The Journal of Machine Learning Research
Volume 15
Print-Archive Edition

Pages 1-1370

Microtome Publishing
Brookline, Massachusetts
www.mtome.com

The Journal of Machine Learning Research
Volume 15
Print-Archive Edition

The Journal of Machine Learning Research (JMLR) is an open
access journal. All articles published in JMLR are freely available
via electronic distribution. This Print-Archive Edition is published
annually as a means of archiving the contents of the journal in
perpetuity. The contents of this volume are articles published
electronically in JMLR in 2014.

JMLR is abstracted in ACM Computing Reviews, INSPEC, and
Psychological Abstracts/PsycINFO.

JMLR is a publication of Journal of Machine Learning Research,
Inc. For further information regarding JMLR, including open
access to articles, visit http://www.jmlr.org/.

JMLR Print-Archive Edition is a publication of Microtome
Publishing under agreement with Journal of Machine Learning
Research, Inc. For further information regarding the Print-Archive
Edition, including subscription and distribution information and
background on open-access print archiving, visit Microtome
Publishing at http://www.mtome.comn/.

Collection copyright © 2014 The Journal of Machine Learning
Research, Inc. and Microtome Publishing. Copyright of individual
articles remains with their respective authors.

ISSN 1532-4435 (print)
ISSN 1533-7928 (online)

JMLR Editorial Board

Editor-in-Chief
Bernhard Scholkopf, MPI for Intelligent Systems, Germany

Editor-in-Chief
Kevin Murphy, Google Research, USA

Managing Editor
Aron Culotta, Illinois Institute of Technology, USA

Production Editor
Charles Sutton, University of Edinburgh, UK

JMLR Web Master
Chiyuan Zhang, Massachusetts Institute of Technology, USA

JMLR Action Editors

Edoardo M. Airoldi, Harvard University, USA Peter Auer, University of Leoben, Austria Francis
Bach, INRIA, France Andrew Bagnell, Carnegie Mellon University, USA David Barber, Univer-
sity College London, UK Mikhail Belkin, Ohio State University, USA Yoshua Bengio, Université
de Montréal, Canada Samy Bengio, Google Research, USA Jeff Bilmes, University of Washing-
ton, USA David Blei, Princeton University, USA Karsten Borgwardt, MPI For Intelligent Systems,
Germany Léon Bottou, Microsoft Research, USA Lawrence Carin, Duke University, USA Fran-
cois Caron, University of Bordeaux, France David Maxwell Chickering, Microsoft Research, USA
Andreas Christman, University of Bayreuth, Germany Alexander Clark, King’s College London,
UK William W. Cohen, Carnegie-Mellon University, USA Corinna Cortes, Google Research,
USA Koby Crammer, Technion, Isracl Sanjoy Dasgupta, University of California, San Diego,
USA Rina Dechter, University of California, Irvine, USA Inderjit S. Dhillon, University of Texas,
Austin, USA David Dunson, Duke University, USA Charles Elkan, University of California at
San Diego, USA Rob Fergus, New York University, USA Nando de Freitas, Oxford University,
UK Yoav Freund, University of California at San Diego, USA Kenji Fukumizu, The Institute
of Statistical Mathematics, Japan Sara van de Geer, ETH Zurich, Switzerland Amir Glober-
son, The Hebrew University of Jerusalem, Isracl Moises Goldszmidt, Microsoft Research, USA
Russ Greiner, University of Alberta, Canada Arthur Gretton, University College London, UK
Maya Gupta, Google Research, USA Isabelle Guyon, ClopiNet, USA Matthias Hein, Saarland
University, Germany Thomas Hofmann, ETH Zurich, Switzerland Aapo Hyvérinen, University
of Helsinki, Finland Alex Ihler, University of California, Irvine, USA Tommi Jaakkola, Mas-
sachusetts Institute of Technology, USA Samuel Kaski, Aalto University, Finland Sathiya Keerthi,
Microsoft Research, USA Andreas Krause, ETH Zurich, Switzerland Christoph Lampert, Insti-
tute of Science and Technology, Austria Gert Lanckriet, University of California, San Diego, USA
John Langford, Microsoft Research, USA Pavel Laskov, University of Tiibingen, Germany Neil
Lawrence, University of Manchester, UK Guy Lebanon, Amazon, USA Daniel Lee, University
of Pennsylvania, USA Jure Leskovec, Stanford University, USA Géabor Lugosi, Pompeu Fabra
University, Spain Ulrike von Luxburg, University of Hamburg, Germany Shie Mannor, Technion,
Israecl Robert E. McCulloch, University of Chicago, USA Chris Meek, Microsoft Research, USA
Marina Meila, University of Washington, USA Nicolai Meinshausen, University of Oxford, UK
Vahab Mirrokni, Google Research, USA Mehryar Mohri, New York University, USA Sebastian
Nowozin, Microsoft Research, Cambridge, UK Manfred Opper, Technical University of Berlin,
Germany Una-May O’Reilly, Massachusetts Institute of Technology, USA Laurent Orseau, UMR
AgroParisTech, France Ronald Parr, Duke University, USA Martin Pelikan, Google Inc, USA Jie
Peng, University of California, Davis, USA Jan Peters, Technische Universitit Darmstadt, Germany

Avi Pfeffer, Charles River Analytis, USA Joelle Pineau, McGill University, Canada Massimiliano
Pontil, University College London, UK Yuan (Alan) Qi, Purdue University, USA Luc de Raedt,
Katholieke Universiteit Leuven, Belgium Alexander Rakhlin, University of Pennsylvania, USA
Ben Recht, University of California, Berkeley, USA Saharon Rosset, Tel Aviv University, Israel
Ruslan Salakhutdinov, University of Toronto, Canada Marc Schoenauer, INRIA Saclay, France
Matthias Seeger, Amazon, Germany John Shawe-Taylor, University College London, UK Xiao-
tong Shen, University of Minnesota, USA Yoram Singer, Google Research, USA Peter Spirtes,
Carnegie Mellon University, USA Nathan Srebro, Toyota Technical Institute at Chicago, USA Ingo
Steinwart, University of Stuttgart, Germany Amos Storkey, University of Edinburgh, UK Csaba
Szepesvari, University of Alberta, Canada Yee Whye Teh, University of Oxford, UK Olivier
Teytaud, INRIA Saclay, France Ivan Titov, University of Amsterdam, Netherlands Koji Tsuda,
National Institute of Advanced Industrial Science and Technology, Japan Zhuowen Tu, University
of California San Diego, USA Nicolas Vayatis, Ecole Normale Supérieure de Cachan, France SV
N Vishwanathan, Purdue University, USA Manfred Warmuth, University of California at Santa
Cruz, USA Stefan Wrobel, Fraunhofer IAIS and University of Bonn, Germany Eric Xing, Carnegie
Mellon University, USA Bin Yu, University of California at Berkeley, USA Tong Zhang, Rutgers
University, USA Zhihua Zhang, Shanghai Jiao Tong University, China Hui Zou, University of
Minnesota, USA

JMLR-MLOSS Editors

Geoffrey Holmes, University of Waikato, New Zealand Antti Honkela, University of Helsinki,
Finland Balazs Kégl, University of Paris-Sud, France Cheng Soon Ong, University of Melbourne,
Australia Mark Reid, Australian National University, Australia

JMLR Editorial Board

Naoki Abe, IBM TJ Watson Research Center, USA Yasemin Altun, Google Inc, Switzerland
Jean-Yves Audibert, CERTIS, France Jonathan Baxter, Australia National University, Australia
Richard K. Belew, University of California at San Diego, USA Kristin Bennett, Rensselaer Poly-
technic Institute, USA Christopher M. Bishop, Microsoft Research, Cambridge, UK Lashon
Booker, The Mitre Corporation, USA Henrik Bostrom, Stockholm University/KTH, Sweden Craig
Boutilier, University of Toronto, Canada Nello Cristianini, University of Bristol, UK Peter Dayan,
University College, London, UK Dennis DeCoste, eBay Research, USA Thomas Dietterich, Ore-
gon State University, USA Jennifer Dy, Northeastern University, USA Saso Dzeroski, Jozef Stefan
Institute, Slovenia Ran El-Yaniv, Technion, Israel Peter Flach, Bristol University, UK Emily Fox,
University of Washington, USA Dan Geiger, Technion, Isracl Claudio Gentile, Universita degli
Studi dell’Insubria, Italy Sally Goldman, Google Research, USA Thore Graepel, Microsoft Re-
search, UK Tom Griffiths, University of California at Berkeley, USA Carlos Guestrin, University
of Washington, USA Stefan Harmeling, University of Diisseldorf, Germany David Heckerman,
Microsoft Research, USA Katherine Heller, Duke University, USA Philipp Hennig, MPI for Intel-
ligent Systems, Germany Larry Hunter, University of Colorado, USA Risi Kondor, University of
Chicago, USA Aryeh Kontorovich, Ben-Gurion University of the Negev, Israecl Andreas Krause,
ETH Zurich, Switzerland John Lafferty, University of Chicago, USA Erik Learned-Miller, Uni-
versity of Massachusetts, Amherst, USA Fei Fei Li, Stanford University, USA Yi Lin, University
of Wisconsin, USA Wei-Yin Loh, University of Wisconsin, USA Richard Maclin, University
of Minnesota, USA Sridhar Mahadevan, University of Massachusetts, Amherst, USA Vikash
Mansingkha, Massachusetts Institute of Technology, USA Yishay Mansour, Tel-Aviv University,
Israel Jon McAuliffe, University of California, Berkeley, USA Andrew McCallum, University
of Massachusetts, Amherst, USA Joris Mooij, Radboud University Nijmegen, Netherlands Ray-
mond J. Mooney, University of Texas, Austin, USA Klaus-Robert Muller, Technical University
of Berlin, Germany Guillaume Obozinski, Ecole des Ponts - ParisTech, France Pascal Poupart,
University of Waterloo, Canada Konrad Rieck, University of Gottingen, Germany Cynthia Rudin,
Massachusetts Institute of Technology, USA Robert Schapire, Princeton University, USA Fei Sha,

University of Southern California, USA Shai Shalev-Shwartz, Hebrew University of Jerusalem, Is-
rael Padhraic Smyth, University of California, Irvine, USA Le Song, Georgia Institute of Technol-
ogy, USA Alexander Statnikov, New York University, USA Jean-Philippe Vert, Mines ParisTech,
France Martin J. Wainwright, University of California at Berkeley, USA Chris Watkins, Royal
Holloway, University of London, UK Kilian Weinberger, Washington University, St Louis, USA
Max Welling, University of Amsterdam, Netherlands Chris Williams, University of Edinburgh, UK
David Wipf, Microsoft Research Asia, China Alice Zheng, Microsoft Research Redmond, USA

JMLR Advisory Board

Shun-Ichi Amari, RIKEN Brain Science Institute, Japan Andrew Barto, University of Massachusetts
at Amherst, USA Thomas Dietterich, Oregon State University, USA Jerome Friedman, Stan-
ford University, USA Stuart Geman, Brown University, USA Geoffrey Hinton, University of
Toronto, Canada Michael Jordan, University of California at Berkeley, USA Leslie Pack Kael-
bling, Massachusetts Institute of Technology, USA Michael Kearns, University of Pennsylvania,
USA Steven Minton, InferLink, USA Tom Mitchell, Carnegie Mellon University, USA Stephen
Muggleton, Imperial College London, UK Nils Nilsson, Stanford University, USA Tomaso Poggio,
Massachusetts Institute of Technology, USA Ress Quinlan, Rulequest Research Pty Ltd, Australia
Stuart Russell, University of California at Berkeley, USA Lawrence Saul, University of Califor-
nia at San Diego, USA Terrence Sejnowski, Salk Institute for Biological Studies, USA Richard
Sutton, University of Alberta, Canada Leslie Valiant, Harvard University, USA

Journal of Machine Learning Research
Volume 15, 2014

1 Bridging Viterbi and Posterior Decoding: A Generalized Risk Approach
to Hidden Path Inference Based on Hidden Markov Models
Jiiri Lember, Alexey A. Koloydenko

59 Fast SVM Training Using Approximate Extreme Points
Manu Nandan, Pramod P. Khargonekar, Sachin S. Talathi

929 Detecting Click Fraud in Online Advertising: A Data Mining Approach
Richard Oentaryo, Ee-Peng Lim, Michael Finegold, David Lo, Feida Zhu,
Clifton Phua, Eng-Yeow Cheu, Ghim-Eng Yap, Kelvin Sim, Minh Nhut Nguyen,
Kasun Perera, Bijay Neupane, Mustafa Faisal, Zeyar Aung, Wei Lee Woon,
Wei Chen, Dhaval Patel, Daniel Berrar

141 EnsembleSVM: A Library for Ensemble Learning Using Support Vector
Machines
Marc Claesen, Frank De Smet, Johan A.K. Suykens, Bart De Moor

147 A Junction Tree Framework for Undirected Graphical Model Selection
Divyanshu Vats, Robert D. Nowak

193 Axioms for Graph Clustering Quality Functions
Twan van Laarhoven, Elena Marchiori

217 Convex vs Non-Convex Estimators for Regression and Sparse Estima-
tion: the Mean Squared Error Properties of ARD and GLasso
Aleksandr Aravkin, James V. Burke, Alessandro Chiuso, Gianluigi Pillonetto

253 Using Trajectory Data to Improve Bayesian Optimization for Reinforce-
ment Learning
Aaron Wilson, Alan Fern, Prasad Tadepalli

283 Information Theoretical Estimators Toolbox
Zoltdn Szabo

289 Off-policy Learning With Eligibility Traces: A Survey
Matthieu Geist, Bruno Scherrer

335 Early Stopping and Non-parametric Regression: An Optimal Data-dependent
Stopping Rule
Garvesh Raskutti, Martin J. Wainwright, Bin Yu

367 Unbiased Generative Semi-Supervised Learning
Patrick Fox-Roberts, Edward Rosten

445 Node-Based Learning of Multiple Gaussian Graphical Models
Karthik Mohan, Palma London, Maryam Fazel, Daniela Witten, Su-In Lee

489 The FASTCLIME Package for Linear Programming and Large-Scale
Precision Matrix Estimation in R
Haotian Pang, Han Liu, Robert Vanderbei

495

501

533

565

595

629

655

697

749

809

885

921

949

981

1011

LIBOL: A Library for Online Learning Algorithms
Steven C.H. Hoi, Jialei Wang, Peilin Zhao

Improving Markov Network Structure Learning Using Decision Trees
Daniel Lowd, Jesse Davis

Ground Metric Learning
Marco Cuturi, David Avis

Link Prediction in Graphs with Autoregressive Features
Emile Richard, Stéphane Gaiffas, Nicolas Vayatis

Adaptivity of Averaged Stochastic Gradient Descent to Local Strong Con-
vexity for Logistic Regression
Francis Bach

Random Intersection Trees
Rajen Dinesh Shah, Nicolai Meinshausen

Reinforcement Learning for Closed-Loop Propofol Anesthesia: A Study
in Human Volunteers

Brett L Moore, Larry D Pyeatt, Vivekanand Kulkarni, Periklis Panousis, Kevin
Padrez, Anthony G Doufas

Clustering Hidden Markov Models with Variational HEM
Emanuele Coviello, Antoni B. Chan, Gert R.G. Lanckriet

A Novel M-Estimator for Robust PCA
Teng Zhang, Gilad Lerman

Policy Evaluation with Temporal Differences: A Survey and Comparison
Christoph Dann, Gerhard Neumann, Jan Peters

Active Learning Using Smooth Relative Regret Approximations with Ap-
plications
Nir Ailon, Ron Begleiter, Esther Ezra

An Extension of Slow Feature Analysis for Nonlinear Blind Source Sep-
aration
Henning Sprekeler, Tiziano Zito, Laurenz Wiskott

Natural Evolution Strategies
Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, Jiirgen
Schmidhuber

Conditional Random Field with High-order Dependencies for Sequence
Labeling and Segmentation
Nguyen Viet Cuong, Nan Ye, Wee Sun Lee, Hai Leong Chieu

Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy
Separability
Tomohiko Mizutani

1041

1073

1111

1135

1177

1215

1249

1281

1317

1351

1371

1431

1455

1461

1493

1523

Improving Prediction from Dirichlet Process Mixtures via Enrichment
Sara Wade, David B. Dunson, Sonia Petrone, Lorenzo Trippa

Gibbs Max-margin Topic Models with Data Augmentation
Jun Zhu, Ning Chen, Hugh Perkins, Bo Zhang

A Reliable Effective Terascale Linear Learning System
Alekh Agarwal, Oliveier Chapelle, Miroslav Dudik, John Langford

New Learning Methods for Supervised and Unsupervised Preference Ag-
gregation
Maksims N. Volkovs, Richard S. Zemel

Prediction and Clustering in Signed Networks: A Local to Global Per-
spective

Kai-Yang Chiang, Cho-Jui Hsieh, Nagarajan Natarajan, Inderjit S. Dhillon,
Ambuj Tewari

Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders
Francisco J. R. Ruiz, Isabel Valera, Carlos Blanco, Fernando Perez-Cruz

Robust Near-Separable Nonnegative Matrix Factorization Using Linear
Optimization
Nicolas Gillis, Robert Luce

Follow the Leader If You Can, Hedge If You Must
Steven de Rooij, Tim van Erven, Peter D. Griinwald, Wouter M. Koolen

Structured Prediction via Output Space Search
Janardhan Rao Doppa, Alan Fern, Prasad Tadepalli

Fully Simplified Multivariate Normal Updates in Non-Conjugate Varia-
tional Message Passing
Matt P. Wand

Towards Ultrahigh Dimensional Feature Selection for Big Data
Mingkui Tan, Ivor W. Tsang, Li Wang

Adaptive Sampling for Large Scale Boosting
Charles Dubout, Francois Fleuret

Manopt, a Matlab Toolbox for Optimization on Manifolds
Nicolas Boumal, Bamdev Mishra, P.-A. Absil, Rodolphe Sepulchre

Training Highly Multiclass Classifiers
Maya R. Gupta, Samy Bengio, Jason Weston

Locally Adaptive Factor Processes for Multivariate Time Series
Daniele Durante, Bruno Scarpa, David B. Dunson

Iteration Complexity of Feasible Descent Methods for Convex Optimiza-
tion
Po-Wei Wang, Chih-Jen Lin

1549

1593

1625

1653

1675

1713

1751

1799

1849

1903

1929

1959

2009

2055

2061

High-Dimensional Covariance Decomposition into Sparse Markov and
Independence Models
Majid Janzamin, Animashree Anandkumar

The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamilto-
nian Monte Carlo
Matthew D. Hoffman, Andrew Gelman

Confidence Intervals for Random Forests: The Jackknife and the In-
finitesimal Jackknife
Stefan Wager, Trevor Hastie, Bradley Efron

Surrogate Regret Bounds for Bipartite Ranking via Strongly Proper Losses
Shivani Agarwal

Adaptive Minimax Regression Estimation over Sparse /,-Hulls
Zhan Wang, Sandra Paterlini, Fuchang Gao, Yuhong Yang

Graph Estimation From Multi-Attribute Data
Mladen Kolar, Han Liu, Eric P. Xing

Hitting and Commute Times in Large Random Neighborhood Graphs
Ulrike von Luxburg, Agnes Radl, Matthias Hein

Bayesian Inference with Posterior Regularization and Applications to In-
finite Latent SVMs
Jun Zhu, Ning Chen, Eric P. Xing

Expectation Propagation for Neural Networks with Sparsity-Promoting
Priors
Pasi Jyldnki, Aapo Nummenmaa, Aki Vehtari

Pattern Alternating Maximization Algorithm for Missing Data in High-
Dimensional Problems
Nicolas Stéiidler, Daniel J. Stekhoven, Peter Biihlmann

Dropout: A Simple Way to Prevent Neural Networks from Overfitting
Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan
Salakhutdinov

Sparse Factor Analysis for Learning and Content Analytics
Andrew S. Lan, Andrew E. Waters, Christoph Studer, Richard G. Baraniuk

Causal Discovery with Continuous Additive Noise Models
Jonas Peters, Joris M. Mooij, Dominik Janzing, Bernhard Scholkopf

pystruct - Learning Structured Prediction in Python
Andreas C. Miiller, Sven Behnke

The Student-t Mixture as a Natural Image Patch Prior with Application
to Image Compression
Adron van den Oord, Benjamin Schrauwen

2087

2113

2145

2185

2213

2239

2313

2337

2399

2451

2489

2513

2533

2569

2607

2629

Parallel MCMC with Generalized Elliptical Slice Sampling
Robert Nishihara, lain Murray, Ryan P. Adams

Classifier Cascades and Trees for Minimizing Feature Evaluation Cost
Zhixiang (Eddie) Xu, Matt J. Kusner, Kilian Q. Weinberger, Minmin Chen,
Olivier Chapelle

Particle Gibbs with Ancestor Sampling
Fredrik Lindsten, Michael I. Jordan, Thomas B. Schon

Ramp Loss Linear Programming Support Vector Machine
Xiaolin Huang, Lei Shi, Johan A.K. Suykens

Clustering Partially Observed Graphs via Convex Optimization
Yudong Chen, Ali Jalali, Sujay Sanghavi, Huan Xu

A Tensor Approach to Learning Mixed Membership Community Models
Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade

Cover Tree Bayesian Reinforcement Learning
Nikolaos Tziortziotis, Christos Dimitrakakis, Konstantinos Blekas

Efficient State-Space Inference of Periodic Latent Force Models
Steven Reece, Siddhartha Ghosh, Alex Rogers, Stephen Roberts, Nicholas R.
Jennings

Spectral Learning of Latent-Variable PCFGs: Algorithms and Sample
Complexity
Shay B. Cohen, Karl Stratos, Michael Collins, Dean P. Foster, Lyle Ungar

On Multilabel Classification and Ranking with Bandit Feedback
Claudio Gentile, Francesco Orabona

Beyond the Regret Minimization Barrier: Optimal Algorithms for Stochas-
tic Strongly-Convex Optimization
Elad Hazan, Satyen Kale

One-Shot-Learning Gesture Recognition using HOG-HOF Features
Jakub Konecny, Michal Hagara

Contextual Bandits with Similarity Information
Aleksandrs Slivkins

Boosting Algorithms for Detector Cascade Learning
Mohammad Saberian, Nuno Vasconcelos

Efficient and Accurate Methods for Updating Generalized Linear Mod-
els with Multiple Feature Additions
Amit Dhurandhar, Marek Petrik

Bayesian Estimation of Causal Direction in Acyclic Structural Equation
Models with Individual-specific Confounder Variables and Non-Gaussian
Distributions

Shohei Shimizu, Kenneth Bollen

2653

2689

2723

2773

2833

2869

2911

2949

2981

3013

3037

3065

3107

A Truncated EM Approach for Spike-and-Slab Sparse Coding
Abdul-Saboor Sheikh, Jacquelyn A. Shelton, Jorg Liicke

Efficient Occlusive Components Analysis
Marc Henniges, Richard E. Turner, Maneesh Sahani, Julian Eggert, Jorg
Liicke

Optimality of Graphlet Screening in High Dimensional Variable Selec-
tion
Jiashun Jin, Cun-Hui Zhang, Qi Zhang

Tensor Decompositions for Learning Latent Variable Models
Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, Matus
Telgarsky

Bayesian Entropy Estimation for Countable Discrete Distributions
Evan Archer, Il Memming Park, Jonathan W. Pillow

Confidence Intervals and Hypothesis Testing for High-Dimensional Re-
gression
Adel Javanmard, Andrea Montanari

QUIC: Quadratic Approximation for Sparse Inverse Covariance Estima-
tion
Cho-Jui Hsieh, Mdtyds A. Sustik, Inderjit S. Dhillon, Pradeep Ravikumar

Multimodal Learning with Deep Boltzmann Machines
Nitish Srivastava, Ruslan Salakhutdinov

Optimal Data Collection For Informative Rankings Expose Well-Connected
Graphs
Braxton Osting, Christoph Brune, Stanley J. Osher

Bayesian Co-Boosting for Multi-modal Gesture Recognition
Jiaxiang Wu, Jian Cheng

Effective String Processing and Matching for Author Disambiguation
Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, Felix Wu, Hsiao-Yu Tung, Tong
Yu, Jui-Pin Wang, Cheng-Xia Chang, Chun-Pai Yang, Wei-Cheng Chang,
Kuan-Hao Huang, Tzu-Ming Kuo, Shan-Wei Lin, Young-San Lin, Yu-Chen
Lu, Yu-Chuan Su, Cheng-Kuang Wei, Tu-Chun Yin, Chun-Liang Li, Ting-Wei
Lin, Cheng-Hao Tsai, Shou-De Lin, Hsuan-Tien Lin, Chih-Jen Lin

High-Dimensional Learning of Linear Causal Networks via Inverse Co-
variance Estimation
Po-Ling Loh, Peter Biihlmann

Recursive Teaching Dimension, VC-Dimension and Sample Compres-
sion
Thorsten Doliwa, Gaojian Fan, Hans Ulrich Simon, Sandra Zilles

3133

3183

3187

3221

3247

3297

3333

3371

3401

3425

3447

3483

3489

3513

3569

Do we Need Hundreds of Classifiers to Solve Real World Classification
Problems?
Manuel Ferndndez-Delgado, Eva Cernadas, Senén Barro, Dinani Amorim

00DACE Toolbox: A Flexible Object-Oriented Kriging Implementation
Ivo Couckuyt, Tom Dhaene, Piet Demeester

Robust Online Gesture Recognition with Crowdsourced Annotations
Long-Van Nguyen-Dinh, Alberto Calatroni, Gerhard Trister

Accelerating t-SNE using Tree-Based Algorithms
Laurens van der Maaten

Set-Valued Approachability and Online Learning with Partial Monitor-
ing
Shie Mannor, Vianney Perchet, Gilles Stoltz

Learning Graphical Models With Hubs
Kean Ming Tan, Palma London, Karthik Mohan, Su-In Lee, Maryam Fazel,
Daniela Witten

Inconsistency of Pitman-Yor Process Mixtures for the Number of Com-
ponents
Jeffrey W. Miller, Matthew T. Harrison

Active Contextual Policy Search
Alexander Fabisch, Jan Hendrik Metzen

Matrix Completion with the Trace Norm: Learning, Bounding, and Trans-
ducing
Ohad Shamir, Shai Shalev-Shwartz

Statistical Analysis of Metric Graph Reconstruction
Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman

Alternating Linearization for Structured Regularization Problems
Xiaodong Lin, Minh Pham, Andrzej Ruszczyriski

The Gesture Recognition Toolkit
Nicholas Gillian, Joseph A. Paradiso

Convolutional Nets and Watershed Cuts for Real-Time Semantic Label-
ing of RGBD Videos
Camille Couprie, Clément Farabet, Laurent Najman, Yann LeCun

On the Bayes-Optimality of F-Measure Maximizers
Willem Waegeman, Krzysztof Dembczynski, Arkadiusz Jachnik, Weiwei Cheng,
Eyke Hiillermeier

SPMF: A Java Open-Source Pattern Mining Library
Philippe Fournier-Viger, Antonio Gomariz, Ted Gueniche, Azadeh Soltani,
Cheng-Wei Wu, Vincent S. Tseng

3575 Efficient Learning and Planning with Compressed Predictive States
William Hamilton, Mahdi Milani Fard, Joelle Pineau

3621 Revisiting Stein’s Paradox: Multi-Task Averaging
Sergey Feldman, Maya R. Gupta, Bela A. Frigyik

3663 Multi-Objective Reinforcement Learning using Sets of Pareto Dominat-
ing Policies
Kristof Van Moffaert, Ann Nowé

3693 Seeded Graph Matching for Correlated Erdos-Renyi Graphs
Vince Lyzinski, Donniell E. Fishkind, Carey E. Priebe

3721 Asymptotic Accuracy of Distribution-Based Estimation of Latent Vari-
ables
Keisuke Yamazaki

3743 What Regularized Auto-Encoders Learn from the Data-Generating Dis-
tribution
Guillaume Alain, Yoshua Bengio

3775 Revisiting Bayesian Blind Deconvolution
David Wipf, Haichao Zhang

3815 New Results for Random Walk Learning
Jeffrey C. Jackson, Karl Wimmer

3847 Transfer Learning Decision Forests for Gesture Recognition
Norberto A. Goussies, Sebastidn Ubalde, Marta Mejail

3871 Semi-Supervised Eigenvectors for Large-Scale Locally-Biased Learning
Toke J. Hansen, Michael W. Mahoney

3915 BayesOpt: A Bayesian Optimization Library for Nonlinear Optimiza-
tion, Experimental Design and Bandits
Ruben Martinez-Cantin

3921 Order-Independent Constraint-Based Causal Structure Learning
Diego Colombo, Marloes H. Maathuis

3963 Effective Sampling and Learning for Mallows Models with Pairwise-Preference
Data
Tyler Lu, Craig Boutilier

4011 Robust Hierarchical Clustering
Maria-Florina Balcan, Yingyu Liang, Pramod Gupta

4053 Parallelizing Exploration-Exploitation Tradeoffs in Gaussian Process Ban-
dit Optimization
Thomas Desautels, Andreas Krause, Joel W. Burdick

4105 Active Imitation Learning: Formal and Practical Reductions to LL.D.
Learning

Kshitij Judah, Alan P. Fern, Thomas G. Dietterich, Prasad Tadepalli

Journal of Machine Learning Research 15 (2014) 1-58 Submitted 7/10; Revised 7/12; Published 1/14

Bridging Viterbi and Posterior Decoding: A Generalized
Risk Approach to Hidden Path Inference Based on Hidden
Markov Models

Jiri Lember JURIL.LEMBERQUT.EE
Institute of Mathematical Statistics

Tartu Unaversity

J. Litvi 2-507, Tartu, 50409, Estonia

Alexey A. Koloydenko ALEXEY.KOLOYDENKO@RHUL.AC.UK
Department of Mathematics

Royal Holloway University of London

Egham, TW20 0EX, UK

Editor: Richard Maclin

Abstract

Motivated by the unceasing interest in hidden Markov models (HMMs), this paper re-
examines hidden path inference in these models, using primarily a risk-based framework.
While the most common mazimum a posteriori (MAP), or Viterbi, path estimator and the
minimum error, or Posterior Decoder (PD) have long been around, other path estimators,
or decoders, have been either only hinted at or applied more recently and in dedicated
applications generally unfamiliar to the statistical learning community. Over a decade
ago, however, a family of algorithmically defined decoders aiming to hybridize the two
standard ones was proposed elsewhere. The present paper gives a careful analysis of this
hybridization approach, identifies several problems and issues with it and other previously
proposed approaches, and proposes practical resolutions of those. Furthermore, simple
modifications of the classical criteria for hidden path recognition are shown to lead to a
new class of decoders. Dynamic programming algorithms to compute these decoders in
the usual forward-backward manner are presented. A particularly interesting subclass of
such estimators can be also viewed as hybrids of the MAP and PD estimators. Similar to
previously proposed MAP-PD hybrids, the new class is parameterized by a small number of
tunable parameters. Unlike their algorithmic predecessors, the new risk-based decoders are
more clearly interpretable, and, most importantly, work “out-of-the box” in practice, which
is demonstrated on some real bioinformatics tasks and data. Some further generalizations
and applications are discussed in the conclusion.

