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Abstract

In this paper, we present a new adaptive feature scaling scheme for ultrahigh-dimensional
feature selection on Big Data, and then reformulate it as a convex semi-infinite programming
(SIP) problem. To address the SIP, we propose an efficient feature generating paradigm.
Different from traditional gradient-based approaches that conduct optimization on all in-
put features, the proposed paradigm iteratively activates a group of features, and solves a
sequence of multiple kernel learning (MKL) subproblems. To further speed up the training,
we propose to solve the MKL subproblems in their primal forms through a modified accel-
erated proximal gradient approach. Due to such optimization scheme, some efficient cache
techniques are also developed. The feature generating paradigm is guaranteed to converge
globally under mild conditions, and can achieve lower feature selection bias. Moreover,
the proposed method can tackle two challenging tasks in feature selection: 1) group-based
feature selection with complex structures, and 2) nonlinear feature selection with explicit
feature mappings. Comprehensive experiments on a wide range of synthetic and real-world
data sets of tens of million data points with O(101*) features demonstrate the competi-
tive performance of the proposed method over state-of-the-art feature selection methods in
terms of generalization performance and training efficiency.

Keywords: big data, ultrahigh dimensionality, feature selection, nonlinear feature selec-
tion, multiple kernel learning, feature generation

1. Introduction

With the rapid development of the Internet, big data of large volume and ultrahigh di-
mensionality have emerged in various machine learning applications, such as text mining
and information retrieval (Deng et al., 2011; Li et al., 2011, 2012). For instance, Wein-
berger et al. (2009) have studied a collaborative email-spam filtering task with 16 trillion
(10'3) unique features. The ultrahigh dimensionality not only incurs unbearable memory
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requirements and high computational cost in training, but also deteriorates the general-
ization ability because of the “curse of dimensionality” issue (Duda et al., 2000.; Guyon
and Elisseeff, 2003; Zhang and Lee, 2006; Dasgupta et al., 2007; Blum et al., 2007). For-
tunately, for many data sets with ultrahigh dimensions, most of the features are irrelevant
to the output. Accordingly, dropping the irrelevant features and selecting the most rele-
vant features can vastly improve the generalization performance (Ng, 1998). Moreover, in
many applications such as bioinformatics (Guyon and Elisseeff, 2003), a small number of
features (genes) are required to interpret the results for further biological analysis. Finally,
for ultrahigh-dimensional problems, a sparse classifier is important for faster predictions.

Ultrahigh dimensional data also widely appear in many nonlinear machine learning
tasks. For example, to tackle the intrinsic nonlinearity of data, researchers proposed to
achieve fast training and prediction through linear techniques using explicit feature map-
pings (Chang et al., 2010; Maji and Berg, 2009). However, most of the explicit feature
mappings will dramatically expand the data dimensionality. For instance, the commonly
used 2-degree polynomial kernel feature mapping has a dimensionality of O(m?), where m
denotes the number of input features (Chang et al., 2010). Even with a medium m, the
dimensionality of the induced feature space is very huge. Other typical feature mappings
include the spectrum-based feature mapping for string kernel (Sonnenburg et al., 2007;
Sculley et al., 2006), histogram intersection kernel feature expansion (Wu, 2012), and so on.

Numerous feature selection methods have been proposed for classification tasks in the
last decades (Guyon et al., 2002; Chapelle and Keerthi, 2008). In general, existing feature
selection methods can be classified into two categories, namely filter methods and wrapper
methods (Kohavi and John, 1997; Ng, 1998; Guyon et al., 2002). Filter methods, such as
the signal-to-noise ratio method (Golub et al., 1999) and the spectral feature filtering (Zhao
and Liu, 2007), own the advantages of low computational cost, but they are incapable of
finding an optimal feature subset w.r.t. a predictive model of interest. On the contrary,
by incorporating the inductive learning rules, wrapper methods can select more relevant
features (Xu et al., 2009a; Guyon and Elisseeff, 2003). However, in general, the wrapper
methods are more computationally expensive than the filter methods. Accordingly, how
to scale the wrapper methods to big data is an urgent and challenging issue, and is also a
major focus of this paper.

One of the most famous wrapper methods is the support vector machine (SVM) based
recursive feature elimination (SVM-RFE), which has shown promising performance in the
Microarray data analysis, such as gene selection task (Guyon et al., 2002). Specifically,
SVM-RFE applys a recursive feature elimination scheme, and obtains nested subsets of fea-
tures based on the weights of SVM classifiers. Unfortunately, the nested feature selection
strategy is “monotonic” and suboptimal in identifying the most informative feature sub-
set (Xu et al., 2009a; Tan et al., 2010). To address this drawback, non-monotonic feature
selection methods have gained great attention (Xu et al., 2009a; Chan et al., 2007). Basi-
cally, the non-monotonic feature selection requires the convexity of the objective in order
to easily find a global solution. To this end, Chan et al. (2007) proposed two convex relax-
ations to an fp-norm sparse SVM, namely QSSVM and SDP-SSVM. The resultant models
are convex, and can be solved by the convex quadratically constrained quadratic program-
ming (QCQP) and the semi-definite programming (SDP), respectively. These two methods
belong to the non-monotonic feature selection methods. However, they are very expen-
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sive especially for high dimensional problems. Xu et al. proposed another non-monotonic
feature selection method, namely NMMKL (Xu et al., 2009a). Unfortunately, NMMKL is
computationally infeasible for high dimensional problems since it involves a QCQP problem
with many quadratic constraints.

Focusing on the logistic loss, recently, some researchers proposed to select features using
greedy strategies (Tewari et al., 2011; Lozano et al., 2011), which iteratively include one
feature into a feature subset. For example, Lozano et al. (2011) proposed a group orthogonal
matching pursuit. Tewari et al. (2011) further introduced a general greedy scheme to solve
more general sparsity constrained problems. Although promising performance has been
observed, the greedy methods have several drawbacks. For example, since only one feature
is involved in each iteration, these greedy methods are very expensive when there are a
large number of features to be selected. More critically, due to the absence of appropriate
regularizer in the objective function, the over-fitting problem may happen, which may
deteriorate the generalization performance (Lozano et al., 2011; Tewari et al., 2011).

Given a set of labeled patterns {x;, y;}1_;, where x; € R™ is an instance with m features,
and y; € {£1} is the output label. To avoid the over-fitting problem or induce sparsity,
people usually introduce some regularizers to the loss function. For instance, to select
features that contribute the most to the margin, we can learn a sparse decision function
d(x) = w'x by solving:

n
min [lwllo +C Y I(~yw'xs),
=1

where [(-) is a convex loss function, w € R™ is the weight vector, ||[w||o denotes the ¢yp-norm
that counts the number of non-zeros in w, and C > 0 is a regularization parameter. Unfortu-
nately, this problem is NP-hard due to the £y-norm regularizer. Therefore, many researchers
resort to learning a sparse decision rule through an ¢i-convex relaxation instead (Bradley
and Mangasarian, 1998; Zhu et al., 2003; Fung and Mangasarian, 2004):

min [lwll +C Y 1(~yw'xs), (1)
=1

where [[wll1 = 377", |wj]| is the £1-norm on w. The ¢1-regularized problem can be efficiently
solved, and many optimization methods have been proposed to solve this problem, including
Newton methods (Fung and Mangasarian, 2004), proximal gradient methods (Yuan et al.,
2011), coordinate descent methods (Yuan et al., 2010, 2011), and so on. Interested readers
can find more details of these methods in (Yuan et al., 2010, 2011) and references therein.
Beside these methods, recently, to address the big data challenge, great attention has been
paid on online learning methods and stochastic gradient descent (SGD) methods for dealing
with big data challenges (Xiao, 2009; Duchi and Singer, 2009; Langford et al., 2009; Shalev-
Shwartz and Zhang, 2013).

However, there are several deficiencies regarding these ¢;-norm regularized model and
existing /1-norm methods. Firstly, since the /1-norm regularization shrinks the regressors,
the feature selection bias inevitably exists in the ¢j-norm methods (Zhang and Huang,
2008; Zhang, 2010b; Lin et al., 2010; Zhang, 2010a). To demonstrate this, let L(w) =
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Yo, l(—yiw'x;) be the empirical loss on the training data, then w* is an optimal solution

to (1) if and only if it satisfies the following optimality conditions (Yuan et al., 2010):

V;L(w*) =-1/C if w; >0,
V,L(w*) =1/C if w! <0, 2)

—1/C <V;L(w*) <1/C if wj=0.

According to the above conditions, one can achieve different levels of sparsity by changing
the regularization parameter C. On one hand, using a small C, minimizing ||w|; in (1)
would favor selecting only a few features. The sparser the solution is, the larger the predic-
tive risk (or empirical loss) will be (Lin et al., 2010). In other words, the solution bias will
happen (Figueiredo et al., 2007). In an extreme case, where C' is chosen to be tiny or even
close to zero, none of the features will be selected according to the condition (2), which will
lead to a very poor prediction model. On the other hand, using a large C, one can learn
an more fitted prediction model to to reduce the empirical loss. However, according to (2),
more features will be included. In summary, the sparsity and the unbiased solutions cannot
be achieved simultaneously via solving (1) by changing the tradeoff parameter C'. A possible
solution is to do de-biasing with the selected features using re-training. For example, we
can use a large C' to train an unbiased model with the selected features (Figueiredo et al.,
2007; Zhang, 2010b). However, such de-biasing methods are not efficient.

Secondly, when tackling big data of ultrahigh dimensions, the ¢;-regularization would
be inefficient or infeasible for most of the existing methods. For example, when the di-
mensionality is around 10'2, one needs about 1 TB memory to store the weight vector w,
which is intractable for existing ¢;-methods, including online learning methods and SGD
methods (Langford et al., 2009; Shalev-Shwartz and Zhang, 2013). Thirdly, due to the
scale variation of w, it is also non-trivial to control the number of features to be selected
meanwhile to regulate the decision function.

In the conference version of this paper, an £y-norm sparse SVM model is introduced (Tan
et al., 2010). Its nice optimization scheme has brought significant benefits to several appli-
cations, such as image retrieval (Rastegari et al., 2011), multi-label prediction (Gu et al.,
2011a), feature selection for multivariate performance measures (Mao and Tsang, 2013), fea-
ture selection for logistic regression (Tan et al., 2013), and graph-based feature selection (Gu
et al., 2011b). However, several issues remain to be solved. First of all, the tightness of the
convex relation remains unclear. Secondly, the adopted optimization strategy is incapable
of dealing with very large-scale problems with many training instances. Thirdly, the pre-
sented feature selection strategy was limited to linear features, but in many applications,
one indeed needs to tackle nonlinear features that are with complex structures.

Regarding the above issues, in this paper, we propose an adaptive feature scaling (AFS)
for feature selection by introducing a continuous feature scaling vector d € [0,1]". To en-
force the sparsity, we impose an explicit ¢1-constraint ||d||; < B, where the scalar B repre-
sents the least number of features to be selected. The solution to the resultant optimization
problem is non-trivial due to the additional constraint. Fortunately, by transforming it as
a convex semi-infinite programming (SIP) problem, an efficient optimization scheme can be
developed. In summary, this paper makes the following extensions and improvements.

e A feature generating machine (FGM) is proposed to efficiently address the ultrahigh-
dimensional feature selection task through solving the proposed SIP problem. Instead
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of performing the optimization on all input features, FGM iteratively infers the most
informative features, and then solves a reduced multiple kernel learning (MKL) sub-
problem, where each base kernel is defined on a set of features.!

e The proposed optimization scheme mimics the re-training strategy to reduce the fea-
ture selection bias with little effort. Specifically, the feature selection bias can be
effectively alleviated by separately controlling the complexity and sparsity of the de-
cision function, which is one of the major advantages of the proposed scheme.

e To speed up the training on big data, we propose to solve the primal form of the
MKL subproblem by a modified accelerated proximal gradient method. As a result,
the memory requirement and computational cost can be significantly reduced. The
convergence rate of the modified APG is also provided. Moreover, several cache
techniques are proposed to further enhance the efficiency.

e The feature generating paradigm is also extended to group feature selection with com-
plex group structures and nonlinear feature selection using explicit feature mappings.

The remainder of this paper is organized as follows. In Section 2, we start by presenting
the adaptive feature scalings (AFS) for linear feature selection and group feature selection,
and then present the convex SIP reformulations of the resultant optimization problems. Af-
ter that, to solve the SIP problems, in Section 3, we propose the feature generating machine
(FGM) which includes two core steps, namely the worst-case analysis step and the subprob-
lem optimization step. In Section 4, we illustrate the worst-case analysis for a number of
learning tasks, including the group feature selection with complex group structures and the
nonlinear feature selection with explicit feature mappings. We introduce the subproblem
optimization in Section 5 and extend FGM for multiple kernel learning w.r.t. many addi-
tive kernels in Section 6. Related studies are presented in Section 7. We conduct empirical
studies in Section 8, and conclude this work in Section 9.

2. Feature Selection Through Adaptive Feature Scaling

Throughout the paper, we denote the transpose of vector/matrix by the superscript /, a
vector with all entries equal to one as 1 € R”, and the zero vector as 0 € R”. In addition,
we denote a data set by X = [x1,...,x,] = [f},...,f"], where x; € R™ represents the ith
instance and f/ € R™ denotes the jth feature vector. We use |G| to denote cardinality of an
index set G and |v| to denote the absolute value of a real number v. For simplicity, we denote
v = aifv; > oy, Viand v < v if v; < «;, Vi. We also denote ||v||, as the £,-norm of a vector
and [|v]| as the f2-norm of a vector. Given a vector v = [v{,...,v,]’, where v; denotes a
sub-vector of v, we denote |[v|j2,1 = > F_, ||vi|| as the mixed ¢;/¢3 norm (Bach et al., 2011)
and [|v|[3; = (-0, [[vill)?. Accordingly, we call ||v[|3, as an £3; regularizer. Following
Rakotomamonjy et al. (2008), we define F = 0 if z; = 0 and oo otherwise. Finally, A © B
represents the element-wise product between two matrices A and B.

1. The C++ and MATLAB source codes of the proposed methods are publicly available at http://www.
tanmingkui.com/fgm.html.
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2.1 A New AFS Scheme for Feature Selection

In the standard support vector machines (SVM), one learns a linear decision function d(x) =
w’x — b by solving the following fs-norm regularized problem:

1 &
min o [wl* +C Y i(—yi(w'x; =), (3)
i=1
where w = [wq,...,wy,]" € R™ denotes the weight of the decision hyperplane, b denotes

the shift from the origin, C' > 0 represents the regularization parameter and I(-) denotes a
convex loss function. In this paper, we concentrate on two kinds of loss functions, namely
the squared hinge loss

1
I(—yi(W'x; — b)) = 3 max (1 — y;(w'x; — b),0)?
and the logistic loss

l(—yi(w'x; — b)) = log(1 + exp(—y;(w'x; — b))).

For simplicity, herein we concentrate the squared hinge loss only.

In (3), the fy-regularizer ||w||? is used to avoid the over-fitting problem (Hsieh et al.,
2008), which, however, cannot induce sparse solutions. To address this issue, we introduce a
feature scaling vector d € [0, 1]™ such that we can scale the importance of features. Specifi-
cally, given an instance x;, we impose vd = [\/d1, ..., /dp]' on its features (Vishwanathan
et al., 2010), resulting in a re-scaled instance

% = (x; ©Vd). (4)

In this scaling scheme, the jth feature is selected if and only if d; > 0.

Note that, in many real-world applications, one may intend to select a desired number of
features with acceptable generalization performance. For example, in the Microarray data
analysis, due to expensive bio-diagnosis and limited resources, biologists prefer to select
less than 100 genes from hundreds of thousands of genes (Guyon et al., 2002; Golub et al.,
1999). To incorporate such prior knowledge, we explicitly impose an ¢1-norm constraint on
d to induce the sparsity:

m

Y di=|ldL <B, dje0,1], j=1,---,m,

j=1
where the integer B represents the least number of features to be selected. Similar feature
scaling scheme has been used by many works (e.g., Weston et al., 2000; Chapelle et al., 2002;
Grandvalet and Canu, 2002; Rakotomamonjy, 2003; Varma and Babu, 2009; Vishwanathan
et al., 2010). However, different from the proposed scaling scheme, in these scaling schemes,
d is not bounded in [0, 1]™.

Let D = {d e R™ Z;”Zldj <B,dje[01], j=1,--- ,m} be the domain of d, the

proposed AFS can be formulated as the following problem:

1 C &
. . 2 2
4 . 5
min ménb 2IIWH2+ 5 ;1 & (5)

s.t. yi(wl(XiQ\/a)*b)zlfgh i=1,---,n,
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where C' is a regularization parameter that trades off between the model complexity and
the fitness of the decision function, and b/||w|| determines the offset of the hyperplane
from the origin along the normal vector w. This problem is non-convex w.r.t. w and d
simultaneously, and the compact domain D contains infinite number of elements. However,
for a fixed d, the inner minimization problem w.r.t. w and £ is a standard SVM problem:

. 1 5y O~
ménb §”W||2+ 2;@ (6)
s.t. yi<w/(xi®\/3)—b>21—gi, i=1,--.n,
which can be solved in its dual form. By introducing the Lagrangian multiplier «;; > 0 to

each constraint y; <w’ (x; ©Vd) — b> > 1—¢&;, the Lagrangian function is:

n

£(w,&ba) = w3 + Sigf ~Yai(w(Wovd) b)) -1+&). @
i=1

i=1
By setting the derivatives of L(w,&,b, ) w.r.t. w, £ and b to 0, respectively, we get
n n
w:Zaiyi(xiQ\/a),a:CE, and Zaiyi =0. (8)
i=1 1=1
Substitute these results into (7), and we arrive at the dual form of problem (6) as:
n 2 1
Z iy (x © \/a)
i=1

- %a’a +a'l,

1
max — —
acA 2

where A = {a|>"" | a;y; = 0, = 0} is the domain of a. For convenience, let c(a) =

2
S ayi(x © \/a)‘

coordinate of c(a), namely c¢;j(a), is a function of a. For simplicity, let

Yo ayix; € R™, we have = > djlcj(a))?, where the jth

1 & s 1
fla,d) = 5 jz_:ldj[cj(a)] + %a'a —a'l.
Apparently, f(a,d) is linear in d and concave in «;, and both A and D are compact domains.
Problem (5) can be equivalently reformulated as the following problem:

. _ d 9
min max fle,d), 9)

However, this problem is still difficult to be addressed. Recall that both A and D are convex
compact sets, according to the minimax saddle-point theorem (Sion, 1958), we immediately
have the following relation.

Theorem 1 According to the minimaz saddle-point theorem (Sion, 1958), the following
equality holds by interchanging the order of mingep and maxgea in (9),

dpazy —/led gy —Sed
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Based on the above equivalence, rather than solving the original problem in (9), hereafter
we address the following minimax problem instead:

i d). 1
AL g Tl d 1o

2.2 AF'S for Group Feature Selection

The above AFS scheme for linear feature selection can be extended for group feature se-
lections, where the features are organized into groups defined by G = {Gi,...,G,}, where
ug?:lgj = {1,...,m}, p = |G| denotes the number of groups, and G; C {1,....m},j =1,...,p
denotes the index set of feature supports belonging to the jth group. In the group feature
selection, a feature in one group is selected if and only if this group is selected (Yuan and
Lin, 2006; Meier et al., 2008). Let wg, € RI9 | and Xg, € RI9 | be the components of w and
x related to Gj, respectively. The group feature selection can be achieved by solving the
following non-smooth group lasso problem (Yuan and Lin, 2006; Meier et al., 2008):

P n p
7j=1 =1 7j=1

where ) is a trade-off parameter. Many efficient algorithms have been proposed to solve
this problem, such as the accelerated proximal gradient descent methods (Liu and Ye, 2010;
Jenatton et al., 2011b; Bach et al., 2011), block coordinate descent methods (Qin et al.,
2010; Jenatton et al., 2011b) and active set methods (Bach, 2009; Roth and Fischer, 2008).
However, the issues of the ¢1-regularization, namely the scalability issue for big data and
the feature selection bias, will also happen when solving (11). More critically, when dealing
with feature groups with complex structures, the number of groups can be exponential in
the number of features m. As a result, solving (11) could be very expensive.

To extend AFS to group feature selection, we introduce a group scaling vector d =
[cﬂ,...,cfp]' € D to scale the groups, where D = {8 € Rp‘ Z?Zlc/i\j < B,c;l\j e [0,1], j =
1,---, p}. Here, without loss of generality, we first assume that there is no overlapping ele-
ment among groups, namely, G;NG; = 0,Vi # j. Accordingly, we have w = [Wé;l, ey w’gp]/ €
R™. By taking the shift term b into consideration, the decision function is expressed as:

P
d(x) = Z \/C?jwé;ngj — b,
j=1

By applying the squared hinge loss, the AFS based group feature selection task can be
formulated as the following optimization problem:

1 C
min min w4+ =) &
depwés 20 02 Z; '

p
sty | Yo\ diwgxig, —b| 216, &20, i=1-n.

=1
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With similar deductions in Section 2.1, this problem can be transformed into the following
minimax problem:

2

— Lo/oz +a'l.
2C

1+ I w

min max —— d; G YiXiG

dep e 22 ] Z 1YiXiG;
j=1 i=1

This problem is reduced to the linear feature selection case if |gj| =1,Vj=1,...,p. For con-

venience, hereafter we drop the hat from d and D. Let cg,(a) = > | ayiXig,. Moreover,

we define

1 1
flend) =5 ;dj lleg, ()| + sea— oL

Finally, we arrive at a unified minimax problem for both linear and group feature selections:

i d 12
min max  f(a,d), (12)

where D = {d e R?|Y0_ 1 d; < B, dj € [0,1], j=1,---,p}. When |G| = 1,Vj =1,...,p,
we have p = m, and problem (12) is reduced to problem (10).

2.3 Group Feature Selection with Complex Structures

Now we extend the above group AFS scheme to feature groups with overlapping features
or even more complex structures. When dealing with groups with overlapping features, a
heuristic way is to explicitly augment X = [f!, ..., f] to make the overlapping groups non-
overlapping by repeating the overlapping features. For example, suppose X = [f!, f2 3]
with groups G = {G1,Ga}, where G; = {1,2} and G = {2,3}, and 2 is an overlapping
feature. To avoid the overlapping feature issue, we can repeat £2 to construct an augmented
data set X, = [f!,f2 f2,£3], where the group index sets become G; = {1,2} and Gy =
{3,4}. This feature augmentation strategy can be extended to groups with even more
complex structures, such as tree structures or graph structures (Bach, 2009). For simplicity,
in this paper, we only study the tree-structured groups.

Definition 1 Tree-structured set of groups (Jenatton et al., 2011b; Kim and Xing, 2010,
2012). A super set of groups G = {Gn}g,eg with |G| = p is said to be tree-structured in
{1,...,m}, if UG, = {1, ...,m} and if for all G4,G, € G, (GgNGr, # @) = (Gg C Gi, or G C

Gg). For such a set of groups, there exists a (non-unique) total order relation < such that:
gg = gh:> {gg ggh OngmthQ}‘

Similar to the overlapping case, we augment the overlapping elements of all groups along
the tree structures, resulting in the augmented data set X4, = [Xg, ..., Xg,], where Xg,
represents the data columns indexed by G; and p denotes the number of all possible groups.
However, this simple idea may bring great challenges for optimization, particularly when
there are huge number of overlapping groups (For instance, in graph-based group structures,
the number of groups p can be exponential in m (Bach, 2009)).
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3. Feature Generating Machine

Under the proposed AFS scheme, both linear feature selection and group feature selection
can be cast as the minimax problem in (12). By bringing in an additional variable # € R, this
problem can be further formulated as a semi-infinite programming (SIP) problem (Kelley,
1960; Pee and Royset, 2010):
in 6, st. 6> ,d), vdeD. 13

om0, 8 > f(a,d) (13)
In (13), each nonzero d € D defines a quadratic constraint w.r.t. a. Since there are infinite
d’s in D, problem (13) involves infinite number of constraints, thus it is very difficult to be
solved.

3.1 Optimization Strategies by Feature Generation

Before solving (13), we first discuss its optimality condition. Specifically, let pp > 0 be
the dual variable for each constraint § > f(a,d), the Lagrangian function of (13) can be
written as:

£(97a7“) =0- Z 20 (0 - f(avdh)) :
d,eD

By setting its derivative w.r.t.  to zero, we have > pp = 1. Let M = {p| > pp = 1, up >
0,h=1,...,|D|} be the domain of g and define

fm(e) = max (e, dp).

The KKT conditions of (13) can be written as:

Z thaf(aadh) =0, and Z pn = 1. (14)
d,eD d,eD
:U'h(f<a7dh) - fm(Oé)) =0, pup=20, h=1,.., ’D’ (15)

In general, there are many constraints in problem (14). However, most of them are
nonactive at the optimality if the data contain only a small number of relevant features
w.r.t. the output y. Specifically, according to condition (15), we have u; = 0 if f(a,dp) <
fm(a), which will induce the sparsity among pup’s. Motivated by this observation, we
design an efficient optimization scheme which iteratively “finds” the active constraints, and
then solves a subproblem with the selected constraints only. By applying this scheme, the
computational burden brought by the infinite number of constraints can be avoided. The
details of the above procedure is presented in Algorithm 1, which is also known as the
cutting plane algorithm (Kelley, 1960; Mutapcic and Boyd, 2009).

Algorithm 1 involves two major steps: the feature inference step (also known as the
worst-case analysis) and the subproblem optimization step. Specifically, the worst-case
analysis is to infer the most-violated d; based on a’~!, and add it into the active constraint
set C;. Once an active d; is identified, we update a! by solving the following subproblem
with the constraints defined in C;:

i 0 t. d;,)—0< d . 1
aErn.Al,IO}ER ) S f(a’ h) = 07 v h S Ct ( 6)

1380



TOWARDS ULTRAHIGH DIMENSIONAL FEATURE SELECTION FOR BIG DATA

Algorithm 1 Cutting Plane Algorithm for Solving (13).

1: Initialize a® = C1 and Cy = (). Set iteration index ¢ = 1.
2: Feature Inference:
Do worst-case analysis to infer the most violated d; based on
Set Ct = Ct—l U{dt}
3: Subproblem Optimization:
Solve subproblem (16), obtaining the optimal solution a! and ut.
4: Let t =t + 1. Repeat step 2-3 until convergence.

t—1

For feature selection tasks, the optimization complexity of (13) can be greatly reduced,
since there are only a small number of active constraints involved in problem (16).

The whole procedure iterates until some stopping conditions are achieved. As will be
shown later, in general, each active d; € C; involves at most B new features. In this
sense, we refer Algorithm 1 to as the feature generating machine (FGM). Recall that, at
the beginning, there is no feature being selected, thus we have the empirical loss & = 1.
According to (8), we can initialize a® = C1. Finally, once the optimal solution d* to (16) is
obtained, the selected features (or feature groups) are associated with the nonzero entries in
d*. Note that, each d € C; involves at most B features/groups, thus the number of selected
features/groups is no more than tB after t iterations, namely ||d*||o < tB.

3.2 Convergence Analysis

Before the introduction of the worst-case analysis and the solution to the subproblem, we
first conduct the convergence analysis of Algorithm 1.

Without loss of generality, let A x D be the domain for problem (13). In the (¢ + 1)th
iteration, we find a new constraint d;y; based on a; and add it into Cy, i.e., f(a,di1) =
maxdep f(a,d). Apparently, we have C; C Cy11. For convenience, we define

B = max f(au,d;) = min max fle,d;).

and

pr= min f(ey,dji1) = min (max f(ey,d)),

First of all, we have the following lemma.

Lemma 1 Let (a*,0%) be a globally optimal solution of (13), {6:} and {¢:} as defined
above, then: 0y < 0* < ¢;. With the number of iteration t increasing, {6;} is monotonically
increasing and the sequence {p} is monotonically decreasing (Chen and Ye, 2008).

Proof According to the definition, we have §; = /3;. Moreover, 0*=minge 4 maxgep f(a, d).
For a fixed feasible a, we have maxqgee, f(a,d) < maxgep f(a,d), then

i a,d) < mi a,d
s = gy e D
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that is, §; < 6*. On the other hand, for Vj = 1,--- ,k, f(a,djt1) = maxgep f(e,d), thus
(o, f(eej,djq1)) is a feasible solution of (13). Then 6* < f(ay,dj4q1) for j=1,---,t, and
hence we have
* L = i - ds .
0" < ¢ 11%1]12tf(a]7 djt1)
With increasing iteration ¢, the subset C; is monotonically increasing, so {6;} is monotoni-
cally increasing while {¢;} is monotonically decreasing. The proof is completed. |

The following theorem shows that FGM converges to a global solution of (13).

Theorem 2 Assume that in Algorithm 1, the subproblem (16) and the worst-case analysis
in step 2 can be solved. Let {(cy,0;)} be the sequence generated by Algorithm 1. If Algo-
rithm 1 terminates at iteration (t+ 1), then {(oy, 0;)} is the global optimal solution of (13);
otherwise, (o, 0:) converges to a global optimal solution (o*,0%) of (15).

Proof We can measure the convergence of FGM by the gap difference of series {6;} and
{¢¢}. Assume in tth iteration, there is no update of Cy, i.e. dyy1 = argmaxgep f(ay,d) €
Ct, then C; = Cy41. In this case, (ay,0;) is the globally optimal solution of (13). Actually,
since C; = Cy41, in Algorithm 1, there will be no update of «, i.e. @41 = ay. Then we have

flag,digr) = max flow,d) = gleacff(aud) = max flaw,d;) = 0

pr = lréljirgltf(aj, djt1) < 6.

According to Lemma 1, we have 6; < 6* < ¢, thus we have 0, = 6* = ¢, and (a, 0;)
is the global optimum of (13).

Suppose the algorithm does not terminate in finite steps. Let X = A x [61,0%], a limit
point (&, ) exists for (a, 0;), since X is compact. And we also have § < §*. For each t, let
X; be the feasible region of tth subproblem, which have &; C X, and (&, 0) € N2, X; C X.
Then we have f(&,d;) — 0 <0, d; € C; for each given t =1,---.

To show (&, ) is global optimal of problem (13), we only need to show (&, f) is a feasible
point of problem (13), i.e., # > f(&,d) for all d € D, so § > §* and we must have 6 = 6*.
Let v(a,0) = mingep(0 — f(a,d)) = 0 —maxgep f(a,d). Then v(ey, 6) is continuous w.r.t.
(e, 0). By applying the continuity property of v(e, 6), we have

v(a, ) = v(ay, ;) + (v(a, 0) — v(ay, 6;))
= (0; — f(au,diy1)) + (v(@,0) — v(cu, 6;))
> (Gt — f(at,dt+1)) — (é — f(d, dt)) + (U(d,e_) — U(Oét, Gt)) —0 (When t— OO),

where we use the continuity of v(e, §). The proof is completed. |

4. Efficient Worst-Case Analysis

According to Theorem 2, the exact solution to the worst-case analysis is necessary for the
global convergence of FGM. Fortunately, for a number of feature selection tasks, the exact

worst-case analysis does exist. For simplicity, hereafter we drop the superscript ¢ from a!.
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4.1 Worst-Case Analysis for Linear Feature Selection

The worst-case analysis for the linear feature selection is to solve the following maximization
problem:

2 m
, st. Y d;<B,0=d=1 (17)

1

max —
d 2 -
Jj=1

Z aiyi(x; © Vd)
i=1

This problem in general is very hard to be solved. Recall that c(a) = > 7" | a;yix; € R™,
and we have || 31 ayi(x; © VA) |2 = || 0 (quyixi) ©@ VA2 = Py cj(a)?d;. Based on
this relation, we define a feature score s; to measure the importance of features as

sj = lej(a)]?.

Accordingly, problem (17) can be further formulated as a linear programming problem:

1 m m
I’HCEIlX 5 Z;dej, s.t. z;dl S B, 0 j d j 1. (18)
J= J=

The optimal solution to this problem can be obtained without any numeric optimization
solver. Specifically, we can construct a feasible solution by first finding the B features with
the largest feature score s;, and then setting the corresponding d; to 1 and the rests to 0.
It is easy to verify that such a d is also an optimal solution to (18). Note that, as long as
there are more than B features with s; > 0, we have ||d||o = B. In other words, in general,
d will include B features into the optimization after each worst-case analysis.

4.2 Worst-Case Analysis for Group Feature Selection

The worst-case analysis for linear feature selection can be easily extended to group feature
selection. Suppose that the features are organized into groups by G = {Gi,...,G,}, and
there is no overlapping features among groups, namely G; N G; = 0, Vi # j. To find the
most-active groups, we just need to solve the following optimization problem:

n
E QG YiXigG;
i=1

where cg, = Yo a;yiXig, for group G;. Let s; = c’gjcQj be the score for group G;. The

p

max d;
deD

2 p
= rélez%(Zdjc’gjcQj, (19)
j=1 j=1

optimal solution to (19) can be obtained by first finding the B groups with the largest s;’s,
and then setting their d;’s to 1 and the rests to 0. If |G;| = 1, Vj € {1, ..., m}, problem (19)
is reduced to problem (18), where G = {{1},...,{p}} and s; = [¢;j(a)]? for j € G. In this
sense, we unify the worst-case analysis of the two feature selection tasks in Algorithm 2.

4.3 Worst-Case Analysis for Groups with Complex Structures

Algorithm 2 can be also extended to feature groups with overlapping features or with tree-
structures. Recall that p = |G|, the worst-case analysis in Algorithm 2 takes O(mn +
plog(B)) cost, where the O(mn) cost is for computing ¢, and the O(plog(B)) cost is for
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Algorithm 2 Algorithm for Worst-Case Analysis.
Given o, B, the training set {x;,y;}I"; and the group index set G = {G1,...,Gp}.
1: Calculate ¢ = Y7 | ouyix;.

2: Calculate the feature score s, where s; = c’gj cg; -

3: Find the B largest s;’s.

4: Set d; corresponding to the B largest s;’s to 1 and the rests to 0.
5: Return d.

sorting s;’s. The second term is negligible if p = O(m). However, if p is extremely large,
namely p > m, the computational cost for computing and sorting s; will be unbearable.
For instance, if the feature groups are organized into a graph or a tree structure, p can
become very huge, namely p > m (Jenatton et al., 2011b).

Since we just need to find the B groups with the largest s;’s, we can address the above
computational difficulty by implementing Algorithm 2 in an incremental way. Specifically,
we can maintain a cache cp to store the indices and scores of the B feature groups with the
largest scores among those traversed groups, and then calculate the feature score s; for each
group one by one. After computing s; for a new group G;, we update cp if s; > %", where
sgm denotes the smallest score in cg. By applying this technique, the whole computational
cost of the worst-case analysis can be greatly reduced to O(n log(m)+ Blog(p)) if the groups
follow the tree-structure defined in Definition 1.

Remark 2 Given a set of groups G = {Gu,...,Gp} that is organized as a tree structure in
Definition 1, suppose G, C Gy, then sy, < sq. Furthermore, G, and all its decedent Gy, C G,
will not be selected if s, < sH"™. Therefore, the computational cost of the worst-case analysis

can be reduced to O(nlog(m) + Blog(p)) for a balanced tree structure.

5. Efficient Subproblem Optimization

After updating C;, now we tend to solve the subproblem (16). Recall that, any d; € C;
indexes a set of features. For convenience, we define X;, £ [X}L, X7 e R™"*B  where X},
denotes the ith instance with the features indexed by dj,.

5.1 Subproblem Optimization via MKL

Regarding problem (16), let up > 0 be the dual variable for each constraint defined by dy,
the Lagrangian function can be written as:

L0, a,p)=0— Z pe (0 — f(e,dp))-

dpeCy

By setting its derivative w.r.t. 6 to zero, we have > p; = 1. Let p be the vector of all
ue's, and M = {u|> pp = 1,un, > 0} be the domain of p. By applying the minimax
saddle-point theorem (Sion, 1958), £(0, a, ) can be rewritten as:

1

. . S
max min -~ > unflody) = Join max — 5(@® y)'( > i XnX, + 51)(04 ©y), (20)
dpeCy dpeCy

1384



TOWARDS ULTRAHIGH DIMENSIONAL FEATURE SELECTION FOR BIG DATA

where the equality holds since the objective function is concave in a and convex in p. Prob-
lem (20) is a multiple kernel learning (MKL) problem (Lanckriet et al., 2004; Rakotoma-
monjy et al., 2008) with |C;| base kernel matrices X; X} . Several existing MKL approaches
can be adopted to solve this problem, such as SimpleMKL (Rakotomamonjy et al., 2008).
Specifically, SimpleMKL solves the non-smooth optimization problem by applying a sub-
gradient method (Rakotomamonjy et al., 2008; Nedic and Ozdaglar, 2009). Unfortunately,
it is expensive to calculate the sub-gradient w.r.t. a for large-scale problems. Moreover, the
convergence speed of sub-gradient methods is limited. The minimax subproblem (20) can
be also solved by the proximal gradient methods (Nemirovski, 2005; Tseng, 2008) or SQP
methods (Pee and Royset, 2010) with faster convergence rates. However, these methods
involve expensive subproblems, and they are very inefficient when n is large.

Based on the definition of X}, we have Zdhect uhXhX/h = ZthCt uthiag(dh)X' =

Xdiag(d_q, ec, pndp) X w.r.t. the linear feature selection task. Accordingly, we have

d = 3 d (21)

d,eCe

where p* = [u, ..., ;)" denotes the optimal solution to (20). It is easy to check that, the

relation in (21) also holds for the group feature selection tasks. Since Zlhcill py = 1, we

have d* € D = {d‘ Z;n:l dj <B, djel0,1], j=1,--- ,m}, where the nonzero entries are
associated with selected features/groups.

5.2 Subproblem Optimization in the Primal

Solving the MKL problem in (20) is very expensive when n is very large. In other words, the
dimension of the optimization variable a in (20) is very large. Recall that, after ¢ iterations,
C; includes at most tB features, where tB < n. Motivated by this observation, we propose
to solve it in the primal form w.r.t. w. Apparently, the dimension of the optimization
variable w is much smaller than a, namely ||w||p < tB < n.

Without loss of generality, we assume that ¢ = |C;| after tth iterations. Let X, € R"*5
denote the data with features indexed by dj, € C;, wy, € R denote the weight vector w.r.t.
Xp, w = [wh,...,w}]" € RB be a supervector concatenating all wy,’s, where tB < n. For

convenience, we define
C & 9
1=

w.r.t. the squared hinge loss, where & = max(1 — y;(>_;, w)xin — b),0), and
n
P(w,b) = CZ log(1 + exp(&)),
i=1
w.r.t. the logistic loss, where & = —yi(zzzl wXip — b).

Theorem 3 Let x;;, denote the ith instance of Xy, the MKL subproblem (20) can be equiv-
alently addressed by solving an f%l—regulam'zed problem:

' 2
min (Z Hwhn) +P(w.b). 22)
h=1
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Furthermore, the dual optimal solution o can be recovered from the optimal solution £*.
To be more specific, o = C& holds for the square-hinge loss and o; = Sr%;(é@)) holds for

the logistic loss.

The proof can be found in Appendix A.
According to Theorem 3, rather than directly solving (20), we can address its primal

form (22) instead, which brings great advantages for the efficient optimization. Moreover,
Cexp(§})
I+exp(¢])
loss, respectively.? For convenience, we define

we can recover a* by o = C¢ and a; = w.r.t. the squared hinge loss and logistic

F(w,b) = Q(w) + P(w,b),

where Q(w) = %(22:1 lwnrl)?. F(w,b) is a non-smooth function w.r.t w, and P(w,b) has
block coordinate Lipschitz gradient w.r.t w and b, where w is deemed as a block variable.
Correspondingly, let VP(v) = 0y P(v,v) and VyP(v,vy) = OpP(v,vp). It is known that
F(w,b) is at least Lipschitz continuous for both logistic loss and squared hinge loss (Yuan
et al., 2011):

L
P(w,b) < P(v,v) + (VP(V),w — V) + (VsP(vp),b — vp) + = |lw — v[|* + ?be — upl|?,

where L and L; denote the Lipschitz constants regarding w and b, respectively.

Since F(w,b) is separable w.r.t w and b, we can minimize it regarding w and b in a block
coordinate descent manner (Tseng, 2001). For each block variable, we update it through
an accelerated proximal gradient (APG) method (Beck and Teboulle, 2009; Toh and Yun,
2009), which iteratively minimizes a quadratic approximation to F'(w,b). Specifically, given
a point [v/,vp]’, the quadratic approximation to F(w,b) at this point w.r.t. w is:

Qr(w,v,v5) = P(v,u)+ (VP(v),w—v)+ Qw) + %Hw —v|?
= Tl —ull? + () + Pv.) - [P, 23

where 7 is a positive constant and u = v — %VP(V). To minimize Qr(w,v,vp) W.r.t. w, it
is reduced to solve the following Moreau projection problem (Martins et al., 2010):

. T B 2
min §Hw ul” 4+ Q(w). (24)

For convenience, let u be the corresponding component to wp, namely u = [u},...,u}].
Martins et al. (2010) has shown that, problem (24) has a unique closed-form solution, which
is summarized in the following proposition.

Proposition 1 Let S:(u,v) be the optimal solution to problem (24) at point v, then
Sr(u,v) is unique and can be calculated as follows:

hoay,,  if op >0,

[S‘r(uav)}h = { sl

0, otherwise,

(25)

2. Here the optimal dual variable a* is required in the worst-case analysis.

1386



TOWARDS ULTRAHIGH DIMENSIONAL FEATURE SELECTION FOR BIG DATA

where [S,(u,v)]n € RE denote the corresponding component w.r.t. uy and o € R be an

intermediate variable. Let o = [|lui]],..., ||u]|] € RY, the intermediate vector o can be
on—s, if on>cg,

calculated via a soft-threshold operator: oy = [soft(0,<)]n = . Here

0, Otherwise.
the threshold value ¢ can be calculated in Step 4 of Algorithm 5.

Proof The proof can be adapted from the results in Appendix F in (Martins et al., 2010). H

Algorithm 3 Moreau Projection S;(u,v).

Given an point v, s = % and the number of kernels t.
1: Calculate o, = ||gp|| for all h =1, ..., ¢.
2: Sort 0 to obtain o such that O(1) = -+ = 0(p).-

h
6h—ﬁ26i >0,h = 1,...,t}.
1=

o
4: Calculate the threshold value ¢ = %ps > 0;.

3: Find p = max {t

5: Compute o = soft(0,s).
6: Compute and output S-(u,v) via equation (25).

Remark 3 For the Moreau projection in Algorithm 3, the sorting takes O(t) cost. In FGM
setting, t in general is very small, thus the Moreau projection can be efficiently computed.

Now we tend to minimize F'(w,b) regarding b. Since there is no regularizer on b, it is
equivalent to minimize P(w, vy) w.r.t. b. The updating can be done by b = vb—%bvbP(v, vp),
which is essentially the steepest descent update. We can use the Armijo line search (Nocedal

and Wright, 2006) to find a step size %b such that,
1
P(w,b) < P(wavb) - ?|VbP(V,’Ub>|2,
b

where w is the minimizer to Q- (w, v,vp). This line search can be efficiently performed since
it is conducted on a single variable only.

With the calculation of S;(g) in Algorithm 3 and the updating rule of b above, we
propose to solve (22) through a modified APG method in a block coordinate manner in
Algorithm 4. In Algorithm 4, L; and Ly denote the Lipschitz constants of P(w,b) w.r.t.
w and b at the t iteration of Algorithm 1, respectively. In practice, we estimate Lg by
Ly = 0.01nC, which will be further adjusted by the line search. When t > 0, L; is estimated
by L; = nL;_1. Finally, a sublinear convergence rate of Algorithm 4 is guaranteed.?

Theorem 4 Let Ly and Ly be the Lipschitz constant of P(w,b) w.r.t. w and b respectively.
Let {(w*,bF)'} be the sequences generated by Algorithm 4 and L = max(Ly, L), for any
k > 1, we have:
2L4||w® — w* |2 2Ly (b — b*)? < 2L)|w° — w*||2 2L — b*)?

n(k + 1)2 nk+1)2 =  plk+1)2 n(k +1)2

3. Regarding Algorithm 4, a linear convergence rate can be attained w.r.t. the logistic loss under mild
conditions. The details can be found in Appendix C.

F(w* b)) — F(w*,b*) <
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The proof can be found in Appendix B. The internal variables L* and Lf in Algorithm 3
are useful in the proof of the convergence rate.

According to Theorem 4, if Ly is very different from L;, the block coordinate updating
scheme in Algorithm 4 can achieve an improved convergence speed over the batch updating
w.r.t. (w',b)’. Moreover, the warm-start for initialization of w and b in Algorithm 4 is
useful to accelerate the convergence speed.

Algorithm 4 Accelerated Proximal Gradient for Solving Problem (22) (Inner Iterations).

Initialization: Initialize the Lipschitz constant L; = L; 1, set w® = v! = [w}_;,0']" and
W = Ug = b;_1 by warm start, 7o = Ly, n € (0, 1), parameter o' =1 and k = 1.
1: Set 7 = n7E—1.
For j =0,1,...,
Set u = v¥ — 1¥p(v¥), compute S;(u, v").
If F(S;(u,v¥),vF) < Q(S;(u,vF), vk, o),
Set 7, = T, stop;
Else
7 =min{n~!7, Li}.
End
End
2: Set w* =S, (u,v¥) and LF = 7.
3: Set 1, = NTk.
For j = 0,1, ...
Set b= vf — %VbP(V,vl’f).
If P(w",b) < P(wF, vf) — %ﬂ)]vbP(v,v{f)P,
Stop;
Else
7, = min{n~'7, L;}.
End
End
Set b* = b and L’g = T13. Go to Step 8 if the stopping condition achieves.

k)2
Set oft1 = Ly A 1;4(9 iy

Set vFHl = Wk 4+ Z’,izll (WP — wF=1) and vt = bF + ij;;l (bF —bF 1.
Let k =k + 1 and go to step 1.
Return and output w; = wk, by =b* and L, = NTk.

Warm Start: From Theorem 4, the number of iterations needed by APG to achieve
0 *
(||w \%w ||)

an e-solution is O . Since FGM incrementally includes a set of features into the

subproblem optimization, an warm start of w® can be very useful to improve its efficiency.
To be more specific, when a new active constraint is added, we can use the optimal solution
of the last iteration (denoted by [w?’,...,w} ;']) as an initial guess to the next iteration.
In other words, at the tth iteration, we use w™! = w’ = [w?’, wywi 1", 0] as the starting

point.
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5.3 De-biasing of FGM

Based on Algorithm 4, we show that FGM resembles the re-training process and can
achieve de-biased solutions. For convenience, we first revisit the de-biasing process in the
£1-minimization (Figueiredo et al., 2007).

De-biasing for /;-methods. To reduce the solution bias, a de-biasing process is often
adopted in ¢;-methods. For example, in the sparse recovery problem (Figueiredo et al.,
2007), after solving the ¢1-regularized problem, a least-square problem (which drops the
¢1-regularizer) is solved with the detected features (or supports). To reduce the feature
selection bias, one can also apply this de-biasing technique to the ¢;-SVM for classification
tasks. However, it is worth mentioning that, when dealing with classification tasks, due
to the label noises, such as the rounding errors of labels, a regularizer is necessary and
important to avoid the over-fitting issue. Alternatively, we can apply the standard SVM on
the selected features to do the de-biasing using a relative large C, which is also referred to
as the re-training. When C goes to infinity, it is equivalent to minimize the empirical loss
without any regularizer, which, however, may cause the over-fitting problem.

De-biasing effect of FGM. Recall that, in FGM, the parameters B and the trade-
off parameter C' are adjusted separately. In the worst-case analysis, FGM includes B
features/groups that violate the optimality condition the most. When B is sufficiently
small, the selected B features/groups can be regarded as the most relevant features. After
that, FGM addresses the E%rregularized problem (22) w.r.t. the selected features only,
which mimics the above re-training strategy for de-biasing. Specifically, we can use a
relatively large C' to penalize the empirical loss to reduce the solution bias. Accordingly,
with a suitable C', each outer iteration of FGM can be deemed as the de-biasing process, and
the de-biased solution will in turn help the worst-case analysis to select more discriminative
features.

5.4 Stopping Conditions

Suitable stopping conditions of FGM are important to reduce the risk of over-fitting and
improve the training efficiency. The stopping criteria of FGM include 1) the stopping
conditions for the outer cutting plane iterations in Algorithm 1; 2) the stopping conditions
for the inner APG iterations in Algorithm 4.

5.4.1 STOPPING CONDITIONS FOR OUTER ITERATIONS

We first introduce the stopping conditions w.r.t. the outer iterations in Algorithm 1. Re-
call that the optimality condition for the SIP problem is } 4 .p tVa f(e,d;) = 0 and
we(f(e,de) — fn(ex)) = 0,Vd; € D. A direct stopping condition can be written as:

fla,d) < fu(a) +¢, VdeD, (26)

where fi(a) = maxq, ec, f(or,dp) and € is a small tolerance value. To check this condition,
we just need to find a new d;y; via the worst-case analysis. If f(a,di+1) < fm(a) +
€, the stopping condition in (26) is achieved. In practice, due to the scale variation of
fm(a) for different problems, it is non-trivial to set the tolerance e. Since we perform
the subproblem optimization in the primal, and the objective value F'(w;) monotonically
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decreases. Therefore, in this paper, we propose to use the relative function value difference
as the stopping condition instead:

F(wtfl, b) — F(wt, b)
F(wo,b)

< €, (27)

where €. is a small tolerance value. In some applications, one may need to select a desired
number of features. In such cases, we can terminate Algorithm 1 after a maximum number
of T iterations with at most T'B features being selected.

5.4.2 STOPPING CONDITIONS FOR INNER ITERATIONS

Exact and Inexact FGM: In each iteration of Algorithm 1, one needs to do the inner
master problem minimization in (22). The optimality condition of (22) is VF(w) = 0.
In practice, to achieve a solution with high precision to meet this condition is expensive.
Therefore, we usually achieve an e-accurate solution instead.

Nevertheless, an inaccurate solution may affect the convergence. To demonstrate this,
let @ and & be the exact solution to (22). According to Theorem 3, the exact solution of
a to (20) can be obtained by a = E Now suppose w is an e-accurate solution to (22) and
£ be the corresponding loss, then we have a; = @; + ¢;, where ¢; is the gap between a and
a. When performing the worst-case analysis in Algorithm 2, we need to calculate

n

n n
c= Z QYiX; = Z(ai + €)yix; =€+ Z €iyiX; = € + AC,
=1 =1 =1

where ¢ denotes the exact feature score w.r.t. &, and Ac denotes the error of ¢ brought by
the inexact solution. Apparently, we have

6 — ¢l = [AG] = 0(e), Vj = L,y

Since we only need to find those significant features with the largest |¢;|’s, a sufficiently small
€ is enough such that we can find the most-active constraint. Therefore, the convergence
of FGM will not be affected if € is sufficiently small, but overall convergence speed of FGM
can be greatly improved. Let {w*} be the inner iteration sequence, in this paper, we set
the stopping condition of the inner problem as

F(wk_l) — F(wk)
F(wk-1)

S €in, (28)

where €;, is a small tolerance value. In practice, we set €, = 0.001, which works well for
the problems that will be studied in this paper.

5.5 Cache for Efficient Implementations

The optimization scheme of FGM allows to use some cache techniques to improve the
optimization efficiency.

Cache for features. Different from the cache used in kernel SVM which caches kernel
entries (Fan et al., 2005), we directly cache the features in FGM. In gradient-based methods,
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one needs to calculate w'x; for each instance to compute the gradient of the loss function,
which takes O(mn) cost in general. Unlike these methods, the gradient computation in the
modified APG algorithm of FGM is w.r.t. the selected features only. Therefore, we can use
a column-based database to store the data, and cache these features in the main memory
to accelerate the feature retrieval. To cache these features, we needs O(tBn) additional
memory. However, the operation complexity for feature retrieval can be significantly re-
duced from O(nm) to O(tBn), where tB < m for high dimensional problems. It is worth
mentioning that, the cache for features is particularly important for the nonlinear feature
selection with explicit feature mappings, where the data with expanded features can be too
large to be loaded into the main memory.

Cache for inner products. The cache technique can be also used to accelerate the
Algorithm 4. To make a sufficient decrease of the objective value, in Algorithm 4, a line
search is performed to find a suitable step size. When doing the line search, one may need
to calculate the loss function P(w) many times, where w = S;(g) = [w],...,w};]’. The
computational cost will be very high if n is very large. However, according to equation

(25), we have

op, op, 1
vh——VP Vh)),

el ™~ Tl 7 )

where only oy, is affected by the step size. Then the calculation of ) ; w'x; follows

é}w’& -3 (Z ‘“’h"”‘> -3 (Z ooy (] = [¥Pa )) |

=1 =1

w=5:(gn) =

According to the above calculation rule, we can make a fast computation of > ! | w'x;
by caching v} x;, and VP (v},)'x;, for the ht" group of each instance x;. Accordingly, the
complexity of computing Y " | w'x; can be reduced from O(ntB) to O(nt). That is to say,
no matter how many line search steps will be conducted, we only need to scan the selected
features once, which can greatly reduce the computational cost.

6. Nonlinear Feature Selection Through Kernels

By applying the kernel tricks, we can extend FGM to do nonlinear feature selections. Let
¢(x) be a nonlinear feature mapping that maps the input features with nonlinear relations
into a high-dimensional linear feature space. To select the features, we can also introduce a
scaling vector d € D and obtain a new feature mapping ¢(x ® \ﬂ) By replacing (x ® \ﬂ)
n (5) with ¢(x ® v/d), the kernel version of FGM can be formulated as the following
semi-infinite kernel (SIK) learning problem:
an&zgg@ : 0> fk(a,d), VdeD,

where fk(a,d) = ;(a®y)(Ka+£I) a®y) and Kﬁlj is calculated as ¢(x; ©Vd) ¢(x;©Vd).
This problem can be solved by Algorithm 1. However, we need to solve the following
optimization problem in the worst-case analysis:

1
max HZalyl x,@f)H = max §(a®y) Ka(a®y), (29)
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6.1 Worst Case Analysis for Additive Kernels

In general, solving problem (29) for general kernels (e.g., Gaussian kernels) is very challeng-
ing. However, for additive kernels, this problem can be exactly solved. A kernel Kq is an
additive kernel if it can be linearly represented by a set of base kernels {K; }5:1 (Maji and
Berg, 2009). If each base kernel K; is constructed by one feature or a subset of features,
we can select the optimal subset features by choosing a small subset of kernels.

Proposition 2 The worst-case analysis w.r.t. additive kernels can be exactly solved.

Proof Suppose that each base kernel K; in an additive kernel is constructed by one feature
or a subset of features. Let G = {Gy,...,G,} be the index set of features that produce the
base kernel set {K; }é'):l and ¢;(x;g,) be the corresponding feature map to G;. Similar to
the group feature selection, we introduce a feature scaling vector d € D C RP to scale
¢;(xig;). The resultant model becomes:

1 C
min min w4+ =) &
acdwgh 2 2 ; ’

P
s.t. Yi Z V dngj](ﬁj(ng])*b 217523 51207 Z:]-a , 1,
j=1
where wg, has the same dimensionality with qu(xigj ). By transforming this problem to the
SIP problem in (13), we can solve the kernel learning (selection) problem via FGM. The
corresponding worst-case analysis is reduced to solve the following problem:
P P
. / . — L Q-
max > di(a0y)Kjlaoy)=max } d;s;,
7j=1 7j=1
where s; = (a0 y)'K,(a®y) and K;k = ¢;(Xig;)'@;(xrg,;). This problem can be exactly
solved by choosing the B kernels with the largest s;’s. |

In the past decades, many additive kernels have been proposed based on specific application
contexts, such as the general intersection kernel in computer vision (Maji and Berg, 2009),
string kernel in text mining and ANOVA kernels (Bach, 2009). Taking the general inter-
section kernel for example, it is defined as: k(x,z,a) = ?:1 min{|x;|%, |z;|*}, where a > 0
is a kernel parameter. When a = 1, it reduces to the well-known Histogram Intersection
Kernel (HIK), which has been widely used in computer vision and text classifications (Maji
and Berg, 2009; Wu, 2012).

It is worth mentioning that, even though we can exactly solve the worst-case analysis
for additive kernels, the subproblem optimization is still very challenging for large-scale
problems because of two reasons. Firstly, storing the kernel matrices takes O(n?) space
complexity, which is unbearable when n is very large. Secondly, solving the MKL problem
with many training points is still computationally expensive. To address these issues, we
propose to a group of approximated features, such as the random features (Vedaldi and
Zisserman, 2010) and the HIK expanded features (Wu, 2012), to approximate a base kernel.
As a result, the MKL problem is reduced to the group feature selection problem. There-
fore, it is scalable to big data by avoiding the storage the base kernel matrices. Moreover,
the subproblem optimization can be more efficiently solved in the primal form.
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6.2 Worst-Case Analysis for Ultrahigh Dimensional Big Data

Ultrahigh dimensional big data widely exist in many application contexts. Particularly, in
the nonlinear classification tasks with explicit nonlinear feature mappings, the dimension-
ality of the feature space can be ultrahigh. If the explicit feature mapping is available, the
nontrivial nonlinear feature selection task can be cast as a linear feature selection problem
in the high-dimensional feature space.

Taking the polynomial kernel k(x;,x;) = (yx,x; +7)? for example, the dimension of the
feature mapping exponentially increases with v (Chang et al., 2010), where v is referred to
as the degree. When v = 2, the 2-degree explicit feature mapping can be expressed as

o(x) = [r,\/2yray, ..., \/ﬁxmﬁw%, ...,7:57271, \/5’)/:1/‘11'2, . \@me,lmm}.

The second-order feature mapping can capture the feature pair dependencies, thus it has
been widely applied in many applications such as text mining and natural language pro-
cessing (Chang et al., 2010). Unfortunately, the dimensionality of the feature space is
(m 4+ 2)(m +1)/2 and can be ultrahigh for a median m. For example, if m = 10°, the di-
mensionality of the feature space is O(10'2), and around 1 TB memory is required to store
the weight vector w. As a result, most of the existing methods are not applicable (Chang
et al., 2010). Fortunately, this computational bottleneck can be effectively avoided by FGM
since only tB features are required to be stored in the main memory. For convenience, we
store the indices and scores of the selected tB features in a structured array cp.

Algorithm 5 Incremental Implementation of Algorithm 2 for Ultrahigh Dimensional Data.

Given a, B, number of data groups k, feature mapping ¢(x) and a structured array cp.
1: Split X into k subgroups X = [X!, ..., X*].
2: For j=1,..,k.
Calculate the feature score s w.r.t. X/ according to ¢(x;).
Sort s and update cp.
Fori=j+1,..,k. (Optional)
Calculate the cross feature score s w.r.t. X7 and X°.
Sort s and update cp.
End
End
3: Return cp.

