
(57) ≤ 0, so all we need to consider is the case |D| + 2|F | ≤ 2N − 1. Write for short
k = k(D,F ) = |D| + |F | and j = j(D,F ) = (|D| + 2|F | + 1)/2. By (58), definitions, and
that |D|+ 2|F | ≤ 2N − 1, it is seen that 2 ≤ k ≤ 2N − 1 and (k + 1)/2 ≤ j ≤ min{k,N}.
By the condition of the corollary, λ∗k ≥

(T+1/T )/2−2j+2+
√

[(T+1/T )/2−2j+2]2−1

T (2k−2j+1) . Note that

|D| = 2k−2j+1. Combining these with (55) gives ωT ≥ (2k−2j+1)λ∗kT ≥ (T +1/T )/2−
2j + 2 +

√
[(T + 1/T )/2− 2j + 2]2 − 1 ≥ 1. and (57) follows by basic algebra.

We now consider the case where |D| is even. Similarly, the right hand side of (57)
is negative when |D| + 2|F | ≥ 2(N + 1), so we only need to consider the case where
|D|+ 2|F | ≤ 2N . Similarly, write for short k = k(D,F ) = |D|+ |F | and j = (|D|+ 2|F |)/2.
It is seen that 2 ≤ k ≤ 2N and k/2 ≤ j ≤ min{k−1, N}. By the conditions of the corollary,

λ∗k ≥
(T+1/T )/2+1−2j

T (k−j) . Note that |D| = k − j. It follows from (55) that ω ≥ 2(k − j)λ∗k ≥
2
T [(T + 1/T )/2 + 1− 2j], and (57) follows. �

6.3.4 Proof of Lemma 18

Let sets V0 and V1 and vectors θ(0) and θ(1) be as in Section 2.5, and let V = V0 ∪
V1. By definition, ρ∗j (ϑ, r, a,Ω) can be written as the minimum of I and II, where I =
min{(V0,V1):j∈V1∪V0,V0 6=V1} η(V0, V1; Ω) and II = min{V0:j∈V0∪V1,V0=V1} η(V0, V1; Ω). So to
show the claim, it is sufficient to show

I = min
{(D,F ):j∈D∪F,D∩F=∅,D 6=∅,|D∪F |≤g}

ρ(D,F ; Ω), II ≥ I. (60)

Consider the first claim in (60). Write for short F = F (V0, V1) = V0 ∩ V1 and D =
D(V0, V1) = V \ F . By the definitions, D 6= ∅. The key is to show that when |V0 ∪ V1| ≤ g,

α∗(V0, V1; Ω) = ω(D,F ; Ω). (61)

Towards this end, note that by definitions, α∗(V0, V1; Ω) = α(θ
(0)
∗ , θ

(1)
∗ ), where (θ

(0)
∗ , θ

(1)
∗ ) =

argmin{θ(0)∈BV0 ,θ
(1)∈BV1}

α(θ(0), θ(1)). By a > a∗g(Ω) and the way a∗g(Ω) is defined, (θ
(0)
∗ , θ

(1)
∗ )

remains as the solution of the optimization problem if we relax the conditions θ(i) ∈ BVi to
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that of θ(i) = IVi ◦ µ(i), where µ(i) ∈ Θp(τp) (so that upper bounds on the signal strengths
are removed), i = 0, 1. As a result,

α∗(V0, V1; Ω) = min
{θ(i)∈IVi◦µ

(i),µ(i)∈Θp(τp),i=0,1,}
α(θ(0), θ(1)). (62)

We now study (62). For short, write ξ = τ−1
p (θ(1) − θ(0))V , ΩV V = ΩV,V , ξD = τ−1

p (θ(1) −
θ(0))D, and similarly for ΩDD, ΩDF , ΩFD, ΩFF , and ξF . Without loss of generality, assume
the indices in D come first in V . It follows

ΩV V =

(
ΩDD ΩDF

ΩFD ΩFF

)
,

and
α(θ(0), θ(1)) = ξ′ΩV V ξ = ξ′DΩDDξD + 2ξ′DΩDF ξF + ξ′FΩFF ξF . (63)

By definitions, it is seen that there is no constraint on the coordinates of ξF , so to optimize
the quadratic form in (61), we need to choose ξ is a way such that ξF = −Ω−1

FFΩFDξD,
and that ξD minimizes ξ′D(ΩDD − ΩDFΩ−1

FFΩFD)ξD, where every coordinate of ξD ≥ 1 in
magnitude. Combining these with (62) gives (61).