Keywords: admissible path, decoder, HMM, hybrid, interpolation, MAP sequence, min-
imum error, optimal accuracy, power transform, risk, segmental classification, symbol-by-
symbol, posterior decoding, Viterbi algorithm

1. Introduction

Besides their classical and traditional applications in signal processing and communications
(Viterbi, 1967; Bahl et al., 1974; Hayes et al., 1982; Brushe et al., 1998) (see also further
references in Cappé et al., 2005) and speech recognition (Huang et al., 1990; Jelinek, 1976,

(©2014 Jiri Lember and Alexey A. Koloydenko.

LEMBER AND KOLOYDENKO

2001; McDermott and Hazen, 2004; Ney et al., 1994; Padmanabhan and Picheny, 2002;
Rabiner and Juang, 1993; Rabiner et al., 1986; Shu et al., 2003; Steinbiss et al., 1995; Strom
et al., 1999), hidden Markov models have recently become indispensable in computational
biology and bioinformatics (Burge and Karlin, 1997; Durbin et al., 1998; Eddy, 2004; Krogh,
1998; Brejova et al., 2007b; Majoros and Ohler, 2007) as well as in natural language modeling
(Manning and Schiitze, 1999; Vogel et al., 1996) and information security (Mason et al.,
2006).

At the same time, their spatial extensions, known as hidden Markov random field models
(HMRFM), have been immensely influential in spatial statistics (Besag and Green, 1993;
Green and Richardson, 2002; Kiinsch et al., 1995; McGrory et al., 2009), and particularly
in image analysis, restoration, and segmentation (Besag, 1986; Geman and Geman, 1984;
Li et al., 2000; Marroquin et al., 2003; Winkler, 2003). Indeed, hidden Markov models have
been called ‘one of the most successful statistical modeling ideas that have [emerged] in the
last forty years’ (Cappé et al., 2005).

HM(RF)Ms owe much of their success to the following: The posterior distribution of the
hidden layer inherits the Markov property from the prior distribution (although the posterior
distribution is generally inhomogeneous even if the prior distribution is homogeneous). At
the same time, the marginal law of the observed layer can still include global, that is non-
Markovian, dependence, hence the richness of the observed system (Kiinsch et al., 1995).

The Markov property of the posterior distribution and the conditional independence
of the observed variables given the hidden ones, have naturally led to a number of com-
putationally feasible methods for inference about the hidden realizations as well as model
parameters. HMMs are also naturally a special case of graphical models (Lauritzen, 1996;
Bishop, 2006, Chap. 8).

HMMs, or one dimensional HMRFMs, have been particularly popular not least due to
the fact that the linear order of the indexing set (usually associated with time) makes explo-
ration of hidden realizations relatively straightforward from the computational viewpoint.
In contrast, higher dimensional HMRFMs generally require approximate, possibly stochas-
tic, techniques in order to compute optimal configurations of the hidden field (Cocozza-
Thivent and Bekkhoucha, 1993; Joshi et al., 2006; Winkler, 2003; McGrory et al., 2009).
In particular, a mazimum a posteriori (MAP) estimator of the hidden layer of an HMM is
efficiently and exactly computed by a dynamic programming algorithm bearing the name
of Viterbi, whereas a general higher dimensional HMRFM would employ, for example, a
simulated annealing type method (Geman and Geman, 1984; Winkler, 2003) to produce
approximate solutions to the same task.

There are also various useful extensions of the ordinary HMM, such as variable duration
semi-Markov models, coupled HMMs (Brand et al., 1997), and factorial HMMs (Bishop,
2006, Chap. 13), etc. All of the material in this paper is applicable to those extensions in
a straightforward way. However, to simplify the exposition we focus below on the ordinary
HMM.

1.1 Notation and Main Ingredients

We adopt the machine and statistical learning convention, referring to the hidden and
observed processes as Y and X, respectively, in effect reversing the convention that is more

BRIDGING VITERBI AND POSTERIOR DECODING

commonly used in the HMM context. Thus, let Y = {Y;};>1 be a Markov chain with state
space S = {1,..., K}, K > 1, and initial probabilities 73 = P(Y] = s), s € S. Although we
include inhomogeneous chains in most of what follows, for brevity we will still be suppressing
the time index wherever this does not cause ambiguity. Hence, we write P = (p;;); jes for
all transition matrices. Let X = {X;};>1 be a process with the following properties. First,
given {Y;}+>1, the random variables {X;};>; are conditionally independent. Second, for
each t = 1,2,..., the distribution of X; depends on {Y;};>1 (and t) only through Y;. The
process X is sometimes called the hidden Markov process (HMP) and the pair (Y, X) is
referred to as a hidden Markov model (HMM). The name is motivated by the assumption
that the process Y (sometimes called a regime) is generally non-observable. The conditional
distribution of X given Y7 = s is called an emission distribution, written as P;, s € S. We
shall assume that the emission distributions are defined on a measurable space (X, B), where
X is usually R? and B is the corresponding Borel o-algebra. Without loss of generality, we
assume that the measures P; have densities fs with respect to some reference measure A,
such as the counting or Lebesgue measure.

Given a set A, integers m and n, m < n, and a sequence ai,as,... € A%, we write
al for the subsequence (am,...,a,). When m = 1, it will be often suppressed. Thus,
27 = (x1,...,27) and yT := (y1,...,yr) stand for the fixed observed and unobserved

realizations, respectively, of the HMM (X}, Y;);>1 up to time T' > 1. Any sequence s € ST
is called a path. This parallel notation (that is, s in addition to y”) is necessitated largely
by our forthcoming discussion of various loss functions, which do require two arguments.
We shall denote the joint probability density of (z”,4”) by p(z”,y”), that is,

T
pa"y") =P =y") [] fur (@)
t=1

To make mathematical expressions more compact, we overload the notation when this causes
no ambiguity. Thus, p(s”) stands for the probability mass function P(Y? = sT) of path
s, and p(z”) stands for the (unconditional) probability density function Y rogr p(z”, sT)
of the observed data z”. Furthermore, we write p;(s) and p(s |) for P (Y; = s) and
P (Yt =s|XT = xT), respectively. It is standard (see Bishop, 2006, Chap. 13; Ephraim
and Merhav, 2002; Cappé et al., 2005) in this context to define the so-called forward and
backward variables

als) = pat | Yi= P0G =), 8= { por (v o O

where p(z! | Y; = s) and p(xtTH | Y; = s) are the conditional densities of the data segments
xt and xtTH, respectively, given Y; = s.

1.2 Path Estimation

Our focus here is estimation of the hidden path y”. This task can also be viewed as
segmentation of the data sequence into regions with distinct class labels (Lember et al.,
2011). Treating y” as missing data (Rabiner, 1989), or parameters, a classical and by far
the most popular solution to this task is to maximize p(x?, s7) in sT € ST. Often, especially

LEMBER AND KOLOYDENKO

in the digital communication literature (Lin and Costello Jr., 1983; Brushe et al., 1998),
p(zT, sT) is called the likelihood function which might become potentially problematic in
the presence of any genuine model parameters. Such “maximum likelihood” paths are also
called Viterbi paths or Viterbi alignments after the Viterbi algorithm (Viterbi, 1967; Rabiner,
1989) commonly used for their computation. If p(s”) is thought of as the prior distribution
of YT then the Viterbi path also maximizes p(s? | 27) := P(YT = sT | XT = 27T), the
probability mass function of the posterior distribution of Y7, hence the term ‘mazimum a
posteriori (MAP) path’.

In spite of its computational attractiveness, inference based on the Viterbi paths may
be unsatisfactory for a number of reasons, including its sub-optimality with regard to the
number of correctly estimated states y;. Also, using the language of information theory,
there is no reason to expect a Viterbi path to be typical (Lember and Koloydenko, 2010).
Indeed, “there might be many similar paths through the model with probabilities that add
up to a higher probability than the single most probable path” (K&ll et al., 2005). The fact
that a MAP estimate need not be representative of the posterior distribution has also been
recently discussed in a more general context by Carvalho and Lawrence (2008). Atypicality
of Viterbi paths particularly concerns situations when estimation of y” is combined with
inference about model parameters, such as the transition probabilities p;; (Lember and
Koloydenko, 2010). Even when estimating, say, the probability of heads from independent
tosses of a biased coin, we naturally hope to observe a typical realization and not the
constant one of maximum probability.

An alternative and very natural way to estimate y” is by maximizing the posterior prob-
ability ps(s | z7) of each individual hidden state Y;, 1 <t < T (Bahl et al., 1974). We refer
to the corresponding estimator as pointwise mazimum a posteriori (PMAP). PMAP is well-
known to maximize the expected number of correctly estimated states (Section 2), hence
the characterization ‘optimal accuracy’ (Holmes and Durbin, 1998). In statistics, especially
spatial statistics and image analysis, this type of estimation is known as Marginal Posterior
Mode (Winkler, 2003) or Maximum Posterior Marginals (Rue, 1995) (MPM) estimation.
This is also known as the posterior decoding (PD) in computational biology (Brejova et al.,
2007b) and machine translation (Ganchev et al., 2008), and has been reported to be par-
ticularly successful in pairwise sequence alignment (Holmes and Durbin, 1998) and when
more than one path has its posterior probability as “high” or nearly as “high” as that of the
Viterbi path (Eddy, 2004). In the wider context of biological applications of discrete high-
dimensional probability models, this has also been called consensus estimation, and in the
absence of constraints, centroid estimation (Carvalho and Lawrence, 2008). In communica-
tions applications of HMMs, largely influenced by the BCJR algorithm (Bahl et al., 1974),
the terms ‘optimal symbol-by-symbol detection’ (Hayes et al., 1982), ‘symbol-by-symbol MA P
estimation’ (Robertson et al., 1995), and ‘MAP state estimation’ (Brushe et al., 1998) have
been used for this. Remarkably, even before observing the data, optimal accuracy (that is,
based on the prior instead of the posterior distribution) decoding can still be more accurate
than the Viterbi decoding (Subsection 5.4).

BRIDGING VITERBI AND POSTERIOR DECODING

1.2.1 How DIFFERENT ARE PMAP AND MAP INFERENCES AND How MucH RooM IS
IN BETWEEN THE TwoO?

This is a natural question in both practice and theory, especially for anyone interested
in improving performance of applications based on these methods while maintaining their
computational attractiveness.

A not so uncommon misconception that the difference between PMAP and Viterbi
inferences is negligible may in part be explained by the concluding remark made by Bahl
et al. (1974) in the special context of linear codes: “Even though Viterbi decoding is not
optimal in the sense of bit error rate, in most applications of interest the performance of both
[PMAP and Viterbi] algorithms would be effectively identical.” This conclusion may in turn
be explained by the dominance of binary chains in the telecommunication applications, and
the binary state space indeed leaves too little room for the two inferences to differ. However,
as HMMs with larger state spaces gained more prominence, it became clear that appreciable
differences between the PMAP and Viterbi inferences do occur (see, for example, Ganchev
et al., 2008). In fact, already two decades after Bahl et al. (1974), Brushe et al. (1998)
contemplated hybridization of the PMAP and Viterbi decoders, writing “Indeed, there may
be applications where a delicate performance dependence exists between [the Viterbi and
PMAP] estimates. In such cases, the use of a hybrid scheme ...may result in performance
gains.” We return to their idea later in this paper.

Although interesting comparisons of the PMAP and Viterbi decoders on special tasks
(e.g., Ganchev et al., 2008), have been recently reported, we are not aware of any systematic
general studies of the two decoders that would exploit such comparisons in order to design
new interesting hybrid schemes. Soon after the first version of this article was posted on
arXiv, however, Yau and Holmes (2010) reported similar interests in this subject, supported
by real and simulated examples. Of course, it has long been well-known (Rabiner, 1989) that
despite being optimal in the sense of maximizing the expected number of correctly estimated
states, a PMAP path can at the same time have very low, possibly zero, probability. Thus,
on the logarithmic scale, the difference in path probabilities between the PMAP and Viterbi
decoders can easily be infinite. In Section 5, we give a real data example with only six hidden
states to show that besides the infinite difference in the log-probabilities, the two decoders
can differ significantly (by more than 13%) in accuracy. This could have been expected if
the data were indeed generated by an HMM and if that same HMM were used for decoding.
However, when the model is misspecified, which is very common in practice, empirical
performance measures, such as the symbol-by-symbol error rate, are generally biased as
estimators of corresponding model based expected performance measures. In particular, in
such situations there is no guarantee that the PMAP decoding is empirically more accurate
than MAP. Although these points are fairly straightforward, we felt, especially during the
reviewing process, that some readers might still appreciate a concrete illustration, which we
give in Section 5. Other readers can simply glance over Section 5 without interrupting the
overall flow of the manuscript.

It is actually not difficult to constrain the PMAP decoder to admissible paths (Subsection
2.2.1), where admissibility is defined relative to the posterior distribution. Specifically,
given 27, a path y” is called admissible if its posterior probability p(y’ | «T) is defined and
positive, that is, if p(zT,y?) > 0. We then point out that constraining the PMAP decoder

LEMBER AND KOLOYDENKO

to the paths of positive prior probability, as already done by others (see more below), is not
sufficient (albeit necessary) for admissibility of the PMAP paths. Note that in a slightly
more general form allowing for state aggregation, Kéll et al. (2005) do exactly this, that is,
force PMAP paths to have positive prior probability, referring to the result as “a possible
path through the model”. Thus, Kéll et al. (2005) appear to ignore that having a positive
prior probability is not sufficient in general for a PMAP path to be “a possible path through
the model”, unless, of course, “the model” is to be understood as the hidden Markov chain
only and not the whole HMM. We will refer to the PMAP decoder constrained to the
admissible paths as the admissibly constrained PMAP, or, simply constrained PMAP. This
also details and clarifies our earlier discussion of admissibility (Lember et al., 2011, Section
2), which, like Rabiner (1989); Kall et al. (2005), also ignored the distinction between a
priori and a posteriori modes of admissibility.

A variation on the same idea of making PMAP paths admissible has been applied
for prediction of membrane proteins, giving rise to the posterior Viterbi decoding (PVD)
(Fariselli et al., 2005). PVD, however, maximizes the product Hthl pi(s¢ | 2T) (Fariselli
et al., 2005) (and also Equation 9 below) and not the sum Zthl pi(s¢ | 27), whereas the two
criteria are no longer equivalent in the presence of path constraints (Subsection 2.2.1). While
acknowledging this latter distinction between their decoder and PVD and not distinguishing
between the prior and posterior modes of admissibility, K&ll et al. (2005) appear to be
unaware of the other distinction between their decoder and PVD: PVD paths are guaranteed
to be of not only positive prior probability but also of positive posterior probability, that
is, admissible (in our sense of the term). Holmes and Durbin (1998) proposed a PMAP
decoder to compute optimal pairwise sequence alignments. Holmes and Durbin (1998) used
the term “legitimate alignment”, which suggests admissibility, but the description of their
algorithm (Holmes and Durbin, 1998, Section 3.8) appears to be insufficiently detailed to
verify if the output is guaranteed to be admissible, or only of positive prior probability, or,
if inadmissible solutions are altogether an issue in that context.

Our own experiments (Section 5) show that both PVD and constrained PMAP decoder
can return paths of very low (posterior) probabilities. Moreover, in many applications,
for example, gene identification and protein secondary structure prediction, the pointwise
(e.g., nucleotide level) error rate is not necessarily the main measure of accuracy (see also
Subsection 1.2.2 below), hence the constrained PMAP need not be an ultimate answer
in that respect either. Together with the above problem of atypicality of MAP paths,
this has been addressed by moving from single path inference towards envelopes (Holmes
and Durbin, 1998). Thus, for example, in computational biology a common approach
would be to aggregate individual states into a smaller number of semantic labels (e.g.,
codon, intron, intergenic). In effect, this would realize the notion of path similarity by
mapping many “similar” state paths to a single label path, or annotation (Krogh, 1997;
Kall et al., 2005; Fariselli et al., 2005; Brejova et al., 2007b). However, since this mapping
would usually be many-to-one (what Brejovd et al., 2007a refer to as the “multiple path
problem”), the annotation of the Viterbi path would generally be inferior to the optimal (in
the MAP sense) annotation. On the other hand, to compute the MAP annotation in many
practically important HMMs can be NP-hard (Brejovd et al., 2007a) (which is not surprizing
given that the coarsened hidden chain on the set of labels is generally no longer Markov).
Unlike the Viterbi/MAP decoder, the PMAP decoder, owing it to its symbol-by-symbol

BRIDGING VITERBI AND POSTERIOR DECODING

nature, handles annotations as easily as it does state paths, including the enforcement of
admissibility. Interpreting admissibility relative to the prior distribution, this was shown
by Kall et al. (2005), and this paper extends their result to admissible (that is, of positive
posterior probability) paths and indicates further extensions (Section 8).

A number of alternative heuristic approaches are also known in computational biology,
but none appears to be fully satisfactory (Brejova et al., 2007b). Overall, although the
original Viterbi decoder has still been the most popular paradigm in many applications,
and in computational biology in particular, alternative approaches have often demonstrated
significantly better performance, for example, in predicting various biological features. For
example, Krogh (1997) suggested the 1-best algorithm for optimal labeling. More recently,
Fariselli et al. (2005) have demonstrated PVD to be superior to the 1-best algorithm, and,
not surprisingly, to the Viterbi and PMAP decoders, on tasks of predicting membrane
proteins.

Thus, a starting point of this contribution was that restricting the PMAP decoder to
admissible paths is but one of numerous ways to combine the strong points of the MAP
and PMAP path estimators. Indeed, the popular seminal tutorial (Rabiner, 1989) briefly
mentions maximization of the expected number of correctly decoded (overlapping) blocks
of length two or three, rather than single states as a sensible remedy against vanishing
probabilitiefs\ (albeit leaving it unclear if prior or posterior probability was meant). With

k > 1 and y” (k) being the block length and corresponding Biith estimate, respectively, this
approach yields Viterbi inference as k increases to T' (with y7'(1) corresponding to PMAP).
Therefore, this could be interpreted as discrete interpolation between the PMAP an/d\ Viterbi
inferences. Intuitively, following Rabiner’s logic, one might also expect p(z”,yT(k)) to
increase with k. However, this is not true and it is possible for the decodez\ with k£ = 2 to
produce an inadmissible (with thE\ prior probabili/téf being also ZEEO) path yT'(2) while the
PMAP path is admissible: p(2T,y7(2)) = 0 = p(yT(2)) < p(zT,yT(1)). We are not aware
of this observation being previously made in the literature. Moreover, our experiments in
Section 5 show that this situation is far from being uncommon.

On a related note, concerned with the same deficiencies of the MAP and PMAP infer-
ences, Yau and Holmes (2010) have most recently also used the decision-theoretic framework
to allow for full asymmetry in the otherwise symmetric pairwise loss (Equation 30 below

with k& = 2) that underpins the y7(2) inference. This is no doubt a very natural extension
to provide to the end user, and (partially) asymmetric pairwise losses had indeed been in-
corporated in a prominent web-server in the context of RNA secondary structure prediction
(Sato et al., 2009).

Despite the possibility of y7(2) or its asymmetric siblings to be inadmissible, we find
the idea of interpolation between the PMAP and Viterbi inferences very interesting. Be-
sides Yau and Holmes (2010) acknowledging the need for intermediate modes of inference,
to the best of our knowledge, the only published work that explicitly proposed such an
interpolation is that of Brushe et al. (1998). However, the approach of Brushe et al. (1998)
is algorithmic, which makes it difficult to interpret its paths in general and analyze their
properties (e.g., asymptotic behavior in particular). More importantly, Brushe et al. (1998)
claim that the family of their interpolating decoders will work in practice, which, as we
explain in detail in Section 6, need not be true apart from trivial situations. Despite these

LEMBER AND KOLOYDENKO

and other deficiencies of their approach, it raises some interesting questions and inspires
interesting modifications, which we also discuss in Section 6. It had not been our original
intention to dwell on the algorithmic approach in this manuscript as this approach is pe-
ripheral to the present theme of the risk-based approach. However, encouraged by some
of the reviewers and taking into account their queries on and interest in that particular
discussion, we have now made that discussion into a full section (Section 6), which might,
however, appear somewhat hypertrophied to some readers.

1.2.2 FURTHER MOTIVATION

One other motivation for considering new decoders is that unlike the error rate or path
probability, analytic optimization of other performance measures (e.g., Matthew’s correla-
tion Aydin et al., 2006, Q2, Qok, SOV Fariselli et al., 2005, etc.) used in practice is difficult
if at all possible. Having a large family of computationally efficient decoders, such as the
new generalized hybrid decoders, and using some training data, one can select empirically
a member from the family that optimizes the performance measure of interest. More gener-
ally, it seems advantageous for applications to be aware of the new choices of decoders and
their properties.

Also, depending on the application, the emphasis sometimes shifts from purely auto-
matic decoding with hard decisions to data exploration. Indeed, some performance measures
may be hard to formalize and subsequently hard to compute. For example, an estimated
path can be deemed correct if it is only structurally identical to the true path, say, con-
forming to the description “a long run of 1’s followed by a short run of 2’s followed by a
long run of alternating 2’s and 3’s”. It is then particularly valuable to gain insights into the
topology of the state space in the sense of identifying compartments of high concentration
of the posterior distribution. The significance of identifying clusters (of similar sequences)
of high (total) posterior probability in high-dimensional discrete spaces has been recently
discussed by Carvalho and Lawrence (2008), and a thorough discussion of the advantages
of topological and geometric approaches to analysis of complex data in general has more
recently been given by Carlsson (2009). Thus, it may be beneficial to output a family of
related decodings instead of one or several (“N best”) decodings that are optimal relative
to a single criterion such as MAP. For instance, by slowly varying the optimization criterion
(e.g., decreasing the penalty for false discovery of rare states or transitions), saliency of de-
tections of interesting features can be assessed and a better understanding of a neighborhood
of solutions can be gained (e.g., discerning between an “archipelago” and a “continent”),
all without having to compute, or even define explicitly, a path similarity measure (such
as those based on, for example, BLAST scores Altschul et al., 1990). At the same time,
by varying the optimization criteria more aggressively, alternative structures might be en-
countered coming from neighborhoods of remote (say, in the Hamming distance sense) local
maxima of the posterior distribution. Viewed within this context, this relatively inexpensive
type of “neighborhood” inference might become alternative or complementary to the direct
sampling (from the posterior distribution); see also Section 5 and Section 8.

BRIDGING VITERBI AND POSTERIOR DECODING

1.3 Further Notation and Organization of the Rest of the Paper

In this paper, we consider the path inference problem in the more general framework of
statistical learning. Namely, we consider sequence classifier mappings

g: X7 55T T=12,...,

and optimality criteria for their selection. When all ¢g’s are obtained using the same de-
coding principle, or optimality criterion, regardless of T', we refer to them collectively as a
classification method, or simply, decoder. This will be the case in this paper, and therefore
we simplify the notation by writing g(z”) instead of g(2”;T) or the like. In Section 2,
criteria for optimality of g are naturally formulated in terms of risk minimization whereby
R(s” | 1), the risk of of outputting path s”, derives from a suitable loss function. A Bayes
decoder, that is one that minimizes R(g(z?) | zT) over all possible g, will be denoted by v
with a suitable reference to the risk R. In Section 3, we consider families of risk functions
which naturally generalize those corresponding to the Viterbi and PMAP solutions (Sub-
section 2.1). There we will need the full two argument notation v(z’;-) using the second
argument to single out an individual member of such a family. Furthermore, as shown
in Section 4, these risk functions define a family of path decoders v(z”; k) parameterized
by an integer k with £ = 1 and k& — oo corresponding to the PMAP and Viterbi cases,
respectively (Theorem 6). A continuous mapping via k = 1/(1—«), 0 < o < 1 compactifies
this parameterization and further enriches the solution space by including fractional k. It
is then discussed how the new family of decoders can be embedded into yet a wider class
with a principled criterion of optimality. We also compare the new family of decoders with
the Rabiner k-block approach. Any decoder would only be of theoretical interest if it could
not be efficiently computed. In Section 3, we show that all of the newly defined decoders
can be implemented efficiently as a dynamic programming algorithm in the usual forward-
backward manner with essentially the same (computational as well as memory) complexity
as the PMAP or Viterbi decoders (Theorem 4). Recent advances in the asymptotic theory
of some of the main decoders and risks presented in this paper are reviewed in Section 7
together with sketches of how these may be relevant in practice. Various further extensions
are discussed in the concluding Section 8.