For ultrahigh dimensional big data, it can be too huge to be loaded into the main
memory, thus the worst-case analysis is still very challenging to be addressed. Motivated
by the incremental worst-case analysis for complex group feature selection in Section 4.3,
we propose to address the big data challenge in an incremental manner. The general scheme
for the incremental implementation is presented in Algorithm 5. Particularly, we partition
X into k small data subset of lower dimensionality as X = [X!,...,X*]. For each small
data subset, we can load it into memory and calculate the feature scores of the features. In
Algorithm 5, the inner loop w.r.t. the iteration index ¢ is only used for the second-order
feature selection, where the calculation of feature score for the cross-features is required.
For instance, in the nonlinear feature selection using the 2-degree polynomial mapping, we
need to calculate the feature score of z;x;.
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7. Connections to Related Studies

In this section, we discuss the connections of proposed methods with related studies, such as
the ¢;-regularization (Jenatton et al., 2011a), active set methods (Roth and Fischer, 2008;
Bach, 2009), SimpleMKL (Rakotomamonjy et al., 2008), ¢,-MKL (Kloft et al., 2009, 2011,
Kloft and Blanchard, 2012), infinite kernel learning (IKL) (Gehler and Nowozin, 2008),
SMO-MKL (Vishwanathan et al., 2010), and so on.

7.1 Relation to /;-regularization

Recall that the ¢;-norm of a vector w can be expressed as a variational form (Jenatton
et al., 2011a):

m

1 & wf
Wil = Jwy| = §mlgzdfj,+dj- (30)
j=1 —g=1 Y

It is not difficult to verify that, dj = |w;| holds at the optimum, which indicates that the
scale of dj is proportional to |wj|. Therefore, it is meaningless to impose an additional
{1-constraint ||d||; < B or ||w||; < B in (30) since both d and w are scale-sensitive. As
a result, it is not so easy for the ¢1-norm methods to control the number of features to be
selected as FGM does. On the contrary, in AFS, we bound d € [0, 1]™.

To demonstrate the connections of AFS to the £1-norm regularization, we need to make
some transformations. Let w; = wj\/ch and W = [W1, ..., Wy,|’, the variational form of the
problem (5) can be equivalently written as

1@ O
. . J 2
min min - — 4+ — &
deD g £ 2 ]; d 2 Z i
st. p(Wx—b)>1-¢&, i=1,---,n.
For simplicity, hereby we drop the hat from W and define a new regularizer ||w]||% as

m 2
2 : wj m
— L t. < .
w5 min E e s.t. ||d]s < B, de€l0,1] (31)
]:

This new regularizer has the following properties.

Proposition 3 Given a vector w € R™ with ||w|lo = k > 0, where k denotes the number
of nonzero entries in w. Let d* be the minimizer of (31), we have: (1) dj =0 if [w;| = 0.

kK < B, then d; = or |lwi| > 0; else 3 > and Kk > B, then we have
) If k < B, then d; = 1 for |w;| > 0; else if ¥l > B and B, th h

max{[w; [}
% = % for all |w;| > 0. (III) If k < B, then |w||p = ||w||2; else zf% > B and
k> B, |wlz = Lk,

The proof can be found in Appendix D.
According to Proposition 3, if B < k, ||w||p is equivalent to the ¢;-norm regularizer.
However, no matter how large the magnitude of |w;| is, d; in ||w||% is always upper bounded
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by 1, which lead to two advantages of ||w||% over the ¢;-norm regularizer. Firstly, by using
|w||%, the sparsity and the over-fitting problem can be controlled separately by FGM.
Specifically, one can choose a proper C to reduce the feature selection bias, and a proper
stopping tolerance €. in (27) or a proper parameter B to adjust the number of features
to be selected. Conversely, in the ¢;-norm regularized problems, the number of features
is determined by the regularization parameter C, but the solution bias may happen if we
intend to select a small number of features with a small C. Secondly, by transforming the
resultant optimization problem into an SIP problem, a feature generating paradigm has been
developed. By iteratively infer the most informative features, this scheme is particularly
suitable for dealing with ultrahigh dimensional big data that are infeasible for the existing
f1-norm methods, as shown in Section 6.2.
Proposition 3 can be easily extended to the group feature selection cases and multiple
kernel learning cases. For instance, given a w € R™ with p groups {Gi,...,Gp}, we have
b llwg,ll2 = [[vl1, where v = [[|wg,]|,...,||wg,|]]' € RP. Therefore, the above two
advantages are also applicable to FGM for group feature selection and multiple kernel
learning.

7.2 Connection to Existing AFS Schemes

The proposed AFS scheme is very different from the existing AFS schemes (e.g., Weston et
al., 2000; Chapelle et al., 2002; Grandvalet and Canu, 2002; Rakotomamonjy, 2003; Varma
and Babu, 2009; Vishwanathan et al., 2010). In existing works, the scaling vector d = 0 d
is not upper bounded. For instance, in the SMO-MKL method (Vishwanathan et al., 2010),
the AFS problem is reformulated as the following problem:

. 1< A 2
min max 1'e— ;dj(a Oy)Kj(aoy)+ Q(Zj: dl)a,
where A = {a]|0 = o <= C1,y’a = 0} and K; denote a sub-kernel. When 0 < ¢ < 1, it
induces sparse solutions, but results in non-convex optimization problems. Moreover, the
sparsity of the solution is still determined by the regularization parameter \. Consequently,
the solution bias inevitably exists in the SMO-MKL formulation.

A more related work is the ¢;-MKL (Bach et al., 2004; Sonnenburg et al., 2006) or the
SimpleMKL problem (Rakotomamonjy et al., 2008), which tries to learn a linear combina-
tion of kernels. The variational regularizer of SimpleMKL can be written as:

p
. |[w;]

g .t. dll; <1
ml{)l d ’ S || Hl— )

where p denotes the number of kernels and w; represents the parameter vector of the
jth kernel in the context of MKL (Kloft et al., 2009, 2011; Kloft and Blanchard, 2012).
Correspondingly, the regularizer ||w||% regarding kernels can be expressed as:

P
N Wl

. d|1 <B, d 1]P. 2
min > i ][y < B, de[0,1] (32)
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To illustrate the difference between (32) and the ¢1-MKL, we divide the two constraints in
(32) by B, and obtain

d; dj 1
2 <1 <ZL<_vje{l1,..p
dopSL o< g <o el .p)

j=1

Clearly, the box constraint % < % makes (32) different from the variational regularizer in ¢;-
MKL. Actually, the £1-norm MKL is only a special case of ||w||% when B = 1. Moreover, by
extending Proposition 3, we can obtain that if B > k, we have ||w||% = ?:1 ||w||?, which
becomes a non-sparse regularizer. Another similar work is the ¢,-MKL, which generalizes
the ¢;-MKL to {;-norm (¢ > 1) (Kloft et al., 2009, 2011; Kloft and Blanchard, 2012).
Specifically, the variational regularizer of /,-MKL can be written as

P
. W
min g [[w;| , st ||d\|3 <1

We can see that, the box constraint 0 < % < %,Vj € {1,...,p} is missing in the ¢,-MKL.
However, when ¢ > 1, the £,-MKL cannot induce sparse solutions, and thus cannot discard
non-important kernels or features. Therefore, the underlying assumption for £,-MKL is that,
most of the kernels are relevant for the classification tasks. Finally, it is worth mentioning
that, when doing multiple kernel learning, both ¢;-MKL and ¢,-MKL require to compute
and involve all the base kernels. Consequently the computational cost is unbearable for
large-scale problems with many kernels.

An infinite kernel learning method is introduced to deal with infinite number of ker-
nels (p = oo0) (Gehler and Nowozin, 2008). Specifically, IKL adopts the ¢;-MKL formu-
lation (Bach et al., 2004; Sonnenburg et al., 2006), thus it can be considered as a special
case of FGM when setting B = 1. Due to the infinite number of possible constraints, IKL
also adopts the cutting plane algorithm to address the resultant problem. However, it can
only include one kernel per iteration; while FGM can include B kernels per iteration. In
this sense, IKL is also analogous to the active set methods (Roth and Fischer, 2008; Bach,
2009). For both methods, the worst-case analysis for large-scale problems usually domi-
nates the overall training complexity. For FGM, since it is able to include B kernels per
iteration, it obviously reduces the number of worst-case analysis steps, and thus has great
computational advantages over IKL. Finally, it is worth mentioning that, based on the IKL
formulation, it is non-trivial for IKL to include B kernels per iteration.

7.3 Connection to Multiple Kernel Learning

In FGM, each subproblem is formulated as a SimpleMKL problem (Rakotomamonjy et al.,
2008), and any SimpleMKL solver can be used to solve it. For instance, an approximate solu-
tion can be also efficiently obtained by a sequential minimization optimization (SMO) (Bach
et al., 2004; Vishwanathan et al., 2010). Sonnenburg et al. (2006) proposed a semi-infinite
linear programming formulation for MKL which allows MKL to be iteratively solved with
SVM solver and linear programming. Xu et al. (2009b) proposed an extended level method
to improve the convergence of MKL. More recently, an online ultra-fast MKL algorithm,
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called as the UFO-MKL, was proposed by Orabona and Jie (2011). However, its O(1/¢)
convergence rate is only guaranteed when a strongly convex regularizer Q(w) is added to
the objective. Without the strongly convex regularizer, its convergence is unclear.

In summary, FGM is different from MKL in several aspects. At first, FGM iteratively
includes B new kernels through the worst-case analysis. Particularly, these B kernels will
be formed as a base kernel for the MKL subproblem of FGM. From the kernel learning
view, FGM provides a new way to construct base kernels. Secondly, since FGM tends to
select a subset of kernels, it is especially suitable for MKL with many kernels. Thirdly, to
scale MKL to big data, we propose to use the approximated features (or explicit feature
mappings) for kernels. As a result, the MKL problem is reduced to a group feature selection
problem, and we can solve the subproblem in its primal form.

7.4 Connection to Active Set Methods

Active set methods have been widely applied to address the challenges of large number of
features or kernels (Roth and Fischer, 2008; Bach, 2009). Basically, active set methods
iteratively include a variable that violates the optimality condition of the sparsity-induced
problems. In this sense, active methods can be considered as a special case of FGM with
B = 1. However, FGM is different from active set methods. Firstly, their motivations
are different: active set methods start from the Lagrangian duality of the sparsity-induced
problems; while FGM starts from the proposed AFS scheme, solves an SIP problem. Sec-
ondly, active set methods only include one active feature/group/kernel at each iteration.
Regarding this algorithm, when the desired number of kernels or groups becomes relatively
large, active set methods will be very computationally expensive. On the contrary, FGM
allows to add B new features/groups/kernels per iteration, which can greatly improve the
training efficiency by reducing the number of worst-case analysis. Thirdly, a sequence of
K%,l—regularized non-smooth problems are solved in FGM, which is very different from the
active set methods. Finally, the de-biasing of solutions is not investigated in the active set
methods (Bach, 2009; Roth and Fischer, 2008).

8. Experiments

We compare the performance of FGM with several state-of-the-art baseline methods on
three learning tasks, namely the linear feature selection, the ultrahigh dimensional nonlinear
feature selection and the group feature selection.*

The experiments are organized as follows. Firstly, in Section 8.1, we present the general
experimental settings. After that in Section 8.2, we conduct synthetic experiments to study
the performance of FGM on the linear feature selection. Moreover, in Section 8.3, we study

4. In the experiments, some aforementioned methods, such as NMMKL, QCQP-SSVM and SVM-RFE, are
not included for comparison due to the high computational cost for the optimization or sub-optimality
for the feature selection. Interested readers can refer to (Tan et al., 2010) for the detailed comparisons.
We also do not include the ¢,-MKL (Kloft et al., 2009, 2011; Kloft and Blanchard, 2012) for comparison
since it cannot induce sparse solutions. Instead, we include an {4-variant, i.e., UFO-MKL (Orabona
and Jie, 2011), for comparison. Finally, since IKL is a special case of FGM with B = 1, we study its
performance through FGM with B = 1 instead. Since it is analogous to the active set methods, its
performance can be also observed from the results of active set method.

1397



TAN, TSANG AND WANG

the performance of FGM with the shift of hyperplane. In Section 8.4, we conduct real-world
experiments on linear feature selection. In Section 8.5, we conduct ultrahigh dimensional
nonlinear feature selection experiments with polynomial feature mappings. Finally, we
demonstrate the efficacy of FGM on the group feature selection in Section 8.6.

8.1 Data Sets and General Experimental Settings

Several large-scale and high dimensional real-world data sets are used to verify the per-
formance of different methods. General information of these data sets, such as the aver-
age nonzero features per instance, is listed in Table 1.° Among them, epsilon, Arxiv
astro-ph, rcvl.binary and kddb data sets have been split into training set and testing
set. For real-sim, aut—avn and news20.binary, we randomly split them into training
and testing sets, as shown in Table 1.

Data sot m e —_— # nonzeros Parameter Range
ram s per instance | 11-SVM (C) | 11-LR(C) | SGD-SLR(\1)

epsilon 2,000 400,000 | 100,000 2,000 [Ge-4, 1e-2] | [2e-3, le-1] [le-4, 8e-3]

aut-avn 20,707 40,000 22,581 50 - - -
real-sim | 20,958 | 32,309 | 40,000 52 [e-3, 3e-1] | [pe-3, 6e-2] | [le-4, Se-3]
revl 47,236 677,399 | 20,242 74 [le-4, 4e-3] | [5e-5, 2e-3] [le-4, 8e-3]
astro-ph 99,757 62,369 32,487 7 [e-3, 6e-2] | [2e-2, 3e-1] [le-4, 8e-3]
news20 | 1,355,191 | 9,996 | 10,000 359 [5e-3, 3e-1] | [5e-2, 2el] | [le-4, Se-3]
kddb 29,890,095 | 19,264,097 | 748,401 29 [5e-6, 3e-4] | [3e-6, le-4] [le-4, 8e-3]

Table 1: Statistics of the data sets used in the experiments. Parameter Range lists the
ranges of the parameters for various ¢;-methods to select different number of fea-
tures. The data sets rcvl and aut-avn will be used in group feature selection
tasks.

On the linear feature selection task, comparisons are conducted between FGM and
the ¢1-regularized methods, including ¢;-SVM and ¢;-LR. For FGM, we study FGM with
SimpleMKL solver (denoted by MKL-FGM)® (Tan et al., 2010), FGM with APG method
for the squared hinge loss (denoted by PROX-FGM) and the logistic loss (denoted by
PROX-SLR), respectively.

Many efficient batch training algorithms have been developed to solve ¢1-SVM and ¢;-
LR, such as the interior point method, fast iterative shrinkage-threshold algorithm (FISTA),
block coordinate descent (BCD), Lassplore method (Liu and Ye, 2010), generalized linear
model with elastic net (GLMNET) and so on (Yuan et al., 2010, 2011). Among them, LIB-
Linear, which adopts the coordinate descent to solve the non-smooth optimization problem,
has demonstrated state-of-the-art performance in terms of training efficiency (Yuan et al.,

5. Among these data sets, epsilon, real-sim, rcvl.binary, news20.binary and kddb can be
downloaded at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/, aut—avn can
be downloaded at http://vikas.sindhwani.org/svmlin.html and Arxiv astro-ph is from
Joachims (2006).

6. For the fair comparison, we adopt the LIBLinear (e.g., CD-SVM) as the SVM solver in SimpleMKL
when performing linear feature selections. The source codes of MKL-FGM are available at http:
//www.tanmingkui.com/fgm.html.
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2010). In LIBLinear, by taking the advantages of data sparsity, it achieves very fast con-
vergence speed for sparse data sets (Yuan et al., 2010, 2011). In this sense, we include the
LIBLinear solver for comparison’. Besides, we take the standard SVM and LR classifier of
LIBLinear with all features as the baselines, denoted by CD-SVM and CD-LR, respectively.
We use the default stopping criteria of LIBLinear for ¢;-SVM, ¢1-LR, CD-SVM and CD-LR.

SGD methods have gained great attention for solving large-scale problems (Langford
et al., 2009; Shalev-Shwartz and Zhang, 2013). In this experiment, we include the proxi-
mal stochastic dual coordinate ascent with logistic loss for comparison (which is denoted
by SGD-SLR). SGD-SLR has shown the state-of-the-art performance among various SGD
methods (Shalev-Shwartz and Zhang, 2013).% In SGD-SLR, there are three important pa-
rameters, namely \; to penalize ||w||1, A2 to penalize ||w||3, and the stopping criterion
min.dgap. Suggested by the package, in the following experiment, we fix Ao = le-4 and
min.dgap=1e-5, and change A1 to obtain different levels of sparsity. All the methods are
implemented in C+-+.

On group feature selection tasks, we compare FGM with four recently developed group
lasso solvers: FISTA (Liu and Ye, 2010; Jenatton et al., 2011b; Bach et al., 2011), block
coordinate descent method (denoted by BCD) (Qin et al., 2010), active set method (denoted
by ACTIVE) (Bach, 2009; Roth and Fischer, 2008) and UFO-MKL (Orabona and Jie, 2011).
Among them, FISTA has been thoroughly studied by several researchers (Liu and Ye, 2010;
Jenatton et al., 2011b; Bach et al., 2011), and we adopt the implementation of SLEP
package?, where an improved line search is used (Liu and Ye, 2010). We implement the
block coordinate descent method proposed by Qin et al. (2010), where each subproblem is
formulated as a trust-region problem and solved by a Newton’s root-finding method (Qin
et al., 2010). For UFO-MKL, it is an online optimization method,'” and we stop the training
after 20 epochs. Finally, we implement ACTIVE method based on the SLEP solver. All
the methods for group feature selection are implemented in MATLAB for fair comparison.

All the comparisons are performed on a 2.27GHZ Intel(R)Core(TM) 4 DUO CPU run-

ning windows sever 2003 with 24.0GB main memory.

8.2 Synthetic Experiments on Linear Feature Selection

In this section, we compare the performance of different methods on two toy data sets of
different scales, namely X € R4096x4.09% 5454 X ¢ R®192x65,536  Here each X is a Gaussian
random matrix with each entry sampled from the i.i.d. Gaussian distribution N(0,1). To
produce the output y, we first generate a sparse vector w with 300 nonzero entries, with
each nonzero entry sampled from the i.i.d. Uniform distribution #(0,1). After that, we
produce the output by y = sign(Xw). Since only the nonzero w; contributes to the output
y, we consider the corresponding feature as a relevant feature regarding y. Similarly, we
generate the testing data set Xiest with output labels yiest = sign(Xiestw). The number of
testing points for both cases is set to 4,096.

7. Sources are available at http://www.csie.ntu.edu.tw/~cjlin/liblinear/.

8. Sources are available at http://stat.rutgers.edu/home/tzhang/software.html.

9. Sources are available at http://www.public.asu.edu/~jye02/Software/SLEP/index.htm.
10. Sources are available at http://dogma.sourceforge.net/.
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Figure 1: Convergence of Inexact FGM and Exact FGM on the synthetic data set.

8.2.1 CONVERGENCE COMPARISON OF EXACT AND INExacT FGM

In this experiment, we study the convergence of the Ezact and Inexact FGM on the small
scale data set. To study the Ezact FGM, for simplicity, we set the stopping tolerance
€in = 1.0 x 107% in equation (28) for APG algorithm; while for Inezact FGM, we set
€in = 1.0x 1073, We set C' = 10 and test different B’s from {10, 30,50}. In this experiment,
only the squared hinge loss is studied. In Figure 1(a), we report the relative objective
values w.r.t. all the APG iterations for both methods; In Figure 1(b), we report the
relative objective values w.r.t. the outer iterations. We have the following observations
from Figures 1(a) and 1(b).

Firstly, from Figure 1(a), for each comparison method, the function value sharply de-
creases at some iterations, where an active constraint is added. For the Fzact FGM, it
requires more APG iterations under the tolerance €;, = 1.0 x 1076, but the function value
does not show significant decrease after several APG iterations. On the contrary, from
Figure 1(a), the Ineract FGM, which uses a relatively larger tolerance €;;, = 1.0 x 1073,
requires much fewer APG iterations to achieve the similar objective values to Fxact FGM
under the same parameter B. Particularly, from Figure 1(b), the Inezact FGM achieves
the similar objective values to Exact FGM after each outer iteration. According to these
observations, on one hand, €;, should be small enough such that the subproblem can be
sufficiently optimized. On the other hand, a relatively large tolerance (e.g. €, = 1.0 x 1073)
can greatly accelerate the convergence speed without degrading the performance.

Moreover, according to Figure 1(b), PROX-FGM with a large B in general converges
faster than that with a small B. Generally speaking, by using a large B, less number of
outer iterations and worst-case analysis are required, which is critical when dealing with
big data. However, if B is too large, some non-informative features may be mistakenly
included, and the solution may not be exactly sparse.

8.2.2 EXPERIMENTS ON SMALL-SCALE SYNTHETIC DATASET

In this experiment, we evaluate the performance of different methods in terms of testing ac-
curacies w.r.t. different number of selected features. Specifically, to obtain sparse solutions
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of different sparsities, we vary C' € [0.001,0.007] for 11-SVM, C € [5e-3, 4e-2] for 11-LR and
A1 € [7.2e-4, 2.5e-3] for SGD-SLR.!! On contrary to these methods, we fix C = 10 and
choose even numbers in {2,4,...,60} for B to obtain different number of features. It can
be seen that, it is much easier for FGM to control the number of features to be selected.
Specifically, the testing accuracies and the number of recovered ground-truth features w.r.t.
the number of selected features are reported in Figure 2(a) and Figure 2(b), respectively.
The training time of different methods is listed in Figure 2(d).
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Figure 2: Experimental results on the small data set, where CD-SVM and CD-LR denote
the results of standard SVM and LR with all features, respectively. The training
time of MKL-FGM is about 1,500 seconds, which is up to 1,000 times slower than
APG solver. We did not report it in the figures due to presentation issues.

For convenience of presentation, let mg and mg, be the number of selected features and
the number of ground-truth features, respectively. From Figure 2(a) and Figure 2(b), FGM

11. Here, we carefully choose C' or \; for these three ¢1-methods such that the numbers of selected features
uniformly spread over the range [0, 600]. Since the values of C and A; change a lot for different problems,
hereafter we only give their ranges. Under this experimental setting, the results of ¢;-methods cannot
be further improved through parameter tunings.
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based methods demonstrate better testing accuracy than all ¢;-methods when mg > 100.
Correspondingly, from Figure 2(b), under the same number of selected features, FGM based
methods include more ground-truth features than £;-methods when m¢>100. For SGD-SLR,
it shows the worst testing accuracy among the comparison methods, and also recovers the
least number of ground-truth features.

One of the possible reasons for the inferior performance of the ¢;-methods, as men-
tioned in the Introduction section, is the solution bias brought by the ¢;-regularization.
To demonstrate this, we do re-training to reduce the bias using CD-SVM with C' = 20
with the selected features, and then do the prediction using the de-biased models. The re-
sults are reported in Figure 2(c), where 11-SVM-debias and PROX-FGM-debias denote the
de-biased counterparts for 11-SVM and PROX-FGM, respectively. In general, if there was
no feature selection bias, both FGM and 11-SVM should have the similar testing accuracy
to their de-biased counterparts. However, from Figure 2(c), 11-SVM-debias in general has
much better testing accuracy than 11-SVM; while PROX-FGM has similar or even better
testing accuracy than PROX-FGM-debias and 11-SVM-debias. These observations indicate
that: 1) the solution bias indeed exists in the ¢;-methods and affects the feature selection
performance; 2) FGM can reduce the feature selection bias.

From Figure 2(d), on this small-scale data set, PROX-FGM and PROX-SLR achieve
comparable efficiency with the LIBlinear solver. On the contrary, SGD-SLR, which is a
typical stochastic gradient method, spends the longest training time. This observation
indicates that SGD-SLR method may not be suitable for small-scale problems. Finally, as
reported in the caption of Figure 2(d), PROX-FGM and PROX-SLR are up to 1,000 times
faster than MKL-FGM using SimpleMKI solver. The reason is that, SimpleMKI uses the
subgradient methods to address the non-smooth optimization problem with n variables;
While in PROX-FGM and PROX-SLR, the subproblem is solved in the primal problem
w.r.t. a small number of selected variables.

Finally, from Figure 2, if the number of selected features is small (ms < 100), the testing
accuracy is worse than CD-SVM and CD-LR with all features. However, if sufficient number
(ms > 200) of features are selected, the testing accuracy is much better than CD-SVM and
CD-LR with all features, which verifies the importance of the feature selection.

8.2.3 EXPERIMENTS ON LARGE-SCALE SYNTHETIC DATASET

To demonstrate the scalability of FGM, we conduct an experiment on a large-scale synthetic
data set, namely X € R®192x65:536  Here, we do not include the comparisons with MKL-
FGM due to its high computational cost. For PROX-FGM and PROX-SLR, we follow
their experimental settings above. For 11-SVM and 11-LR, we vary C' € [0.001,0.004] and
C € [0.005,0.015] to determine the number of features to be selected, respectively. The
testing accuracy, the number of recovered ground-truth features, the de-biased results and
the training time of the compared methods are reported in Figure 3(a), 3(b), 3(c) and 3(d),
respectively.

From Figure 3(a) and 3(b) and 3(c), both PROX-FGM and PROX-SLR outperform
11-SVM, 11-LR and SGD-SLR in terms of both testing accuracy and the number of recov-
ered ground-truth features. From Figure 3(d), PROX-FGM and PROX-SLR show better
training efficiency than the coordinate based methods (namely, LIBlinear) and the SGD
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Figure 3: Performance comparison on the large-scale synthetic data set.

based method (namely SGD-SLR). Basically, FGM solves a sequence of small optimization
problems of O(ntB) cost, and spends only a small number of iterations to do the worst-case
analysis of O(mn) cost. On the contrary, the ¢;-methods may take many iterations to con-
verge, and each iteration takes O(mn) cost. On this large-scale data set, SGD-SLR shows
faster training speed than LIBlinear, but it has much inferior testing accuracy over other
methods.

In LIBlinear, the efficiency has been improved by taking the advantage of the data
sparsity. Considering this, we investigate the sensitivity of the referred methods to the data
density. To this end, we generate data sets of different data densities by sampling the entries
from X®192x65.656 with different data densities in {0.08,0.1,0.3,0.5,0.8,1}, and study the
influence of the data density on different learning algorithms. For FGM, only the logistic
loss is studied (e.g. PROX-SLR). We use the default experimental settings for PROX-SLR,
and watchfully vary C' € [0.008, 5] for 11-LR and Ay € [9.0e-4, 3e-3] for SGD-SLR. For the
sake of brevity, we only report the best accuracy obtained over all parameters, and the
corresponding training time of 11-LR, SGD-SLR and PROX-SLR in Figure 4.

From Figure 4(a), under different data densities, PROX-SLR always outperforms 11-
SVM and SGD-SLR in terms of the best accuracy. From Figure 4(b), 11-SVM shows
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Figure 4: Performance comparison on the synthetic data set (n = 8,192, m = 65, 536) with
different data densities in {0.08,0.1,0.3,0.5,0.8, 1}.
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comparable efficiency with PROX-SLR on data sets of low data density. However, on
relative denser data sets, PROX-SLR is much more efficient than 11-SVM, which indicates
that FGM has a better scalability than 11-SVM on dense data.
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Figure 6: Testing accuracy of different methods on the three data data sets.
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8.3 Feature Selection with Shift of Hyperplane

In this section, we study the effectiveness of the shift version of FGM (denoted by FGM-
SHIFT) on a synthetic data set and two real-world data sets, namely real-sim and
astro-ph. We follow the data generation in Section 7.1 to generate the synthetic data
set except that we include a shift term b for the hyperplane when generating the output
y. Specifically, we produce y by y = sign(Xw — b1), where b = 4. The shift version of
¢1-SVM by LIBlinear (denoted by 11-SVM-SHIFT) is adopted as the baseline. In Figure 5,
we report the relative objective values of FGM and FGM-SHIFT w.r.t. the APG iterations
on three data sets. In Figure 6, we report the testing accuracy versus different number of
selected features.

From Figure 5, FGM-SHIFT indeed achieves much lower objective values than FGM
on the synthetic data set and astro—ph data set, which demonstrates the effectiveness of
FGM-SHIFT. On the real-sim data set, FGM and FGM-SHIFT achieve similar objective
values, which indicates that the shift term on real-sim is not significant. As a result,
FGM-SHIFT may not significantly improve the testing accuracy.

From Figure 6, on the synthetic data set and astro—ph data set, FGM-SHIFT shows
significant better testing accuracy than the baseline methods, which coincides with the
better objective values of FGM-SHIFT in Figure 5. 11-SVM-SHIFT also shows better
testing accuracy than 11-SVM, which verifies the importance of shift consideration for 11-
SVM. However, on the real-sim data set, the methods with shift show similar or even
inferior performances over the methods without shift consideration, which indicates that
the shift of the hyperplane from the origin is not significant on the real-sim data set.
Finally, FGM and FGM-SHIFT are always better than the counterparts of 11-SVM.

8.4 Performance Comparison on Real-World Data Sets

In this section, we conduct three experiments to compare the performance of FGM with
the referred baseline methods on real-world data sets. In Section 8.4.1, we compare the
performance of different methods on six real-world data sets. In Section 8.4.2, we study
the feature selection bias issue. Finally, in Section 8.4.3, we conduct the sensitivity study
of parameters for FGM.

8.4.1 EXPERIMENTAL RESULTS ON REAL-WORLD DATA SETS

On real-world data sets, the number of ground-truth features is unknown. We only report
the testing accuracy versus different number of selected features. For FGM, we fix C' = 10,
and vary B € {2,4,...,60} to select different number of features. For the ¢;-methods, we
watchfully vary the regularization parameter to select different number of features. The
ranges of C' and Aq for /1-methods are listed in Table 1.

The testing accuracy and training time of different methods against the number of
selected features are reported in Figure 7 and Figure 8, respectively. From Figure 7, on all
data sets, FGM (including PROX-FGM, PROX-SLR and MKL-FGM) obtains comparable
or better performance than the /1-methods in terms of testing accuracy within 300 features.
Particularly, FGM shows much better testing accuracy than ¢;-methods on five of the
studied data sets, namely epsilon, real-sim, rcvl.binary, Arxiv astro-ph and
news20.
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Figure 7: Testing accuracy on various data sets.

From Figure 8, PROX-FGM and PROX-SLR show competitive training efficiency with
the ¢1-methods. Particularly, on the large-scale dense epsilon data set, PROX-FGM and
PROX-SLR are much efficient than the LIBlinear ¢;-solvers. For SGD-SLR, although it
demonstrates comparable training efficiency with PROX-FGM and PROX-SLR, it attains
much worse testing accuracy. In summary, FGM based methods in general obtain better
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Figure 9: De-biased results on real-world data sets.

feature subsets with competitive training efficiency with the considered baselines on real-
world data sets.
8.4.2 DE-BIASING EFrFECT OF FGM

In this experiment, we demonstrate the de-biasing effect of FGM on three real-world data
sets, namely epsilon, real-sim and rcvl. Here, only the squared hinge loss (namely
PFOX-FGM) is studied. The de-biased results are reported in Figure 9, where PROX-
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FGM-debias and 11-SVM-debias denote the de-biased results of PROX-FGM and 11-SVM,
respectively.

From Figure 9, 11-SVM-debias shows much better results than 11-SVM, indicating that
the feature selection bias issue exists in 11-SVM on these real-world data sets. On the
contrary, PROX-FGM achieves close or even better results compared with its de-biased
counterparts, which verifies that PROX-FGM itself can reduce the feature selection bias.
Moreover, on these data sets, FGM shows better testing accuracy than the de-biased 11-
SVM, namely 11-SVM-debias, which indicates that the features selected by FGM are more
relevant than those obtained by 11-SVM due to the reduction of feature selection bias.

8.4.3 SENSITIVITY STUDY OF PARAMETERS

In this section, we conduct the sensitivity study of parameters for PROX-FGM. There are
two parameters in FGM, namely the sparsity parameter B and the regularization parameter
C. In this experiments, we study the sensitivity of these two parameters on real-sim and
astro-ph data sets. 11-SVM is adopted as the baseline.

In the first experiment, we study the sensitivity of C. FGM with suitable C' can reduce
the feature selection bias. However, C' is too large, the over-fitting problem may happen.
To demonstrate this, we test C' € {0.5,5,50,500}. The testing accuracy of FGM under
different C’s is reported in Figure 10. From Figure 10, the testing accuracy with small a C'
in general is worse than that with a large C'. The reason is that, when C' is small, feature
selection bias may happen due to the under-fitting problem. However, when C' is sufficient
large, increasing C' may not necessarily improve the performance. More critically, if C is
too large, the over-fitting problem may happen. For example, on the astro-ph data set,
FGM with C = 500 in general performs much worse than FGM with C' = 5 and C = 50.
Another important observation is that, on both data sets, FGM with different C’s generally
performs better than the 11-SVM.
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Figure 10: Sensitivity of the parameter C' for FGM on real-sim and astro-ph data

sets.

Recall that, a large C' may lead to slower convergence speed due to the increasing
of the Lipschitz constant of F(w,b). In practice, we suggest choosing C' in the range of
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[1,100]. In Section 8.4, we have set C' = 10 for all data sets. Under this setting, FGM has
demonstrated superb performance over the competing methods. On the contrary, choosing
the regularization parameter for ¢1-methods is more difficult. In other words, FGM is more

convenient to do model selections.
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Figure 11: Sensitivity of the parameter B for FGM on astro—-ph data set, where FGM is
stopped once (F(wi—1,b) — F(wy, b))/ F(wo,b) < €.

In the second experiment, we study the sensitivity of parameter B for FGM under two
stopping conditions: (1) the condition (F(w¢—1,b) — F(w¢,b))/F(wo,b) < €. is achieved; (2)
a maximum 7" iterations is achieved, where T = 10. Here, we test two values of €., namely
€. = 0.005 and ¢, = 0.001. The number of selected features, the testing accuracy and the
training time versus different B are reported in Figure 11(a), 11(b) and 11(c), respectively.

In Figure 11(a), given the number of selected feature # features, the number of required
iterations is about [%] under the first stopping criterion. In this sense, FGM with
€. = 0.001 takes more than 10 iterations to terminate, thus will choose more features. As a
result, it needs more time for the optimization with the same B, as shown in Figure 11(c).
On the contrary, FGM with €. = 0.005 requires fewer number of iterations (smaller than 10
when B > 20). Surprisingly, as shown in Figure 11(b), FGM with fewer iterations (where
€. = 0.005 or T' = 10) obtain similar testing accuracy with FGM using €. = 0.001, but has
much better training efficiency. This observation indicates that, we can set a small number
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outer iterations (for example 5 < T < 20) to trade-off the training efficiency and the feature
selection performance.
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Figure 12: Sensitivity of the parameter B for FGM on astro-ph data set. Given a pa-
rameter B, we stop FGM once 400 features are selected.

In the third experiment, we study the influence of the parameter B on the performance
of FGM on the astro-ph data set. For convenience of comparison, we stop FGM once
400 features are selected w.r.t. different B’s.

The training time and testing accuracy w.r.t. different B’s are shown in Figure 12(a)
and 12(b), respectively. From Figure 12(a), choosing a large B in general leads to better
training efficiency. Particularly, FGM with B = 40 is about 200 times faster than FGM
with B = 2. Recall that, active set methods can be considered as special cases of FGM
with B = 1 (Roth and Fischer, 2008; Bach, 2009). Accordingly, we can conclude that, FGM
with a properly selected B can be much faster than active set methods. However, it should
be pointed that, if B is too large, the performance may degrade. For instance, if we choose
B = 400, the testing accuracy dramatically degrades, which indicates that the selected 400
features are not the optimal ones. In summary, choosing a suitable B (e.g. B < 100) can
much improve the efficiency while maintaining promising generalization performance.

8.5 Ultrahigh Dimensional Feature Selection via Nonlinear Feature Mapping

In this experiment, we compare the efficiency of FGM and ¢;-SVM on nonlinear feature
selections using polynomial feature mappings on two medium dimensional data sets and
a high dimensional data set. The comparison methods are denoted by PROX-PFGM,
PROX-PSLR and 11-PSVM, respectively.'? The details of the studied data sets are shown
in Table 2, where mp., denotes the dimension of the polynomial mappings and « is the
polynomial kernel parameter used in this experiment. The mnist38 data set consists of
the digital images of 3 and 8 from the mnist data set.!®> For the kddb data set, we only use

the first 105 instances. Finally, we change the parameter C for 11-PSVM to obtain different
number of features.

12. The codes of 11-PSVM are available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
#fast_training testing for_degree_2_polynomial_mappings_of_data.
13. The data set is available from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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Data set

m M poly Ntrain TNiest Y

mnist38 784 0(10%) 40,000 22,581 | 4.0
real-sim 20,958 0(10%) 32,309 40,000 | 8.0
kddb 4,590,807 0(1014) 1000, 000 | 748,401 | 4.0

Table 2: Details of data sets using polynomial feature mappings.
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Figure 13: Training time of different methods on nonlinear feature selection using polyno-

mial mappings.

The training time and testing accuracy on different data sets are reported in Figure 13
and 14, respectively. Both PROX-PFGM and 11-PSVM can address the two medium di-
mensional problems. However, PROX-PFGM shows much better efficiency than 11-PSVM.
Moreover, 11-PSVM is infeasible on the kddb data set due to the ultrahigh dimensionality.
Particularly, in 11-PSVM, it needs more than 1TB memory to store a dense w, which is
infeasible for a common PC. Conversely, this difficulty can be effectively addressed by FGM.
Specifically, PROX-PFGM completes the training within 1000 seconds.
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Figure 14: Testing accuracy of different methods on nonlinear feature selection using poly-

nomial mappings.

From the figures, the testing accuracy on mnist 38 data set with polynomial mapping is
much better than that of linear methods, which demonstrate the usefulness of the nonlinear
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feature expansions. On the real-sim and kddb data sets, however, the performance with
polynomial mapping does not show significant improvements. A possible reason is that
these two data sets are linearly separable.

8.6 Experiments for Group Feature Selection

In this section, we study the performance of FGM for group feature selection on a synthetic
data set and two real-world data sets. Here only the logistic loss is studied since it has been
widely used for group feature selections on classification tasks (Roth and Fischer, 2008; Liu
and Ye, 2010). To demonstrate the sensitivity of the parameter C' to FGM, we vary C to
select different number of groups under the stopping tolerance ¢, = 0.001. For each C,
we test B € {2,5,8,10}. The tradeoff parameter A in SLEP is chosen from [0, 1], where a
larger lambda leads to more sparse solutions (Liu and Ye, 2010). Specifically, we set A in
[0.002,0.700] for FISTA and ACTIVE, and set A in [0.003,0.1] for BCD.

8.6.1 SYNTHETIC EXPERIMENTS ON GROUP FEATURE SELECTION

In the synthetic experiment, we generate a random matrix X € R%096x400,000 ith each

entry sampled from the i.i.d. Gaussian distribution N'(0,1). After that, we directly group
the 400,000 features into 40,000 groups of equal size (Jenatton et al., 2011b), namely each
feature group contains 10 features. We randomly choose 100 groups of them as the ground-
truth informative groups. To this end, we generate a sparse vector w, where only the entries
of the selected groups are nonzero values sampled from the i.i.d. Gaussian distribution
N(0,1). Finally, we produce the output labels by y = sign(Xw). We generate 2,000 testing
points in the same manner.

‘ ¥ ACTIVE - A FISTA BCD & UFO-MKL B=10 4 B=8 4 B=5 'O"B=2‘
1) 100
Y T j’n"n - Ao Ao

<8 S 1) # 3 N
£ 'q‘ 2 =1 S AT 7
<80 FPw 3 80 % g 10 A e
#E P b A *
g £ R it - 3 a 3 X o e
375 Wﬁ e re g 7 2 A 2 2 ¥ g0
51 - &2 - 5 -
< AT 5 . - R T e sl
270 SOAT g 60 B 2 ¥ * E§3 s
2 o 2 wp” £ s L% B
i ﬁ 2R * it kS P = ¢
e A Fox T -

65 &I 50 - #¢ - = 10700y *W,E

a %/ s
4K gg‘ *
60 — 40 it
0 50 100 150 40 60 80 100 120 140 160 0 50 100 150
# Selected Groups # Selected Groups # Selected Groups
(a) Testing accuracy (b) Recovered features (c) Training time

Figure 15: Results of group feature selection on the synthetic data set.

The testing accuracy, training time and number of recovered ground-truth groups are
reported in Figure 15(a), 15(b) and 15(c), respectively. Here only the results within 150
groups are included since we only have 100 informative ground-truth groups. From Fig-
ure 15(a), FGM achieves better testing accuracy than FISTA, BCD and UFO-MKL. The
reason is that, FGM can reduce the group feature selection bias. From Figure 15(c), in
general, FGM is much more efficient than FISTA and BCD. Interestingly, the active set
method (denoted by ACTIVE) also shows good testing accuracy compared with FISTA
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and BCD, but from Figure 15(c), its efficiency is limited since it only includes one element
per iteration. Accordingly, when selecting a large number of groups on big data, its com-
putational cost becomes unbearable. For UFO-MKL, although its training speed is fast,
its testing accuracy is generally worse than others. Finally, with a fixed B for FGM, the
number of selected groups will increase when C' becomes large. This is because, with a
larger C, one imposes more importance on the training errors, more groups are required to
achieve lower empirical errors.

Size of training set (GB) Size of testing set(GB) |
Lincar [ ADD | HIK | "***' [Tincar | ADD | HIK |
aut [ 20,707 | 40,000 [ 0.027 [ 0.320 [ 0.408 [ 22,581 [ 0.016 [ 0.191 [ 0.269
revl [ 47,236 | 677,399 | 0.727 | 8.29 | 9.700 | 20,242 | 0.022 | 0.256 | 0.455

Data set m Ntrain

Table 3: Details of data sets used for HIK kernel feature expansion and Additive kernel
feature expansion. For HIK kernel feature expansion, each original feature is
represented by a group of 100 features; while for Additive kernel feature expansion,
each original feature is represented by a group of 11 features.

8.6.2 EXPERIMENTS ON REAL-WORLD DATA SETS

In this section, we study the effectiveness of FGM for group feature selection on two real-
world data sets, namely aut-avn and rcvl. In real-world applications, the group prior
of features comes in different ways. In this paper, we produce the feature groups using
the explicit kernel feature expansions (Wu, 2012; Vedaldi and Zisserman, 2010), where each
original feature is represented by a group of approximated features. Such expansion can
vastly improve the training efficiency of kernel methods while keeping good approximation
performance in many applications, such as in computer vision (Wu, 2012). For simplicity,
we only study the HIK kernel expansion (Wu, 2012) and the additive Gaussian kernel
expansion (Vedaldi and Zisserman, 2010). In the experiments, for fair comparisons, we
pre-generate the explicit features for two data sets. The details of the original data sets
and the expanded data sets are listed in Table 3. We can observe that, after the feature
expansion, the storage requirements dramatically increase.

Figure 16 and 17 report the testing accuracy and training time of different methods,
respectively. From Figure 16, FGM and the active set method achieve superior performance
over FISTA, BCD and UFO-MKL in terms of testing accuracy. Moreover, from Figure 17,
FGM gains much better efficiency than the active set method. It is worth mentioning that,
due to the unbearable storage requirement, the feature expansion cannot be explicitly stored
when dealing with ultrahigh dimensional big data. Accordingly, FISTA and BCD, which
require the explicit presentation of data, cannot work in such cases. On the contrary, the
proposed feature generating paradigm can effectively address this computational issue since
it only involves a sequence of small-scale optimization problems.
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Figure 16: Testing accuracy on group feature selection tasks. The groups are generated

by HIK or additive feature mappings. The results of BCD on aut-HIK is not
reported due to the heavy computational cost.

9. Conclusions

In this paper, an adaptive feature scaling (AFS) scheme has been proposed to conduct
feature selection tasks. Specifically, to explicitly control the number features to be selected,
we first introduce a vector d € [0, 1]™ to scale the input features, and then impose an ¢;-
norm constraint ||d||; < B, where B represents the least number of features to be selected.
Although the resultant problem is non-convex, we can transform it into an equivalent convex
SIP problem. After that, a feature generating machine (FGM) is proposed to solve the
SIP problem, which essentially includes B informative features per iteration and solves a
sequence of much reduced MKL subproblems. The global convergence of FGM has been
verified. Moreover, to make FGM scalable to big data, we propose to solve the primal form of
the MKL subproblem through a modified APG method. Some efficient cache techniques are
also developed to further improve the training efficiency. Finally, FGM has been extended
to perform group feature selection and multiple kernel learning w.r.t. additive kernels.
FGM has two major advantages over the ¢;-norm methods and other existing feature
selection methods. Firstly, with a separate control of the model complexity and sparsity,
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Figure 17: Training time on group feature selections.

FGM can effectively handle the feature selection bias issue. Secondly, since only a small sub-
set of features or kernels are involved in the subproblem optimization, FGM is particularly
suitable for the ultrahigh dimensional feature selection task on big data, for which most of
the existing methods are infeasible. It is worth mentioning that, unlike most of the existing
methods, FGM avoids the storing of all base kernels or the full explicit feature mappings.
Therefore, it can vastly reduce the unbearable memory demands of MKL with many base
kernels or the nonlinear feature selection with ultrahigh-dimensional feature mappings.

Comprehensive experiments have been conducted to study the performance of the pro-
posed methods on both linear feature selection and group feature selection tasks. Extensive
experiments on synthetic data sets and real-world data sets have demonstrated the superior
performance of FGM over the baseline methods in terms of both training efficiency and
testing accuracy.

In this paper, the proposed methods have tackled big data problems with million training
examples (O(107)) and 100 trillion features (O(10'4)). Recall that the subproblems of FGM
can be possibly addressed through SGD methods, we will explore SGD methods in the future
to further improve the training efficiency over bigger data with ultra-large sample size.

1415



TAN, TSANG AND WANG

Acknowledgments

We would like to acknowledge the valuable comments and useful suggestions by the Action
Editor and the four anonymous reviewers. We would like to express our gratitude to Dr.
Xinxing Xu and Dr. Shijie Xiao for the proofreading and comments. This research was par-
tially supported by the Nanyang Technological University, the ASTAR Thematic Strategic
Research Programme (TSRP) Grant No. 1121720013, and the Australian Research Council
Future Fellowship FT130100746.

Appendix A. Proof of Theorem 3

Proof The proof parallels the results of Bach et al. (2004), and is based on the conic
duality theory. Let Q(w) = % (|lwn|)? and define the cone Qp = {(u,v) € RET |lully < v}

Furthermore, let z;, = [wp||, we have Q(w) = 1 (37}_; Hwt|])2 = 122 with 2 = 35 _; 2.

Apparently, we have z;, > 0 and z > 0. Finally, problem (22) can be transformed to the
following problem:

t

. 1
min 522 + P(w,b), s.t. thZh <z (w2 € 9p, (33)

where w = [w],...,w}]’. The Lagrangian function of (33) regarding the squared hinge loss
can be written as:

E(Zﬂw7£7 b7 a777€7w)
t

n n t
= %752 + % DE-> (yi(z whyXip —b) — 1+ §i) +7(Q = 2) = ) (Chwn +@nzn),
i=1 i=1

i— h=1 h=1

where o, v, {; and w; are the Lagrangian dual variables to the corresponding constraints.
The KKT condition can be expressed as

Vz£=Z—7=0 =2z =;
VaL=9—wp,=0 = wh =1;
Vw,L==31" aiyixin —Cp =0 = (= — 30711 qayiXin;
Ve L=0& —a; =0 =& =%

ISh ]l < con = [1¢ull <7

Vel =0 = D1 oyi = 0.

By substituting the above equations into the Lagrangian function, we have

1 1
E(z,w, «, 7, C7w) = _572 — %a'a + 1’(}.
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Hence the dual problem of the 8371—regularized problem regarding squared hinge loss can be
written as:

1 1 o
mx ) T pg¥etla
s.t HZaiyixih‘S% h=1,---,t,
1=1
n
iy =0,0;>0, i=1,---,n.
i=1

Let 0 = 7% 4+ sod/a — /1, wy, = 30 aiyixy, and f(o,dp) = 3|lwp | + 5pa/a — a1,
we have

max —0,
0,00

s.t fla,dp) <6, h=1,---t,

n
Zaiyizo,aizo, i=1,---,n.
=1

which indeed is in the form of problem (16) by letting A be the domain of cr. This completes
the proof and brings the connection between the primal and dual formulation.

By defining 0log(0) = 0, with the similar derivation above, we can obtain the dual form
of (33) regarding the logistic loss. Specifically, the Lagrangian function of (33) w.r.t. the
logistic loss is:

(ngba’fy’C? )

t
%Z + CZIOg 1+ exp gz Za (yz thxzh - b) + 52) +’7 Zzh - Z Z(C;Lwh + whzh)v
h=1

=1 i=1 h=1

where a, v, ¢; and w; are the Lagrangian dual variables to the corresponding constraints.
The KKT condition can be expressed as

V,L=z—7=0 =z=";

Vo, L=v—wp,=0 = wp = ;

Vo, £L==3 01 ayiXin —Cp =0 =, = — D01, qiyiXin;
Ve, L = ﬁi);i((%i)) —a; =0 = exp(§;) = Calaz

[Call < @ = [ICull < s

Vol =0 :>Z —1a3y; = 0.

By substituting all the above results into the Lagrangian function, we have

n

1
L(z,w,0,7,¢,@) = =392 = 3 (C = ) log(C — ) zazlog o).
=1
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The dual form of the 6571—regularized problem regarding logistic loss can be written as:

1 n n
max —572 — Z(C — ;) log(C — o) — Z a; log(ay)
” i=1 i=1
n
s.t Hzaiyixzh‘ <f)/7 h = ’ 1
i=1

n
Zaiyi =0,0;20, i=1,---,n.
i=1
Let 6 = §72 + Y77, (O — i) log(C — o) + Y0t ailog(en), wp = Y0ty aiyixan, f(e,dp) =
Sllwnl?+ 371 (C — ;) log(C — o) + 314 o log(ey), then we have
max -0,
Xe

s.t. fla,dp) <6, h=1,---t,

n
Zaiyi:O, 0<y<C, i=1,---,n.
i=1
Finally, according to the KKT condition, we can easily recover the dual variable o by

a; = S;’;i((%i)). This completes the proof. u

Appendix B. Proof of Theorem 4

The proof parallels the results of Beck and Teboulle (2009), and includes several lemmas.
First of all, we define a one variable function Q,(v,b,v) w.r.t. b as

.
Qn(v.bwy) = P(v,u) + (VoP(v,0), b =) + 1o = v, (34)
where we abuse the operators (-,-) and || - || for convenience.

Lemma 4 S.(u,v) = argming Q,(w, v,vp) is the minimizer of problem (23) at point v,
if and only if there exists g(Sr(u,v)) € 0Q(S-(u,Vv)), the subgradient of Q(w) at S;(u,v),
such that

g9(S:-(u,v)) + 7(S-(u,v) —v) + VP(v) = 0.

Proof The proof can be completed by the optimality condition of Q,(w,v,vp) w.r.t. w. B

Lemma 5 Let S;(u,v) = arg ming Q,(w, v,vp) be the minimizer of problem (23) at point
v, and S:, (b) = argmin, Q, (v, b, vp) be the minimizer of problem (34) at point vy. Due to
the line search in Algorithm 4, we have

F(S:(u,v),n) < Q-(S-(u,v),v,w).
P(V7 STb(Ub)) < QTb(v’ STb(Ub)7vb)‘
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and
F(Sr(1, ), 87,(5)) < Qr(Sr(w,v),v,vp) + (V4P (v, 03), Sr, (b) = v5) + 1S5, (8) = gl . (35)
Furthermore, for any (w',b)’ we have
Fw,b) = F(S(0,v),50,(0)) = (S, (B) = v, 05 = b) + 21, (8) = v
+7(Sr(w,v) = v,v = w) + 2[5 (w,v) = v (36)

Proof We only prove the inequality (35) and (36). First of all, recall that in Algorithm 4,
we update w and b separately. It follows that

F(S7(u,v), 57,(b))

— QS (w,v)) + P(S, (w,v), 5y, (1))
< QS:(u,v)) + Qr, (5-(w,v), S (8), vy)

= QS-(w,v) + P(S-(w,v),w5) + (VoP(v,00), 5, (B) = w3) + 2155, (b) — ]
= F(5:(0,v),0) + (V4P(v, 1), 57, (0) = ) + 21|, (6) — s

< QT(ST(U,V),V,'Ub) + <VbP(V,Ub),STb(b) - Ub> + %Hsﬂy(b) - UbHQ'

This proves the inequality in (35).
Now we prove the inequality (36). First of all, since both P(w,b) and Q(w) are convex
functions, we have

P(w,b) > P(v,u) + (VP(v),w —v) + (VpP(v,vp),b — vp),
Q(w) > Q(ST(U,V)) + <w - ST(u>V)7g(ST(g7V))>a

where ¢(S-(u,v)) be the subgradient of Q(w) at point S;(u,v). Summing up the above
inequalities, we obtain

F(w,b)
> P(v,u) + (VPWV),w —v) + (VyP(v,vp),b — vp) + Q(Sr(u,v)) + (w — S-(u,v),g(S;(g,Vv))),
In addition, we have
F(e,b) = (Qr(Sr(1,v),v,00) + (Vo P(v,05), S, (b) = vo) + ]| S, (b) = v ?)
= P(v,0) + (VP(v),w = v) + (VuP(v, ), b — vp) + S-(u,v)) + (w — S7(u,v), g(S- (g, v))),
- (QT(Sr(u,V% v,vp) + (Vo P(v, ), S, (b) — vp) + %Hsm (b) - UbH2>

= P(v,0) + (VP(v),w = v) + (Vo P(v,05),b — vp) + Q(Sr(u,V)) + (w — 57 (u, V), g(S- (g, v))),
- (P(V,vb) +(VP(v), S-(u,v) = v) + Q(S7(u,v)) + gIIST(u,V) — V| +(VoP(v,0p), S, (b) — vp)

+ 2115, (0) = wll?)
= (VP(V) +9(5r (8. V). = S-(u,v)) = Z[1S-(u,v) = v||?

Tb
H(Vp PV, 05),b = Sr, (b)) = 1 [1Sr, (b) — v %
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With the relation Sy, (b) = b— Y22™%) and Lemma 4, we obtain
F(w,b) = F(S:(u,v), 55, (8))
> F(w,b) = (Qr(Sr(u,v),v,u) + (VP (v,00), 85, (8) = wn) + 2 [1S5,6) = vl
> (VP(V) +9(S:(8.v) w — S, (0, v)) = 2| Sr(u,v) = v]?
H(VoP(v,5),b = 57, (8)) = 115, (b) — vyl
= (v = S;(u,v),w = Sr(u,v)) = Z[Sr(u,v) — ]
+7{0h — S, (8), b = S, () = 15, (1) — vy
= 7(Se(u,v) = v, v —w) + 2] S-(u,v) = v|?
+7(S7, (8) = v, 05 = B) + 21155, (8) — P

This completes the proof. |

Lemma 6 Let Ly = oL, where o > 0. Furthermore, let us define

pk = F(wF b%) — F(w*,b),
Vk — pkwk _ (pk _ 1)wk—1 _ w*7
Uk — pkbk _ (pk _ 1)bk—1 _ b*,
and then the following relation holds:
200020 (PPt
¥ LR+l

> ([P = IF(1?) + o (052 = (09)?).
Proof Note that we have w®+! = S, (u, vF*1) and b¥*+! = S, (vi ™). By applying Lemma 5,
let w = wh, v =vFl 7= LM b=tk o, =0T 7 = LET!, we have
(P — pFH) > LEF ([l R g (bt kL Rl )
FLy (O — o T2 4 20T — ot ot - bRY)
Multiplying both sides by (p**! — 1), we obtain
AP 1) — @) > LRI 1) (bt - w2 ot R R k)
FIEF (oFH 1) (B — o2 ot gt g gy
Also, let w = w*, v =vFtl 7 = LFHL p =tk o, = v{f“, and 1, = L’g“, we have
CopF L > DR (|t R gt kL Rl )
FIEFL (P — o2 4 2Rt o ey
Summing up the above two inequalities, we get

9 ((pk+1 )k - pk+1uk+1)
> [kt (pk+1||wk+1 B T Lo S L w*))

LY (P [BR L | [2 (P L R L (R ke
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Multiplying both sides by p**!, we obtain

2 (p" (M — )k — (P2
> Lk+1 ((pk+1)2||wk+1 _ vk+1H2 + 2pk+1 <wk+1 _ Vk+1,pk+1vk+1 _ (pk:+1 _ 1)wk . w*>)

FLEF (020 — ol P 2R o R (1) ).
Since (p*)? = (p¥+1)2 — pF*1 it follows that
2 ((pk)2,ulc _ (pk+1)2'u/c+1)
> Lk+1 ((pk+1)2||wk+1 _ Vk+1H2 + 2pk+1<wk+1 _ Vk+1,pk+1vk+1 _ (pk+1 _ 1)wk _ w*>)
_|_ng+1 (<pk+1)2”bk+1 _ Ullf+1”2 + 2pk+1<bk+1 _ ’Ul]f+1,/)k+111§+1 _ (pk—l-l _ 1)bk _ b*>) )
By applying the equality |[u — v||? +2(u —v,v —w) = ||[u — w||?> — ||v — w||?, we have

2 ((p")2p" = (P2 *)
> L ([ (o Dt - w0 - D - w?)

+L]b€+1 (||pk+1bk+l _ (pk+1 o ]_)bk _ b*||2 i Hpk+lvll)c+1 o (pk+1 _ 1)b’€ _ b*H2) .

With pk+1vk+1 _ pk+1wk + (pk _ 1)(wk _ wk—1)7 pk+1vll)c+1 _ pk-i-lbk + (pk _ 1)(bk _ bk—l)
and the definition of v*, it follows that

2 (6Pt = (PFF2H) > L (AR ) + L5 ()2 = (0F)2).
Assuming that there exists a ¢ > 0 such that L];H = oL*, we get

2) ((pk)Quk _ (pk+1)2,uk+1
Lk+1

) > ([[FHP = [[8]17) + o (09 = (09)?).
Since LFt! > L* and LIZH > Lf, we have
20072k (PPt

e~ e 2 (WP = EP) + o ()2 = (1))

This completes the proof. |

Finally, with Lemma 6, following the proof of Theorem 4.4 in (Beck and Teboulle, 2009),
we have

2LK|lw” — w2 20LF(H0 —b)? _ 2Lilw’ — @ | | 2L — b)?

FAV) = Pt ) < =y G+D? S qGrD? T a1

This completes the proof.

Appendix C: Linear Convergence of Algorithm 4 for the Logistic Loss

In Algorithm 4, by fixing oF = 1, it is reduced to the proximal gradient method (Nesterov,
2007), and it attains a linear convergence rate for the logistic loss, if X satisfies the following
Restricted Eigenvalue Condition (Zhang, 2010b):
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Definition 2 (Zhang, 2010b) Given an integer k > 0, a design matriz X is said to satisfy
the Restricted Eigenvalue Condition at sparsity level k, if there exists positive constants
v—(X, k) and v(X, k) such that

. w! XTXw
V- (X, k) = lnf{wq—wﬂw # 0, |lwlo < ’i} ;

TxT
w X' Xw
7+(X,m):sup{M,w#O,HwHOS/ﬁ}.

Remark 7 For the logistic loss, if v—(X,tB) > 7 > 0, Algorithm 4 with o =1 attains a
linear convergence rate.

Proof Let & = —y;(3.,_, w)Xin — b), the Hessian matrix for the logistic loss can be
calculated by (Yuan et al., 2011):

V?P(w) = CX'AX,

where A is a diagonal matrix with diagonal element A;; = 5 +ex1p(§,-)(1 — 3 +exlp(£z_)) > 0.