At the same time, we rewrite

I = min
{(D,F ):j∈D∪F,D 6=∅,D∩F=∅}

{
min

{(V0,V1):V0∪V1=D∪F,V0∩V1=F}
η(V0, V1; Ω)

}
. (64)

By similar arguments as in the proof of Lemma 22, the subsets (V0, V1) that achieve the
minimum of η(V0, V1; Ω) must satisfy |V0 ∪ V1| ≤ g. Using (61), for any fixed D and F
such that |D ∪ F | ≤ g, D 6= ∅ and D ∩ F = ∅, the term in the big bracket on the right

hand side is min{(V0,V1):V0∪V1=D∪F,V0∩V1=F}{
(2|F |+|D|)ϑ

2 +

∣∣|V1|−|V0|∣∣ϑ
2 + 1

4 [(
√
ω(D,F ; Ω)r −∣∣|V1|−|V0|∣∣ϑ√

ω(D,F ;Ω)r
)+]2}. It is worth noting that for fixed D and F , the above quantity is monotone

increasing with
∣∣|V1| − |V0|

∣∣. When |D| is even, the minimum is achieved at (V0, V1) with
|V0| = |V1|, and when |D| is odd, the minimum is achieved at (V0, V1) with

∣∣|V1| − |V0|
∣∣ = 1,

and in both cases, the minimum is ρ(D,F ; Ω). Inserting this to (64), it is seen that

I = min
{(D,F ):j∈D∪F,D∩F=∅,D 6=∅,|D∪F |≤g}

ρ(D,F ; Ω),

which is the first claim in (60).
Consider the second claim of (60). In this case, by definitions, V0 = V1 but sgn(θ(0)) 6=

sgn(θ(1)). Redefine D as the subset of V0 where the signs of the coordinates of θ(0) do not
equal to those of θ(1), and let F = V \ D. By definitions, it is seen that α∗(V0, V0; Ω) =
4α∗(F, V0; Ω), where we note D 6= ∅ and F 6= V0. By the definition of η(V0, V1; Ω), it follows
that η(V0, V0; Ω) ≥ η(F, V0; Ω), and the claim follows. �

6.4 Proof of Lemma 15

Write for short ρ∗j = ρ∗j (ϑ, a, r,Ω). To show the claim, it is sufficient to show that for any
fixed 1 ≤ j ≤ p,

P (j /∈ U∗p , βj 6= 0) ≤ Lp[p−ρ
∗
j + p−(m0+1)ϑ + o(1/p)]. (65)
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Using Lemma 14 and Ji and Jin (2011, Lemma 3.1), there is an event Ap that depends
on (X,β) such that P (Acp) ≤ o(1/p) and that over the event, Ω∗,δ is K-sparse with K =

C(log(p))1/γ , ‖Ω∗,δ−Ω‖∞ ≤ (log(p))−(1−γ), ‖(X ′X−Ω)β‖∞ ≤ C‖Ω‖
√

2 log(p)p−[(κ−(1−ϑ)]/2,
and for all subset B with size ≤ m0, ‖GB,B − ΩB,B‖∞ ≤ Lpp

−κ/2. Recall that G∗,δ is the

GOSD and G∗,δS is the subgraph of the GOSD formed by the nodes in the support of β,
S(β) = {1 ≤ j ≤ p : βj 6= 0}. When βj 6= 0, there is a unique component I0 such

that j ∈ I0 C G∗,δS (A C B means that A is component or maximal connected subgraph of
B). Let Bp be the event |I0| ≤ m0. By Frieze Frieze and Molloy (1999), it is seen that
P (Bc

p ∩Ap) ≤ Lpp−(m0+1)ϑ. So to show (65), it is sufficient to show that

P (j /∈ U∗p , j ∈ I0 C G∗,δS , Ap ∩Bp) ≤ Lpp−ρ
∗
j . (66)

Now, in the screening procedure, when we screen I0, we have I0 = D̂ ∪ F̂ as in (8).