1.4 Contributions of the Paper

We review HMM-based decoding within the sound framework of statistical decision theory,
and do so notably more broadly than has been done before, for example, in the prominent
work of Carvalho and Lawrence (2008). We also investigate thoroughly previous work on
combining the desirable properties of the two most common decoders, that is the Viterbi and
optimal accuracy decoders. In doing so, we discover several relevant claims and suggestions
to be unjustified, misleading, or plainly incorrect. We explain in detail those deficiencies,
giving relevant counterexamples, and show how they can be resolved. Some such resolutions
are naturally left within the native frameworks of the originals, whereas others are more
naturally given within the general risk-based framework. All of the resulting decoders are
shown to be easily implementable within the usual forward-backward computational frame-
works of the optimal accuracy and Viterbi decoders. We argue that the richness, flexibility,

LEMBER AND KOLOYDENKO

and analytic interpretation of the resulting families of decoders offer new possibilities for
applications and invite further theoretical analysis. Specifically, this paper

1) clarifies the definition of admissibility of hidden paths and shows that, when con-
strained to the paths of positive prior probability, the optimal accuracy decoding can
still return inadmissible paths;

2) shows that the suggestion of Rabiner (1989) to maximize the expected rate of
correctly recognized blocks can lead to inadmissible paths for blocks of size two, and
therefore can be misleading;

3) proposes suitable risk functions to “repair” the above suggestion, and subsequently
designs new families of computationally efficient decoders, providing an experimental
illustration;

4) unifies virtually all of the key decoders within the same risk-based framework;

5) analyzes the relationships between the risks achieved by the different decoders,
yielding a general result on convex decomposition of the key risk functionals for
Markov chains;

6) analyzes the related earlier work of Brushe et al. (1998), and in particular:

(a) explains how the idea of hybridization of the Viterbi and optimal accuracy decoders
proposed in the above work can fail when the Viterbi path is not unique;

(b) establishes that the claims made in the same work regarding the implementation of
their algorithm to hybridize the Viterbi and optimal accuracy decoders are incorrect;

(c) shows how the corresponding forward and backward variables given in the same
work can be scaled to produce an operational decoding algorithm;

(d) shows that the resulting decoders are different from the original hybrid decoders
of Brushe et al. (1998);

(e) proposes an immediately operational algorithm to hybridize the Viterbi and opti-
mal accuracy decoders (at least when the Viterbi path is unique), which is based on
the more common power-transform, and which also allows for extrapolations “beyond”
the optimal accuracy decoder;

7) indicates a number of further extensions of the new families of decoders.

At the same time, a thorough performance evaluation, including asymmetric variants of the
main loss functions, and using several applications with their own performance measures,
is outside the scope of this paper (Section 8).

2. Risk-Based Path Inference

Given a sequence of observations ? with p(z7)

function

> 0, we view the (posterior) risk as a
R(-|2T): ST —[0,0q].

10

BRIDGING VITERBI AND POSTERIOR DECODING

Naturally, we seek a state sequence with minimum risk: v(z7) := arg mingrogr R(ST | xT).
In the statistical decision and pattern recognition theories, the classifier v is known as the
Bayes classifier (relative to risk R). Within the same framework, the risk is often specified
via a loss-function

L:ST x ST 10,00,
interpreting L(s”,y”) as the loss incurred by the decision to predict s” when the actual
state sequence was y.. Therefore, for any state sequence s € ST, the risk is given by

R(s" [2") = BIL(s",YT) | XT =2"] = Y L(s",y")p(y" | =T).
yTesT

2.1 Standard Path Inferences Re-Examined

The most popular loss function is the so-called symmetrical or zero-one loss Lo, defined as

follows: . .
r o7 1, ifst #Fy
Lools™oy7) = { 0, ifsT =yT.

We shall denote the corresponding risk by R. With this loss, clearly
Roo(sT 2Ty =P(YT £ sT | XT =2T) =1 p(sT | 2T), (2)

thus Roo(- | #7) is minimized by a Viterbi path, that is, a sequence of maximum posterior
probability. Let v(-; 00) stand for the corresponding classifier, that is

T.50) := arg max p(sT | z7),

v(z
sTesT

with a suitable tie-breaking rule.
Note that Viterbi paths also minimize the following risk

_ 1
Roo(s" | aT) = = logp(s” | &T). (3)
It can actually be advantageous to use the logarithmic risk (3) since, as we shall see later,
this leads to various natural generalizations (Sections 3 and 4).
When sequences are compared pointwise, it is common to use additive loss functions of

the form
T

1
Ll(STayT) = T;l(stvyt)v (4)
where [(s,y) > 0 is the loss associated with classifying y as s. Typically, for every state
s, U(s,s) = 0. It is not hard to see that, with L; as in (4), the corresponding risk can be

represented as follows
T

1
Ry(s" |2") = TZPt(st | 2T),
t=1

where pi(s | z7) = Zyesl(s,y)pt(y | #7). Most commonly, [is again symmetrical, or
zero-one, that is I(s,y) = {5241, where I4 stands for the indicator function of set A. In

11

LEMBER AND KOLOYDENKO

this case, L1 is naturally related to the Hamming distance (Carvalho and Lawrence, 2008).
Then also py(s; | 7) =1 — py(s; | T) so that the corresponding risk is

T ,.Ty_ _l a T
Ri(sT |2y =1 szt(stm). (5)
t=1

Let v(-;1) stand for the Bayes classifier relative to this R;-risk. It is easy to see from
the above definition of Ry, that v(-;1) delivers PMAP paths, which minimize the expected
number of misclassification errors. In addition to maximizing Y7 (s | #7), v(+ 1) also
maximizes [/_, p¢(s¢ | #T), and therefore minimizes the following risk

T

_ 1

Ri(sT | 2T) := -7 Zlogpt(st | 7). (6)
t=1

2.2 Generalizations

Next, we begin to consider various generalizations of the the standard path inferences.

2.2.1 ApMISSIBLE PMAP AND POSTERIOR VITERBI DECODERS

Recall (Subsection 1.2.1) that PMAP paths can be inadmissible. According to our definition
of admissibility (Subsection 1.2.1), a path is inadmissible if it is of zero posterior probability.
Although Rabiner (1989) gives no explicit definition of admissibility, or validity, he refers to
forbidden transitions, that is, of zero prior probability (which, of course, also implies zero
posterior probability) as an example of how a path can be “not valid”; the possibility of a
path to have a positive prior probability but zero posterior probability is not discussed there.
As far as we are aware, Kéll et al. (2005) were the first to formally write down an amended
PMAP optimization problem to guarantee path validity, or admissibility. However, they
too do not state explicitly if “a possible path through the model” means for them positivity
only of the prior probability or also of the posterior probability. If “the model” is to be
understood as the HMM in its entirety, then this would require positivity of the posterior
probability. However, the optimization presented by Kéill et al. (2005) does not guarantee
positivity of the posterior probability, that is, it only guarantees positivity of the prior
probability. Perhaps, it does not happen very often in practice that the PMAP decoder
constrained to return a priori possible paths returns an inadmissible path (it does not
happen in our own experiments in Section 5 as all of our emission probabilities are non-zero
on the entire emission alphabet). However, as the example in Appendix A shows, this is
indeed possible.

Thus, to enforce admissibility properly, Ri-risk needs to be minimized over the admis-
sible paths (R; minimization over the paths of positive prior probability is revisited in
Subsection 2.2.2 below):

min ~ Ri(s? |2T) < max Zpt (s¢ | T (7)

sT:p(sT|zT)>0 sT:p(sT|xT) >0

Assuming that p(s | 27), 1 <t < T, s € S, have been precomputed (e.g., by the classical
forward-backward recursion Rabiner, 1989), a solution to (7) can be easily found by a

12

BRIDGING VITERBI AND POSTERIOR DECODING

Viterbi-like recursion (8)

51(]) = pl(j ’ fL'T), Vjes, (8)
St41(j) = max (6:(3) 4+ logre(i, 7)) + pe1(j | 2T) for t =1,2,..., T — 1, and Vj € S,

where 1¢(i, j) := Ly, £ (er41)>0) (vecall that p;; = P(Yip1 =j [Y: =) and f; is the density
of the conditional probability distribution of X;1; conditioned on Y;41 = j). To the best of
our knowledge this has not been stated in the literature before. We will refer to this decoder
as the Constrained PMAP decoder.

Next note that in the presence of path constraints, minimization of the Rj-risk (5) is no
longer equivalent to minimization of the Rj-risk (6). In particular, the problem (7) is not
equivalent to the following problem

min ~ Ri(s? |2T) & max Zlogpt sp | T 9)

sT:p(sT|zT)>0 sT:p(sT|xT) >0

It is also important to note that the problem (9) above is equivalent to what has been
termed the posterior- Viterbi decoding, or PVD (Fariselli et al., 2005):

min Ry(s? | 2T max Zlo s¢ |
sT:p(sT)>0 1< ’) sT:p(sT) >0% gpt t‘

that is, unlike in the case of Ry(s? | #7) minimization, minimization of R;(s? | 2T) over
the paths of positive prior probability is indeed sufficient to produce admissible paths.
A solution to (9) can be computed by a related recursion given in (10) below

61(j) = logp(jla"), Vjes, (10)
Orr1(g) = max (5t()+10grm) +logpi1(j | z), fort =1,2,..., T -1, Vj € S,

where 7;; 1= Iy, .~o) (which for inhomogeneous chains will depend on t).

2.2.2 BEYOND PVD AND A priori ADMISSIBLE PMAP

Although admissible minimizers of R; and R risk are by definition of positive probability,
this probability can still be very small. Indeed, in the above recursions, the weight r;; is
1 even when p;; is very small. We next replace r;; by the true transition probability p;;
in minimizing the R;j-risk (that is maximization of H?zl pi(s¢ | 7). Then the solutions
remain admissible and also tend to maximize the prior path probability. To bring the newly
obtained optimization problem to a more elegant form (11), we pretend that d;(j) in (10)
above was defined as d1(j) := logp1(j | #7) +log I(x;>0y (Which indeed does not change the
results of the recursion (10)) and replace the last term by log ;.

Thus, with the above replacements, the recursion (10) now solves the following seemingly
unconstrained optimization problem (see Theorem 4)

T

max [Zlogpt se | 2T) +logp(sT)| & min Ri(sT | 27) + h(sT)}’ (11)
t=1 #

13

LEMBER AND KOLOYDENKO

where the penalty term
h(s") =—7logp(s") = Ruo(s") (12)

is the logarithmic risk based on the prior distribution,! which does not involve the observed
data.
The thereby modified recursions immediately generalize as follows:

01(j) = logpi(j|a")+ Clogm;, Vj €S,
dt+1(j) = max (St(i) +C’logpij) +logpir(j | 2F) fort =1,2,..., T —1, Vj € S,
solving
min [Rl(sT | 27) + Ch(sT)], (13)

where C' > 0 is a trade-off constant, which can also be viewed as a regularization parameter.
Indeed, Proposition 2 below states that C' > 0 implies admissibility of solutions to (13).
In particular, PVD, that is the problem solved by the original recursion (10), can now
be recovered by taking C sufficiently small. (Alternatively, the PVD problem can also be
formally written in the form (13) with C' = oo and h(s") given, for example, by I, sr)—o}-)

What if the actual probabilities p;; (;) were also used in the optimal accuracy/PMAP
decoding? To motivate this, we re-consider the optimal accuracy /PMAP decoding imposing
the positivity constraint not on the posterior but on the prior path probability:

T

min Ri(s! |z1) < max s | 2T 14

Solution to (14) can be easily found by yet another Viterbi-like recursion given in (15) below

0(j) = m@la"), VieS, (1)
6141(j) = max (6;(i) +logri;) + per1(j | x7) for t =1,2,....,T —1, and Vj € S,

which is the same as (8) apart from the r;; in place of the (4, j).

We again replace the indicators r;; by the actual probabilities p;;. We once more pretend
that 61(j) in (15) above was defined, this time, as 61(j) := p1(j | z7)+log [(x;>01- Replacing
the last term by log 7; yields the following problem:

T
mac | Y pi(se | w) +logp(s”)] & min [Ri(s" [o) + Re(s)]. (16)
t=1

A more general problem can be written in the form

min [Rl(sT | 2T) + Ch(sT)}, (17)

s

1. More generally, the same type of risk (e.g., Roo) can be based on the posterior (p(s” | zT)), joint
(p(s™,x™)) or prior (p(sT)) distribution. Compromising between notational accuracy on the one hand
and notational simplicity and consistency on the other hand, throughout the paper we disambiguate
these cases solely by the argument.

14

BRIDGING VITERBI AND POSTERIOR DECODING

where h is some penalty function (independent of the data x”). Thus, the problem (14) of
optimal accuracy/PMAP decoding over the paths of positive prior probablhty is obtained
by taking C sufficiently small and h(s”) = Rso(sT). (Setting C x h(sT) = oo x Lip(sy=0}
also reduces the problem (17) back to (7).)

Clearly, if instead of (14) we started off with (7) (R1(sT |) minimization over the
admissible paths), we would arrive at Ro(s” | 27) in place of R (s”) in (16) above.
Inclusion of R (sT | 1) more generally is treated next in Section 3.

3. Combined Risks

Motivated by the previous section, we consider the following general problem

min [ClRl(sT | 2T) + CoRoo(sT | 2T) + C3R1(sT) + 04ROO(ST)} , (18)
S

where C; > 0,1 =1,2,3,4, Z?:l C; > 0.2 This is also equivalent to

min |CLRy(s7 | 2T) + CoRoo(s”,27) + CaRa(s7) + CaR (s7) |, (19)
where, recalling (6), Ry(s” | 2T Zlogpt (s¢ | T
Ro(s",a") = logp(s,

[10gp) + Zlog far ()],

t=1
T-1
**[log sy + Z logpswt.,_l + Zlog fSt :Et)]
t=1 t=1

_ 1
recalling (3), Roo(s? |2T) = ——logp(sT | 2T,

1
= Roo(s”,a™) + s logpla),
L I
Ty .
s)= —T;bgpt(st), (20)
1
Roo(sT) = ——10gp(sT), recalling (12),

=~ r 10g sy + Z logpswz+1 (21)

The newly introduced risk R;(s”) involves only the prior marginals. Note that the com-
bination C; = C3 = C4 = 0 corresponds to the MAP /Viterbi decoding; the combination

2. For uniqueness of representation, one may want to additionally require Zle C; =1.

15

LEMBER AND KOLOYDENKO

Cy = C3 = C4 = 0 yields the PMAP case, whereas the combinations C; = Co = C3 = 0 and
C1 = Cy = C4 = 0 give the mazimum a priori decoding and marginal prior mode decoding,
respectively. The case Co = C5 = 0 subsumes (13) and the case C; = C3 = 0 is the problem

min [ROO(ST 1 2T) + CROO(ST)] : (22)

Thus, a solution to (22) is a generalization of the Viterbi decoding that allows one to
suppress (C' > 0) contribution of the data.

Remark 1 If Cy > 0, then every solution of (18) is admissible and the minimized risk is
finite.

No less important and perhaps a little less obvious is that Cy,Cy > 0 also guarantees ad-
missibility of the solutions, as stated in Proposition 2 below.

Proposition 2 Let C1,Cy > 0. Then, the minimized risk (18) is finite and any minimizer

sT is admissible.

Proof Without loss of generality, assume Cy = C3 = 0. Since p(z7) > 0 (assumed in
the beginning of Section 2), there exists some admissible path s. Clearly, the combined
risk of this path is finite, hence so is the minimum risk. Now, suppose s’ is a minimizer
of the combined risk and suppose further that s’ is inadmissible, that is p(s? | 2T) = 0.
Since the minimized risk (18) is finite, we must have p(s”) > 0. Therefore, it must be
that p(x? | sT) = 0, and therefore we must have some ¢, 1 < t < T, such fs,(z;) = 0.
This would imply that any path through (¢, s;) is inadmissible, hence p;(s; |), the sum
of the posterior probabilities of all such paths, is zero. This implies Ri(s? | 27) = oo,
contradicting optimality of s7 . |

Remark 3 Note that for any x*, the Posterior-Viterbi decoding (Fariselli et al., 2005)
(Problem 9 above) can be obtained by setting C3 = Cqy = 0 and taking Co sufficiently small,
that is, 0 < Cy < C1. Also, PVD can be obtained almost surely by setting Co = C3 = 0 and
taking Cy sufficiently small, that is, 0 < Cy < C1.

It is fairly intuitive that PVD can be realized as solutions to (18), but we nonetheless prove
this formally in Appendix B.

If the smoothing probabilities p;(s | z7),t = 1,...,T and s € S, have been already com-
puted, a solution to (18) can be found also by a standard dynamic programming algorithm.
Let us first introduce more notation. For every t € 1,...,T and j € S, let

Ye(j) := Crlogpy(j |) + Calog f;(x) + C3log pi(5).

Note that the function 7y depends on the entire data z”. Next, let us also define the
following scores

01(j) = (Co+Cy)logmj +71(j), Vj €S,
6(j) = max (6:-1(3) + (Co + Cy) log pij) + (), (23)
fort=2,3,...,7T, and Vj € S.

16

BRIDGING VITERBI AND POSTERIOR DECODING

Using the above scores d;(j) and a suitable tie-breaking rule, below we define the back-

pointers i;(j), terminal state iz, and the optimal path yT (ir).

i1(j) := argmax[6;(i) + (Co + Cy)logpi;], whent=1,..., T -1,
7

es
ir := argmax dr (i); (24)
1€
~ i1(7), when t = 1;
yii) =18 S 25
2 {(yH(zH(y)),y), when t=2,...,T. (2)

Thus, given 2!+ and the best path that ends in state j (at time t 4+ 1), i;(j) represents the
t-th state in this path.

The following theorem formalizes the dynamic programming argument; its proof is stan-
dard and we state it below for completeness only.

—

Theorem 4 Any solution to (18) can be represented in the form y™ (ir) provided the ties
in (24) are broken accordingly.

Proof With a slight abuse of notation, for every st € S, let
¢
U(St) = Z [’Yu(su) + (CQ + 04) logpSu—15u])
u=1
where sg := 0 and pgs := 7. Hence,
—T[C1Ry(sT | 27) + CoRuso(sT,2T) + C3R1(sT) + C4Ruo(sT)] = U(sT)

and any maximizer of U(s?) is clearly a solution to (18) and (19).
Next, let U(j) := 61(j) for all j € S, and let

U<St+1) = U($t> + (CQ + 04) logp8t8t+1 =+ 7t+1(8t+1)7
fort=1,2,...,7 — 1 and also s* € S*. By induction on ¢, these yield

6:(j) = max U(s")

stisy=j

for every t = 1,2,...,T and for all j € S. Clearly, every maximizer y7 of U(s”) over
the set ST must end up in ir, or, more precisely, in the set arg max;ecs 07 (j), allowing for
non-uniqueness. Continuing to interpret arg max as a set, recursion (23) implies recursions

(24) and (25), hence any maximizer y” can indeed be computed in the form y7 (ir) via the
forward (recursion (24))-backward (recursion (25)) procedure. [|

Similarly to the generalized risk minimization of (18), the generalized problem of accuracy
optimization (17) can also be further generalized as follows:

min [ClRl(sT | 7)) 4+ CyRoo (sT | 2T) 4+ C3Ry1(sT) + C4ROO(ST)}, (26)

17

LEMBER AND KOLOYDENKO

where risk

R1 (ST) = !

N

T L I
ZP(YZ #51) =1~ T Zpt(st) (27)
t=1 t=1

is the error rate relative to the prior distribution. This problem can also be solved by a
recursion formally identical to that in (23) except for the removed logarithms in the marginal
probabilities:

w(j) = Cipe(j | a") + Calog fi(ze) + Cape(4). (28)

The following remarks compare this generalized Problem with the generalized Problem
(18) (Remarks 1 and 3, Proposition 2).

Remark 5 1. As in the gemeralized posterior-Viterbi decoding (18), here Co > 0 also
implies admissibility of the optimal paths.

2. Now, Cy > 0 implies that the minimized risk is finite for any x*, but unlike in (18),
C1,Cy > 0 s not sufficient to guarantee admissibility almost surely of the solutions to
the problem (26).

3. Taking C5 = Cy = 0, the constrained PMAP problem (Kill et al., 2005) (Problem 7
above) is obtained for some Cy, Cy such that 0 < Cy < C.

We refer to a decoder solving the generalized risk minimization Problem (18) as a generalized
posterior-Viterbi hybrid decoder. Similarly, a decoder solving the generalized optimal accu-
racy Problem (26) is referred to as a generalized PMAP hybrid decoder to distinguish the
product-based risk R;(s? | z7) in the former case from the sum-based risk R;(s? | z7) in
the latter case. Both the generalized families, however, naturally extend the PMAP /optimal
accuracy /posterior decoder (Section 2.1).

Corollary 15 of Apendix C establishes the usual trade-off type of resuls for the solutions
to Problems (18) and (26). The results on the trade-off between R; and R, risks will in
particular be useful in Corollary 8 (see further below) for establishing monotonicity of the
solution to Problem (18).

4. The k-Block Posterior-Viterbi Decoding

The next approach provides a surprisingly different insight into what otherwise has already
been formulated as the generalized Problem (18). This, first of all, helps better understand
how the generalized Problem (18) resolves the drawback of Rabiner’s suggestion (intro-
duced in the last paragraph of Subsection 1.2.1 above). Secondly, the same approach gives
an elegant relationship (Theorem 6, Corollary 7) between the main types of risk, which
surprisingly amounts to, as far as we know, a novel property of ordinary Markov chains
(Equation 34, and Proposition 14 of the concluding Section 8).

Recall (Subsection 1.2) that Rabiner’s compromise between MAP and PMAP is to
maximize the expected number of correctly decoded pairs or triples of (adjacent) states.
With & being the length of the overlapping block (k = 2,3,...) this means to minimize the

18

BRIDGING VITERBI AND POSTERIOR DECODING

conditional risk

1 T—k+1
Rt 1) =1 gy 2 w6 D), (29)
which derives from the following loss function:
1 T—k+1
Li(sT,yT) = o ; Ligtrnmt ey (30)

When k& = 1 this gives the usual R; maximization, that is, the PMAP decoding, which is
known to fault by allowing inadmissible paths. Just as in (4) with & = 1, we could also
consider a general (possibly asymmetric) loss function lk(s?k*l, yi*kil) for larger k in (30)
above. Thus, for k = 2 this is the Markov loss function studied by Yau and Holmes (2010).

It is natural to think that minimizers of Ry(s? | z7) “move” towards Viterbi paths
“monotonically” as k increases to 7. Indeed, when k& = T, minimization of Ry(s? | 27)
(29) is equivalent to minimization of R (s | 2T) achieved by the Viterbi decoding. How-
ever, as the experiments in Section 5 below show, minimizers of (29) are not guaranteed
to be admissible (even if admissibility were defined relative to the prior distribution) for
k > 1. Also, as we already pointed out in Subsection 1.2.1, this approach does not give
monotonicity, that is, allows the optimal path for £ = 2 to have lower (prior and posterior)
probabilities than those of the PMAP path (that is, k = 1). Another drawback of using the
loss Ly (30) and its more general variants is that, unlike in the generalized PVD and PMAP
hybrid decoders, the computational complezity of Rabiner’s approach grows with the block
length k. We now show how these drawbacks go away when the sum in (29) is replaced by
a product, eventually arriving at a subfamily of the generalized posterior Viterbi decoders.
Certainly, replacing the sum by the product alters the problem, and it does so in a way that
makes the block-wise coding idea work well. Namely, the longer the block, the larger the
resulting path probability, which is also now guaranteed to be positive already for £ = 2.
Moreover, this gives another interpretation of the risks Ri(s? | 27) + CRuoo(s? | 2T) (see
also Remark 3 above), the prior risks R;(s”) 4+ CRs(s”), and consequently the generalized
Problem (18).

Let k£ be a positive integer. For the time being, let p represent any first order Markov
chain on ST, and let us define

T—1
- min(j+k,T = 1 -
Uu(s™) =TT plsma 50 Br(s™) i= == mnTi(s"),
j=1—k
Thus
Up(s") = U - Uy - UY,
where

UF == p(s1) - p(si 2)p(si 1),
US = p(shp(s5th) - 'p(#:}g)p(sg%ﬂ)a

U§ = p(sp_jy2)D(ST_pys) - - D(sT).

19

LEMBER AND KOLOYDENKO

Thus, Ry, is a natural generalization of R; (introduced first for the posterior distribution in
(6)) since when k =1, R = R;.

Theorem 6 Let k be such that T > k > 1. Then the following recursion holds
Ri(s7) = Roo(sT) 4+ Rp_1(sT), Vs! e ST,

Proof Note that
U =UF"p(si™"), U =p(sp_p0)Us

Next, for all j such that j + k < T, the Markov property gives

p(ngf) = p(5j+l<: | 3j+k—1)p(5§i]1€71)
and
USp(st_ivo) = p(s5)p(s5TY) -+ (s)P(ST_joya) =
p(sk | Sk—l)p(slf_l)p(skﬂ \ Sk)p(sg) ~p(st | 8T-1)p($g:;1€+1)p(3%fk+2> =
p(sk | Sk—1)p(Sk41 | s8) - - p(sT | ST—l)P(Slf_l) e 'p(sgii+1)p(8%7k+2) =
p(sk | sk—1)---p(st | sp-1)Uy "
Hence,

U(s7) = UFp(s" Dp(sk | sk_1) -+~ p(st | s7_1)USTUF,
= p(s)) UL US'US ™ = p(s") U1 (s7).

The second equality above also follows from the Markov property. Taking logarithms on
both sides and dividing by —T completes the proof. |

Now, we specialize this result to our HMM context, and, thus, p(s7) and p(s? | 2T) are
again the prior and posterior hidden path distributions.

(_jorollary 7 Let k be such that T >k > 1. For all paths sT € ST the prior risks I?k and
R satisfy (31). For every x© € XT and for all paths sT € ST, the posterior risks Ry, and

R satisfy (32).
Ri(sT) = Roo(sT)+ Rip_1(sT), (31)
Ri(sT | 27) = Roo(s” | 27) + Re_1(sT | 2T). (32)

Proof Clearly, conditioned on the data z7, Y7 remains a first order Markov chain (gener-
ally inhomogeneous even if it was homogeneous a priori). Hence, Theorem 6 applies. |

Below, we focus on the posterior distribution and risks, but the discussion readily extends
to any first order Markov chain.
Let v(z; k) be a decoder that minimizes Ry (sT | #7), returning a path §(k), that is,
j(k) = arg max Uy(s? | 27) = arg min Ry (s? | zT). 33
() = axg gmax Uu(s" | oT) = arg in, Re(s” | 47) (33)
Corollary (8) below states how Ry (s? | 1) minimization is a special case of the generalized

Problem (18). We refer to the generalized posterior-Viterbi hybrid decoders v(z’;k) as
k-block PVD and summarize their properties in Corollary (8).

20

BRIDGING VITERBI AND POSTERIOR DECODING

Corollary 8 For every xT € X7, and for every s* € ST, we have

Ri(sT | 2T) = (k — 1)Roo(s™ | 2T) + Ry(sT | 2T), Vk such that 1 <k <T. (34)
y(k) is admissible, Vk such that k > 1. (35)
Roo((k) | 7) < Roo(9(k — 1) | 27), Vk such that 1 <k <T. (36)
Ri(g(k) | z7) > Ry(g(k — 1) | «T), Vk such that 1 <k <T. (37)

Proof Equation (34) follows immediately from Equation (32) of Corollary 7. Admissibility
of y(k) for k > 1 in (35) becomes obvious recalling Remark 1. Inequalities (36) and (37)
are established by Corollary 15. |

Equation (34) is also of practical significance showing that g(k) is a solution to (18)
with C; =1, Cy =k —1, C3 = Cy = 0, and as such can be computed in the same fashion
for all k, 1 <k <T (see Theorem 4 above).

Inequality (36) means that the posterior path probability p(7(k) | T) increases with k.
At the same time, increasing k also increases Ri-risk, that is, decreases the product of the
(posterior) marginal probabilities of states along the path g(k). Inequalities (36) and (37)
clearly show that as k increases, v(+; k) monotonically moves from v(-;1) (PMAP) towards
the Viterbi decoder, that is v(-; 00). However, the maximum block length is k = T..