Apparently, V2P(w, b) is upper bounded on a compact set due to the existence of v, (X, ).
Let VA be the square root of A. Then if v_(X,tB) > 7 > 0, we have y_(vVAX,tB) > 0
due to A;; > 0. In other words, the logistic loss is strongly convex if v_(X,tB) > 0.
Accordingly, the linear convergence rate can be achieved (Nesterov, 2007). |

Appendix D: Proof of Proposition 3

Proof Proof of argument (I): We prove it by contradiction. Firstly, suppose d* is a
minimizer and there exists an [ € {1...m}, such that w; = 0 but dj > 0. Let 0 < € < dJ,

and choose one j € {1...m} where j # [, such that |w;| > 0. Define new solution d in the
following way: R R
dj=d; +dj —¢, dy=¢, and,

dp =di,  Vke{l..mP\{j1}.
Then it is easy to check that
< B.

¥

>4 -3
j=1 =1

<

In other words, d is also a feasible point. However, since c/i\] =dj +dy —e > d;, it follows
that

w?  w?
e )
=< =
J J

Therefore, we have

d* is the minimizer.

-+

which contradict the assumption tha
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On the other hand, if |w;| > 0 and d;‘- = 0, by the definition, %32 = 00. As we expect to
get the finite minimum, so if [w;| > 0, we have d} > 0.

(II): First of all, the argument holds trivially when ||[w|o =« < B.

If ||wl|lo = & > B, without loss of generality, we assume |w;| > 0 for the first x elements.
From the argument (I), we have 1 > d; > 0 for j € {1...x} and >_7_, d; < B. Note that

2
2?21 -~ is convex regarding d. The minimization problem can be written as:
J

K w2 K
mdinz dfj, st. Y dj<B, d;>0, 1-d;>0. (37)
j=1 j=1

The KKT condition of this problem can be written as:

—wi/di +~—Cj+v; =0,
¢id; =0,
vi(1—dj) =0, (38)

B =Y dj) =0, (39)
j=1
’720,(]'ZO,VjZO,VjE{l...I{},

where 7,(; and v; are the dual variables for the constraints Z?Zl d; < B, dj > 0 and
1 —d; > 0 respectively. For those d; > 0, we have (; = 0 for Vj € {1...x} due to the KKT
condition. Accordingly, by the first equality in KKT condition, we must have

dj = |lw;l/\/y+v;, Vie{l. .k}

Moreover, since Z;”zl dj < B < K, there must exist some d; < 1 with v; = 0 (otherwise
Z?Zl d; will be greater than B). Here v; = 0 because of the condition (38). This observation
implies that v # 0 since each d; is bounded. Since d; < 1, the condition /v +v; >
max{|w;|} must hold for Vj € {1...x}. Furthermore, by the complementary condition
(39), we must have

By substituting d; = |wj|/\/Y + v; back to the objective function of (37), it becomes

K
> wilv/A F v
i=1

To get the minimum of the above function, we are required to set the nonnegative v; as
small as possible.
Now we complete the proof with the assumption ||w||;/ max{|w;|} > B. When setting

vj =0, we get dj = % and D7, ‘w—\/%l = B. It is easy to check that \/y = ||wl|[1/B >
max{|w;|} and d; = Blw,|/[|w|li < 1, which satisfy the KKT condition. Therefore, the
above d is an optimal solution. This completes the proof of the argument (II).
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2
(ITT): With the results of (II), if x < B, we have » 7", Z]—j = wj2-. Accordingly, we
have ||w||p = ||wl|]2. And if k > B and ||w||;/ max{w;} > B, we have

wj |wj] [wl (lIwlh)?
4 — Pl .| = 0L | = ML)
Z d; Z d; |w]\ B Z|w]] B

2
Hence we have ||w| g =1/> 1;—; = ”:}%1. This completes the proof. [ |
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Abstract

Classical boosting algorithms, such as AdaBoost, build a strong classifier without concern
for the computational cost. Some applications, in particular in computer vision, may involve
millions of training examples and very large feature spaces. In such contexts, the training
time of off-the-shelf boosting algorithms may become prohibitive. Several methods exist to
accelerate training, typically either by sampling the features or the examples used to train
the weak learners. Even if some of these methods provide a guaranteed speed improvement,
they offer no insurance of being more efficient than any other, given the same amount of
time.

The contributions of this paper are twofold: (1) a strategy to better deal with the
increasingly common case where features come from multiple sources (for example, color,
shape, texture, etc., in the case of images) and therefore can be partitioned into meaningful
subsets; (2) new algorithms which balance at every boosting iteration the number of weak
learners and the number of training examples to look at in order to maximize the expected
loss reduction. Experiments in image classification and object recognition on four standard
computer vision data sets show that the adaptive methods we propose outperform basic
sampling and state-of-the-art bandit methods.

Keywords: boosting, large scale learning, feature selection

1. Introduction

Boosting is a simple and efficient machine learning algorithm which provides state-of-the-art
performance on many tasks. It consists of building a strong classifier as a linear combination
of weak learners, by adding them one after another in a greedy manner.

It has been repeatedly demonstrated that combining multiple kind of features addressing
different aspects of the signal is an extremely efficient strategy to improve performance
(Opelt et al., 2006; Gehler and Nowozin, 2009; Fleuret et al., 2011; Dubout and Fleuret,
2011a,b). As shown by our experimental results, vanilla boosting of stumps over multiple
image features such as HOG, LBP, color histograms, etc., usually reaches close to state-of-
the-art performance. However, such techniques entails a considerable computational cost,
which increases with the number of features considered during training.

The critical operations contributing to the computational cost of a boosting iteration
are the computations of the features and the selection of the weak learner. Both depend
on the number of features and the number of training examples taken into account. While

(©2014 Charles Dubout and Frangois Fleuret.
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textbook AdaBoost repeatedly selects each weak learner using all the features and all the
training examples for a predetermined number of rounds, one is not obligated to do so and
can instead choose to look only at a subset of both.

Since performance increases with both, one needs to balance the two to keep the compu-
tational cost under control. As boosting progresses, the performance of the candidate weak
learners degrades, and they start to behave more and more similarly. While a small number
of training examples is initially sufficient to characterize the good ones, as the learning
problems become more and more difficult, optimal values for a fixed computational cost
tend to move towards smaller number of features and larger number of examples.

In this paper, we present three new families of algorithms to explicitly address these
issues: (1) Tasting (see Section 4 on page 1434) uses a small number of features sampled
prior to learning to adaptively bias the sampling towards promising subsets at every step;
(2) Maximum Adaptive Sampling (see Section 5.3 on page 1439) models the distribution
of the weak learners’ performance and the noise in order to determine the optimal trade-
off between the number of weak learners and the number of examples to look at; and (3)
Laminating (see Section 5.4 on page 1440) iteratively refines the learner selection using
more and more examples.

2. Related Works

AdaBoost and similar boosting algorithms estimate for each candidate weak learner a score
dubbed “edge”, which requires to loop through every training example and take into ac-
count its weight, which reflects its current importance in the loss reduction. Reducing this
computational cost is crucial to cope with high-dimensional feature spaces or very large
training sets. This can be achieved through two main strategies: sampling the training
examples, or the feature space, since there is a direct relation between features and weak
learners.

Sampling the training set was introduced historically to deal with weak learners which
cannot be trained with weighted examples (Freund and Schapire, 1996). This procedure
consists of sampling examples from the training set according to their boosting weights,
and of approximating a weighted average over the full set by a non-weighted average over
the sampled subset. It is related to Bootstrapping as similarly the training algorithm will
sample harder and harder examples based on the performance of the previous weak learners.
See Section 3 for formal details. Such a procedure has been re-introduced recently for
computational reasons (Bradley and Schapire, 2007; Duffield et al., 2007; Kalal et al., 2008;
Fleuret and Geman, 2008), since the number of sampled examples controls the trade-off
between statistical accuracy and computational cost.

Sampling the feature space is the central idea behind LazyBoost (Escudero et al., 2000),
and simply consists of replacing the brute-force exhaustive search over the full feature set
by an optimization over a subset produced by sampling uniformly a predefined number of
features. The natural redundancy of most type of features makes such a procedure generally
efficient. However, if a subset of important features is too small, it may be overlooked during
training.

Recently developed algorithms rely on multi-arms bandit methods to balance properly
the exploitation of features known to be informative, and the exploration of new features
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(Busa-Fekete and Kegl, 2009, 2010). The idea behind those methods is to associate a bandit
arm to every feature, and to see the loss reduction as a reward. Maximizing the overall
reduction is achieved with a standard bandit strategy such as UCB (Auer et al., 2002), or
Exp3.P (Auer et al., 2003).

These techniques suffer from two important drawbacks. First they make the assumption
that the quality of a feature — the expected loss reduction of a weak learner using it — is
stationary. This goes against the underpinning of boosting, which is that at any iteration
the performance of the weak learners is relative to the boosting weights, which evolve over
the training (Exp3.P does not make such an assumption explicitly, but still rely exclusively
on the history of past rewards). Second, without additional knowledge about the feature
space, the only structure they can exploit is the stationarity of individual features. Hence,
improvement over random selection can only be achieved by sampling again the exact same
features already seen in the past. In our experiments, we therefore only use those methods
in a context where features can be partitioned into subsets of different types. This allows
us to model the quality, and thus to bias the sampling, at a higher level than individual
features.

All those approaches exploit information about features to bias the sampling, hence
making it more efficient, and reducing the number of weak learners required to achieve the
same loss reduction. However, they do not explicitly aim at controlling the computational
cost. In particular, there is no notion of varying the number of examples used for the
estimation of the loss reduction.

3. Preliminaries

We first present in this section some analytical results to approximate a standard round
of AdaBoost — or other similar boosting algorithms — by sampling both the training
examples and the features used to build the weak learners. We then precise more formally
what we mean by subset of features or weak learners.

3.1 Standard Boosting
Given a binary training set
(Tn,yn) € X x{-1,1},n=1,...,N,

where X is the space of the “visible” signal, and a set H of weak learners of the form
h: X — {—1,1}, the standard boosting procedure consists of building a strong classifier

T
f([IJ) = Zatht(x)v
t=1

by choosing the terms a; € R and h; € ‘H in a greedy manner so as to minimize a loss (for
example the empirical exponential loss in the case of AdaBoost) estimated over the training
examples. At every iteration, choosing the optimal weak learner boils down to finding the
one with the largest edge €, which is the derivative of the loss reduction w.r.t. the weak
learner weight . The higher this value, the more the loss can be reduced locally, and thus
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the better the weak learner. The edge is a linear function of the responses of the weak
learner over the training examples

N
é(h) = Z Wnynh(xn)a
n=1

where the weights w;,’s depend on the loss function (usually either the exponential or logistic
loss) and on the current responses of f over the x,,’s. We consider without loss of generality
that they have been normalized such that ) w, = 1. We can therefore consider the weights
wy’s as a distribution over the training examples and rewrite the edge as an expectation
over them,

€(h) = Ennw, [ynvh(zn)], (1)

where N ~ w, stands for P(N = n) = w,,. The idea of weighting-by-sampling (Fleuret and
Geman, 2008) consists of replacing the expectation in Equation (1) with an approximation
obtained by sampling. Let Ny,..., Ng, be i.i.d. random variables distributed according to
the discrete probability density distribution defined by the w’s, we define the approximated
edge as

1 S
s=1

which follows a binomial distribution centered on the true edge, with a variance decreasing
with the number of sampled examples S. It is accurately modeled by the Gaussian

e ~ N (<. ). 3)

as the approximation holds asymptotically and the magnitude of the weak learners’ edges
is typically small, such that (1 + ¢(h))(1 —e(h)) =~ 1.

3.2 Feature Subsets

It frequently happens that the features making up the signal space X can be divided into
meaningful disjoint subsets Fj, such that X = Uﬁil}“k. This division can for example be the
result of the features coming from different sources or some natural clustering of the feature
space. In such a case it makes sense to use this information during training, as features
coming from the same subset Fj can typically be expected to be more homogeneous than
features coming from different subsets.

4. Tasting

We describe here our approach called Tasting (Dubout and Fleuret, 2011a) which biases
the sampling toward promising subsets of features. Tasting in its current form is limited to
deal with weak learners looking at a single feature, such as decision stumps. Extending it
to deal efficiently with weak learners looking at multiple features is outside of the scope of
this work.

1434



ADAPTIVE SAMPLING FOR LARGE SCALE BOOSTING

4.1 Main Algorithm

The core idea of Tasting is to sample a small number R of features from every subset before
starting the training per se and, at every boosting step, in using these few features together
with the current boosting weights to get an estimate of the best subset(s) Fi(s) to use.

We cannot stress enough that these R features are not the ones used to build the
classifier, they are only used to figure out what is/are the best subset(s) at any time during
training. As those sampled features are independent and identically distributed samples of
the feature response vectors, we can compute the empirical mean of any functional of the
said response vectors, in particular the expected loss reduction.

At any boosting step, Tasting requires, for any feature subset, an estimate of the ex-
pectation of the edge of the best weak learner we would obtain by sampling uniformly @
features from this subset and picking the best weak learner using one of them,

Q
Ep,.. .Foru(Fy) [I;lafi puax e(h)] : (4)
where Fj, are the indices of the features belonging to the k-th subset and Hp is the space
of weak learners looking solely at feature F. Hence maxpcy 7y e(h) is the best weak learner

looking solely at feature F,, and maxf]?:1 maXpep, e(h) is the best weak learner looking
solely at one of the @) features F1,..., Fq.

We can build an approximation of this quantity using the R features we have stored.
Let €1,...,er be the edges of the best R weak learners built from these features. We
make the assumption without loss of generality that e; < ea < --- < er. Let Ry,...,Rg
be independent and identically distributed, uniform over {1,..., R}. We approximate the
quantity in Equation (4) with

Q Q
E[m_afc eRq] = ZP(maX R, = T) €r

- r=1 =1
= Z [P(m%f{ R, < 7“) — P(max Ry <r— 1)] €r
q: =
r=1
1 R
=3 9= (r-1e (5)
r=1

4.2 Tasting Variants

We propose two versions of the Tasting procedure, which differ in the number of feature
subsets they visit at every iteration. Either one for Tasting 1.Q or up to @ for Tasting Q.1.

In Tasting 1.Q (Algorithm 1), the selection of the optimal subset £* from which to sample
the Q features is accomplished by estimating for every subset the expected maximum edge,
which is directly related to the expected loss reduction, if we were sampling from that subset
only. The computation is done over the R features saved before starting training, which
serve as a representation of the full set Fy.

In Tasting Q.1 (see Algorithm 2), it is not one but several feature subsets which can
be selected, as the algorithm picks the best subset kj for every one of the @ features to
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Algorithm 1 The Tasting 1.QQ algorithm first samples uniformly R features from every
feature subset F. It uses these features at every boosting step to find the optimal feature
subset £* from which to sample. After the selection of the @) features, the algorithm
continues like AdaBoost.

Input: F,Q,R,T
Initialize: Vk € {1,...,K},Vr € {1,..., R}, f* « sample(U(F3))
fort=1,...,7 do

Vke{l,...,K},Vre{l,...,R}, e « max €(h)

hE'Hfﬁ

kE* + argmaxE[m%fc e%q # Computed using equation (5)
k 9=
Vge{l,...,Q}, F, < sample(U(F+))

ht + argmax €(h)
hEUqHFq

end for

Algorithm 2 The Tasting Q.1 algorithm first samples uniformly R features from every
feature subset F. It uses them to find the optimal subset k; for every one of the ) features
to sample at every boosting step. After the selection of the @) features, the algorithm
continues like AdaBoost.

Input: F,Q,R,T
Initialize: Vk € {1,...,K},Vr € {1,..., R}, f* « sample(U(F3))
fort=1,...,7 do

Vke{l,...,K},Vre{l,...,R}, e « max e(h)
hEHfT]?

€« 0
forg=1,...,Q do
ES * k
kg < argznaxE[max(e , € )}

F, < sample (Z/l (‘Fk?i)>

€" < max| €, max €e(h)
hEHFq

end for

hi < argmax €(h)
heUgHF,

end for
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sample, given the best edge €* achieved so far. Again the computation is done only over
the R features saved before starting training.

4.3 Relation with Bandit Methods

The main strength of boosting is its ability to spot and combine complementary features.
If the loss has already been reduced in a certain “functional direction”, the scores of weak
learners in the same direction will be low, and they will be rejected. For instance, the firsts
learners for a face detector may use color-based features to exploit the skin color. After a
few boosting steps using this modality, color would be exhausted as a source of information,
and only examples with a non-standard face color would have large weights. Other features,
for instance edge-based, would become more informative, and be picked.

Uniform sampling of features accounts poorly for such behavior since it simply discards
the boosting weights, and hence has no information whatsoever about the directions which
have “already been exploited” and which should be avoided. In practice, this means that
the rejection of bad feature can only be done at the level of the boosting itself, which may
end up with a majority of useless features.

Bandit methods (described in Section 6.4) are slightly more adequate, as they model
the performance of every feature from previous iterations. However, this modeling takes
into account the boosting weights very indirectly, as they make the assumption that the
distributions of loss reduction are stationary, while they are precisely not. Coming back to
our face-detector example, bandit methods would go on believing that color is informative
since it was in the previous iterations, even if the boosting weights have specifically accumu-
lated on faces where color is now totally useless. While the estimate of loss reduction may
asymptotically converge to an adequate model, it is a severe weakness while the boosting
weights are still evolving.

Tasting addresses this weakness by keeping the ability to properly estimate the per-
formance of every feature subset, given the current boosting weights, hence the ability to
discard feature subsets redundant with features already picked. In some sense, Tasting can
be seen as boosting done at a the subset level.

5. Maximum Adaptive Sampling and Laminating

The algorithms in this section sample both the weak learners and the training examples at
every iteration in order to maximize the expectation of the loss reduction, under a strict
computational cost constraint.

5.1 Edge estimation

At every iteration they model the expectation of the edge of the selected weak learner.
Let €1,...,€eg stand for the true edges of ) independently sampled weak learners. Let
Aq,...,Ag be a series of independent random variables standing for the noise in the es-
timation of the edges due to the sampling of only S training examples. Finally Vg, let
€g = €¢ + Aq be the approximated edge. With these definitions, argmax, €, is the selected
weak learner. We define €* as the true edge of the selected weak learner, that is the one
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with the highest approximated edge

o (6)

This quantity is random due to both the sampling of the weak learners, and the sampling
of the training examples. The quantity we want to optimize is E[e*], the expectation of the
true edge of the selected learner over all weak learners and over all training examples, which
increases with both () and S. A higher @) increases the number of terms in the maximization
of Equation (6), while a higher S reduces the variance of the A’s, ensuring that €* is closer
to max, €,. In practice, if the variance of the A’s is of the order of, or higher than, the
variance of the €’s, the maximization is close to a random selection, and looking at many
weak learners is useless. Assuming that the €,’s are all different we have,

*
€ = €argmax

E[e"] =

=

[Gargmaxq éq}

E Eq H 1{éi<éq}
i#q

Il
Mo

Q
Il
_

E eqH1{€i<éq} é
i#q

I
Pg@

Q
Il
—

Eleg|ég) [[ B[ ie<epy | €] | »
i#q

Il
FQ@

0
I

where the last equality follows from the independence of the weak learners.

5.2 Modeling the True Edge

If the distributions of the €,’s and the A,’s are Gaussians or mixtures of Gaussians, we can
derive analytical expressions for both E[e, | ;] and E |:1{€i<€q} ‘ €q] , and compute the value of
E[e*] efficiently. In the case where weak learners can be partitioned into meaningful subsets,
it makes sense to model the distributions of the edges separately for each subset.

As an illustrative example, we consider here the case where the ¢;’s, the A,’s, and hence
also the é,’s all follow Gaussian distributions. We take ¢, ~ N(0,1) and A, ~ N(0,0%) and
obtain,

Ele’] = Q E|Eler |&] [ E[1e,<ey | &1]
i1

0B o o\
o2 +1 02 +1

= 7y Elove®]

1
= ———— E| max ¢,
o2 +1 [1=¢=@Q
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Figure 1: Simulation of the expectation of €* in the case where both the ¢,’s and the A,’s
follow Gaussian distributions. Top: ¢, ~ N'(0,1072). Bottom: ¢; ~ N'(0,107%).
In both simulations A, ~ A(O0, %) Left: expectation of €* vs. the number of
sampled weak learners ) and the number of examples S. Right: same value as
a function of @ alone, for different fixed costs (product of @ and S). As these
graphs illustrate, the optimal value for Q is greater for larger variances of the
€¢’s. In such a case the ¢;’s are more spread out, and identifying the largest one
can be done despite a large noise in the estimations, hence with a limited number
of training examples.

where ® stands for the cumulative distribution function of the unit Gaussian, and o2 is of
order % See Figure 1 for an illustration of the behavior of E[¢*] for two different variances
of the ¢,’s and a cost proportional to S, the total number of features computed.

There is no reason to expect the distribution of the €,’s to be Gaussian, contrary to the
Ag’s, as shown in Equation (3), but this is not a problem as it can usually be approximated
by a mixture, for which we can still derive analytical expressions, even if the ¢,’s or the
A,’s have different distributions for different ¢’s.

5.3 M.A.S. Variants

We created three algorithms modeling the distribution of the ¢,’s with a Gaussian mixture
model, and A, = €, — ¢; as a Gaussian. The first one, M.A.S. naive, is described in
Algorithm 3, and fits the model to the edges estimated at the previous iteration.
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Algorithm 3 The M.A.S. naive algorithm models the current edge distribution with a
Gaussian mixture model fitted on the edges estimated at the previous iteration. It uses this
density model to compute the pair (Q*, S*) maximizing the expectation of the true edge of
the selected learner E[e*], and then samples the corresponding number of weak learners and
training examples, before keeping the weak learner with the highest approximated edge.
After the selection of the () features, the algorithm continues like AdaBoost.

Input: gmm, Cost
fort=1,...,7 do

(Q*,S5) «— argmax  Egym[e’]
cost(Q,S)<Cost
Vg e {1,...,Q"}, Hy < sample(U(H))

Vs e {l,...,5"}, Ny < sample(d({1,...,N}))

S
1
Vge{l,...,Q"}, & + o ZyNSHq(mNS) # Similar to equation (2)
s=1
hy < Hargmaxq €q
gmm < fit(é, ..., ég+)
end for

The second one, M.A.S. 1.Q, takes into account the decomposition of the weak learners
into K subsets, associated to different kind of features. It models the distributions of the
€q's separately for each subset, estimating the distribution of each on a small number of
weak learners and examples sampled at the beginning of each boosting iteration, chosen so
as to account for 10% of the total computational cost. From these models, it optimizes @,
S, and the index k of the subset to sample from. Unlike M.A.S. naive, it has to draw a small
number of weak learners and examples in order to fit the model since the edges estimated
at the previous iterations came from a unique subset.

Finally M.A.S. Q.1 similarly models the distributions of the ¢;’s, but it optimizes Q1, ...,
Qg greedily, starting from Q1 = 0,...,Qx = 0, and iteratively incrementing one of the @
so as to maximize E[e*]. This greedy procedure is repeated for different values of S and
ultimately the @1, ..., @k, S leading to the maximum expectation are selected.

5.4 Laminating

The last algorithm we have developed tries to reduce the requirement for a density model
of the ¢,’s. At every boosting iteration it iteratively reduces the number of considered weak
learners, and increases the number of examples taken into account.

Given fixed @) and S, at every boosting iteration, the Laminating algorithm first samples
Q@ weak learners and S training examples. Then, it computes the approximated edges and
keeps the % best learners. If more than one remains, it samples 25 examples, and re-iterates.
The whole process is described in Algorithm 4. The number of iterations is bounded by

[logy(Q)].
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Algorithm 4 The Laminating algorithm starts by sampling () weak learners and S exam-
ples at the beginning of every boosting iteration, and refine those by successively halving
the number of learners and doubling the number of examples until only one learner remains.
After the selection of the @) features, the algorithm continues like AdaBoost.

Input: @, S
fort=1,...,7 do
Vge{l,...,Q}, hq < sample(U(H))
while Q > 1 do
Vs e {l,...,8}, Ns < sample(d({1,...,N}))

S
1
Vge{l,...,Q} é + g ZyNSHq(xNS) # Similar to equation (2)
s=1
sort(hi,...,hQ) s.t. é>--- > €ég # Order the weak learners s.t.
Q % # the best half comes first
S+ 28
end while
end for

We have the following results on the accuracy of this Laminating procedure (the proof
is given in Appendix A):

Lemma 1 Let ¢* = argmax, ¢, and d > 0. The probability for an iteration of the Laminaling
algorithm to retain only weak learners with edges below or equal to egx — 0 s

R R Q 528
P(Hq:queq*—é, qur:egi}f—éeTHZZ <4dexp 5 |

This holds regardless of the independence of the €;’s and/or the Ay’s.

Since at each iteration the number of examples S doubles the lemma implies the following
theorem:

Theorem 1 The probability for the full Laminating procedure starting with Q weak learners
and S examples to end up with a learner with an edge below or equal to e;« — 0 (the edge
of the optimal weak learner at the start of the procedure minus ¢) is upper bounded by (the

proof is given in Appendix B)
4

25\
1-— exp(—@)
The theorem shows that as the number of samples grows, the probability to retain a

bad weak learner eventually goes down exponentially with the number of training examples,

as in this case the bound can be approximated by 4 exp (—%). This confirms the usual

relation between the number of examples and the complexity of the space of predictors in
learning theory.
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Figure 2: Difference between the maximum edge and the best edge found by 3 different
sampling strategies on the MNIST data set using the original features. The
algorithm used is AdaBoost.MH using 7" = 100 decision stumps as weak learners,
and the results were averaged over 10 randomized runs. The first strategy samples
uniformly a small number of features () and determines the best one using all
S = 60,000 training examples. The second strategy samples all () = 784 features
and determines the best one using a small number of training examples S. The
third strategy is Laminating, starting from all the features and a suitable number
of training examples chosen so as to have the same cost as the first two strategies.
The cost is the product of @ and S and is set to QS = 180, 000 for the left figure
and QS = 600,000 for the right one.

In practice the difference between the maximum edge €;+ and the edge of the final weak
learner selected by Laminating is typically smaller than the difference with the edge of
a learner selected by a strategy looking at a fixed number of weak learners and training
examples, as can be observed in Figure 2.

6. Experiments

We demonstrate the effectiveness of our approaches on four standard image classification
and object detection data sets, using 19 kinds of features (33 on Caltech 101) divided in
as many subsets. We used the AdaBoost.MH algorithm (Schapire and Singer, 1999) with
decision stumps as weak learners to be able to use all methods in the same conditions.

6.1 Features

The features used in our experiments with all but the Caltech 101 data set can be divided
into three categories. (1) Image transforms: identity, grayscale conversion, Fourier and Haar
transforms, gradient image, local binary patterns (ILBP/LBP). (2) Intensity histograms:
sums of the intensities in random image patches, grayscale and color histograms of the entire
image. (3) Gradient histograms: histograms of (oriented and non oriented) gradients, Haar-
like features.
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The features from the first category typically have a large dimensionality, usually pro-
portional to the number of pixels in the image. Some of them do not pre-process the images
(identity, grayscale conversion, LBP, etc.) while some pre-transform them to another space,
prior to accessing any feature (typically the Fourier and Haar transforms).

Features from the second and third categories being histograms, they are usually much
smaller (containing typically of the order of a few hundreds to a few thousands coefficients),
but require some pre-processing to build the histograms.

For the Caltech 101 data set we used the same features as (Gehler and Nowozin, 2009)
in their experiments. They used five type of features: PHOG shape descriptors, appearance
(SIFT) descriptors, region covariance, local binary patterns, and V1S+, which are normal-
ized Gabor filters. More details can be found in the referenced paper. Those features are
computed in a spatial pyramid, where each scale of the pyramid is considered as being
part of a different subset, leading to a total of 33 features. The number of features used
in our experiments (33) differ from (Gehler and Nowozin, 2009) as they also compute a
‘subwindow-kernel’ of SIFT features which we did not use.

6.2 Data sets

Figure 3: Example images from the four data sets used for the experimental validation.
Top left: first image of every digit taken from the MNIST database. Top right:
images from the INRIA Person data set. Bottom left: random images from the
Caltech 101 data set. Bottom right: some of the first images of the CIFAR-10
data set.

The first data set that we used is the MNIST handwritten digits database (LeCun et al.,
1998). It is composed of 10 classes and its training and testing sets consist respectively of
60,000 and 10,000 grayscale images of resolution 28x28 pixels (see the upper left part of
Figure 3 for some examples). The total number of features on this data set is 16,775.

The second data set that we used is the INRIA Person data set (Dalal and Triggs, 2005).
It is composed of a training and a testing set respectively of 2,418 and 1,126 color images of
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pedestrians of dimensions 64x 128 pixels cropped from real-world photographs, along with
1,219 and 453 “background” images not containing any people (see the upper right part
of Figure 3 for some examples). We extracted 10 negative samples from each one of the
background image, following the setup of (Dalal and Triggs, 2005). The total number of
features on this data set is 230,503.

The third data set that we used is Caltech 101 (Fei-Fei et al., 2004) due to its wide usage
and the availability of already computed features (Gehler and Nowozin, 2009). It consists
of color images of various dimensions organized in 101 object classes (see the bottom left
part of Figure 3 for some examples). We sampled 15 training examples and 20 distinct test
examples from every class, as advised on the data set website. The total number of features
on this data set is 360,630.

The fourth and last data set that we used is CIFAR-10 (Krizhevsky, 2009). It is a
labeled subset of the 80 tiny million images data set. It is composed of 10 classes and
its training and testing sets consist respectively of 50,000 and 10,000 color images of size
32x32 pixels (see the bottom left part of Figure 3 for some examples). The total number
of features on this data set is 29,879.

6.3 Uniform Sampling Baselines

A naive sampling strategy would pick the @ features uniformly in Uy Fj. However, this does
not distribute the sampling properly among the Fj’s. In the extreme case, if one of the
Fi had a far greater cardinality than the others, all features would come from it. And in
most contexts, mixing features from the different F;’s in an equilibrate manner is critical
to benefit from their complementarity. We propose the four following baselines to pick a
good feature at every boosting step:

e Best subset picks () features at random in a fixed subset, the one with the smallest
final boosting loss.

Uniform Naive picks ) features at random, uniformly in UgF,.

Uniform 1.Q picks one of the feature subsets at random, and then samples the @
features from that single subset.

Uniform Q.1 picks at random, uniformly, @) subsets of features (with replacement if
@ > K), and then picks one feature uniformly in each subset.

The cost of running Best subset is K times higher than running the other three strategies
since the subset leading to the smallest final boosting loss is not known a priori and requires
to redo the training K times. Also, since it makes use of one subset only we can expect its
final performance to be lower than the others. It was included for comparison only.

6.4 Bandit Sampling Baselines

The strategies of the previous section are purely random and do not exploit any kind
of information to bias their sampling. Smarter strategies to deal with the problem of
exploration-exploitation trade-off were first introduced in (Busa-Fekete and Kegl, 2009),
and extended in (Busa-Fekete and Kegl, 2010). The driving idea of these papers is to
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entrust a multi-armed bandits (MAB) algorithm (respectively UCB in Auer et al. (2002)
and Exp3.P in Auer et al. (2003)) with the mission to sample useful features.

The multi-armed bandits problem is defined as follows: there are M gambling machines
(the “arms” of the bandits), and at every time-step ¢ the gambler chooses an arm j;, pulls it,
and receives a reward rj»t € [0,1]. The goal of the algorithm is to minimize the weak-regret,
that is the difference between the reward obtained by the gambler and the best fixed arm,
retrospectively.

The first weakness of these algorithms in the context of accelerating boosting, that we
have identified in Section 2, is the assumption of stationarity of the loss reduction, which
cannot be easily dealt with. Even though the Exp3.P algorithm does not make such an
assumption explicitly, it still ignores the boosting weights, and thus can only rely on the
history of past rewards.

The second weakness, the application context, can be addressed in our setting by learn-
ing the usefulness of the subsets instead of individual features.

A third weakness is that in boosting one aims at minimizing the loss (which translates
into maximizing the sum of the rewards for the bandit algorithm), and not at minimizing
the weak-regret.

Finally, another issue arises when trying to use those algorithms in practice. As they
use some kind of confidence intervals, the scale of the rewards matters greatly. For example,
if all the rewards obtained are very small (V¢,r! < e < 1), the algorithms will not learn
anything, as they expect rewards to make full use of the range [0, 1].

For this reason we set the bandit baselines’ meta-parameters to the ones leading to the
lowest loss a posteriori, as explained in Section 6.5, and use a third multi-armed bandit
algorithm in our experiments, e-greedy (Auer et al., 2002), which does not suffer from this
problem.

Hence, we use in our experiments the three following baselines, using the same reward
as in (Busa-Fekete and Kegl, 2010):

e UCB picks @ features from the subset that maximizes 7; 4+ 1/(2logn)/n;, where 7; is
the current average reward of subset j, n; is the number of times subset j was chosen
so far, and n is the current boosting round.

e Epx3.P maintains a distribution of weights over the feature subsets, and at every
round picks one subset accordingly, obtains a reward, and updates the distribution.
For the precise definition of the algorithm, see (Auer et al., 2003; Busa-Fekete and

Kegl, 2010).
o c-greedy picks @ features from the subset with the highest current average reward
with probability 1 — ¢, or from a random subset with probability €,, where €, = CTI;,

and ¢ and d are parameters of the algorithm.

6.5 Results

We tested all the proposed methods of Sections 4, 5.3, and 5.4 against the baselines described
in Sections 6.3 and 6.4 on the four benchmark data sets described above in Section 6.2 using
the standard train/test cuts and all the features of Section 6.1. We report the results of doing

1445



DuBOUT AND FLEURET

MNIST
T (# boosting steps)
1 1 1 10,000
Methods 0 00 ,000 ’
test test test test
loss loss loss loss
€rror error error error

Best family* -0.43 | 36.48 | -0.95 5.77 -1.84 1.47 -4.84 0.92
Uniform Naive | -0.38 45.3 -0.85 7.79 -1.74 1.64 -5.37 0.93
Uniform 1.Q -0.36 49.4 -0.75 10.8 -1.51 2.18 -3.90 1.08
Uniform Q.1 -0.38 43.0 -0.86 7.40 -1.72 1.71 -5.06 0.97

UCB* -0.40 41.9 -0.79 9.67 -1.64 1.86 -5.54 0.94
Exp3.P* -0.36 479 -0.77 10.3 -1.66 1.79 -5.42 0.92
e-greedy”™ -0.37 45.9 -0.88 7.04 -1.78 1.57 -5.45 0.88

Tasting 1.Q -0.43 36.1 -0.96 5.38 -1.91 1.41 -5.90 0.92
Tasting Q.1 -0.44 34.8 -0.97 5.31 -1.91 1.36 -5.91 0.94

M.A.S. Naive | -0.51 26.3 -1.01 4.78 -1.80 1.54 -5.06 0.96
M.A.S. 1.Q -0.48 29.9 -0.98 5.21 -1.74 1.63 -4.15 1.04
M.A.S. Q.1 -0.43 35.7 -0.98 5.21 -1.78 1.68 -4.51 1.01

Laminating -0.55 | 21.9 |-1.10| 3.85 |-2.00 | 1.35 -5.87 0.96

Table 1: Mean boosting loss (log;q) and test error (%) after various number of boosting
steps on the MNIST data set with all families of features. Methods highlighted
with a x require the tuning of meta-parameters, which have been optimized by
training fully multiple times.
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INRIA
T (# boosting steps)
1 1 1 10,000
Mothods 0 00 ,000 0,
test test test test
loss loss loss loss
€rror error error error

Best family™* -0.34 12.2 -0.93 3.29 -3.72 1.20 -26.9 1.00
Uniform Naive | -0.31 13.4 -0.86 4.87 -3.92 1.27 -31.9 0.53
Uniform 1.Q -0.30 14.2 -0.95 3.99 -4.26 0.89 -34.3 0.37
Uniform Q.1 -0.30 14.0 -1.01 3.92 -4.86 0.69 -40.0 0.33

UCB* -0.35 12.1 -1.08 3.17 -5.47 0.61 -49.3 0.30
Exp3.P* -0.31 13.6 -0.91 4.09 -4.53 0.79 -44.7 0.32
e-greedy”™ -0.34 12.9 -1.11 2.89 -5.92 0.54 -49.3 0.34

Tasting 1.Q -0.39 10.9 -1.30 2.14 -6.44 0.49 -54.1 0.30
Tasting Q.1 -0.40 11.2 -1.30 2.33 -6.54 0.57 -55.1 0.32

M.A.S. Naive | -0.46 8.80 -1.50 1.66 -7.23 0.44 -60.4 0.27
M.A.S. 1.Q -0.41 10.1 -1.45 1.82 -6.87 0.50 -595.9 0.28
M.A.S. Q.1 -0.44 9.43 -1.51 1.65 -6.97 0.42 -07.1 0.27

Laminating -0.56 | 6.85 |-2.05| 1.12 |-11.2 | 0.39 |-99.8 0.30

Table 2: Mean boosting loss (log;q) and test error (%) after various number of boosting
steps on the INRIA data set with all families of features. Methods highlighted
with a x require the tuning of meta-parameters, which have been optimized by
training fully multiple times.
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Caltech 101

T (# boosting steps)

10 100 1,000 10,000
Methods
test test test test
loss loss loss loss
€rror error error error

Best family™* -0.80 95.2 -1.44 79.4 -7.17 56.7 -65.5 41.9
Uniform Naive | -0.79 95.8 -1.40 80.3 -6.81 55.6 -61.8 38.8
Uniform 1.Q -0.79 95.9 -1.36 79.0 -5.84 54.2 -49.6 40.8
Uniform Q.1 -0.81 94.2 -1.44 76.5 -6.74 51.8 -59.2 37.6

UCB* -0.81 94.2 -1.40 78.6 -6.46 52.6 -61.6 37.0
Exp3.P* -0.79 95.8 -1.34 80.3 -5.89 54.7 -04.4 40.6
e-greedy”™ -0.81 94.8 -1.42 76.7 -7.26 50.6 -67.1 374

Tasting 1.Q -0.82 | 93.8 |-1.50| 74.2 | -7.47 50.7 -68.1 | 35.3
Tasting Q.1 -0.82 93.9 -1.50 74.5 -7.46 50.5 | -68.1 35.5

M.A.S. Naive | -0.80 94.3 -1.43 76.2 -6.70 51.8 -99.1 37.9
M.A.S. 1.Q -0.78 96.4 -1.01 90.5 -2.04 85.9 -29.5 53.6
M.A.S. Q.1 -0.79 95.8 -1.21 85.6 -5.01 58.7 -42.7 44.5

Laminating -0.81 94.3 -1.43 77.0 -6.33 53.0 -54.4 38.4

Table 3: Mean boosting loss (log;q) and test error (%) after various number of boosting
steps on the Caltech 101 data set with all families of features. Methods highlighted
with a x require the tuning of meta-parameters, which have been optimized by
training fully multiple times.
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CIFAR-10
T (# boosting steps)
1 1 1 1
Mothods 0 00 ,000 0,000
test test test test
loss loss loss loss
€rror error error error

Best family -0.27 73.6 -0.33 57.4 -0.43 44.8 -0.67 40.2
Uniform Naive | -0.26 74.9 -0.34 55.9 -0.48 38.9 -0.93 32.2
Uniform 1.Q -0.26 76.6 -0.33 57.5 -0.47 39.9 -0.84 31.3
Uniform Q.1 -0.27 74.3 -0.34 53.8 -0.49 37.6 -0.91 30.9

UCB* -0.27 73.3 -0.34 56.2 -0.49 37.7 -0.90 30.6
Exp3.P* -0.26 7.2 -0.33 58.0 -0.47 38.9 -0.86 30.3
e-greedy”™ -0.26 75.8 -0.35 53.4 -0.49 | 37.09 | -0.88 30.0

Tasting 1.Q -0.28 72.6 -0.36 50.9 -0.50 | 36.2 | -0.95 31.7
Tasting Q.1 -0.28 71.8 -0.36 50.9 -0.50 36.3 -0.95 31.5

M.A.S. Naive | -0.28 71.9 -0.35 52.5 -0.49 37.5 -0.91 31.0
M.A.S. 1.Q -0.28 70.7 -0.35 53.3 -0.45 40.5 -0.63 33.8
M.A.S. Q.1 -0.28 71.4 -0.35 52.7 -0.45 40.4 -0.62 34.1

Laminating -0.29 | 67.8 |-0.37 | 49.1 | -0.50 36.8 -0.88 31.5

Table 4: Mean boosting loss (log;q) and test error (%) after various number of boosting
steps on the CIFAR-10 data set with all families of features. Methods highlighted
with a x require the tuning of meta-parameters, which have been optimized by
training fully multiple times.
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up to 10,000 boosting rounds averaged through ten randomized runs in Tables 1—4. We
used as cost for all the algorithms the number of evaluated features, that is for each boosting
iteration XS, the number of sampled features times the number of sampled examples. For
the Laminating algorithm we multiplied this cost by the number of iterations [logs(Q)].
We set the maximum cost of all the algorithms to 10V, setting Q = 10 and .S = N for the
baselines, as this configuration leads to the best results after 10,000 boosting rounds.

The parameters of the baselines—mnamely the scale of the rewards for UCB and Exp3.P,
and the c/d? ratio of e-greedy—were optimized by trying all values of the form 2", n =
{0,1,...,11}, and keeping the one leading to the smallest final boosting loss on the training
set, which is unfair to the uniform baselines as well as our methods. We set the values of
the parameters of Exp3.P to n = 0.3 and A = 0.15 as recommended in (Busa-Fekete and
Kegl, 2010).

These results illustrate the efficiency of the proposed methods. Up to 1,000 boosting
rounds, the Laminating algorithms is the clear winner on three out of the four data sets.
Then come the M.A.S. and the Tasting procedures, still performing far better than the
baselines. On the Caltech 101 data set the situation is different. Since it contains a much
smaller number of training examples compared to the other data sets (1515 versus several
tens of thousands), there is no advantage in sampling examples. It even proves detrimental
as the M.A.S. and Laminating methods are beaten by the baselines after 1,000 iterations.

The performance of all the methods tends to get similar for 10,000 stumps, which is
unusually large. The Tasting algorithm appears to fare the best, sampling examples offering
no speed gain for such a large number of boosting steps, except on the INRIA data set.
On this data set the Laminating algorithm still dominates, although its advantage in loss
reduction does not translate into a lower test error anymore.

7. Conclusion

We have improved boosting by modeling the statistical behavior of the weak learners’ edges.
This allowed us to maximize the loss reduction under strict control of the computational
cost. Experiments demonstrate that the algorithms perform well on real-world pattern
recognition tasks.

Extensions of the proposed methods could be investigated along two axes. The first
one is to merge the best two methods by adding a Tasting component to the Laminating
procedure, in order to bias the sampling towards promising feature subsets. The second is
to add a bandit-like component to the methods by adding a variance term related to the
lack of samples, and their obsolescence in the boosting process. This would account for the
degrading density estimation when subsets have not been sampled for a while, and induce
an exploratory sampling which may be missing in the current algorithms.
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Appendix A
Proof of Lemma 1:

Since
max & > égr (7)
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Equation (7) is true since ¢* is among the {r : ¢, > e, — 0} and ¢ is positive. Equations
(8) to (12) are true since we relax conditions on the event. Equation (13) is true since
P(X > 1) <E(X) for X > 0. Equations (14) and (15) are true analytically, and equation
(16) follows from Heeffding’s inequality.
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Appendix B

Proof of Theorem 1:

[logy(Q
1. k /
Defining d;, = 55 7 Where C' = Z —— is a normalization constant such that

[logs( )
the d;’s sum to the original 9, i.e. Z O0p = 0.

We apply Lemma 1 with constant 6k for each of the & Laminating iterations, 1 < k <
[logy(Q)]. Since each iteration samples twice as many training examples as the previous
one, and the d;’s sum to the original d, the probability to end up with a weak learner with
an edge below or equal to €;+ — ¢ is upper bounded by

[logy(Q)] 2 qok—1
0;S2
4 E exp( 5 )
5%Sk
k=1

1
<4 ~1 (18)

- 2
1- exp(—%)

1
<4 -1]. (19)

B 1—exp<—5§—§q>
|

Equation (17) is true analytically, Equation (18) follows from the formula for geometric
series, and Equation (19) is true due to the fact that the constant C' is upper bounded by

1 > |k
2 times the polylogarithm Li_1( —= | =Y /= ~ 4.15.
\[ 1mes the polylogarithm 1_%(\/5) kz_l ok
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Abstract

Optimization on manifolds is a rapidly developing branch of nonlinear optimization.
Its focus is on problems where the smooth geometry of the search space can be leveraged
to design efficient numerical algorithms. In particular, optimization on manifolds is well-
suited to deal with rank and orthogonality constraints. Such structured constraints appear
pervasively in machine learning applications, including low-rank matrix completion, sensor
network localization, camera network registration, independent component analysis, metric
learning, dimensionality reduction and so on.

The Manopt toolbox, available at www.manopt.org, is a user-friendly, documented
piece of software dedicated to simplify experimenting with state of the art Riemannian
optimization algorithms. By dealing internally with most of the differential geometry, the
package aims particularly at lowering the entrance barrier.

Keywords: Riemannian optimization, nonlinear programming, non convex, orthogonality
constraints, rank constraints, optimization with symmetries, rotation matrices

1. Introduction

Optimization on manifolds, or Riemannian optimization, is a fast growing research topic in
the field of nonlinear optimization. Its purpose is to provide efficient numerical algorithms
to find (at least local) optimizers for problems of the form

min f(z), (1)
where the search space M is a smooth space: a differentiable manifold which can be endowed
with a Riemannian structure. In a nutshell, this means M can be linearized locally at each
point x as a tangent space T, M and an inner product (-, -), which smoothly depends on z is
available on T, M. For example, when M is a submanifold of R"*™, a typical inner product
is (Hy, Hy)y = trace(H; H,). Many smooth search spaces arise often in applications.
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For example, the oblique manifold M = {X € R"*™: diag(X 'X) = 1,,} is a product
of spheres. That is, X € M if each column of X has unit 2-norm in R™. Absil and Gallivan
(2006) show how independent component analysis can be cast on this manifold as non-
orthogonal joint diagonalization.

When furthermore it is only the product ¥ = X 'X which matters, matrices of the
form QX are equivalent for all orthogonal Q. This suggests a quotient geometry for the
fixed-rank elliptope M = {Y € R™™ : Y = YT = 0,rank(Y) = n,diag(Y) = 1,,}.
Grubisi¢ and Pietersz (2007) optimize over this set to produce low-rank approximations of
covariance matrices.

The (compact) Stiefel manifold is the Riemannian submanifold of orthonormal matri-
ces, M = {X e R™™: XTX = I,,}. Theis et al. (2009) formulate independent component
analysis with dimensionality reduction as optimization over the Stiefel manifold. Journée
et al. (2010b) frame sparse principal component analysis over this manifold as well.

The Grassmann manifold M = {col(X): X € R}?*™} where X is a full-rank matrix
and col(X) denotes the subspace spanned by its columns, is the set of subspaces of R" of
dimension m. Among other things, optimization over the Grassmann manifold is useful
in low-rank matrix completion, where it is observed that if one knows the column space
spanned by the sought matrix, then completing the matrix according to a least-squares
criterion is easy (Boumal and Absil, 2011; Keshavan et al., 2010).

The special orthogonal group M = {X € R"*": XX = I,, and det(X) = 1} is the
group of rotations, typically considered as a Riemannian submanifold of R™*™. Optimization
problems involving rotation matrices occur in robotics and computer vision, when estimating
the attitude of vehicles or the pose of cameras (Boumal et al., 2013).

The set of fixed-rank matrices M = {X € R™™: rank(X) = k} admits a number
of different Riemannian structures. Vandereycken (2013) proposes an embedded geometry
for M and exploits Riemannian optimization on that manifold to address the low-rank
matrix completion problem. Shalit et al. (2012) use the same geometry to address similarity
learning. Mishra et al. (2012) further cover a number of quotient geometries.

The set of symmetric, positive semidefinite, fixed-rank matrices is also a man-
ifold, M = {X € R™": X = X' = 0,rank(X) = k}. Meyer et al. (2011) exploit this to
propose low-rank algorithms for metric learning. This space is tightly related to the space
of Euclidean distance matrices X such that X;; is the squared distance between two
fixed points z;,x; € R*. Mishra et al. (2011) leverage this geometry to formulate efficient
low-rank algorithms for Euclidean distance matrix completion.

The rich geometry of Riemannian manifolds makes it possible to define gradients and
Hessians of cost functions f, as well as systematic procedures (called retractions) to move
on the manifold starting at a point x, along a specified tangent direction at x. Those
are sufficient ingredients to generalize standard nonlinear optimization methods such as
gradient descent, conjugate gradients, quasi-Newton, trust-regions, etc.

Building upon many earlier results not reviewed here, the recent monograph by Absil
et al. (2008) sets an algorithmic framework to analyze problems of the form (1) when f
is a smooth function, with a strong emphasis on building a theory that leads to efficient
numerical algorithms on special manifolds. In particular, it describes the necessary ingredi-
ents to design first- and second-order algorithms on Riemannian submanifolds and quotient
manifolds of linear spaces. These algorithms come with numerical costs and convergence
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guarantees essentially matching those of the Euclidean counterparts they generalize. For
example, the Riemannian trust-region method converges globally toward critical points and
converges locally quadratically when the Hessian of f is available.

The maturity of the theory of smooth Riemannian optimization, its widespread appli-
cability and its excellent track record performance-wise prompted us to build the Manopt
toolbox: a user-friendly piece of software to help researchers and practitioners experiment
with these tools. Code and documentation are available at www.manopt.org.

2. Architecture and features of Manopt

The toolbox architecture is based on a separation of the manifolds, the solvers and the prob-
lem descriptions. For basic use, one only needs to pick a manifold from the library, describe
the cost function (and possible derivatives) on this manifold and pass it on to a solver.
Accompanying tools help the user in common tasks such as numerically checking whether
the cost function agrees with its derivatives up to the appropriate order, approximating the
Hessian based on the gradient of the cost, etc.

Manifolds in Manopt are represented as structures and are obtained by calling a factory.
The manifold descriptions include projections on tangent spaces, retractions, helpers to
convert Euclidean derivatives (gradient and Hessian) to Riemannian derivatives, etc. All
the manifolds mentioned in the introduction work out of the box, and more can be added.
Cartesian products of known manifolds are supported too.

Solvers in Manopt are functions that implement generic Riemannian minimization al-
gorithms. Solvers log standard information at each iteration and comply with standard
stopping criteria. Users may provide callbacks to log extra information or check custom
stopping criteria. Currently available solvers include Riemannian trust-regions—based on
work by Absil et al. (2007)—and conjugate gradients (both with preconditioning), as well
as steepest descent and a couple of derivative-free schemes. More solvers can be added.

An optimization problem in Manopt is represented as a problem structure. The latter
includes a field which contains a manifold, as obtained from a factory. Additionally, the
problem structure hosts function handles for the cost function f and (possibly) its deriva-
tives. An abstraction layer at the interface between the solvers and the problem description
offers great flexibility in the cost function description. As the needs grow during the life-
cycle of the toolbox and new ways of describing f become necessary (subdifferentials, partial
gradients, etc.), it will be sufficient to update this interface.

Computing f(x) typically produces intermediate results which can be reused in order
to compute the derivatives of f at x. To prevent redundant computations, Manopt in-
corporates an (optional) caching system, which becomes useful when transitioning from a
proof-of-concept draft of the algorithm to a convincing implementation.

3. Example: the maximum cut problem

Given an undirected graph with n nodes and weights w;; > 0 on the edges such that
W e R™™ is the weighted adjacency matrix and D € R™*"™ is the diagonal degree matrix
with Dy = ; Wij the graph Laplacian is the positive semidefinite matrix L = D — W.
The max-cut problem consists in building a partition s € {+1,—1}" of the nodes in two
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_c.)2
classes such that %STLS = ZK], Wi (si 453) , that is, the sum of the weights of the edges

connecting the two classes, is maximum. Let X = ss'. Then, max-cut is equivalent to:

t LX)/4
Joax race(LX)/

st. X = X' = 0,diag(X) = 1,, and rank(X) = 1.

Goemans and Williamson (1995) proposed and analyzed the famous relaxation of this prob-
lem which consists in dropping the rank constraint, yielding a semidefinite program. Al-
ternatively relaxing the rank constraint to be rank(X) < r for some 1 < r < n yields a
tighter but nonconvex relaxation. Journée et al. (2010a) observe that fixing the rank with
the constraint rank(X) = r turns the search space into a smooth manifold, the fixed-rank
elliptope, which can be optimized over using Riemannian optimization. In Manopt, simple
code for this reads (with Y € R™ " such that X =YY '):

oe

The problem structure hosts a manifold structure as well as function handles
to define the cost function and its derivatives (here provided as Euclidean
% derivatives, which will be converted to their Riemannian equivalent) .

o°

problem.M = elliptopefactory(n, r);

problem.cost = Q(Y) —trace (Y'*LxY) /4;
problem.egrad = @ (Y) —(LxY)/2;

problem.ehess @Q(Y, U) —(LxU)/2; % optional

)

% These diagnostics tools help make sure the gradient and Hessian are correct.
checkgradient (problem); pause;
checkhessian (problem) ; pause;

% Minimize with trust—regions, a random initial guess and default options.
Y = trustregions (problem);

Randomly projecting Y yields a cut: s = sign(Y*randn(r, 1)). The Manopt distribu-
tion includes advanced code for this example, where the caching functionalities are used
to avoid redundant computations of the product LY in the cost and the gradient, and the
rank 7 is increased gradually to obtain a global solution of the max-cut SDP (and hence a
formal upperbound), following a procedure described by Journée et al. (2010a).
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Abstract

Classification problems with thousands or more classes often have a large range of class-
confusabilities, and we show that the more-confusable classes add more noise to the em-
pirical loss that is minimized during training. We propose an online solution that reduces
the effect of highly confusable classes in training the classifier parameters, and focuses the
training on pairs of classes that are easier to differentiate at any given time in the training.
We also show that the adagrad method, recently proposed for automatically decreasing
step sizes for convex stochastic gradient descent, can also be profitably applied to the non-
convex joint training of supervised dimensionality reduction and linear classifiers as done
in Wsabie. Experiments on ImageNet benchmark data sets and proprietary image recogni-
tion problems with 15,000 to 97,000 classes show substantial gains in classification accuracy
compared to one-vs-all linear SVMs and Wsabie.

Keywords: large-scale, classification, multiclass, online learning, stochastic gradient

1. Introduction

Problems with many classes abound: from classifying a description of a flower as one of the
over 300,000 known flowering plants (Paton et al., 2008), to classifying a whistled tune as
one of the over 30 million recorded songs (Eck, 2013). Many practical multiclass problems
are labelling images, for example face recognition, or tagging locations in vacation photos.
In practice, the more classes considered, the greater the chance that some classes will be
easy to separate, but that some classes will be highly confusable.

When training a discriminative multi-class classifier, the true goal is to minimize ex-
pected error on future samples, but in practice we minimize empirical error on samples we
already have. In this paper, we show that classes that are more confusable add more noise
to the empirical loss. To address this, we propose approximating the expected error with
a different empirical loss we term the empirical class-confusion loss. For the large-scale
online training, we show that an online empirical class-confusion loss can be implemented
for stochastic gradient descent by simply ignoring stochastic gradients corresponding to a
repeated confusion between classes. This proposed strategy also automatically implements
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a form of curriculum learning, that is, of learning to distinguish easy classes before focusing
on learning to distinguish hard classes (Bengio et al., 2009).

In this paper, we focus on classifiers that use a linear discriminant or a single prototypical
feature vector to represent each class. Linear classifiers are a popular approach to highly
multiclass problems because they are efficient in terms of memory and inference and can
provide good performance (Perronnin et al., 2012; Lin et al., 2011; Sanchez and Perronnin,
2011). Class prototypes offer similar memory /efficiency advantages. The last layer of a
deep belief network classifier is often linear or soft-max discriminant functions (Bengio,
2009), and the proposed ideas for adapting online loss functions should be applicable in
that context as well.

We apply the proposed loss function adaptation to the multiclass linear classifier called
Wsabie (Weston et al., 2011). We also simplify Wsabie’s weighting of stochastic gradients,
and employ a recent advance in automatic step-size adaptation called adagrad (Duchi et al.,
2011). The resulting proposed Wsabiet ™ classifier almost doubles the classification accuracy
on benchmark Imagenet data sets compared to Wsabie, and shows substantial gains over
one-vs-all SVMs.

The rest of the article is as follows. After establishing notation in Section 2, we explain
in Section 3 how different class confusabilities can distort the standard empirical loss. We
then review loss functions for jointly training multiclass linear classifiers in Section 4, and
stochastic gradient descent variants for large-scale learning in Section 5. In Section 6, we
propose a practical online solution to adapt the empirical loss to account for the variance of
class confusability. We describe our adagrad implementation in Section 7. Experiments are
reported on benchmark and proprietary image classification data sets with 15,000-97,000
classes in Section 8 and 9. We conclude with some notes about the key issues and unresolved
questions.

2. Notation And Assumptions

We take as given a set of training data {(z;,);)} for t = 1,...,n, where z; € R? is a feature
vector and )y C {1,2,...,G} is the subset of the G class labels that are known to be correct
labels for z;. For example, an image might be represented by set of features x; and have
known labels )} = {dolphin, ocean, Half Moon Bay}. We assume a discriminant function
f(z; Bg) has been chosen with class-specific parameters 3, for each class with g =1,...,G.
The class discriminant functions are used to classify a test sample x as the class label that
solves

arg mgax f(z; By). (1)

Most of this paper applies equally well to “learning to rank,” in which case the output might
be a top-ranked or ranked-and-thresholded list of classes for a test sample x. For simplicity,
we restrict our discussion and metrics to the classification paradigm given by (1).

Many of the ideas in this paper can be applied to any choice of discriminant function
f(z,Bg), but in this paper we focus on efficiency in terms of test-time and memory, and
so we focus on class discriminants that are parameterized by a d-dimensional vector per
class. Two such functions are: the inner product f(z;3,) = ﬁng, and the squared /¢
norm f(z;8,) = —(8y — )T (8, — z). We also refer to these as linear discriminants and

1462



TRAINING HIGHLY MULTICLASS CLASSIFIERS

Fuclidean distance discriminants, respectively. For example, one-vs-all linear SVMs use a
linear discriminant, where the 3, are each trained to maximize the margin between samples
from the gth class and all samples from all other classes. The nearest means classifier
(Hastie et al., 2001) uses an Euclidean distance discriminant where each class prototype 3,
is set to be the mean of all the training samples labelled with class g. Both the linear and
nearest-prototype functions produce linear decision boundaries between classes. And with
either the linear or Euclidean discriminants, the classifier has a total of G x d parameters,
and testing as per (1) scales as O(Gd).

To reduce memory and test time, and also as a regularizer, it may be useful for the clas-
sifier to include a dimensionality reduction matrix (sometimes called an embedding matrix)
W € R™*? and then use linear or Euclidean discriminants in the reduced dimensionality
space, for example f(x; W, 5,) = BgTW:z: or f(z; W, By) = —(By — )T W (B, — ).

3. The Problem with a Large Variance in Class Confusability

The underlying goal when discriminatively training a classifier is to minimize expected
classification error, but this goal is often approximated by the empirical classification errors
on a given data set. In this section, we show that the expected error does not count
errors between confusable classes (like dolphin and porpoise) the same as errors between
separable classes (like cat and dolphin), whereas the empirical error counts all errors
equally. Consequently, more confusable classes add more noise to the standard empirical
error approximation of the expected error, and this confusable-class noise can adversely
affect training.