Since the event {j /∈ U∗p , j ∈ I0 C G∗,δS } is contained in the event {T (Y, D̂, F̂ ) < t(D̂, F̂ )},
P (j /∈ U∗p , j ∈ I0 C G∗,δS , Ap ∩Bp) ≤ P (T (Y, D̂, F̂ ) ≤ t(D̂, F̂ ), j ∈ I0 C G∗,δS , Ap ∩Bp), where
the right hand side does not exceed∑
(I0,D,F ):j ∈ I0 & I0 = D ∪ F is a partition

P (T (Y,D, F ) ≤ t(D,F ), j ∈ I0 C G∗,δS , Ap ∩Bp);

note that (I0, D, F ) do not depend on z (but may still depend on (X,β)). First, note that
over the event Ap, there are at most (eK)m0+1 I0 such that j ∈ I0 and |I0| ≤ m0. Second,
note that for each I0, there are only finite ways to partition it to D and F . Last, note that

for any fixed j and I0, P (j ∈ I0 C G∗,δS ) ≤ ε
|I0|
p . Combining these observations, to show

(66), it is sufficient to show that for any such triplet (I0, D, F ),

ε|I0|p P
(
T (Y,D, F ) ≤ t(D,F )

∣∣{j ∈ I0 C G∗,δS } ∩Ap ∩Bp
)
≤ Lpp−ρ

∗
j . (67)

We now show (67). Since λ∗m0
(Ω) ≥ C > 0, it follows from the definition of Ap and basic

algebra that for any realization of (X,β) in Ap ∩Bp,

‖(GI0,I0)−1‖∞ ≤ C. (68)

Recall that Ỹ = X ′Y and denote for short y = (GI0,I0)−1Ỹ I0 . It is seen that

y = βI0 + w + rem, w ∼ N(0, (GI0,I0)−1), rem ≡ (GI0,I0)−1GI0,I
c
0βI

c
0 . (69)

Since I0 is a component of G∗,δS , (Ω∗,δ)I0,I
c
0βI

c
0 = 0. Therefore, we can write rem =

(GI0,I0)−1(I + II), where I = (GI0,I
c
0 − ΩI0,I

c
0)βI

c
0 and II = [ΩI0,I

c
0 − (Ω∗,δ)I0,I

c
0 ]βI

c
0 . By

the definition of Ap, ‖I‖∞ ≤ C
√

2 log(p)p−[κ−(1−ϑ)]/2, and ‖II‖∞ ≤ ‖Ω−Ω∗,δ‖∞‖βI
c
0‖∞ ≤

Cτp(log(p))−(1−γ). Combining these with (68) gives ‖rem‖∞ ≤ Cτp(log(p))−(1−γ).
At the same time, let y1, w1, and rem1 be the restriction of y, w, and rem to indices in D,

correspondingly, and let H = [GD,D−GD,F (GF,F )−1GF,D]. By (69) and direct calculations,
T (Y,D, F ) = y′1Hy1, y1 ∼ N(βD + rem1, H−1), and so T (Y,D, F ) is distributed as χ2

|D|(δ),

where the non-central parameter is (βD + rem1)′H(βD + rem1) = δ + O((log(p))γ) and
δ ≡ (βD)′HβD. Since λ∗m0

(Ω) ≥ C, δ ≥ Cτ2
p and is the dominating term. It follows that

P (T (Y,D, F ) ≤ t(D,F )
∣∣{j ∈ I0 C G∗,δS } ∩Ap ∩Bp

)
. P

(
χ2
|D|(δ) ≤ t(D,F )

)
. (70)
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Now, first, by definitions, δ ≥ 2ω(D,F ; Ω)r log(p), so by basic knowledge on non-central χ2,

P (χ2
|D|(δ) ≤ t(D,F )) ≤ P (χ2

|D|(2ω(D,F ; Ω)r log(p)) ≤ t(D,F )). (71)

Second, recalling t(D,F ) = 2q log(p), we have

P (χ2
|D|(2ω(D,F ; Ω)r log(p)) ≤ t(D,F )) ≤ Lpp−[(

√
ω(D,F ;Ω)r−√q)+]2 . (72)

Inserting (71)-(72) into (70) and recalling εp = p−ϑ,

ε|I0|p P (T (Y,D, F ) ≤ t(D,F )
∣∣{j ∈ I0 C G∗,δS } ∩Ap ∩Bp

)
≤ Lpp−(|I0|ϑ+[(

√
ω(D,F ;Ω)r−√q)+]2).