A natural way to complete this bridging of PMAP with MAP is by embedding the R,
risks into the family R, via o = k—;l € [0,1]. Thus, (34) extends to

Ro(sT | 2T) := aRoo(sT | 2T) + (1 — a) Ry (s7 | 2T) (38)

with @« = 0 and o« = 1 corresponding to the PMAP and Viterbi cases, respectively. This
embedding is clearly still within the generalized Problem (18) via C; = 1 — «, Cy = a,
C3 = Cy4 = 0. In particular, v(z”; k(a)) can be computed by using the same dynamic pro-
gramming algorithm of Theorem 4 for all k € [1, 00| (that is, all a € [0, 1]), and inequalities
(36) and (37) are special cases of Corollary 15 (part 1) to Lemma 16.

Recalling Remark 3, we note that on the lower end of 0 < « < 1, before reaching
PMAP (a = 0) we encounter PVD for some sufficiently small a ~ 0. Note also that in
(35) k need not be integer either, that is, Remark 1 establishes admissibility of g(k(«)),
k(o) =1/(1 — a), for all « € (0,1] (that is, all k£ € (1, 00]).

Given z! and a sufficiently large k (equivalently, a =~ 1), §(k), the minimizer of R, (s
zT) (38) (and (34)) would become a Viterbi path §(oco) (since ST is finite). However, such
a (and k) would generally depend on z”, and in particular £ may need to be larger than
T, that is, §(7') may be different from (o).

At the same time, for k£ > 1 we have

ol

Ri(j(0) | 1)

Ro((00) | #7) < Roo(§(k) | ") < Reo(i(00) | &1) + =5 =5,

(39)

on which we comment more in Section 7 below. The first inequality of (39) above follows
immediately from the definition of the Viterbi decoder. To obtain the second inequality,
apply (34) to both g(k) and g(oco) and subtract one equation from the other. Dividing the

21

LEMBER AND KOLOYDENKO

resulting terms by k — 1, noticing that Ry(9(00) | z7) > Ri(9(k) | 27) and Ry (y(k) | z7) >
0, and rearranging the other terms yields the result.

Considering the prior chain Y7 and risks in (31), we immediately obtain statements
analogous to (34)-(38) extending these new interpretations to the entire generalized Prob-
lem (18). In particular, it might be of general interest to note that for any first order
Markov chain (that is, not necessarily representing the posterior distribution of an HMM)
the following convexly combined risk

Ra(s1) := aRuo(s7) + (1 — @) Ry (s7)

can be efficiently minimized in the usual forward-backward manner (Theorem 4).

5. Experiments

We illustrate the performance of the Viterbi, PMAP, and some of the other known and
new decoders on the task of predicting protein secondary structure in single amino-acid
sequences. We show that the differences in performance between the various decoders
can be significant. For this illustration purpose, our decoders are based entirely on the
ordinary first order HMM. In particular, when decoding an amino-acid sequence, they
do not use cues from decoded homologous sequences (other than by allowing homologous
sequences to be part of the training set for estimation of the model parameters). Certainly,
successful predictors in practice are significantly more elaborate. In particular, they do
exploit intensively information from decoded homologs, and also include interactions at
ranges considerably longer than that of the first order HMM (Aydin et al., 2006). However,
our current goal is not to compete for the absolute record on the task (which, not so long
ago, was reported to be about 70% (Aydin et al., 2006)), but to merely emphasize the
following two points. First, the difference in performance between the Viterbi and PMAP
decoders can be appreciable in practice already with the ordinary first order HMMs having
as few as six hidden states. Secondly, using the new family of decoders (that is, solutions to
the generalized risk minimization 18 and 26) gives a potentially useful additional flexibility
by exercising trade-offs between principled performance measures (Subsection 1.2.2).

Our data are a non-redundant subset of the Protein Data Bank (Berman et al., 2000).
Specifically, the secondary structural elements have been found from their atomic coordi-
nates using SSENVID (Softberry, Inc., 2001) and the resulting data can be freely downloaded
from http://personal.rhul.ac.uk/utah/113/VA/env_seqgssnr.txt. The data contain
N = 25713 realizations (z7"(n),y™"(n)), n = 1,2,..., N, with three original hidden states
{a,b,c}, representing a—helix, f—strand, and coil, respectively. The average length T of
a realization is 167 positions. The observations z'"(n) come from a 20 symbol emission
alphabet of amino-acids

X:{A7C7D7E7F7G7H?I7K7L7M7N7P7Q7R7S7T7MW?Y}'

We further distinguish four subclasses of the a-helix class a. The definition and enumeration
of the final six classes are as follows: Class one consists of the short, up to seven a long,
a-helices. Classes two and three consist of the [-strands (any number of b’s) and coil
sequences (any number of ¢’s), respectively. Classes four, five, and six derive from the a’s

22

http://personal.rhul.ac.uk/utah/113/VA/env_seqssnr.txt

BRIDGING VITERBI AND POSTERIOR DECODING

that comprise an a-helix of length at least eight, thereafter referred to as long. Specifically,
class four is the so-called N-end, which is the first four a’s of a long a-helix. Similarly,
class six is the so called C-end, which is the last four a’s of a long a-helix. Any a’s in the
middle of a long a-helix are class five. Refining the original classification has been known
to improve prediction of protein secondary structure (Salamov and Solovyev, 1995). For
simplicity, here we only sub-divide the a-helix class (whereas Salamov and Solovyev, 1995
go further) given the limited goals of these experiments.

The (maximum likelihood estimates of the) transition and emission distribution matrices
as well as the vector of the initial probabilities computed from all of the realizations are
given in Appendix E.

The following experiments emulate a typical practical situation by re-estimating these
parameters from N — 1 sequences and using the re-estimated values to decode a remaining
sequence. We repeat the process N times in the leave-one(sequence)-out fashion. We do
not impose stationarity in these experiments as we did not have any prior evidence of
stationarity. Indeed, the (estimated) initial distribution 7 appears to be very different from
the stationary one (iny, see Appendix E) and many sequences in the data set are quite
short.

Figure 1 displays case 877, which is 149 positions long and is split into two pieces at
position ¢t = 72 (shown in both images). The top (0) row is the ground truth. This case is
typical in several senses. First, in this case the PMAP decoder (row 2) shows the median gain
in accuracy (of about 11%) over the Viterbi decoder (row 1); see subsequent subsections for
a discussion of performance measures. Secondly, the PMAP, or optimal accuracy output, is
inadmissible in this case, which is evident from, for example, the isolated state five (yellow)
island (transitions between states three and five are forbidden). Rows 3 through 5 are
outputs from the PVD, Constrained PMAP, and Rabiner k = 2 decoders, respectively. It is
typical of the PVD and Constrained PMAP decoders to tie. Outputs from other members of
the generalized posterior Viterbi (18) and PMAP (26) hybrid decoders are given in rows 6-
18, and 19-31, respectively. Table 1 gives a detailed legend for interpreting the outputs. The
monotonicity of the generalized PVD hybrid inference (Corollary 15, part 1, and Corollary
8, inequalities 36 and 37) is illustrated by following the posterior risk columns R, and Ry
across rows 2 (PMAP), then 6 through 17, and finally 1 (Viterbi); PVD (row 3) is attained
when o ~ 0 (rows 6-9) and here is also indistinguishable from Constrained PMAP (row
4). The monotonicity of the generalized PMAP hybrid inference (Corollary 15, part 3) is
illustrated by following the R, and R; columns across rows 2 (PMAP), then 19 through
30, and finally 1 (Viterbi); Constrained PMAP (row 4) is attained when a ~ 0 (rows 19-20)
and here is also indistinguishable from PVD (row 3).

Note how the decoder in row 16 (Figure 1) differs from its neighbors, specifically, how
it completely misses the terminal activity, which is to a variable extent captured by both
its “more accurate” (row 15) and “more probable” (row 17) neighbors.

Rows 18 and 31 are the “data blind” mazimum a priori and pointwise maximum a priors
decodings, which are members of both the generalized hybrid families. These decoders tie
not only in this but in all the other cases as well; see the structure of the (overall) transition
matrix P in Appendix E also to understand the overwhelming dominance of class 3 (“coil”)
in the absence of the amino-acid information. By adjusting the Ry and Ry risk terms in the
generalized decoders, we can easily accommodate unequal classification penalties to begin

23

LEMBER AND KOLOYDENKO

exploring the topology of the posterior distribution (see also Section 8). Thus, for example,
we suppress the dominating class 3 to better reveal activity of the remaining classes as
shown in Figure 2. Specifically, the marginal posterior probabilities p;(s | #7) are replaced
by pi(s | #1)/21 and 4p;(s | 2T)/21 for s = 3 and s # 3, respectively; the same re-weighting
is also applied to the prior marginal distributions; the Viterbi, Rabiner k& = 2, as well as
the MAPriori decoder (rows 2, 5, 18, respectively) are not affected by this adjustment.
Application specific performance measures will usually be of more interest than the
simple measures used here for illustration of the ideas (Section 8). Thus, for example,
regarded as (-strand (state 2) detectors, the original decoders (Figure 1) miss four of the
seven 2-islands. On the other hand, a more dynamic class 2 activity revealed in Figure
2 correlates very well with the seven objects of class 2. The presence of the adjusted
PMAPriori decoder (row 31) also helps to better assess the value of the observed data.

AAA A ST G666
5

AWN=O0OONOUNAWN=OOONONLWN-O

NORNNRNN = bbb b b ik

Il
[
[
=
=
=
=
-

NN
Voro

NI

N bt
—“00ONOUIRWN=0O0ONOUNAWN=O

NN

28 il
29 i
30 1

137 0 1 0
11 0 0 0 1 1
A1 A

72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147

N
[0]
R INININ

7
4
4
1
]
1

]
[
[
[

Figure 1: Performance of the well-known and some of the new decoders on Case 877. The
dominant class 3 is represented by blank entries. For further legend, see Table 1.

In addition to using the real data, we simulate synthetic data sets each of which having
the same number N = 25713 of sequences, in the following way. Let {75 }ses, Pn, {]35“, s €
S} be the estimates of the HMM parameters (initial, transition, and emission distributions,
respectively) obtained from (277 (n),y’"(n)), the n-th actual realization. Then the n-th

24

BRIDGING VITERBI AND POSTERIOR DECODING

R Output 3149 Empir. posterior
o) Genera- Alias 4 Cy Cs3 | Cy |error risks
w lized rate(%)
PVD | PMAP R |R: R1(%)
0 Truth 0 0.4907 | 1.1311 | 59.2173
1 |+ + Viterbi |0 1 0 0 56.3758 | 0.1604 | 0.8296 | 50.3368
2 |+ + PMAP |1 0 0 0 [45.6376 | 0 0.6905 | 46.7752
3a |+ PVD ~1 |=0 |0 0 46.9799 | 0.2486 | 0.6961 | 46.9188
3b |+ ~1 |0 0 ~0
4 + Constr. [~1 |[~0 |0 0]46.9799 | 0.2468 | 0.6961 | 46.9188
PMAP
5 Rabiner |n/a | n/a |n/a|n/a|53.0201 | 0.1823 | 0.7118 | 47.4429
k=2
6 |+ 0.99910.001|0 0 46.9799 | 0.2486 | 0.6961 | 46.9188
7 |+ 0.995(0.005|0 0 46.9799 | 0.2486 | 0.6961 | 46.9188
8 |+ 0.990|0.010 |0 0]46.9799 | 0.2486 | 0.6961 | 46.9188
9 |+ 0.950 1 0.050 | 0 0 146.9799 | 0.2352 | 0.6964 | 46.9322
10 | + 0.900 | 0.100 |0 0]46.9799 | 0.2352 | 0.6964 | 46.9322
11 | + 2/3 11/3 |0 0 53.0201 | 0.1897 | 0.7065 | 47.2499
12 | + 0.500 | 0.500 | 0 0 54.3624 | 0.1791 | 0.7142 | 47.5372
13 |+ 1/3 |12/3 |0 0 56.3758 | 0.1700 | 0.7277 | 48.0356
14 | + 0.250 [0.750 | 0 0 57.0470 | 0.1680 | 0.7331 | 48.1738
15 |+ 0.200 1 0.800 | 0 0 57.0470 1 0.1680 | 0.7331 | 48.1738
16 | + 0.100{0.900 | 0 0 57.0470 | 0.1645 | 0.7637 | 48.9620
17|+ 0.010]0.990 | 0 0 56.3758 | 0.1604 | 0.8296 | 50.3368
18 | + + MA- 0 0 0 1 57.0470 | 0.1645 | 0.7637 | 48.9620
Prior
19 + 0.999 1 0.001 |0 0]46.9799 | 0.2486 | 0.6961 | 46.9188
20 + 0.9950.005 |0 0 46.9799 | 0.2486 | 0.6961 | 46.9188
21 + 0.990]0.010|0 0 46.3087 1 0.2417 | 0.6962 | 46.9245
22 + 0.950 1 0.050 | 0 0 50.3356 | 0.2009 | 0.7021 | 47.0773
23 + 0.900 | 0.100 |0 0 50.3356 | 0.2009 | 0.7021 | 47.0773
24 + 2/3 |1/3 |0 0 54.3624 | 0.1776 | 0.7165 | 47.6139
25 + 0.500 | 0.500 | 0 0 57.0470 1 0.1680 | 0.7331 | 48.1738
26 + 1/3 12/3 |0 0 57.0470 | 0.1680 | 0.7331 | 48.1738
27 + 0.250 [0.750 | O 0 57.0470 | 0.1645 | 0.7637 | 48.9620
28 + 0.200 | 0.800 |0 0 56.3758 | 0.1604 | 0.8296 | 50.3368
29 + 0.100 1 0.900 | 0O 0 56.3758 | 0.1604 | 0.8296 | 50.3368
30 + 0.010]0.990 |0 0 56.3758 | 0.1604 | 0.8296 | 50.3368
31|+ + PMA- |0 0 1 0 57.0470 | 0.1645 | 0.7637 | 48.9620
Prior

Table 1: Case 877. Performance of the well-known and some of the new decoders. Worst,
second worst, best and second best entries in each category are highlighted in red,

1

magenta, blue and cyan respectively. In rows 1, 2, 3a, 6-17, C1 =1 — a = 1 and
CQ =a=1-— %

25

LEMBER AND KOLOYDENKO

0 4444555 555556660 2
2 44445555556666 47
3012 22992 2299959 LEBEL L L EEEEERE L PR EREL L
4 4444555556666 44
6 LEERRERLTT
7 TR 2
8 2 SHHE ARG 292250 z
9 EEEEREILET
10 LB EEBILL Z
11 LEERREILET
12 AN GEE
13 2299959 2 55H55Y So55 555555
14 LEEREE] LEEEERRERE
18 LEEEEEEEEEEEREEEEERRE
17
18
19 ! 42
20 2 4212 22992 i
21 4 4
22 2 LEEER LRI
23 5555555555555555555555 LEERERREREERE
25
26
27
28
29
30
31
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70
O[T [44445556666 AAAMA INiNN ZAATERERH [
2[QA NGB EG LEEREE
K SRR 4444
4/4445555560660 2 2 2 2202252
6245 EE5E ; 2272709
744455555 :
84 AA BT : 4444444444
9[AIAL HEEBE G 2 2 2 2299559 LEEREEE
104455 5E5Y : EEEREEE
114 4555EbY : LA AL AL L A4 BN
12[T4 EEET ; LEEREE
135555555 : T A P B
145 A AGEG BRI
HEEEEEEEER LR 22922 LEEEERRE
16 FEEEREEL
17 T A
19325 RN E ARG 2472445 EHEEE
20[445 B AN A6 2 2 2 2299559 CEEERE
21 /25 S G EEEEEEE
EARREE R SRR LT 2299555 LEEREEES
PR REG LT
24
25
26
27
28
29
30
31

72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147

Figure 2: Performance of the selected decoders on Case 877. The dominant class 3 (blank
entries) is suppressed by an asymmetric loss incorporated into the Ry and R
risks of the generalized hybrid decoders. Subsequently, the remaining classes
reveal more activity, and in particular all of the seven instances of class 2 can be
recognized with essentially only two false alarms.

simulated realization is a sample of length T}, from the (first order homogeneous) HMM with
these parameters (note that the initial distributions {7s,}scs are necessarily degenerate).
The simulations, first of all, help us obtain interval estimates of the performance measures
(see more below). Also, they are valuable theoretically. Indeed, the analysis based on the
real data tells us what happens in a typical practical scenario in which the (HMM) model
is known to be too crude and yet has to be used for its simplicity. The simulations on the
contrary tell us what happens when the model is correct. By default, the analysis below
refers to the real data, whereas the use of the synthetic data will be acknowledged explicitly.

26

BRIDGING VITERBI AND POSTERIOR DECODING

5.1 Performance Measures and Their Estimation

The performance measures discussed in this subsection will be used in the following two sub-
sections to more completely assess and compare the performance of all the known decoders
(including PMAP and Viterbi), and several new members of the generalized families.

Given a decoder v, our principal performance measures are the Ry (v) risk F[R;(v(X7T) |
XT)] (see Equation 5) and the Ry risk E[Roo(v(XT) | XT)] (3); it is not practical to
operate with R. (2) since it is virtually 1 for reasonably long realizations. For the R
results, see Subsection 5.3. -

The R; risk is simply the point-wise error rate %Z;‘le P(Y; # Y;), where YT is the
output of v(X7T). This assumes T' to be non-random; more generally, 7' is random and the
Ry risk is then given by Er [% Zle P (ﬁ £Y, | T)] . We refer to 1 — Ry as accuracy when
comparing our decoders (e.g., Section 5.2 below). Note that given a decoder v, R;(v), is
simply a parameter of the underlying population of all (T, z”,y”) that could potentially be
observed. If the current hidden Markov model were not too crude for this population, we
would compute such risks if not analytically, then at least by using Monte-Carlo simulations,
for any g of interest. In reality, however, we need to estimate them from the given data.
The situation is further complicated by the fact that the classification method v is specified
only up to the model parameters, which are unknown and also need to be estimated from
the data.

All in all, we use the usual cross-validation (CV) estimation. Specifically, to decode
xT7(n), we make g use the estigl\ates of the parameters obtained from the remaining N — 1

sequences. Thus, if v outputs yZ», then we take the empirical point-wise error rate

T,
. 1 &
en = T— ZH{Qﬁéyt(n)} (40)
" o=1

to be an estimate of Ry(v). Clearly, if v used the same fixed parameters as used in the
definition of R;(v), then E[é,] = Ri(v), that is, é, would be unbiased for R;(v), and so
would be the average

. 1 .
éov = Z én. (41)

n=1

Obviously, in reality écy is likely to be biased. For this reason we also look at the model-
based CV estimate of R; given by

N —_—
Ri= 3 Ri(y™ [2™ (n)). (42)

n=1

Computation of Ry(- | 27) indeed relies on the model being correct, hence Ry is also likely
to be biased. We also report approximate 95% confidence intervals which are based on the
usual normal approximation disregarding, among others, any effects of the variability in the
realization length 7T

27

LEMBER AND KOLOYDENKO

If the variation in T" were merely an observational artifact, then instead of the above
cross-validation averages (42), we would focus on the total error rate for the entire data set
given by (43) below.

i Mﬁ

{yt Fui(n)} - N T
é = = Zw(n)én, where w(n) = — -, (43)
Z T, =t > Tn
n=1 n=1

However, to obtain sensible confidence intervals in this setting, we need to estimate the
variance of é. Bootstrapping is a possibility, but we instead simulate several (specifically,
15) synthetic data sets as described above in the introduction to this Section, that is, re-
sampling individual realizations (z Tn(n),y™(n)) from the HMM with parameters {7 s, }scs,
IP’n, {Psn, s€ St n=1,2,...,N. We then use the t-distribution (on 14 degrees of freedom)
to obtain the 95% margins of error.

5.2 Comparison of the Accuracy of the Viterbi and PMAP Decoders

A histogram of the difference é(Viterbi, n) — é(PMAP, n) between the empirical errors (40)
of the Viterbi and PMAP decoders is plotted in Figure 3 (black narrow bins). We also
observe that in 85.35% of the CV rounds the PMAP decoder is more accurate, and in
10.67%—less accurate, than the Viterbi decoder (in 3.98% of the cases the two methods
show the same accuracy). To examine sensitivity of these results to the variation in the
realization length, we superimpose in the same Figure 3 a histogram of the subsample
consisting of the 1000 longest realizations (blue wide bins). Although the subsample spans
a less extreme range (—16.75%, 52.62%) than that of the entire sample, the locations of the
two histograms are very similar, suggesting the average gain of accuracy of about 12% when
replacing the Viterbi decoder by the PMAP one.

We also compare the performance of the Viterbi and PMAP decoders by examining their
Ri(- | 2T (n)) risks (5), see Figure 4. Note that the difference R;(Viterbi) — Ri(PMAP)
is 9% on average, and is largely unchanged (apart from a minor increase) when recomputed
on the subsample of the 1000 longest realizations (450-2060 positions).

Finally, é (43) is 59.68% (+0.068%) and 46.10% (£0.047%) for the Viterbi and PMAP
decoders, respectively, and the PMAP comes out 13.58% 4 0.0463% more accurate than the
Viterbi decoder. The above confidence intervals are, however, likely to be deflated since
the model-based simulations show little variation of é(Viterbi), é(PMAP), or the differences
é(Viterbi) —é(PMAP). In fact, based on the 15 model-based simulations, the PMAP is only
7.46% % 0.0463% more accurate than the Viterbi decoder, with the individual error rates of
47.49% 4 0.047% and 54.95% =+ 0.068% for the former and the latter, respectively. Finally,
replacing the empirical error rates by the Ry (- | 7) risks (which are now computed exactly
since the simulations are model-based), we obtain the difference of 8.55% =4 0.0213%.

In summary, the PMAP decoder can be notably more accurate than the Viterbi decoder
in scenarios with as few as six hidden states.

28

BRIDGING VITERBI AND POSTERIOR DECODING

T T T T T T T T T

Full data: [Longest realizations:
5F 95%CI for mean: 95%CT for mean:
0.1286+0.0017 0.1268+0.0056
4r . -
median =0.1074 median =0.1100
> std =0.1375 | std =0.0898
@ 3 Sample size = 25713 Sample size = 1000 A
A
| i i

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
error(Viterbi)-error(PMAP)

Figure 3: A histogram of the difference between the empirical error rates é(Viterbi,n) —
¢(PMAP, n) obtained from the full data (black narrow bins) and the subsample
consisting of 1000 longest realizations (blue wide bins). Although in 3.98% of
the entire data set the two methods show the same accuracy (spike at 0), overall
their performance appears to be notably different. The Viterbi decoder is more
accurate in 10.67% of all the cases, and the PMAP decoder is more accurate
in 85.35% of all the cases. The extreme differences (min = —78.69%,max =
89.74%) tend to be observed on short sequences (136 positions and shorter), but
the subsample of the 1000 longest realizations (450-2060 positions) confirms the
effect of the PMAP decoder being more accurate. In particular, on the longest
sequences, the PMAP decoder can be 52.62% more accurate than the Viterbi
decoder, whereas the latter can be at most 16.75% more accurate than the former.

29

LEMBER AND KOLOYDENKO

PMAP Viterbi-PMAP
7+ 95% CI for mean risk 95% CI for iy
0.4873+0.0008 mean difference
6 median= 0.4934 0.09+0.0011 |
i std =0.0618 median= 0.0532
5 std =0.09
Py
G 4 |
8 Viterbi
3L 95% CT for mean risk a .
0.5773+0.0016
o+ median= 0.5513 | i
std =01337 |||
“ "'m |
I

01 02 03 04 05 06 07 08 09
R, posterior risk

Figure 4: Histograms of the R;(y7(™ | z7(™(n)) risk of the Viterbi (black, more spread)
and PMAP (blue, more peaked) decoders. Since the first order homogeneous
HMM is only an approximation to the data source, the cross-validation averages
of 48.73% (PMAP), 57.73% (Viterbi), and 9% (PMAP’s gain over Viterbi) are
likely to be biased as estimates of the respective pointwise error rates; see also
Figure 3 for a model independent analysis.

5.3 The R, Risk of the Viterbi, PMAP and Other Decoders

Next we look at the log-posterior probability rates log(P(y” | #1))/T = —Roo(yT | 2T) of
the PMAP, Viterbi and other decodells\. In 74.14% of the cases, the PMAP decoder returns
an inadmissible path, that is, log(P(y? | 27))/T = —occ. To avoid dealing with an infinite
range, we switch to the exponential scale. Thus, Figure 5 below displays histograms of the

geometric rates \/ P(yT | 2T).

The Rabiner 2-block decoder ¢(2) returns inadmissible paths in 70.94% of the cases.
In 7.32% of the cases this decoder gives an inadmissible path even when the PMAP path
(for the same realization) is admissible. This illustrates the violation of monotonicity (see

30

BRIDGING VITERBI AND POSTERIOR DECODING

30 \

o5l --- Tllrue path |
—e— Viterbi
— PMAP

0l - PVD i

=-= Rabiner k=2
= New Hybrid k=2

15

Density

10

0.5 055 06 065 07 075 08 08 09 095 1
log Posterior Probability rate (exponentiated)

Figure 5: Distributions of the (geometric rates of the) posterior probabilities of selected
decoders. The Constrained PMAP decoder is virtually indistinguishable from
PVD, hence omitted. The PMAP and Rabiner 2-block (see Subsection 1.2.1) de-
coders return inadmissible paths in 74.14% and 70.94% of the cases (not shown),
respectively (hence only 25.86% and 29.06% of the respective distributions are
shown). Just like PVD and the Constrained PMAP decoder, the new hybrid
2-block posterior-Viterbi decoder (33) is guaranteed to produce admissible paths.
Moreover, those paths would generally have a higher probability than the prob-
abilities of the PVD and Constrained PMAP paths.

Subsection 1.2.1) in the path (posterior) probability when using Rabiner’s suggestion to
base decoding on the loss (30).

We also note that the posterior probabilities of the actual hidden paths (blue histogram)
are notably lower than those of the admissible decodings, especially the Viterbi outputs.
However, these effects are not out of line with the model-based simulations.

31

LEMBER AND KOLOYDENKO

5.4 Summary of the Experiments

Figure 6 compares performance of these and other decoders as measured by the averaged
error rate and the averaged (exponentiated) path log-posterior rate

T

PO [4T)gy = 3 Y PGT | (m)). (44)
n=1

Recall that the family of k-block posterior-Viterbi decoders is naturally parameterized by
the block length k (k = 1 and k — oo giving the PMAP and Viterbi decoders, respectively).
We have also included the continuous re-parameterization (38) via k = 1~ (and a = %)
which embeds these special cases into the generalized PVD Problem (18) via C; = a,
0221—04, 0320420.

Figure 6 displays performance of members of the generalized PVD and generalized
PMAP (Problem 26) families with C; = a,, Cy =1 — o, C3 = Cy = 0 for a subset of values
of a used in Figure 1 and Table 1. The point-wise maximum a priori (C; = Co = Cy = 0,
C3 = 1) and the prior-based Viterbi (C; = C2 = C3 = 0, Cy = 1) decoders are also included,
showing identical performance on these data. Remarkably (but not very surprisingly given
the crudeness of the hidden Markov model for these data), the accuracy of these “data-
blind” decoders on average is still higher than that of the Viterbi (MAP) decoder. We
reiterate that the hidden Markov model is rather crude as a model for the given data.
Furthermore, the estimates of the model parameters used for decoding any given sequence
are obtained from sequences that can generally have very different characteristics from
the sequence being decoded. Therefore, the risks optimized under these conditions may
be misleading, for example, a PMAP path need not have the lowest empirical error rate.
Nonetheless, the empirical error rates of the generalized decoders are still found to follow

the theoretical order of the posterior R; and Ry risks.