Then in Section 6, we propose addressing this issue by changing the way we measure
empirical loss to reduce the impact of errors between more-confusable classes.

3.1 Expected Classification Error Depends on Class Confusability

Define a classifier ¢ as a map from an input feature vector z to a class such that ¢ : R4 —
1,2,...,G. Let I be the indicator function, and assume there exists a joint probability
distribution Pxy on the random feature vector X € R? and class Y € {1,2,...,G}. Then
the expected classification error of classifier c is:

Exy Iy zex)] = Ex [By|x Iy £e(x)]] (2)
= Ex [Pyx(Y # ¢(X))] because I is a Bernoulli random variable  (3)

1 n
~ o Z Py, (Y # c(x¢)), law of large numbers approximation (4)

t=1

1 n

%

" D Lyt (5)
t=1

where the approximation in (4) replaces the expectation with an average over n samples,
an approximation that is asymptotically correct as n — oo by the law of large numbers
(LLN). The final approximation given in (5) produces the standard empirical error.
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Equations (3) and (4) show that the expected error depends on the probability that
a given feature vector x; has corresponding random class label Y; equal to the classifier’s
decision c¢(z¢). For example, suppose that sample x; is equally likely to be class 1 or class
2, but no other class. If the classifier labels 7; as c¢(x;) = 1, one should add Py, (Y #
(c(x¢) = 1)) = 1/2 to the approximate error given by (4). On the other hand, suppose that
for another sample z;, the probability of class 1 is .99 and the probability of class 3 is .01.
Then if the classifier calls c¢(z;) = 1 we should add Py, (Y # (c(x:) = 1)) = .01 to the
loss, whereas if the classifier calls ¢(z;) = 3 we should add Py, (Y # (c(2:) = 1)) = .99
to the loss. This relative weighting based on class confusions is in contrast to the standard
empirical loss given in (5) that simply counts all errors equally.

One can interpret the standard empirical loss given in (5) as the maximum likeli-
hood approximation to (2) that estimates Py|,, given the training sample pair (¢, 1) as

Py‘xt (y:) = 1 and If’ym (9) = 0 for all other classes g. This maximum likelihood estimate
converges asymptotically to (4), but for a finite number of training samples may produce a
poor approximation. For binary classifiers, the approximation (5) may be quite good. We
argue that (5) is generally a worse approximation as the number of classes increases. The
key issue is that while the one-or-zero error approximation in (5) asymptotically converges to
Py |z, it converges more slowly when classes are more confusable, and thus more-confusable
classes add more “noise” to the approximation than less-confusable classes, biasing the
empirical loss to overfit the noise of the more confusable class confusions.

Let us characterize this difference in noise. For any feature vector x and classifier ¢ the
true class label Y is a random variable, and thus the indicator Iy _..,) in (5) is a random
indicator with a binomial distribution with parameter p = Py|,,,(Y" # c(z¢)). The variance
of the random indicator Iy_.(z,) is p(1 — p), and thus the more confusable the classes, the
more variance there will be in the corresponding samples’ contribution to the empirical loss.

Beyond noting the variance of the empirical errors is quadratic in p, it is not straightfor-
ward to formally characterize the distribution of the empirical loss for binomials with differ-
ent p for finite n (see for example Brown et al., 2001). However we can emphasize this point
with a histogram of simulated empirical errors in Figure 1. The figure shows histograms of
1000 different simulations of the empirical error, calculated by averaging either 10 random
samples (top) or 100 random samples (bottom) that either have p = Py, (Y # c(z:)) = 0.5
(left) or p = Py, (Y # c(w¢)) = 0.01 (right).

The left-hand side of Figure 1 corresponds to samples x that are equally likely to be
one of two classes, and so even the Bayes classifier is wrong half the time, such that p =
Py, (Y # c(xt)) = 0.5. The empirical error of such samples will eventually converge to
the true error 0.5, but we see (top left) that the empirical error of ten such samples varies
greatly! Even one hundred such samples (bottom left) are often a full .1 away from their
converged value. This is in contrast to the right-hand examples corresponding to samples
7y that are easily classified such that p = Py, (Y # c(z¢)) = 0.01. Their empirical error is
generally much closer to the correct .01. Thus the more-confusable classes add more noise
to the standard empirical loss approximation (5).

in the special case that the Bayes error is zero and the classifier ¢ is the Bayes classifier
the standard empirical loss approximation (5) is exact. For practical classification problems
with many classes, we argue that at least some classes will be very confusable, and thus the
Bayes error will not be zero, and (5) can be a dangerous approximation to use for training.
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Figure 1: Histograms of the empirical error of 10 random samples (top) or 100 random
samples (bottom). As the number of samples averaged grows, the empirical error
will converge to the true probability of an error, either .5 (left) or .01 (right). But
given a finite sample, the empirical error may be quite noisy, and when the true
error is high (left) the empirical error can be much noisier than when the true
error is low (right).
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Empirical errors: 10 Empirical errors: 9

Figure 2: Two classifiers and the same draw of random training samples from four classes.
Dotted lines correspond to the Bayes decision boundaries, and indicate that class
1 and class 2 are indistinguishable (same Bayes decision regions). Solid lines cor-
respond to the classifier decision boundaries, determined by which class prototype
B1, B2, B3, or By is closest. The two figures differ in the placement of 1, which
produces different classifier decision boundaries. In this case, because of the ran-
domness of the given training samples, the empirical error is higher for the left
classifier than the right classifier, but the left classifier is closer to the optimal
Bayes classifier.

Figure 2 shows an example of empirical error being overfit to noise between confusable
classes. The figure compares two classifiers. Each classifier uses a Euclidean discriminant
function, that is, the gth class is represented by a prototype vector {34}, and a feature
vector is classified as the nearest prototype with respect to Euclidean distance. Thus the
decision boundaries are formed by the Voronoi diagram denoted with the thick lines, and
the decision boundary between any two classes is linear.

The two classifiers in Figure 2 differ only in the placement of 5;. One sees that decision
boundaries produced are not independent of each other: the right classifier has moved (;
up to reduce empirical errors between class 1 and class 2, but this also changes the decision
boundary between classes 1 and 3, and incurs a new empirical error of a class 3 sample.
The left classifier in Figure 2 is actually closer to the Bayes decision boundaries (shown by
the dotted lines), and would have lower error on a test set (on average).

If the feature dimension is high enough, then as the number of classes G grows, the
number of decision boundaries between classes can grow at a worst-case rate of G2, and yet
the ability of these efficient classifiers to describe decision boundaries is fixed at Gd degrees
of freedom. And with high-dimensional feature spaces, many classes are next to each other.
This interdependence of the pairwise class decision boundaries is why simply minimizing
the total empirical error is a bad strategy: it is too sensitive to the empirical error noise of
the more-confusable classes.
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3.2 Two Factors We Mostly Ignore In This Discussion

Throughout this paper we ignore the dependence of Py|,,(Y # c(x)) on the particular feature
vector x, and focus instead on how confusable a particular class y = ¢(X) is averaged over
X. For example, pictures of porpoises may on average be confused with pictures of dolphins,
even though a particular image of a porpoise may be more or less confusable.

Also, we have thus far ignored the fact that discriminative training usually makes a
further approximation of (5) by replacing the indicator by a convex approximation like the
hinge loss. Such convex relaxations do not avoid the issues described in the previous section,
though they may help. For example, the hinge loss increases the weight of an error that
is made farther from the decision boundary. To the extent that classes are less confusable
farther away from the decision boundary, the hinge loss may be a better approximation
than the indicator to the probabilistic weighting of (4). However, if the features are high-
dimensional, the distribution of distances from the decision boundary may be less variable
than one would expect from two-dimensional intuition (see for example Hall and Marron,
2005).

3.3 A Different Approximation for the Empirical Loss

We argued above that when computing the empirical test error, approximating Py, (Y #
c(xy)) by 1if y, = c¢(x) and by 0 otherwise adds preferentially more label noise from more
confusable classes.

Here we propose a different approximation for Py, (Y # c(x1)). As usual, if ¢(x;) =y,
we approximate Py, (Y # c(x:)) by 0. But if c(z;) # y;, then we use the empirical
probability that a training sample that has label y; is not classified as c(x):

Py, (Y # c(z1)) = Ex|y=y, [P(c(X) # c(z)] (6)
Z I -r=ytIc(atT)7$c(:ct)
~ | ==t 1 (7)

271 Ly =y, el

This approximation depends on how consistently feature vectors with training label 1
are classified as class ¢(x¢), and counts common class-confusions less. For example, consider
the right-hand classifier ¢(z) in Figure 2. There is just one training sample labeled 3 that
is incorrectly classified as class 1. The cost of that error according to (7) is 10/11, because
there are eleven class 3 examples, and ten of those are classified as class 3. On the other
hand, the cost of incorrectly labeling a sample of class 1 as a sample of class 2 would be
only 7/11, because seven of the eleven class 1 samples are not labeled as class 2.

Thus this approximation generally has the desired effect of counting confusions between
confusable classes relatively less than confusions between easy-to-separate classes. This
approximation is more exact for “good” classifiers ¢(z) that are more similar to the Bayes
classifier, and more exact if the feature vectors X are equally predictive for each class label
so that averaging over X in (6) is a good approximation for most realizations x;.

One could implement this approximation in a sequential process: first train a classifier,
then compute the empirical class-confusion probability matrix, and then re-train a classifier
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using the approximation (7) for the empirical loss. Shamir and Dekel (2010) proposed a
related but more extreme two-step approach for highly multi-class problems: first train a
classifier on all classes, and then delete classes that are poorly estimated by the classifier.

To be more practical, we propose continuously evolving the classifier to ignore the cur-
rently highly-confusable classes by implementing (6) in an online fashion with SGD. This
simple variant can be interpreted as implementing curriculum learning (Bengio et al., 2009),
a topic we discuss further in Section 6.2.1. But before detailing the proposed simple on-
line strategy in Section 6, we need to review related work in loss functions for multi-class
classifiers.

4. Related Work in Loss Functions for Multiclass Classifiers

In this section, we review loss functions for multiclass classifiers, and discuss recent work
adapting such loss functions to the online setting for large-scale learning.

One of the most popular classifiers for highly multiclass learning is one-vs-all linear
SVMs, which have only O(Gd) parameters to learn and store, and O(Gd) time needed
for testing. A clear advantage of one-vs-all is that the G class discriminant functions
{fy(z)} can be trained independently. An alternate parallelizable approach is to train all
G? one-vs-one SVMs, and let them vote for the best class (also known as round-robin and
all-vs-all). Binary classifiers can also be combined using error-correcting code approaches
(Dietterich and Bakiri, 1995; Allwein et al., 2000; Crammer and Singer, 2002). A well-
regarded experimental study of multiclass classification approaches by Rifkin and Klatau
(2004) showed that one-vs-all SVMs performed “just as well” on a set of ten benchmark
data sets with 4-49 classes as one-vs-one or error-correcting code approaches.

A number of researchers have independently extended the two-class SVM optimization
problem to a joint multiclass optimization problem that maximizes pairwise margins subject
to the training samples being correctly classified, with respect to pairwise slack variables
(Vapnik, 1998; Weston and Watkins, 1998, 1999; Bredensteiner and Bennet, 1999).! These
extensions have been shown to be essentially equivalent quadratic programming problems
(Guermeur, 2002). The minimized empirical loss can be stated as the sum of the pairwise
errors:

n

Lpairwise({ﬁg}) = Z ! Z ! Z |b - f(xt; 6y+) + f(xt; ﬁy*)’-ﬁ-’ (8)

1V, 10|
= D y+eM: N y—eyg

where | - |+ is short-hand for max(0,-), b is a margin parameter, Y is the complement set
of Vy, and we added normalizers to account for the case that a given x; may have more than
one positive label such that || > 1.

Crammer and Singer (2001) instead suggested taking the maximum hinge loss over all
the negative classes:

n

Liax loss({ﬁg}) = Z ! Z maXC ‘b - f(xt; 5y+) + f(-ft; By’)’-i-' (9)

— ’yt‘ —_— Yy~ eV,

1. See also the work of Herbrich et al. (2000) for a related pairwise loss function for ranking rather than
classification.
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This maximum hinge-loss is sometimes called multiclass SVM, and can be derived from a
margin-bound (Mohri et al., 2012). Daniely et al. (2012) theoretically compared multiclass
SVM with one-vs-all, one-vs-one, tree-based linear classifiers and error-correcting output
code linear classifiers. They showed that the hypothesis class of multiclass SVM contains
that of one-vs-all and tree-classifiers, which strictly contain the hypothesis class of one-vs-
one classifiers. Thus the potential performance with multiclass SVM is larger. However
they also showed that the approximation error of one-vs-one is smallest, with multiclass
SVM next smallest.

Statnikov et al. (2005) compared eight multiclass classifiers including that of Weston
and Watkins (1999) and Crammer and Singer (2001) on nine cancer classification problems
with 3 to 26 classes and less than 400 samples per problem. On these small-scale data sets,
they found the Crammer and Singer (2001) classifier was best (or tied) on 2/3 of the data
sets, and the pairwise loss given in (8) performed almost as well.

Lee et al. (2004) prove in their Lemma 2 that previous approaches to multiclass SVMs
are not guaranteed to be asymptotically consistent. For more on consistency of multiclass
classification loss functions, see Rifkin and Klatau (2004), Tewari and Bartlett (2007), Zhang
(2004), and Mroueh et al. (2012). Lee et al. (2004) proposed a multiclass loss function that
is consistent. They force the class discriminants to sum to zero such that g f(x;84) =0
for all x, and define the loss:

1
Ltotal loss {ﬁg Z Z xtv ﬁy m |+' (10)

- Yy Eyt

This loss function jointly trains the class discriminants so that the total sum of wrong class
discriminants for each training sample is small. Minimizing this loss can be expressed as a
constrained quadratic program. The experiments of Lee et al. (2004) on a few small data
sets did not show much difference between the performance of (10) and (8).

5. Online Loss Functions for Training Large-scale Multiclass Classifiers

If there are a large number of training samples n, then computing the loss for each candidate
set of classifier parameters becomes computationally prohibitive. The usual solution is to
minimize the loss in an online fashion with stochastic gradient descent, but exactly how
to sample the stochastic gradients becomes a key issue. Next, we review two stochastic
gradient approaches that correspond to different loss functions: AUC sampling (Grangier
and Bengio, 2008) and the WARP sampling used in the Wsabie classifier (Weston et al.,
2011).

5.1 AUC Sampling

For a large number of training samples n, Grangier and Bengio (2008) proposed optimizing
(8) by sequentially uniformly sampling from each of the three sums in (8):

1. draw one training sample x,

2. draw one correct class y from ),

1469



GUPTA, BENGIO, AND WESTON

3. draw one incorrect class y~ from Y,
4. compute the corresponding stochastic gradient of the loss in (8),
5. update the classifier parameters.

This sampling strategy, referred to as area under the curve (AUC) sampling, is inefficient
because most randomly drawn incorrect class samples will have zero hinge loss and thus
not produce an update to the classifier.

5.2 WARP Sampling

The weighted approzimately ranked pairwise (WARP) sampling was introduced by Weston
et al. (2011) to make the stochastic gradient sampling more efficient than AUC sampling,
and was evolved from the weighted pairwise classification loss of Usunier et al. (2009).
Unlike AUC sampling, WARP sampling focuses on sampling from negative classes that
produce non-zero stochastic gradients for a given training example.

To explain WARP sampling, we first define the WARP loss:

n

LD =Y = 3 S w(y) b Sl Bye) + i Bl

t=1 |yt| y+€yt |Vt,y+| yUEVt7y+
(11)

where w(y™) is a weight on the correct label, and Vyy+ is the set of violating classes defined:

Vigt = {y" st [b— fae By+) + fae; Byr)|+ > 0} (12)

As in Usunier et al. (2009), Weston et al. (2011) suggest using a weight function w(y™)
that is an increasing function of the number of violating classes. Because the number
of violating classes defines the rank of the correct class y*, they denote the number of
violating classes for a training sample with training class y™ as r(y*). They suggest using
the truncated harmonic series for the weight function,

<

r(y*)
)= (13)

1
w(y —-
J

Jj=1

Weston et al. (2011) proposed WARP sampling which sequentially uniformly samples
from each of the three sums in (11):

1. draw one training sample x,

2. draw one correct class y from ),

3. draw one violating class y” from V, ,+ if one exists,

4. compute the corresponding stochastic gradient of the loss in (11),

5. update the classifier parameters.
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To sample a violating class from V, ,+, the negative classes in ytc are uniformly randomly
sampled until a class that satisfies the violation constraint (12) is found, or the number of
allowed such trials (generally set to be G) is exhausted. The rank r(y™) needed to calculate
the weight in (13) is estimated to be (G — 1) divided by the number of negative classes
y~ € ) that had to be tried before finding a violating class y* from V, ,+.

5.3 Some Notes Comparing AUC and WARP Loss

We note that WARP sampling is more likely than AUC sampling to update the parameters
of a training sample’s positive class yT if y* has few violating classes, that is if (z¢, ;)
is already highly-ranked by (1). Specifically, suppose a training pair (z¢,y;) is randomly
sampled, and suppose H > 0 of the GG classes are violators such that their hinge-loss is
non-zero with respect to (z,y"). WARP sampling will draw random classes until it finds
a violator and makes an update, but AUC will only make an update if the one random
class it draws happens to be a violator, so only H/(G — 1) of the time. By definition, the
higher-ranked the correct class y; is for x;, the smaller the number of violating classes H,
and the less likely AUC sampling will update the classifier to learn from (x¢,y;).

In this sense, WARP sampling is more focused on fixing class parameters that are almost
right already, whereas AUC sampling is more focused on improving class parameters that
are very wrong. At test time, classifiers choose only the highest-ranked class discriminant
as a class label, and thus the fact that AUC sampling updates more often on lower-ranked
classes is likely the key reason that WARP sampling performs so much better in practice
(see the experiments of Weston et al. (2011) and the experiments in this paper). Even in
ranking, it is usually only the top ranked classes that are of interest. However, the WARP
weight w(y™) given in (13) partly counteracts this difference by assigning greater weights
(equivalently a larger step-size to the stochastic gradient) if the correct class has many
violators, as then its rank is lower. In this paper, one of the proposals we make is to use
constant weights w(y™) = 1, so the training is even more focused on improving classes that
are already highly-ranked.

AUC sampling is also inefficient because so many of the random samples result in a zero
gradient. In fact, we note that the probability that AUC sampling will update the classifier
decreases if there are more classes. Specifically, suppose for a given training sample pair
(x¢,y¢) there are H classes that violate it, and that there are G classes in total. Then the
probability that AUC sampling updates the classifier for (zy,y) is H/(G —1), which linearly
decreases as the number of classes G is increased.

5.4 Online Versions of Other Multiclass Losses

WARP sampling implements an online version of the pairwise loss given in (8) (Weston
et al., 2011). One can also interpret the WARP loss sampling as an online approximation of
the maximum hinge loss given in (9), where the maximum violating class is approximated
by the sampled violating class. This interpretation does not call for a rank-based weighting
w(y™), and in fact we found that setting w(y™) = 1 improved accuracy by roughly 20% on a
large-scale image annotation task (see Table 6). A better approximation of (9) would require
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sampling multiple violating classes and then taking the class with the worst discriminant,
we did not try this due to the expected time needed to find multiple violating classes.
Further, we hypothesize that choosing the class with the largest violation as the violating
class could actually perform poorly for practical highly multiclass problems like Imagenet
because the worst discriminant may belong to a class that is a missing correct label, rather
than an incorrect label.

An online version of the loss proposed by Lee et al. (2004) and given in (10) would
be more challenging to implement because the G class discriminants are required to be
normalized; we do not know of any such experiments.

5.5 The Wsabie Classifier

Weston et al. (2011) combined the WARP sampling with online learning of a supervised
linear dimensionality reduction. They learn an embedding matrix W € R™*% that maps a
given d-dimensional feature vector x to an m-dimensional “embedded” vector Wx € R™,
where m < d, and then the G class-specific discriminants of dimension m are trained to
separate classes in the embedding space. Weston et al. (2011) referred to this combination
as the Wsabie classifier. This changes the WARP loss given in (11) to the non-convex
Wsabie loss, defined:

Lwsabie WV, {8 =D > S wyt) (b= f(WayBys) + fF(Wa Byl

=1 ytel yveV, .+

Adding the embedding matrix W changes the number of parameters from Gd to Gm +
md. For a large number of classes G and a small embedding dimension m (the case of
interest here) this reduces the overall parameters, and so the addition of the embedding
matrix W acts as a regularizer, reduces memory, and reduces testing time.

6. Online Adaptation of the Empirical Loss to Reduce Impact of Highly
Confusable Classes

In this section, we present a simple and memory-efficient online implementation of the
empirical class-confusion loss we proposed in Section 3.3 that reduces the impact of highly
confusable classes on the standard empirical loss. First, we describe the batch variant of
this proposal and quantify its effect. Then in Section 6.2 we describe a sampling version.
In Section 6.3, we propose a simple extension that experimentally increases the accuracy
of the resulting classifier, without using additional memory. We show the proposed online
strategy works well in practice in Section 9.

6.1 Reducing the Effect of Highly Confusable Classes By Ignoring Last
Violators

We introduce the key idea of a last violator class with a simple example before a formal
definition. Suppose during online training the hundredth training sample x199 has label
Y100 = tiger, and that the last training sample we saw labelled tiger was x5. And
suppose lion was a violating class for that training sample pair (x5,tiger), that is |1 —

1472



TRAINING HIGHLY MULTICLASS CLASSIFIERS

f(x5;0riger) + f(25;01i0n)|+ > 0. Then for sample (x100, tiger) we call the class lion the
last violator class.

Formally, we call class vy ,+ a last violator for the training sample pair (x4, y") if 2,
was the last training sample for which y™ was the sampled positive class and U+ Was a
violator for (z,,y™"), that is, Vg yt € Vry+. The set of violators V. .+ becomes the set of
last violators of (x¢,y™), which we denote 1~)t,y+.

In order to decrease the effect of highly confusable classes on training the classifier,
we propose to ignore losses for any violator class that was also a last violator class. The
reasoning is that if the last violator class and a current violator class are the same, it
indicates that the class y; and that violator class are consistently confused (for example
tiger and lion). And if two classes are consistently confused, we would like to reduce
their impact on the empirical loss, as discussed in Section 3.

For example, say sequential training samples that were labelled cat had the following
violating classes:

dog and pig, dog and pig, none, dog, dog, none, dog, pig.
The proposed approach ignores any violator that was also a last violator:

dog and pig, deg and pig, none, dog, deg, mnone, dog, pig.

Mathematically, to ignore last violators we simply add an indicator function I to the
loss function. For example, ignoring last violators with the WARP loss from (11) can be
written:

n
Lproposed {Hg} Z Z Z y+ ‘b - f(xt; 9y+) + f(xﬁ eyv)’-f- ]vag‘}t,ﬁ
=1 ytey yUeV, +
(14)
That is, instead of forming one estimate of the correct empirical loss as we proposed in
Section 3.3, here we approximate the correct empirical loss as the average of the series of
Bernoulli random variables represented by the extra indicator in (14). In fact, the proposal
to ignore last violators implements the proposed approximation (7): the probability that an
error is not-counted is the probability that the violating class is confused with the training
class:

Proposition 1: Suppose there are n samples labelled class g, and each such sample has
probability p of being classified as class h. Then the expected number of losses summed in
(11) is mp, but the expected number of losses summed in (14) is (n — 1)p(1 — p) + p.

This reduction of the empirical error from np to np(1 — p) is the same as in the earlier
proposal (6), where in Proposition 1 the probability 1 — p is the same as the expectation in

(6).
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6.2 Ignoring Sampled Last Violators for Online Learning

Building on the WARP sampling proposed by Weston et al. (2011) and reviewed in Section
5.2, we propose an online sampling implementation of (14), where for each class y™ we store
one sampled last violator and only update the classifier if the current violator is not the
same as the last violator. Specifically,

1. draw one training sample x,
2. draw one correct class y from ),

3. if there is no last violator v, ,+ or if v; ,+ exists but is not a violator for (2, y™), then
draw and store one violating class y* from V,+ and

(a) compute the corresponding stochastic gradient of the loss in (8)

(b) update the parameters.

Table 1 re-visits the same example as earlier, and illustrates for eight sequential training
examples whose training label was cat what the last violator class is, whether the last
violator is a current violator (in which case the current error is ignored), or if not ignored,
which of the current violators is randomly sampled for the classifier update.

Throughout the training, the state of the sampled last violator for any class y* can be
viewed as a Markov chain. We illustrate this for the class y™ and two possible violating
classes g and h in Figure 3.

In the experiments to follow, we couple the proposed online empirical class-confusion
loss sampling strategy with an embedding matrix as in the Wsabie algorithm for efficiency
and regularization, and refer to this as Wsabie™. A complete description of Wsabie™™ is
given in Table 3, including the adagrad stepsize updates described in the next section. The
memory needed to implement this discounting is O(G) because only one last violator class
is stored for each of the G classes.

Set of Cat Violators Cat’s LV Cat’s LV Violates? New Violator Sampled?

1: dog and pig none - dog
2: dog and pig dog yes ignored
3: dog dog yes ignored
4: dog and pig dog yes ignored
5: pig dog no pig
6: no violators pig no none
7: dog none - dog
8: dog dog yes ignored

Table 1: Example of ignoring sampled last violators for eight sequential samples (one per
row) whose training label is cat.
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(1 _pg)ph

Figure 3: In the proposed sampling strategy for the online empirical class-confusion loss,
the state of the last violator (LV) for a class y* can be interpreted as a Markov
chain where a transition occurs for each training sample. The figure illustrates the
case where there are just two possible violating classes, class g and class h, which
violate samples of class y* with probability p, and pj, respectively. Then the last
violator for class y* is always in one of three possible states: no last violator,
class h is the last violator, or class g is the last violator. Solid lines indicate a
violation that is counted; dotted lines indicate a violation that is ignored. The
three states have stationary distribution:

P(No LV) =

)

Pg(2 + pr — pgpn)
2(pg — 1)(pgpn — 1)’
Ph(2 + pg — pgph)
P(IV =h) = =
( )= 2300 Vg — 1)’

where Z is the normalizer that makes the stationary distribution sum to 1.

PV =g)=
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True Class Last Violator Class
tiger — lion

lion — cat

cat —  kitten

kitten — panther

panther — cat

Table 2: Example chain of five classes and their sampled last violator.

6.2.1 CURRICULUM LEARNING

We have primarily motivated ignoring last violators as a better approximation for the ex-
pected classification error. However, because this approach is online, it has a second practi-
cal effect of changing the distribution of classifier updates as the classifier improves during
training. Consider the classifier at some fixed point during training. At that point, classes
that are better separated from all other classes are less likely to have a last violator stored,
and thus more likely to be trained on. This increases the chance that the classifier first
learns to separate easy-to-separate classes. At each point in time, the classifier is less likely
to be updated to separate classes it finds most confusable. Bengio et al. (2009) have argued
that this kind of easy-to-hard learning is natural and useful, particularly when optimizing
non-convex loss functions as is the case when one jointly learns an embedding matrix W
for efficiency and regularization.

6.3 Extending the Discounting Loss to Multiple Last Violators

Table 2 shows an example of five classes and what their last violator class might be at
some point in the online training. For example, Table 2 suggests that tiger and lion are
highly confusable, and that lion and cat are highly confusable, and thus we suspect that
tiger and cat may also be highly confusable. To further reduce the impact of these sets
of highly confusable classes, we extend the above approach to ignoring a training sample if
it is currently violated by its last violator class’s last violator class, and so on. The longer
the chain of last violators we choose to ignore, the more training samples are ignored, and
the ignored training samples are preferentially those belonging to clusters of classes that
are highly-confusable with each other.

Formally, let viy+ denote the last violator of the last violator of y™*, that is vf’w =
Vb, 4 For the example given in Table 2, if y* is tiger, then its last violator is Vp oyt =

lion, and viw = cat. More generally, let vfy* be the Qth-order last violator, for example
vgtiger = kitten.
Let f/tc?y + be the set of last violators up through order @ for positive class y™ and the

tth sample. We extend (14) to ignore this larger set of likely highly-confusable classes:

LproposedQ {Gg} Z Z Z |b_ xt7 +) +f($ta )|+ I 1’€VQ . (15)

=1 ytelr yveV, .+

1476



TRAINING HIGHLY MULTICLASS CLASSIFIERS

To use (15) in an online setting, each time a training sample and its positive class are
drawn, we check if any g-th order last violator vg’yJF for any ¢ < @ is a current violator, and
if so, we ignore that training sample and move directly to the next training sample without
updating the classifier parameters.

Table 3 gives the complete proposed sampling and updating algorithm for Euclidean
discriminant functions, including the adaptive adagrad step-size explained in Section 7
which follows. For Euclidean discriminant functions we did not find (experimentally) that
we needed any constraints or additional regularizers on W or {f,}, though if desired a
regularization step can be added.

7. Adagrad For Learning Rate

Convergence speed of stochastic gradient methods is sensitive to the choice of stepsizes.
Recently, Duchi et al. (2011) proposed a parameter-dependent learning rate for stochastic
gradient methods. They proved that their approach has strong theoretical regret guarantees
for convex objective functions, and experimentally it produced better results than compa-
rable methods such as regularized dual averaging (Xiao, 2010) and the passive-aggressive
method (Crammer et al., 2006). In our experiments, we applied adagrad both to the convex
training of the one-vs-all SVMs and AUC sampling, as well as to the non-convex Wsabie™ "
training. Inspired by our preliminary results using adagrad for non-convex optimization,
Dean et al. (2012) also tried adagrad for non-convex training of a deep belief network, and
also found it produced substantial improvements in practice.

The main idea behind adagrad is that each parameter gets its own stepsize, and each
time a parameter is updated its stepsize is decreased to be proportional to the running sum
of the magnitude of all previous updates. For simplicity, we limit our description to the case
where the parameters being optimized are unconstrained, which is how we implemented it.
For memory and computational efficiency, Duchi et al. (2011) applying adagrad separately
for each parameter (as opposed to modeling correlations between parameters).

We applied adagrad to adapt the stepsize for the G classifier discriminants {34} and
the m x d embedding matrix W. We found that we could save memory without affecting
experimental performance by averaging the adagrad learning rate over the embedding di-
mensions such that we keep track of one scalar adagrad weight per class. That is, let A, -
denote the stochastic gradient for 3, at time 7, then we update 3, as follows:

(AT A, ~1/2
Bgt+1 = Bgt — 1 (Z (’gd’g Agr. (16)

7=0

Analogously, we found it experimentally effective and more memory efficient to keep track
of one averaged scalar adagrad weight for each of the m rows of the embedding matrix W.

There are two main effects to using adagrad. First, suppose there are two classes that are
updated equally often, then the class with larger stochastic gradients {A;} will experience
a faster-decaying learning rate. Second, and we believe the more relevant issue for our
use, is that some classes are updated frequently, and some classes rarely. Suppose that
all stochastic gradients {A,} have the same magnitude, then the classes that are updated
more rarely experience relatively larger updates. In our experiments the second effect was
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Model:
Training Data Pairs: (x4, );) fort =1,2,...,n
Embedded Euclidean Discriminant: f(Wz;8,) = —(8, — Wa)T (8, — W)

Hyperparameters:
Embedding Dimension: m
Stepsize: A € Ry
Margin: b € Ry
Depth of last violator chain: @Q € N

Initialize:
W set randomly to =1 or 1 for j =1,2,...,m,r=1,2,....d
Bg=0forallg=1,2,...,G
ag=0forall g=1,2,...,G
aw; =0forall j =1,2,...,m
v+ = empty set for all yT

While Not Converged:
Sample x; uniformly from {z1,...,z,}.
Sample y* uniformly from ).
If |b— f(Way; By+ ) + f(Wag; By )|y >0 forany ¢ = 1,2,...,Q, continue.

q
n
Set foundViolator = false. ’
For count =1 to G:
Sample y~ uniformly from Y.
If |b— f(Way; Byt ) + f(Way; B,- )|+ >0,
set foundViolator = true and break.
If foundViolator = false, set v+ to the empty set and continue.
Set vy+ =y~ .
Compute the stochastic gradients:
Ayr = 2(By+ — W)
Ayf = —Q(ﬁyf - Wflft)
AW = (By— - Byﬁ-)(WfL‘t)T.
Update the adagrad parameters:
Qyt = Qt + %AT+Ay+
Qy- = - + éA%, Ay~
aw,; = aw; + éA%{,ﬂ,AWj for j=1,2,...,m.
Update the classifier parameters:
By+ = By+ — \/%Azﬁ
A
By~ = By~ Vo Ay-

szwj—\/%%AWj for j=1,2,...,m.

Table 3: Wsabiet™ training (for Euclidean discriminants).
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predominant, which we tested by setting the learning rate for each parameter proportional
to the inverse square root of the number of times that parameter has been updated. This
“counting adagrad” produced results that were not statistically different using (16). (The
experimental results in this paper are reported using adagrad proper as per (16).)

We use «a to refer to the running sum of gradient magnitudes in the complete Wsabie™™
algorithm description given in Table 3.

8. Experiments

We first detail the data sets used. Then in Section 8.2 we describe the features. In Section 8.3
we describe the different classifiers compared and how the parameters and hyperparameters
were set.

8.1 Data Sets

Experiments were run with four data sets, as summarized in Table 4 and detailed below.

‘ 16k ImageNet 22k ImageNet 21k Web Data 97k Web Data

Number of Classes 15,589 21,841 21,171 96,812
Number of Samples 9 million 14 million 9 million 40 million
Number of Features 1024 479 1024 1024

Table 4: Data sets.

8.1.1 IMAGENET DATA SETS

ImageNet (Deng et al., 2009) is a large image data set organized according to WordNet
(Fellbaum, 1998). Concepts in WordNet, described by multiple words or word phrases, are
hierarchically organized. ImageNet is a growing image data set that attaches one of these
concepts to each image using a quality-controlled human-verified labeling process.

We used the spring 2010 and fall 2011 releases of the Imagenet data set. The spring 2010
version has around 9M images and 15,589 classes (16k ImageNet). The fall 2011 version
has about 14M images and 21,841 classes (22k ImageNet). For both data sets, we separated
out 10% of the examples for validation, 10% for test, and the remaining 80% was used for
training.

8.1.2 WEB DATA SETS

We also had access to a large proprietary set of images taken from the web, together with
a noisy annotation based on anonymized users’ click information. We created two data
sets from this corpus that we refer to as 21k Web Data and 97k Web Data. The 21k Web
Data contains about 9M images, divided into 20% for validation, 20% for test, and 60% for
train, and the images are labelled with 21,171 distinct classes. The 97k Web Data contains
about 40M images, divided into 10% for validation, 10% for test, and 80% for train, and
the images are labelled with 96,812 distinct classes.

There are five main differences between the Web Data and ImageNet. First, the types
of labels found in Imagenet are more academic, following the strict structure of WordNet.
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In contrast, the Web Data labels are taken from a set of popular queries that were the
input to a general-purpose image search engine, so it includes people, brands, products,
and abstract concepts. Second, the number of images per label in Imagenet is artificially
forced to be somewhat uniform, while the Web Data distribution of number of images per
label is generated by popularity with users, and is thus more exponentially distributed.
Third, because of the popular origins of the Web data sets, classes may be translations of
each other, plural vs. singular concepts, or synonyms (for examples, see Table 7). Thus
we expect more highly-confusable classes for the Web Data than ImageNet. A fourth key
difference is Imagenet disambiguates polysemous labels whereas Web Data does not, for
example, an image labeled palm might look like the palm of a hand or like a palm tree.
The fifth difference is that there may be multiple given positive labels for some of the Web
samples, for example, the same image might be labelled mountain, mountains, Himalaya,
and India.

Lastly, classes may be at different and overlapping precision levels, for example the class
cake and the class wedding cake.

8.2 Features

We do not focus on feature extraction in this work, although features certainly can have a
big impact on performance. For example, Sanchez and Perronnin (2011) recently achieved
a 160% gain in accuracy on the 10k ImageNet datatset by changing the features but not
the classification method.

In this paper we use features, similar to those used in Weston et al. (2011). We first
combined multiple spatial (Grauman and Darrell, 2007) and multiscale color and texton
histograms (Leung and Malik, 1999) for a total of about 5x 10> dimensions. The descriptors
are somewhat sparse, with about 50000 non-zero weights per image. Some of the constituent
histograms are normalized and some are not. We then perform kernel PCA (Schoelkopf
et al., 1999) on the combined feature representation using the intersection kernel (Barla
et al., 2003) to produce a 1024-dimensional or 479-dimensional input vector per image (see
Tab. 4), which is then used as the feature vectors for the classifiers.

8.3 Classifiers Compared and Hyperparameters

We experimentally compared the following linear classifiers: nearest means, one-vs-all
SVMs, AUC, Wsabie, and the proposed Wsabie™™ classifiers. Table 5 compares these
methods as they were implemented for the experiments.

The nearest means classifier is the most efficient to train of the compared methods as it
only passes over the training samples once and computes the mean of the training feature
vectors for each class (and there are no hyperparameters).

Like the nearest means classifier, we implemented Wsabie™™ with Euclidean discrim-
inants (as detailed in Table 3) and as such it can be considered a discriminative nearest
means classifier. Testing with Euclidean discriminants can easily be made faster by ap-
plying exact or approximate fast k-NN methods, where the class prototypes {8,} play the
role of the neighbors. Further, Euclidean discriminants lend themselves more naturally to
visualization than the inner product, as each class is represented by a prototype.
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One-vs-all linear SVMs are the most popular choice for large-scale classifiers due to stud-
ies showing their good performance, their parallelizable training, relatively small memory,
and fast test-time (Rifkin and Klatau, 2004; Deng et al., 2010; Sanchez and Perronnin, 2011;
Perronnin et al., 2012; Lin et al., 2011). Perronnin et al. (2012) highlights the importance
of getting the right balance of negative to positive examples used to train the one-vs-all
linear SVMs. As in their paper, we cross-validate the expected number of negative ex-
amples per positive example; the allowable choices were powers of 2. In contrast, earlier
published results by Weston et al. (2011) that compared Wsabie to one-vs-all SVMs used
one negative example per positive example, analogous to the AUC classifier. We included
this comparison, which we labelled One-vs-all SVMs 1+:1- in the tables.

Both Wsabie and Wsabiet ™ jointly train an embedding matrix W as described in Section
3.5. The embedding dimension d was chosen on the validation set from the choices d =
{32,64, 96, 128,192,256, 384,512, 768,1024} embedding dimensions. In addition, we created
ensemble Wsabie and Wsabie™™ classifiers by concatenating | % | such d-dimensional models
to produce a classifier with a total of m parameters to compare classifiers that require the
same memory and test-time.

All hyperparameters were chosen based on the accuracy on a held-out validation set.
Step-size, margin, and regularization constant hyperparameters were varied by powers of
ten. The order @) of the last violators was varied by powers of 2. Chosen hyperparameters
are recorded in Table 9. Both the pairwise loss and Wsabie classifier are implemented
with standard ¢ constraints on the class discriminants (and for Wsabie, on the rows of the
embedding matrix). We did not use any regularization constraints for Wsabie™ ™.

We initialized the Wsabie parameters and SVM parameters uniformly randomly within
the constraint set. We initialize the proposed training by setting all 3, to the origin, and all
components of the embedding matrix are equally likely to be —1 or 1. Experiments with dif-
ferent initialization schemes for these different classifiers showed that different (reasonable)
initializations gave very similar results.

With the exception of nearest means, all classifiers were trained online with stochastic
gradients. We also used adagrad for the convex optimizations of both one-vs-all SVMs and
the AUC sampling, which increased the speed of convergence.

Recently, Perronnin et al. (2012) showed good results with one-vs-all SVM classifiers
and the WARP loss where they also cross-validated an early-stopping criterion. Adagrad
reduces step sizes over time, and this removed the need to worry about early stopping. In
fact, we did not see any obvious overfitting with any of the classifier training (validation
set and test set errors were statistically similar). Each algorithm was allowed to train on
up to 100 loops through the entire training set or until the validation set performance had
not changed in 24 hours. Even those runs that ran the entire 100 loops appeared to have
essentially converged. Implemented in C++ without parallelization, all algorithms (except
nearest means) took around one week to train the 16k Imagenet data set, around two weeks
to train the 21k and 22k data sets, and around one month to train the 97k data set. Also
in all cases roughly 80% of the validation accuracy was achieved in roughly the first 20% of
the training time.

Because stochastic gradient descent uses random sampling of the training samples, mul-
tiple runs will produce slightly different results. To address this randomness, we ran five
runs of each classifier for each set of candidate parameters, and reported the test accuracy
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and parameters for the run that had the best accuracy on the validation set. For one-vs-all
SVMs with its convex objective, the five runs usually differed by .1% (absolute), whereas
optimizing the nonconvex objectives of Wsabie and Wsabie™™ produced much greater ran-
domness within five runs, as much as .5% (absolute). Cross-validating substantially more
runs of the training would probably produce classifiers with slightly better accuracy, but
cross-validating between too many runs could just lead to overfitting. We did not explore
this issue carefully.

8.4 Metrics

Each classifier outputs the class it considers the one best prediction for a given test sample.
We measure the accuracy of these predictions averaged over all the samples in the test
set. For some data sets, such as the Web data sets, samples may have more than one
correct class, and are counted as correct if the classifier picks any one of the correct classes.
Note that some results published for Imagenet use a slightly different metric: classification
accuracy averaged over the G classes (Deng et al., 2010).

9. Results

We first give some illustrative results showing the effect of the three proposed differences
between Wsabie™ and Wsabie. Then we compare Wsabie™™ to four different efficient
classifiers on four large-scale data sets.

9.1 Comparison of Different Aspects of Wsabiet™

Wsabie™ ™ as detailed in Table 2 differs from the Wsabie classifier (Weston et al., 2011) in
the following respects:

1. ignores last violators
2. weights all stochastic gradients equally, that is, w(r(y™)) = 1 in (11),
3. uses adagrad to adapt the learning rates,

4. uses Euclidean discriminants and no parameter regularization, rather than linear dis-
criminants and ¢» parameter regularization as done in Wsabie.

Table 6 shows how each of these first three differences increases the classification accu-
racy on the 21k Web data set. For the results in this table, the embedding dimension was
fixed at d = 100, but all other classifier parameters were chosen to maximize accuracy on
the validation set.

In addition, for simplicity we used Euclidean discriminants rather than linear discrim-
inants: with Euclidean discriminants we found we did not need any additional parameter
regularization, and it is simpler to apply adagrad when the parameters are unconstrained.

The results show that either adagrad or 10 last violators alone improves accuracy by
35%. Weighting all updates equally (w(r(y™)) = 1) alone also improves accuracy by 10%.
In combination, these changes complement each other, almost doubling the accuracy from
3.7% to 7.1%.
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Test Accuracy

Wsabie (Weston et al., 2011)
Wsabie + 10 last violators
Wsabie + adagrad

Wsabie + w(r(y*)) =11in (11)
Wsabie + adagrad + 10 last violators
Wsabie + adagrad + w(r(y*)) =1 in

Wsabie + adagrad + w(r(y™)) =1 in
Wsabie + adagrad + w(r(y™)) =1 in
Wsabie + adagrad + w(r(y*)) =1 in

3.7%
5.0%
5.0%
4.1%
5.9%
6.0%
6.3%
7.1%
6.8%

1
1
1
1

+ 1 last violator
+ 10 last violators

1
1
1
11) + 100 last violators

P

)
)
)
)

Table 6: Effect of the proposed differences compared to Wsabie for a d = 100 dimensional
embedding space on 21k Web Data.

Table 7 gives examples of the classes corresponding to neighboring {3, } in the embedded

feature space after the Wsabie™™ training.

Class 1-NN 2-NN 3-NN 4-NN 5-NN
poodle caniche pudel labrador puppies cocker
spaniel
dolphin dauphin delfin dolfinjnen delfiner dolphins
San Diego Puerto Sydney Vancouver  Kanada Tripoli
Madero
mountain mountains montagne Everest Alaska Himalaya
router modem switch server lan network
calligraphy | fonts Islamic borders quotes network
calligraphy

Table 7: For each of the classes on the left, the table shows the five nearest (in terms of
Euclidean distance) class prototypes {f,} in the proposed discriminatively trained
embedded feature space for 21k Web Data set. Because these classes originated as

web queries, some class names are
and dauphin (French for dolphin).

translations of each other, for example dolphin
While these may seem like exact synonyms, in

fact different language communities often have slightly different visual notions of
the same concept. Similarly, the classes Obama and President Obama are expected
to be largely overlapping, but their class distributions differ in the formality and

context of the images.

Lastly, we illustrate how the Wsabie™ ™ test accuracy depends on the number of embed-

ding dimensions. These results are for the 2

1k Web Data set, with the step-size and margin

1484



TRAINING HIGHLY MULTICLASS CLASSIFIERS

parameters chosen using the validation set, and 10 last violators:

Number of Embedding Dimensions: ‘ 128 192 256 384 512 768 1024

Wsabiett Test Accuracy: ‘7.4% 7% 83% 7.9% 171% 6.7% 6.5%

9.2 Comparison of Different Classifiers

Table 8 compares the accuracy of the different classifiers, where all hyperparameters were
cross-validated. The validated parameter choices are reported in Table 9.2

Wsabiet™ was consistently most accurate, followed by the one-vs-all SVMs with the
average number of negative samples per positive sample chosen by validation. The row
labelled Wsabiet™ was 2 — 26% more accurate and 2 — 4x more efficient (2 — 4x smaller
model size) than the one-vs-all SVMs because the validated embedding dimension was 192
or 256 dimensions, down from the original 479 or 1024 features.

Like Perronnin et al. (2012), our experiments showed that choosing the hyperparameter
of how many negative samples per positive sample for the one-vs-all SVMs made an im-
pressive difference to its performance. The one-vs-all SVMs 1+4:1-, which used a fixed ratio
of one negative sample per positive sample was 2 — 4 times worse!

The row labelled Wsabie™ Ensemble is a concatenation of 2-4 Wsabie™™ classifiers
trained on different random samplings so that the total number of parameters is roughly
the same as the SVM (the embedding matrices W add slightly to the total storage and
efficiency calculations). With efficiency thus roughly controlled, the accuracy gain increased
slightly to 3 — 28%.

The least improvement was seen on the 21k Web Data set. Our best hypothesis as to
why that is that the classifiers are already close to the best performance possible with linear
separators, and so there is little headroom for improvement. Some support for this hypoth-
esis is the tiny gain the ensemble of multiple Wsabie™™ classifiers versus the Wsabiet ™.

One surprise was that Wsabie™™ performed almost as well on the 97k Web Data as on
the 21k Web Data set even though there were four times as many classes. We have two
main hypotheses of why this happened. First, there were more training samples in the 97k
Web Data for the classes that were already present in the 21k Web Data. Second, the added
classes had fewer samples but were often quite specific, and the samples from a specific class
can be easier to distinguish than samples from a more generic class. For example, samples
from the more specific class of diamond earrings are easier to distinguish than samples
from the more generic class jewelry. Likewise, samples from the class beer foam are easier
to correctly classify than samples from the class beer.

10. Discussion, Hypotheses and Key Issues

This paper focused on how highly confusable classes can distort the empirical loss used in
discriminative training of multi-class classifiers. We proposed a lightweight online approach
to reduce the effect of highly-confusable classes on the empirical loss, and showed that it can

2. Parameters for step-size and margin were not independent, with larger margins working better with
larger step-sizes. We hypothesize that one of these parameters could be fixed and only the other cross-
validated. We did not see any overfitting: scores on the validation set were statistically similar to scores
on the test sets for all the compared methods.
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16k ImageNet 22k ImageNet 21k Web Data 97k Web Data
Nearest Means 4.4% 2.7% 2.6% 2.3%
One-vs-all SVMs 1+:1- 4.1% 3.5% 2.1% 1.6%
One-vs-all SVMs 9.4% 8.2% 8.3% 6.8%
AUC Sampling 4.7% 5.1% 2.8% 3.1%
Wsabie 6.5% 6.6% 4.5% 2.8%
Wsabie Ensemble 8.1% 7.0% 6.0% 3.4%
Wsabiett 11.2% 10.3% 8.5% 8.2%
Wsabie™™™ Ensemble 11.9% 10.5% 8.6% 8.3%

Table 8: Image classification test accuracy

substantially increase performance in practice. Experimentally, we also showed that using
adagrad to evolve the learning rates in the stochastic gradient descent is effective despite
the nonconvexity of the loss (due to the joint learning of the linear dimensionality reduction
and linear classifiers).

We argued that when there are many classes it is suboptimal to measure performance by
simply counting errors, because this overemphasizes the noise of highly-confusable classes.
Yet our test error is measured in the standard way: by counting how many samples were
classified incorrectly. A better approach to measuring test error would be subjective judge-
ments of error. In fact, we have verified that for the image classification problems consid-
ered in the experiments, subjects are less critical about confusions of classes they consider
more confusable (for example confusing dolphin and porpoise), but very critical of confu-
sions between classes they do not consider confusable (for example dolphin and Statue of
Liberty). Thus, suppose you had two candidate classifiers, each of which made 100 errors,
but one made all 100 errors between dolphin and porpoise and the other made 100 more
random errors. Standard test error of summing the errors would consider these classifiers
equal, but users would generally prefer the first classifier. Weston et al. (2011) provide one
approach to addressing this issue with a sibling precision measure.

A related issue is that it is known that the experimental data sets used are not tagged
with the complete set of correct class labels for each image. For example, in the 21k Web
Data, an image of a red heart might be labelled love and red, but not happen to be labelled
heart, even though that would be considered a correct label in a subjective evaluation. We
hypothesize that the proposed approach of probabilistically ignoring samples with consistent
confusions helps reduce the impact of such missing positive labels.

We built on WARP, which finds a violating class per each training sample if one ex-
ists. This strategy works much better in practice than the AUC sampling that samples
one positive class and one negative class per training sample. We believe this is because
WARP sampling focuses on improving the parameters of classes that are already quite
good, rather than focusing on parameters for classes that are very confused. Analogously,
and in agreement with results by Perronnin et al. (2012) on very different features, we saw
that sampling one negative sample per positive sample for one-vs-all SVMs performed very
poorly compared to sampling a validated number of negatives per positive. Inspired by these
performance differences due to the choice of negative:positive ratios, we also considered val-
idating a hyperparameter for Wsabie™ that would determine how many negative classes
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Stepsize Margin Embedding Balance # LVs
dimension S

One-vs-all SVM 1+:1-

16k ImageNet .01 1
21k ImageNet .01 1
21k Web Data 1 1
97k Web Data .01 1

One-vs-all SVM

16k ImageNet .01 1 64
21k ImageNet .01 A 64
21k Web Data 1 1 64
97k Web Data .01 1 128

AUC Sampling

16k ImageNet .01 d

21k ImageNet .01 1

21k Web Data .001 .01

97k Web Data .001 .01

Wsabie

16k ImageNet .01 A 128

21k ImageNet .001 1 128

21k Web Data .001 1 256

97k Web Data .0001 1 256

Wsabie™:

16k ImageNet 10 10,000 192 8
21k ImageNet 10 10,000 192 8
21k Web Data 10 10,000 256 8
97k Web Data 10 10,000 256 32

Table 9: Classifier parameters chosen using validation set

to consider for each positive class, rather than the WARP sampling which draws negative
classes until it finds a violator. Preliminary results showed that the validation set chose the
largest parameter choice which was almost the same as the number of classes. Thus that
approach required another hyperparameter but seemed to be doing exactly what WARP
sampling does and appeared to offer no accuracy improvement over WARP sampling.
This research focused on accurate and efficient classification, and not on the issue of
training time. With the exception of nearest means, the methods compared were imple-
mented with stochastic gradient descent for efficient online training to deal with the large
number of training samples n. As implemented, the methods took roughly equally long to
train. However, parallel training of the G one-vs-all SVMs would have been roughly G times
as fast. While not as naturally parallelizable, we have had some success in parallelizing the
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WARP sampling strategy across multiple cores and multiple machines, but the details are
outside the scope of this work.

Our experiments were some of the largest image labeling experiments ever performed,
and were carefully implemented and executed. But our experiments were narrow and lim-
ited in the sense that only image labeling problems were considered, and that the feature
derivations were similar and all dense. The presented theory and motivation was not lim-
ited however, and we hypothesize that similar results would hold up for other applications,
different features, and sparser features.

We focused in this paper only on classifiers that use linear (or Euclidean) discriminant
functions because they are popular for large-scale highly multiclass problems due to their
efficiency and reasonably good performance. However, for a given feature set, the best
performance on large data sets such as ImageNet may well be achieved with exact k-NN
(Deng et al., 2010; Weston et al., 2013b) or a more sophisticated lazy classifier (Garcia
et al., 2010), or with a deep network (Krizhevsky et al., 2012; Dean et al., 2012). However,
for many real-life large-scale problems these methods may require infeasible memory and
test-time, and so linear methods are of interest at least for their efficiency, and may be used
to filter candidates to a smaller set for secondary evaluation by a more flexible classifier.
In addition, the last layer of a neural network is often a linear or other high-model-bias
classifier, and the proposed approaches may thus be useful in training a deep network as
well.

Label trees and label partitioning can be even more efficient at inference (Bengio et al.,
2010; Deng et al., 2011; Weston et al., 2013a). We did not take advantage or impose a
hierarchical structure on the classes, which can be a fruitful approach to efficiently imple-
menting highly multiclass classification. Other research in large-scale classification takes
advantage of the natural hierarchy of classes in real-world classification problems such as
labeling images (Deng et al., 2010; Griffin and Perona, 2008; Nister and Stewenius, 2006).
For example, in Web Data one class is wedding cake, which could fit into the broader class
of cake, and the even broader class of food. One problem with leveraging such hierarchies
may be that they are not strict trees; wedding cake also falls under the broader class of
wedding, or there may be no natural hierarchy. Some of the theory and strategy of this
paper should be complementary to such hierarchical approaches.
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Appendix: Proof of Proposition 1

Let Z; be a Bernoulli random variable with parameter p that models the event that the tth
sample of class yT is classified as class h. Then for n trials the expected number of times
a class y* sample is classified as class h is E[Y_, Z] = >, E[Z] = nE[Z;] = np the Z; are
independent and identically distributed.

Let O; be another Bernoulli random variable such that Oy = 1 if the tth sample of class
yT is counted in the loss given by (14), and O; = 0 otherwise. Note that O; = Z;, and for
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t>1, O;=1iff Z; =1 and Z;_1 = 0. Thus,
E[Ot] = E[Zt =1 and Zt—l = 0] = P(Zt = ].,Zt_l = 0) = P(Zt = ].)P(Zt = O) :p(l —p)

by the independence of the Bernoulli random variables Z; and Z; 1. Then the expected
number of confusions counted by (14) is E[>, O = >, E[O¢] by linearity, which can be
expanded: E[O1]+ >0 , E[O] =p+ (n—1)p(1 — p).
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Abstract

In modeling multivariate time series, it is important to allow time-varying smoothness in the
mean and covariance process. In particular, there may be certain time intervals exhibiting
rapid changes and others in which changes are slow. If such time-varying smoothness is not
accounted for, one can obtain misleading inferences and predictions, with over-smoothing
across erratic time intervals and under-smoothing across times exhibiting slow variation.
This can lead to mis-calibration of predictive intervals, which can be substantially too
narrow or wide depending on the time. We propose a locally adaptive factor process for
characterizing multivariate mean-covariance changes in continuous time, allowing locally
varying smoothness in both the mean and covariance matrix. This process is constructed
utilizing latent dictionary functions evolving in time through nested Gaussian processes and
linearly related to the observed data with a sparse mapping. Using a differential equation
representation, we bypass usual computational bottlenecks in obtaining MCMC and online
algorithms for approximate Bayesian inference. The performance is assessed in simulations
and illustrated in a financial application.

Keywords: Bayesian nonparametrics, locally varying smoothness, multivariate time se-
ries, nested Gaussian process, stochastic volatility

1. Introduction

In analyzing multivariate time series data, collected in financial applications, monitoring of
influenza outbreaks and other fields, it is often of key importance to accurately characterize
dynamic changes over time in not only the mean of the different elements (e.g., assets,
influenza levels at different locations) but also the covariance. As shown in Figure 1, it
is typical in many domains to cycle irregularly between periods of rapid and slow change;
most statistical models are insufficiently flexible to capture such locally varying smoothness
in assuming a single bandwidth parameter. Inappropriately restricting the smoothness to
be constant can have a major impact on the quality of inferences and predictions, with over-
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DAX30: Squared log returns
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Figure 1: Squared log returns of DAX30. Weekly data from 19/07/2004 to 25/06/2012.

smoothing during times of rapid change. This leads to an under-estimation of uncertainty
during such volatile times and an inability to accurately predict risk of extremal events.

Let ¥t = (Y1t,...,Ypt)] denote a random vector at time ¢, with u(t) = E(y:) and
X (t) = cov(y:). Our focus is on Bayesian modeling and inference for the multivariate mean-
covariance stochastic process, I' = {u(t),X(t),t € T} with T C ®*. Of particular interest
is allowing locally varying smoothness, meaning that the rate of change in the {u(t),(t)}
process is varying over time. To our knowledge, there is no previous proposed stochastic
process for a coupled mean-covariance process, which allows locally varying smoothness. A
key to our construction is the use of latent processes, which have time-varying smoothness.
This results in a locally adaptive factor (LAF) process. We review the relevant literature
below and then describe our LAF formulation.

1.1 Relevant Literature

There is a rich literature on modeling a p x 1 time-varying mean vector yu(t), covering mul-
tivariate generalizations of autoregressive models (VAR) (see, e.g., Tsay, 2005), Kalman
filtering (Kalman, 1960), nonparametric mean regression via Gaussian processes (GP) (Ras-
mussen and Williams, 2006), polynomial spline (Huang et al., 2002), smoothing spline
(Hastie and Tibshirani, 1990) and kernel smoothing methods (Silverman, 1984). Such ap-
proaches perform well for slowly-changing trajectories with constant bandwidth parame-
ters regulating implicitly or explicitly global smoothness; however, our interest is allowing
smoothness to vary locally in continuous time. Possible extensions for local adaptivity in-
clude free knot splines (MARS) (Friedman, 1991), which perform well in simulations but
the different strategies proposed to select the number and the locations of knots via step-
wise knot selection (Friedman, 1991), Bayesian knot selection (Smith and Kohn, 1996) or
MCMC methods (George and McCulloch, 1993), prove to be computationally intractable
for moderately large p. Other flexible approaches include wavelet shrinkage (Donoho and
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Johnstone, 1995), local polynomial fitting via variable bandwidth (Fan and Gijbels, 1995)
and linear combination of kernels with variable bandwidths (Wolpert et al., 2011).

There is a separate literature on estimating a time-varying covariance matrix X(t).
This is particularly of interest in applications where volatilities and co-volatilities evolve
through non constant paths. One popular approach estimates () via an exponentially
weighted moving average (EWMA); see, e.g., Tsay (2005). This approach uses a single
time-constant smoothing parameter 0 < A < 1, with extensions to accommodate locally
varying smoothness not straightforward due to the need to maintain positive semidefinite
Y(t) at every time. To allow for higher flexibility in the dynamics of the covariances,
generalizations of EWMA have been proposed including the diagonal vector ARCH model
(DVEC), (Bollerslev et al., 1988) and its variant, the BEKK model (Engle and Kroner,
1995). These models are computationally demanding and are not designed for moderate to
large p. DCC-GARCH (Engle, 2002) improves the computational tractability of the previous
approaches through a two-step formulation. However, the univariate GARCH assumed for
the conditional variances of each time series and the higher level GARCH models with
the same parameters regulating the evolution of the time-varying conditional correlations,
restrict the evolution of the variance and covariance matrices. PC-GARCH (Ding, 1994;
Burns, 2005) and O-GARCH (Alexander, 2001) perform dimensionality reduction through
a latent factor formulation; see also van der Weide (2002). However, time-constant factor
loadings and uncorrelated latent factors constrain the evolution of X(t).