(73)
By the choice of q and direct calculations,

|I0|ϑ+ [(
√
ω(D,F ; Ω)r −√q)+]2 ≥ ρ(D,F ; Ω) ≥ ρ∗j , (74)

where ρ(D,F ; Ω) as in (54). Combining (73)-(74) gives (67). �

6.5 Proof of Lemma 16

In the screening stage, suppose we pick the threshold t(D̂, F̂ ) = 2q log(p) in a way such that
there is a constant q0(ϑ, r, κ) > 0 such that q = q(D̂, F̂ ) ≥ q0(ϑ, r, κ) > 0. Recall that G∗,δ
denotes the GOSD. Let U∗p be the set of retained indices. Viewing it as a subgraph of G∗,δ,
U∗p decomposes into many components U∗p = I(1) ∪ I(2) . . . ∪ I(N). Recall that Ỹ = X ′Y .
The following lemma is proved below.

Lemma 19 Suppose the settings and conditions are as in Lemma 16. There exists a con-
stant c1 = c1(ϑ, r, κ, γ,A) > 0 such that with probability at least 1− o(1/p), for any compo-
nent I0 C U∗p , ‖Ỹ I0‖2 ≥ 2c1|I0| log(p).

The remaining part of the proof is similar to that of Ji and Jin (2011, Lemma 2.3) so we
omit it. We note that however Lemma 19 is new and needs a much harder proof. �

6.5.1 Proof of Lemma 19

First, we need some notations. Let I0 be a component of U∗p , and let I(i)
0 , 1 ≤ i ≤ N0, be

all connected subgraphs with size ≤ m0, listed in the order as in the GS-step, where N0 is

an integer that may depend on (X,Y ). For each 1 ≤ i ≤ N0, let I(i)
0 = D̂(i) ∪ F̂ (i) be the

exactly the same partition when we screen I(i)
0 in the m0-stage χ2-screening of the GS-step.

In out list, we only keep I(i)
0 such that D̂(i) ∩ I0 6= ∅. Since I0 is a component of U∗p and

I(i)
0 is a connected subgraph, it follows from the way that the χ2-screening is designed and

the definition of D̂(i) that

I(i)
0 ⊂ I0, and D̂(i) = I(i)

0 \ (∪i−1
j=1I

(j)
0 ), 1 ≤ i ≤ N0,

and

I0 = D̂(1) ∪ D̂(2) . . . ∪ D̂(N0) is a partition, (75)
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where F̂ (1) is empty.

Now, for each 1 ≤ i ≤ N0, recall that as long as GI
(i)
0 ,I(i)0 is non-singular, the χ2-test

score in GS is T (Y, D̂(i), F̂ (i)) = T (Y, D̂(i), F̂ (i); I(i)
0 , X, p, n) = (Ỹ I

(i)
0 )′(GI

(i)
0 ,I(i)0 )−1Ỹ I

(i)
0 −

(Ỹ F̂ (i)
)′(GF̂

(i),F̂ (i)
)−1Ỹ F̂ (i)

. By basic algebra and direct calculations, it can be verified that

T (Y, D̂(i), F̂ (i)) = ‖Wi‖2, where Wi = W (Ỹ , D̂(i), F̂ (i); I(i)
0 , X, p, n) is defined as Wi =

V
−1/2
i yi, and for short, Vi = GD̂

(i),D̂(i) − GD̂
(i),F̂ (i)

(GF̂
(i),F̂ (i)

)−1GF̂
(i),D̂(i)

, yi = Ỹ D̂(i) −
GD̂

(i),F̂ (i)
(GF̂

(i),F̂ (i)
)−1Ỹ F̂ (i)

. At the same time, for a constant δ > 0 to be determined,
define Ω̃ by Ω̃(i, j) = G(i, j) · 1{|G(i, j)| ≥ δ}. The definition of Ω̃ is the same as that
of Ω∗,δ, except for that the threshold δ would be selected differently. We introduce a
counterpart of Wi which we call W ∗i ,

W ∗i = V
−1/2
i y∗i . (76)

where y∗i = Ỹ D̂(i) − Ω̃D̂(i),F̂ (i)
(Ω̃F̂ (i),F̂ (i)