6. Algorithmic Approaches

It is also possible (at least when the Viterbi path is unique) to hybridize MAP and PMAP
inferences without introduction of risk/loss functions. We discuss such approaches mainly
because one such approach was taken by Brushe et al. (1998) in what appears to be the
only publication dedicated to hybridization of the MAP and PMAP inferences in HMMs.
First note that the hybridization can be achieved by a suitable transformation of the
forward and backward variables (i) and [;(i) defined in (1). To make this concrete,
consider the recursively applied power transformations with p > 0 given in (45) below

(i) = (i) (45)
[K m
a(isp) = |\ (e (Giwps) | filw), t=2,3...,T;
]21
Br(isp) = Pr(i) =
[K ;
Be(isp) = Z (i fi(xer1) Bear G)|, t=T—-1,T—-2,...,1,
]:1

32

BRIDGING VITERBI AND POSTERIOR DECODING

\ T
0.5880 Viterbi (least accurate) k=
0.55— J
2 0.5460 PMAPrior (data blind)
©
S : O, keS
= k=3
i PMAP Hybrids -
051 N o " -
k=1.5 *_PVD Hybrids
. * 0.4796 Rabiner k=2
kel o kgl 0.4598 PVD
| 0.4594 PMAF’ (most accurate) | | | |
0.45
0 0.2 0.4 06 08 1
o
0.05 : : :
0.0466 Viterbi (highest posterior) k=5 K=o
0.045 — - ‘ = -
‘ ids PVDHybrids * 0.0457 PMAPrior (data blind k=4
9 PMAP Hybrids y () k=3 0.0414 PVD
D 0.04- k=14 k=1.5 k=2 7
©
s
2 0,035 -
%
T 003 -
<]
Q 0.025- -
<
I 0.02f -
0.015~ Rabiner k=2 (inadmissible - 0 - in 70.94%) B
k=T PMAP (inadmissible - 0 - in 74.14%)
0.012 i t t t |
0 0.2 0.4 06 08 1
o

Figure 6: Empirical error (41) (top) and probability rates (44) (bottom) of the popular and
some new members of the generalized PVD (asterisk) and PMAP (circle) families.

foralli € S. Clearly, oy (i;1) = oy (i) and B;(i;1) = By(i), foralli € Sand allt =1,2,...,T.
Thus, p = 1 leads to the PMAP decoding, that is, at time t returning

9t(1) = arg r?eaéx{at(i; DB (31)}, (46)

provided some tie-breaking rule.

Using induction on ¢t and continuity of the power transform, it can also be seen that the
following limits exist and are finite for all ¢ € S and all t = 1,2,..., 7" lim, o0 ay(i; p) =:
ay(i,00) and limy, o0 B¢ (45) =: Bi(4; 00), where

a(i;00) Zsrtga)fip(xt,st), t=1,2,...,T, (47)
St=

= max (ar—1(g; 00)pji) filxe), t=2,3,...,T,

LEMBER AND KOLOYDENKO

Bt(’L,OO) = _max p(x¥1+175f+1 ’YZ:Z)a t:T_laT_27"'717 and BT(ZvoO) :17

T T—t
si €S

max (pij fj(z14+1)Bi1(j; 00)) -
JjES

The above convergence follows from the following trivial observation, which we nonetheless
prove below for reasons to become clear later on in the context of Equation (50).

Proposition 9 Let a;j(p), 7 = 1,2,..., K, be non-negative as functions of p € (0,00).
Assume that a;(p) converges to some (finite) limit a; as p — oco. Assume further that for
any p, at least some of the aj(p) are positive. Then we have

1

K

i NN — ,

Jm | 2w | = max o)
]:

1
Proof Let M (1) = maxi<j<ix{a;(p)}, andlet M = maxi<j<x{a;}. Write (Zfil aj(,u)“> ' =

1

M) (ZK (aj(”)>u> " and note that as w — 00, M(u) converges to M. Also, we have

j=1
m

= (% G)) <

j=1

1
Since K+ — 1, by the Sandwich Theorem the middle term also converges to 1, yielding the
proposed result. |

Returning to (47), we note that any Viterbi path ﬁ (00) satisfies the following property:
Jt(00) = arg r?e%x{at(i; 00) B (15 00) }. (48)

The above property (48) has already been pointed out by Brushe et al. (1998). The main
motivation of Brushe et al. (1998), however, seems to be the case of continuous emission
distributions Ps, which might explain why the authors do not consider the fact that not
every path that satisfies (48) is necessarily Viterbi, or MAP. Thus, ignoring potential non-
uniqueness of the Viterbi paths, Brushe et al. (1998) state, based on (48), that the Viterbi
path can be found symbol-by-symbol. As the following simple example shows, when the
Viterbi path is not unique, the attempt to implement the Viterbi decoding in the symbol-by-
symbol fashion (based on Equation 48) can produce suboptimal (in the MAP sense), or even
inadmissible, paths.

Example 1 Let S = {1,2,3} and let {A, B,C, D} be the emission alphabet. Let the initial
distribution 7, transition probability matriz P, and the emission distributions fs, s € S, be
defined as follows:

A B C D

0-4 0.6 0.4 0 fi() 03 015 025 0.3
a=11054] P=[01 01 08 H0) 02 03 03 02 °
0.06 0 0.02 0.98 2 : ' : ‘

f3() 1/6 1/6 1/6 1/2

34

BRIDGING VITERBI AND POSTERIOR DECODING

Suppose the sequence % = (A, B) has been observed. The (posterior) probabilities of all the
nine paths (i,7) are then summarized in the matric PP = (P(Y? = (i,j) | AB)) below:

0.0108 0.0144 0
PP =10.0016 0.0032 0.0144 |,
0 0.0001 0.0016

hence there are two Viterbi paths in this case, namely (1,2) and (2,3). Now, aq(i;00) =
mifi(A), i € S, and B1(i;00) = maxjes P(Xo = B,Ys = j | Y1 = i) = maxjes f;(B)pij, or,

in the vector form:

a1(1; 00) 0.12 B1(1;00) 0.12 a1(1;00)B1(1;00) 0.0144
a1(2;00) | = 10.108 |, B1(2;00) | = | 2/15 |, a1(2;00)B1(2;00) | = 0.0144 |,
a1(3;00) 0.01 B1(3; 00) 49/300 a1(3;00)51(3;00) 49/30000

so we have §1(00) = 1 or §1(c0) = 2. On the other hand, as(i;o00) = maxjes P(X? =
(A,B),Y? = (j,i)), and Ba(i,00) = 1 for alli € S. Therefore,

s (1; 00) as(1;00)Ba(1; 00) max{0.0108, 0.0016, 0} 0.0108
az(2;00) | = | @2(2;00)52(2;00) | = | max{0.0144,0.0032,0.0001} | = | 0.0144
a2(3;00) a2(3; 00)PB2(3; 00) max{0,0.0144,0.0016} 0.0144

Therefore, a(00) = 2 or §2(c0) = 3. However, the symbol-by-symbol decoding is not aware
that gluing 71 (c0) = 1 and §2(00) = 3 is not only suboptimal, but is actually forbidden, that
is, results in the inadmissible path (1,3).

In contrast to Viterbi, the PMAP inference (in the absence of constraints) is by definition
point-wise, or symbol-by-symbol, hence violation of admissibility is not surprising there
regardless of the non-uniqueness issue.

All in all, the main idea of Brushe et al. (1998) is to consider “hybrid” decoders that
use intermediate values of the interpolation parameter . That is, the hybrid decoder with
parameter u is defined as a decoder that at time ¢ returns

9t(p) = arg r?e%x{at(i;) Be(i5 1) } (49)

provided some tie-breaking rule.

Note also that in their attempt to hybridize PMAP with Viterbi in this manner, Brushe
et al. (1998) instead of (45) use different transformations that are based on the following
(0,00) — R composite mapping

N
Fu, di (), do(p), - - dn (1)) ::H(N_i)exp(_”)log %Zexp(udj(u)) . (50)
j=1

where N = K (in our notation) and functions d; (1) are continuous on [0, c0) with finite
limits d;(oo) as p — oo. It is then not hard to verify that as p — 0, the function (50)
converges to Ejvzl d;(0) (based on Brushe et al., 1998, Proposition 1a). At the same time,
as u — oo the same function converges to maxi<j<ny{d;(co)} (based on Brushe et al.,

35

LEMBER AND KOLOYDENKO

1998, Proposition 1b). To establish the latter convergence, Brushe et al. (1998) refer to the
Varadhan-Laplace Lemma, although the result can also be obtained with basic calculus, for
example, by using continuity of the logarithmic function, taking the logarithm inside the
limit in Proposition 9, and identifying a;(u) with e%i (1),

This mapping is then applied recursively to ay(i; 1) and [5¢(i; 1), the analogs of the
forward and backward variables (k}'(i) and 7/'(i), respectively, in the notation of Brushe
et al., 1998), to produce the correct end points/limits, that is, PMAP and Viterbi/MAP
(when the latter is unique). Specifically, the transformed forward and backward variables

would be re-defined as follows:

o (isp) = aa(i); (51)
onlisg) = 1+ (N/: 1)e * log % i eror—1Gpsi | £ (z), t=2,3,...,T;
j=1
Br(i;p) = Pr(i) =1;
Be(iy) = 1+(N; e log ;fﬁ:e“ﬁ”l(j;“)p”fﬂmt“) ,t=T-1,T-2,...,1.

=1

Above, we took the liberty to correct (i) = 7(i) (a1(i;u) = m; in our notation), which
appears in the paper of Brushe et al. (1998) as Equation (22) and also in the proofs of parts
(a) and (b) of their Lemma 1. Clearly, in order for x4 (i) (a1 (i; 1) in our notation) to match
a1(i) = P(Y1 = 4,X1 = x1) (as claimed in their Lemma 1), /(i) has to equal 7()b;(O1)
(which is m; fi(z1) in our notation). Note that Equation (15) of Brushe et al. (1998) leaves
a1 (i) undefined, but instead introduces (i), which is defined to be 7 (7). If that was an
implicit intention to introduce a “silent” state at ¢ = 0, then their Equation (22) and the
relevant parts of the proof of Lemma 1 would also have to start with ¢ = 0 and not with ¢t = 1.
If, on the other hand, ¢ = 0 in Equation (15) was simply a typing error and the intention was
to have ¢t = 1, then the would-be definition of a;(i) = 7 (i) contradicts an earlier equation
just below their Equation (14), which gives (i) = P(O1,q1 = S;) = m(i)b1(01) (that is,
P(Y1 =1i,X; = x1) = 71 fi(x1) in our notation).

Returning to the essence of the approach, note that the only reason stated by Brushe
et al. (1998) for choosing (51) as the family of interpolating transformations is the attain-
ment of the required limits (that is, PMAP when p — 0, and Viterbi when p — 00). It is
therefore not clear if Brushe et al. (1998) realized that besides (51), there are other (sin-
gle parameter) families of transformations, such as (45), with the same limiting behavior.
Naturally, the resulting interpolation generally depends on the choice of the transforma-
tions used. In the absence of any special reason for using (51), (45) may have an appeal
for its simplicity, should one really wish to pursue the idea of algorithmic hybridization.
Moreover, we explain next (Subsection 6.1) why the hybrid decoder defined by (49) and the
transformations (51) does not work in practice except with trivial examples, and we also
show (Subsection 6.3) how this decoder can be modified to become operational. In contrast
to this, we will show (Subsection 6.2) that the hybrid decoder based on the transformations
(45) becomes operational by modifying just the algorithm used for its computation, and not
the decoder. This makes the transformations (45) even more attractive as an alternative to
(51).

36

BRIDGING VITERBI AND POSTERIOR DECODING

6.1 The Hybrid Decoder Based on the Transformations (51) Does Not Work
in Practice Except with Trivial Examples

The key point is that the transform-based algorithmic hybridization attempts to compute
quantities which, at least for u = 0, are the same order of magnitude as the forward and
backward probabilities ay(i) = P(X' = 2',Y; = i) and B;(i) = P(z},, | Y = 7). These are
well-known to vanish exponentially fast with 7', see, for example, Bishop (2006, 13.2.4) who
also note that “[flor moderate lengths of chain (say 100 or so), the calculation of the [ay(j)]
will soon exceed the dynamic range of the computer, even if double precision floating point
is used.” The situation clearly gets worse as p increases. Indeed, recall (47), and note that
maxe,s,—; p(z', 5') = i (i;00) < 3, i p(at, s') = au(i) (which is also ay(j; 1) in Equation
45 and «4(j;0) in Equation 51). This easily leads to a collapse of computations already
with chains as short as 7' = 10 (which indeed happens using the data and model from our
experiments of Section 5 above).

We disagree with Brushe et al. (1998) in interpreting the nature of the above numerical
problems when they divert the reader’s attention to the computation of the logsumexp
function used in their transforms (50), (51). We find this is misleading as the log(e® +
e’) = max{a, b} +log (1 + e~ 17 trick (alluded to by Brushe et al., 1998 in their Remark
below Equation 25) is relevant to the problem of underflow only of the intermediate values
(that is, e® + e® when a or b is negative of a large magnitude, such as the logarithm of a
very small probability). In the case of the transform (50), however, computations of the
transformed, say, forward variable oy (i; 1) (51), do require pud;(p) = poy—1(j; p)pji and not
their logarithm. Thus, at some ¢ underflow in oy (7; 1) occurs for some 4, and then eventually
for all i. In terms of the logsumexp function, this means that both e® and e’ become 1
(and not zero!) but the logarithm of their average (the core of the transform 50) becomes 0,
transferring the underflow to the next generation, that is, ay11(i;). Thus, storing oy (i; 1)
in the log-domain is irrelevant here since the transforms (50), (51) with or without the
logsumexp trick, do require the actual value of ay(7;). One could conceivably introduce
the loglogsumexpexp function to operate on log(cy(i; 1)) and resolve this problem in that
way, but it is not clear if the goal is worth the effort.

Furthermore, insisting that “[t|Jhe computational complexity and numerical implemen-
tation issues associated with the hybrid algorithm can be overcome using the Jacobian
logarithm”, Brushe et al. (1998, p. 3133) repeatedly refer to another paper, which pro-
poses to compute the logsumexp function log(}_, exp(ay)) via recursive application of
log(e” +€’) = max{a, b} +log (1 + e““_b|). Although this recursive implementation should
indeed be generally more accurate (albeit also computationally more expensive) than the
commonly used single-shift implementation log() ", exp(ax)) = M + log (exp(ay — M))
(M = maxg{ax}), as we just explained above, it is irrelevant to the real problem of com-
puting the transformed forward and backward variables oy (i; i), Be(i; p) (k4 (7), 71'(i), re-
spectively, of Brushe et al., 1998). Thus, the approach of Brushe et al. (1998) does not
immediately provide an operational decoding algorithm except for trivially short chains. For
example, using the two-state HMM from the Example 2 and the 64-bit MATLAB (MAT-
LAB, 2011) (but without The Symbolic Math Toolbox) installation on a (64-bit) Linux
machine, the hybrid decoder based on (51) with 1 = 1 already fails for 7" = 40 (with or

37

LEMBER AND KOLOYDENKO

without the logsumexp trick). For comparison, the hybrid decoder based on the power
transform (45) (u = 1) survives an order of magnitude longer.

A natural question is then whether the transform-based algorithmic hybridization ap-
proach (using (51) or (45), or the like) can at all work in practice. The fact that no such
example has been given by Brushe et al. (1998), or anyone else up to date, casts some
doubt. Below we give reassuring answers, which have been verified to work on several
realistic examples.

Indeed, it is well-known that in practice, to decode the t-th symbol the PMAP decoder
uses the posterior probabilities p;(i |) and not the vanishing joint probabilities p;(i |
Dp(XT = 27y = P(a”,Y; = i) = ou(i)B:(i). The posterior probabilities p;(i | z7)
are computed as & ()5 (i), where a;(i) = P(Y; = i | 2*) and B,(i) = P(al,, | V; =
i)/p(xf,, | 2') are the scaled analogs of the forward and backward probabilities a (i) and
B¢(i) (Bishop, 2006, 13.2.4). This allows PMAP to bypass the aforementioned problem of
numerical underflow.

6.2 The Hybrid Decoder (49) is Invariant to Rescaling of the
Power-Transformed (45) Forward and Backward Variables a(-;), 8(-; p).

Let us apply the same normalization approach to the transformed forward and backward
variables, first, using the power transform (45) and then (51). First, recall (e.g., Bishop,
2006, 13.2.4) that ay (i) are obtained by replacing the recursive definition

K
oy (1) = filz) Zat—l(j)pji, i=1,2,...,K,
j=1

by the two-step self-normalized definition
K
plas |2 Na()) = filze) Y aa(psi, i=1,2,..., K,
j=1

dt(Z) _ p(‘rt | xt_l)&t(i)
S8 p(ae | 1) du(s)

K
where @1(i) = ai1(i)/c1, and ¢ := p(x1) = Zoq(s).
s=1

, fort=2,...,T,

Thus, for all t =2,3...7,and foralli =1,2,..., K,

Filwe) 72 @1 (G)pji

a(i) = - , where, also according to Bishop (2006, Equation 13.56),
K K
c = pla |27 = fol@) Y da(f)pgs.
s=1 j=1

Similarly, the rescaled backward variables are given by
BT(Z) = 1
= S pii fi (@) B ()

Be(i) = , t=T-1,T-2,...,1.
Ct41

38

BRIDGING VITERBI AND POSTERIOR DECODING

In the same manner, we normalize the o (i; 1) and 5¢(i; 1) (defined by equations 45) for
any ¢ > 0 as follows:

a1(i;p) = ai(i)/ca(p) = aa(i), where ¢1(p) := 1 for all y; (52)
iy) = [Zf:l (&t*(‘j;”)pji)ur il t=2,3,...,T;

Br(isp) = Pr(i)=1;

Bt(i;u) _ [Zj:l (ngf](+1)B+1(]a,“)) } b= T 1T 9.1

ce+1(p)

where

T

K K
Z Oét 1.7 /’ijs)u fs(xt)7 t:2737”'7T‘
1

s=1 | j=

Thus, ¢(1) = ¢ for all ¢ = 1,2,...,T. Also note that, using induction on ¢ and (47),
lim,, 1 ¢ (1) = (1), and the limits ¢;(00) := lim, o0 c¢(pt) exist and are finite for all
t=1,2,....T.

Proposition 10 For any i € S, we have

= (5. _ at (4;1) o ax(isp) SN B (i510)
1) au(isp) = ST ar(sq) — sy em() forallt =1,2,...,T, and By(i;p) = T o

forallt=1,2,...,T —1 and for all p > 0;

2) limy,—s1 0y (45 1) = Gy (7)), limy,—1 Bilis) = Be(i) for allt =1,2,...,T;

3) limyyeo A (i5) = Gy (i;00) = Zﬁﬂ forallt =1,2,..., T, andlimy, s By (i; 1) =
i s lat 5,00 _
@(i;oo) = M for all t = 1,2,...,T — 1, and, finally, lim, o Br(i; pn) =:

T
| t+1Sm m (c0)’

Br(i;o0) = 1 trivially;

4) The hybrid decoder (49) based on the transformations (45) and the hybrid decoder (49)
based on the transformations (52) are one and the same decoder, provided that both use the
same tie-breaking rule.

Proof The first claim concerning the &; is trivially true for ¢ = 1 by definition of a;(i;),
that is (45). Now, using induction on ¢, assume that the claim is true for ¢ — 1. Write
ar1(p) for (35, ara(s;p)™! so that a1 (p)ay—1(j;p) = G1(j;p) and a1 (p) =
(Hf;:ll em (1))t Then, using (52), we get

. (S0 (@ (mae G wpi)*)” filw)
Qi) = T ,
Zf:l (Z]K:I (atfl(:u)atfl(j; M)pjs)”> g fs(xt)

39

LEMBER AND KOLOYDENKO

which, upon cancellation of the a;—1(u), yields the required result

(Z0 @aGsmps)) " fila) aygisp)

T T —.
Zf:l (Ef:l (ow—1(7; u)pjs)“) " fe(ay) D1 u(sip)

(3514)

To see that ay(i; u) also equals =~ write
m=1 CM(“)
1 1
i (S0 (e Gimpi)) file) (SI5 (ua(Gimpia)) " filan)
QL) = = t—1 ’

ct(p) (=1 em(p))ee(pe)

which, recalling the original (unscaled) oy (;) recursion, yields the result.

The B variables are handled analogously.

The second claim is then a straightforward consequence of the first claim and the con-
tinuity (with respect to p, and in particular at p = 1) of the power transform; for example,
to establish the result for the (;(i; u), observe that ng:t 41 6m(p) — ng:t 41 6m(1) when
1 — 1. The third claim also immediately follows from the first one and Proposition 9, also
noticing that Hﬁ:t 41 Cm(p) = Hﬁ:t 41 ¢m(00) as p — oo. The fourth claim also immedi-
ately follows from the first claim as v; maximizes oy (i; 1) B¢ (é; p) if and only if it maximizes
av (15 1) Be (15). u
In particular, we arrive at the following characterization of the Viterbi paths y” (co), which
is now possible to compute in practice for a wide range of models and parameters in contrast
to the condition (48):

Corollary 11 For anyt=1,2,...,T, §;(c0) = arg max;es{ay (i; 00)B:(i;00)}.

Recall (46), and thus note that the PMAP decoder also maximizes dy(i; 1)5;(i;1). As a side
note, consider also the following decoder v(z”;0) that extrapolates the normalized power-
transformed decoder to u — 0, that is “beyond” the PMAP decoding. Namely, for any
t=1,2,...,T, let v, = arg max;es{@;(i;0)5;(; 0)}, where for any i € S,

a1(i;0) == aq(i)/c1 = a1(i); (53)

10}
[I[I a1(s; 0);%] fi(y)

Gy(i0) = 7€5:(0) : . t=23,....T,
K K (s)
25:1 H &t—l(j;o)pjs fs(xt)
JESt(s)
where Si(7) = {j€S5: &-1(j;0)p;i > 0} and K;(i) := [S¢(7)], that is size of S(i);
Br(i;0) = Br(i)=1;
N o
T pigfi(ee1) B (55.0)
By(i;0) = jesit) . . t=T—-1,T-2,...,1,
Zﬁ(zl [Hjestﬂ(s) (7 0)pjs} R fs(zi41)
where S;(i) = {j €5 : pijfj(e11)Bis1(4;0) > 0} and K (i) := | S5 (i)|.

40

BRIDGING VITERBI AND POSTERIOR DECODING

Corollary 12 Assume that lim, 0 G&(2; 1) > 0 and lim, o Bt(i;u) > 0 foralli € S and all
t=1,2,...,T. Then &:(i;0) = lim, 0 & (4; 1) and lim,_o Bt(i;u) = Bt(i;()) foralli e S
and allt =1,2,...,T, that is the decoder (49) based on the transformations (52) converges
(upto the tie-breaking rule) to the decoder defined by (53) above.

Proof This is a straightforward exercise in calculus, that is, using continuity of the ex-
ponential function and invoking Proposition 1a of Brushe et al. (1998), with the positivity
assumption making all K;(i) and K; (i) equal to K. []

Note also that the hybrid decoder (49) based on the original, that is, unnormalized variables
(45), generally does not have a limit as p — 0.

6.3 Rescaling of the Forward and Backward Variables «(-;) and 8(-;)
Defined by (51) Alters the Hybrid Decoder (49).

In the same manner as in (52) above, we now normalize the «(-; 1) and S(-; 1) variables
transformed according to (51). Thus, for any g > 0 and for any 7 € S, let

K
ailiin) = ai(i)) S anls) = anli); (54)
s=1

log [SIS, erer 0| fi(ay)
iy p) = = = —— , t=2,3,...,T;
> ey log [% > i1 eﬂatfl(.?hu')pjs} Fo(me)
Brii;p) = Br@)=1, t=T-1,T—-2,...,1;
log {% Zﬁil eﬂpijfj(zt+1)3t+1(j§#)i|

>i log [% > e“&t(j;“)pjs} fs(zis1)

By (s) , t=T-1,T—-2,...,1.

Proposition 13 For any i € S, we have
1) limy, 0 (45 1) = Gu(4), limy, o Be(i; 1) = Be(i) for all t =1,2,...,T;
2) limy o0 0 (i3 1) = Gy (i500) and limy, o0 By (i) = Bt(i; o0), forallt=1,2,...,T.

3) The hybrid decoder (49) based on the transformations (51) and the hybrid decoder (49)
based on the transformations (54) are generally different, even if both use the same tie-
breaking rule.

Proof The first two claims are straightforward extensions of Lemmas 1 and 2 of Brushe
et al. (1998). To see this, first restore the previously reduced factor W in both
the numerator and denominator of the expressions for ¢ (i;) and B;(i;). Then apply
induction on t (first in the forward manner for the o variables and then backward for the
B variables). For example, assume that lim,, oo S¢41(%; 1) = Bi41(4;00). Then, as p — oo,

K
1 5 0a ~
log ?g etPisfi@r)fea G | max (pijfj(litﬂ)ﬁtﬂ(j;oo)),
j=1

1+ (K —1)e ™
W

41

LEMBER AND KOLOYDENKO

which is, according to claim 3 of Proposition 10,

meax (pzjfj(xtJrl Bis1(j;00)/ H Cm (00) = maX(mey(xtH)ﬁtH J;00))/ H Cm(00

m=t+2 m=t+2

Next, recalling (47), we get that the numerator in the expression for limy, o B;(i; 1) is
given by f(i;00)/ Hﬁ:t 42 Cm(00). Observing that the denominator is given by

K
1+ & <
hleog[Z paedinlp :|fe(xf+1 = Zr;gleaég((at(j;oo)pjs)fs(:z:t+1),
s=1

— 00
H =1

which is just c;41(00), finally gives lim, o By (i) = By (i500)/ Hﬁ:tﬂ cm(00) = Bi(i; 00),
as required.

As a counter-example proving the last claim, consider the simple HMM from The Math-
Works, Inc. (2012, p. 1840).

Example 2 Let S = {1,2} and let {1,2,...,6} be the emission alphabet. Let the initial
distribution 7, transition probability matriz P, and the emission distributions fs, s € S, be
defined as follows:

_(2/3
- \1/3)"
Suppose z° = (2,6,6,4,1) has been observed. Take p = 7. Table 2 shows outputs of

the original (top) and normalized (bottom) transformed decoders, respectively. Clearly, the
decoders return different paths.

1 2 3 4 5 6
2(00'915 05095)7 P =zt fi() 1/6 1/6 1/6 1/6 1/6 1/6 .
’ ' f2() 01 01 01 01 01 02

Note that unlike the normalized hybrid decoder based on the power-transform, this nor-
malized hybrid decoder generally does not satisfy the first claim of Proposition 10. (Indeed,
satisfying these conditions would contradict the third claim of the latter Proposition 13.)

We have also experimented with these normalized hybrid decoders using a subset of real
data (and a realistic HMM with K = 6 states) from our experimental Section 5 and can
indeed confirm convergence of the hybrid decoder based (54) to the PMAP decoder with
@ = 0.001 and to the Viterbi decoder with p = 10000 for sequences of length 7" = 100.
Naturally, the above range of u values would generally need to increase significantly with
T.

Below, we summarize our views on the idea of purely algorithmic hybridization of MAP
and PMAP.

1. The method presented by Brushe et al. (1998) need not work, that is, can fail to converge
to the Viterbi path, when the Viterbi path is not unique, see Example 1 above.

2. Since the method depends on the transformation used, more work may be needed to
understand which (if any) particular transformation/interpolation could be suitable for a
specific application; the choice of (51) made by Brushe et al. (1998) seems to be rather
arbitrary.

42

BRIDGING VITERBI AND POSTERIOR DECODING

Lt] au(1;) Be(1;) (25) Be(2; 1) oy (13 0)B(L) a2)82 1) |
1076 1076
1]0.11111 6.6968¢-05 0.033333 0.00019826 7.4409 6.6088
21 0.010576 0.00071029 0.0091583 0.00085352 7.5121 7.8168
31 0.0009266 0.0083987 0.0022209 0.003471 7.7823 7.7088
4]9.201e-05 0.10141 0.00010268 0.058041 9.3311 5.9598
5| 8.1481e-06 1 4.8559¢-06 1 8.1481 4.8559
Lt (e B @p) Biip) a(lm)Be(lip) (25 m)Bi(2;p) |
1]0.76923 0.30879 0.23077 0.97296 0.23753 0.22453
21 0.58963 0.55137 0.41037 0.55227 0.32510 0.22664
310.35383 1.15172 0.64617 0.39942 0.40751 0.25809
41046886 1.03712 0.53114 0.59356 0.48626 0.31526
51060611 1 0.39389 1 0.60611 0.39389

Table 2: p = 7. Top: Output from the original (unnormalized) transformed decoder based
on the transformations (51); the optimal path is (1,2,1,1,1). Bottom: Output
from the normalized transformed decoder based on the transformations (54); the
optimal path is (1,1,1,1,1).