Such models fall far short of our goal of allowing 3(t) to be fully flexible with the
dependence between X(t) and X(t + A) varying with not just the time-lag A but also with
time. In addition, these models do not handle missing data easily and tend to require long
series for accurate estimation (Burns, 2005). Accommodating changes in continuous time
is important in many applications, and avoids having the model be critically dependent on
the time scale, with inconsistent models obtained as time units are varied.

Wilson and Ghahramani (2010) join machine learning and econometrics efforts by propos-
ing a model for both mean and covariance regression in multivariate time series, improving
previous work of Bru (1991) on Wishart processes in terms of computational tractability and
scalability, allowing a more complex structure of dependence between ¥ (t) and X(t + A).
Specifically, they propose a continuous time generalised Wishart process (GWP), which
defines a collection of positive semi-definite random matrices ¥(¢) with Wishart marginals.
Nonparametric mean regression for u(t) is also considered via GP priors; however, the tra-
jectories of means and covariances inherit the smooth behavior of the underlying Gaussian
processes, limiting the flexibility of the approach across times exhibiting sharp changes.

Even for iid observations from a multivariate normal model with a single time stationary
covariance matrix, there are well known problems with Wishart priors motivating a rich lit-
erature on dimensionality reduction techniques based on factor and graphical models. There
has been abundant recent interest in applying such approaches to dynamic settings. Refer
to Lopes and Carvalho (2007), Nakajima and West (2013) and the references cited therein
for recent literature on Bayesian dynamic factor models for multivariate stochastic volatility.
The Markov switching assumption for the levels of the common factor volatilities in Lopes
and Carvalho (2007) improves flexibility, but may be restrictive in some applied fields and
requires the additional choice of the number of possible regimes. Nakajima and West (2013)
allow the factor loadings to evolve dynamically over time, while including sparsity through
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a latent thresholding approach, leading to apparently improved performance in portfolio al-
location. They assume a time-varying discrete-time autoregressive model, which allows the
dependence in the covariance matrices 3(t) and X (t+ A) to vary as a function of both ¢ and
A. However, the result is a richly parameterized and computationally challenging model,
with selection of the number of factors proceeding by cross validation. Our emphasis is
instead on developing continuous time stochastic processes for 3(¢) and pu(t), which accom-
modate locally varying smoothness and provide relatively efficient MCMC computations
based on a Gibbs sampler.

Fox and Dunson (2011) propose an alternative Bayesian covariance regression (BCR)
model, which defines the covariance matrix as a regularized quadratic function of time-
varying loadings in a latent factor model, characterizing the latter as a sparse combination
of a collection of unknown Gaussian process dictionary functions. Although their approach
provides a continuous time and highly flexible model that accommodates missing data and
scales to moderately large p, there are two limitations motivating this article. Firstly, their
proposed covariance stochastic process assumes a stationary dependence structure, and
hence tends to under-smooth during periods of stability and over-smooth during periods of
sharp changes. Secondly, the well known computational problems with usual GP regression
are inherited, leading to difficulties in scaling to long series and issues in mixing of MCMC
algorithms for posterior computation.

1.2 Contribution and Outline

Our proposed LAF process instead includes dictionary functions that are generated from
nested Gaussian processes (nGP) (Zhu and Dunson, 2013), representing recently proposed
priors which exploit stochastic differential equations (SDEs) to enforce GP priors for the
function’s mth order derivatives and favor local adaptivity by centering the latter on an
higher level GP instantaneous mean. Such nGP reduces the GP computational burden
involving matrix inversions from O(T?) to O(T), with T denoting the length of the time
series, while also allowing flexible locally varying smoothness. Marginalizing out the latent
factors, we obtain a stochastic process that inherits these advantages. We also develop a
different and more computationally efficient approach under this new model and propose an
online implementation, which can accommodate streaming data. In Section 2, we describe
the LAF structure with particular attention to prior specification. Section 3 explores the
main features of the Gibbs sampler for posterior computation and outlines the steps for a fast
online updating approach. In Section 4 we compare our model to BCR and to some of the
most widely used models for multivariate stochastic volatility, through simulation studies.
Finally in Section 5 an application to National Stock Market Indices across countries is
examined.

2. Locally Adaptive Factor Processes

Our focus is on defining a novel locally adaptive factor process for I' = {u(t), 3(t),t € T}.
In particular, taking a Bayesian approach, we define a prior I' ~ P, where P is a probability
measure over the space P of p-variate mean-covariance processes on 7. In particular, each
element of P corresponds to a realization of the stochastic process I', and the measure P
assigns probabilities to a o-algebra of subsets of P.
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Although the proposed class of LAF processes can be used much more broadly, in
conducting inferences in this article, we focus on the simple case in which data consist
of vectors y; = (y14,- - - ,ypi)T collected at times t;, for ¢ = 1,...,T. These times can be
unequally-spaced, or collected under an equally-spaced design with missing observations.
An advantage of using a continuous-time process is that it is trivial to allow unequal spacing,
missing data, and even observation times across which only a subset of the elements of y;
are observed. We additionally make the simplifying assumption that

yi ~ Np(p(ti), %(t:)).

It is straightforward to modify the methodology to accommodate substantially different
observation models.

2.1 LAF Specification

A common strategy in modeling of large p matrices is to rely on a lower-dimensional fac-
torization, with factor analysis providing one possible direction. Sparse Bayesian factor
models have been particularly successful in challenging cases, while having advantages over
frequentist competitors in incorporating a probabilistic characterization of uncertainty in
the number of factors as well as the parameters in the loadings and residual covariance. For
recent articles on Bayesian sparse factor analysis for a single large covariance matrix, refer
to Bhattacharya and Dunson (2011), Pati et al. (2012) and the references cited therein.

In our setting, we are instead interested in letting the mean vector and the covariance
matrix vary flexibly over time. Extending the usual factor analysis framework to this setting,
we say that I' = {/,L(t), Z(t),t S T} ~ LAFLK(@, Zo, Zg, EA, Zw, EB> if

u(t) = O&(t)(t), (1a)
5(t) = ©¢(H)E(t) 0" + %, (1b)
where © is a p x L matrix of constant coefficients, 3o = diag(o?, ... ,ag), while £(t) 1« x and

() g x1 are matrices comprising continuous dictionary functions evolving in time via nGP,
&k (t) ~ nGP([Selue = 0F, . [Balu = 03, ) and ¢ (t) ~ nGP([Sylx = o, [Splk = 03,)-

Restricting our attention on the generic element & (t) : 7 — R of the matrix £(t)Lxx
(the same holds for ¥ (t) : T — R), the nGP provides a highly flexible stochastic process on
the dictionary functions whose smoothness, explicitly modeled by their mth order deriva-
tives D™ (t) via stochastic differential equations, is expected to be centered on a local
instantaneous mean function A (t), which represents a higher-level Gaussian process, that
induces adaptivity to locally varying smoothing. Specifically, we let

Dmflk(t) = Alk(t) + UﬁlkW&k (t), meN, m>2, (28,)
D" Ay (t) = 04,,Wa,(t), neN, n>1, (2b)

where o¢, € RT, 04, € RT, W, (t) : T — R and Wy, (t) : T — R are independent
Gaussian white noise processes with mean E[Wg,, (t)] = E[Wy,, (t)] =0, for all t € T, and
covariance function E[Wg,, (t)We, (t*)] = E[Wa,, (t)Wa, (t*)] = 1 if t = t*, 0 otherwise.
This formulation naturally induces a stochastic process for £ (t) with varying smoothness,
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where E[D™&;.(t)| A (t)] = A (t), and initialization at ¢; based on the assumption

[k(t), D an(t1), . ... D" 1 (t)]T ~ Ny, (O,Uumf)
[Aie(t1), D Aige(t1), .., D" T A (t1)]F ~ Nu(0,02 I,).

(e}

The Markovian property implied by SDEs in (2a) and (2b) represents a key advantage
in terms of computational tractability as it allows a simple state space formulation. In
particular, referring to Zhu and Dunson (2013) for m = 2 and n = 1 (this can be easily
extended for higher m and n), and for ¢; = t;41 — t; sufficiently small, the process for & ()
along with its first order derivative &, (¢) and the local instantaneous mean A (t) follow
the approximated state equation

e 18 21101 0] s 3
[4’2(&1)]_[0 0 f] At 0 1]{“’@‘”%}’ ?)

where [wj ¢, wi 4, )7 ~ Na(0,V; 1), with Vi g, = diag(aékéi, 0%,,01)-
Similarly to the nGP specification for the elements in £(¢), we can represent the nested
Gaussian process for 1, (t) with the following state equation:

Y (tit1) 1 96 O Yr(ts) 00 ws
[wwm)]—[o oo | | el |+ o]{waj;k}, @
By (tiv1) 0 0 1 By (t;) 0 1 i, By,

for k =1,..., K, where [‘*’i,wkawi,Bk] ~ N2(0, S; ), with S; ), = d1ag(0¢ 51,03 ;). Simi-
larly to & (t), we let

[Wk(t1), D (), ..., D™ M (t1)]” ~ Np(0,07, L),
[Bi(t1), D' Bi(t1), ..., D" 'Bp(t1)]" ~ Nu(0,02 In).

There are two crucial aspects to highlight. Firstly, this formulation is defined at every
point over a subset of the real line and allows an irregular grid of observations over t by
relating the latent states at ¢ + 1 to those at ¢ through the distance between ¢;;1 and ¢;
where ¢ represents a discrete order index and t; € 7 the time value related to the ith
observation. Secondly, compared to Zhu and Dunson (2013) our approach represents an
important generalization in: (i) extending the analysis to the multivariate case (i.e. y; is a
p-dimensional vector instead of a scalar) and (ii) accommodating locally adaptive smoothing
not only on the mean but also on the time-varying covariance functions.

2.2 LAF Interpretation

Model (1a)—(1b) can be induced by marginalizing out the K-dimensional latent factors
vector 7;, in the model

yi = A(ti)ni + e, € ~ Np(0,X0), (5)

where n; = ¥(t;) + v; with v; ~ Ng (0, Ix) and elements ¢y (t) ~ nGP(aw ,O‘B ) for k =
1,..., K. In LAF formulation we assume moreover that the time-varying factor loadings
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matrix A(¢) is a sparse linear combination, with respect to the weights of the p x L matrix
©, of a much smaller set of continuous nested Gaussian processes & (t) ~ nGP(crglk, azllk)
comprising the L x K, with L << p, matrix £(¢). As a result

A(ti) = ©(t:). (6)

Such a decomposition plays a crucial role in further reducing the number of nested
Gaussian processes to be modeled from p x K to L x K leading to a more computationally
tractable formulation in which the induced I" = {u(t), X(¢),t € T} follows a locally adaptive
factor LAF [, (0,0, X¢, X4, Xy, Xg) process where

p(ti) = E(yi | t = t;) = O&(t:)y(t:), (7a)
E(tz) = cov(yi ’ t= ti) = @f(t,)f(tz>T@T + 20. (7b)

There is a literature on using Bayesian factor analysis with time-varying loadings, but
essentially all the literature assumes discrete-time dynamics on the loadings while our focus
is instead on allowing the loadings, and hence the induced I' = {u(¢), X(¢),t € T} processes,
to evolve flexibly in continuous time. Hence, we are most closely related to the literature
on Gaussian process latent factor models for spatial and temporal data; refer, for example,
to Lopes et al. (2008) and Lopes et al. (2011). In these models, the factor loadings matrix
characterizes spatial dependence, with time-varying factors accounting for dynamic changes.

Fox and Dunson (2011) instead allow the loadings matrix to vary through a continuous
time stochastic process built from latent GP(0, ¢) dictionary functions independently for all
l=1,...,Land k =1,..., K, with ¢ the squared exponential correlation function having
c(t,t*) = exp(—&l[t — t*[|3). In our work we follow the lead of Fox and Dunson (2011) in
using a nonparametric latent factor model as in (5)—(6), but induce fundamentally different
behavior on I' = {u(t), X(t),t € T} by carefully modifying the stochastic processes for the
dictionary functions.

Note that the above decomposition of I' = {u(t),3(¢),t € T} is not unique. Potentially
we could constrain the loadings matrix to enforce identifiability (Geweke and Zhou, 1996),
but this approach induces an undesirable order dependence among the responses (Aguilar
and West, 2000; West, 2003; Lopes and West, 2004; Carvalho et al., 2008). Given our
focus on estimation of I' we follow Ghosh and Dunson (2009) in avoiding identifiability
constraints, as such constraints are not necessary to ensure identifiability of the induced
mean p(t) and covariance X(t). The characterization of the class of time-varying covariance
matrices X(¢) is proved by Lemma 2.1 of Fox and Dunson (2011) which states that for K
and L sufficiently large, any covariance regression can be decomposed as in (1b). Similar
results are obtained for the mean process.

2.3 Prior Specification

We adopt a hierarchical prior specification approach to induce a prior P on I = {u(t), X(t),t €
T} with the goal of maintaining simple computation and allowing both covariances and
means to evolve flexibly over continuous time. Specifically

b P‘@, 207 267 EAu Edn EB ~ LAFL,K(®7 207 257 ZAv Z@ZM EB)
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e Recalling the assumption & (t) ~ nGP(aglk,ailk) within LAF representation, we
assume for each each element [Y¢]y, and [X 4]y of the L x K matrices ¥¢ and X4
respectively, the following priors

aglk ~ InvGa(ag, be),
0-124~lk: ~ InvGa(aa,ba),

independently for each (I, k); where InvGa(a, b) denotes the Inverse Gamma distribu-
tion with shape a and scale b.

e Similarly, the variances [Yy]; = U?bk and [Xp]r = a%k in the state equation represen-

tation of the nGP for each 1 (t) ~ nGP(oik,J%k) are assumed

a,ik ~ InvGa(ay, by),

U%k ~ InvGa(ap,bp),

independently for each k.

e To address the issue related to the selection of the number of dictionary elements a
shrinkage prior is proposed for ©. In particular, following Bhattacharya and Dunson
(2011) we assume

Ol dji, 7 ~ N(07¢;Tl—1), b5 ~ Ga(3/2,3/2),
l
ﬁl ~ Ga(al, 1), ﬁh ~ Ga(ag, 1), h > 2, T = H ﬁh- (8)
h=1

Note that if as > 1 the expected value for ¥y is greater than 1. As a result, as [
goes to infinity, 7; tends to infinity, shrinking 6;; towards zero. This leads to a flexible
prior for 6;; with a local shrinkage parameter ¢; and a global column-wise shrinkage
factor 7; which allows many elements of © being close to zero as L increases. Our
formulation can be easily generalized to allow shrinkage over K; see Fox and Dunson
(2011). However we found reasonable to fix K to relatively small values and learn L
with the shrinkage approach, to avoid higher computational complexity in sampling
the K-variate vector ¥(t;),1=1,...,T.

e Finally for the variances of the error terms in vector ¢;, we assume the usual inverse
gamma prior distribution. Specifically

0]72 ~ Ga(ay,by)

independently for each j =1,...,p.

3. Posterior Computation

For a fixed truncation level L* and a latent factor dimension K*, the algorithm for posterior
computation alternates between a simple and efficient simulation smoother step (Durbin
and Koopman, 2002) to update the state space formulation of the nGP in LAF prior, and
standard Gibbs sampling steps for updating the parametric component parameters from
their full conditional distributions. See Bhattacharya and Dunson (2011) for a method
adaptively choosing the truncation levels.
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3.1 Gibbs Sampling

We outline here the main features of the algorithm for posterior computation based on
observations (y;,t;) for i = 1,...,T, while the complete algorithm is provided in Appendix
A. Note that, since data are in practice observed at a finite number of times, the continuous
time model is approximated in conducting inferences. This issue arises in analyzing data
with any continuous time model.

A. Given © and {n;}]_,, a multivariate version of the MCMC algorithm proposed by Zhu
and Dunson (2013) draws posterior samples from each dictionary element’s function
{&r(t) Y, its first order derivative {), (¢;)}L,, the correspondlng instantaneous
mean { Ay (t;)}L, the variances in the state equations U&zk’ o 4, and the variances of

the error terms in the observation equation 0]2- with j=1,...,p.

B. Given 0, {U_ yany {yZ}T ; and {ﬁ( ) }E_ | we implement a block sampling of {1y, (¢;) }7_;,
{0, ()Y, {Br(t) Y, aw , UBk and v; following a similar approach as in step A.

C. Conditioned on {y;}L,, {m}L,, {a _, and {£(t;)}L,, and recalling the shrinkage
prior for the elements of © in (8), we update O, each local shrinkage hyperparameter
¢j and the global shrinkage hyperparameters 7; following the standard conjugate
analysis.

D. Given the posterior samples from ©, X, {£(t;)}2_; and {t(t;)}L, the realization of
LAF process for {u(t;), X(t;),t; € T} condltloned on the data {yl} _, is

p(ti) = O&t:)p(t),
E(ti) = @f(ti)g(ti)T@T—i—Zg.

3.2 Hyperparameters Interpretation

We now focus our attention on the priors hyperparameters for Uglk, J[quk, O'ik and aék. These

quantities play an important role in facilitating local adaptivity and carefully tuning such
values may improve mixing and convergence speed of our MCMC algorithm. Simulation
studies have shown that the higher the variances in the latent state equations, the better
our formulation accommodates locally adaptivity for sudden changes in I'. A theoretical
support for this data-driven consideration can be identified in the connection between the
nGP and the nested smoothing splines. It has been shown by Zhu and Dunson (2013) that
the posterior mean of the trajectory U with reference to the problem of nonparametric mean
regression under the nGP prior can be related to the minimizer of the equation

72 24\ /r (D™U(t) — C(t))%dt + Ao /T (D™C(t))2dt,

where C' is the locally instantaneous function and Ay € R and A\c € RT regulate the
smoothness of the unknown functions U and C respectively, leading to less smoothed pat-
terns when fixed at low values. The resulting inverse relationship between these smoothing
parameters and the variances in the state equation, together with the results in the simula-
tion studies, suggest to fix the hyperparameters in the Inverse Gamma prior for ngk’ ailk,
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aik and a%k so as to allow high variances in the case in which the time series analyzed are

expected to have strong changes in their covariance (or mean) dynamic. A further confir-
mation of the previous discussion is provided by the structure of the simulation smoother
required to update the dictionary functions in our Gibbs sampling for posterior computa-
tion. More specifically, the larger the variances of {w; ¢, }2 |, {wia, }r and {wiy, }E
{wi B, }L, in the state equations, with respect to those of the vector of observations {y;}L ;,
the higher is the weight associated to innovations in the filtering and smoothing techniques,
allowing for less smoothed patterns both in the covariance and mean structures (see Durbin
and Koopman, 2002).

In practical applications, it may be useful to obtain a first estimate of T' = {ji(t), £(¢)}
to set the hyperparameters. More specifically, fi;(¢;) can be the output of a standard moving
average on each time series y; = (y;1,...,y;7)’, while (t;) can be obtained by a simple
estimator, such as the EWMA procedure. With these choices, the recursive equation

S(t) = (1= M{[yir — Alti)) i1 — Alti-)]T} 4+ A (1),

become easy to implement.

3.3 Online Updating

The problem of online updating represents a key point in multivariate time series with high
frequency data. Referring to our formulation, we are interested in updating an approximated

posterior for T'py g = {u(tren), 2(tren),h = 1,..., H} once a new vector of observations
{yﬁ?jf_{_l is available, instead of rerunning posterior computation for the whole time series.

Using the posterior estimates of the Gibbs sampler based on observations available up
to time T, it is easy to implement (see Appendix B) a highly computationally tractable
online updating algorithm which alternates between steps A, B and D outlined in the
previous section for the new set of observations, and that can be initialized at T+ 1 using
the one step ahead predictive distribution for the latent state vectors in the state space
formulation. Such initialization procedure for latent state vectors in the algorithm depends
on the sample moments of the posterior distribution for the latent states at T. As is
known for Kalman smoothers (see, e.g., Durbin and Koopman, 2001), this could lead to
computational problems in the online updating due to the larger conditional variances of
the latent states at the end of the sample (i.e., at T'). To overcome this problem, we replace
the previous assumptions for the initial values with a data-driven initialization scheme. In
particular, instead of using only the new observations for the online updating, we run the
algorithm for {y; ZT;TI{ o With & small. As a result the distribution of the smoothed states
at T is not anymore affected by the problem of large conditional variances leading to better
online updating performance.

It is important to notice that the algorithm is not fully online in updating only the
time-varying dictionary functions, while fixing the time-constant model parameters at their
posterior mean. An alternative for properly propagating uncertainties while maintaining
computational tractability may be to add a further step in the online updating procedure
sampling the time-constant quantities conditionally on the updated dictionary functions
and the quantities stored during the initial sampling. Such an approach may be reasonable
if the initial time window considered is not enough large to ensure a consistent estimate
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of the time-constant parameters and if the number of time series analyzed p is tractable.
Since we search for a relatively fast procedure, and provided that for moderately large T the
posterior for the time-stationary parameters rapidly becomes concentrated, we preferred our
initially proposed algorithm in order to avoid the p draws from an L* dimensional Gaussian
in the sampling of ©, which may slow down the online updating procedure for large p.

4. Simulation Studies

The aim of the following simulation studies is to compare the performance of our pro-
posed LAF with respect to BCR, and to the models for multivariate stochastic volatility
most widely used in practice, specifically: EWMA, PC-GARCH, GO-GARCH and DCC-
GARCH. In order to assess whether and to what extent LAF can accommodate, in practice,
even sharp changes in the time-varying means and covariances and to evaluate the costs of
our flexible approach in settings where the mean and covariance functions do not require
locally adaptive estimation techniques, we focus on two different sets of simulated data.
The first is based on an underlying structure characterized by locally varying smoothness
processes, while the second has means and covariances evolving in time through smooth
processes. In the last subsection we also analyze the performance of the proposed online
updating algorithm.

4.1 Simulated Data

A. Locally varying smoothness processes: We generate a set of 5-dimensional observations
y; for each t; in the discrete set T, = {1,2,...,100}, from the latent factor model
in (5) with A(t;) = ©&(t;). To allow sharp changes of means and covariances in
the generating mechanism, we consider a 2 x 2 (i.e. L = K = 2) matrix {£(¢;)}%
of time-varying functions adapted from Donoho and Johnstone (1994) with locally
varying smoothness (more specifically we choose ‘bumps’ functions). The latent mean
dictionary elements in {1(¢;)}1% are simulated from a Gaussian process GP(0, ¢) with
length scale k = 10, while the elements in matrix © can be obtained from the shrinkage
prior in (8) with a; = as = 10. Finally the elements of the diagonal matrix X Lare

sampled independently from Ga(1,0.1).

B. Smooth processes: We consider the same data set of 10-dimensional observations y;
with ¢; € T, = {1,2,...,100} investigated in Fox and Dunson (2011, Section 4.1).
The settings are similar to the previous with exception of {£(;)}1% which are 5 x 4
matrices of smooth GP dictionary functions with length scale k£ = 10.

4.2 Estimation Performance

A. Locally varying smoothness processes:
Posterior computation for LAF is performed by using truncation levels L* = K* =2
(at higher level settings we found that the shrinkage prior on © results in posterior
samples of the elements in the additional columns concentrated around 0). We place a
Ga(1,0.1) prior on the precision parameters 0]-_2 and choose a1 = as = 2. As regards
the nGP prior for each dictionary element & (t) withl =1,...,L* and k =1,..., K*,

we choose diffuse but proper priors for the initial values by setting 0/2% = Ug% = 100
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and place an InvGa(2, 108) prior on each ngk and 0124% in order to allow less smooth

behavior according to a previous graphical analysis of f)(tz) estimated via EWMA.
Similarly we set aik =02, =100 in the prior for the initial values of the latent state
equations resulting from the nGP prior for 1 (t), and consider ay, = ap = by = bp =
0.005 to balance the rough behavior induced on the nonparametric mean functions by
the settings of the nGP prior on & (t), as suggested from previous graphical analysis.
Note also that for posterior computation, we first scale the predictor space to (0, 1],

leading to ¢; = 1/100, for ¢ = 1,...,100.

For inference in BCR we consider the same previous hyperparameters setting for ©
and X priors as well as the same truncation levels K* and L*, while the length scale
£ in GP prior for & (t) and ¢ (t) has been set to 10 using the data-driven heuristic
outlined in Fox and Dunson (2011). In both cases we run 50,000 Gibbs iterations
discarding the first 20,000 as burn-in and thinning the chain every 5 samples.

As regards the other approaches, EWMA has been implemented by choosing the
smoothing parameter A that minimizes the mean squared error (MSE) between the
estimated covariances and the true values. PC-GARCH algorithm follows the steps
provided by Burns (2005) with GARCH(1,1) assumed for the conditional volatilities
of each single time series and the principal components. GO-GARCH and DCC-
GARCH recall the formulations provided by van der Weide (2002) and Engle (2002)
respectively, assuming a GARCH(1,1) for the conditional variances of the processes
analyzed, which proves to be a correct choice in many financial applications and also in
our setting. Note that, differently from LAF and BCR, the previous approaches do not
model explicitly the mean process {s(t;)}1% but work directly on the innovations {y; —
w(t;) 1199 Therefore in these cases we first model the conditional mean via smoothing
spline and in a second step we estimate the models working on the innovations. The
smoothing parameter for spline estimation has been set to 0.7, which was found to be
appropriate to best reproduce the true dynamic of {u(t;)}1%.

B. Smooth processes:
We mainly keep the same setting of the previous simulation study with few differences.
Specifically, L* and K* has been fixed to 5 and 4 respectively (also in this case the
choice of the truncation levels proves to be appropriate, reproducing the same results
provided in the simulation study of Fox and Dunson (2011) where L* = 10 and
K* = 10). Moreover the scale parameters in the Inverse Gamma prior on each aglk
and 0'124lk has been set to 10* in order to allow a smoother behavior according to a

previous graphical analysis of %(t;) estimated via EWMA, but without forcing the
nGP prior to be the same as a GP prior. Following Fox and Dunson (2011) we
run 10,000 Gibbs iterations which proved to be enough to reach convergence, and
discarded the first 5,000 as burn-in.

In the first set of simulated data, we analyzed mixing by the Gelman-Rubin procedure (see,
e.g., Gelman and Rubin, 1992), based on potential scale reduction factors computed for
each chain by splitting the sampled quantities in 6 pieces of same length. The analysis
shows slower mixing for BCR compared with LAF. Specifically, in LAF 95% of the chains
have a potential reduction factor lower than 1.35, with a median equal to 1.11, while in
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Figure 2: For locally varying smoothness simulation (top) and smooth simulation (bottom),
plots of truth (black) and posterior mean respectively of LAF (solid red line) and
BCR (solid green line) for selected components of the variance (left), covariance
(middle), mean (right). For both approaches the dotted lines represent the 95%
highest posterior density intervals.

BCR the 95% quantile is 1.44 and the median equals 1.18. Less problematic is the mixing
for the second set of simulated data, with potential scale reduction factors having median
equal to 1.05 for both approaches and 95% quantiles equal to 1.15 and 1.31 for LAF and
BCR, respectively.

Figure 2 compares, in both simulated samples, true and posterior mean of the process
I' = {u(ti), X(t;),7 = 1,...,100} over the predictor space 7, together with the point-wise
95% highest posterior density (hpd) intervals for LAF and BCR. From the upper plots we
can clearly note that our approach is able to capture conditional heteroscedasticity as well as
mean patterns, also in correspondence of sharp changes in the time-varying true functions.
The major differences compared to the true values can be found at the beginning and at
the end of the series and are likely to be related to the structure of the simulation smoother
which also causes a widening of the credibility bands at the very end of the series; for
references regarding this issue see Durbin and Koopman (2001). However, even in the most
problematic cases, the true values are within the bands of the 95% hpd intervals. Much
more problematic is the behavior of the posterior distributions for BCR which over-smooth
both covariance and mean functions leading also to many 95% hpd intervals not containing
the true values. Bottom plots in Figure 2 show that the performance of our approach is
very close to that of BCR, when data are simulated from a model where the covariances
and means evolve smoothly across time and local adaptivity is not required. This happens
even if the hyperparameters in LAF are set in order to maintain separation between nGP
and GP prior, suggesting large support property for the proposed approach.
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Mean 90% Quantile  95% Quantile  Max
Covariance {X(¢;)}

EWMA 1.37 2.28 5.49 85.86
PC-GARCH 1.75 2.49 6.48 229.50
GO-GARCH 2.40 3.66 10.32 173.41
DCC-GARCH 1.75 2.21 6.95 226.47
BCR 1.80 2.25 7.32 142.26
LAF 0.90 1.99 4.52 36.95
Mean {(t;)}
SPLINE 0.064 0.128 0.186 2.595
BCR 0.087 0.185 0.379 2.845
LAF 0.062 0.123 0.224 2.529

Table 1: LOCALLY VARYING SMOOTHNESS PROCESSES: Summaries of the standard-
ized squared errors between true values {u(t;)}% and {Z(#)}1% and estimated

quantities {3(t;)}1%9 and {/(t;)}1% computed with different approaches.

Mean 90% Quantile 95% Quantile Max
Covariance {X(t;)}

EWMA 0.030 0.081 0.133 1.119
PC-GARCH 0.018 0.048 0.076 0.652
GO-GARCH 0.043 0.104 0.202 1.192
DCC-GARCH 0.022 0.057 0.110 0.466
BCR 0.009 0.019 0.039 0.311
LAF 0.009 0.022 0.044 0.474
Mean {/(t;) }
SPLINE 0.007 0.019 0.027 0.077
BCR 0.005 0.015 0.024 0.038
LAF 0.005 0.017 0.026 0.050

Table 2: SMOOTH PROCESSES: Summaries of the standardized squared errors between
true values {u(t;)}1% and {Z(#)}1% and estimated quantities {3(#;)}1% and
{(t:) 1129 computed with different approaches.

The comparison of the summaries of the squared errors between true process I' =
{u(t;),2(t;),i = 1,...,100} and the estimated quantities T' = {/i(t;), 2(t;),i = 1,...,100}
standardized with the range of the true processes 1, = max; j{p;(t;)} — min; ;{;(¢;)} and
Ty = max; j k{25 k(t:) } —min; ;{3 x(t;) } respectively, once again confirms the overall bet-
ter performance of our approach relative to all the considered competitors. Table 1 shows
that, when local adaptivity is required, LAF provides a superior performance having stan-
dardized residuals lower than those of the other approaches. EWMA seems to provide quite
accurate estimates, but it is important to underline that we choose the optimal smoothing
parameter X in order to minimize the MSE between estimated and true parameters, which
are clearly not known in practical applications. Different values of A reduces significantly
the performance of EWMA, which shows also lack of robustness. The closeness of the sum-
maries of LAF and BCR in Table 2 confirms the flexibility of LAF even in settings where
local adaptivity is not required and highlights the better performance of the two approaches
with respect to the other competitors also when smooth processes are investigated.

To better understand the improvement of our approach in allowing locally varying
smoothness and to evaluate the consequences of the over-smoothing induced by BCR on the
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Figure 3: For 4 selected simulated series: time-varying mean pu;(t;) and 2.5% and 97.5%
quantiles of the marginal distribution of y;; with true mean and variance (black),
mean and variance from posterior mean of LAF (red), mean and variance from
posterior mean of BCR (green). Black points represent the simulated data.

distribution of y; with ¢ = 1, ..., 100 consider Figure 3 which shows, for some selected series
{yji}}g{ in the first simulated data set, the time-varying mean together with the point-wise
2.5% and 97.5% quantiles of the marginal distribution of y;; induced respectively by the
true mean and true variance, the posterior mean of p;(t;) and X;;(¢;) from our proposed
approach and the posterior mean of the same quantities from BCR. We can clearly see
that the marginal distribution of y;; induced by BCR is over-concentrated near the mean,
leading to incorrect inferences. Note that our proposal is also able to accommodate heavy

tails, a typical characteristic in financial series.

4.3 Online Updating Performance

To analyze the performance of the online updating algorithm in LAF model, we simulate
50 new observations {y;}150,, with t; € 7;* = {101,...,150}, considering the same © and
Yo used in the generating mechanism for the first simulated data set and taking the 50
subsequent observations of the bumps functions for the dictionary elements {&(¢;)}120;;
finally the additional latent mean dictionary elements {1 (¢;)}129,, are simulated as before

maintaining the continuity with the previously simulated functions {w(tl)}}g{ According to

1507



DURANTE, SCARPA AND DUNSON

Covariance series 2 - 5 Covariance series 1 -3

-10 0 10 20 30

!
4;
)
N
!
1
\ '\
W
'
/
1
\
\
)
/
80 -60 -40 -20 O
!

-30
I

0 50 100 150 200 250

Figure 4: Plots of truth (black) and posterior mean of the online updating procedure (solid
red line) for selected components of the covariance (top), variance (middle), mean
(bottom). The dotted lines represent the 95% highest posterior density intervals.

the algorithm described in Subsection 3.3, we fix ©, X, 3¢, ¥ 4,2, and X p at their posterior
mean from the previous Gibbs sampler and consider the last three observations ygs, Y99 and
Y100 (i-e. k = 3) to initialize the simulation smoother in i = 101 through the proposed data-
driven initialization approach. Posterior computation shows good performance in terms of
mixing, and convergence is assessed after 5,000 Gibbs iterations with a small burn-in of 500.

Figure 4 compares true mean and covariance to posterior mean of a selected set of
components of Iy, = {u(t;),X(t;),7 = 101,...,150} including also the 95% hpd intervals.
The results clearly show that the online updating is characterized by a good performance
which allows to capture the behavior of new observations conditioning on the previous
estimates. Note that the posterior distribution of the approximated mean and covariance
functions tends to slightly over-estimate the patterns of the functions at sharp changes,
however also in these cases the true values are within the bands of the credibility intervals.
Finally note that the data-driven initialization ensures a good behavior at the beginning of
the series, while the results at the end have wider uncertainty bands as expected.

5. Application Study

Spurred by the recent growth of interest in the dynamic dependence structure between
financial markets in different countries, and in its features during the crises that have
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followed in recent years, we applied our LAF to the multivariate time series of the main
National Stock Market Indices.

5.1 National Stock Market Indices, Introduction and Motivation

National Stock Market Indices represent technical tools that allow, through the synthesis
of numerous data on the evolution of the various stocks, to detect underlying trends in the
financial market, with reference to a specific basis of currency and time. More specifically,
each Market Index can be defined as a weighted sum of the values of a set of national stocks,
whose weighting factors is equal to the ratio of its market capitalization in a specific date
and overall of the whole set on the same date.

In this application we focus our attention on the multivariate weekly time series of the
main 33 (i.e. p = 33) National Stock Market Indices from 12/07/2004 to 25/06/2012.
Figure 5 shows the main features in terms of stationarity, mean patterns and volatility
of two selected National Stock Market Indices downloaded from http://finance.yahoo.
com/. The non-stationary behavior, together with the different bases of currency and time,
motivate the use of logarithmic returns yj; = log(Ij;/Ij—1), where Ij; is the value of the
Stock Market Index j at time ¢;. Beside this, the marginal distribution of log returns
shows heavy tails and irregular cyclical trends in the nonparametric estimation of the mean,
while EWMA estimates highlight rapid changes of volatility during the financial crises
observed in the recent years. All these results, together with large p settings and high
frequency data typical in financial fields, motivate the use of our approach to obtain a
better characterization of the time-varying dependence structure among financial markets.

5.2 LAF for National Stock Market Indices

We consider the heteroscedastic model y; ~ N33(u(t;), X(¢;)) for i = 1,...,415 and ¢; in the
discrete set T, = {1,2,...,415}, where the elements of I' = {u(t;), X(t;),7s = 1,...,415},
defined by (7a)-(7b), are induced by the dynamic latent factor model outlined in (5)-(6).

Posterior computation is performed by first rescaling the predictor space 7, to (0, 1] and
using the same setting of the first simulation study, with the exception of the truncation
levels fixed at K* = 4 and L* = 5 (which we found to be sufficiently large from the fact
that the last few columns of the posterior samples for © assumed values close to 0) and
the hyperparameters of the nGP prior for each & (t) and ¢ (t) with I =1,...,L* and k =
1,...,K*,settoas =ay =ay =ap =2 and bg =by =by =bp =5 x 107 to capture also
rapid changes in the mean functions according to Figure 5. Missing values in our data set
do not represent a limitation since the Bayesian approach allows us to update our posterior
considering solely the observed data. We run 10,000 Gibbs iterations with a burn-in of 2,500.
Examination of trace plots of the posterior samples for I' = {u(¢;),%(t;),7 = 1,...,415}
showed no evidence against convergence.

Posterior distributions for the variances in Figure 6 demonstrate that we are clearly
able to capture the rapid changes in the dynamics of volatility that occur during the world
financial crisis of 2008, in early 2010 with the Greek debt crisis and in the summer of 2011
with the financial speculation in government bonds of European countries together with the
rejection of the U.S. budget and the downgrading of the United States rating. Moreover,
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Figure 5: Plots of the main features of USA NASDAQ (left) and ITALY FTSE MIB (right).
Specifically: observed time series (top), log returns series with nonparametric
mean estimation via 12 week Equally Weighted Moving Average (red) in the
middle, EWMA volatility estimates (bottom).

the resulting marginal distribution of the log returns induced by the posterior mean of ()
and X;;(t), shows that we are also able to accommodate heavy tails as well as mean patterns
cycling irregularly between slow and more rapid changes.

Important information about the ability of our model to capture the evolution of world
geo-economic structure during different finance scenarios is provided in Figures 7 and 8.
From the correlations between NASDAQ and the other National Stock Market Indices
(based on the posterior mean {3(t;)}*3 of the covariances function) in Figure 7, we can
immediately notice the presence of a clear geo-economic structure in world financial markets
(more evident in LAF than in BCR), where the dependence between the U.S. and European
countries is systematically higher than that of South East Asian Nations (Economic Tigers),
showing also different reactions to crises. Plots at the top of the Figure 8 confirms the above
considerations showing how Western countries exhibit more connection with countries closer
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Figure 6: Top: Plot for 2 National Stock Market Indices, respectively USA NASDAQ (left)
and ITALY FTSE MIB (right), of the log returns (black) and the time-varying
estimated mean {/1;(t;)}11] together with the time-varying 2.5% and 97.5% quan-
tiles (red) of the marginal distribution of y;; from LAF. Bottom: posterior mean

(black) and 95% hpd (dotted red) for the variances {3;;(t;)}13.

in terms of geographical, political and economic structure; the same holds for Eastern
countries where we observe a reversal of the colored curves. As expected, Russia is placed
in a middle path between the two blocks. A further element that our model captures about
the structure of the markets is shown in the plots at the bottom of Figure 8. The time-
varying regression coefficients obtained from the standard formulas of the conditional normal
distribution based on the posterior mean of I' = {u(t;),X(¢;),7 = 1,...,415} highlight
clearly the increasing dependence of European countries with higher crisis in sovereign debt
and Germany, which plays a central role in Eurozone as expected.

The flexibility of the proposed approach and the possibility of accommodating varying
smoothness in the trajectories over time, allow us to obtain a good characterization of the
dynamic dependence structure according with the major theories on financial crisis. The top
plot in Figure 7 shows how the change of regime in correlations occurs exactly in correspon-
dence to the burst of the U.S. housing bubble (A), in the second half of 2006. Moreover we
can immediately notice that the correlations among financial markets increase significantly
during the crises, showing a clear international financial contagion effect in agreement with
other theories on financial crisis (see, e.g., Baig and Goldfajn, 1999; Claessens and Forbes,
2001). As expected the persistence of high levels of correlation is evident during the global
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Black line: For USA NASDAQ median of correlations with the other 32 National
Stock Market Indices based on posterior mean of {3(¢;)}15. Red lines: 25%,
75% (dotted lines) and 50% (solid line) quantiles of correlations between USA
NASDAQ and European countries (without considering Greece and Russia which
present a specific pattern). Green lines: 25%, 75% (dotted lines) and 50% (solid
line) quantiles of correlations between USA NASDAQ and the countries of South-
east Asia (Asian Tigers and India). Timeline: (A) burst of U.S. housing bubble;
(B) risk of failure of the first U.S. credit agencies (Bear Stearns, Fannie Mae and
Freddie Mac); (C) world financial crisis after the Lehman Brothers’ bankruptcy;
(D) Greek debt crisis; (E) financial reform launched by Barack Obama and E.U.
efforts to save Greece (the two peaks represent respectively Irish debt crisis and
Portugal debt crisis); (F) worsening of European sovereign-debt crisis and the
rejection of the U.S. budget; (G) crisis of credit institutions in Spain and the
growing financial instability of the Eurozone.

financial crisis between late-2008 and end-2009 (C), at the beginning of which our approach
also captures a sharp variation in the correlations between the U.S. and Economic Tigers,
which lead to levels close to those of Europe. Further rapid changes are identified in cor-
respondence of Greek crisis (D), the worsening of European sovereign-debt crisis and the
rejection of the U.S. budget (F) and the recent crisis of credit institutions in Spain to-
gether with the growing financial instability Eurozone (G). Finally, even in the period of
U.S. financial reform launched by Barack Obama and E.U. efforts to save Greece (E), we
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Figure 8: Top: For 3 selected National Stock Market Indices, plot of the median of the
correlation based on posterior mean of {¥(¢;)}1} with the other 32 world stock
indices (black), the European countries without considering Greece and Russia
(red) and the Asian Tigers including India (green). Bottom: For 3 of the Eu-
ropean countries more subject to sovereign debt crisis, plot of 25%, 50% and
75% quantiles of the time-varying regression parameters based on posterior mean
{3(t;) }2% with the other countries (black) and Germany (red).

can notice two peaks representing respectively Irish debt crisis and Portugal debt crisis.
Note also that BCR, as expected, tends to over-smooth the dynamic dependence structure
during the financial crisis, proving to be not able to model the sharp change in the corre-
lations between USA NASDAQ and Economic Tigers during late-2008, and the two peaks
representing respectively Irish and Portugal debt crisis at the beginning of 2011.

5.3 National Stock Market Indices, Updating and Predicting

The possibility to quickly update the estimates and the predictions as soon as new data
arrive, represents a crucial aspect to obtain quantitative informations about the future
scenarios of the crisis in financial markets. To answer this goal, we apply the online updating
algorithm presented in Subsection 3.3, to the new set of weekly observations {yi}ﬁiw from
02/07/2012 to 13/08/2012 conditioning on posterior estimates of the Gibbs sampler based
on observations {y;}#13 available up to 25/06/2012. We initialized the simulation smoother
algorithm with the last 8 observations of the previous sample.
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Figure 9: Top: For 3 selected National Stock Market Indices, respectively USA NASDAQ
(left), INDIA BSE30 (middle) and FRANCE CAC40 (right), plot of the ob-
served log returns (black) together with the mean and the 2.5% and 97.5% quan-
tiles of the marginal distribution (red) and conditional distribution given the
other 32 National Stock Market Indices (green) based on the posterior mean of
Iy = {p(ti), X(t;),7 = 416,...,422} from the online updating procedure for the
new observations from 02/07/2012 to 13/08/2012. Bottom: boxplots of the one
step ahead prediction errors for the 33 National Stock Market Indices, where
the predicted values are respectively: (a) unconditional mean {f;1+1}#24,5 = 0,
(b) marginal mean of the one step ahead predictive distribution, (c¢) conditional
mean given the log returns of the other 32 NSI at ¢ 4+ 1 of the one step ahead
predictive distribution. Predictions for (b) and (c) are induced by the posterior
mean of {u(t;y1);), X(tiq1):), 1 = 415,...,421} of LAF.

Plots at the top of Figure 9 show, for 3 selected National Stock Market Indices, the new
observed log returns {y;i}#?%,5 (black) together with the mean and the 2.5% and 97.5%
quantiles of the marginal distribution (red) and conditional distribution (green) of y;;|y, I
with 1, I = {yqi,q # j}. We use standard formulas of the multivariate normal distribution
based on the posterior mean of the updated I'x = {u(t;), 2(¢;),7 = 416, ..., 422} after 5,000
Gibbs iterations with a burn in of 500. This is sufficient for convergence based on examining
trace plots of the time-varying mean and covariance matrices. From these results, we can
clearly notice the good performance of our proposed online updating algorithm in obtaining
a characterization for the distribution of new observations. Also note that the multivariate
approach together with a flexible model for the mean and covariance, allow for significant
improvements when the conditional distribution of an index given the others is analyzed.
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To obtain further informations about the predictive performance of our LAF, we can
easily use our online updating algorithm to obtain h step-ahead predictions for I'r g7 =
{ultrinr), 2(trenr),h = 1,...,H}. In particular, referring to Durbin and Koopman
(2001), we can generate posterlor samples of I'7y g merely by treating {y:} I b T t1 as missing
values in the proposed online updating algorithm. Here, we consider the one step ahead
prediction (i.e. H = 1) problem for the new observations. More specifically, for each i from
415 to 421, we update the mean and covariance functions conditioning on informations up
to t; through the online algorithm and then obtain the predicted posterior distribution for
(tiy1):) and p(t;yq);) by adding to the sample considered for the online updating a last
column g; 11 of missing values.

Plots at the bottom of Figure 9, show the boxplots of the one step ahead prediction errors
for the 33 National Stock Market Indices obtained as the difference between the predicted
value y;;11 and, once available, the observed log return y;;y1 with ¢ +1 = 416,...,422
corresponding to weeks from 02/07/2012 to 13/08/2012. In (a) we forecast the future
log returns with the unconditional mean {f;11}:24;5 = 0, which is what is often done
in practice under the general assumption of zero mean, stationary log returns. In (b) we
consider ;41 = ﬂ(ti+1|i), the posterior mean of the one step ahead predictive distribution of
wu(t; +1\i)a obtained from the previous proposed approach after 5,000 Gibbs iteration with a
burn in of 500. Finally in (c) we suppose that the log returns of all National Stock Market
Indices except that of country j (i.e., yjit1) becpme available at t;;; and, considering
Yirli ~ Np(i(tiga)s), ( i+1)i)) with fi(t;41);) and X(¢;4);) posterior mean of the one step
ahead predictive distribution respectively for ju(t;11);) and X(;;1);), we forecast y; ;1 with
the conditional mean of y; ;1); given the other log returns at time ¢;1;. Comparing boxplots
in (a) with those in (b) we can see that our model allows to obtain improvements also in
terms of prediction. Furthermore, by analyzing the boxplots in (c) we can notice how our
ability to obtain a good characterization of the time-varying covariance structure can play
a crucial role also in improving forecasting, since it enters into the standard formula for
calculating the conditional mean in the normal distribution.

6. Discussion

In this paper, we have presented a continuous time multivariate stochastic process for
time series to obtain a better characterization for mean and covariance temporal dynamics.
Maintaining simple conjugate posterior updates and tractable computations in moderately
large p settings, our model increases significantly the flexibility of previous approaches as it
captures sharp changes both in mean and covariance dynamics while accommodating heavy
tails. Beside these key advantages, the state space formulation enables development of a
fast online updating algorithm particularly useful for high frequency data.

The simulation studies highlight the flexibility and the overall better performance of
LAF with respect to the models for multivariate stochastic volatility most widely used
in practice, both when adaptive estimation techniques are required, and also when the
underlying mean and covariance structures do not show sharp changes in their dynamic.

The application to the problem of capturing temporal and geo-economic structure be-
tween the main financial markets demonstrates the utility of our approach and the im-
provements that can be obtained in the analysis of multivariate financial time series with
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reference to (i) heavy tails, (ii) locally adaptive mean regression, (iii) sharp changes in co-
variance functions, (iii) high dimensional data set, (iv) online updating with high frequency
data (v) missing values and (vi) predictions. Potentially further improvements are possible
using a stochastic differential equation model that explicitly incorporates prior information
on dynamics.
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Appendix A. Posterior Computation

For a fixed truncation level L* and a latent factor dimension K* the detailed steps of the
Gibbs sampler for posterior computations are:

1. Define the vector of the latent states and the error terms in the state space equation
resulting from nGP prior for dictionary elements as

Bi = [6nlti),(t), o Ereres (8), 611 (80), - s Epper (), Ari (i), - Apeice (80)]T
Qi,{ - [wi,§117w’i,£217 cee 7wi7§L*K* 7wi,A117wi,A217 cee 7wi,AL*K*]T
Given O, {n;}L,, {vi},, X0 and the variances in latent state equations {O'glk},
{0124”9}, withl=1,...,L* and k = 1,..., K*; update {=;}_, by using the simulation
smoother in the following state space model

Yi = [niT®@>Op><(2><K*><L*)]Ei + €, (9)
Eiv1 = TEi+ RiQg, (10)

where the observation equation in (9) results by applying the vec operator in the latent
factor model y; = O&(t;)n; + €;. More specifically recalling the property vec(ABC) =
(CT @ A)vec(B) we obtain

yi = vec(yi) = wec{O&(t)n; + €}
= vec{OL(t:)ni} + vec(e;)
= (0] ®O)ec{{(t:)} + &

The state equation in (10) is a joint representation of the equations resulting from the
nGP prior on each & (t) defined in (3). As aresult, the (3x L* X K*)x (3x L*x K*) ma-
trix T; together with the (3x L* x K*)x (2x L* x K*) matrix R; reproduce, for each dic-
tionary element the state equation in (3) by fixing to 0 the coefficients relating latent
states with different (I, k) (from the independence between the dictionary elements).
Finally, recalling the assumptions on w; ¢, and w; 4,, , €2; ¢ is normally distributed with
E[Qié] =0 and E[Qi:EQZE] = diag(aguéi, con ,O'gL*K* 51'7 Uilléi, ey O'%L*K* (5,)

1516



LocaLLy ADAPTIVE FACTOR PROCESSES FOR MULTIVARIATE TIME SERIES

2. Given {Z;}1_, sample each 05 and o2 2, respectively from

= , )
2 = (& (tir) — & (80) — Agi(ts)0:)
og, {Zi} ~ TInvGa (ag + —,be + - g_l 5, ,

T-1
T 1 At A (t))?
O-Alk|{'_'l} ~ InvGa <CLA—|- bA+§ E (Au( +1)(5~ ) )
i=1 t

3. Similarly to Z; and ;¢ let

U = [i(ts), Ya(ta), . - e (E0), Wi (i), o W (t), Ba(t), .. B ()]

_ T
Qiﬂ/) — [wi,dll y Wighg s« o+ s Wiah ey Wi, By y Wi Bos - - - )w’i,BK*] )

be the vectors of the latent states and error terms in the state space equation resulting
from nGP prior for v(¢). Conditional on ©, {&(¢;)}_,, {y:}L, X0, and the variances
in latent state equations {afpk}, {U%k}, with k = 1,..., K*; sample {¥;}Z | from the
simulation smoother in the following state space model

yi = [0&(ti),0px2xkx) Vi + @i, (11)
Uit = G+ FQy, (12)

wi ~ N(0,06(t;)&(t)TOT+%)). The observation equation in (11) results by marginal-
izing out v; in the latent factor model with nonparametric mean regression y; =
O&(t:)Y(ti) + O&(ti)vi + €. Analogously to =;, the state equation in (12) is a joint
representation of the state equation induced by the nGP prior on each v (t) defined in
(4); where the (3 x K*) x (3 x K*) matrix G; and the (3 x K*) x (2 x K*) matrix F; are
constructed with the same goal of the matrices T; and R; in the state space model for
Z;. Finally, Q; 4 ~ Noy g+ (0, diabg(ai1 0, 0312(2, . ,O'iK* 0is 0'231(52‘, 0%26i, e ,O’%K* 0i)).

4. Given {¥;} | update each aik and O'%k respectively from

T-1
T 1 (W (tis1) — ¥y (t:) — Br(ti)d;)?
2 k k
o5, {¥:} ~ InvGa (aw + §,b¢ + 3 51 )

T-1
T 1 B (tir1) — B(t;))?
U%k‘{qu} ~ InvGa <CLB+2,bB+2 E ( k( +1)5- k( )) >
i=1 v

5. Conditioned on ©, ¥, y;, £(t;) and ¥(t;), and recalling v; ~ N+« (0, [+ ); the standard
conjugate posterior distribution 4|0, Xq, 7;, &(t:), ¥ (t;) is

N+ (1 +&(t)T0TS5 08 (t:) () 0TSy i, (1 + &(t) " 0T sge¢(t:) ),
with §; = y; — O&(t:)Y(ts).
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6. Conditioned on ©, {n;}7_,, {v:}/,, and {&(;)}_, (obtained from Z;), the standard
conjugate posterior from which to update 0]72 is

T 1
05210, {mi}, {yi}, {£(t)} ~ Ga (aa + 500+ 5 > (yji— 9]"5(75%*)771')2) -
=1

Where 9]'. = [9j1, ce ,QjL*]

7. Given {n;}L,, {wi}, {€(t:)}, and the hyperparameters ¢ and 7 the shrinkage prior
on © combined with the hkehhood for the latent factor model lead to the Gaussian

posterior
) EG) ’

29_1 = J}QﬁTﬁ + diag(¢ji71, - - - Qjr+TL*).

Yj1

‘9j-|{77i}7{yi},{ﬁ(ti)}aﬁbﬁ ~ N~ (ioﬁTajz [

YiT

where ﬁT = [f(tl)nlv f(tQ)T/% cee 7§(tT)77T] and

8. The Gamma prior on the local shrinkage hyperparameter ¢;; implies the standard
conjugate posterior given ¢, and 7

3-{-7’5921
®51101, 71 ~ Ga | 2, TJ

9. Conditioned on © and 7, sample the global shrinkage hyperparameters from

L* D
pL* 1 (-1) 2
9110, 7Y ~ Ga | ay + - 5 1+§Z7'l z;@-laﬂ ,

=1

p(L* h+ ¢ 2
0,10, 7M ~ Ga | ag + =—————— 1+ ZTZ Z@-,eﬂ ,

where Tl(_h) = Hfﬁ:l,t;ﬁh 9 for h=1,...,L*.

10. Given the posterior samples from ©, 3¢, {£(t;)}L; and {¢(¢;)}L; the realization of
the LAF process for {yu(t;),%(t;),t; € T} conditioned on the data {y;}L, is

p(ts) = O&(t:)Y(t:),
S(t) = O&(t)(t) O + .
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Appendix B. Online Updating Algorithm

Consider O, X, {aglk}, {Jilk}, {aik} and {?’%k }A fixed at tAheirAposterior mean ©, 3o, {6§lk},
{(7124%}, {&ik}, {6125%} respectively, and let ZE7, ¥z, and ¥, Xy, be the sample mean and
covariance matrix of the posterior distribution respectively for Zr and ¥ obtained from
the posterior estimates of the Gibbs sampler conditioned on {y;}Z ;.

1. Given ©, 3, {c}glk}, {6124%}’ {ni iT:+TIi1 and {y; iT:JFTﬁl update {Ei}iT:JFTIil by using the

simulation smoother in the following state space model

Yi = [niT®é)70p><(2><K*><L*)]Ei+6i,
Eir1 = TS+ Rifdig,

where =741 can be initialized from the standard one step ahead predictive distribution
for the state space model E741 ~ N(TrE7, TTZETT;‘C + RTE[QT{Q% 5]R;).

2. Conditioned on O, 3, {&ik}, {&%k}, {&(ts) Z.T:JFTIL and {y; ;TF:+TPL sample {¥; ZT:J“TIL

through the simulation smoother in the state space model

Yi = [ég(ti)aOpX@XK*)]\Pi"‘wi,
Vipn = Gz‘llz‘i‘FlQmZ)

Similarly to 2141, ‘;[IT—I—I ~ N(GT\TJT, GTXA:\I;TG% + FTE[QTWQ%@]FTY:)'

3. Given O, 3, {y;}, &(t;) and ¥(t;), for i = T +1,...,T + H, sample v; from the
standard conjugate posterior distribution for v;|©, Xq, 9;, {(;), ¥ (t;):

Niee (1 +€(t)T OS5 0¢(1) " €(t:)T 6T S5 G, (1 + €(1) OS5 06 (1)) )
with i = y; — O&(t:)u(t:).

4. Compute the updated covariance {3(t;) iT:+TIL and mean {u(ti)}iT;TIil from the usual

equations

S(t) = O&(t:)Et) 0" + Xy,
plti) = O&(t)v(t:).
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Abstract

In many machine learning problems such as the dual form of SVM, the objective function
to be minimized is convex but not strongly convex. This fact causes difficulties in obtaining
the complexity of some commonly used optimization algorithms. In this paper, we proved
the global linear convergence on a wide range of algorithms when they are applied to
some non-strongly convex problems. In particular, we are the first to prove O(log(1/¢))
time complexity of cyclic coordinate descent methods on dual problems of support vector
classification and regression.

Keywords: convergence rate, convex optimization, iteration complexity, feasible descent
methods

1. Introduction

We consider the following convex optimization problem

mig(l f(x), where f(x)=g(Fx)+b'x, (1)
xe

where g(t) is a strongly convex function with Lipschitz continuous gradient, E is a constant
matrix, and X is a polyhedral set. Many popular machine learning problems are of this

type. For example, given training label-instance pairs (y;, z;), i = 1,...,[, the dual form of
L1-loss linear SVM (Boser et al., 1992) is?

1
min —w w—1Ta
o 2 (2)

subject to w=Fa, 0<a; <C,i=1,...,1,

where £ = [ylzl, . ,ylzl], 1 is the vector of ones, and C is a given upper bound. Although
w'w/2 is strongly convex in w, the objective function of (2) may not be strongly convex
in . Common optimization approaches for these machine learning problems include cyclic
coordinate descent and others. Unfortunately, most existing results prove only local linear

1. Note that we omit the bias term in the SVM formulation.

(©2014 Po-Wei Wang and Chih-Jen Lin.
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convergence, so the number of total iterations cannot be calculated. One of the main diffi-
culties is that f(x) may not be strongly convex. In this work, we establish the global linear
convergence for a wide range of algorithms for problem (1). In particular, we are the first
to prove that the popularly used cyclic coordinate descent methods for dual SVM problems
converge linearly since the beginning. Many researchers have stated the importance of such
convergence-rate analysis. For example, Nesterov (2012) said that it is “almost impossible
to estimate the rate of convergence” for general cases. Saha and Tewari (2013) also agreed
that “little is known about the non-asymptotic convergence” for cyclic coordinate descent
methods and they felt “this gap in the literature needs to be filled urgently.”

Luo and Tseng (1992a) are among the first to establish the asymptotic linear convergence
to a non-strongly convex problem related to (1). If X is a box (possibly unbounded)
and a cyclic coordinate descent method is applied, they proved e-optimality in O(rg +
log(1/€)) time, where ro is an unknown number. Subsequently, Luo and Tseng (1993)
considered a class of feasible descent methods that broadly covers coordinate descent and
gradient projection methods. For problems including (1), they proved the asymptotic linear
convergence. The key concept in their analysis is a local error bound, which states how close
the current solution is to the solution set compared with the norm of projected gradient

VT f(z).
mi/rvl ' —x*|| < k||VTF()|, Vr>ro, (3)
m*e *

where rg is the above-mentioned unknown iteration index, X* is the solution set of problem
(1), k is a positive constant, and " is the solution produced after the r-th iteration. Because
ro is unknown, we call (3) a local error bound, which only holds near the solution set. Local
error bounds have been used in other works for convergence analysis such as Luo and Tseng
(1992b). If 7o = 0, we call (3) a global error bound from the beginning, and it may help
to obtain a global convergence rate. If f(x) is strongly convex and X is a polyhedral set,
a global error bound has been established by Pang (1987, Theorem 3.1). One of the main
contributions of our work is to prove a global error bound of the possibly non-strongly convex
problem (1). Then we are able to establish the global linear convergence and O(log(1/¢))
time complexity for the feasible descent methods.