)−1Ỹ F̂ (i)
. Let W ∗ = ((W ∗1 )′, (W ∗2 )′, . . . , (W ∗N0

)′)′,
and define |I0| × |I0| matrices H1 and H2 as follows: H1 is a diagonal block-wise matrix

where the i-th block is V
−1/2
i , and H2 = H̃I0,I02 , where H̃2 is a p × p matrix such that

for every component I0 of U∗p , and D̂(i) and F̂ (i) defined on each component, H̃D̂(i),F̂ (i)

2 =

−(Ω̃)D̂
(i),F̂ (i)

[(Ω̃)F̂
(i),F̂ (i)

]−1, H̃D̂(i),D̂(i)

2 = I|D̂(i)|, and that the coordinates of H̃2 are zero
elsewhere. Here Ik stands for k × k identity matrix. From the definitions, it is seen that

W ∗ = H1H2Ỹ
I0 . (77)

Compared with Wi, W
∗
i is relatively easier to study, for it induces column-sparsity of

H2. In fact, using (Ji and Jin, 2011, Lemma 2.2, 3.1), there is an event Ap that depends on
(X,β) such that P (Acp) ≤ o(1/p2) and that over the event, for all subset B with size ≤ m0,

‖GB,B − ΩB,B‖∞ ≤ Lpp−κ/2.

The following lemma is proved below.

Lemma 20 Fix δ > 0 and suppose the conditions in Lemma 19 hold. Over the event Ap,
there is a constant C > 0 such that each row and column of H̃2 has no more than C nonzero
coordinates.

We are now ready to show Lemma 19. To begin with, note that since we accept D̂(i)

when we graphlet-screen I(i)
0 and |D̂(i)| ≤ m0,

‖Wi‖2 ≥ 2(q0/m0)|D̂(i)| log(p). (78)

At the same time, by basic algebra, ‖Wi − W ∗i ‖ ≤ ‖V
−1/2
i ‖‖yi − y∗i ‖, and ‖yi − y∗i ‖ ≤

‖GD̂(i),F̂ (i)
(GF̂

(i),F̂ (i)
)−1−(Ω̃)D̂

(i),F̂ (i)
((Ω̃)F̂

(i),F̂ (i)
)−1‖∞ ·‖Ỹ F̂ (i)‖. First, since λ∗m0

(Ω) ≥ C, it

is seen that over the event Ap, ‖V −1/2
i ‖ ≤ C. Second, by similar reasons, it is not hard to see

that except for probability o(p−2), ‖GD̂(i),F̂ (i)
(GF̂

(i),F̂ (i)
)−1−(Ω̃)D̂

(i),F̂ (i)
((Ω̃)F̂

(i),F̂ (i)
)−1‖∞ ≤

Cδ1−γ , and ‖Ỹ F̂ (i)‖ ≤ C
√

log(p) ≤ Cτp. Combining these gives

‖Wi −W ∗i ‖ ≤ Cδ1−γτp.
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Inserting this to (78), if we choose δ to be a sufficiently small constant, ‖W ∗i ‖2 ≥ 1
2‖Wi‖2 ≥

(q0/m0)|D̂(i)| log(p).

At the same time, by definitions, it follows from ‖V −1/2
i ‖ ≤ C that ‖H1‖ ≤ C. Also,

since over the event Ap, each coordinate of H2 is bounded from above by a constant in
magnitude, it follows from Lemma 20 that ‖H2‖ ≤ C. Combining this with (75)-(77), it
follows from basic algebra that except for probability o(p−2), (q0/m0)|I0| log(p) ≤ ‖W ∗‖2 ≤
‖H1H2Ỹ

I0‖2 ≤ C‖Ỹ I0‖2, and the claim follows since m0 is a fixed integer. �

6.5.2 Proof of Lemma 20

By definitions, it is equivalent to show that over the event Ap, each row and column of H̃2

has finite nonzero coordinates. It is seen that each row of H̃2 has ≤ m0 nonzeros, so all we
need to show is that each column of H̃2 has finite nonzeros.

Towards this end, we introduce a new graph G̃ = (V,E), where V = {1, 2, . . . , p} and
nodes i and j are connected if and only if |Ω̃(i, j)| 6= 0. This definition is the same as
GOSD, except that Ω∗,δ is substituted by Ω̃. It is seen that over the event Ap, for any
Ω ∈M∗p(γ, c0, g, A), G̃ is K-sparse with K ≤ Cδ−1/γ . The key for the proof is to show that

for any k 6= ` such that H̃2(k, `) 6= 0, there is a path with length ≤ (m0 − 1) in G̃ that
connects k and `.