3. Also, the choice of (51) does not work in practice except with trivially short sequences;
the underlying transformations can be normalized but this alters the decoder (Proposi-
tion 13). The choice of (45) is better in several aspects, mainly for its rescaling property
(subsection 6.2), that is, the decoder is indeed ready to work in practice.

4. Algorithmically defined estimators are notoriously hard to analyze analytically (Win-
kler, 2003, pp. 25, 129-131). Indeed, it is not clear if the general members of the above
interpolating families (regardless of the transformation used) satisfy any explicit optimality
criteria; this makes it difficult to interpret such decoders. This may also discourage the
use of such decoders in more complex inference cycles (that is, when any genuine model
parameters are to be estimated as well, for example, as in Viterbi Training Koski, 2001;
Lember and Koloydenko, 2008, 2010).

5. The point-wise hybridization scheme (49) can itself be altered. Indeed, other recursion
schemes (see, for example, Koski, 2001, pp. 272-273 for Derin’s formula) can also be applied
for this purpose. However, now more than a decade after Brushe et al. (1998), we are not
aware of any practical application of the idea of algorithmic hybridization of the MAP-
PMAP inferences. Besides the plausible reasons already discussed in Subsection 1.2.1 (that
actually extend to any type of MAP-PMAP hybridization), it is plausible that this particular
type of hybridization has not yet seen application because of the lack of interpretation of its
solutions, and possibly also because of the aforementioned difficulties with implementation
of the original idea of Brushe et al. (1998).3

3. We recently attempted to contact the authors of that paper, but have not received any response by the
time of sending this manuscript to the production editor.

43

LEMBER AND KOLOYDENKO

Appendix D gives a pseudo-code to compute a decoded sequence g;% (u) for any p > 0 using
the power-transform approach (49) with scaling. Naturally, the decoding process can be
parallelized over a range of u values.

7. Asymptotic Risks

Given an arbitrary decoder g and a risk function R, the quantity R(g(z7) | 2T) evaluates the
risk when g is applied to a given sequence 7. Below we will write R(z”) for the minimum
risk mingr R(sT | #7) which is achieved by the Bayes decoder v: R(v(xT) | 2T) = R(27).
Besides R(XT), we are also interested in the random variables R(g(X7) | XT) (depending
on R and g). Thus, Kuljus and Lember (2012) have considered convergence of various risks
of the Viterbi decoder v(-; 00). Since Viterbi paths v(z”; 00) and v(2”+1; 00) may differ sig-
nificantly, asymptotic analysis of the Viterbi decoding is far from being trivial. Koloydenko
and Lember (2008); Lember and Koloydenko (2008, 2010) constructed a well-defined process
v(X°;00), named also after Viterbi, that for a wide class of HMMs extends ad infinitum
finite Viterbi paths v(z”; 00) and possesses useful ergodic properties. Based on the asymp-
totic theory of Viterbi processes v(X°;00), Kuljus and Lember (2012) have shown that
under fairly general assumptions on the HMM, the random variables Ry (v(X7;00) | XT),
Rip(v(XT;00) | XT), where k = 1,2, ..., and Roo (v(XT;00) | XT), as well as Roo (v(X 75 00))
(see Equation 12), Ri(v(XT;00)) (see Equation 20), and Ri(v(X7;00)) (see Equation 27)
all converge (as T' — 00) a.s. to constant (that is non-random) limits. Convergence of these
risks implies a.s. convergence of

ClRl(U(XT; o0) | XT) + CQROO(U(XT; o0) | XT) + C’gRl(v(XT; o)) + C4ROO(U(XT; 00)),
and
C1R1(v(XT;00) | XT) 4+ CoRoo (0(XT;00) | XT) + C3Ry (v(XT;00)) + CuRoo (v(XT; 00)),

the risks appearing in the generalized problems (18) and (26), respectively. Actually, con-
vergence of Roo(v(X7T;00),XT) is also proved (and used in the proof of convergence of
Reo(v(XT;00) | XT)). Hence, the minimized risk in (19), evaluated at the Viterbi paths,
converges as well.

The limits—asymptotic risks—are (deterministic) constants that depend only on the
model, and help us assess the Viterbi inference in the following principled way. For example,
let Ri(k = oo) be the limit (as T — oo) of Ry(v(XT;00) | XT), which is the asymptotic
misclassification rate of the Viterbi decoding. Thus, for large T, the Viterbi decoding makes
about T'R;(k = oo) misclassification errors. The asymptotic risks might be, in principle,
found theoretically, but in reality this can be rather difficult. However, since all these
asymptotic results also hold in the L; sense, which implies convergences of expectations,
the limiting risks can be estimated by simulations.

Lember (2011a,b) has also shown that under the same assumptions Rj(X7T) =
Ri(v(XT;1) | XT) converges to a constant limit, say R;. Kuljus and Lember (2012)
have at the same time also shown Rj(X7T) = Ry(v(XT;1) | XT) to converge. Clearly
Ri(k = 00) > R1(1), and even if their difference is small, the total number of errors made
by the Viterbi decoder in excess of PMAP in the long run can still be significant.

44

BRIDGING VITERBI AND POSTERIOR DECODING

Presently, we are not aware of a universal method for proving (or improving upon)
the limit theorems for these risks. Recall that convergence of the risks of the Viterbi
decoding is possible due to the existence of the Viterbi process which has nice ergodic
properties. The question whether infinite PMAP processes have similar properties, is still
open. Therefore, convergence of Ri(X7”) was proven with a completely different method
based on the smoothing probabilities. In fact, all of the limit theorems obtained thus far
have been proven with different methods. We conjecture that these different methods can
be combined so that convergence of the minimized combined risk (18) or (26) could be
proven as well. In summary, as mentioned before, convergence of the minimized combined
risks has thus far been obtained for trivial combinations only, that is with three of the four
constants being zero. Note that while convergence of the intermediate case (38) with its
minimizer v(z”’; k(a)) is an open question, (39) gives

Ry (v(xT; 00) | :UT)

0 < Roo(v(aT5k(a)) [27) = Roo(v(z™;00) | 2T) < —

This, together with the a.s. convergence of Ri(v(X7T;00) | XT), implies that in the long
run, for most sequences x7, Ry (v(2T;k) | 1) will not exceed Roo(v(2T;00) | 1) by more
than k—il lim7 0o R1(v(X7T;00) | XT). Since this limit is finite, letting k increase with 7T,
we get that Reo(v(XT;kr)) approach limy oo Roo(v(XT;00)) a.s., that is, as the intuition
predicts, the likelihood of v(XT'; kr) approaches that of v(X7;c0).

Finally, Lember and Koloydenko (2010); Lember et al. (2011) also outline possible ap-
plications of the above asymptotic risk theory. For example, if a certain number of the
true labels y1,ya, ..., yr can be revealed (say, at some cost), the remaining labels would be
computed by a constrained decoder, for example, the constrained Viterbi decoder. Hav-
ing observed z”, the user then needs to decide which positions are “most informative”
and then acquires their labels. Assuming further that the HMM is stationary, the Rj-
like risks P(v(X*®;00); # Y, | X[€ A) (for any m > 1 and any measurable set
A € X?+) are independent of ¢ (for t = m + 1,m + 2,...), and could therefore be
used in the above active learning protocol for the selection of the most informative po-
sitions. Specifically, if A is such that P(v(X*®;00); # Y; | X[€ A) is high, then
acquire labels at positions ¢ of occurrence of A. Naturally, there are different ways to make
this concrete. For one simple example, suppose only a batch of L labels can be acquired.
Assuming X to be discrete, order all the X words A of length ¢ (that is, A € X?) by
P(v(X>®;00); # Yy | X[€ A). Finally, from the X of length ¢ that occur in 27, choose L
with the highest P(v(X*;00); # Y; | X[/ € A). The above asymptotic theory is crucial
also for establishing P(v(X>;00); # Y; | X[€ A) as the a.s. limit of easily computable
(e.g., via off-line simulations) empirical measures. In practice, these latter measures would
be used as estimates of P(v(X>;00); # Y; | X/ € A) and first experiments along these
lines are given by Lember et al. (2011, Section 4.4). It may also be of interest to test these
ideas with other risks and decoders, such as members of the generalized hybrid families

presented here.

45

LEMBER AND KOLOYDENKO

8. Discussion

The point-wise symmetric zero-one loss I(s,y) = Iz, in (4), (5), and consequently in
the generalized PMAP hybrid decoding (26), can be easily replaced by a general loss
I(s,y) >0, s,y € S. In computational terms, this would require multiplying the loss matrix
(I(s,v))syes by the (prior or) posterior probability vectors (p(1 |), pi(2 | 2T),...,p (K |
27))" to obtain the (prior or) posterior risk (pi(1 | z7), pi(2 | 1), ..., pi(K | 2T))" vectors
(we use the apostrophe to denote vector transpose). The dynamic programming algorithm
defined by (23) with (28) still stands provided p;(j | #7) (or ps(4), or both) is replaced by
1—pi(5]27) (or 1 — pg(j), or both respectively) in the definition of v;(j). If all confusions
of state y are equally undesirable, that is, I(s, y) is of the form I(y) x Is.,, then the above
adjustment reduces to replacing p;(j |) by 1()p:(j | T) (for all j € S), which we illus-
trated in Figure 2 when suppressing state 3. Similar adjustments can be made to the R;
risks of the generalized PVD family, which was also illustrated in Figure 2.

Using an asymmetric loss could be particularly valuable in practice when, for example,
detection of a rare state or transition needs to be encouraged. Similar views have been
most recently expressed also by Yau and Holmes (2010), who, staying within the additive
risk framework, have proposed a general asymmetric form of the loss (30) with k£ = 2.
Hybridizing this general asymmetric pairwise loss with the other losses considered in this
work should provide additional flexibility to path inference. A way to incorporate this loss
into our generalized framework is by vectorizing the chain {Y;}+>1 as {(Y, Yiq1) l>1 and
then following the opening lines of this Section.

Also, using a range of perturbed versions of a loss function can help assess saliency of
particular detections (“islands”). In fact, at the stage of data exploration one may more
generally want to use a collection of outputs produced by using a range of different loss
functions instead of a single one.

The logarithmic risks (3), (6), (12), (20) on the one hand, and the ordinary risks (2),
(5), Roo(sT) = 1—p(sT), (27), on the other hand, can be respectively combined into a single
parameter family of risks by using, for example, the power transformation as shown below
with p for the moment standing for any probability distribution on S7:

1 T pt(st)ﬁ—l . .

Ri(s";8) = Tt B ?fﬁ#o’ (55)
—7 D=1 logpi(st), if B =0;

{—%”“Tgﬁ‘l, if 8 # 0;

R T; =
(57:8) —%logp(sT), if 6=0.

Thus, the family of risk minimization problems given in (56) below
min |C1R(s" [275 51) + CaRoo(s" | &7 B2) + CsRi(s™5 B3) + CaRoo(s”; 54)} , (56)

C; > 0 and Z?Zl C; > 0 unifies and generalizes problem (18) (51 = f2 = f3 = B4 = 0) and
problem (26) (81 = f3 = 1, B2 = B4 = 0). Clearly, the dynamic programming approach of
Theorem 4 immediately applies to any member of the above family (56) with 5, = 84 = 0.
Also, computations of multiple decoders from this family (at least with So = 84 = 0) are
readily parallelizable.

46

BRIDGING VITERBI AND POSTERIOR DECODING

Next, Theorem 6 and Corollaries 7 and 8 obviously generalize to higher order Markov
chains as can be seen from the following Proposition.

Proposition 14 Let p represent a Markov chain of order m, 1 < m < T, on ST. Then
for any s € ST and for any k € {m,m +1,...}, we have

Ri(sT) = Ryu(sT) + (k — m)Roo(sT).

Proof This is a straightforward extension of the proof of Theorem 6. |

The present risk-based discussion of HMM path inference also naturally extends to the
problem of optimal labeling or annotation (already mentioned in Subsection 1.2). Namely,
the state space S can be partitioned into subsets S, So, ..., Si, for some A < K, in which
case A(s) assigns label A to every state s € S). The fact that the PMAP problem is as easily
solved over the label space AT as it is over ST has already been used in practice. Indeed,
Kall et al. (2005), who also add the constraint of admissibility with respect to the prior
distribution, in effect average p;(s; | 27)’s, for each t, within the label classes and then use
recursions (15) to obtain the optimal accuracy labeling of a priori admissible state paths.
This clearly corresponds to using the point loss (s, s’) = [a(s)#a(s)) in (4) when solving
Mingr . (s7)>0 Ri(sT | #7) (14). With our definition of admissibility (that is, positivity of
the posterior path probability), the same approach (that is, replacing p;(s; | #7)’s by their
within class average p(s; | 7)) extends to solve MiNGT (67 (2750 Ri(sT | 2T) (7) under
the same loss I(s,s') = Len(s)#a(s)y- Clearly, the generalized problem (56) also immediately
incorporates the above pointwise label-level loss in either the prior Ri(-;f3) or posterior
risk Ri(-; 1), or both. Since computationally these problems are essentially as light as
recursion (24), (25), and since Ka&ll et al. (2005) report their special case to be successful
in practice, we believe that the above generalizations offer yet more possibilities that are
potentially useful in practice.

Instead of using the same arithmetic averages p;(s; | #7)’s (or py(s¢)’s) for the Ry risks
in (56) regardless of 3, we can gain additional flexibility by replacing p;(s;:)? and log py(s;)
n (55) (B # 0 and 8 = 0 respectively) with

(/2 m)\ 7
S’ES)\(S> . .
|S)\<S)| I lf B 7& 07
pir(s;B) o)
[Sx(s)]
< H pt(‘s/)>) if 5 =0.
S’GSMS)

Certainly, the choice of the basic loss functions, inflection parameters 3; and weights C;
of the respective risks is application dependent, and can be tuned with the help of labeled
data, using, for example, cross-validation.

Finally, these generalizations are presented for the standard HMM setting, and therefore
extensions to more complex and practically more useful HMM-based settings (e.g., semi-
Markov, autoregressive, coupled, etc.) could also be interesting.

47

LEMBER AND KOLOYDENKO

Since the transform based approach, especially the newly proposed power-transform
hybridization, has also generated some interest, it would be interesting to evaluate perfor-
mance of the power-transform hybrids together with the risk-based families on multiple real
applications and using various domain specific performance measures.

Acknowledgments

The first author has been supported by the Estonian Science Foundation Grant nr. 9288
and by targeted financing project SF0180015s12, which has also supported a research visit
of the second author to Tartu University. The second author has also been supported by UK
NIHR Grant i4i II-AR-0209-10012. The authors are also grateful to anonymous reviewers
as well as to the action editor for their thorough reviews of this work, additional references,
and comments and suggestions on improving this manuscript. The authors are also very
thankful to Dr Dario Gasbarra and Dr Kristi Kuljus for reviewing earlier versions of the
manuscript and pointing out two subtle mistakes, as well as to Ufuk Mat for pointing out
some typing errors.

Appendix A. An Example of an Inadmissible Path of Positive Prior
Probability

500040000
111111111
004050000
111111111
r=(111111111)/9 P=[(01011121 2|/
111111111
330003000
111111111
003300030

To simplify the verifications, consider an emission alphabet with only four symbols, although
the idea of constructing this example readily extends to larger alphabets (in particular, to
more practically relevant situations where the emission alphabet is larger than the hidden
state space, or the emission distributions are continuous altogether). Then take the following
emission distributions:

PP B Py
1/25 1/20 0 91/100
0 0 1/5 4/5
1/20 1/25 0 91/100
0 0 1/5 4/5
/10 0 1/5 7/10
0 0 1/5 4/5
1/15 1/15 0 13/15
0 0 1/5 4/5
1/15 1/15 0 13/15

48

BRIDGING VITERBI AND POSTERIOR DECODING

Suppose now that a sequence x3 = (1,2,3) has been observed. It can then be verified that
the (unconstrained) PMAP decoder returns any of the following paths (5,1,5), (5,3,5),
(5,7,5), or (5,9,5), all of which having zero prior (and posterior) probabilities.

When the decoder is subject to the positivity constraint on the prior probabilities, it
would return any of the following paths (5,2,5), (5,4,5), (5,5,5), (5,6,5), (5,8,5), which,
despite being of positive prior probabilities, all have zero posterior probabilities.

Finally, if the decoder is constrained to produce paths of positive posterior probability,
it would then return any of the following paths (5,7,2), (5,7,6), (3,3,5), (9,3,5).

Appendix B. Proof of Remark 3

Proof Assume C3 = C4 = 0. For each C1,Cy > 0, let ﬁcl,cg € ST be a solution to (18),
and let y7 py p be the output of PVD. Thus, we have

ClRl(chl,Cg |2T) + C2Roo(chl,Cg |2T) < CiRi(yTpyp | 27) + CaRas(yT pyp | 27).
Then

0<Ci(Ri(yT e, .0 | a') = Ri(yTpyp | 27)) € Co(Ros(yT pyp | 27) — Roo(y"cy .0, |)

holds for any C7,Cy > 0. Since Roo(ﬁpVD | #7) — Ry (ﬁch@ | :UT) is clearly bounded
(and ST is finite), we obtain Rl(gﬁch@ | 2T = Rl(y pvp | 7)) for some sufficiently
small Cy. Since Cy > 0, all ﬁ 0,.c, are admissible (Remark 1 above), therefore for such
sufficiently small C, g/ﬁ 1.0, 18 also a solution to the PVD Problem (9).

The s/e\cond statement is proved similarly, recalling Proposition 2 to establish admissi-
bility of yT'c, ¢, almost surely. [|

Appendix C. Supplementary Results on the Trade-Off between R, and
R, Risks in Problem (18), and between R, and R, Risks in Problem
(26).

Corollary 15 1. Let § and ¢ be solutions to Problem (18) with Cy € [0,1] and Cy =
1-C1, C3=Cy =0 and C} € [0,1] and C) =1 —C}, C, = C} = 0, respectively.
Assume C; < Cj. Then Ri(j | 27) > Ri(9' | 2T) and Roo(§ | #7) < R (' | 2T).

2. Let§ and g’ be solutions to Problem (18) with Cs € [0,1] and Cy = 1—-C3, C1 = Cy =0
and C% € 10,1] and Cj =1 — C%, C] = C = 0, respectively. Assume C3 < C§. Then
Ri(9) = Ra(f') and Roo() < Roo(i)-

3. Lety andq' be solutions to Problem (26) with Cy € [0,1] and Co = 1-C1, C53=C4 =0
and C} € [0,1] and Cy =1 - Cy, C3 = C} = 0, respectively. Assume Cy < Cj. Then
Ri(y|a") > Ra(y' | 2) Cde (] 2") < Reo(y' | 27).

4. Lety and ' be solutions to Problem (26) with C3 € [0,1] and Cy =1-C5, C1 = Cy =0
and C3 € [0,1] and Cy = 1-Cj, C] = Cy = 0. Assume C3 < C5. Then Ri(3) > Ri(Y')
and Roo () < Roo (7).

49

LEMBER AND KOLOYDENKO

Proof A straightforward application of Lemma 16 given below. |

Lemma 16 Let F and G be functions from a set A to the extended reals R = R U {4o0}.
Let ag, a9 € [0,1] be such that a; < ay. Suppose a1, a9 € A are such that

aiF(a;) + (1 —a;)G(a;)) < oF(z)+(1—0o;)G(z), =12, forallxe A.

Then F(a1) > F(az2) and G(a1) < G(ag).

Although the result is obvious, below we state its proof for completeness.
Proof Write a, b, ¢, and d for F(a;), G(a1), F(az), and G(az), respectively. Then we have

(1 —a1)(d = b),
(1 —az)(d = b),

ai(a—c)

)

<
az(a >

and therefore

agar(a—c) <ag(l —ay)(d—0),
araz(a—c) > a1(1 — ag)(d —b),

which gives a1 (1 —ag)(d —b) < ag(1 —aq)(d —b). Since a(1 — az) < as(l —ay), it follows
that d > b, that is, G(a2) > G(a1). The fact that F(a1) > F(ag) is obtained similarly. H

Appendix D. Pseudo-Code for Computing the Hybrid Decoders (49)
Using the Power-Transform with Scaling (52), (53).

Finally, to output the decoded sequence ﬁ (1), a simple tie-breaking rule may be as follows:
fort=1,2,...,7T do .
e(n) = min arg masc{ay (i 1) B (i 1),
end for

whereas more elaborate rules may involve ordering of the entire state space ST, or simply
outputting all of the winning sequences. (Computations of the transformed and scaled «
and f variables are summarized in Algorithms 1 and 2 respectively.)

50

BRIDGING VITERBI AND POSTERIOR DECODING

Algorithm 1 The forward pass to compute d;(i; 1) and the scaling constants ¢;(p).

fort=1,2,...,7 do
c(p) <0
end for
fori=1,2,...,K do
ai(i) < m fi(z1)
a(p) < a(p) +mifi(z1)
end for
fori=1,2,...,K do
an (i) = o (i)/ea(p)
end for
if 4 =0 then
fort=2,....,7T do
fori=1,2,...,K do
Se(i) —{jeS: ar1(j;p1)pji >0}
Ky (i) |Si(d)]

1
Ky (i)
(1) < [I1 &t—l(j;u)pg‘i] fi(xt)
JE€S(4)
c(p) = ce(p) + au(is p)
end for
fori=1,2,...,K do
(15 o) <= (i) /e (p)
end for
end for
else
fort=2,...,7 do
fori=1,2,..., K do

|

K 14
g (15 1) 4 [Zl(&t—l(jsu)z?ji)“] fi(xy)
]:
ce(p) < ce(p) + au(i; p)
end for
fori=1,2,..., K do
(i p) <= (i p) [ce ()
end for
end for
end if

51

LEMBER AND KOLOYDENKO

Algorithm 2 The backward pass to compute Bt(z'; 1).
fori=1,2,...,K do
Br(is) <1
end for
if 1 =0 then
fort=T-1,T—-2,...,1do
fori=1,2,...,K do .
Si(i) «={i €5 fij(@s1)pijBea(d;) > 0}
K7 (0) « 55 (0)|

1

)) o6y
ﬁt(i;M)F[I1 fj($t+1)pz‘j5t+1(]';u)] [et1(p)

JESE (1)

end for
end for
else
fort=T-1,T—-2,...,1do
fori=1,2,..., K do

) K) Rk
By (i) [Z (fj($t+1)pz‘j5t+1(j;u)>] Jci1()
end for
end for
end if

Appendix E. Further Details of the Experiments from Section 5

Below are the estimates of the HMM parameters obtained from the entire data set as
described in Section 5.

T = (0.0016 0.0041 0.9929 0.0014 0.0000 0.0000) ,
1 0.8359 0.0034 0.1606 0 0 0
2 0.0022 0.8282 0.1668 0.0028 0 0
3 P 0.0175 0.0763 0.8607 0.0455 0 0
4 N 0 0 0 0.7500 0.2271 0.0229 |’
5 0 0 0 0 0.8450 0.1550
6 0 0.0018 0.2481 0 0 0.7501
Tiny = (0.0511 0.2029 0.4527 0.0847 0.1240 0.0847) ,

52

BRIDGING VITERBI AND POSTERIOR DECODING

Pn B P P B R
0.1059 0.0636 0.0643 0.1036 0.1230 0.1230
0.0107 0.0171 0.0135 0.0081 0.0111 0.0128
0.0538 0.0319 0.0775 0.0634 0.0415 0.0345
0.0973 0.0477 0.0620 0.1120 0.0852 0.0848
0.0436 0.0576 0.0330 0.0371 0.0386 0.0399
0.0303 0.0484 0.1133 0.0447 0.0321 0.0229
0.0203 0.0227 0.0259 0.0188 0.0197 0.0221
0.0564 0.1010 0.0372 0.0557 0.0694 0.0593
0.0672 0.0443 0.0574 0.0560 0.0671 0.0810
0.1227 0.1068 0.0674 0.0994 0.1279 0.1477
0.0240 0.0219 0.0181 0.0214 0.0293 0.0304
0.0299 0.0252 0.0561 0.0259 0.0338 0.0336
0.0333 0.0208 0.0757 0.0472 0.0067 0.0031
0.0443 0.0270 0.0330 0.0469 0.0497 0.0472
0.0594 0.0464 0.0470 0.0522 0.0677 0.0697
0.0496 0.0496 0.0744 0.0485 0.0422 0.0491
0.0395 0.0641 0.0572 0.0465 0.0412 0.0375
0.0591 0.1386 0.0473 0.0685 0.0677 0.0545
0.0168 0.0172 0.0111 0.0135 0.0130 0.0124
0.0359 0.0483 0.0286 0.0306 0.0332 0.0344

~NI<<NHNLuTONWZENR~NZQNEITAOR

References

Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman.
Basic local alignment search tool. Journal of Molecular Biology, 215(3):403 — 410, 1990.

Zafer Aydin, Yucel Altunbasak, and Mark Borodovsky. Protein secondary structure pre-
diction for a single-sequence using hidden semi-Markov models. BMC' Bioinformatics, 7
(1):178, 2006.

Lalit R. Bahl, John Cocke, Frederick Jelinek, and Josef Raviv. Optimal decoding of linear
codes for minimizing symbol error rate (corresp.). IEEE Transactions on Information
Theory, 20(2):284-287, 1974.

Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat, Helge Weis-
sig, Ilya N. Shindyalov, and Philip E. Bourne. The Protein Data Bank. Nucleic Acids
Research, 28(1):235-242, 2000.

Julian Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical
Society. Series B. Methodological, 48(3):259-302, 1986.

Julian Besag and Peter J. Green. Spatial statistics and Bayesian computation. Journal of
the Royal Statistical Society. Series B. Methodological, 55(1):25-37, 1993.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, New York, 2006.

53

LEMBER AND KOLOYDENKO

Matthew Brand, Nuria Oliver, and Alex Pentland. Coupled hidden Markov models for
complex action recognition. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pages 994-999, S.Juan, Puerto Rico, 1997.

Brona Brejova, Daniel G. Brown, and Tom&s Vinaf. The most probable annotation problem
in hmms and its application to bioinformatics. Journal of Computer and System Sciences,

73(7):1060 — 1077, 2007a.

Brona Brejova, Daniel G. Brown, and Tom&s Vinaf. Advances in hidden Markov models for
sequence annotation. In Ion I. Mandoiu and Alexander Zelikovski, editors, Bioinformatics
Algorithms: Techniques and Applications, pages 55-92. John Wiley & Sons, Inc., 2007b.

Gary D. Brushe, Robert E. Mahony, and John B. Moore. A soft output hybrid algorithm
for ML/MAP sequence estimation. IEEE Transactions on Information Theory, 44(7):
3129-3140, 1998.

Chris Burge and Samuel Karlin. Prediction of complete gene structures in human genomic
DNA. Journal of Molecular Biology, 268(1):78 — 94, 1997.

Olivier Cappé, Eric Moulines, and Tobias Rydén. Inference in Hidden Markov Models.
Springer Series in Statistics. Springer, New York, 2005.

Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46
(2):255-308, 20009.

Luis E. Carvalho and Charles E. Lawrence. Centroid estimation in discrete high-dimensional
spaces with applications in biology. Proceedings of the National Academy of Sciences of
the United States of America, 105(9):3209-3214, 2008.

Christiane Cocozza-Thivent and Abdelkrim Bekkhoucha. Estimation in Pickard random
fields and application to image processing. Pattern Recognition, 26(5):747-761, 1993.

Richard Durbin, Sean Eddy, Anders Krogh, and Graeme Mitchison. Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University
Press, 1998.

Sean Eddy. What is a hidden Markov model? Nature Biotechnology, 22(10):1315 — 1316,
2004.

Yariv Ephraim and Neri Merhav. Hidden Markov processes. IFEE Transactions on Infor-
mation Theory, 48(6):1518-1569, June 2002.

Piero Fariselli, Pier Martelli, and Rita Casadio. A new decoding algorithm for hidden
Markov models improves the prediction of the topology of all-beta membrane proteins.
BMC' Bioinformatics, 6(Suppl 4):S12, 2005.