We briefly discuss some related works, which differ from ours in certain aspects. Chang
et al. (2008) applied an (inexact) cyclic coordinate descent method for the primal problem
of L2-loss SVM. Because the objective function is strongly convex, they are able to prove
the linear convergence since the first iteration. Further, Beck and Tetruashvili (2013) estab-
lished global linear convergence for block coordinate gradient descent methods on general
smooth and strongly convex objective functions. Tseng and Yun (2009) applied a greedy
version of block coordinate descent methods on the non-smooth separable problems cov-
ering the dual form of SVM. However, they proved only asymptotic linear convergence
and O(1/€) complexity. Moreover, for large-scale linear SVM (i.e., kernels are not used),
cyclic rather than greedy coordinate descent methods are more commonly used in practice.?
Wright (2012) considered the same non-smooth separable problems in Tseng and Yun (2009)
and introduced a reduced-Newton acceleration that has asymptotic quadratic convergence.

2. It is now well known that greedy coordinate descent methods such as SMO (Platt, 1998) are less suitable
for linear SVM; see some detailed discussion in Hsieh et al. (2008, Section 4.1).
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For Ll-regularized problems, Saha and Tewari (2013) proved O(1/¢) complexity for cyclic
coordinate descent methods under a restrictive isotonic assumption.

Although this work focuses on deterministic algorithms, we briefly review past studies
on stochastic (randomized) methods. An interesting fact is that there are more studies
on the complexity of randomized rather than deterministic coordinate descent methods.
Shalev-Shwartz and Tewari (2009) considered L1-regularized problems, and their stochastic
coordinate descent method converges in O(1/¢) iterations in expectation. Nesterov (2012)
extended the settings to general convex objective functions and improved the iteration
bound to O(1/+/€) by proposing an accelerated method. For strongly convex function, he
proved that the randomized coordinate descent method converges linearly in expectation.
Shalev-Shwartz and Zhang (2013a) provided a sub-linear convergence rate for a stochastic
coordinate ascent method, but they focused on the duality gap. Their work is interesting
because it bounds the primal objective values. Shalev-Shwartz and Zhang (2013b) refined
the sub-linear convergence to be O(min(1/e,1/4/€)). Richtarik and Takac (2011) studied
randomized block coordinate descent methods for non-smooth convex problems and had sub-
linear convergence on non-strongly convex functions. If the objective function is strongly
convex and separable, they obtained linear convergence. Tappenden et al. (2013) extended
the methods to inexact settings and had similar convergence rates to those in Richtarik and
Takéac (2011).

Our main contribution is a global error bound for the non-strongly convex problem
(1), which ensures the global linear convergence of feasible descent methods. The main
theorems are presented in Section 2, followed by examples in Section 3. The global error
bound is discussed in Section 4, and the proof of global linear convergence of feasible descent
methods is given in Section 5. We conclude in Section 6 while leaving properties of projected
gradients in Appendix A.

2. Main Results

Consider the general convex optimization problem

min  f(x), (4)

xeX

where f(x) is proper convex and X is nonempty, closed, and convex. We will prove global
linear convergence for a class of optimization algorithms if problem (4) satisfies one of the
following assumptions.

Assumption 1 f(x) is o strongly conver and its gradient is p Lipschitz continuous. That
is, there are constants o > 0 and p such that

ollzr — @al|” < (Vf(x1) = Vf(@2) (w1 — 22), Vaoy,@p € X

and

IVf(@1) = V()| < pllay —@afl,  Var, 2 € X.

Assumption 2 X = {x | Ax < d} is a polyhedral set, the optimal solution set X* is
non-empty, and
f(x) = g(Ez) + b, (5)
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where g(t) is o4 strongly convex and V f(x) is p Lipschitz continuous. This assumption
corresponds to problem (1) that motivates this work.

The optimal set X* under Assumption 1 is non-empty following Weierstrass extreme value
theorem.? Subsequently, we make several definitions before presenting the main theorem.

Definition 3 (Convex Projection Operator)

+ .
Zr = argmin || — .
alf = argminfle— y|

From Weierstrass extreme value theorem and the strong convexity of || — y||? to y, the

unique [m]} exists for any X that is closed, convex, and non-empty.

Definition 4 (Nearest Optimal Solution)
With this definition, ming«ex+ || — *|| could be simplified to || — Z||.
Definition 5 (Projected Gradient)

V(@) = @ - [z - V@)

As shown in Lemma 24, the projected gradient is zero if and only if « is an optimal solution.
Therefore, it can be used to check the optimality. Further, we can employ the projected
gradient to define an error bound, which measures the distance between & and the optimal
set; see the following definition.

Definition 6 An optimization problem admits a global error bound if there is a constant
K such that

Iz — || < 5[V f()], Vzei. (6)

A relaxed condition called global error bound from the beginning if the above inequality
holds only for x satisfying

xeX and f(x)— f(x) < M,
where M is a constant. Usually, we have
M = f(z°) — f*,

where x° is the start point of an optimization algorithm and f* is the optimal function
value. Therefore, we called this as a bound “from the beginning.”

3. The strong convexity in Assumption 1 implies that the sublevel set is bounded (Vial, 1983). Then
Weierstrass extreme value theorem can be applied.
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The global error bound is a property of the optimization problem and is independent from
the algorithms. If a bound holds,* then using Lemmas 23, 24, and (6) we can obtain

2J1rpllv+f(-’f)|| <lz -z <x|V' (=), vxex.

This property indicates that ||V f(x)|| is useful to estimate the distance to the optimum.
We will show that a global error bound enables the proof of global linear convergence of some
optimization algorithms. The bound under Assumption 1, which requires strong convexity,
was already proved in Pang (1987) with

However, for problems under Assumption 2 such as the dual form of Ll-loss SVM, the
objective function is not strongly convex, so a new error bound is required. We prove the
bound in Section 4 with

1+ 2[|Vg ()|

Oy

k= 071+ p)( +4M) + 20|V f ()], (7)

where t* is a constant vector that equals Fx*, Va&* € X* and 6 is the constant from
Hoffman’s bound (Hoffman, 1952; Li, 1994).
JATu+ () E) =1, u>0.
0= sup H H The correspondmg rows of A, E to u, v’s

non-zero elements are linearly independent.

Specially, when b = 0 or X = R/, the constant could be simplified to

21 +p
og

=40

(8)

Now we define a class of optimization algorithms called the feasible descent methods for
solving (4).

Definition 7 (Feasible Descent Methods) A sequence {x"} is generated by a feasible
descent method if for every iteration index r, {x"} satisfies

't =" —w, V(") + e}, 9)
le"|| < Blla" — 2", (10)
fa") = f@™h) > qlla” — 2™, (11)

where inf,. w,. >0, >0, and v > 0.

4. Note that not all problems have a global error bound. An example is mingeg z*.
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The framework of feasible descent methods broadly covers many algorithms that use the
first-order information. For example, the projected gradient descent, the cyclic coordinate
descent, the proximal point minimization, the extragradient descent, and matrix splitting
algorithms are all feasible descent methods (Luo and Tseng, 1993). With the global error
bound under Assumption 1 or Assumption 2, in the following theorem we prove the global
linear convergence for all algorithms that fit into the feasible descent methods.

Theorem 8 (Global Linear Convergence) If an optimization problem satisfies Assump-
tion 1 or 2, then any feasible descent method on it has global linear convergence. To be
specific, the method converges Q-linearly with

. ¢ .
fmr+1 _f Sifmr _f 9 VTZOa
@) = < S )
where Kk is the error bound constant in (6),

1 1
o= (p+ %ﬂ)(l + /ﬁ%ﬁ), and w = min(1,infw,).

This theorem enables global linear convergence in many machine learning problems. The
proof is given in Section 5. In Section 3, we discuss examples on cyclic coordinate descent
methods.

3. Examples: Cyclic Coordinate Descent Methods

Cyclic coordinate descent methods are now widely used for machine learning problems
because of its efficiency and simplicity (solving a one-variable sub-problem at a time). Luo
and Tseng (1992a) proved the asymptotic linear convergence if sub-problems are solved
exactly, and here we further show the global linear convergence.

3.1 Exact Cyclic Coordinate Descent Methods for Dual SVM Problems
In the following algorithm, each one-variable sub-problem is exactly solved.

Definition 9 A cyclic coordinate descent method on a box X = X1 X --- X A is defined by
the update rule

1 . 1 1 .
s :argxrrleln_f(x7{+ e ml L wal ), fori=1,...1, (12)
K2 1

where X; is the region under box constraints for coordinate i.

The following lemma shows that coordinate descent methods are special cases of the feasible
descent methods.

Lemma 10 The cyclic coordinate descent method is a feasible descent method with
wr =1, Vr, 5:1‘1‘,0\[[7

and
if Assumption 1 holds,

= {2mini |Ei||* if Assumption 2 holds with | E;| > 0, Vi,
where E; is the ith column of E.

~ ol
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Proof This lemma can be directly obtained using Proposition 3.4 of Luo and Tseng (1993).
Our assumptions correspond to cases (a) and (c) in Theorem 2.1 of Luo and Tseng (1993),
which fulfill conditions needed by their Proposition 3.4. |

For faster convergence, we may randomly permute all variables before each cycle of updating
them (e.g., Hsieh et al., 2008). This setting does not affect the proof of Lemma 10.
Theorem 8 and Lemma 10 immediately imply the following corollary.

Corollary 11 The cyclic coordinate descent methods have global linear convergence if As-
sumption 1 is satisfied or Assumption 2 is satisfied with ||E;|| > 0, Vi.

Next, we analyze the cyclic coordinate descent method to solve dual SVM problems. The
method can be traced back to Hildreth (1957) for quadratic programming problems and
has recently been widely used following the work by Hsieh et al. (2008). For L1-loss SVM,
we have shown in (2) that the objective function can be written in the form of (1) by a
strongly convex function g(w) = w'w/2 and E; = y,z; for all label-instance pair (y;, 2;).
Hsieh et al. (2008) pointed out that ||E;|| = 0 implies the optimal o is C, which can be
obtained at the first iteration and is never changed. Therefore, we need not consider such
variables at all. With all conditions satisfied, Corollary 11 implies that cyclic coordinate
descent method for dual L1-loss SVM has global linear convergence. For dual L2-loss SVM,
the objective function is . .
§aTQa —1'a+ %aTa, (13)
where @ ; = ytyjthzj,Vl <t,7 <land 1 is the vector of ones. Eq. (13) is strongly convex
and its gradient is Lipschitz continuous, so Assumption 1 and Corollary 11 imply the global
linear convergence.

We move on to check the dual problems of support vector regression (SVR). Given value-

instance pairs (y;, zi), ¢ = 1,...,1, the dual form of Ll-loss m-insensitive SVR (Vapnik,
1995) is
1 v [0 -0 ml—y|'
min o {—Q Q]a+[m1+y] «a (14)

subject to 0< oy <C,i=1,...,2[,

where @ ; = zz—zj,V1 <t,j <, and m and C are given parameters. Similar to the case
of classification, we can also perform cyclic coordinate descent methods; see Ho and Lin
(2012, Section 3.2). Note that Assumption 2 must be used here because for any @, the
Hessian in (14) is only positive semi-definite rather than positive definite. In contrast, for
classification, if @) is positive definite, the objective function in (2) is strongly convex and
Assumption 1 can be applied. To represent (14) in the form of (1), let

FEi=z, i1=1,...,l and F;=—z;, i=101+4+1,...,2[.

Then g(w) = w'w/2 with w = Ea is a strongly convex function to w. Similar to the
situation in classification, if || E;|| = 0, then the optimal ¢ is bounded and can be obtained
at the first iteration. Without considering these variables, Corollary 11 implies the global
linear convergence.
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3.2 Inexact Cyclic Coordinate Descent Methods for Primal SVM Problems

In some situations the sub-problems (12) of cyclic coordinate descent methods cannot be
easily solved. For example, in Chang et al. (2008) to solve the primal form of L.2-loss SVM,

l
1
min f(w), where f(w)=-w'w+ C’Zmax(l —yiw' 2;,0)2, (15)

v 2 i=1

each sub-problem does not have a closed-form solution, and they approximately solve the
sub-problem until a sufficient decrease condition is satisfied. They have established the
global linear convergence, but we further show that their method can be included in our
framework.

To see that Chang et al. (2008)’s method is a feasible descent method, it is sufficient
to prove that (9)-(11) hold. First, we notice that their sufficient decrease condition for
updating each variable can be accumulated. Thus, for one cycle of updating all variables,
we have

fw") = fw™h) > yllw" — w2,
where v > 0 is a constant. Next, because (15) is unconstrained, if z; € R™, Vi, we can make
X =R"and " = w ™ —w" + Vf(w")

such that
W = [’ — Vf(w") + €'}

Finally, from Appendix A.3 of Chang et al. (2008),
le"]] < [lw" —w ™| + ||V f(w")]| < Bllw" —w"™,

where 8 > 0 is a constant. Therefore, all conditions (9)-(11) hold. Note that (15) is strongly
convex because of the w ' w term and V f(w) is Lipschitz continuous from (Lin et al., 2008,
Section 6.1), so Assumption 1 is satisfied. With Theorem 8, the method by Chang et al.
(2008) has global linear convergence.

3.3 Gauss-Seidel Methods for Solving Linear Systems

Gauss-Seidel (Seidel, 1874) is a classic iterative method to solve a linear system
Qo =b. (16)
Gauss-Seidel iterations take the following form.

i—1 +1 l
a1 bi — 2221 Qij()‘;T - Zj:iJrl Qija;j
a, = .
Qii
If @ is symmetric positive semi-definite and (16) has at least one solution, then the following
optimization problem

(17)

. 1 7 T
min -oa Qoa—b «o 18
acRl 2 Q ( )
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has the same solution set as (16). Further, a?“

in (17) is the solution of minimizing
(18) over «; while fixing a’{“, o ,a;"fll, A q,...,q). Therefore, Gauss-Seidel method is a
special case of coordinate descent methods.

Clearly, we need Q;; > 0,Vi so that (17) is well defined. This condition also implies that
Q = ETE, where E has no zero column. (19)

Otherwise, ||E;|| = 0 leads to Qi = 0 so the Q; > 0 assumption is violated. Note that
the ET E factorization exists because Q is symmetric positive semi-definite. Using (19) and
Lemma 10, Gauss-Seidel method is a feasible descent method. By Assumption 2 and our
main Theorem 8, we have the following convergence result.

Corollary 12 If
1. Q is symmetric positive semi-definite and Q;; > 0,Yi, and
2. The linear system (16) has at least a solution,

then the Gauss-Seidel method has global linear convergence.

This corollary covers some well-known results of the Gauss-Seidel method, which were
previously proved by other ways. For example, in most numerical linear algebra textbooks
(e.g., Golub and Van Loan, 1996), it is proved that if @ is strictly diagonally dominant
(ie., Qi > 2, |Qij|, Vi), then the Gauss-Seidel method converges linearly. We show in
Lemma 28 that a strictly diagonally dominant matrix is positive definite, so Corollary 12
immediately implies global linear convergence.

3.4 Quantity of the Convergence Rate

To demonstrate the relationship between problem parameters (e.g., number of instances
and features) and the convergence rate constants, we analyze the constants x and ¢ for
two problems. The first example is the exact cyclic coordinate descent method for the dual
problem (2) of L1-loss SVM. For simplicity, we assume || E;|| = 1, Vi, where E; denotes the
ith column of E. We have

og=1 (20)
by g(t) = t"t/2. Observe the following primal formulation of L1-loss SVM.

l

1
nili)n P(w), where P(w)= inw + C’Zmax(l — yiw ' 2;,0).
i=1

Let w* and a* be any optimal solution of the primal and the dual problems, respectively.
By KKT optimality condition, we have w* = Fa*. Consider a” = 0 as the initial feasible
solution. With the duality and the strictly decreasing property of {f(a’)},

fla’) = f(a®) < f(0) = f(a") = f(0) + P(w") < f(0) + P(0) <O+ Cl=M.  (21)

Besides,

1
§w*Tw* < P(w*) < P(0) < CI implies ||w*| = ||Ea*| < V2CI. (22)
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From (22),
V(@) < IB[|E«”] + 1] < VSl B Ea®| + 1] < V2CL+ V1. (23)
To conclude, by (7), (20), (21), (22), (23), and Vg(w*) = w*,

1+ 2[|Vg(w)|®

K =01+ p)( ; +4M) + 20|V f(a)|
< 02(1 4 p)((1 + 4C1) + 4C1) + 260(V2C1 + V1)
= 0(ph*Cl).

Now we examine the rate ¢ for linear convergence. From Theorem 8, we have

o=+ )04 st 1P

= (p+2;pﬂ)(1+m(;+pﬂ))

= 0(p*0*C1?),
where )

w=1, B=1+pVI, y=7 (24)
are from Lemma 10 and the assumption that ||E;|| = 1, Vi. To conclude, we have k =

O(pf*Cl) and ¢ = O(p®02C1?) for the exact cyclic coordinate descent method for the dual
problem of L1-loss SVM.

Next we consider the Gauss-Seidel method for solving linear systems in Section 3.3 by
assuming ||Q| = 1 and Q;; > 0, Vi, where ||Q|| denotes the spectral norm of ). Similar to
(20), we have o, = 1 by g(t) = t't/2. Further, p = 1 from

IVf(ea) = V()| < lQllar — cz = flar — .

Because the optimization problem is unconstrained, by (8) we have

1
w— 2P 92, (25)
99
where 0 is defined as
|E || =1.
6 = sup ¢ ||v]| | The corresponding rows of F to v’s , (26)
v

non-zero elements are linearly independent.

and F is from the factorization of @ in (19). Let v be the normalized eigen-vector of @
with the smallest non-zero eigen-value oy _nn,. We can observe that

v 1
The solution » in (26) is ———— and > = ———. 27
( ) v/ Omin-nnz Omin -nnz ( )
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From Lemma 10, w, 5, and « of the Gauss-Seidel method are the same as (24). Thus,
Theorem 8, (24), (25), and (27) give the convergence rate constant

44+ 2v1

Omin-nnz

p=0B+V)A+r2+VD)=0B+V)1+ ). (28)

With (24), (28), and Theorem 8, the Gauss-Seidel method on solving linear systems has
linear convergence with
Omin-nnz
fla™h) —f < (1~ )(f(e”) = f*), Vr=0.
4(6 + S\ﬂ + l) + (7 + 2\/Z)0'min—nnz)

We discuss some related results. A similar rate of linear convergence appears in Beck and
Tetruashvili (2013). They assumed f is omin strongly convex and the optimization problem
is unconstrained. By considering a block coordinate descent method with a conservative
rule of selecting the step size, they showed

flr ) = < (1= gl = 1), ¥rzo.

Our obtained rate is comparable, but is more general to cover singular Q.

4. Proofs of Global Error Bounds

In this section, we prove the global error bound (6) under Assumptions 1 or 2. The following
theorem proves the global error bound under Assumption 1.

Theorem 13 (Pang 1987, Theorem 3.1) Under Assumption 1,
Iz — || < 5|V f(2)], Ve,
where k= (14 p)/o.

Proof Because f(x) is strongly convex, X* has only one element &. From Lemmas 22 and
24, the result holds immediately. |

The rest of this section focuses on proving a global error bound under Assumption 2.
We start by sketching the proof. First, observe that the optimal set is a polyhedron by
Lemma 14. Then || — | is identical to the distance of x to the polyhedron. A known
technique to bound the distance between x and a polyhedron is Hoffman’s bound (Hoffman,
1952). Because the original work uses L1-norm, we provide in Lemma 15 a special version
of Li (1994) that uses L2-norm. With the feasibility of «, there is

|z —2z| < 9(‘4’ (bb;)) bET((z__Z))

9

where 60 (A, (bb;
and (b' (x — &))? in Lemmas 16 and 17 by values consisting of |V* f(z)|| and ||z — Z|.
Such bounds are obtained using properties of the optimization problem such as the strong
convexity of g(-). Finally, we obtain a quadratic inequality involving ||V f(z)|| and ||z —z||,
which eventually leads to a global error bound under Assumption 2.

We begin the formal proof by expressing the optimal set as a polyhedron.

)) is a constant related to A, E, and b. Subsequently, we bound || E(z—&)]|?
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Lemma 14 (Optimal Condition) Under Assumption 2, there are unique t* and s* such
that Va* € X*,
Ex*=t*, b'a* =s*, and Az* <d. (29)

Note that A and d are the constants for generating the feasible set X = {x | Az < d}.
Further,

x* satisfies (29) & x* € X™. (30)

Specially, when b =0 or X =R}
Ex* =t", Ax" <d s z" € X" (31)

Proof First, we prove (29). The proof is similar to Lemma 3.1 in Luo and Tseng (1992a).
For any 7, x5 € X*, from the convexity of f(x),

f(2] +23)/2) = (f(2]) + f(23))/2.
By the definition of f(x) in Assumption 2, we have
9((Bai + Ex3)/2) + b (] + @3)/2 = (9(Bx) + g(Ex) + b (af +23))/2.

Cancel b' (z*+x3)/2 from both sides. By the strong convexity of g(t), we have Ex* = Fx}.
Thus, t* = Ez* is unique. Similarly, because f(x}) = f(x3),

g(t*) + szc’lk =g(t*") + bTa:;

Therefore, s* = b'a* is unique, and Az* < d, V&* € X* holds naturally by X* C X.
Further,
fl®*)=g(t")+s", Va*e X" (32)

The result in (29) immediately implies the (<) direction of (30). For the (=) direction,
for any x* satisfying
Exz* =t b'z*=s* Az*<d,

we have f(x*) = g(t*) + s*. From (32), * is an optimal solution.

Now we examine the special cases. If b= 0, we have b' @ = 0, V& € X. Therefore, (30)
is reduced to (31). On the other hand, if ¥ = R/, the optimization problem is unconstrained.
Thus,

x* is optimal & Vf(z*) = 0= E"Vg(t*) + b.

As a result, Fx* = t* is a necessary and sufficient optimality condition. |
Because the optimal set is a polyhedron, we will apply the following Hoffman’s bound

in Lemma 18 to upper-bound the distance to the optimal set by the violation of the poly-
hedron’s linear inequalities.

5. When X = R, we can take zero A and d for a trivial linear inequality.
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Lemma 15 (Hoffman’s Bound) Let P be the non-negative orthant and consider a non-
empty polyhedron
{z* | Ax* < d, Ex* =t}.

For any x, there is a feasible point ©* such that

Az —d|};

" [
— <
o -l < 004,542~ 9. (33)
where
|ATu+ ETo|| =1, u>0.
0(A, E) = sup H:}LH The corresponding rows of A, E to w, v’s . (34)

u,v . .
non-zero elements are linearly independent.

Note that 6(A, E) is independent of x.

The proof of the lemma is given in Appendix B. Before applying Hoffman’s bound, we need
some technical lemmas to bound ||Ex — *||? and (b'x — s*)2, which will appear on the
right-hand side of Hoffman’s bound for the polyhedron of the optimal set.

Lemma 16 Under Assumption 2, we have constants p and o4 such that

" L+p _
|Bx — t||* < THV*f(w)HHw —z||, Ve

g

Proof By Fx = t* from Lemma 14, the strong convexity of g(t), and the definition of
f(x) in (5), there exists o4 such that

ogl| Bz — t*||* < (Vg(Bx) — Vg(Ez))' (Ez — Ex) = (Vf(z) - V(@) (z - ).
By Lemma 21, the above inequality becomes
gl Bx —t*|* < 1+ p) IV f(z) - V*F f(@)|]|z — 2|,

where p is the constant for the Lipschitz continuity of V f. Because & is an optimal solution,
V7T f(z) = 0 by Lemma 24. Thus, the result holds. [ |

Next we bound (b — s*)2.
Lemma 17 Under Assumption 2 and the condition
flx) - f(®) <M, (35)
there exists a constant p > 0 such that

bz — s%)2

<AQ+ M|V f()|llx — 2| + 4 V@)V f(@)]° + 2] Vg ]| Bx — ]2,
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Proof By b'z = s* and FZ = t* from Lemma 14 and the definition of f(z), we have
b'x—s"=Vf@) (x—z)— Vgt (Ex —t).
Square both sides of the equality. Then by (a — b)? < 2a% + 2b%,
(67— 5" < 2AVH@) (@ — 7)) + 2AVg(t") (Bz — )2, (36)

Consider the right-hand side in (36). The second term can be bounded by 2(|Vg(t*)|?|| Ex —
t*||?, and the first term is bounded using the inequalities

Vi) (x—z) < Vi) (z-2)
<SVf(@) (x—z+ V@) -V f(x))
<VHf(x) (@ -2+ Vf(x)— V(@) + Vi)
<1+ p) VT @)@ — 2|+ V*f(x) V(@) (37)

The first inequality is by convexity, the second is by Lemma 19,° the third is by ||Vt f(z)||? >
0, and the last is by the Lipschitz continuity of V f. By the optimality of &,

Vi@ (- V@] -o+o-a)>0. (33)
Thus, (38), the convexity of f(-), and (35) imply that

Vi@) ' Vif(z) <Vf@) (x-2z) < fz)— f(@) <M. (39)

Let
a=Vi@) (x—z), u=(1+p) |V f(@)lz—-2z|, v=Vi@) V().

Then we have
a <u-+wv from (37), a > v >0 from (39), and u > 0.

Therefore, a®? < au + av < au + v(u + v) < 2au + 2v?, and

)
V@) (@ —-2)1+ )V f(@)llz - 2| +2(V (@) V()?
L+ p)M|IVE f ()] [l — 2| + 2V (@)1 VF f ()],

The last inequality is from (39) and Cauchy’s inequality. Together with (36) the result
immediately holds. |

Combining the previous two lemmas, we are now ready to prove the global error bound.

Theorem 18 (Error Bound) Under Assumption 2 and any M > 0, we have

|lx —z|| < &||VTf(x)|, VYo withxc X and f(x)— f* < M,

6. Note that we use ([x — Vf(z)]} —x + Vf(x)) ([x — Vf(@)]L —z+2—2) < 0 and V' f(z) =
z— [z — V(@)L
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where )
142 Vg(t)|l

9y
and 0 =0 (A, (bET )) is defined in Lemma 15. Specially, when b= 0 or X = R,

Kk =0%(1+ p)( +4M) + 20|V f ()],

21 +p
Og '

k=0(AFE)
Proof Consider the following polyhedron of the optimal solutions,
X* ={z* | Ex* =t*, b a* = s*, Ax* < d},

where t* and s* are values described in Lemma 14. We can then apply Lemma 15 to have
for any x, there exists * € A* such that

Az — dl}
o~ <6(A ()| Bo—t |, (40)
b'x — s*

where 6 (A, (bET )), independent of @, is defined in Lemma 15. Denote 6 (A, (bET )) as 0 for
simplicity. By considering only feasible & and using the definition of &, (40) implies

||l — 53H2 < |lxe - cc*H2 < 92(\|Ew — t*H2 + (bTaz — 3*)2), Vo € X.

With Lemmas 16 and 17, if f(x) — f* < M, we can bound ||[Ex — t*||?> and (b'x — s*)? to
obtain

P
<2+ (VI 9 @)l - ol + 421 f@ I @
g
Let
0=z, c=20|Vi@)||V* i), and
b= 621+ ) (LT HAVIEON L 19 (). )
g
Then we can rewrite (41) as
a?<ba+c? with a>0,b>0, ¢>0. (43)
We claim that
a<b+c. (44)

Otherwise, a > b 4 ¢ implies that
2 2
a®>a(b+c) > ba+c*,

a violation to (43). By (42) and (44), the proof is complete.
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Now we examine the special case of b =0 or X = R!. From (31) in Lemma 14, we can
apply Lemma 15 to have the existence of (A, E') such that V& € X, there is * € X™* so
that

|z —z|| < [lo — 2" < 0(A, E)||[Ex — 7.

With Lemma 16, we have

1+ ,
|l — a|* < 0(A, B)*— — LIt @)z - 2.
g

After canceling ||z — || from both sides, the proof is complete. [ |

5. Proof of Theorem 8

The proof is modified from Theorem 3.1 of Luo and Tseng (1993). They applied a local
error bound to obtain asymptotic local linear convergence, while ours applies a global error
bound to have linear convergence from the first iteration.

By (9) and Lemma 20, we have

" — [z" — w. Vf(2")]3
<l — 2™ + 2"~ 2" — w V()R
= [l&" — & + 2" — o, V") + e} — [2" —w YV f(2)]3l
< le” — 2|+ [le"]). (45)
By Lemma 26, the left-hand side of above inequality could be bounded below by
wllz” — 2" = V(@) < llz” — [2" - 0, V()]
where w = min(1, inf, w,). With Theorems 13 or 18, (45), and (10), we have
T [t r\1+
|27 — [ —wr V@)l _ 145
w

w

lz" — "] < Kl[VTf (@) < s le” — ™|, (46)

where &" is the projection of " to the optimal set.
z" = [z"]3..
Next, we bound f(x"*1) — f(2"). Lemma 19 and the definition of " ! imply that
(" — 2t 4 er)T (wr—i-l —z") > w V@) (@ — 7). (47)

From the convexity of f(x),

f(mr-I—l) ( ) ( r+1)T($'r+1 _ jr)
= (Vf(@™) = Vi) (@ —a") + Vf(@) (@ -2
<V f(@) = V|l - 2| + i(m’ 2t e (@ —a)  (48)
< (Pt =@+ Lot = a1 4 2] ) o+ - 27 (19)
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Inequality (48) is from (47), and (49) follows from the Lipschitz continuity of Vf(x). In
addition,
la"*t = &7 < fla" — 2 + [la” — 2. (50)

From (46), (10), and (50), each term in (49) is bounded by ||z" — 2" *!||. Therefore,

F@) - £(@) < ola ~ 22 where 6= (p D)4 510

).
From (11) and the above inequality,

fl@) - f@") < q/ﬁ,y

Because f(x) is convex, f(&"), Vr correspond to the same unique optimal function value.
Thus the global linear convergence is established.

(f(=") — f(@")), Vr.

6. Discussions and Conclusions

For future research, we plan to extend the analysis to other types of algorithms and problems
(e.g., L1-regularized problems). Further, the global error bound will be useful in analyzing
stopping criteria and the effect of parameter changes on the running time of machine learning
problems (for example, the change of parameter C' in SVM).

In conclusion, by focusing on a convex but non-strongly convex problem (1), we estab-
lished a global error bound. We then proved the global linear convergence on a wide range
of deterministic algorithms, including cyclic coordinate descent methods for dual SVM and
SVR. Consequently, the time complexity of these algorithms is O(log(1/€)).

Acknowledgments

This work was supported in part by the National Science Council of Taiwan via the grant
101-2221-E-002-199-MY3. The authors thank associate editor and anonymous reviewers for
valuable comments.

Appendix A. Properties of Projected Gradient

We present some properties of projected gradient used in the proofs. Most of them are
known in the literature, but we list them here for completeness. Throughout this section,
we assume X is a non-empty, closed, and convex set.

First, we present a fundamental result used in the paper: the projection theorem to a
non-empty closed convex set X. The convex projection in Definition 3 is equivalent to the
following inequality on the right-hand side of (51). That is, if the inequality holds for any
z, this z will be the result of the convex projection and vise versa.

Lemma 19 (Projection Theorem)

z=[zlt e (z—z) (2 —y) <0, Yy € X. (51)
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Proof The proof is modified from Hiriart-Urruty and Lemaréchal (2001, Theorem 3.1.1).
From the convexity of X,

ay+(l—a)ze X, VYye X, Vae|0,1].
By Definition 3,
|z —z||*> < |z — (ay + (1 —)2)||?, Vy €&, Vac]|01].

The inequality can be written as
1
0<az-2)"(y - 2) + 502y - 2|

Divide « from both sides, and let e | 0. Then we have (=).
For (<), if z = @, then 0 = ||z — | < ||y — || holds for all y € X. Thus, z = [z]}. If
z # x, then for any y € X,

02 (z—a) (z—y) =z -z +(y —2) (z - =2)
> |lz - 2| ~ [l — ylllz - =].
Divide || — z|| > 0 from both sides. Because the inequality is valid for all y, (<) holds. ®
The following lemma shows that the projection operator is Lipschitz continuous.

Lemma 20 (Lipschitz Continuity of Convex Projection)

]z = Wlxll < llz =y, ve,y.

Proof The proof is modified from Hiriart-Urruty and Lemaréchal (2001) Proposition 3.1.3.
Let u = [z]} and v = [y]%. If u = v, then the result holds immediately. If not, with
Lemma 19 we have

(u—x) (u—v)<O0, (52)
(v—y) (v-u)<0 (53)
Summing (52) and (53), we have
(u—v) (u—x—v+y) <O0.
We could rewrite it as
lu —|* < (u—v)(z —y) < |u—ov|lz -yl
Cancel ||u — v|| > 0 at both sides. Then the result holds. [ |

Lemma 21 Assume V f(x) is p Lipschitz continuous. Then Va,y € X,

(V@) = Vi) (@ —y) <A+ p)IVT @) = VI )llz -yl
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Proof For simplification, we will use V, = V f(x) and V} = V™ f(x) in this proof.
From Lemma 19,

([# = Valy =2+ Va) (2 = Val} — [y — Vy]}) 0.
With the definition of VT f(x), this inequality can be rewritten as
(Vo= Vi) (= Vi —y+Vy) <0

Further, we have

Val(z—y) S VL (@—y)+ Ve (Vi - Vy) - Vi (V- Vy). (54)
Similarly,

vy (y—2) <V (y—2) + Y, (V) - V) -V (V- V). (55)
Summing (54) and (55) leads to

(vm - vy)T(w - y)
< (VE=VH T (@—y)+ (Ve — Vy) (VL = V) = IVE = V]I
< (VE=Vi) (@ —y)+ (Ve — Vy)  (VE - V).

With V f(x) being p Lipschitz continuous, we have

(Ve = Vy) (@ —y)< V2 = Vyll(lz = yll + Ve — Vyl)

(1+ p)W* Vylllz =yl

IN I/\

The next two lemmas correspond to the strong convexity and Lipschitz continuity of pro-
jected gradient.

Lemma 22 If f(x) is o strongly conver and V f(x) is p Lipschitz continuous,

Tl =yl < IV f@) - V)l ey e X

Proof With the strong convexity and Lemma 21,
ol —yl? < (Vo = Vy) (& —y) < 1+ p)IVE = Vylllz -yl

If  # y, we have the result after canceling || — y|| from both sides. For the situation of
x = vy, the result obviously holds. |

Lemma 23 (Lipschitz Continuity of Projected Gradient) IfV f(x) is p Lipschitz con-
tinuous, then

IV fz) =Vl < 2+ plle —yl, Va,yei.
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Proof By the definition of projected gradient and Lemma 20,

IV f(x) = VI FlI< |2 —yll + |llz — VI(@)} - [y — V)Ll
<lz-yl+lz-yl+[Vix)-Viyl
<2+plz—-yl

The last inequality follows from the p Lipschitz continuity of V f(x). [ |

A useful property of projected gradient is to test whether a solution is optimal; see the
following lemma.

Lemma 24 For any x € X,
x is optimal for problem (4) < V7 f(xz) = 0.
Proof From Lemma 19 and the definition of V* f(x),
Vif(@) =06z =[x Vi)
(@ (z-Vf(@) (@-y) <0, VyeX

Vi) (y-—x) >0, VyekX

& x is optimal.

The last relation follows from the optimality condition of convex programming problems.
[ |

The next two lemmas discuss properties of projected gradient defined with different scalars
on the negative gradient direction.

Lemma 25 Vo € X,
|z — [z — aV f(z)]%]|| is monotonically increasing for all a > 0.”

Proof Let

u=x—aVf(x), (56)
v=x— aVf(x), (57)

where 0 < a1 < ag. By Lemma 19, we have

([l —w) " ([u]} — [013) <0, (58)
(o3 =) " (]} — [u]}) <0. (59)

Let z = [u]} — [v]}. Expanding the definition of u and v leads to
aVix) z<(x—[u}) ' z<(x—E) 2 < Vi)' z, (60)

7. The proof is modified from http://math.stackexchange.com/questions/201168/
projection-onto-closed-convex-set .
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where the first and the last inequalities are from (58) and (59), respectively, and the second
inequality is from ([u]}—[v]5) T2z =272 > 0. With0 < oy < ag, (60) implies Vf(z) Tz > 0
and

(x — [ul}) =z > 0.

Using this inequality,
lz — I3 ]* = lz — [ul} + 2 = ||z - [u3]* +2(z — [u]}) "z + ||2]* > [z — [u]}]*.
Therefore, from (56)-(57),
lz — [# — 2V (@)]3]| > |z — [ — ca V()3

With 0 < a1 < ag, the proof is complete. |

Lemma 26 Vo € X and o > 0, if

u=x—[x —Vf(a:)]},
v=x— [ — an(a:)]},

then
min(1, a)||ul| < [[v]| < max(1, a)||ul].

Proof From Lemma 1 in Gafni and Bertsekas (1984), ||z — [z — oV f(z)]%|/a is mono-
tonically decreasing for all a > 0. Thus,

allz —[&— V@)L < o — [z - aVi@)]§], Vo<1,
From Lemma 25, we have
o - [2 - Vf@)}] < 2~ [ — aV (@)}, Va1

Therefore, min(1, )||u|| < ||v]|. A similar proof applies to ||v| < max(1, «)|u|. [ |

Appendix B. Proof of Hoffman’s Bound (Lemma 15)

The following proof is a special case of Mangasarian and Shiau (1987) and Li (1994), which
bounds the distance of a point to the polyhedron by the violation of inequalities. We begin
with an elementary theorem in convex analysis.

Lemma 27 (Carathéodory’s Theorem) For a non-empty polyhedron
Alu+E'v=y, u>0, (61)
there is a feasible point (u,v) such that
The corresponding rows of A, E to u, v’s non-zero elements are linearly independent.

(62)
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Proof Let (u,v) be a point in the polyhedron, and therefore E'v = y — ATwu. If the
corresponding rows of E to non-zero elements of v are not linearly independent, we can
modify v so that FTv remains the same and E’s rows corresponding to v’s non-zero elements
are linearly independent. Thus, without loss of generality, we assume that E is full row-
rank. Denote a;-r as the ith row of A and ejT as the jth row of F. If the corresponding rows
of A, F to non-zero elements of u, v are not linearly independent, there exists (X, &) such
that

,€)’s non-zero elements correspond to the non-zero elements of (w,wv). That is,
)\l:OIfUZZO, Vi, and fj :Oif’Uj :0, Vj

3. (A, &) satisfies

Z Aia; + Z §jej = 0.

i u; >0, A;#0 7t ”Uj?éo, §j750

Besides, the set {i | u; > 0, A\; # 0} is not empty because the rows of E are linearly
independent. Otherwise, a contradiction occurs from A = 0, £ # 0, and

Z &ej =0.

J:v;#0, §57#0

By choosing
s = min — >0,
i u; >0, \;#0 )\’L

we have
AT(u—sA)+E"(v—s&) =A"u+E'v=y and u—s\>0.

This means that (u — s\, v — s€) is also a member of the polyhedron (61) and has less non-
zero elements than (u,v). The process could be repeatedly applied until there is a point
satisfying the linearly independent condition (62). Thus, if the polyhedron is not empty, we
can always find a (u,v) such that its non-zero elements correspond to linearly independent
rows in (A, E). [ |

Now we prove Hoffman’s bound (Lemma 15) by Caratheodory’s theorem and the KKT
optimality condition of a convex projection problem.
Proof If x is in the polyhedron, we can take * = x and the inequality (33) holds naturally
for every positive #. Now if & does not belong to the polyhedron, consider the following
convex projection problem

min ||p — x|/, subject to Ap <d, Ep=1t. (63)
P

The polyhedron is assumed to be non-empty, so a unique optimal solution «* of this problem
exists. Because x is not in the polyhedron, we have x* # @. Then by the KKT optimality
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condition, a unique optimal x* for (63) happens only if there are u* and v* such that

*

m*—az Atu*— ETv*, u* >0
|z* — x|
Ax* <d, Ezxz*=t, (A" —d); =0, Vi=1,...,1

Denote
I={i|(Az* — d); = 0}.

Because uf = 0,Vi ¢ I, (u},v*) is a feasible point of the following polyhedron.

r* —x

—Aju;—E"v ur >0, (64)

a2l

where Ay is a sub-matrix of A’s rows corresponding to /. Then the polyhedron in (64) is
non-empty. From Lemma 27, there exists a feasible (@, ©) such that

The corresponding rows of Ay, F to non-zero @y, ¥ are linearly independent. (65)

Expand @7 to a vector u so that
w; =0, Vi¢ 1. (66)

Then (65) becomes
The corresponding rows of A, F to non-zero u, v are linearly independent. (67)
By multiplying (z* — )" on the first equation of (64), we have
lz* —z| =0 Az —x*)+ 0" E(x —x*) =4 (Ax —d) + o' (Ex —1t). (68)
The last equality is from Ex* =t and (66). Further, by the non-negativity of u,
W' (Ax —d) < 4' [Az — d]f. (69)

From (68) and (69),

|z* — x| <a'[Ax —d]p + o (Ex —t) <

—~

70)

o
v

[Ax — d
Ea:—t

Next we bound H u H With (64) and (67), we have
|ATa+E"9| =1 and ||| < 0(A, E),

where 0(A, E) is defined in (34). Together with (70), the proof is complete. [ |

Note that this version of Hoffman’s bound is not the sharpest one. For a more complex
but tighter bound, please refer to Li (1994).
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Appendix C. Strictly Diagonally Dominance and Positive Definiteness
Lemma 28 If a symmetric matriz @ is strictly diagonally dominant

J#i
then it is positive definite. The reverse is not true.

Proof The result is modified from Rennie (2005). Because @ is symmetric,
Q = RDR", (72)

where R is an orthogonal matrix containing ()’s eigen-vectors as its columns and D is a
real-valued diagonal matrix containing @’s eigen-values. Let u be any eigen-vector of Q.
We have u # 0; otherwise, from (72), the corresponding @Q);; = 0 and (71) is violated. Let A
be the eigen-value such that Au = Qu. Choose i = arg max; |u;|. Because u # 0, we have
either u; > 0 or u; < 0. If u; > 0,

Qijuj > —|Qului, Vi and Mu; = > Qiju; > (Qii — > Qi) ui. (73)
J J#
If u; <0,
Qijuj < —|Qijlus, Vi and Mu; =Y~ Qijuy < (Qii — Y |Qij])ui. (74)
J J#

By (73) and (74), we have A > Q;; — Z#i |Qij] > 0. Therefore, @ is positive definite.
On the other hand, the following matrix

2 3
Q:<3 10>

is positive definite but not diagonally dominant. Thus, the reverse is not true. |
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Abstract

Fitting high-dimensional data involves a delicate tradeoff between faithful representation
and the use of sparse models. Too often, sparsity assumptions on the fitted model are
too restrictive to provide a faithful representation of the observed data. In this paper,
we present a novel framework incorporating sparsity in different domains. We decompose
the observed covariance matrix into a sparse Gaussian Markov model (with a sparse pre-
cision matrix) and a sparse independence model (with a sparse covariance matrix). Our
framework incorporates sparse covariance and sparse precision estimation as special cases
and thus introduces a richer class of high-dimensional models. We characterize sufficient
conditions for identifiability of the two models, viz., Markov and independence models.
We propose an efficient decomposition method based on a modification of the popular
¢1-penalized maximum-likelihood estimator (¢;-MLE). We establish that our estimator is
consistent in both the domains, i.e., it successfully recovers the supports of both Markov
and independence models, when the number of samples n scales as n = Q(d?log p), where
p is the number of variables and d is the maximum node degree in the Markov model.
Our experiments validate these results and also demonstrate that our models have better
inference accuracy under simple algorithms such as loopy belief propagation.

Keywords: high-dimensional covariance estimation, sparse graphical model selection,
sparse covariance models, sparsistency, convex optimization

1. Introduction

Covariance estimation is a classical problem in multi-variate statistics. The idea that second-
order statistics capture important and relevant relationships between a given set of variables
is natural. Finding the sample covariance matrix based on observed data is straightforward
and widely used (Anderson, 1984). However, the sample covariance matrix is ill-behaved
in high-dimensions, where the number of dimensions p is typically much larger than the
number of available samples n (p > n). Here, the problem of covariance estimation is
ill-posed since the number of unknown parameters is larger than the number of available
samples, and the sample covariance matrix becomes singular in this regime.

Various solutions have been proposed for high-dimensional covariance estimation. Intu-
itively, by restricting the class of covariance models to those with a limited number of free
parameters, we can successfully estimate the models in high dimensions. A natural mech-

(©2014 Majid Janzamin and Animashree Anandkumar.



JANZAMIN AND ANANDKUMAR

anism to achieve this is to impose a sparsity constraint on the covariance matrix. In other
words, it is presumed that there are only a few (off-diagonal) non-zero entries in the co-
variance matrix, which implies that the variables under consideration approximately satisfy
marginal independence, corresponding to the zero pattern of the covariance matrix (Kauer-
mann, 1996) (and we refer to such models as independence models). Many works have
studied this setting and have provided guarantees for high-dimensional estimation through
simple thresholding of the sample covariance matrix and other related schemes. See Sec-
tion 1.2. In many settings, however, marginal independence is too restrictive and does not
hold. For instance, consider the dependence between the monthly stock returns of various
companies listed on the S&P 100 index. It is quite possible that a wide range of complex
(and unobserved) factors such as the economic climate, interest rates etc., affect the returns
of all the companies. Thus, it is not realistic to model the stock returns of various companies
through a sparse covariance model.

A popular alternative sparse model, based on conditional independence relationships,
has gained widespread acceptance in recent years (Lauritzen, 1996). In this case, sparsity
is imposed not on the covariance matrix, but on the inverse covariance or the precision
matrix. It can be shown that the zero pattern of the precision matrix corresponds to a set
of conditional-independence relationships and such models are referred to as graphical or
Markov models. Going back to the stock market example, a first-order approximation is
! as conditionally independent given the S&P
100 index variable, which captures the overall trends of the stock returns, and thus removes
much of the dependence between the companies in different divisions. High-dimensional
estimation in models with sparse precision matrices has been widely studied, and guarantees
for estimation have been provided under a set of sufficient conditions. See Section 1.2 for
related works. However, sparse Markov models may not be always sufficient to capture all
the statistical relationships among variables. Going back to the stock market example, the
approximation of using the S&P index node to capture the dependence between companies
of different divisions may not be enough. For instance, there can still be a large residual
dependence between the companies in manufacturing and mining divisions, which cannot
be accounted by the S&P index node.

In this paper, we consider decomposition of the observed data into two domains, viz.,
Markov and independence domains. We posit that the observed data results in a sparse
graphical model under structured perturbations in the form of an independence model, see
Figure 1. This framework encapsulates Markov and independence models, and incorporates
a richer class of models which can faithfully capture complex relationships, such as in the
stock market example above, and yet retain parsimonious representation. The idea that
a combination of Markov and independence models can provide good model-fitting is not
by itself new and perhaps the work which is closest to ours is the work by Choi et al.
(2010), where multi-resolution models with a known hierarchy of variables is considered.
Their model consists of a combination of a sparse precision matrix, which captures the
conditional independence across scales, and a sparse covariance matrix, which captures the
residual in-scale correlations. Heuristics for learning and inference are provided in Choi
et al. (2010). However, the approach in Choi et al. (2010) has several deficiencies, including

to model the companies in different divisions

1. See http://www.osha.gov/pls/imis/sic_manual.html for classifications of the companies.
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O E*R J]x\}fl

Figure 1: Representation of the covariance decomposition problem, where perturbing the observed
covariance matrix with a structured noise model results in a sparse graphical model. The
case where the noise model has sparse marginal dependencies is considered.

lack of theoretical guarantees, assumption of a known sparsity support for the Markov
model, use of expectation maximization (EM) which has no guarantees of reaching the
global optimum, non-identifiability due to the presence of both latent variables and residual
correlations, and so on. In contrast, we develop efficient convex optimization methods for
decomposition, which are easily implementable and also provide theoretical guarantees for
successful recovery. In summary, in this paper, we provide an in-depth study of efficient
methods and guarantees for joint estimation of a combination of Markov and independence
models.

Our model reduces to sparse covariance and sparse inverse covariance estimation for
certain choices of tuning parameter. Therefore, we incorporate a range of models from
sparse covariance to sparse inverse covariance.

1.1 Summary of Contributions

We consider joint estimation of Markov and independence models, given observed data in
a high dimensional setting. Our contributions in this paper are three fold. First, we derive
a set of sufficient restrictions, under which there is a unique decomposition into the two
domains, viz., the Markov and the independence domains, thereby leading to an identifiable
model. Second, we propose novel and efficient estimators for obtaining the decomposition,
under both exact and sample statistics. Third, we provide strong theoretical guarantees
for high-dimensional learning, both in terms of norm guarantees and sparsistency in each
domain, viz., the Markov and the independence domain.

Our learning method is based on convex optimization. We adapt the popular #;-
penalized maximum likelihood estimator (MLE), proposed originally for sparse Markov
model selection and has efficient implementation in the form of graphical lasso (Friedman
et al., 2007). This method involves an ¢; penalty on the precision matrix, which is a convex
relaxation of the £y penalty, in order to encourage sparsity in the precision matrix. The
Lagrangian dual of this program is a mazimum entropy solution which approximately fits
the given sample covariance matrix. We modify this program to our setting as follows: we
incorporate an additional ¢; penalty term involving the residual covariance matrix (cor-
responding to the independence model) in the max-entropy program. This term can be
viewed as encouraging sparsity in the independence domain, while fitting a maximum en-
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tropy Markov model to the rest of the sample correlations. We characterize the optimal
solution of the above program, and also provide intuitions on the class of Markov and in-
dependence model combinations which can be incorporated under this framework. As a
byproduct of this analysis, we obtain a set of conditions for identifiability of the two model
components.

We provide strong theoretical guarantees for our proposed method under a set of suffi-
cient conditions. We establish that it is possible to obtain sparsistency and norm guarantees
in both the Markov and the independence domains. We establish that the number of sam-
ples n is required to scale as n = Q(d?logp) for consistency, where p is the number of
variables, and d is the maximum degree in the Markov graph. The set of sufficient condi-
tions for successful recovery are based on the so-called notion of mutual incoherence, which
controls the dependence between different sets of variables (Ravikumar et al., 2011). In
Section 7, the synthetic experiments are run on a model which does not necessarily satisfy
sufficient mutual incoherence conditions; But we observe that our method has good nu-
merical estimation performance even when the above incoherence conditions are not fully
satisfied.

We establish that our estimation reduces to sparse covariance and sparse inverse co-
variance estimation for certain choices of tuning parameter. On one end, it reduces to the
{1 penalized MLE for sparse precision estimation (Ravikumar et al., 2011). On the other
extreme, it reduces to (soft) threshold estimator for sparse covariance estimator, on lines
of Bickel and Levina (2008). Moreover, our conditions for successful recovery are similar
to those previously characterized for consistent estimation of sparse covariance/precision
matrix.

Our experiments validate our theoretical results on the sample complexity and demon-
strate that our method is able to learn a richer class of models, compared to sparse graphical
model selection, while requiring similar number of samples. In particular, our method is
able to provide better estimates for the overall precision matrix, which is dense in general,
while the performance of ¢1-based optimization is worse since it attempts to approximate
the dense matrix via a sparse estimate. Additionally, we demonstrate that our estimated
models have better accuracy under simple distributed inference algorithms such as loopy
belief propagation (LBP). This is because the Markov components of the estimated models
tend to be more walk summable (Malioutov et al., 2006), since some of the correlations
can be “transferred” to the residual matrix. Thus, in addition to learning a richer model
class, incorporating sparsity in both covariance and precision domains, we also learn mod-
els amenable to efficient inference. We also apply our method to real data sets. We see
the resulting models are fairly interpretable for the real data sets. For instance, for stock
returns data set, we observe in both Markov and residual graphs that there exist edges
among companies in the same division or industry, e.g., in the residual graph, nodes “HD”,
“WMT”, “TGT” and “MCD”, all belonging to division Retail Trade form a partition. Also
for foreign exchange rate data set, we observe that the statistical dependencies of foreign
exchange rates are correlated with the geographical locations of countries, e.g., it is observed
in the learned model that the exchange rates of Asian countries are more correlated.
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1.2 Related Works

There have been numerous works on high-dimensional covariance selection and estimation,
and we describe them below. In all the settings below based on sparsity of the covariance
matrix in some basis, the notion of consistent estimation of the sparse support is known as
sparsistency.

Sparse Graphical Models: Estimation of covariance matrices by exploiting the sparsity
pattern in the inverse covariance or the precision matrix has a long history. The sparsity
pattern of the precision matrix corresponds to a Markov graph of a graphical model which
characterizes the set of conditional independence relationships between the variables. Chow
and Liu established that the maximum likelihood estimate (MLE) for tree graphical models
reduces to a maximum weighted spanning tree algorithm where the edge weights correspond
to empirical mutual information. The seminal work by Dempster (1972) on covariance
selection over chordal graphs analyzed the convex program corresponding to the Gaussian
MLE and its dual, when the graph structure is known.

In the high-dimensional regime, penalized likelihood methods have been used in a
number of works to achieve parsimony in covariance selection. Penalized MLE based
on {; penalty has been used in Huang et al. (2006); Meinshausen and Bithlmann (2006);
d’Aspremont et al. (2008); Banerjee et al. (2008); Rothman et al. (2008); Ravikumar et al.
(2011), among numerous other works, where sparsistency and norm guarantees for recovery
in high dimensions are provided. Graphical lasso (Friedman et al., 2007) is an efficient and
popular implementation for the ¢;-MLE. There have also been recent extensions to group
sparsity structures(Yuan and Lin, 2006; Zhao et al., 2009), scenarios with missing sam-
ples (Loh and Wainwright, 2011) , semi-parametric settings based on non-paranormals (Liu
et al., 2009), and to the non-parametric setting (Kolar et al., 2010). In addition to the
convex methods, there have also been a number of non-convex methods for Gaussian graph-
ical model selection (Spirtes and Meek, 1995; Kalisch and Bithlmann, 2007; Zhang, 2009;
Anandkumar et al., 2011; Zhang, 2008). While we base much of our consistency analysis
on Ravikumar et al. (2011), we also need to develop novel techniques to handle the delicate
issue of errors in the two domains, viz., Markov and independence domains.

Sparse Covariance Matrices: In contrast to the above formulation, alternatively we
can impose sparsity on the covariance matrix. Note that the zero pattern in the covari-
ance matrix corresponds to marginal independence relationships (Cox and Wermuth, 1993;
Kauermann, 1996; Banerjee and Richardson, 2003). High-dimensional estimation of sparse
covariance models has been extensively studied in El Karoui (2008); Bickel and Levina
(2008); Cai et al. (2010), among others. Wagaman and Levina (2009) consider block-
diagonal and banded covariance matrices and propose an Isomap method for discovering
meaningful orderings of variables. The work in Lam and Fan (2009) provides unified results
for sparsistency under different sparsity assumptions, viz., sparsity in precision matrices,
covariance matrices and models with sparse Cholesky decomposition.

The above works provide strong guarantees for covariance selection and estimation under
various sparsity assumptions. However, they cannot handle matrices which are combinations
of different sparse representations, but are otherwise dense when restricted to any single
representation.
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Decomposable Regularizers: Recent works have considered model decomposition based
on observed samples into desired parts through convex relaxation approaches. Typically,
each part is represented as an algebraic variety, which are based on semi-algebraic sets, and
conditions for recovery of each component are characterized. For instance, decomposition
of the inverse covariance matrix into sparse and low-rank varieties is considered in Chan-
drasekaran et al. (2009, 2010a); Candes et al. (2009) and is relevant for latent Gaussian
graphical model. The work in Silva et al. (2011) considers finding a sparse-approximation
using a small number of positive semi-definite (PSD) matrices, where the “basis” or the
set of PSD matrices is specified a priori. In Negahban et al. (2010), a unified framework
is provided for high-dimensional analysis of the so-called M-estimators, which optimize the
sum of a convex loss function with decomposable regularizers. A general framework for de-
composition into a specified set of algebraic varieties was studied in Chandrasekaran et al.
(2010Db).

The above formulations, however, cannot incorporate our scenario, which consists of
a combination of sparse Markov and independence graphs. This is because, although the
constraints on the inverse covariance matrix (Markov graph) and the covariance matrix
(independence graph) can each be specified in a straightforward manner, their combined
constraints on the resulting covariance matrix is not easy to incorporate into a learning
method. In particular, we do not have a decomposable regularizer for this setting.

Multi- Resolution Models: Perhaps the work which is closest to ours is the work by Choi
et al. (2010), where multi-resolution models with a known hierarchy of variables is consid-
ered. The model consists of a combination of a sparse precision matrix, which captures the
conditional independence across scales, and a sparse covariance matrix, which captures the
residual in-scale correlations. Heuristics for learning and inference are provided. However,
the work has three main deficiencies: the sparsity support is assumed to be known, the
proposed heuristics have no theoretical guarantees for success and the models considered
are in general not identifiable, due to the presence of both latent variables and residual
correlations.

2. Preliminaries and Problem Statement

Notation: For any vector v € RP and a real number a € [1,00), the notation ||v||, refers
1

to the ¢, norm of vector v given by |jv[lq = (320 |vi|*)=. For any matrix U € RP*P,
the induced or the operator norm is given by [|U]l,, := max),,=1 |[Uz|s for parameters
a,b € [1,00). Specifically, we use the ¢, operator norm which is equivalent to |U]| ., =
max;—1,..p Z§:1 |Ui;|. We also have ||U]l; = |UT|... Another induced norm is the spectral
norm ||U||, (or ||U]|) which is equivalent to the maximum singular value of U. We also use the
{~ element-wise norm notation ||U||« to refer to the maximum absolute value of the entries
of U. Note that it is not a matrix norm but a norm on the vectorized form of the matrix.
The trace inner product of two matrices is denoted by (U, V) := Tr(UTV) = > UijVij.
Finally, we use the usual notation for asymptotics: f(n) = Q(g(n)) if f(n) > cg(n) for some
constant ¢ > 0 and f(n) = O(g(n)) if f(n) < g(n) for some constant ¢ < co.
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2.1 Gaussian Graphical Models

A Gaussian graphical model is a family of jointly Gaussian distributions which factor in
accordance to a given graph. Given a graph G = (V, E), with V = {1,...,p}, consider
a vector of Gaussian random variables X = [X1, Xs,...,X,]|, where each node i € V is
associated with a scalar Gaussian random variable X;. A Gaussian graphical model Markov
on G has a probability density function (pdf) that may be parameterized as

fx(x) < exp [—;XTJX + th} , (1)

where J is a positive-definite symmetric matrix whose sparsity pattern corresponds to that
of the graph G. More precisely,

J(,7) =0 < (i,j) ¢ G.