To see the point, we note that when H̃2(k, `) 6= 0, there must be an i such that k ∈ D̂(i)

and ` ∈ F̂ (i). We claim that there is a path in I(i)
0 (which is regarded as a subgraph of G̃)

that connects k and `. In fact, if k and ` are not connected in I(i)
0 , we can partition I(i)

0

into two separate sets of nodes such that one contains k and the other contains `, and two

sets are disconnected. In effect, both the matrix Ω̃D̂(i),D̂(i)
and Ω̃D̂(i),F̂ (i)

can be visualized
as two by two blockwise matrix, with off-diagonal blocks being 0. As a result, it is seen that
H̃2(k, `) = 0. This contradiction shows that whenever H̃2(k, `) 6= 0, k and ` are connected

by a path in I(i)
0 . Since |I(i)

0 | ≤ m0, there is a path ≤ m0 − 1 in G̃ that connects k and `
where k 6= `.

Finally, since G̃ is K-sparse with K = Cδ−1/γ , for any fixed `, there are at most finite
k connecting to ` by a path with length ≤ (m0 − 1). The claim follows. �

6.6 Proof of Theorem 13

Since σ is known, for simplicity, we assume σ = 1. First, consider (38). By Theorem 8
and (54), ρgs = min{(D,F ):D∩F=∅,D 6=∅,D∪F⊂{1,2}} ρ(D,F ; Ω), where we have used that G is a
diagonal block-wise matrix, each block is the same 2 × 2 matrix. To calculate ρ(D,F ; Ω),
we consider three cases (a) (|D|, |F |) = (2, 0), (b) (|D|, |F |) = (1, 0), (c) (|D|, |F |) = (1, 1).
By definitions and direct calculations, it is seen that ρ(D,F ; Ω) = ϑ + [(1 − |h0|)r]/2 in
case (a), ρ(D,F ; Ω) = (ϑ + r)2/(4r) in case (b), and ρ(D,F ; Ω) = 2ϑ + [(

√
(1− h2

0)r −
ϑ/
√

(1− h2
0)r)+]2/4 in case (c). Combining these gives the claim.

Next, consider (39). Similarly, by the block-wise structure of G, we can restrict our
attention to the first two coordinates of β, and apply the subset selection to the size 2
subproblem where the Gram matrix is the 2 × 2 matrix with 1 on the diagonals and h0

on the off-diagonals. Fix q > 0, and let the tuning parameter λss =
√

2qss log(p). Define

f
(1)
ss (q) = ϑ + [(

√
r − √q)+]2, f

(2)
ss (q) = 2ϑ + [(

√
r(1− h2

0) − √q)+]2, and f
(3)
ss (q) = 2ϑ +
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2[(
√
r(1− |h0|) −

√
q)+]2, where x+ = max{x, 0}. The following lemma is proved below,

where the key is to use Ji and Jin (2011, Lemma 4.3).

Lemma 21 Fix q > 0 and suppose the conditions in Theorem 13 hold. Apply the subset
selection to the aforementioned size 2 subproblem with λss =

√
2q log(p). As p → ∞, the

worst-case Hamming error rate is Lpp
−fss(q), where fss(q) = fss(q, ϑ, r, h0) = min

{
ϑ+ (1−

|h0|)r/2, q, f (1)
ss (q), f

(2)
ss (q), f

(3)
ss (q)

}
.

By direct calculations, ρss(ϑ, r, h0) = max{q>0} fss(ϑ, r, h0) and the claim follows.
Last, consider (40). The proof is very similar to that of the subset selection, except for

that we need to use Ji and Jin (2011, Lemma 4.1), instead of Ji and Jin (2011, Lemma 4.3).
For this reason, we omit the proof. �

6.6.1 Proof of Lemma 21

By the symmetry in (35)-(36) when G is given by (37), we only need to consider the case
where h0 ∈ [0, 1) and β1 ≥ 0. Introduce events, A0 = {β1 = β2 = 0}, A1 = {β1 ≥
τp, β2 = 0}, A21 = {β1 ≥ τp, β2 ≥ τp}, A22 = {β1 ≥ τp, β2 ≤ −τp}, B0 = {β̂1 = β̂2 = 0},
B1 = {β̂1 > 0, β̂2 = 0}, B21 = {β̂1 > 0, β̂2 > 0} and B22 = {β̂1 > 0, β̂2 < 0}. It is seen that
the Hamming error