Kuzman Ganchev, Joao V. Graga, and Ben Taskar. Better alignments = better transla-
tions? In Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 986-993, Columbus, Ohio, 2008.

54

BRIDGING VITERBI AND POSTERIOR DECODING

Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6:721-741, 1984.

Peter J. Green and Sylvia Richardson. Hidden Markov models and disease mapping. Journal
of the American Statistical Association, 97(460):1055-1070, 2002.

Jeremiah F. Hayes, Thomas M. Cover, and Juan B. Riera. Optimal sequence detection
and optimal symbol-by-symbol detection: similar algorithms. IEEE Transactions on
Communications, 30(1):152-157, January 1982.

Tan Holmes and Richard Durbin. Dynamic programming alignment accuracy. Journal of
Computational Biology, 5(3):493-504, 1998.

Xuedong Huang, Yasuo. Ariki, and Mervyn Jack. Hidden Markov Models for Speech Recog-
nition. Edinburgh University Press, Edinburgh, UK, 1990.

Frederick Jelinek. Continuous speech recognition by statistical methods. Proceedings of the
IEFEE, 64:532-556, April 1976.

Frederick Jelinek. Statistical Methods for Speech Recognition. The MIT Press, Cambridge,
Massachusetts, 2001.

Dhiraj Joshi, Jia Li, and James Z. Wang. A computationally efficient approach to the
estimation of two- and three-dimensional hidden Markov models. IEEE Transactions on
Image Processing, 15(7):1871-1886, 2006.

Lukas Kall, Anders Krogh, and Erik L. L. Sonnhammer. An HMM posterior decoder
for sequence feature prediction that includes homology information. Bioinformatics, 21
(suppl-1):i251-257, 2005.

Alexey A. Koloydenko and Jiiri Lember. Infinite Viterbi alignments in the two state hidden
Markov models. Acta et Commentationes Universitatis Tartuensis de Mathematica, (12):
109-124, 2008.

Timo Koski. Hidden Markov Models for Bioinformatics, volume 2 of Computational Biology
Series. Kluwer Academic Publishers, Dordrecht, 2001.

Anders Krogh. Two methods for improving performance of an HMM and their application
for gene finding. In Proceedings of the Fifth International Conference on Intelligent
Systems for Molecular Biology, pages 179-186, Halkidiki, Greece, 1997.

Anders Krogh. An Introduction to Hidden Markov Models for Biological Sequences. In
David B.Searls Steven L. Salzberg and Simon Kasif, editors, Computational Methods in
Molecular Biology. Elsevier Science, first edition, 1998.

Kristi Kuljus and Jiiri Lember. Asymptotic risks of Viterbi segmentation. Stochastic Pro-
cesses and Their Applications, 122(9):3312-3341, 2012.

Hans Kiinsch, Stuart Geman, and Athanasios Kehagias. Hidden Markov random fields. The
Annals of Applied Probability, 5(3):577-602, 1995.

55

LEMBER AND KOLOYDENKO

Steffen L. Lauritzen. Graphical models, volume 17 of Ozford Statistical Science Series.
Oxford University Press, New York, 1996.

Juri Lember. On approximation of smoothing probabilities for hidden Markov models.
Statistics and Probability Letters, 81(2):310-316, 2011a.

Jiiri Lember. A correction on approximation of smoothing probabilities for hidden Markov
models. Statistics and Probability Letters, 81(9):1463-1464, September 2011b.

Jiiri Lember and Alexey A. Koloydenko. The Adjusted Viterbi training for hidden Markov
models. Bernoulli, 14(1):180-206, 2008.

Juri Lember and Alexey A. Koloydenko. A constructive proof of the existence of Viterbi
processes. IEEE Transactions on Information Theory, 56(4):2017-2033, 2010.

Jiiri Lember, Kristi Kuljus, and Alexey A. Koloydenko. Theory of segmentation. In Prze-
myslaw Dymarski, editor, Hidden Markov Models, Theory and Applications, Bioinformat-
ics, pages 51-84. InTech, 2011.

Jia Li, Robert M. Gray, and Richard A. Olshen. Multiresolution image classification by
hierarchical modeling with two-dimensional hidden Markov models. IEEE Transactions
on Information Theory, 46(5):1826-1841, 2000.

Shu Lin and Daniel J. Costello Jr. Error Control Coding: Fundamental and Applications.
Computer Applications in Electrical Engineering. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1983.

William H. Majoros and Uwe Ohler. Advancing the state of the art in computational gene
prediction. In Sorin Istrail, Pavel Pevzner, and Michael Waterman, editors, Knowledge
Discovery and Emergent Complexity in Bioinformatics, volume 4366 of Lecture Notes in
Computer Science, pages 81-106. Springer Berlin / Heidelberg, 2007.

Christopher D. Manning and Hinrich Schiitze. Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, Massachusetts, 1999.

Jose L. Marroquin, Edgar Arce Santana, and Salvador Botello. Hidden markov measure field
models for image segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 25(11):1380-1387, 2003.

Joshua Mason, Kathryn Watkins, Jason Eisner, and Adam Stubblefield. A natural language
approach to automated cryptanalysis of two-time pads. In Proceedings of the 13th ACM
Conference on Computer and Communications Security, pages 235-244, Alexandria, Vir-
ginia, 2006.

MATLAB. Version 7.15.0.564 (R2011b). The MathWorks, Inc., Natick, Massachusetts,
2011.

Erik McDermott and Timothy J. Hazen. Minimum classification error training of landmark
models for real-time continuous speech recognition. In Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing, Montreal, Quebec, 2004.

56

BRIDGING VITERBI AND POSTERIOR DECODING

Clare A. McGrory, D. Michael Titterington, Robert W. Reeves, and Anthony N. Pettitt.
Variational Bayes for estimating the parameters of a hidden Potts model. Statistics and
Computing, 19(3):329-340, 20009.

Hermann Ney, Volker Steinbiss, Reinhold Haeb-Umbach, B.-H. Tran, and Ute Essen. An
overview of the Philips research system for large vocabulary continuous speech recogni-
tion. International Journal of Pattern Recognition and Artificial Intelligence, 8(1):33-70,
1994.

Mukund Padmanabhan and Michael A. Picheny. Large-vocabulary speech recognition al-
gorithms. Computer, 35(4):42 — 50, 2002.

Lawrence Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257-286, 1989.

Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of Speech Recognition. Prentice-
Hall, Inc., Upper Saddle River, New Jersey, 1993.

Lawrence R. Rabiner, Jay G. Wilpon, and Biing-Hwang Juang. A segmental k-means
training procedure for connected word recognition. ATET Technical Journal, 65(3):21—
31, 1986.

Patrick Robertson, Emmanuelle Villebrun, and Peter Hoeher. A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the log domain. In Proceedings of
IEEE International Conference on Communications, volume 2, pages 1009-1013, Seattle,
Washington, 1995.

Havard Rue. New loss functions in Bayesian imaging. Journal of the American Statistical
Association, 90(431):900-908, 1995.

Asaf A. Salamov and Victor V. Solovyev. Prediction of protein secondary structure by
combining nearest-neighbor algorithms and multiple sequence alignments. Journal of
Molecular Biology, 247(1):11 — 15, 1995.

Kengo Sato, Michiaki Hamada, Kiyoshi Asai, and Toutai Mituyama. Centroidfold: a web
server for RNA secondary structure prediction. Nucleic Acids Research, 37(suppl 2):
W277-W280, 2009.

Han Shu, I. Lee Hetherington, and James Glass. Baum-Welch training for segment-based
speech recognition. In Proceedings of IEEE Workshop on Automatic Speech Recognition
and Understanding, pages 4348, St. Thomas, U. S. Virgin Islands, 2003.

Softberry, Inc. SSENVID: Protein secondary structure and environment assign-
ment from atomic coordinates. http://linuxl.softberry.com/berry.phtml?topic=
ssenvid&group=help&subgroup=propt, 2001. Accessed: 15.10.2011.

Volker Steinbiss, Herman Ney, Xavier L. Aubert, Stefan Besling, Christian Dugast, Ute Es-
sen, Daryl Geller, Reinhold Haeb-Umbach, Reinhard Kneser, Humberto G. Meier, Martin
Oerder, and B.-H. Tran. The Philips research system for continuous-speech recognition.
Philips Journal of Research, 49:317-352, 1995.

57

http://linux1.softberry.com/berry.phtml?topic=ssenvid&group=help&subgroup=propt
http://linux1.softberry.com/berry.phtml?topic=ssenvid&group=help&subgroup=propt

LEMBER AND KOLOYDENKO

Nikko Strom, I. Lee Hetherington, Timothy J. Hazen, Eric Sandness, and James Glass.
Acoustic modeling improvements in a segment-based speech recognizer. In Proceedings
of IEEE Workshop on Automatic Speech Recognition and Understanding, pages 139-142,
Keystone, Colorado, 1999.

The MathWorks, Inc. Statistics Toolbox™ User’s Guide. Natick, Massachusetts, R2012a
edition, 2012.

Andrew Viterbi. FError bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory, 13(2):260-269, 1967.

Stephan Vogel, Hermann Ney, and Christoph Tillmann. HMM-based word alignment in sta-
tistical translation. In Proceedings of the 16th Conference on Computational Linguistics,
volume 2, pages 836-841, Copenhagen, Denmark, 1996.

Gerhard Winkler. Image Analysis, Random Fields and Markov chain Monte Carlo Methods,
volume 27 of Applications of Mathematics (New York). Springer-Verlag, Berlin, second
edition, 2003.

Christopher Yau and Chris C. Holmes. A decision theoretic approach for segmental classi-
fication using Hidden Markov models. ArXiv e-prints, 2010. URL http://arxiv.org/
abs/1007.4532.

58

http://arxiv.org/abs/1007.4532
http://arxiv.org/abs/1007.4532

Journal of Machine Learning Research 15 (2014) 59-98 Submitted 3/12; Revised 5/13; Published 1/14

Fast SVM Training Using Approximate Extreme Points

Manu Nandan MNANDAN@UFL.EDU
Department of Computer and Information Science and Engineering

University of Florida

Gainesville, FL 32611, USA

Pramod P. Khargonekar PPK@QECE.UFL.EDU
Department of Electrical and Computer Engineering

University of Florida

Gainesville, FL 32611, USA

Sachin S. Talathi TALATHIQGMAIL.COM
Qualcomm Research Center

5775 Morehouse Dr

San Diego, CA 92121, USA

Editor: Sathiya Keerthi

Abstract

Applications of non-linear kernel support vector machines (SVMs) to large data sets is
seriously hampered by its excessive training time. We propose a modification, called the
approximate extreme points support vector machine (AESVM), that is aimed at overcoming
this burden. Our approach relies on conducting the SVM optimization over a carefully
selected subset, called the representative set, of the training data set. We present analytical
results that indicate the similarity of AESVM and SVM solutions. A linear time algorithm
based on convex hulls and extreme points is used to compute the representative set in
kernel space. Extensive computational experiments on nine data sets compared AESVM
to LIBSVM (Chang and Lin, 2011), CVM (Tsang et al., 2005) , BVM (Tsang et al.,
2007), LASVM (Bordes et al., 2005), SVMP®! (Joachims and Yu, 2009), and the random
features method (Rahimi and Recht, 2007). Our AESVM implementation was found to
train much faster than the other methods, while its classification accuracy was similar
to that of LIBSVM in all cases. In particular, for a seizure detection data set, AESVM
training was almost 500 times faster than LIBSVM and LASVM and 20 times faster than
CVM and BVM. Additionally, AESVM also gave competitively fast classification times.

Keywords: support vector machines, convex hulls, large scale classification, non-linear
kernels, extreme points

1. Introduction

Several real world applications require solutions of classification problems on large data sets.
Even though SVMs are known to give excellent classification results, their application to
problems with large data sets is impeded by the burdensome training time requirements.
Recently, much progress has been made in the design of fast training algorithms (Fan et al.,
2008; Shalev-Shwartz et al., 2011) for SVMs with the linear kernel (linear SVMs). However,
many applications require SVMs with non-linear kernels for accurate classification. Training

(©2014 Manu Nandan, Pramod P. Khargonekar and Sachin S. Talathi.

NANDAN, KHARGONEKAR AND TALATHI

time complexity for SVMs with non-linear kernels is typically quadratic in the size of the
training data set (Shalev-Shwartz and Srebro, 2008). The difficulty of the long training
time is exacerbated when grid search with cross-validation is used to derive the optimal
hyper-parameters, since this requires multiple SVM training runs. Another problem that
sometimes restricts the applicability of SVMs is the long classification time. The time
complexity of SVM classification is linear in the number of support vectors and in some
applications the number of support vectors is found to be very large (Guo et al., 2005).

In this paper, we propose a new approach for fast SVM training. Consider a two class
data set of N data vectors, X = {x; : x; € RP i=1,2,.., N}, and the corresponding target
labels Y = {y; : y; € [-1,1],:=1,2,..., N}. The SVM primal problem can be represented
as the following unconstrained optimization problem (Teo et al., 2010; Shalev-Shwartz et al.,
2011):

N
. 1 2 ¢

where [(w, b, (x;)) = maz{0,1 — y;(w ¢(x;) +b)},Vx; € X
and ¢ : RP — H,b e R, and w € H, a Hilbert space.

Here I(w, b, ¢(x;)) is the hinge loss of x;. Note that SVM formulations where the penalty
parameter C is divided by N have been used extensively (Scholkopf et al., 2000; Franc and
Sonnenburg, 2008; Joachims and Yu, 2009). These formulations enable better analysis of
the scaling of C' with N (Joachims, 2006). The problem in (1) requires optimization over
N variables. In general, for SVM training algorithms, the training time will reduce if the
size of the training data set is reduced.

In this paper, we present an alternative to (1), called approximate extreme points support
vector machines (AESVM), that requires optimization over only a subset of the training data
set. The AESVM formulation is:

M
. 1 5, C
mip Fa(w.0) =]+ Db 00) @)
where x; € X*,w € H, and b € R.

Here M is the number of vectors in the selected subset of X, called the representative set
X*. The constants [3; are defined in (9). We will prove in Section 3.2 that:

o Fi(wi,by) — Fa(ws, b3) < CvCe, where (w7, b]) and (w3, b3) are the solutions of (1)
and (2) respectively.

e Under the assumptions given in corollary 4, Fy(w3,b3) — Fi(w?,bt) < 2CV/Ce.

e The AESVM problem minimizes an upper bound of a low rank Gram matrix approx-
imation of the SVM objective function.

Based on these results we claim that solving the problem in (2) yields a solution close
to that of (1) for a small value of ¢, the approximation error bound. As a by-product of the

60

FasT SVM TRAINING USING APPROXIMATE EXTREME POINTS

reduction in size of the training set, AESVM is also observed to result in fast classification.
Considering that the representative set will have to be computed several times if grid search
is used to find the optimum hyper-parameter combination, we also propose fast algorithms
to compute Z*. In particular, we present an algorithm of time complexity O(N) and
an alternative algorithm of time complexity O(N log, %) to compute Z*, where P is a
predefined large integer.

Our main contribution is the new AESVM formulation that can be used for fast SVM
training. We develop and analyze our technique along the following lines:

e Theoretical: Theorems 1 and 2 and Corollaries 3 to 5 provide some theoretical basis
for the use of AESVM as a computationally less demanding alternative to the SVM
formulation.

o Algorithmic: The algorithm DeriveRS, described in Section 4, computes the represen-
tative set in linear time.

e Fxperimental: Our extensive experiments on nine data sets of varying characteristics
illustrate the suitability of applying AESVM to classification on large data sets.

This paper is organized as follows: in Section 2, we briefly discuss recent research on
fast SVM training that is closely related to this work. Next, we provide the definition of
the representative set and discuss properties of AESVM. In Section 4, we present efficient
algorithms to compute the representative set and analyze its computational complexity.
Section 5 describes the results of our computational experiments. We compared AESVM
to the widely used LIBSVM library, core vector machines (CVM), ball vector machines
(BVM), LASVM, SVMP® and the random features method by Rahimi and Recht (2007).
Our experiments used eight publicly available data sets and a data set on EEG from an
animal model of epilepsy (Talathi et al., 2008; Nandan et al., 2010). We conclude with a
discussion of the results of this paper in Section 6.

2. Related Work

Several methods have been proposed to efficiently solve the SVM optimization problem.
SVMs require special algorithms, as standard optimization algorithms such as interior point
methods (Boyd and Vandenberghe, 2004; Shalev-Shwartz et al., 2011) have large memory
and training time requirements that make it infeasible for large data sets. In the following
sections we discuss the most widely used strategies to solve the SVM optimization problem.
We present a comparison of some of these methods to AESVM in Section 6. SVM solvers
can be broadly divided into two categories as described below.

2.1 Dual Optimization

The SVM primal problem is a convex optimization problem with strong duality (Boyd and
Vandenberghe, 2004). Hence its solution can be arrived at by solving its dual formulation

61

NANDAN, KHARGONEKAR AND TALATHI

given below:

N N N
1
max Li(a) = E o — 5 E g iy K (X, %5), (3)
i=1 i=14=1

N
. C
subject to 0 < o < N and 20‘”” =0.
1=

Here K(x;,%x;) = ¢(x:)T¢(x;), is the kernel product (Schélkopf and Smola, 2001) of the
data vectors x; and x;, and « is a vector of all variables ;. Solving the dual problem is
computationally simpler, especially for non-linear kernels and a majority of the SVM solvers
use dual optimization. Some of the major dual optimization algorithms are discussed below.

Decomposition methods (Osuna et al., 1997) have been widely used to solve (3). These
methods optimize over a subset of the training data set, called the ‘working set’, at each al-
gorithm iteration. SVM!" (Joachims, 1999) and SMO (Platt, 1999) are popular examples
of decomposition methods. Both these methods have a quadratic time complexity for linear
and non-linear SVM kernels (Shalev-Shwartz and Srebro, 2008). Heuristics such as shrink-
ing and caching (Joachims, 1999) enable fast convergence of decomposition methods and
reduce their memory requirements. LIBSVM (Chang and Lin, 2011) is a very popular im-
plementation of SMO. A dual coordinate descent (Hsieh et al., 2008) SVM solver computes
the optimal « value by modifying one variable «; per algorithm iteration. Dual coordinate
descent SVM solvers, such as LIBLINEAR (Fan et al., 2008), have been proposed primarily
for the linear kernel.

Approximations of the Gram matriz (Fine and Scheinberg, 2002; Drineas and Mahoney,
2005), have been proposed to increase training speed and reduce memory requirements of
SVM solvers. The Gram matrix is the Nx/N square matrix composed of the kernel products
K(x;,%5), Vx;,%x; € X. Training set selection methods attempt to reduce the SVM training
time by optimizing over a selected subset of the training set. Several distinct approaches
have been used to select the subset. Some methods use clustering based approaches (Pavlov
et al., 2000) to select the subsets. In Yu et al. (2003), hierarchical clustering is performed
to derive a data set that has more data vectors near the classification boundary than away
from it. Minimum enclosing ball clustering is used in Cervantes et al. (2008) to remove data
vectors that are unlikely to contribute to the SVM training. Random sampling of training
data is another approach followed by approximate SVM solvers. Lee and Mangasarian
(2001) proposed reduced support vector machines (RSVM), in which only a random subset
of the training data set is used. Bordes et al. (2005) proposed the LASVM algorithm that
uses active selection techniques to train SVMs on a subset of the training data set.

A core set (Clarkson, 2010) can be loosely defined as the subset of X for which the
solution of an optimization problem such as (3) has a solution similar to that for the entire
data set X. Tsang et al. (2005) proved that the L2-SVM is a reformulation of the minimum
enclosing ball problem for some kernels. They proposed core vector machine (CVM) that
approximately solves the L2-SVM formulation using core sets. A simplified version of CVM
called ball vector machine (BVM) was proposed in Tsang et al. (2007), where only an
enclosing ball is computed. Géartner and Jaggi (2009) proposed an algorithm to solve the
L1-SVM problem, by computing the shortest distance between two polytopes (Bennett and

62

FAsT SVM TRAINING USING APPROXIMATE EXTREME POINTS

Bredensteiner, 2000) using core sets. However, there are no published results on solving
L1-SVM with non-linear kernels using their algorithm.

Another method used to approximately solve the SVM problem is to map the data
vectors into a randomized feature space that is relatively low dimensional compared to the
kernel space H (Rahimi and Recht, 2007). Inner products of the projections of the data
vectors are approximations of their kernel product. This effectively reduces the non-linear
SVM problem into the simpler linear SVM problem, enabling the use of fast linear SVM
solvers. This method is referred as RfeatSVM in the following sections of this document.

2.2 Primal Optimization

In recent years, linear SVMs have found increased use in applications with high-dimensional
data sets. This has led to a surge in publications on efficient primal SVM solvers, which are
mostly used for linear SVMs. To overcome the difficulties caused by the non-differentiability
of the primal problem, the following methods are used.

Stochastic sub-gradient descent (Zhang, 2004) uses the sub-gradient computed at some
data vector x; to iteratively update w. Shalev-Shwartz et al. (2011) proposed a stochastic
sub-gradient descent SVM solver, Pegasos, that is reported to be among the fastest linear
SVM solvers. Cutting plane algorithms (Kelley, 1960) solve the primal problem by succes-
sively tightening a piecewise linear approximation. It was employed by Joachims (2006)
to solve linear SVMs with their implementation SVMP®f. This work was generalized in
Joachims and Yu (2009) to include non-linear SVMs by approximately estimating w with
arbitrary basis vectors using the fix-point iteration method (Scholkopf and Smola, 2001).
Teo et al. (2010) proposed a related method for linear SVMs, that corrected some stability
issues in the cutting plane methods.

3. Analysis of AESVM

As mentioned in the introduction, AESVM is an optimization problem on a subset of the
training data set called the representative set. In this section we first define the representa-
tive set. Then we present some properties of AESVM. These results are intended to provide
theoretical justifications for the use of AESVM as an approximation to the SVM problem

(1).

3.1 Definition of the Representative Set

The convex hull of a set X is the smallest convex set containing X (Rockafellar, 1996) and
can be obtained by taking all possible convex combinations of elements of X. Assuming X
is finite, the convex hull is a polygon. The extreme points of X, EP(X), are defined to be
the vertices of the convex polygon formed by the convex hull of X. Any vector x; in X can
be represented as a convex combination of vectors in EP(X):

X = Z i 4Xt, where 0 < m;; <1, and Z mig = 1.
xt€EP(X) xt€EEP(X)

We can see that functions of any data vector in X can be computed using only EP(X)
and the convex combination weights {m;+}. The design of AESVM is motivated by the

63

NANDAN, KHARGONEKAR AND TALATHI

intuition that the use of extreme points may provide computational efficiency. However,
extreme points are not useful in all cases, as for some kernels all data vectors are extreme
points in kernel space. For example, for the Gaussian kernel, K (x;,%;) = ¢(x;)Té(x;) = 1.
This implies that all the data vectors lie on the surface of the unit ball in the Gaussian kernel
space! and therefore are extreme points. Hence, we introduce the concept of approzimate
extreme points.

Consider the set of transformed data vectors:

7 = {Zi 1 Z; = ¢(Xi),VXZ‘ S X} (4)

Here, the explicit representation of vectors in kernel space is only for the ease of under-
standing and all the computations are performed using kernel products. Let V' be a positive
integer that is much smaller than NV and e be a small positive real number. For notational
simplicity, we assume N is divisible by V. Let Z; be subsets of Z for [= 1,2, . (V) such
that Z = LZJZI and Z; N Z,, = 0 for | # m, where m = 1,2, ..., (%) We require that the

subsets Z; satisfy |Z;| = V, VI and
Vzi,2z; € Z;, we have y; = y;, (5)

where |Z;| denotes the cardinality of Z;. Let Z;, be an arbitrary subset of Z;, Zy, C 7.
Next, for any z; € Z; we define:

f(zi,Zy,) = ml1f1||Zz > pigz?, (6)
ZtEZlq

st. 0 < <1, and Z pig = 1.
ZtGZlq

A subset Z} is said to be an € - approximate extreme points subset of Z; if:

max f(z;, Z]) <e.

z, €72
We will drop the prefix e for simplicity and refer to Z; as approximate extreme points subset.
Note that it is not unique. Intuitively, its cardinality will be related to computational savings
obtained using the approach proposed in this paper. We have chosen to not use approximate
extreme points subset of smallest cardinality to maintain flexibility.

It can be seen that p;; for z; € Z; are analogous to the convex combination weights

mit for x4 € EP(X). The representative set Z* of Z is the union of the sets of approximate
extreme points of its subsets Z;.

7z =

Z;.
=2

I Csl=

The representative set has properties that are similar to FP(X). Given any z; € Z, we
can find Z; such that z; € Z;. Let v;; = {pis for z; € Z] and z; € Z;, and 0 otherwise}.
Now using (6), we can write:

= Z %,tzt + T (7)

zi €L*

1. We define the square of the distance of x from origin in kernel space as K(x,x).

64

FasT SVM TRAINING USING APPROXIMATE EXTREME POINTS

Here 7; is a vector that accounts for the approximation error f(z;,Z;,) in (6). From (6) and
(7) we can conclude that:

|72 < eVz€Z (8)

Since € will be set to a very small positive constant, we can infer that 7; is a very small
vector. The weights 7, ; are used to define j; in (2) as:

N
Br = Z%‘,t- (9)
i=1

For ease of notation, we refer to the set X* := {x; : z; € Z*} as the representative
set of X in the remainder of this paper. For the sake of simplicity, we assume that all
Vit B, X, and X* are arranged so that X* is positioned as the first M vectors of X, where
M =|Z~|.

3.2 Properties of AESVM

Consider the following optimization problem.

N
1 9 C
in F: b) = = — >y 1 b, u; 1
n“llgl 3(W7) 2||WH +N; (W7 7ul)7 (O)
M
where u; = Z%’tzt,zt €Z*weH, and b e R.
t=1

We use the problem in (10) as an intermediary between (1) and (2). The intermediate
problem (10) has a direct relation to the AESVM problem, as given in the following theorem.
The properties of the max function given below are relevant to the following discussion:

max(0, A+ B) < max(0, A) + maz(0, B), (11)
max(0, A — B) > max(0, A) — maz(0, B), (12)
N N
Zmax(o, cGA) = maw(O,A)Zci, (13)
i=1 i=1

for A, B,c¢; € R and ¢; > 0.
Theorem 1 Let F5(w,b) and F>(w,b) be as defined in (10) and (2) respectively. Then,

Fs5(w,b) < Fyp(w,b) ,Yw € H and b € R.

65

NANDAN, KHARGONEKAR AND TALATHI

M
Proof Let Lo(w,b,X*) = NZZ(W b, zt)Z%t and L3(w,b, X*) = % l(w,b,u;), where
=1 i=1 i=1

=

M
u; = Y 7;+Z:. From the properties of 7;; in (6), and from (5) we get:
t=1

M
L3(w,b,X") = Zmaa: [{1 - yi(WTZ'YLtZt + b)}
t=1
C
= NZmaw [0, Z%‘,t {1 - yt(WTZt + b)}
i=1 t=1

Using properties (11) and (13) we get:

C N M
[’3(W7 ba X*) < NZZW’L(IZL’ [07 Vit {1 - yt(WTZt + b)}]

i=1t=1
O -
= szaﬂf [0, 1-— yt(wTZt + b)] Z’yivt
t=1 =1
— £2(W7 b7 X*)

Adding %HWHQ to both sides of the inequality above we get
FS(Wv b) < FQ(Wa b)

The following theorem gives a relationship between the SVM problem and the interme-
diate problem.
Theorem 2 Let Fy(w,b) and F3(w,b) be as defined in (1) and (10) respectively. Then,

o o
— sz‘m {0,y;w"' i} < Fi(w,b) — Fs(w,b) < NZmax {0, —yiw'ri},

Vw € H and b € R, where 1; € H is the vector defined in (7).