The matrix J is known as the potential or concentration matrix, the non-zero entries J(i, j)
as the edge potentials, and the vector h as the potential vector. The form of parameteriza-
tion in (1) is known as the information form and is related to the standard mean-covariance
parameterization of the Gaussian distribution as

pw=J"'th =J1

where p := E[X] is the mean vector and ¥ := E[(X — p)(X — p)7] is the covariance matrix.
We say that a jointly Gaussian random vector X with joint pdf f(x) satisfies local
Markov property with respect to a graph G if

f(@ilxn@)) = fl@ilxv)

holds for all nodes i € V, where N (i) denotes the set of neighbors of node i € V and, V'\ i
denotes the set of all nodes excluding ¢. More generally, we say that X satisfies the global
Markov property, if for all disjoint sets A, B C V', we have

f(xa,xp[xs) = f(xalxs)f(xB|xs).

where set S is a separator? of A and B. The local and global Markov properties are
equivalent for non-degenerate Gaussian distributions (Lauritzen, 1996).

On lines of the above description of graphical models, consider the class of Gaussian
models® N (i, X, ), where the covariance matrix is supported on a graph G, (henceforth
referred to as the conjugate graph), i.e.,

ZGc(iuj) =0= (27]) ¢ GC'
Recall that uncorrelated Gaussian variables are independent, and thus,

2. A set S C V is a separator for sets A and B if the removal of nodes in S partitions A and B into distinct
components

3. In the sequel, we denote the Markov graph, corresponding the support of the information matrix, as G
and the conjugate graph, corresponding to the support of the covariance matrix, as G..
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Equivalence between pairwise independence and global Markov properties were studied
in Cox and Wermuth (1993); Kauermann (1996); Banerjee and Richardson (2003).

In this paper, we posit that the observed model results in a sparse graphical model
under structure perturbations in the form of an independence model:

S 4+ X5 =Ji " Supp(Ji) = G, Supp(E)) = G, (2)

where Supp(-) denotes the set of non-zero (off-diagonal) entries, Gj; denotes the Markov
graph and Gpg, the independence graph.

2.2 Problem Statement

We now give a detailed description of our problem statement, which consists of the co-
variance decomposition problem (given exact statistics) and covariance estimation problem
(given a set of samples).

2.2.1 COVARIANCE DECOMPOSITION PROBLEM

A fundamental question to be addressed is the identifiability of the model parameters.

Definition 1 (Identifiability) A parametric model {Py : 0 € ©} is identifiable with re-
spect to a measure ju if there do not exist two distinct parameters 01 # 02 such that Py, = Py,
almost everywhere with respect to .

Thus, if a model is not identifiable, there is no hope of estimating the model parameters
from observed data. A Gaussian graphical model (with no hidden variables) belongs to the
family of standard exponential distributions (Wainwright and Jordan, 2008, Ch. 3). Under
non-degeneracy conditions, it is also in the minimal form, and as such is identifiable (Brown,
1986). In our setting in (2), however, identifiability is not straightforward to address, and
forms an important component of the covariance decomposition problem, described below.

Decomposition Problem: Given the covariance matrix ¥* = J;,~! — $% as in (2), where
J3s is an unknown concentration matrix and 3% is an unknown residual covariance matrix,
how and under what conditions can we uniquely recover Jy, and X% from ¥*?

In other words, we want to address whether the matrices Jy, and X7}, are identifiable,
given ¥*, and if so, how can we design efficient methods to recover them. If we do not
impose any additional restrictions, there exists an equivalence class of models which form
solutions to the decomposition problem. For instance, we can model ¥* entirely through
an independence model (X* = ¥%), or through a Markov model (X* = J;, 7). However,
in most scenarios, these extreme cases are not desirable, since they result in dense models,
while we are interested in sparse representations with a parsimonious use of edges in both
the graphs, viz., the Markov and the independence graphs. In Section 3.1, we provide
a sufficient set of structural and parametric conditions to guarantee identifiability of the
Markov and the independence components, and in Section 3.2, we propose an optimization
program to obtain them.
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2.2.2 COVARIANCE ESTIMATION PROBLEM

In the above decomposition problem, we assume that the exact covariance matrix »* is
known. However, in practice, we only have access to samples, and we describe this setting
below.

Denote $" as the sample covariance matrix?

< 1 <&
k=1

where z(;),k = 1,...,n are n i.i.d. observations of a zero mean Gaussian random vector
X ~ N(0,%*), where X := (X1, ..., X;,). Now the estimation problem is described below.

Estimation Problem: Assume that there exists a unique decomposition ¥X* = J&_l —X%
where J}; is an unknown concentration matrix with bounded entries and X7, is an unknown
sparse residual covariance matrix given a set of constraints. Given the sample covariance
matrix f)", our goal is to find estimates of J}, and X} with provable guarantees.

In the sequel, we relate the exact and the sample versions of the decomposition problem.
In Section 4, we propose a modified optimization program to obtain efficient estimates of
the Markov and independence components. Under a set of sufficient conditions, we provide
guarantees in terms of sparsistency, sign consistency, and norm guarantees, defined below.

Definition 2 (Estimation Guarantees) We say that an estimate (Jar, SR) to the de-
composition problem in (2), given a sample covariance matriz X", is sparsistent or model
consistent, if the supports of jM and ER coincide with the supports of Jy; and X} respec-
tively. It is said to be sign consistent, if additionally, the respective signs coincide. The
norm guarantees on the estimates is in terms of bounds on || Jpr — Jyll and [or =%l
under some norm ||-||.

3. Analysis under Exact Statistics

In this section, we provide the results under exact statistics.

3.1 Conditions for Unique Decomposition

We first provide a set of sufficient conditions under which we can guarantee that the de-
composition of ¥* in (2) into concentration matrix J;, and residual matrix X% is unique.”
We impose the following set of constraints on the two matrices:

(A.0) ¥* and J}; are positive definite matrices, i.e., ¥* > 0, J3, > 0.

(A.1) Off-diagonal entries of J;, are bounded from above, i.e., || Ji;]lccof < A, for some
A® > 0.

4. Without loss of generality, we limit our analysis to zero-mean Gaussian models. The results can be easily gener-
alized to models with non-zero means.

5. We drop the positive definite constraint on the residual matrix X3 thereby allowing for a richer class
of covariance decomposition. In Section 5.3, we modify the conditions and the learning method to
incorporate positive definite residual matrices X 5.
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(A.2) Diagonal entries of ¥}, are zero: (E}})ii = 0, and the support of its off-diagonal entries
satisfies

(Bk),; #0 <= [(Jir),;l = A" Vi

(A.3) For any 14,7, we have sign((Ej{z)ij). sign((J]’(/[)ij) >0, i.e, the signs are the same.

Indeed, the above constraints restrict the class of models for which we can provide
guarantees. However, in many scenarios, the above assumptions may be reasonable, and
we now provide some justifications. (A.0) is a natural assumption to impose since we
are interested in valid ¥* and Jj3; matrices. Condition (A.1) corresponds to bounded off-
diagonal entries of Jy,;. Intuitively, this limits the extent of “dependence” between the
variables in the Markov model, and can lead to models where inference can be performed
with good accuracy using simple algorithms such as belief propagation. Condition (A.2)
limits the support of the residual matrix 3%: the residual covariances are captured at those
locations (edges) where the concentration entries (J3,); ; are “clipped” (i.e., the bound \*
is achieved). Intuitively, the Markov matrix J}, is unable to capture all the correlations
between the node pairs due to clipping, and the residual matrix 37, captures the remaining
correlations at the clipped locations. Condition (A.3) additionally characterizes the signs
of the entries of ¥%. For the special case, when the Markov model is attractive, i.e.,
(J3r)ij < 0 for i # j, the residual entries (¥7}); ; are also all negative. This implies that the
model corresponding to »* is also attractive, since it only consists of positive correlations.
By default, we set the diagonal entries of the residual matrix to zero in (A.2) and thus,
assume that the Markov matrix captures all the variances in the model. In Section 4.2.1,
we provide a simple example of a Markov chain and a residual covariance model satisfying
the above conditions.

It is also worth mentioning that the number of model parameters satisfying above con-
ditions is equivalent to the number of parameters in the special case of sparse inverse
covariance estimation when A — oo (Ravikumar et al., 2011). It is assumed in assumption
(A.2) that the residual matrix X7, takes nonzero value when the corresponding entry in the
Markov matrix Jj, takes its maximum absolute value A\*. This assumption in conjunction
with the sign assumption in (A.3), exactly determines the Markov entry (J M)ij when the
corresponding residual entry (E R)ij # 0. So, for each (i,j) pair, only one of the entries
(J M)ij and (Z R)ij are unknown which results that the proposed model in this paper does
not introduce additional parameters comparing to the sparse inverse covariance estimation,
which is interesting.

According to the above discussion, we observe that the overall covariance and inverse
covariance matrices ¥* and J* = Y* 7! are dense, but represented with small number of
parameters. It is interesting that we are able to represent models with dense patterns, but
it is important to notice that the sparse representation leads to some restrictions on the
model.

In the sequel, we propose an efficient method to recover the respective matrices Jj3,; and
¥ % under conditions (A.0)-(A.3) and then establish the uniqueness of the decomposition.
Finally, note that we do not impose any sparsity constraints on the concentration matrix
Jys, and in fact, our method and guarantees allow for dense matrices Jy;, when the exact
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covariance matrix X* is available. However, when only samples are available, we limit
ourselves to sparse Jy, and provide learning guarantees in the high-dimensional regime,
where the number of samples can be much smaller than the number of variables.

3.2 Formulation of the Optimization Program

We now propose a method based on convex optimization for obtaining (J3,,¥7) given the
covariance matrix 3* in (2). Consider the following program

(Sar.Sn) =

(4)

YXp-0,XR

s. t. EM - ER = E*, (ER)d = O,

where ||-||; . denotes the ¢; norm of the off-diagonal entries, which is the sum of the absolute
values of the off-diagonal entries, and (-); denotes the diagonal entries. Intuitively, the
parameter A imposes a penalty on large residual covariances, and under favorable conditions,
can encourage sparsity in the residual matrix. The program in (4) can be recast

(EM,iR) := arg max log det Xy (5)
Y >-0,2XR

s.t. Yy —Xp =% (Br)a=0,|Zr[108 < C(N),

for some constant C(\) depending on A. The objective function in the above program
corresponds to the entropy of the Markov model (modulo a scaling and a shift factor) (Cover
and Thomas, 2006), and thus, intuitively, the above program looks for the optimal Markov
model with maximum entropy subject to an #; constraint on the residual matrix.

We declare the optimal solution 5 g in (4) as the estimate of the residual matrix 37,

~ o1
and Jys := ¥, as the estimate of the Markov concentration matrix J3,;. The justification
behind these estimates is based on the fact that the Lagrangian dual of the program in (4)
is (see Appendix A)

Jr i= arg min(X*, Jyy) — log det Jyy (6)
Jrr =0

S. t. HJMHoo,off <A,

where ||-|| .g denotes the /o, element-wise norm of the off-diagonal entries, which is the
maximum absolute value of the off- diagonal entries. Further, we show in Appendix A that
the following relations exist between the optlrnal pmma]6 solution .J; a and the optimal dual

solution (ZM, ZR): JM = ZM, and thus, JM - ER = Y* is a valid decomposition of the
covariance matrix X*.

Remark 3 Notice that when the (o, constraint is removed in the primal program in (6),
which is equivalent to letting A — oo, the program corresponds to the mazimum likelihood
estimate, and the optimal solution in this case is J, =21 S@mzlarly, in the dual program
in (4), when X\ — oo, the optimal solution corresponds to ZM = X* and ZR = 0. At the

6. Henceforth, we refer to the program in (6) as the primal program and the program in (4) as the dual
program.
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other extreme, when A — 0, jM is a diagonal matriz, and the residual matrix f]R s in
general, a full matriz (except for the diagonal entries). Thus, the parameter A allows us to
carefully tune the contributions of the Markov and residual components, and we notice in
our experiments in Section 7 that A plays a crucial role in obtaining efficient decomposition
into Markov and residual components.

3.3 Guarantees and Main Results

We now establish that the optimal solutions of the proposed optimization programs in (4)
and (6) lead to a unique decomposition of the given covariance matrix >* under conditions
(A.0)—(A.3) given in Section 3.1.

Theorem 4 (Uniqueness of Decomposition) Under (A.0)-(A.3), given a covariance
matriz X*, if we set the parameter X = ||Ji/|lccoff i the optimization program in (4),
then the optimal solutions of primal-dual optimization programs (6) and (4) are given by
(j\M,f]R) = (J&,E}‘z), and the decomposition is unique.

See the proof in Appendix C.

Thus, we establish that the proposed optimization programs in (4) and (6) uniquely
recover the Markov concentration matrix Jy, and the residual covariance matrix X}, given
¥* under conditions (A.0)—(A.3).

4. Sample Analysis of the Algorithm

In this section, we provide the results under sample statistics where some i.i.d. samples of
random variables are only available.

4.1 Optimization Program

We have so far provided guarantees on unique decomposition given the exact covariance
matrix ¥*. We now consider the case, when n i.i.d. samples are available from N (0, ¥*),
which allows us to estimate the sample covariance matrix f)", as in (3).

We now modify the dual program in (4), considered in the previous section, to incorpo-
rate the sample covariance matrix $" as follows

(Z,2R) :=argmax logdet Say — A|Srl1of (7)
YMER
5.t |27 = Sar + Zrllsoofr < 7
(Eu)y= (") (Zr);=0,
Su = 0,50 — SR > 0.

Note that, in addition to substituting ¥X* by EA]", there are two more modifications in the
above program comparing to the exact case in (4). First, the positive-definiteness constraint
on the overall covariance matrix ¥ = Yy — X is added to make sure that the overall
covariance matrix estimation is valid. This constraint is not required in the exact case
since we have the constraint ¥ = ¥* in that case which ensures the positive-definiteness of
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overall covariance matrix according to assumption (A.0) that ¥* > 0. Second, the equality
constraint Yy — X g = X* is relaxed on the off-diagonal entries by introducing the new
parameter v which allows some deviation. More discussion including the Lagrangian primal
form of the above optimization program and the effect of new parameter v is provided in
section 6.

4.2 Assumptions under Sample Statistics

We now provide conditions under which we can provide guarantees for estimating the
Markov model Jj, and the residual model ¥}, given the sample covariance " in high
dimensions. These are conditions in addition to conditions (A.0)—(A.3) in Section 3.1.

The additional assumptions for successful recovery in high dimensions are based on the
Hessian of the objective function in the optimization program in (19), with respect to the
variable J)s, evaluated at the true Markov model Jy,. The Hessian of this function is given
by Boyd and Vandenberghe (2004)

D= Ji @ Jir =% @ Ty, (8)

where ® denotes the Kronecker matrix product (Horn and Johnson, 1985). Thus I'* is a p? x
p? matrix indexed by the node pairs. Based on the results for exponential families (Brown,
1986), F?i,j),(k,l) = Cov{X;X;, X;;X;}, and hence it can be interpreted as an edge-based
alternative to the usual covariance matrix 33,. Define K as the {, operator norm of the

covariance matrix of the Markov model

K= [l

We now denote the supports of the Markov and residual models. Denote Ejs := {(7,5) €
V x Vi # 4, (J]”\})Z.j # 0} as the edge set of Markov matrix J3,. Define

Sy = Ep U{(i,9)|i = 1, ..., p}, (9)
Sr={(i,§) €V x V|(ZR),; # 0}. (10)

Thus, the set Sy includes diagonal entries and also all edges of Markov graph corresponding
to Jy,. Also, recall from (A.2) in Section 3.1 that the diagonal entries of X7, are set to zero,
and that the support set Sg is contained in Sy, i.e., Sg C Sy. Let S5, and S%, denote the
respective complement sets. Define

S = Sy N S5, (11)

so that {Sg, S, 5%} forms a partition of {(1,...,p) x (1,...,p)}. This partitioning plays a
crucial role in being able to provide learning guarantees. Define the maximum node degree
for Markov model Jy, as
d:= max [{i:(i,7) € Sm}|
7j=1,...,p

Finally, for any two subsets 7" and 7" of V' x V, T'}.;, denotes the submatrix of I'* indexed
by T as rows and T” as columns. We now impose various constraints on the submatrices of
the Hessian in (8), limited to each of the sets {Sg, S, S}
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(A.4) Mutual Incoherence: These conditions impose mutual incoherence among three
partitions of I'* indexed by Sg, 5§, and S. For some a € (0, 1], we have

-1 . —1
maX{|||F§;'ws(F§s) Iss, = Usesplloos |||Fsifs(rgs) oo} < (1 —a), (12)
* ) — L 1
Kssp = 1(Tss) Tisplleo < 1 (13)

(A.5) Covariance Control: For the same « specified above, we have the bound:

(m—4)«a
00 < 4(m —(m—1)a)

Kss = ||(Tgs) 'l for some m > 4. (14)

(A.6) Eigenvalue Control: The minimum eigenvalue of overall covariance matrix X* sat-
isfies the lower bound

log(4p™ log(4p™
Amin (X7) > Cgd M + C7d20g<np) for some Cg,C7 >0 and 7> 2.

In (A.4), the condition in (12) bounds the effect of the non-edges of the Markov model,
indexed by S§,, to its edges, indexed by Sr and S. Note that we distinguish between the
common edges of the Markov model with the residual model (Sg) and the remaining edges
of the Markov model (S). The second condition in (13) controls the influence of the edge-
based terms which are shared with the residual matrix, indexed by Sg, to other edges of
the Markov model, indexed by S = Sy N S%. Condition (A.5) imposes £« bounds on the
rows of (I'ts) ! Note that for sufficiently large m, the bound in (14) tends to ﬁ. Also
note that the conditions (A.4) and (A.5) are only imposed on the Markov model J}, and
there are no additional constraints on the residual matrix 3% (other than the conditions
previously introduced in Section 3.1). In condition (A.6), it is assumed that the minimum
eigenvalue of overall covariance matrix * is sufficiently far from zero to make sure that its
estimation 3 is positive definite and therefore a valid covariance matrix.

4.2.1 EXAMPLE OF A MARKOV CHAIN + RESIDUAL COVARIANCE MODEL

In this section, we propose a simple model satisfying assumptions (A.0)—(A.5). Consider
a Markov chain with concentration matrix Jj, over 4 nodes, as shown in Figure 2. The
diagonal entries in the corresponding covariance matrix ¥}, = J]’(4_1 are set to unity, and
the correlations between the neighbors in J}, are set uniformly to some value p € (—1,1),
i.e., (Z*M)z‘j = p for (i,j) € Ep. Due to the Markov property, the correlations between
other node pairs are given by (27\4)13 = (27\4)24 = p? and (E"jw) U= p3. For the residual
covariance matrix X3, we consider one edge between nodes 1 and 2, i.e., Sg = {(1,2),(2,1)}.
It is easy to see that conditions (A.0)-(A.2) are satisfied. Recall that S5, = {(4,7) :
(i,7) ¢ Enp} and the remaining node pairs belongs to set S := Sy \ Sg. Through some
straightforward calculations, we can show that for any |p| < 0.07, the mutual incoherence
conditions in (A.4) and (A.5) are satisfied for & = 0.855 and m > 83. Note that the value
of nonzero entries of ¥} are not involved or restricted by these assumptions. However,
they do need to satisfy the sign condition in (A.3). Thus, we have non-trivial models
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- -~

Figure 2: Example of a Markov chain and a residual covariance matrix, where a residual edge is
present between nodes 1 and 2.

satisfying the set of sufficient conditions for successful high-dimensional estimation.” In
Section 7, the synthetic experiments are run on a model which does not necessarily satisfy
mutual incoherence conditions (A.4) and (A.5); But we observe that our method has good
numerical estimation performance even when the above incoherence conditions are not fully
satisfied.

4.3 Guarantees and Main Results

We are now ready to provide the main result of this paper.

Theorem 5 Consider a Gaussian distribution with covariance matriz X* = ]’Q*l - X%

satisfying conditions (A.0)-(A.6). Given a sample covariance matriz S using n ii.d. sam-
ples from the Gaussian model, let (JM, ER) denote the optimal solutions of the primal-dual

pair (19) and (7), with parameters v = Ciy/logp/n and X = X* + Co/logp/n for some
constants C1,C2 > 0, where A" := ||Jy[| , - Suppose that (5%) iy 2= Ming jyesy, \(E})ij|

scales as (E*R) = Q(\/logp/n) and the sample size n is lower bounded as

n = Q(d’logp), (15)
then with probability greater than 1 —1/p® — 1 (for some ¢ > 0), we have:

a) The estimates jM =0 and f]R satisfy Lo bounds

7 " log p
i = Tile = 052,
S * log p
S~ il = 0|/ 22),

b) The estimate iR is sparsistent and sign consistent with 37,.

c¢) If in addition, (Jj\“/[)mm = ming jyeg,, |(J]’(/[)Z]| scales as (Jy) . = Q(y/logp/n),

then the estimate jM is sparsistent and sign consistent with Jy;.

7. Similarly, for the case when the correlations corresponding to Markov edges are distinct as (234)12 =
P1, (ZXI)% = p2, and (27\/1)34 = p3, we can argue the same conditions. For compatibility with Figure 2,
assume that p; is the maximum among these three parameters, and therefore, the residual edge is between
nodes 1 and 2. This is because the maximum of off-diagonal entries of Jy; also happens in entry (1,2).
Then, the same condition |p;| < 0.07 is sufficient for satisfying conditions (A.0)—(A.5).
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Proof See Appendix D. |

Remark 6 Here, we provide a few more observations and extensions as follows.

1. Non-asymptotic sample complexity and error bounds: In the above theorem,
we establish that the number of samples is required to scale as n = Q(d?logp). In fact,
our results are non-asymptotic, and the exact constants are provided in inequality (31).
The non-asymptotic form of error bounds are also provided in (34) and (40).

2. Extension to sub-Gaussian and other distributions: In the above theorem, we
considered Gaussian distribution. Similar to high dimensional covariance estimation
in Ravikumar et al. (2011), the result in the theorem can be easily extended to sub-
Gaussian and other distributions with known tail conditions.

3. Comparison between direct estimation of >* and the above decomposition:
The overall matriz ¥* (and J*) is a full matriz in general. Thus, if we want to
estimate it directly, we need n = Q(p2 log p) samples since the maximum node degree
is ©(p). Therefore, we can not estimate it directly in high dimensional regime and it
demonstrates the importance of such sparse covariance + inverse covariance models
for estimation.

We discussed Remark 3 that the parameter A allows us to carefully tune the contributions
of the Markov and residual components. When A — oo, the program corresponds to ;-
penalized maximum likelihood estimator which is well-studied in Ravikumar et al. (2011);
Rothman et al. (2008). In this case, ¥z = 0 and all the dependencies among random
variables are captured by the sparse graphical model represented by J, m- On the other
extreme, when A\* = 0 and thus A = Cs+/logp/n — 0, with increasing the number of

~

samples n, the off-diagonal entries in Jy; are bounded too tight by A (refer to the primal
program in (19)) and therefore the residual covariance matrix Sk captures most of the
dependencies among random variables. In this case, we have the covariance estimation
$=% M — 5 Rr, where the diagonal entries are included in b a and the off-diagonal entries
are mostly included in -5 r. In order to explain the results for these cases in a more concrete
way, we explicitly mention the results for both sparse inverse covariance estimation (A — o)
and sparse covariance estimation (A ~ 0) methods in the following subsections. Note that
both of these are special cases of the general result expressed in Theorem 5. Thus, in
Theorem 5, we generalize these extreme cases to models with a linear combination of sparse
covariance and sparse inverse covariance matrices.

5. Discussions and Extension

In this section, we first provide a detailed discussion of special cases sparse covariance and
sparse inverse covariance estimation. Then, the extension of results to the structured noise
model is mentioned.
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5.1 Sparse Inverse Covariance Estimation

In this section, we mention the result for sparse inverse covariance estimation in high di-
mensional regime. This result is provided by Ravikumar et al. (2011) and is a special case
of Theorem 5 when the parameter A goes to infinity. Before proposing the explicit result in
Corollary 7, we state how the required conditions in Theorem 5 reduces to the conditions
in Ravikumar et al. (2011).

Since the support of residual matrix X7} is a zero matrix in this special case, the mutual
incoherence conditions in (A.4) reduce exactly to the same mutual incoherence condition in
Ravikumar et al. (2011) as

* * -1
IT5es(Tss) oo < (1= @) for some a € (0,1], (16)

where S = Sy is the support of Markov matrix J* = Jy, as defined in (9). Also note that
the covariance control condition (A.5) is not required any more.

Furthermore, the sample complexity and convergence rate of Jy, estimation in Theorem 5
exactly reduce to the results in Ravikumar et al. (2011) as (for ¢ = 8,1 = 3)

— - a 2 ( 1 2 }
n>ny (p 1/ max{v*,Zld(l + a>KSSKM max{l, 1 1+ a)KSSKM }), (17)
17 = 7"l < 2K55(1+ )87 m), (18)
where the result is valid for any ¢ > 8 and [ > 1.

Corollary 7 (Sparse Inverse Covariance Estimation (Ravikumar et al., 2011))
Consider a Gaussian distribution with covariance matriz X* = J*~1 satisfying mutual in-
coherence condition (16). Given a sample covariance matriz Sn using n i.i.d. samples
from the Gaussian model, let J denote the optimal solution of the primal-dual pair (19) and
(7), with parameters v = Ciy/logp/n and A — oo (removing lo, constraints in the primal
program (19)) for some constant Cy; > 0. Suppose that the sample size n is lower bounded
as

n= Q(d2 logp),
then with probability greater than 1 —1/p® — 1 (for some ¢ > 0), we have:
a) The estimate J =0 satisfies o bound

~ 1
17 = Tl = 0< "gp).
n

b) If in addition (J*) = ming j)es,, \(J*)Zj\ scales as (J*) . = Q(y/logp/n), the
estimate J is sparsistent and sign consistent with J*.

min °

Remark 8 (Comparison of general result in Theorem 5 and sparse inverse co-
variance estimation in Corollary 7) Considering the results in Theorem 5, sample com-
plexity and convergence rate of estimated models are exactly the same as results in Raviku-
mar et al. (2011) with only some minor differences in coefficients. Compare (31) with (17)
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for sample complexity and (34) with (18) for convergence rate of estimated Markov matrix
jM. But regarding the mutual incoherence conditions, we observe that the conditions for
the special case sparse inverse covariance estimation in (16) are less restrictive than the
conditions for the general case in (12)-(13). Since the sparse inverse covariance estimation
(Ravikumar et al., 2011) is a special case of the general model in this paper, this additional
limitation on models is inevitable, i.e., it is natural that we need some more incoherence
conditions in order to be able to recover both the Markov and residual models in the general
case.

5.2 Sparse Covariance Estimation

High-dimensional estimation of sparse covariance models has been studied in Bickel and
Levina (2008). They propose an estimation of a class of sparse covariance matrices by “hard
thresholding”. They also prove spectral norm guarantees on the error between the estimated
and exact covariance matrices. We also recover similar results in the other extreme case of
proposed program (7) when A ~ 0. The program reduces to the sparse covariance estimator
as discussed earlier. In order to see that again, let us investigate the dual program restated
as follows

(iM,iR) :=argmax logdet Xy — A||Xg||1 0
YMHER

s. t. Hin — E]\/[ + ERHoo,off <,

(ZM)d - (in)w (ER)d =0,
Yur-0,Xy —Xg = 0.

When the parameter A =~ 0, the variable X is very slightly penalized in the objective
function. Therefore, most of the statistical dependencies are captured by g and thus,
off-diagonal entries of ;s take very small values. Furthermore, according to the property
of optimization program that the support of Xr is contained within the support of Jys,
sparsity on Y is encouraged by the effect of parameter ~.
It is also observed that we are approximately performing “soft thresholding” in program (7)
(when A ~ 0) comparing to “hard thresholding” in Bickel and Levina (2008). Consider the
case A = 0, where the Markov part X is a diagonal matrix. Therefore, the |5 — X +
YRllcooff < 7 constraint in the dual program (7) reduces to ||§)” + XR|loc,ot < v where
it is seen that the negative soft thresholding is performed on matrix $" with threshold
parameter vy, given by
Sy () = sign(—z)(|z| —7)+-

Notice that we need to have A = 0 for recovering the sparse covariance matrix given empirical
covariances and in this case, we can view the estimator as approximately performing soft
thresholding.

Finally, we propose the corollary for this special case. Before that, we need some addi-
tional definitions for a general covariance matrix ¥*. Similar to definition (10), the support
of a covariance matrix ¥* is defined as

Ss = {(i,4) € V x V|5, # 0},
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The maximum node degree for a covariance matrix ¥* is also defined as

dy := max [{i: (i,7) € Sxu}|.
J=L...p

Corollary 9 (Sparse Covariance Estimation) Consider a Gaussian distribution with
covariance matriz X* satisfying eigenvalue control condition (A.6). Given a sample covari-
ance matrix X" using n i.i.d. samples from the Gaussian model, let (EM,ER) denote the

optimal solutions of the primal-dual pair (19) and (7), with parameters v = C1/logp/n
and A = Cay/logp/n for some constants C1,Co > 0. The estimated covariance matrix 3 is
defined as Yo := —X R and Xg := (ZM)d. Suppose that (EZH)min = MIN( j)e Sy ij ’(Z*)m|

scales as (EZH) = Q(\/logp/n) and the sample size n is lower bounded as

min
n= Q(d% logp),
then with probability greater than 1 — 1/p¢ — 1 (for some ¢ > 0), we have:

a) The estimate S satisfies lso bound

N 1
IS = S|l oofr = o(w/ ng).
n

b) The estimate ioﬁ‘ is sparsistent and sign consistent with 3%q.

Proof See Appendix F. [ ]

5.3 Structured Noise Model

In the discussion up to now, we considered general residual matrices %, not necessarily
positive definite, thereby allowing for a rich class of covariance decomposition models. In
this section, we modify the conditions and the learning method to incorporate positive-
definite residual matrices ¥73.

We regularize the diagonal entries in an appropriate way to ensure that both J3, and
¥% are positive definite. Thus, the identifiability assumptions (A.0)-(A.3) are modified as
follows:

(A.0") ¥¥, ¥% and Jj}; are positive definite matrices, i.e., ¥* >~ 0,3% > 0, J5; > 0.

(A.1") Jj; is normalized such that (J3,), = A} for some A} > 0 and off-diagonal entries of
Jy; are bounded from above, i.e., || J5/|lcoofft < A3, for some A3 > 0.

(A.2’) The off-diagonal entries of X7, satisfy

(BR)i; #0 <= |(Jir) ;| = X5, Vi#j.
(A.3") For any i, j, we have sign((E*R) ) sign((J]’(/[) ) > 0, i.e, the signs are the same.

i i
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It is seen in (A.1’) that we put additional restrictions on diagonal entries of the Markov
matrix Jy, in order to have nonzero diagonal entries for the residual matrix 7.

Similar to the general form of dual program introduced in (23), we propose the following
optimization program to estimate the Markov and residual components in the structured
noise model:

(EM,iR) := argmax logdet Xps — Ai||Zg|l1,on — A2||XR |10

Ya2Rr>0
S. t. ”in‘i‘zR_ZMHoo,offoYa
(En)d + (ER)d - (EM)d'

The decomposition result under exact statistics can be similarly proven by setting parameter
v = 0 when the identifiability assumptions (A.0’)-(A.3’) are satisfied. Furthermore, under
additional estimation assumptions (A.4)-(A.6), the sample statistics guarantees in Theorem
5 can be also extended to the solutions of above program.

6. Proof Outline

In this section, the Lagrangian primal form for the proposed dual program (7) is provided
first and then the proof outlne is presented. For now, we drop the positive-definiteness
constraint X3y — Xp = 0 in the proposed dual program (7). We finally show that this
constraint is satisfied for the proposed estimation under specified conditions and thus this
constraint can be dropped. In the subsequent discussion, we drop this constraint. It is
shown in Appendix A that the primal form for this reduced dual program is

Ju = argmin (37, Jy) — log det Jus + || 1,0ff (19)

Jar -0
s. t. HJMHoopff <A,

We further establish that . M = j\]\}l is valid between the dual variable ¥, and primal
variable Jys and thus, R R R
I=" = J3f' + ZRllsoon < - (20)

Comparing the above with the exact decomposition ¥* = Jj(/[*l — X} in (2), we note that
for the sample version, we do not exactly fit the Markov and the residual models with the
sample covariance matrix X", but allow for some divergence, depending on ~. Similarly,
the primal program (19) has an additional ¢; penalty term on J, A, which is absent in (6).
Having a non-zero « in the primal program enables us to impose a sparsity constraint on
J, M, which in turn, enables us to estimate the matrices in the high dimensional regime
(p > n), under a set of conditions of sufficient conditions given in section 4.2.

We now provide a high-level description of the proof for Theorem 5. The detailed proof
is given in Appendix D. The proof is based on the primal-dual witness method, which has
been previously employed in Ravikumar et al. (2011) and other works. However, we require
significant modifications of this approach in order to handle the more complex setting of
covariance decomposition.

In the primal-dual witness method, we define a modified version of the original opti-
mization program (19). Note that the key idea in constructing the modified version is to be
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S]c\/[ S Sk

Figure 3: The sets Sg, S and 5§, form a partition of {(1,...,p) x (1,...,p)}, where p is the number
of nodes, Sk is the support of the residual covariance matrix ¥} and Sjs is the support
of the precision matrix Jj,; of the Markov model and S§; is its complement.

able to analyze it and prove guarantees for it in a less complicated way comparing to the
original version. Let us denote the solutions of the modified program by (j M, 5 R) pair. In
general, the optimal solutions of the two programs, original and modified one, are different.
However, under conditions (A.0)—(A.5), we establish that their optimal solutions coincide.
See Appendix D for details. Through this equivalence, we thus establish that the optimal
solution (j M, ) R) of the original program in (19) inherits all the properties of the optimal

solution (J My 2 R) of the modified program, i.e., the solutions of the modified program act
as witness for the original program. In the following, we define the modified optimization
program and its properties. The primal-dual witness method steps which guarantee the
equivalence between solutions of the original and the modified program are mentioned in
Appendix D.

We modify the sample version of our optimization program in (19) as follows:

Jar = argmin (3", Jyr) — log det Jas + ]| Jas 1.0 (21)
Jar -0

s. t. (JM)SC

o = 0, (JM)SR = )\sign((J]T/[)SR).

Note that since we do not a priori know the supports of the original matrices Jy, and X%,
the above program cannot be implemented in practice, but is only a device useful for proving
consistency results. We observe that the objective function in the modified program above
is the same as the original program in (19), and only the constraints on the precision matrix
are different in the two programs. In the above program in (21), constraints on the entries
of the precision matrix when limited to sets Sg and S, are more restrictive, while those
in set S := Sy \ Sg are more relaxed (i.e., the o, constraints present in (19) are removed
above), compared to the original program in (19). Recall that Sy, denotes the support of
the Markov model, while Sp C Sjs denotes the support of the residual or the independence
model. See Figure 3.

We now discuss the properties of the optimal solution (j M, > R) of the modified program
in (21). Since the precision matrix entries on S§, are set to zero in (21), we have that
Supp(j m) € Supp(Jj;). Denoting Y as the residual covariance matrix corresponding to
the modified program (21), we can similarly characterize it in the following form derived

from duality:

= 0 for (i,j) €S

YRr).. =1 ~ 22
( R)Z] { BZ] for (27]) € SRas]C\Jv ( )

1569



JANZAMIN AND ANANDKUMAR

where Bij are the Lagrangian multipliers corresponding to the equality constraints in the
modified program (21).

Define estimation errors AJ = jM—Jj\‘/[ and AR = ER—E}‘% for the modified program in
(21). It is easy to see that (KJ) = A5, (AJ) = (KR) =0, where As := A —\* > 0.
This 1mphes that in any of the three sets S, Sp or S5, only one of the two estimation errors
A jor A R can be non-zero (or is at most As). This property is crucial to be able to decouple
the perturbations in the Markov and the independence domains, and thereby gives bounds
on the individual perturbations. It is not clear if there is an alternative partitioning of the
variables (here the partition is S, Sg and S§;) which allows us to decouple the estimation
errors for J; M and ¥ r- Through this decoupling, we are able to provide bounds on estimation
errors A 7 and A r and thus, Theorem 5 is established.

7. Experiments

In this section, we provide synthetic and real experimental results for the proposed algo-
rithm. We term our proposed optimization program as ¢1 4+ £+, method and compare it with
the well-known ¢; method which is a special case of the proposed algorithm when A\ = oo
The primal optimization program (19) is implemented via the ADMM (Alternating Direc-
tion Method of Multipliers) technique proposed in Mohan (2013). We also compare the
performance of belief propagation on the proposed model.

7.1 Synthetic Data

We build a Markov + residual synthetic model in the following way. We choose 0.2 fraction of
Markov edges randomly to introduce residual edges. The underlying graph for the Markov
part is a ¢ X ¢ 2-D grid structure (4-nearest neighbor grid). Therefore, the number of
nodes is p = ¢?. Because of assumption (A.2), we randomly set 0.2 fraction of nonzero
Markov off-diagonal entries to {—0.2,0.2}, and the rest of nonzero off-diagonal entries in J},
(corresponding to the grid edges) are randomly chosen from set +[0.15,0.2], i.e., (‘]J)‘%)ij €
[—0.2,—-0.15] U [0.15,0.2], for all (i,j) € Ep. Note that 0.2 fraction of edges take the
maximum absolute value which is needed by assumption (A.2). Then we ensure that J},
is positive definite by adding some uniform diagonal weighting. The nonzero entries of 37}
are chosen from +[0.15,0.2] such that the sign of residual entry is the same as the sign
of overlapping Markov entry (assumption (A.3)). We also generate a random mean in the
interval [0, 1] for each variable. Note that this generated synthetic model does not necessarily
satisfy mutual incoherence conditions (A.4) and (A.5); But we observe in the following
that our method has good numerical estimation performance even when the incoherence
conditions are not fully satisfied.

Before we provide experiment results, it is worth mentioning that the realization of
above model is an example that both Markov and residual matrices Jj,; and X7, are sparse
while the overall covariance matrix ¥* = Jy, -1 — X% and concentration matrix J* = ¥*~
are both dense matrices.
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’ Size(p) ‘ Cy ‘ A ‘
25 2.23 1 0.2
64 2.08 | 0.2
100 2.01 0.2
400 | 1.85| 0.2
900 |1.83]0.2

Table 1: Regularization parameters used for grid-structured Markov graph simulations in
Figure 4. Note that v = ¢,4/logp/n.

7.1.1 EFFECT OF GRAPH SIZE p

We apply our method (¢1 4+ ¢+, method) to random realizations of the above described model
% = Ji, "' — 3% with different sizes p € {25, 64,100,400, 900}. Normalized Dist (fM, J;;4),
the edit distance between the estimated and exact Markov components J, M and Jy,, and

normalized Dist (f) R, E*R>, the edit distance between the estimated and exact residual com-

ponents 5 r and X} as a function of number of samples are plotted in Figure 4 for different
sizes p.
In Figure 4.a, normalized Dist (J M, J&) is plotted and in Figure 4.b, the same is plotted

with rescaled horizontal axis n/logp. We observe that by increasing the number of sam-
ples, the edit distance decreases, and by increasing the size of problem, it becomes harder to
recover the components which are intuitive. More importantly, we observe in the rescaled
graph that the plots for different sizes p make a lineup which is consistent with the theo-
retical results saying that® n = O(d?logp) is sufficient for correct recovery.

Similarly, in Figure 4.c, normalized® Dist (f] R, E}}) is plotted and in Figure 4.d, the same

is plotted with rescaled horizontal axis n/logp. We similarly have the initial observations
that by increasing the number of samples, the edit distance decreases, and by increasing
the size of problem, it becomes harder to recover the components. The theoretical sample
complexity n = O(d?logp) is also validated in Figure 4.d.

The value of regularization parameters used for this simulation are provided in Table
1. Since in the synthetic experiments, we know the value of \* := ||J}||ccoff, Parameter
A is set to A* = 0.2. It is observed that the recovery of sparsity pattern of the Markov
component Jj, is fairly robust to the choice of this parameter. For choosing parameter -,
the experiment is run for several values of v to see which one gives the best recovery result.
The effect of parameter ~ is discussed in detail in the next subsection.

7.1.2 EFFECT OF REGULARIZATION PARAMETER 7y

We apply our method (¢; + ¢o method) to random realizations of the above described
grid-structured synthetic model ¥* = ]’\"/[_1 — X}, with fixed size p = 64. Here, we fix the

8. Note that in the grid graph, d = 4 is fixed for different sizes p.
9. The normalized distance for recovering residual component is greater than 1 for small n. Since we
normalize the distance with the number of edges in the exact model, this may happen.
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Figure 4: Simulation results for grid-structured Markov graph with different size p. (a-b) Normal-
ized edit distance between the estimated Markov component J, w and the exact Markov
component J;,. In panel (b), the horizontal axis is rescaled as n/logp. (c-d) Normal-
ized edit distance between the estimated residual component ) r and the exact residual
component X5. In panel (d), the horizontal axis is rescaled as n/logp. Each point in
the figures is derived from averaging 10 trials.

regularization parameter'® A = 0.2 and change the regularization parameter v = cyy/logp/n
where ¢, € {1,1.3,2.08,2.5,3}. The edit distance between the estimated and exact Markov
components Jur and Jyr, and the edit distance between the estimated and exact residual
components b r and X}, are plotted in Figure 5. We observe the pattern that for c, less than
some optimal value ¢, the Markov component is not recovered, and for values greater than
the optimal value, the components are recovered with different statistical efficiency, where
by increasing cy, the statistical rate of Markov component recovery becomes worse. For
the simulations of previous subsection provided in Figure 4, we choose some regularization
parameter close to ¢f. For example, we choose ¢, = 2.08 for p = 64 as suggested by Figure
d.

7.1.3 COMPARING {1 + {5, AND £1 METHODS

We apply £1 4+ {5 and ¢; methods to a random realization of the above described grid-
structured synthetic model ' ¥* = Jj\‘/ffl — X}, with size p = 64. The edit distance between
the estimated and exact Markov components Jur and Jys is plotted in Figure 6.a. We
observe that the behaviour of £1 4+ /¢, method is very close to £1 method which suggests that

10. X is set to the maximum absolute value of off-diagonal entries of Markov matrix Jj;.
11. Here, we choose the nonzero off-diagonal entries of Jj; randomly from {—0.2,0.2}.
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Figure 5: Simulation results for grid graph with fixed size p = 64 and regularization parameters
A = 0.2 and varying ¢, € {1,1.3,2.08,2.5,3} where v = ¢,+/logp/n. (a) Edit distance
between the estimated Markov component Jys and the exact Markov component Jy,.

(b) Edit distance between the estimated residual component Sz and the exact residual
component ¥%. Each point in the figures is derived from averaging 10 trials.

sparsity pattern of J3,; can be estimated efficiently under either methods. The edit distance
between the estimated and exact residual components f]R and X} is plotted in Figure
6.b. Since there is not any off-diagonal ¢, constraints in ¢; method, it can not recover
the residual matrix ¥%. Finally the /-elementwise norm of error between the estimated
precision matrix J and the exact precision matrix J* is sketched for both methods in Figure
6.c. We observe the advantage of proposed ¢1 + £+, method in estimating the overall model
precision matrix J* = X*7!. Note that the same regularization parameters provided in
Table 1 are used for the simulations of this subsection, except for /1 method that we have
A = o0.

7.1.4 BENEFIT OF APPLYING LBP (LOOPY BELIEF PROPAGATION) TO THE PROPOSED
MODEL

We compare the result of applying LBP to J* and J}; components of a random realization
of the above described grid-structured synthetic model.'? The log of average mean and
variance errors over all nodes are sketched in Figure 7 throughout the iterations. We observe
that LBP does not converge for J* model. It is shown in Malioutov et al. (2006) that if a
model is walk-summable, then the mean estimates under LBP converge and are correct. The
spectral norms of the partial correlation matrices are ||Ry[| = 0.8613 and || R|| = 3.2446 for
Jy; and J* models respectively. Thus, the matrix J* is not walk-summable and therefore
its convergence under LBP is not guaranteed and this is seen in Figure 7. On the other
hand, LBP is accurate for J}, matrix. Thus, our method learns models which are better
suited for inference under loopy belief propagation.

7.2 Real Data

The proposed algorithm is also applied to foreign exchange rate and monthly stock returns
data sets to learn a Markov plus residual model introduced in the paper. It is important to

12. Here, we choose 0.5 fraction of Markov edges randomly to introduce residual edges.
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Figure 6: Simulation results for grid graph with size p = 64. (a) Edit distance between the esti-
mated Markov component Jur and the exact Markov component J;,. (b) Edit distance
between the estimated residual component 5 r and the exact residual component X7%.
(c) Precision matrix estimation error ||J* — j||oo , where J = Jy; for ¢; method and
J= (j]\}l - ig)fl for ¢1 + {~, method.

-
— .
© 207 [*LBP applied to J* model ‘ I . . "
= - . * = 2 LBP applied to J* model
= LBP applied to J3, model |« S *~LBP applied to /3, model
g 10 w0 I e ’
g o .S Sk ‘."'u»-"*"*"'(‘ RIS il
g e = 0 *
® o X =
2 o
= %0 ~—
= 10 : : ‘ 8 ‘ ‘ ‘
< 70 5 10 15 ) 5 10 15
. . = . .
1iteration iteration
(a) (b)

Figure 7: Performance under loopy belief propagation for the overall model (J*) and the Markov
component (J3;).

note that the real data sets can be modeled by different models not necessarily satisfying
the conditions proposed in this paper. But, here we observe that the resulting Markov
plus residual models are fairly interpretable for the corresponding real data sets. The
interpretations are discussed in detail in the following sections.
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7.2.1 FOREIGN EXCHANGE RATE DATA

In this section, we apply the proposed algorithm to the foreign exchange rate data set.!?

The data set includes monthly exchange rates of 19 countries currency with respect to
US dollars from October 1983 to January 2012. Thus, the data set has 340 samples of
19 variables. We apply the optimization program (7) with a slight modification. Since
the underlying model for this data set does not necessarily satisfy the proposed eigenvalue
condition (A.6), we need to make sure that the overall covariance matrix estimation S s
positive definite and thus a valid covariance matrix. We add an additional constraint to the
optimization program (7), imposing a lower bound on the minimum eigenvalue of overall
covariance matrix Apin(2), i.€.; Apin(X) > Omin. The parameter oy, is set to 0.001 in this
experiment.

The resulting edges of Markov and residual matrices for some moderate choice of regulariza-
tion parameters v = 20 and A = 0.004 are plotted in Figure 8. The choice of regularization
parameters are further discussed at the end of this subsection. We observe sparsity on both
Markov and residual structures. There are two main observations in the learned model in
Figure 8. First, it is seen that the statistical dependencies of foreign exchange rates are
correlated with the geographical locations of countries, e.g., it is observed in the learned
model that the exchange rates of Asian countries are more correlated. We can refer to
Asian countries “South Korea”, “Japan”,“China”,“Sri Lanka”, “Taiwan”, “Thailand” and
“India” in the Markov model where several edges exist between them while other nodes in
the graph have much lower degrees. We observe similar patterns in the residual matrix,
e.g., there is an edge between “India” and “Sri Lanka” in the residual model. We also see
the interesting phenomena in the Markov graph that there exist some high degree nodes
such as “South Korea” and “Japan”. The presence of high degree nodes suggests that in-
corporating hidden variables can further lead to sparser representations, and this has been
observed before in other works, e.g., Choi et al. (2010); Chandrasekaran et al. (2010a); Choi
et al. (2011).

The regularization parameters are chosen such that the resulting Markov and residual
graphs are reasonably sparse, while still being informative. Increasing the parameter -~y
makes both Markov and residual components sparser, and increasing parameter A makes
the residual component sparser. In addition, it is worth discussing the fact that we chose
parameter v relatively large compared to parameter A in this simulation. In Theorem 4,
we have v = C1y/logp/n and A = \* 4+ Cyy/logp/n. Now, if Cy is large compared to Co
and furthermore \* is small, v can be larger than A. Hence, we have an agreement between
theory and practice.

7.2.2 MONTHLY STOCK RETURNS DATA

In this section we apply the algorithm to monthly stock returns of a number of companies in
the S&P 100 stock index. We pick 17 companies in divisions “E.Trans, Comm, Elec&Gas”
and “G.Retail Trade” and apply the optimization program (19) to their stock returns data
to learn the model. The resulting edges for Markov and residual matrices are plotted in
Figure 9 for regularization parameters v = 2.2e — 03 and A = le — 04. There is sparsity
on both Markov and residual structure. The isolated nodes in the Markov graph are not

13. Data set available at http://research.stlouisfed.org/fred2/categories/15/downloaddata.
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Figure 8: Markov and independence graph structures for the foreign exchange rate data set with
regularization parameters v = 20 and A = 0.004. Solid edges indicate Markov model and
dotted edges indicate independence model.

Figure 9: Markov and independence graph structures for the monthly stock returns data set with
regularization parameters v = 2.2e — 03 and A = le — 04. Solid edges indicate Markov
model and dotted edges indicate independence model.

presented in the figure. We see in both Markov and residual graphs that there exist higher
correlations among stock returns of companies in the same division or industry. There
are b connected partitions in the residual graph. e.g., nodes “HD”, “WMT”, “TGT” and
“MCD?”, all belonging to division Retail Trade form a partition. This is also observed for the
telecommunication industries (companies “T” and “VZ”) and energy industries (companies
“ETR” and “EXC”). We see a similar pattern in the Markov graph but with more edges.
Similar to exchange rate data set results, we also observe high degree nodes in the Markov
graph such as “HD” and “T'GT” which suggest incorporating hidden nodes.

1576



HiGH-DIMENSIONAL COVARIANCE DECOMPOSITION

8. Conclusion

In this paper, we provided an in-depth study of convex optimization methods and guarantees
for high-dimensional covariance matrix decomposition. Our methods unify the existing
results for sparse covariance/precision estimation and introduce a richer class of models with
sparsity in multiple domains. We provide consistency guarantees for estimation in both the
Markov and the residual domains, and establish efficient sample complexity results for our
method. These findings open up many future directions to explore. One important aspect is
to relax the sparsity constraints imposed in the two domains, and to develop new methods
to enable decomposition of such models. Other considerations include extension to discrete
models and other models for the residual covariance matrix (e.g., low rank matrices). Such
findings will push the envelope of efficient models for high-dimensional estimation. It is
worth mentioning while in many scenarios it is important to incorporate latent variables,
in our framework it is challenging to incorporate both latent variables as well as marginal
independencies, and provide learning guarantees, and we defer it to future work.
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Appendix A. Duality Between Programs

In this section we prove duality between programs (19) and (7) (when the positive-definiteness
constraint 3j; — X > 0 is dropped). By doing this, the duality between programs (6) and
(4) is also proved since they are special cases of (19) and (7) when + is set to zero and sn
is substituted with >*.

Before we prove duality, we introduce the concept of subdifferential or subgradient for
a convex function not necessarily differentiable. Subgradient (subdifferential) generalizes
the gradient (derivative) concept to nondifferentiable functions. Supposing convex function
f: R™ = R, the subgradient at a point xy which is usually denoted by 0 f(z¢) consists of
all vectors ¢ such that

f(x) > f(xo) + (¢, — x9), Va € Dom f.

In order to prove duality, we start from program (7) (when the positive-definiteness
constraint ¥y — X > 0 is dropped) and derive the primal form (19). Program (7) can be

written in the following equivalent form where Ay goes to infinity and Ao is used instead of
A

(iM,iR) := argmax logdet Xy — A1||2Rr
Ym>0,2R

l,on — A2HER’ 1,0ff (23)
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.t |7 = Sar + Zrllcoofr < 7
(ZM)d - (ER)d = (Zn)d‘
By introducing the dual variable Jj; for above program, we have:

min_ —(Ju, Zg) = —M1[|Zr
”JMHOO,OHS)\l
||‘]1W||oo,off§>\2

I1,on — A2[|2R||1,0f,

where (Jyr)on € )\18||§R\|170n, (Jar)oft € )\QaHiRHLOﬂ minimizes the above program. Thus,
we have the following equivalent form for program (23):

min max logdet Xy — (Jar, XR),
”J]\/I”oo,ong)\l E]W>072R

[0 llos,of A2 IEP =31+ R |loo.o <Y
Em)g—(Er)=(E"),

where the order of programs is exchanged. If we define the new variable ¥ = ¥y — YR, and
use X as the new variable in the program instead of ¥, the inner max program becomes

max logdet Xps — (Jar, Xar) + (Jar, 2).
Yp>-0,2

Hin_E”oo,offS'Y»Ed:(in)d

Since the objective function and constraints are disjoint functions of variables ¥ and Xy,
we can do optimization individually for two variables. The optimizers are ) M= JA}I and
S=Sn4 vZ~, where Z, is a member of the subgradient of || - [|; of evaluated at point Jx,
ie.,
0 for i=j
(Zy)i; =< €[-11] for i j, (Ju),; =0
sign((JM)l.j) for i # j, (JM)U # 0.

Also note that since X should be positive definite, the variable Jj; should be also positive
definite. Therefore, it adds another constraint Jy; > 0. If we substitute these optimizers,
we get the dual program

min <En,JM> — log det JM‘i”YHJMHl,oﬂ%

Jpr -0

||JM||oo,on§)\1
1T Moo, 0ff SA2

which is equivalent to (19) when A; goes to infinity and therefore the result is proved.

Appendix B. Characterization of the Proposed Optimization Programs

We proposed programs (6) and (19) to do decomposition and estimation respectively. For-
mer is used to decompose exact statistics to its Markov and residual covariance components
and the latter is used to estimate decomposition components given sample covariance ma-
trix. In this appendix we characterize optimal solutions of these optimization programs.
Both programs are convex and therefore the optimal solutions can be characterized using
standard convex optimization theory. Note that the proof of following lemmas is mentioned
after the remarks.
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Lemma 1 For any A > 0, primal problem (6) has a unique solution JAM = 0 which is
characterized by the following equation:

S T+ Z =0, (24)
where Z has the following form
0 for 1=7
Ziy=4 0 for i 7 j,[(Jar);1 < A (25)
Qi sign((JM)ij) for i # j, \(J ) | =A,

in which a;; can only take nonnegative values, i.e., we have &;; > 0.

Remark 10 Comparing Lagrangian optimality condition in (24) with relation 3% = f]\} —
ER between solutzons ofprzmal dual optimization programs (derived in Appendiz A) implies
the equality ER =7. Thus, ZR entries are determined by Lagrangian multipliers of primal
program. More specifically, we have

0 for i=3j
(ER)ij =¢ 0 ~ for @ #j,[(Jm),.| <A (26)
aijsign((Jur) ;) for i # 5, 1(Iar)yl = X

where ai;; > 0 are the Lagrangian multipliers of primal program (6).

Lemma 2 For any A > 0, v > 0 and sample covariance matriz S with strictly positive
diagonal entries, primal problem (19) has a unique solution jM > 0 which is characterized
by the equation

— I+ Z=0, (27)

where 7 = 2a + 727. Matriz 27 € 8HjM||1’0ﬂ‘ and fa is represented as in (25) for some
Lagrangian multipliers a;; > 0.

Remark 11 Comparing Lagrangian optimality condition in (27) with relation Sn = j Y
ZR - 'yZ between solutions of primal-dual optimization programs (derived in Appendz:p
A) implies the equality ZR = Z Thus, ER entries are determined by the Lagrangian
multipliers of primal program. More specifically, we have

0 for i=j
(Er)ij =3 0 R for i # j, | (Jar) ;| < A (28)
Qiij sign((JM)ij) for i # 7, \(J ) | =\,

where ai;; > 0 are the Lagrangian multipliers of primal program (19).

Proof We prove Lemma 2 here and Lemma 1 is a special case of that when + is set to zero
and £ is substituted with $*.

For any A > 0 and v > 0, the optimization problem (19) is a convex programming
where the objective function is strictly convex. Therefore, if the minimum is achieved it
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is unique. Since off-diagonal entries of Jj; are bounded according to constraints, the only
issue for minimum achievement may arises for unbounded diagonal entries. It is shown in
Ravikumar et al. (2011) that if diagonal entries of 5" are strictly positive, the function is
coercive with respect to diagonal entries and therefore here is no issue regarding unbounded
diagonal entries. Thus, the minimum is attained in Jy; > 0. But since when Jj; approaches
the boundary of positive definite cone, the objective function goes to infinity, the solution
is attained in the interior of the cone Jy; > 0. After showing that the unique minimum is
achieved, let us characterize the minimum.

Considering a;; as Lagrangian multipliers of inequality constraints of program (19), the
Lagrangian function is

L(JIyr,a) = (", Jyr) —logdet Jar + | Iullon + D iz [| (Jar) | = AL
1#]
We skipped positive definiteness constraint in writing Lagrangian f/l\lIlCtiOIl since it is in-
active. Based on standard convex optimization theory, the matrix Jy; > 0 is the optimal
solution if and only if it satisfies KK'T conditions. It should minimize the Lagrangian which
happens if and only if 0 belongs to the subdifferential of Lagrangian or equivalently there

exists a matrix Z such that
XTI+ Z =0,

where Z = Z,, + 727. Matrix 27 € 8”jM||170ﬁ‘ and Z, is

0 for 1=
(Za)ij = { € Qij-[-1,1] for i# 7, (JM)ij -0
aigsign((Ja)ig)) for i #j, (Jur); #0,

for some Lagrangian multipliers @;; > 0. The solution should also satisfy complementary
slackness conditions a;;. H (J M)ij‘ — )\] = 0 for 7 # j. Applying this condition to above Z,
representation, results to (25) form proposed in the lemma. |

Appendix C. Proof of Theorem 4

First note that as mentioned in Remark 3, the pair (f M, S R) given by optimization program
gives a decomposition X* = J A}l _ 3 r which is desired.

Next, in order to prove the equivalence, we show that there is a one to one correspondence
between the specified conditions (A.0)-(A.3) for valid decomposition and the characteriza-
tion of optimal solution of optimization program given in lemma 1. We go through each of
these conditions one by one in the following lines.

Condition (A.0) is considered in optimization program as positive definiteness of Markov
matrix Jyy.

Condition (A.1) is exactly the primal constraint ||J};|/coof < A

Condition (A.2) is exactly the same as relation (26) where diagonal entries of residual co-
variance matrix are zero and its off-diagonal entries can be nonzero only if the absolute
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value of corresponding entry in Markov matrix takes the maximum value \.

Condition (A.3) is exactly the same as inequality a;; > 0.

In the above lines, we covered one by one correspondence for conditions (A.0)-(A.3). But
note that we also covered all the equalities and inequalities that characterize unique optimal
solution of optimization program. In other words by above correspondence we proved that
both of the following derivations are true where second one is the reverse of first one. On
one hand, any optimal solution of optimization program gives a valid decomposition under
desired conditions. On the other hand, any valid decomposition under desired conditions
is a solution of proposed optimization program. Thus, we can infer that these two are
exactly equivalent and the result is proved. Since the solution of optimization program is
unique and according to the equivalence between this solution and decomposition under
those conditions, uniqueness is also established. |

Appendix D. Proof of Theorem 5

In this appendix, we first mention an outline of the primal-dual witness method and then
provide the detailed proof of the theorem.

D.1 Primal-Dual Witness Method

First, continuing the proof outline presented in section 6, we provide an outline of the primal-
dual witness method steps in order to establish equivalence between optimal solutions of
the original (19) and the modified (21) optimization programs.