= Lp(I + II + III), (79)

where I = P (A0 ∩Bc
0), II = P (A1 ∩Bc

1) and III = P (A21 ∩Bc
21) + P (A22 ∩Bc

22).
Let H be the 2× 2 matrix with ones on the diagonals and h0 on the off-diagonals, α =

(β1, β2)′, and w = (Ỹ1, Ỹ2), where we recall Ỹ = X ′Y . It is seen that w ∼ N(Hα,H). Write
for short λ =

√
2q log(p). Define regions on the plane of (Ỹ1, Ỹ2), D0 = {max(|Ỹ1|, |Ỹ2|) >

λ or Ỹ 2
1 +Ỹ 2

2 −2h0Ỹ1Ỹ2 > 2λ2(1−h2
0)}, D1 = {|Ỹ1| < λ , Ỹ1 < Ỹ2 or |Ỹ2−h0Ỹ1| > λ

√
1− h2

0},
D21 = {Ỹ2 − h0Ỹ1 < λ

√
1− h2

0 or Ỹ1 − h0Ỹ2 < λ
√

1− h2
0} and D22 = {Ỹ2 − h0Ỹ1 >

−λ
√

1− h2
0 or Ỹ1 − h0Ỹ2 > λ

√
1− h2

0 or Ỹ 2
1 + Ỹ 2

2 − 2h0Ỹ1Ỹ2 < 2λ2(1 − h2
0)}. Using

(Ji and Jin, 2011, Lemma 4.3), we have Bc
0 = {(Ỹ1, Ỹ2)′ ∈ D0}, Bc

1 = {(Ỹ1, Ỹ2)′ ∈ D1},
Bc

21 = {(Ỹ1, Ỹ2)′ ∈ D21}, and Bc
22 = {(Ỹ1, Ỹ2)′ ∈ D22}. By direct calculation and Mills’

ratio, it follows that for all µ ∈ Θp(τp),

I = Lp · (P (N(0, 1) > λ) + P (χ2
2 > 2λ2)) = Lp · p−q, (80)

II ≤ Lp · P (N((τp, h0τp)
′, H) ∈ D1) = Lp · p−ϑ−min[(

√
r−√q)2,(1−h0)r/2,q], (81)

and when β1 = τp and β2 = 0, the equality holds in (81). At the same time, note that
over the event A21, the worst case scenario, is where β1 = β2 = τp. In such a case,
(Ỹ1, Ỹ2)′ ∼ N(((1 + h0)τp, (1 + h0)τp)

′, H). Combining this with Mills’ ratio, it follows that
for all µ ∈ Θp(τp),

P (A21 ∩Bc
21) = P ((Ỹ1, Ỹ2)′ ∈ D21) ≤ Lp · p−2ϑ−(

√
r(1−h20)−√q)2+ , (82)

and the equality holds when β1 = β2 = τp. Similarly, note that over the event A22, in
the worst case scenario, β1 = −β2 = τp. In such a case, (Ỹ1, Ỹ2)′ ∼ N(((1 − h0)τp,−(1 −
h0)τp)

′, H). Combining this with Mills’ ratio, it follows that for all µ ∈ Θp(τp),

P (A22 ∩Bc
22) = P ((Ỹ1, Ỹ2)′ ∈ D22) ≤ Lp · p−2ϑ−min([(

√
r(1−h20)−√q)+]2,2{[

√
r(1−h0)−√q]+}2),

(83)
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and the equality holds when β1 = −β2 = τp. Inserting (80)-(83) into (79) gives the claim.
�

6.7 Lemma 22 and the Proof

Lemma 22 Let (V ∗0j , V
∗

1j) be defined as in (25). If the conditions of Theorem 6 hold, then

max{|V ∗0j ∪ V ∗1j |} ≤ (ϑ+ r)2/(2ϑr).

Proof. Let V0 = ∅ and V1 = {j}. It is seen that α∗(V0, V1; Ω) = 1, and η(V0, V1; Ω) ≤
(ϑ+r)2/(4r). Using this and the definitions of V ∗0j and V ∗1j , max{|V ∗0j |, |V ∗1j |}ϑ ≤ (ϑ+r)2/(4r)
and the claim follows. �
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