1. The primal witness matrix .Jy; is defined as in (21).

2. The dual witness matrix is set as Z = —5" + jj\_/ll. It is defined in this way to satisfy
original program optimal solution characterization mentioned in appendix B.

3. We need to check the following feasibility conditions under which the modified program
solution is equivalent to the solution of original one:

(a) Hj M||oo0ff,s < A: Since we relaxed the o, bounds on off-diagonal entries in set
S, we need to make sure that the modified solution satisfies this bound in order
to have equivalence between modified and original programs solutions.

(b) Set (ZX)SR = (—f]" + j]\_/ll - 7(27))313 where Zw € 8||jMHLOg. Note that since
|(JM)ij| = A # Oforany (4,j) € Sg, then Z, and therefore above equation is well-
defined. Now we need to check: (Za) (JM) i > 0 for all (i,j) € Sg. This means

ij i
that they have the same sign or one of them is zero. We need this condition for
equivalence between solutions because Lagrangian multipliers in original program

(19) corresponding to inequality constraints should be nonnegative.

(c) HZHOO,SICV, < v: According to the (‘]M)S]ﬁ{ = 0 constraint in the modified pro-
gram, all the inequality constraints become inactive in the original one when
desired J, M = J, M equality is satisfied. Then, complementary slackness condi-
tion enforce all the Lagrangian multipliers corresponding to set S, to be zero.
These can be satisfied by the above strict dual feasibility. Also note that having
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zero Lagrangian multipliers results in zero residual entries, i.e., (Z R) ge =0and
M

therefore || A Rllco,55, = 0 when this feasibility condition is satisfied.

Also note that we dropped the positive-definiteness constraint ¥); —Xp > 0 in the proof
outline. Thus, in addition to above conditions, we also need to show that ¥ =X, —3r > 0
in the modified program.

Before we state the detailed proof for the theorem, we introduce a pair of definitions
which are used in the analysis. Let us define matrix F as difference between sample covari-
ance matrix and the exact covariance matrix

E:=3%"— %" (29)

We also define R(& J) as the difference between jj\_/ll and its first order Taylor expansion

around Jy,. Recall that A J was defined as A Ji= J; v — Jy. According to results for first
order derivative of inverse function J ]\_41 (Boyd and Vandenberghe, 2004), the remainder is

R(Ay) =Tt — Ty M+ Ty ATy (30)

D.2 Proof of the Theorem

Exploiting lemmata mentioned in Appendix E, Theorem 5 is proved as follows:

Proof According to the sample error bound mentioned in Lemma 4, we have ||E|s <
0f7(pT;n) for some 7 > 2 with probability greater than or equal to 1 — 1/p7~2. In the
discussion after this, it is assumed that the above bound for ||E||~ is satisfied and therefore
the following results are valid with probability greater than or equal to 1 — 1/p7 2.

By choosing v = 2§ ;(p™;n), we have ||E||oc < %7 as desired for Lemma 5. Choosing \s
as in (36) (compatible with what mentioned in the theorem), we only need to show that the
other bound on || R||« is also satisfied to be able to apply Lemma 5. As stated in the remark
after Theorem 5, the bound on sample complexity is not asymptotic and we assume the
following lower bound on the number of samples which is compatible with the asymptotic
form mentioned in the theorem:

4
n >y <pf; 1/ max{v*,4ld<1 n %)KSSKM max{l, — (1 n :)KSSK;{/[}}> (31)

for some [ > 1. Because of monotonic behaviour of the tail function, for any n satisfying
above bound, we have:

d7(p";n) < min e ! -1 (32)
PP =T 0 Qd(1 + =) Kgs Ky 161d(1 + 2K ZgK3, |

According to the selection for regularization parameters As and v and the bound on sample
error || E||so, we have:

(1 + g)% + QKSS(I + Z)}(Sf(p'r;n)

m

4Kss, Kss

= 2K A 2K FE <
r s5pAs + 2Ks5 (| E]loo +7) < [1_2KSSR
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_2Kgg(1+ )5f(p ) (=: \s)

1
1-2Ksg,
< 4Kss<1 + E>gf(PT; n),
where in the last inequality, we used the second condition is assumption (A.4) that Kgg, <

1/4. Note that second line is equal to As since we assigned the same value in (36). Applying
the bound (32) on above inequality, we have

1 -1
2K 55,05 + 2K55 (| Elloo i
ssps + 2K s (|| E|| +7)<mm{ZdKM Ald(1+ ™ )KssK3}

1 -1
< mi .
= { 1dK )y 21dK g5 K3, }
Thus, the conditions for Lemma 7 are satisfied and we have

18 lloe.s < 2K 5550 + 2K (| Elloo +7) < A5 < 4Ks (1+ 2 )(p75m). (33)

Above inequalities tell us multiple things. First, since the error ||A J|loo,s is bounded by
A5, the Ju entries in set S can not deviate from exact one Jy; more than As. We also
assumed that the off-diagonal entries in Jj3, are bounded by A*. Therefore according to
the definition of A5 := A — A\*, the entries in (j M)off, ¢ are bounded by A and therefore
the condition (a) for feasibility of primal-dual witness method is satisfied, i.e., we have
|]JMHOO,OE7S~§ A Second, since 1As|loo,5r = A5, we have ||Aslleos < [[As]loo,5, and
therefore ||Ay|lcoc = [|AJ|loo,55 = As Which results the following error bound

A T * m\—< T
18l 1= 173 = Tirlloo < 4Kiss (14 )8, (73 ). (34)

Furthermore, || A |/os < ﬁ bound can be concluded from above inequality by substituting

Sf (p7;n) from (32). Thus, the condition for Lemma 6 is satisfied and we have the following
bound on the remainder term

l
IR(BS) e < A2 Ky

_l ARty (14 7) Brtrsm]?

(07

l
161 - -
— 2Rt (14 ) 50 |5y 07m)
<Op(p7im) = 7,

where in the second inequality, we used error bound in (34) and the last inequality is
concluded from bound (32).

Now the conditions for Lemma 5 are satisfied and therefore we have the upper bound on
1A Rlloo,s5, < C37v and the strict dual feasibility on S§,. Second result satisfies condition (c)
of the primal-dual witness method feasibility conditions. The upper bound on || A Rlloo,55 in
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conjunction with the lower bound on (ZE) > (3 (mentioned in the theorem), ensures

that the sign of X7, and i are the same which results that the condition (b) of the feasibility
conditions for primal-dual witness method is satisfied. Since all three conditions (a)-(c) are
satisfied, we have equivalence between the modified program and the original one under
conditions specified in the theorem. It gives us both results (a) and (b) in the theorem.
Then by assuming lower bound on minimum nonzero value of J},, the result in part (c) is
also proved.

As mentioned before, we need to show that the dropped constraint ¥ = X — Xg = 0
is also satisfied. Since the conditions for Corollary 13 in Appendix E.5 are satisfied,
we have the spectral norm error bound (41) on overall covariance matrix . Apply-
ing the inverse tail function for Gaussian distribution in (35) to assumption (A.6) re-
sults that the minimum eigenvalue of exact covariance matrix X* satisfies lower bound
Amin(S) 2 (Ci + 2C)dS(p7m) + Coc [6,(375m)]* where Cs im (Ca -+ 2C3) /32 and
C7 := 2¢>C5. Then by exploiting Weyl’s theorem (Theorem 4.3.1 in Horn and Johnson
(1985)), the estimated covariance matrix S is positive definite and thus valid. Therefore,
the result is proved. |

Appendix E. Auxiliary Lemmata

First, the tail condition for a probability distribution is defined as follows.

Definition 12 (Tail Condition) The random vector X satisfies tail condition with pa-
rameters f and v, if there ezists a constant v, € (0,00) and function f : Nx (0, 00) — (0, 00)
such that for any (i,j) € V. x V:

1 1
for all —.
Fn.0) or a 56(0,1}*]

Note that since the function f(n,d) is an increasing function of both variables n and 4§,
we define the inverse functions my(r;0) and d¢(r;n) with respect to variables n and ¢
respectively (when the other argument is fixed), where f(n,d) = r.

P[S" - %5 > 6] <

E.1 Concentration Bounds

From Lemma 1 in Ravikumar et al. (2011), we have the following concentration bound for
the empirical covariance matrix of Gaussian random variables.

Lemma 3 (Ravikumar et al. 2011) Consider a set of Gaussian random variables with
covariance matrix X*. Given n i.i.d. samples, the sample covariance matriz X" satisfies

~ 52
PIE% — X5 > 6] < 4exp{—qu} for all § € (0,q),

for some constant g > 0.
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Thus the tail function for Gaussian random vector takes the exponential form with the
following corresponding inverse functions:

_ 2¢°log(4r)  — 2q?% log(4r
”f(r;5)=52( ) op(rim) = 24 log(4r)

Applying above Lemma, we get the following bound for sampling error.

- (35)

Lemma 4 (Ravikumar et al. 2011) For any 7 > 2 and sample size n such that §¢(p™;n) <
1/v«, we have

Pl||Elloc = 05(p";m)] < — 0.

p’T—2

E.2 Feasibility Conditions

In the following lemma, we propose some conditions to bound the residual error ||ﬁ Rlloo,Sk
and also satisfy the condition (c) of feasibility conditions required for equivalence between
the witness solution and the original one.

Lemma 5 Suppose that
Q@

2KSS (0%
= — 1+ )
As 1-2Kgsg, ( b (36)

then B

a) |ARllso,s5 < C37v for some C3 > 0.

b) 1 Z]lo0,85, <7-
Proof Applying definitions (29) and (30) to optimality condition considered in second step
of primal-dual witness method construction, gives the following equivalent equation

i ATy =S —R(A) + E+Z =0. (37)

Above equation is a p X p matrix equation. We can rewrite it as a linear equation with
size p? if we use the vectorized form of matrices. Vectorized form of a matrix D € RP*P is
a column vector D € RP* which is composed by concatenating the rows of matrix D in a
single column vector. In the vectorized form, we have

vee(Ji YA Y = (T e Iy DA, = TFA,.

Decomposing the vectorized form of (37) into three disjoint partitions S, Sg and S, gives
the following decomposed form

Fis Thse Tosg, ][ (B9), 0 (-R+E+2)g
FERS F*SRSR FERS]C\/I )\—g - (ZR)SR + (_R +E+ g) Sk =0,
Ussis Tsgsn Dsgss, 0 0 (-R+E+ Z)SC
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where we used the equalities (ﬁ J)SR = )\—; and (& J)S]Cw = 0. Note that vector )\—; only
includes +\; entries according to the constraints in the modified program. Also note that
Y% is zero in sets S and S§,. We also dropped the argument A; from remainder function
R(K J) to simplify the notation.

Similar to the orlglnal program, the matrix Z is composed of two parts, Zg and Z77 ie.,

Z = Zg + 'yZ Matrix Zg = % from equation (22), includes Lagrangian multipliers and
Zw € aHJMHl,off- For set S, ( )S = 0, since we don’t have any constraint in the program
and therefore the Lagrangian multipliers are zero. Applying this to the first row of equation

(38) and since I'y 4 is invertible, we have the following for error Ay in set S
X x —1 x Y P Fnl =
(Bs)g=Tis ™' [-Ths,ho + Bs — Bs —1(Z)s] (39)

In set Sg, ESR = (ER)SR + W(E,Y)S .

. Applying this to the second row of equation (38)
results

* X * N ~ = 53 Enl
L5 (A1) g + Topsprs + (Ar) g, +7(24)g, — Rsp + Esp =0,

Recall that we defined Ag := S — Y%. Substituting (39) in above equation results the

following for error A gr in set Sg

—~ _ % — — — —
(Ar)g, =TT~ [ IsspAs + Rs — Eg — ’Y(Zv)s}

— FZ'RSR)VS — V(ZV)SR + RSR — ESR~

Taking /, element-wise norm from above equation and using inequality || Az ||oo < || Ao ll% /oo
for any matrix A € R™*® and vector x € R?, results the bound

A * - * —1 ) -
IARlco,57 < I-Th,5T5s™ Thsp + Topsnllaots + IT5,5T5s ™ o [1Bslloo + [Eslloo + 7]
+ ([Rsgllos + 1Eszlloc + ),

_> ~
where we used the fact that ||As]|cc = As and || Z;||oc = 1. Now if we apply the assumptions
mentioned in the lemma,

~ 2Kgs(m + ) -1
A < | —=————||-T% oI T T
[ARoo,sr < [m(l —2Kss,) I=Tspslss sy + Uspsrlloo

F 22 (14 I8 5755 e )] N (40)

which proves part (a) of the Lemma.
Now if we substitute (39) in the equation from third row of (38), we have

= x —1 x Y . Fal = * N Fnl
Zss, = ~Te sThs [ s, A + Rs — Es — 'y(ZW)S] — T 5,0 + Rsg, — Bsg,.
Taking /., element-wise norm from above equation gives the following bound
~ . . _ _
1Z)lc0,55, < IT5¢,sT%s™ Tosp = Te spllacts + 105 sTss™ oo [[1Rslloo + 1 Eslloc + 7]
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+I[Rsg, lloo + [1Esg, [loo:
where we used the fact that HZWHOO = 1. Applying assumption (A.4) to above bound results
121|055, < (1 = a)As + (2 = @) [[[Rlloo + [[Ellcc] + (1 = )7

Using assumptions stated in the Lemma, we have

=~ [ QKSS « 2a
Zloose, < —————(1 —)1— 2 —a)— +(1—
12y, < | g (14 2) 1= 0+ 2= ) + (1= a) 4

< 4KSS<1+;)(1_@)+(2_a)3;y+(1_a):|'7
o= Do do

++O—047§%
m

< |4Kgg

where we used the bound on Kgg, in assumption (A.4) in the second inequality and the
fact that & > 0 in the third inequality. Final inequality is derived from assumption (A.5)
which finishes the proof of part (b). [ ]

E.3 Control of Remainder

In the following Lemma which is stated and proved in lemma 5 in Ravikumar et al. (2011),
the argument A controls the remainder function behavior.

Lemma 6 Suppose that the element-wise loy bound |A]loe < m for some | > 1 holds.
Then

R(A)) = (Ji "B’ QU3 ‘1,
where Q := Ziio(—l)k(J&_lﬁJ) with bound ||QT |, . Also, in terms of element-

wise Lo norm, we have

- A
[R(AJ)]loo < md\|AJ\|goK?4-

E.4 Control of AJ

According to the primal-dual witness solutions construction, we have the error bounds on
A, within the sets Sk and S§; such that HAJHOO Sp = As and HAJHOOS = 0. In the

following lemma, we propose some conditions to control the error HAJ”oo,s.

Lemma 7 Suppose that

1 [—1
= 2K 55 A5 + 2K 5 (|| Ellos + ) < mi , ,
r 5555 + 2K 55 (| Elloc + ) —mm{ldKM 2ldK55K§’\’4}

then we have the following element-wise lo bound for (AJ)

S’

1A loc,s < 7
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The proof is within the same lines of Lemma 6 proof in Ravikumar et al. (2011) but with
some modifications since the error ||Ay|loo,5, is not zero and therefore the nonzero value
As arises in the final result. Since the modified optimization program (21) is different with
the modified program in Ravikumar et al. (2011), it is worth discussing about existing a
unique solution for the modified optimization program (21). This uniqueness can be shown
with similar discussion presented in Appendix B for uniqueness of the solution of original
program (19). We only need to show that there is no problem in uniqueness by removing the
off-diagonal constaraints for set .S in the modified program. By Lagrangian duality, the ¢;
(7) for some bounded
C(). Therefore, the off-diagonal entries in set S where the corresponding constraints were
relaxed in the modified program are still bounded because of this ¢; constraint. Hence, the
modified program (21) has a unique solution.

E.5 Spectral Norm Error Bound on Overall Covariance Matrix ¥ = JZ\_/[1 — YR

Corollary 13 Under the same assumptions (excluding (A.6)) as Theorem 5, with proba-
bility greater than 1 — 1/p°, the overall covariance matriz estimate ¥ = ¥y — X satisfies
spectral norm error bound

1S =20 < (Ca+ 2Ca)dyp(p7sm) + Cod? 377 m)] (41)

Proof We first bound the spectral norm errors for the Markov and residual covariance
matrices 3y and S g. Along the same lines as Corollary 4 proof in Ravikumar et al. (2011),
the spectral norm error |||E M — 23|l can be bounded as

IS0 — Sl < Cadd (07 m) + Csd®[5;(073m)]

where Cy = 4(1+ ) KssK3y and Cs = 19 (1 + ) K3g 3.

The spectral norm error [|[Sg — % &Il can be also bounded as
« * « * « * m 5y
IZr = TRl < 2R — Ekllo < dlEr = Egllo < —C3dds(p75m),

where the first inequality is the property of spectral norm which is bounded by ¢..-operator
norm, second inequality is a result of the fact that 5 r and X7 has at most d nonzero entries
in each row (since Sg C Sjs) and the last inequality is concluded from the upper bound on
/~ element-wise norm error on residual matrix estimation stated in part (a) of Theorem 5.
Applying the above bounds to the overall covariance matrix estimation y=5 M — 5 r and
using the triangular inequality for norms, the bound in (41) is proven. |

Appendix F. Proof of Corollary 9

Proof The result in this corollary is a special case of general result in Theorem 5 when
A* = 0 and some minor modifications are considered in problem formulation. Note that, it is
expressed in assumption (A.1) that the off-diagonal entries of exact Markov matrix J}, are
upper bounded by some positive A*. In order to extend the proof to the case of \* = 0 (The
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case in this corollary), we need some minor modifications. First, the identifiability assump-
tions (A.0)-(A.3) can be ignored and instead it is assumed that the Markov part J;, (or
equivalently ¥7,) is diagonal and the residual part ¥}, has only nonzero off-diagonal entries.
Since the diagonal Markov matrix and off-diagonal residual matrix do not have any nonzero
overlapping entries, it is natural that we do not require any more identifiability assumptions.
Then, with these new assumptions, the set Sy is defined as Sy := SpU{(i,i)]i = 1,...,p}
where Sp is defined the same as (10) and also set S is defined the same as (11) which results
that set S includes only diagonal entries. Thus, the off-diagonal entries belongs to sets Sg
and S9,;. Since X7, is a diagonal matrix, all submatrices of I'* which are indexed by sets Sg
or S5, are complete zero matrices. The result is that the terms which are bounded in the
mutual incoherence condition (A.4) are already zero and thus there is no need to consider
those additional assumptions in the corollary.

By making these changes in the problem formulation, the result in Corollary 9 can be proven
within the same lines of general result proof in Theorem 5. It is only required to change the

constraint on set Sg in the modified optimization program to (J M) Sp = A sign((E}}) SR> .
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Abstract

Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo (MCMC) algorithm that
avoids the random walk behavior and sensitivity to correlated parameters that plague many
MCMC methods by taking a series of steps informed by first-order gradient information.
These features allow it to converge to high-dimensional target distributions much more
quickly than simpler methods such as random walk Metropolis or Gibbs sampling. However,
HMC’s performance is highly sensitive to two user-specified parameters: a step size € and
a desired number of steps L. In particular, if L is too small then the algorithm exhibits
undesirable random walk behavior, while if L is too large the algorithm wastes computation.
We introduce the No-U-Turn Sampler (NUTS), an extension to HMC that eliminates the
need to set a number of steps L. NUTS uses a recursive algorithm to build a set of likely
candidate points that spans a wide swath of the target distribution, stopping automatically
when it starts to double back and retrace its steps. Empirically, NUTS performs at least as
efficiently as (and sometimes more efficiently than) a well tuned standard HMC method,
without requiring user intervention or costly tuning runs. We also derive a method for
adapting the step size parameter ¢ on the fly based on primal-dual averaging. NUTS
can thus be used with no hand-tuning at all, making it suitable for applications such as
BUGS-style automatic inference engines that require efficient “turnkey” samplers.

Keywords: Markov chain Monte Carlo, Hamiltonian Monte Carlo, Bayesian inference,
adaptive Monte Carlo, dual averaging

1. Introduction

Hierarchical Bayesian models are a mainstay of the machine learning and statistics com-
munities. Exact posterior inference in such models is rarely tractable, however, and so
researchers and practitioners must usually resort to approximate statistical inference meth-
ods. Deterministic approximate inference algorithms (for example, those reviewed by Wain-
wright and Jordan 2008) can be efficient, but introduce bias and can be difficult to apply
to some models. Rather than computing a deterministic approximation to a target poste-
rior (or other) distribution, Markov chain Monte Carlo (MCMC) methods offer schemes for

(©2014 Matthew D. Hoffman and Andrew Gelman.
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drawing a series of correlated samples that will converge in distribution to the target distri-
bution (Neal, 1993). MCMC methods are sometimes less efficient than their deterministic
counterparts, but are more generally applicable and are asymptotically unbiased.

Not all MCMC algorithms are created equal. For complicated models with many param-
eters, simple methods such as random-walk Metropolis (Metropolis et al., 1953) and Gibbs
sampling (Geman and Geman, 1984) may require an unacceptably long time to converge
to the target distribution. This is in large part due to the tendency of these methods to
explore parameter space via inefficient random walks (Neal, 1993). When model parameters
are continuous rather than discrete, Hamiltonian Monte Carlo (HMC), also known as hybrid
Monte Carlo, is able to suppress such random walk behavior by means of a clever auxiliary
variable scheme that transforms the problem of sampling from a target distribution into the
problem of simulating Hamiltonian dynamics (Neal, 2011). The cost of HMC per indepen-
dent sample from a target distribution of dimension D is roughly O(D?*), which stands in
sharp contrast with the O(D?) cost of random-walk Metropolis (Creutz, 1988).

HMC’s increased efficiency comes at a price. First, HMC requires the gradient of the
log-posterior. Computing the gradient for a complex model is at best tedious and at worst
impossible, but this requirement can be made less onerous by using automatic differentiation
(Griewank and Walther, 2008). Second, HMC requires that the user specify at least two
parameters: a step size € and a number of steps L for which to run a simulated Hamiltonian
system. A poor choice of either of these parameters will result in a dramatic drop in HMC’s
efficiency. Methods from the adaptive MCMC literature (see Andrieu and Thoms 2008 for
a review) can be used to tune € on the fly, but setting L typically requires one or more
costly tuning runs, as well as the expertise to interpret the results of those tuning runs.
This hurdle limits the more widespread use of HMC, and makes it challenging to incorporate
HMC into a general-purpose inference engine such as BUGS (Gilks and Spiegelhalter, 1992),
JAGS (http://mcmc-jags.sourceforge.net), Infer. NET (Minka et al.), HBC (Daume III,
2007), or PyMC (Patil et al., 2010).

The main contribution of this paper is the No-U-Turn Sampler (NUTS), an MCMC
algorithm that closely resembles HMC, but eliminates the need to choose the problematic
number-of-steps parameter L. We also provide a new dual averaging (Nesterov, 2009)
scheme for automatically tuning the step size parameter € in both HMC and NUTS, making
it possible to run NUTS with no hand-tuning at all. We will show that the tuning-free
version of NUTS samples as efficiently as (and sometimes more efficiently than) HMC, even
ignoring the cost of finding optimal tuning parameters for HMC. Thus, NUTS brings the
efficiency of HMC to users (and generic inference systems) that are unable or disinclined to
spend time tweaking an MCMC algorithm.

Our algorithm has been implemented in C++ as part of the new open-source Bayesian
inference package, Stan (Stan Development Team, 2013). Matlab code implementing the
algorithms, along with Stan code for models used in our simulation study, are also available
at http://www.cs.princeton.edu/~mdhoffma/.

2. Hamiltonian Monte Carlo

In Hamiltonian Monte Carlo (HMC) (Neal, 2011, 1993; Duane et al., 1987), we introduce an
auxiliary momentum variable r; for each model variable 8;. In the usual implementation,
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Algorithm 1 Hamiltonian Monte Carlo
Given 6%, ¢, L, £, M:
for m =1to M do
Sample 70 ~ N(0,I).
Set 0™ — M1 § + gm0,
fori=1to L do
Set 0, 7 + Leapfrog(f, 7, €).
end for
With probability o = min {1,

0)— 177 = -
expip(ﬁ@)i } } ,set 0™ «— 0, r'™ +— —7.
2

7070}

end for

function Leapfrog(6,r,¢)
Set 7 < r + (e/2)VgL(0).
Set 0 < 0 + €F.

Set 7« 7 + (¢/2)Vo.L(0).

return 0,7.

these momentum variables are drawn independently from the standard normal distribution,
yielding the (unnormalized) joint density

p(f,7) o< exp{L(0) — %r ),

where L is the logarithm of the joint density of the variables of interest  (up to a normalizing
constant) and x - y denotes the inner product of the vectors x and y. We can interpret this
augmented model in physical terms as a fictitious Hamiltonian system where 6 denotes a
particle’s position in D-dimensional space, rqy denotes the momentum of that particle in
the dth dimension, £ is a position-dependent negative potential energy function, %7‘ -1 is
the kinetic energy of the particle, and log p(#,r) is the negative energy of the particle. We
can simulate the evolution over time of the Hamiltonian dynamics of this system via the
Stormer-Verlet (“leapfrog”) integrator, which proceeds according to the updates

rt+€/2 =yt + (E/Q)Vgﬁ(gt); pite — gt + 674t-i-e/2; pite — rt—i—e/? + (6/2)V9£(9t+6),

where ! and 6% denote the values of the momentum and position variables r and 6 at time
t and Vy denotes the gradient with respect to 6. Since the update for each coordinate
depends only on the other coordinates, the leapfrog updates are volume-preserving—that
is, the volume of a region remains unchanged after mapping each point in that region to a
new point via the leapfrog integrator.

A standard procedure for drawing M samples via Hamiltonian Monte Carlo is described
in Algorithm 1. I denotes the identity matrix and N (i, ) denotes a multivariate normal
distribution with mean p and covariance matrix 3. For each sample m, we first resample
the momentum variables from a standard multivariate normal, which can be interpreted as
a Gibbs sampling update. We then apply L leapfrog updates to the position and momentum
variables € and r, generating a proposal position-momentum pair 0,7. We propose setting
0™ = 0 and r™ = —7, and accept or reject this proposal according to the Metropolis
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algorithm (Metropolis et al., 1953). This is a valid Metropolis proposal because it is time-
reversible and the leapfrog integrator is volume-preserving; using an algorithm for simulating
Hamiltonian dynamics that did not preserve volume complicates the computation of the
Metropolis acceptance probability (Lan et al., 2012). The negation of # in the proposal is
theoretically necessary to produce time-reversibility, but can be omitted in practice if one
is only interested in sampling from p(0).

The term log 1[; (2’2, on which the acceptance probability a depends, is the negative
change in energy oé the simulated Hamiltonian system from time 0 to time eL. If we could
simulate the Hamiltonian dynamics exactly, then a would always be 1, since energy is con-

served in Hamiltonian systems. The error introduced by using a discrete-time simulation
o
portional to €2 for large L, or € if L = 1 (Leimkuhler and Reich, 2004). In principle the
error can grow without bound as a function of L, but it typically does not due to the sym-
plecticness of the leapfrog discretization. This allows us to run HMC with many leapfrog
steps, generating proposals for 8 that have high probability of acceptance even though they

are distant from the previous sample.

depends on the step size parameter e—specifically, the change in energy |log | is pro-

The performance of HMC depends strongly on choosing suitable values for ¢ and L. If
€ is too large, then the simulation will be inaccurate and yield low acceptance rates. If €
is too small, then computation will be wasted taking many small steps. If L is too small,
then successive samples will be close to one another, resulting in undesirable random walk
behavior and slow mixing. If L is too large, then HMC will generate trajectories that loop
back and retrace their steps. This is doubly wasteful, since work is being done to bring the
proposal 6 closer to the initial position ™~ 1. Worse, if L is chosen so that the parameters
jump from one side of the space to the other each iteration, then the Markov chain may
not even be ergodic (Neal, 2011). More realistically, an unfortunate choice of L may result
in a chain that is ergodic but slow to move between regions of low and high density.

3. Eliminating the Need to Hand-Tune HMC

HMC is a powerful algorithm, but its usefulness is limited by the need to tune the step size
parameter € and number of steps L. Tuning these parameters for any particular problem re-
quires some expertise, and usually one or more preliminary runs. Selecting L is particularly
problematic; it is difficult to find a simple metric for when a trajectory is too short, too long,
or “just right,” and so practitioners commonly rely on heuristics based on autocorrelation
statistics from preliminary runs (Neal, 2011).

Below, we present the No-U-Turn Sampler (NUTS), an extension of HMC that eliminates
the need to specify a fixed value of L. In Section 3.2 we present schemes for setting € based
on the dual averaging algorithm of Nesterov (2009).

3.1 No-U-Turn Hamiltonian Monte Carlo

Our first goal is to devise an MCMC sampler that retains HMC’s ability to suppress random
walk behavior without the need to set the number L of leapfrog steps that the algorithm
takes to generate a proposal. We need some criterion to tell us when we have simulated
the dynamics for “long enough,” that is, when running the simulation for more steps would

1596



THE NO-U-TURN SAMPLER

Figure 1: Example of building a binary tree via repeated doubling. Each doubling proceeds
by choosing a direction (forwards or backwards in time) uniformly at random,
then simulating Hamiltonian dynamics for 2/ leapfrog steps in that direction,
where j is the number of previous doublings (and the height of the binary tree).
The figures at top show a trajectory in two dimensions (with corresponding binary
tree in dashed lines) as it evolves over four doublings, and the figures below show
the evolution of the binary tree. In this example, the directions chosen were
forward (light orange node), backward (yellow nodes), backward (blue nodes),
and forward (green nodes).

no longer increase the distance between the proposal @ and the initial value of . We use
a convenient criterion based on the dot product between 7 (the current momentum) and
6—0 (the vector from our initial position to our current position), which is the derivative
with respect to time (in the Hamiltonian system) of half the squared distance between the
initial position 6 and the current position 0:

d6-0)-(6-6) - d ~ . i
= ; =00 (6-0)=0-0)7 (1)

In other words, if we were to run the simulation for an infinitesimal amount of additional
time, then this quantity is proportional to the progress we would make away from our
starting point 6.

This suggests an algorithm in which one runs leapfrog steps until the quantity in Equa-
tion 1 becomes less than 0; such an approach would simulate the system’s dynamics until
the proposal location 0 started to move back towards 6. Unfortunately this algorithm does
not guarantee time reversibility, and is therefore not guaranteed to converge to the correct
distribution. NUTS overcomes this issue by means of a recursive algorithm that preserves
reversibility by running the Hamiltonian simulation both forward and backward in time.

NUTS begins by introducing a slice variable u with conditional distribution p(u|d,r) =
Uniform(u; [0, exp{£(6) — 3r - r}]), which renders the conditional distribution p(6,r|u) =
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Figure 2: Example of a trajectory generated during one iteration of NUTS. The blue ellipse
is a contour of the target distribution, the black open circles are the positions 6
traced out by the leapfrog integrator and associated with elements of the set of
visited states B, the black solid circle is the starting position, the red solid circles
are positions associated with states that must be excluded from the set C of
possible next samples because their joint probability is below the slice variable u,
and the positions with a red “x” through them correspond to states that must be
excluded from C to satisfy detailed balance. The blue arrow is the vector from the
positions associated with the leftmost to the rightmost leaf nodes in the rightmost
height-3 subtree, and the magenta arrow is the (normalized) momentum vector
at the final state in the trajectory. The doubling process stops here, since the
blue and magenta arrows make an angle of more than 90 degrees. The crossed-
out nodes with a red “x” are in the right half-tree, and must be ignored when
choosing the next sample.

Uniform(0, r; {6/, r'| exp{L(0) — 3r -} > u}). This slice sampling step is not strictly neces-
sary, but it simplifies both the derivation and the implementation of NUTS.
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At a high level, after resampling u|6, 7, NUTS uses the leapfrog integrator to trace out a
path forwards and backwards in fictitious time, first running forwards or backwards 1 step,
then forwards or backwards 2 steps, then forwards or backwards 4 steps, etc. This doubling
process implicitly builds a balanced binary tree whose leaf nodes correspond to position-
momentum states, as illustrated in Figure 1. The doubling is halted when the subtrajectory
from the leftmost to the rightmost nodes of any balanced subtree of the overall binary tree
starts to double back on itself (i.e., the fictional particle starts to make a “U-turn”). At
this point NUTS stops the simulation and samples from among the set of points computed
during the simulation, taking care to preserve detailed balance. Figure 2 illustrates an
example of a trajectory computed during an iteration of NUTS.

Pseudocode implementing a efficient version of NUTS is provided in Algorithm 3. A
detailed derivation follows below, along with a simplified version of the algorithm that
motivates and builds intuition about Algorithm 3 (but uses much more memory and makes
smaller jumps).

3.1.1 DERIVATION OF SIMPLIFIED NUTS ALGORITHM

NUTS further augments the model p(6,r) o exp{L(¢) — 3r-r} with a slice variable u (Neal,
2003). The joint probability of 8,7, and u is

p(0,r,u) o< I[u € [0,exp{L(0) — %T -rH],

where I[-] is 1 if the expression in brackets is true and 0 if it is false. The (unnormalized)
marginal probability of # and r (integrating over u) is

p(0,7) o< exp{L(0) — 51 -1},

as in standard HMC. The conditional probabilities p(u|@,r) and p(0, r|u) are each uniform,
so long as the condition u < exp{L(#) — 4 - r} is satisfied.

We also add a finite set C of candidate position-momentum states and another finite set
B O C to the model. B will be the set of all position-momentum states that the leapfrog
integrator traces out during a given NUTS iteration, and C will be the subset of those
states to which we can transition without violating detailed balance. B will be built up by
randomly taking forward and backward leapfrog steps, and C will selected deterministically
from B. The random procedure for building B and C given 6, r, u, and € will define a
conditional distribution p(B,C|0,r, u,€), upon which we place the following conditions:

C.1: All elements of C must be chosen in a way that preserves volume. That is, any
deterministic transformations of 0, r used to add a state €, 7’ to C must have a Jacobian
with unit determinant.

C.2: p((0,r) €ClO,r,u,e) = 1.

C.3: p(u < exp{L(0) — 3r' - 1'}|(#/,r') € C) = 1.

C.4: If (0,r) € C and (#',r") € C then for any B, p(B,C|0,r,u,e) = p(B,C|0',r',u,€).

C.1 ensures that p(0,7((6,r) € C) x p(f,r), that is, if we restrict our attention to the

elements of C then we can treat the unnormalized probability density of a particular element
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of C as an unnormalized probability mass. C.2 says that the current state 6,7 must be
included in C. C.3 requires that any state in C be in the slice defined by wu, that is, that any
state (¢',r") € C must have equal (and positive) conditional probability density p(6’, r'|u).
C.4 states that B and C must have equal probability of being selected regardless of the
current state 8, r as long as (6,r) € C (which it must be by C.2).

Deferring for the moment the question of how to construct and sample from a distribu-
tion p(B,C|0,r,u, €) that satisfies these conditions, we will now show that the the following
procedure leaves the joint distribution p(@,r, u, B,C|e) invariant:

1. sample r ~ N (0, I),

2. sample u ~ Uniform([0, exp{L(6") — %r -r}]),

3. sample B,C from their conditional distribution p(B,C|0¢,r,u, €),
4. sample 01 r ~ T(6%,7,C),

where T'(0',7'|0,r,C) is a transition kernel that leaves the uniform distribution over C in-
variant, that is, T must satisfy

[
@ > 70,7 |o.r,c) = W) €C]
€] (8,r)eC C|

for any @’,7'. The notation 0+, r ~ T(0!,r,C) denotes that we are resampling r in a way
that depends on its current value.

Steps 1, 2, and 3 resample 7, u, B, and C from their conditional joint distribution given
0%, and therefore together constitute a valid Gibbs sampling update. Step 4 is valid because
the joint distribution of § and r given w, B,C, and ¢ is uniform on the elements of C:

p(97 T‘”? B7 C7 6) & p(B7 6’07 r’ u? 6)p(07 r‘u)
x p(B,ClO,r,u,e)l[u < exp{L(f) — %r -1} (2)
x I[(8,r) € C].

Condition C.1 allows us to treat the unnormalized conditional density p(0,r|u) o Ifu <
exp{L(#) — ir - r}] as an unnormalized conditional probability mass function. Conditions
C.2 and C.4 ensure that p(B,C|0,r,u,€) x I[(#,r) € C] because by C.2 (0, r) must be in C,
and by C.4 for any B,C pair p(B,C|0,7,u,¢€) is constant as a function of # and r as long as
(6,7) € C. Condition C.3 ensures that (,7) € C = u < exp{L(0) — 1r-r} (so the p(0, r|u, €)
term is redundant). Thus, Equation 2 implies that the joint distribution of 6 and r given u
and C is uniform on the elements of C, and we are free to choose a new 8! r'*+1 from any
transition kernel that leaves this uniform distribution on C invariant.

We now turn our attention to the specific form for p(B,C|0,r,u,e) used by NUTS.
Conceptually, the generative process for building B proceeds by repeatedly doubling the
size of a binary tree whose leaves correspond to position-momentum states. These states
will constitute the elements of B. The initial tree has a single node corresponding to the
initial state. Doubling proceeds by choosing a random direction v; ~ Uniform({—1,1}) and
taking 27 leapfrog steps of size vje (i.e., forwards in fictional time if v; = 1 and backwards in
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fictional time if v; = —1), where j is the current height of the tree. (The initial single-node
tree is defined to have height 0.) For example, if v; = 1, the left half of the new tree is the
old tree and the right half of the new tree is a balanced binary tree of height j whose leaf
nodes correspond to the 27 position-momentum states visited by the new leapfrog trajectory.
This doubling process is illustrated in Figure 1. Given the initial state 6, r and the step size
€, there are 27 possible trees of height j that can be built according to this procedure, each
of which is equally likely. Conversely, the probability of reconstructing a particular tree of
height j starting from any leaf node of that tree is 277 regardless of which leaf node we
start from.!

We cannot keep expanding the tree forever, of course. We want to continue expanding B
until one end of the trajectory we are simulating makes a “U-turn” and begins to loop back
towards another position on the trajectory. At that point continuing the simulation is likely
to be wasteful, since the trajectory will retrace its steps and visit locations in parameter
space close to those we have already visited. We also want to stop expanding B if the
error in the simulation becomes extremely large, indicating that any states discovered by
continuing the simulation longer are likely to have astronomically low probability. (This
may happen if we use a step size € that is too large, or if the target distribution includes
hard constraints that make the log-density £ go to —oo in some regions.)

The second rule is easy to formalize—we simply stop doubling if the tree includes a leaf
node whose state @, r satisfies

1
L(0) — SUN logu < —Apax (3)

for some nonnegative Ap.x. We recommend setting Apnax to a large value like 1000 so
that it does not interfere with the algorithm so long as the simulation is even moderately
accurate.

We must be careful when defining the first rule so that we can build a sampler that
neither violates detailed balance nor introduces excessive computational overhead. To de-
termine whether to stop doubling the tree at height j, NUTS considers the 2/ — 1 balanced
binary subtrees of the height-j tree that have height greater than 0. NUTS stops the dou-
bling process when for one of these subtrees the states 6=,r~ and 6%, r" associated with
the leftmost and rightmost leaves of that subtree satisfies

Or—67)-r~ <0 or (T —-07)-r" <. (4)

That is, we stop if continuing the simulation an infinitesimal amount either forward or back-
ward in time would reduce the distance between the position vectors = and 7. Evaluating
the condition in Equation 4 for each balanced subtree of a tree of height j requires 2771 — 2
inner products, which is comparable to the number of inner products required by the 2/ — 1
leapfrog steps needed to compute the trajectory. Except for very simple models with very
little data, the cost of these inner products should be negligible compared to the cost of
computing gradients.

1. This procedure resembles the doubling procedure devised by Neal (2003) to update scalar variables in a
way that leaves their conditional distribution invariant. The doubling procedure finds a set of candidate
points by repeatedly doubling the size of a segment of the real line containing the initial point. NUTS,
by contrast, repeatedly doubles the size of a finite candidate set of vectors that contains the initial state.
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This doubling process defines a distribution p(B|6, r, u, €). We now define a deterministic
process for deciding which elements of B go in the candidate set C, taking care to satisfy
conditions C.1-C.4 on p(B,C|6,r,u,€) laid out above. C.1 is automatically satisfied, since
leapfrog steps are volume preserving and any element of C must be within some number
of leapfrog steps of every other element of C. C.2 is satisfied as long as we include the
initial state 6,7 in C, and C.3 is satisfied if we exclude any element 6,7’ of B for which
exp{L(0') — %7" -1’} < u. To satisfy condition C.4, we must ensure that p(B,C|0,r,u,€) =
p(B,C|0' 7" u,€) for any (6',7") € C. For any start state (6',r') € B, there is at most one
series of directions {vy,...,v;} for which the doubling process will reproduce B, so as long
as we choose C deterministically given B either p(B,C|0,7' u,€) = 277 = p(B,C|0,7,u,¢€)
or p(B,C|0',r',u,e) = 0. Thus, condition C.4 will be satisfied as long as we exclude from
C any state 0,7 that could not have generated B. The only way such a state can arise is
if starting from ', 7/ results in the stopping conditions in Equations 3 or 4 being satisfied
before the entire tree has been built, causing the doubling process to stop too early. There
are two cases to consider:

1. The doubling procedure was stopped because either equation 3 or Equation 4 was
satisfied by a state or subtree added during the final doubling iteration. In this case
we must exclude from C any element of B that was added during this final doubling
iteration, since starting the doubling process from one of these would lead to a stopping
condition being satisfied before the full tree corresponding to B has been built.

2. The doubling procedure was stopped because equation 4 was satisfied for the leftmost
and rightmost leaves of the full tree corresponding to B. In this case no stopping
condition was met by any state or subtree until B had been completed, and condition
C.4 is automatically satisfied.

Algorithm 2 shows how to construct C incrementally while building B. After resam-
pling the initial momentum and slice variables, it uses a recursive procedure resembling a
depth-first search that eliminates the need to explicitly store the tree used by the doubling
procedure. The BuildTree() function takes as input an initial position § and momentum r,
a slice variable u, a direction v € {—1,1}, a depth j, and a step size €. It takes 27 leapfrog
steps of size ve (i.e., forwards in time if v = 1 and backwards in time if v = —1), and returns

1. the backwardmost and forwardmost position-momentum states 0—,r~ and 61, r"
among the 27 new states visited;

2. a set C' of position-momentum states containing each newly visited state 6',r" for
which exp{L(0') — 31’ - '} > u; and

3. an indicator variable s; s = 0 indicates that a stopping criterion was met by some state
or subtree of the subtree corresponding to the 27 new states visited by BuildTree().

At the top level, NUTS repeatedly calls BuildTree() to double the number of points that
have been considered until either BuildTree() returns s = 0 (in which case doubling stops
and the new set C’ that was just returned must be ignored) or Equation 4 is satisfied for
the new backwardmost and forwardmost position-momentum states 6,7~ and 0%, r" yet
considered (in which case doubling stops but we can use the new set C’). Finally, we select
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Algorithm 2 Naive No-U-Turn Sampler
Given 6%, €, £, M:
for m=1to M do
Resample r° ~ N(0, I).
Resample u ~ Uniform([0, exp{£(6™~* — 170 - r0}])
Initialize 6= = ™1, 0T = 0™~ r= =20 ¢rT =90 j=0,C = {(0™ 1,70}, s =1.
while s =1 do
Choose a direction v; ~ Uniform({—1,1}).
if v; = —1 then
~,r—,—,—,C, s < BuildTree(0~, 7", u, v, j, €).
else
—,—, 07, rT.C'" s < BuildTree(0", 7", u,vj, j, €).
end if
if s =1 then
C«+Ccuc.
end if
s« SO —07)-r= > 0I[(0T —07)-r+ >0].
j—J+1
end while
Sample 8™, r uniformly at random from C.
end for

function BuildTree(6, r, u, v, j, €)
if j =0 then
Base case—take one leapfrog step in the direction v.
0',r" + Leapfrog(0, r, ve).
o { {07} if u<exp{L(0')— 3" 7'}
0 else
s I[L(0) — 3r' ' > logu — Apax].
return 6/, 1,0, 1v',C’, 5.
else
Recursion—1build the left and right subtrees.
0=, r=,0T,r+t.C" s < BuildTree(d,r,u,v,j — 1,¢).
if v =—1 then

0=, r—,—,—,C",s" « BuildTree(6~, 7, u,v,j — 1,€).
else

—, =, 07 r*.C", 5" + BuildTree(0,r+, u,v,5 — 1,¢€).
end if
s &[0T —07)-r~ > 0]I[(0F —67)-rT >0].
'+ cuc.
return 0~ ,r—, 07, rT,C’ 5.

end if

the next position and momentum 6™, r uniformly at random from C, the union of all of the
valid sets C’ that have been returned, which clearly leaves the uniform distribution over C
invariant.

To summarize, Algorithm 2 defines a transition kernel that leaves p(0, 7, u, B, C|e) invari-
ant, and therefore leaves the target distribution p(6) x exp{L(#)} invariant. It does so by
resampling the momentum and slice variables r and u, simulating a Hamiltonian trajectory
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forwards and backwards in time until that trajectory either begins retracing its steps or
encounters a state with very low probability, carefully selecting a subset C of the states
encountered on that trajectory that lie within the slice defined by the slice variable u, and
finally choosing the next position and momentum variables 8™ and r uniformly at random
from C. Figure 2 shows an example of a trajectory generated by an iteration of NUTS where
Equation 4 is satisfied by the height-3 subtree at the end of the trajectory. Below, we will
introduce some improvements to algorithm 2 that boost the algorithm’s memory efficiency
and allow it to make larger jumps on average.

3.1.2 ErrFICIENT NUTS

Algorithm 2 requires 2/ — 1 evaluations of £(#) and its gradient (where j is the number
of times BuildTree() is called), and O(27) additional operations to determine when to stop
doubling. In practice, for all but the smallest problems the cost of computing £ and its
gradient still dominates the overhead costs, so the computational cost of algorithm 2 per
leapfrog step is comparable to that of a standard HMC algorithm. However, Algorithm
2 also requires that we store 2/ position and momentum vectors, which may require an
unacceptably large amount of memory. Furthermore, there are alternative transition kernels
that satisfy detailed balance with respect to the uniform distribution on C that produce
larger jumps on average than simple uniform sampling. Finally, if a stopping criterion
is satisfied in the middle of the final doubling iteration then there is no point in wasting
computation to build up a set C’ that will never be used.

The third issue is easily addressed—if we break out of the recursion as soon as we
encounter a zero value for the stop indicator s then the correctness of the algorithm is
unaffected and we save some computation. We can address the second issue by using a more
sophisticated transition kernel to move from one state (6,7) € C to another state (6',r') € C
while leaving the uniform distribution over C invariant. This kernel admits a memory-
efficient implementation that only requires that we store O(j) position and momentum
vectors, rather than O(27).

Consider the transition kernel

W lf |Cnew| > |C01d‘7
T(w/’w, C) = |Cngw‘ H[wlecnew] ‘cnew' , . ow old ,
o] e (1—W)H[w=w] if [Cre] < e

where w and w’ are shorthands for position-momentum states (6,r), C**" and C° are disjoint
subsets of C such that C***UC? = C, and w € C°. In English, T' proposes a move from C°

new

to a random state in C**" and accepts the move with probability %. This is equivalent

to a Metropolis-Hastings kernel with proposal distribution g(w’,CoY, C¥/|w, C', C"")
I[w' € Cre]I[Cco'Y = Crev]I[C™ = €], and it is straightforward to show that it satisfies
detailed balance with respect to the uniform distribution on C, that is,

p(w|C)T (w'lw, C) = p(w'|C)T (w]w',C),

and that T therefore leaves the uniform distribution over C invariant. If we let C**" be
the (possibly empty) set of elements added to C during the final iteration of the doubling
(i.e., those returned by the final call to BuildTree() and C°'* be the older elements of C,
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then we can replace the uniform sampling of C at the end of Algorithm 2 with a draw
from T'(6%,7%,C) and leave the uniform distribution on C invariant. In fact, we can apply T
after every doubling, proposing a move to each new half-tree in turn. Doing so leaves the
uniform distribution on each partially built C invariant, and therefore does no harm to the
invariance of the uniform distribution on the fully built set C. Repeatedly applying T in
this way increases the probability that we will jump to a state 71 far from the initial state
0%; considering the process in reverse, it is as though we first tried to jump to the other
side of C, then if that failed tried to make a more modest jump, and so on. This transition
kernel is thus akin to delayed-rejection MCMC methods (Tierney and Mira, 1999), but in
this setting we can avoid the usual costs associated with evaluating new proposals.

The transition kernel above still requires that we be able to sample uniformly from the
set C’ returned by BuildTree(), which may contain as many as 2/~! elements. In fact, we
can sample from C’ without maintaining the full set C’ in memory by exploiting the binary
tree structure in Figure 1. Consider a subtree of the tree explored in a call to BuildTree(),
and let Coupiree denote the set of its leaf states that are in C': we can factorize the probability
that a state (0,7) € Csuptree Will be chosen uniformly at random from C’ as

1 |Csubtree| 1
0,7|C'") = = =
p( ,’I"| ) |C/| |CI| ‘Csubtree|

= p((97 T) € Csubtreelc)p(aa 7'](9, T) € Csubtree: C)

That is, p(6, r|C’) is the product of the probability of choosing some node from the subtree
multiplied by the probability of choosing 6, uniformly at random from Cgyptree. We use
this observation to sample from C’ incrementally as we build up the tree. Each subtree
above the bottom layer is built of two smaller subtrees. For each of these smaller subtrees,
we sample a 0, pair from p(6,7[(0,7) € Csubtree) to represent that subtree. We then choose
between these two pairs, giving the pair representing each subtree weight proportional to
how many elements of C’ are in that subtree. This continues until we have completed the
subtree associated with C’ and we have returned a sample 6’ from C’ and an integer weight
n’ encoding the size of C’, which is all we need to apply T'. This procedure only requires that
we store O(j) position and momentum vectors in memory, rather than O(27), and requires
that we generate O(27) extra random numbers (a cost that again is usually very small
compared with the 2/ — 1 gradient computations needed to run the leapfrog algorithm).

Algorithm 3 implements all of the above improvements in pseudocode.

3.2 Adaptively Tuning ¢

Having addressed the issue of how to choose the number of steps L, we now turn our
attention to the step size parameter €. To set e for both NUTS and HMC, we propose using
stochastic optimization with vanishing adaptation (Andrieu and Thoms, 2008), specifically
an adaptation of the primal-dual algorithm of Nesterov (2009).

Perhaps the most commonly used vanishing adaptation algorithm in MCMC is the
stochastic approximation method of Robbins and Monro (1951). Suppose we have a statistic
H, that describes some aspect of the behavior of an MCMC algorithm at iteration ¢ > 1,
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Algorithm 3 Efficient No-U-Turn Sampler

Given 6%, €, £, M:
for m=1to M do
Resample r° ~ N(0, I).
Resample u ~ Uniform([0, exp{L(6™~* — 170 - r0}])
Initialize 0= = 0™~ 1, 0t =™ r= =Yyt =90 j=0,0" =0m" 1, n=1,5s=1.
while s =1 do
Choose a direction v; ~ Uniform({—1,1}).
if v; = —1 then
0=, r—,—,—,0',n,s < BuildTree(0~,r~,u, v, j, €).
else
—, =0T, T80 0, " « BuildTree(0",r*, u, v, j,€).
end if
if s =1 then
With probability min{1, %}, set 6 « ¢
end if
n<n+n'.
s+ STOF —07)-r— > 0)I[(OT —07)-rT > 0].
j+—J+1L
end while
end for

function BuildTree(6, r, u, v, j, €)
if j =0 then
Base case—take one leapfrog step in the direction v.
0',r" + Leapfrog(0, r, ve).
n' + Ifu < exp{L(¢) — 37" - r'}].
s« I[L(0) — 3r' 1" > logu — Apax]
return 6/, 1,0, 7,0, n' 5.
else
Recursion—implicitly build the left and right subtrees.
0=, r=, 0T, rt.0' n' s" < BuildTree(d,r,u,v,j — 1,¢).
if s =1 then
if v = —1 then
0=, r=,—,—,0",n" s" + BuildTree(0~,r~,u,v,j — 1,€).
else
—, =, 07 0" 0" " <« BuildTree(0F,r T, u,v,5 — 1,¢).
end if
With probability —%"— set ¢’ + 6"
s' <« s"I[(6F —67)-r= > 0]I[(FT —67)-rt >0
n < n' +n"
end if
return 0=, 7=, 07, rT,0" n',s.
end if

and define its expectation h(x) as
1 T
h(z) = E¢|He|z] = lim — E|H
(7) = Bie] = Jim 7 > Bl
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where x € R is a tunable parameter to the MCMC algorithm. For example, if «; is the
Metropolis acceptance probability for iteration ¢, we might define Hy = 6 — ¢, where ¢ is
the desired average acceptance probability. If A is a nondecreasing function of x and a few
other conditions such as boundedness of the iterates x; are met (see Andrieu and Thoms
2008 for details), the update

Tpp1 < vp — e Hy

is guaranteed to cause h(z;) to converge to 0 as long as the step size schedule defined by 7
satisfies the conditions
=00 > m7 < oo (5)
t t

These conditions are satisfied by schedules of the form n, = ¢™" for k € (0.5,1]. As long as
the per-iteration impact of the adaptation goes to 0 (as it will if n, = ¢t~ and xk > 0) the
asymptotic behavior of the sampler is unchanged. That said, in practice x often gets “close
enough” to an optimal value well before the step size 1 has gotten close enough to 0 to avoid
disturbing the Markov chain’s stationary distribution. A common practice, which we follow
here, is to adapt any tunable MCMC parameters during the warmup phase, and freeze the
tunable parameters afterwards (e.g., Gelman et al., 2004). For the present paper, the step
size € is the only tuning parameter x in the algorithm. More advanced implementations
could have more options, though, so we consider the tuning problem more generally.

3.2.1 DUAL AVERAGING

The optimal values of the parameters to an MCMC algorithm during the warmup phase
and the stationary phase are often quite different. Ideally those parameters would therefore
adapt quickly as we shift from the sampler’s initial, transient regime to its stationary regime.
However, the diminishing step sizes of Robbins-Monro give disproportionate weight to the
early iterations, which is the opposite of what we want.

Similar issues motivate the dual averaging scheme of Nesterov (2009), an algorithm
for nonsmooth and stochastic convex optimization. Since solving an unconstrained con-
vex optimization problem is equivalent to finding a zero of a nondecreasing function (the
(sub)gradient of the cost function), it is straightforward to adapt dual averaging to the prob-
lem of MCMC adaptation by replacing stochastic gradients with the statistics H;. Again
assuming that we want to find a setting of a parameter x € R such that h(z) = E,[H;|z] = 0,
we can apply the updates

\/i 1
w —_——
t+1 < U Nt

¢
; S Hyp Ty < e+ (1—m)y, (6)
0=

where p is a freely chosen point that the iterates x; are shrunk towards, v > 0 is a free
parameter that controls the amount of shrinkage towards pu, tg > 0 is a free parameter that
stabilizes the initial iterations of the algorithm, 1, = t™" is a step size schedule obeying the
conditions in Equation 5, and we define 1 = z1. As in Robbins-Monro, the per-iteration
impact of these updates on x goes to 0 as t goes to infinity. Specifically, for large t we have

Ti41 — T = O(—Httiob),
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which clearly goes to 0 as long as the statistic H; is bounded. The sequence of averaged
iterates Z; is guaranteed to converge to a value such that h(Z;) converges to 0.

The update scheme in Equation 6 is slightly more elaborate than the update scheme
of Nesterov (2009), which implicitly has to = 0 and x = 1. Introducing these parameters
addresses issues that are more important in MCMC adaptation than in more conventional
stochastic convex optimization settings. Setting tg > 0 improves the stability of the algo-
rithm in early iterations, which prevents us from wasting computation by trying out extreme
values. This is particularly important for NUTS, and for HMC when simulation lengths are
specified in terms of the overall simulation length el instead of a fixed number of steps L.
In both of these cases, lower values of € result in more work being done per sample, so we
want to avoid casually trying out extremely low values of €. Setting the parameter k < 1
allows us to give higher weight to more recent iterates and more quickly forget the iterates
produced during the early warmup stages. The benefits of introducing these parameters are
less apparent in the settings originally considered by Nesterov, where the cost of a stochastic
gradient computation is assumed to be constant and the stochastic gradients are assumed
to be drawn i.i.d. given the parameter x.

Allowing ¢ty > 0 and s € (0.5, 1] does not affect the asymptotic convergence of the dual
averaging algorithm. For any x € (0.5,1], z; will eventually converge to the same value

%22:1 x¢. We can rewrite the term %ﬁ as v(iﬁo) %; V(l;ﬁo) is still O(y/t), which is the

only feature needed to guarantee convergence.

We used the values v = 0.05,ty = 10, and x = 0.75 for all our experiments. We arrived
at these values by trying a few settings for each parameter by hand with NUTS and HMC
(with simulation lengths specified in terms of e L) on the stochastic volatility model described
below and choosing a value for each parameter that seemed to produce reasonable behavior.
Better results might be obtained with further tweaking, but these default parameters seem
to work consistently well for both NUTS and HMC for all of the models that we tested. It
is entirely possible that these parameter settings may not work as well for other sampling
algorithms or for H statistics other than the ones described below.

3.2.2 FINDING A GOOD INITIAL VALUE OF €

The dual averaging scheme outlined above should work for any initial value ¢; and any
setting of the shrinkage target u. However, convergence will be faster if we start from a
reasonable setting of these parameters. We recommend choosing an initial value €; according
to the simple heuristic described in Algorithm 4. In English, this heuristic repeatedly
doubles or halves the value of €; until the acceptance probability of the Langevin proposal
with step size €; crosses 0.5. The resulting value of €; will typically be small enough to
produce reasonably accurate simulations but large enough to avoid wasting large amounts
of computation. We recommend setting p = log(10¢1), since this gives the dual averaging
algorithm a preference for testing values of € that are larger than the initial value €;. Large
values of € cost less to evaluate than small values of €, and so erring on the side of trying
large values can save computation.
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3.2.3 SETTING € IN HMC

In HMC we want to find a value for the step size € that is neither too small (which would
waste computation by taking needlessly tiny steps) nor too large (which would waste com-
putation by causing high rejection rates). A standard approach is to tune € so that HMC’s
average Metropolis acceptance probability is equal to some value §. Indeed, it has been
shown that (under fairly strong assumptions) the optimal value of € for a given simulation
length €L is the one that produces an average Metropolis acceptance probability of approx-
imately 0.65 (Beskos et al., 2010; Neal, 2011). For HMC, we define a criterion A€ (¢) so
that

HMC _ - p(0,7) | awc, . _ HMC
H; :mm{l’p(et—l,rtfo) i h () = E[H, le],

where 6! and 7 are the proposed position and momentum at the tth iteration of the Markov
chain, #*~! and 7" are the initial position and (resampled) momentum for the tth iteration
of the Markov chain, H/™C is the acceptance probability of this tth HMC proposal and
RHIMC is the expected average acceptance probability of the chain in equilibrium for a fixed
e. Assuming that /™€ is nonincreasing as a function of €, we can apply the updates in
Equation 6 with H; =0 — HtHMC and z = log € to coerce hHMC = § for any 6 € (0, 1).

3.2.4 SETTING € IN NUTS

Since there is no single accept/reject step in NUTS we must define an alternative statistic
to Metropolis acceptance probability. For each iteration we define the statistic HFUTS and
its expectation when the chain has reached equilibrium as

1 0,r)
gNUTS — Z - piY, . pNUTS — g [ N