N
Proof Let £1(w,b,X) = % Zl(w b,z;), denote the average hinge loss that is minimized
in (1) and L3(w,b, X*) be as deﬁned in Theorem 1. Using (7) and (1) we get:

N
Li(w,b,X) Zmax {0,1 - yi(w zl—l—b)}
—Zmaaz {0 1 —yi(w Z% 1Z¢ + ;) + b)}
t=1

66

FasT SVM TRAINING USING APPROXIMATE EXTREME POINTS

From the properties of 7, in (6), and from (5) we get:

L1(w,b,X) Zmaaj {O Z%t (1 — ye(wlzs + b)) — yiw TZ}. (14)

11 t=1

Using (11) on (14), we get:

C N
+ N;max {0, —inTTi}

N M
C
£1 (W, b7 X) < szax [07 Z%‘,t {1 - yt(wTZt + b)}

i=1

= L3(w,b,X") Zmax {O — YW Tz}.
Using (12) on (14), we get:

o
— NZmax {0, yinTZ-}
i=1

o M
L1(w,b,X) > NZmax [0, Z%t {1—vye(whz +b)}

i=1 t=1

= L3(w,b,X") Zmam {O YiW TZ}.
From the two inequalities above we get,

L3(w,b, X¥) Zmax {0 YiW TZ} < Li(w,b,X)
=1

< L3(w,b, X") Zmax {0 — YW TZ}.
Adding %||w||2 to the inequality above we get

Fs5(w,b) — —Zmax {O YiW TZ} < Fi(w,b) < F3(w,b) + NZmax {0 —YiW TZ}.
=1 =1

Using the above theorems we derive the following corollaries. These results provide the
theoretical justification for AESVM.
Corollary 3 Let (w7i,b}) be the solution of (1) and (w3, b5) be the solution of (2). Then,

Fr(wh, b)) — Fy(wi,b3) < OVCe.

67

NANDAN, KHARGONEKAR AND TALATHI

Proof It is known that |[w}|| < v/C' (see Shalev-Shwartz et al., 2011, Theorem 1). Tt is
straight forward to see that the same result also applies to AESVM, ||w3| < v/C . Based
on (8) we know that [|7;|| < \/e. From Theorem 2 we get:

N
* * * * O
Fi(w3, b3) — F3(w3, b5) < szaﬂf{(% —YiW3 Tz} < *ZHWzH”TzH
i=1

IN

N
%Z\/Ce = CVCe.
=1

Since (w7j,b}) is the solution of (1), Fy(wf,b]) < Fi(w3,b%). Using this property and
Theorem 1 in the inequality above, we get:
Fy(wi,b7) — Fa(wy, by) < Fi(wi, b7) — F3(wj, b3)
< Fi(wy, by) — Fi(w3,b5) < CVC
|

Now we demonstrate some properties of AESVM using the dual problem formulations
of AESVM and the intermediate problem. The dual form of AESVM is given by:

max Lo(a Zat — *Zzatasyﬂ/szt Zg, (15)

t=1s=1
M

. . c .
subject to 0 < &y < N;%’t and ;atyt =0.

The dual form of the intermediate problem is given by:
N N

max Ls(a Zaz - *sziovéjyiyjuzrujy (16)

i=1j=1

N
. N C .
subject to 0 < @; < N and ;_laiyi =0.

Consider the mapping function h : RY — RM | defined as
N
h(&) = {ay:ap = 7ipchi}. (17)
i=1

It can be seen that the objective functions La(h(&)) and L3(&) are identical.

1
LQ(h(OU‘)) = Zdt - §Zzatasyt?/szt Zs
t=1 t=1s=1
N N N
N 1
Y- A0S gl
i=1 i=1j=1
= Ly(&)

68

FasT SVM TRAINING USING APPROXIMATE EXTREME POINTS

v

It is also straight forward to see that, for any feasible & of (16), h(&) is a feasible point of
(15) as it satisfies the constraints in (15). However, the converse is not always true. With
that clarification, we present the following corollary.

Corollary 4 Let (w7, b) be the solution of (1) and (w3, b%) be the solution of (2). Let éa be
the dual variable corresponding to (w3, b5). Let h(aa) be as defined in (17). If there exists
an &g such that h(de) = o and &y is a feasible point of (16), then,

FL (w3, b5) — Fr(wi, b)) < 2CVCe.

Proof Let (w3, b3) be the solution of (10) and &3 the solution of (16). We know that
Ls(ag) = Lo(ba) = F(w3,b%) and Ls(asz) = Fz(wj, b5). Since L3(diz) > La(ae), we get

Fy(wj, b3) > Fa(w3, b3).
But, from Theorem 1 we know F3(w3,b5) < F3(w3,b3) < Fo(ws,b5). Hence

F3(w3, b3) = F3(w3, by).
From the above result we get

Fy(ws, b3) — F3(wi, b7) < 0. (18)

From Theorem 2 we have the following inequalities:

N
C * * * * *
—szal’ {07 yz‘W1T7'z‘} < Fi(wi,by) — F3(wi,by), and (19)
i=1
Fy(w3,b5) — F5(w3,b3) < Zmaw {0 AL Tz}- (20)

Adding (19) and (20) we get:
o
Fy(w3,b5) — Fi(wi,b]) < R+ NZ [maz {0, —yiszTi} + maz {0, yiwaTi}] , (21
i=1
where R = F3(w3,b3) — F3(w?,b%). Using (18) and the properties ||w3|| < +/C and ||w?| <
VC in (21) we get
o
Fi(w3, b3) — Fi(wy, b)) < NZ [max {0, —y;w3" 7} + maz {0,y;wi" 7 }]

=1

C N
2 Mwslllzil + il
1=1

IN

IN

N
%22\/(16 =20V Ce.
=1

69

NANDAN, KHARGONEKAR AND TALATHI

Now we prove a relationship between AESVM and the Gram matrix approximation
methods mentioned in Section 2.1.
Corollary 5 Let Li(a), Ls(&), and Fa(w,b) be the objective functions of the SVM dual
(5), intermediate dual (16) and AESVM (2) respectively. Let z;, 7;, and w; be as defined
in (4), (1), and '10) respectively. Let G and G be the NxN matrices with Gij =yiy;zl z;
and GU = ylyju u; respectively. Then for any feasible &, o, w, and b:

o8

1. Rank of G = M, Li(a) = Y a; — 1aGaT, L3(a) = zo@- —1aGaT, and

=1

M N

Trace(G — C‘-) < Ne+ ZZZtTZ%,tTi.
t=1 =1

2. FQ(W,b) > Lg(d)

Proof Using G, the SVM dual objective function L;(«) can be represented as:

AN

= E a; — —aGal.
; 2
=1

Similarly, L3() can be represented using G as:

M .
Applying u; = Y712, Vz; € Z* to the definition of G, we get:
t=1

G =TAI".

Here A is the MxM matrix comprised of Ay = ytysthzS, vz, 25 € Z* and I is the NxM
matrix with the elements I';; = «;;. Hence the rank of G = M and intermediate dual
problem (16) is a low rank approximation of the SVM dual problem (3).

The Gram matrix approximation error can be quantified using (7) and (8) as:

N

M
Trace(G — G) = Z [Z z; — Z’Yz t7t) (Z%‘,szs)]
¥
Z Tz + 22% tZ; 7—1] < Ne+ QZzt Z% tTi-

By the principle of duality, we know that F3(w,b) > L3(&), Vw € H and b € R, where
& is any feasible point of (16). Using Theorem 1 on the inequality above, we get

Fy(w,b) > L3(a), Vw € H,b € R and feasible a.

70

FasT SVM TRAINING USING APPROXIMATE EXTREME POINTS

Thus the AESVM problem minimizes an upper bound Fy(w,b), of a rank M Gram matrix
approximation of Lj(«). []

Based on the theoretical results in this section, it is reasonable to suggest that for small
values of €, the solution of AESVM is close to the solution of SVM.

4. Computation of the Representative Set

In this section, we present algorithms to compute the representative set. The AESVM
formulation can be solved with any standard SVM solver such as SMO and hence we do
not discuss methods to solve it. As described in Section 3.1, we require an algorithm to
compute approximate extreme points in kernel space. Osuna and Castro (2002) proposed
an algorithm to derive extreme points of the convex hull of a data set in kernel space.
Their algorithm is computationally intensive, with a time complexity of O(N S(NV)), and
is unsuitable for large data sets as S(IV) typically has a super-linear dependence on N. The
function S(N) denotes the time complexity of a SVM solver (required by their algorithm),
to train on a data set of size N. We next propose two algorithms leveraging the work by
Osuna and Castro (2002) to compute the representative set in kernel space Z* with much
smaller time complexities.

We followed the divide and conquer approach to develop our algorithms. The data
set is first divided into subsets X4,¢ = 1,2,..,Q, where |X,| < P, Q@ > % and X =
{Xi,X3,..,Xg}. The parameter P is a predefined large integer. It is desired that each
subset X, contains data vectors that are more similar to each other than data vectors in
other subsets. Our notion of similarity of data vectors in a subset, is that the distances be-
tween data vectors within a subset is less than the distances between data vectors in distinct
subsets. Since performing such a segregation is computationally expensive, heuristics are
used to greatly simplify the process. Instead of computing the distance of all data vectors
from each other, only the distance from a few selected data vectors are used to segregate
the data in the methods FLS2 and SLS described below.

The first level of segregation is followed by another level of segregation. We can regard
the first level of segregation as coarse segregation and the second as fine segregation. Finally,
the approximate extreme points of the subsets obtained after segregation, are computed.
The two different algorithms to compute the representative set differ only in the first level
of segregation as described below.

4.1 First Level of Segregation

We propose the methods, FLS1 and FLS2 given below to perform a first level of segregation.
In the following description we use arrays A’ and A} of N elements. Each element of A’
(AL), & (0?) , contains the index in X of the last data vector of the subset to which x;
belongs. It is straight forward to replace this N element array with a smaller array of size
equal to the number of subsets. We use a N element array for ease of description. The set
X’ denotes any set of data vectors.

1. FLS1(X',P)

71

NANDAN, KHARGONEKAR AND TALATHI

For some applications, such as anomaly detection on sequential data, data vectors are
found to be homogeneous within intervals. For example, the atmospheric conditions typi-
cally do not change within a few minutes and hence weather data is homogeneous for a short
span. For such data sets it is enough to segregate the data vectors based on its position in
the training data set. The same method can also be used on very large data sets without
any homogeneity, in order to reduce computation time. The complexity of this method is
O(N'), where N’ = |X'| .

[X',A'] = FLS1(X/, P)

1. For outerIndex = 1 to ceiling(%)

2. For innerIndex = (outerIndex - 1)P to min((outerIndex)P,|X’|)
3. Set dinnerindex = min((outerIndex) P, |X'|)

2. FLS2(X',P)

When the data set is not homogeneous within intervals or it is not excessively large we
use the more sophisticated algorithm, FLS2, of time complexity O(N’ 10g2N%) given below.
In step 1 of FLS2, the distance d; in kernel space of all x; € X’ from x; is computed as
di = ||p(xi) — d(x;)||? = k(xi,%:) + k(xj,%;) — 2k(x;,%;). The algorithm FLS2(X', P), in
effect builds a binary search tree, with each node containing the data vector xj selected in
step 2 that partitions a subset of the data set into two. The size of the subsets successively
halve, on downward traversal from the root of the tree to the other nodes. When the size of
all the subsets at a level become < P the algorithm halts. The complexity of FLS2 can be
derived easily when the algorithm is considered as an incomplete binary search tree building
method. The last level of such a tree will have O(%l) nodes and consequently the height
of the tree is O(logz%). At each level of the tree the calls to the BFPRT algorithm (Blum
et al., 1973) and the rearrangement of the data vectors in steps 2 and 3 are of O(N’) time
complexity. Hence the overall time complexity of FLS2(X', P) is O(N’ logQ%/).

4.2 Second Level of Segregation

After the initial segregation, another method SLS(X', V, A’) is used to further segregate each
set X, into smaller subsets X, of maximum size V', X, = {X,,, Xy, ..., Xgz }, where V' is
predefined (V < P) and R = ceiling(@). The algorithm SLS(X',V, A’) is given below.
In step 2.b, x; is the data vector in X, that is farthest from the origin in the space of the
data vectors. For some kernels, such as the Gaussian kernel, all data vectors are equidistant
from the origin in kernel space. If the algorithm chooses a; in step 2.b based on distances in
such kernel spaces, the choice would be arbitrary and such a situation is avoided here. Each
iteration of the For loop in step 2 involves several runs of the BFPRT algorithm, with each
run followed by a rearrangement of X,. Specifically, the BFPRT algorithm is first run on P
data vectors, then on P —V data vectors, then on P — 2V data vectors and so on. The time
complexity of each iteration of the For loop including the BFPRT algorithm run and the
rearrangement of data vectors is: O(P+(P—V)+(P-2V)+..+V) = O(P72). The overall

72

FasT SVM TRAINING USING APPROXIMATE EXTREME POINTS

[X/,A'] = FLS2(X, P)

1. Compute distance d; in kernel space of all x; € X’ from the first vector x; in X’
2. Select x; such that there exists &2/‘ data vectors x; € X' with d; < dj, using the
linear time BFPRT algorithm
3. Using Xy, rearrange X’ as X' = {X!, X2}, where X! = {x; : d; < dj,x; € X'} and
X2 ={x;:%x; € X" and x; ¢ X!}
e 1uwXl<p
For i where x; € X!, set §; = index of last data vector in X'.
For i where x; € X2, set §; = index of last data vector in X?2.
.18 X > p
Run FLS2(X!, P) and FLS2(X2, P)

complexity of SLS(X',V, A’) considering the Q For loop iterations is O(%/PVQ) = O(N‘//P),
since Q) = O(N%).

[X’,A’Q] = SLS(X/, V, AY)
1. Initialize [=1

2. Forq=11to Q

Set a; = ¢(x¢), where x; € argmax ||x;]|?,x; € X,
i

)
)

(c) Compute distance d; in kernel space of all x; € X, from a;
)

Select xj, such that, there exists V' data vectors x; € X, with d; < d, using the
BFPRT algorithm

(e) Using xi, rearrange X, as X, = {X!, X2}, where X! = {x; : d; < di,x; € X}
and X2 = {x; : x; € X, and x; ¢ X!}
(f) For i where x; € X!, set §? = index of last data vector in X!, where §? is the i’
element of A,
(g) Remove X! from X,
(h) If X% >V
Set: | =141 and a; = x;,
Repeat steps 2.c to 2.h
(i) If|X?%| <V
For i where x; € X2, set 53 = index of last data vector in X2

73

NANDAN, KHARGONEKAR AND TALATHI

4.3 Computation of the Approximate Extreme Points

After computing the subsets X, , the algorithm DeriveAE is applied to each X, to compute
its approximate extreme points. The algorithm DeriveAE is described below. DeriveAE uses
three routines. SphereSet(X,,) returns all x; € X, that lie on the surface of the smallest
hypersphere in kernel space that contains X, . It computes the hypersphere as a hard
margin support vector data descriptor (SVDD) (Tax and Duin, 2004). SphereSort(Xy,)
returns data vectors x; € X, sorted in descending order of distance in the kernel space
from the center of the SVDD hypersphere. CheckPoint(x;, V) returns TRUE if x; is an
approximate extreme point of the set U in kernel space. The operator A\B indicates a
set operation that returns the set of the members of A excluding AN B. The matrix X7
contains the approximate extreme points of X, and ﬁTT is a |X;| sized vector.

(X, Bq] = DeriveAE(X,,)

L. Initialize: X7 = SphereSet(X,,) and ¥ = ()

2. Set ¢ = SphereSort(X,,\X7)

3. For each x; taken in order from (, call the routine CheckPoint(x;, X5 Uv)
If it returns FALSFE, then set ¥ = ¥ U x;

4. Initialize a matrix I' of size | X, [x|X} | with all elements set to 0

Set ppp = 1Vxy € X _, where p; ; is the element in the ith row and jth column
of T’

5. For each x; € X, and x; € X, , execute CheckPoint(x;, X7)
Set the " row of I' = Jz;, where T7; is the result of CheckPoint(x;, X5
6. For j =1 to |X] |

|XQT‘
Set /8‘17 Z /'Lk,j

CheckPoint(x;,) is computed by solving the following quadratic optimization problem:

14
mﬂin p(XZ, = ”QZ) Xz ZN@ t¢ Xt)
|2
st. x; € U,0 < iy <1 and Z,u,-’t =1,
t=1
||) [V] || ||
where [[¢(x;) = > pipd(xe) |7 = K (xe, %) + 32 D priphti, s K (Xe, X5) =23 pria K (x4, %) 1f the
=1 t=1s=1 =1

optimized value of p(x;, ¥) < €, CheckPoint(x;, ¥) returns TRUE and otherwise it returns
FALSE. It can be seen that the formulation of p(x;, V) is similar to (6). The value of 7;
computed by CheckPoint(z;, Vy), is used in step 5 of DeriveAE.

74

FasT SVM TRAINING USING APPROXIMATE EXTREME POINTS

Now we compute the time complexity of DeriveAE. We use the fact that the opti-
mization problem in CheckPoint(x;, W) is essentially the same as the dual optimization
problem of SVM given in (3). Since DeriveAE solves several SVM training problems in
steps 1,3, and 5, it is necessary to know the training time complexity of a SVM. As any
SVM solver method can be used, we denote the training time complexity of each step
of DeriveAE that solves an SVM problem as O(S(Ay,)). Here A, is the largest value
of Xj U W during the run of DeriveAE(X,,). This enables us to derive a generic ex-
pression for the complexity of DeriveAE, independent of the SVM solver method used.
Hence the time complexity of step 1 is O(S(A,)). The time complexity of steps 3 and
5 are O(V S(A,,.)) and O(A,. S(Ag,)) respectively. The time complexity of step 2 is
OV |¥y| + V log,V), where W = SphereSet(X,,). Hence the time complexity of De-
riveAE is O(V W]+ V log,V +V S(A4,,). Since |¥] is typically very small, we denote the
time complexity of DeriveAE by O(V log,V +V S(A4,,)). For SMO based implementations
of DeriveAE, such as the implementation we used for Section 5, typically S(A,,) = O(A2).

4.4 Combining All the Methods to Compute X*

To derive X*, it is required to first rearrange X, so that data vectors from each class
are grouped together as X = {X*,X~}. Here Xt = {x; : y; = 1,x; € X} and X~ =
{x; : yi = —1,x; € X}. Then the selected segregation methods are run on X* and
X~ separately. The algorithm DeriveRS given below, combines all the algorithms defined
earlier in this section with a few additional steps, to compute the representative set of
X. The complexity of DeriveRS? can easily be computed by summing the complexities of
its steps. The complexity of steps 1 and 6 is O(N). The complexity of step 2 is O(N) if
FLSI is run or O(N log, %) if FLS2 is run. In step 3, the O(%) method SLS is run.
In steps 4 and 5, DeriveAE is run on all the subsets X, giving a total complexity of

Q R
O(N logyV+ V3 > S(Ay)). Here we use the fact that the number of subsets X, is
g=1r=1

Q R
O(£). Thus the complexity of DeriveRS is O(N (& + log,V) + Vq;lrng (Ag,)) when FLS1

Q R
is used and O(N(logz% + 5 +1logoV)+ V> > S(Ay)) when FLS2 is used.
q=1r=1

5. Experiments

We focused our experiments on an SMO (Fan et al., 2005) based implementation of AESVM
and DeriveRS. We evaluated the classification performance of AESVM using the nine data
sets, described below. Next, we present an evaluation of the algorithm DeriveRS, followed
by an evaluation of AESVM.

2. We present DeriveRS as one algorithm in spite of its two variants that use FLS1 or FLS2, for simplicity
and to conserve space.

75

NANDAN, KHARGONEKAR AND TALATHI

[X*, Y*, 3] = DeriveRS(X,Y,P,V)

1.

2.

Set XT ={x;:x; € X,y; =1} and X~ = {x; : x; € X,y; = —1}

Run [X*,A*] = FLS(X*,P) and [X~,A~] = FLS(X",P), where FLS is FLS1 or
FLS2

. Run [X*,AJ] = SLS(XT,V,A") and [X~,A;] = SLS(X~,V,A7)

. Using A7, identify each subset X, of Xt and run [X} , 3,] = DeriveAE(X,,)

Set NT* = sum of number of data vectors in all X} derived from X+

. Using Ay, identify each subset X, of X~ and run [X} , 3, | = DeriveAE(X,,)

Sett N™* = sum of number of data vectors in all er derived from X~

. Combine in the same order, all X7 to obtain X* and all qu to obtain 3

+Set Y* = {yJZr cy; = 1fori =1,2,., N, andy; = —1fori =1+ NT* 2+
N+, N~ + Nt}

5.1 Data Sets

Nine data sets of varied size, dimensionality and density were used to evaluate DeriveRS
and our AESVM implementation. For data sets D2, D3 and D4, we performed five fold cross
validation. We did not perform five fold cross-validation on the other data sets, because
they have been widely used in their native form with a separate training and testing set.

D1 KDD’99 intrusion detection data set:*> This data set is available as a training set of

4898431 data vectors and a testing set of 311027 data vectors, with forty one features
(D = 41). As described in Tavallaee et al. (2009), a huge portion of this data set is
comprised of repeated data vectors. Experiments were conducted only on the distinct
data vectors. The number of distinct training set vectors was N = 1074974 and the
number of distinct testing set vectors was N = 77216. The training set density =
33%.

D2 Localization data for person activity:* This data set has been used in a study on agent-

based care for independent living (Kaluza et al., 2010). It has N = 164860 data vectors
of seven features. It is comprised of continuous recordings from sensors attached to
five people and can be used to predict the activity that was performed by each person
at the time of data collection. In our experiments we used this data set to validate
a binary problem of classifying the activities ‘lying’ and ‘lying down’ from the other
activities. Features 3 and 4, that gives the time information, were not used in our
experiments. Hence for this data set D = 5. The data set density = 96%.

3. D1 is available for download at http://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data.
4. D2 is available for download at http://archive.ics.uci.edu/ml/datasets/Localization+Data+for+
Person+Activity.

76

http://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data
http://archive.ics.uci.edu/ml/datasets/Localization+Data+for+Person+Activity
http://archive.ics.uci.edu/ml/datasets/Localization+Data+for+Person+Activity

D3

D4

D5

D6

D7

D8

FasT SVM TRAINING USING APPROXIMATE EXTREME POINTS

Seizure detection data set: This data set has N = 982863 data vectors, three features
(D = 3) and density = 100%. It is comprised of continuous EEG recordings from rats
induced with status epilepticus and is used to evaluate algorithms that classify seizure
events from seizure-free EEG. An important characteristic of this data set is that it
is highly unbalanced, the total number of data vectors corresponding to seizures is
minuscule compared to the remaining data. Details of the data set can be found in
Nandan et al. (2010), where it is used as data set A.

Forest cover type data set:> This data set has N = 581012 data vectors and fifty four
features (D = 54) and density = 22%. It is used to classify the forest cover of areas
of 30mx30m size into one of seven types. We followed the method used in Collobert
et al. (2002), where a classification of forest cover type 2 from the other cover types
was performed.

IJONN1 data set:% This data set was used in IJJCNN 2001 generalization ability chal-
lenge (Chang and Lin, 2001). The training set and testing set have 49990 (N = 49990)
and 91701 data vectors respectively. It has 22 features (D = 22) and training set den-
sity = 59%

Adult income data set:” This data set derived from the 1994 Census database, was used
to classify incomes over $50000 from those below it. The training set has N = 32561
with D = 123 and density = 11%, while the testing set has 16281 data vectors. The
data is pre-processed as described in Platt (1999).

Epsilon data set:® This is a data set that was used for 2008 Pascal large scale learning
challenge and in Yuan et al. (2011). It is comprised of 400000 data vectors that are
100% dense with D = 2000. Since this is too large for our experiments, we used the
first 10% of the training set” giving N = 40000. The testing set has 100000 data
vectors.

MNIST character recognition data set:'Y The widely used data set (Lecun et al., 1998)
of hand written characters has a training set of N = 60000, D = 780 and density =
19%. We performed the binary classification task of classifying the character ‘0’ from
the others. The testing set has 10000 data vectors.

5. D4 is available for download at http://archive.ics.uci.edu/ml/datasets/Covertype.

6. D5 is available for download at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.
html#ijcnnl.

7. D6 is available for download at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.
html#a9a.

8. D7 is available for download at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.
html#epsilon.

9. AESVM and the other SVM solvers are fully capable of training on this data set. However, the excessive
training time makes it impractical to train the solvers on the entire data set for this paper.

10. D8 is available for download at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

multiclass.html#mnist.

77

http://archive.ics.uci.edu/ml/datasets/Covertype
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#ijcnn1
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#ijcnn1
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#epsilon
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#epsilon
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#mnist
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#mnist

NANDAN, KHARGONEKAR AND TALATHI

D9 w8a data set:'* This artificial data set used in Platt (1999) was randomly generated
and has D = 300 features. The training set has N = 49749 with a density = 4% and
the testing set has 14951 data vectors.

5.2 Evaluation of DeriveRS

We began our experiments with an evaluation of the algorithm DeriveRS, described in
Section 4. The performance of the two methods FLS1 and FLS2 were compared first.
DeriveRS was run on D1, D2, D4 and D5 with the parameters P = 10%, V = 10, e = 1072,
and g = [274,273,272 ... 22], first with FLS1 and then FLS2. For D2, DeriveRS was run
on the entire data set for this particular experiment, instead of performing five fold cross-
validation. This was done because, D2 is a small data set and the difference between the
two first level segregation methods can be better observed when the data set is as large as
possible. The relatively small value of P = 10* was also chosen considering the small size
of D2 and D5. To evaluate the effectiveness of FLS1 and FLS2, we also ran DeriveRS with

FLS1 and FLS2 after randomly reordering each data set. The results are shown in Figure
1.

30 ' D1 20 D2
FLS1 P P
~-FLS2 15} 4
200 | K |
*-Random + FLS1
-e-Random + FLS2 P 10/ r
10} gl ’
,,,,,, * 5

120 140 160 5

=
S o
o
©
o
—
o
S
-
o
=)

Size of representative set (%)

D4
*
50! x 50!
g ' 0
0 40 60 80 100 4

Time taken (s)

Figure 1: Performance of variants of DeriveRS with g = [274,273,272 ... 22], for data sets
D1, D2, D4, and D5. The results of DeriveRS with FLS1 and FLS2, after ran-
domly reordering the data sets are shown as Random+FLS1 and Random+FLS2,
respectively

11. D9 is available for download at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.
html#w8a.

78

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#w8a
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#w8a

FasT SVM TRAINING USING APPROXIMATE EXTREME POINTS

For all data sets, FLS2 gave smaller representative sets than FLS1. For D1, DeriveRS
with FLS2 was significantly faster and gave much smaller results than FL.S1. For D2, D4
and D5, even though the representative sets derived by FLS1 and FLS2 are almost equal
in size, FLS1 took noticeably less time. The results of DeriveRS obtained after randomly
rearranging the data sets, indicate the utility of FLS2. For all the data sets, the results of
FLS2 after random reordering was seen to be significantly better than the results of FLS1
after random rearrangement. Hence we can infer that the good results obtained with FLS2
are not caused by any pre-existing order in the data sets. A sharp increase was observed in
representative set sizes and computation times for FLS1, when the data sets were randomly
rearranged.

Next we investigated the impact of changes in the values of the parameters P and
V on the performance of DeriveRS. All combinations of P = {10%,5x10%, 10%,2x10°} and
V = {10%,5x102,103,2x10%, 3x103} were used to compute the representative set of D1. The
computations were performed for € = 1072 and ¢ = 1. The method FLS2 was used for the
first level segregation in DeriveRS. The results are shown in Table 1. As expected for an

R
algorithm of time complexity O(N (logy % + & +1ogyV) +V f: >~ S(Ag,)), the computation
=1r=1
time was generally observed to increase for an increase in tﬁe value of V or P. It should be
noted that our implementation of DeriveRS was based on SMO and hence S(A4,,) = O(Agr).
In some cases the computation time decreased when P or V increased. This is caused by a

Q R
decrease in the value of O(Y_ > A2), which is inferred from the observed decrease of the
q=1r=1

Q R
size of the representative set M (M ~ > > A,). A sharp decrease in M was observed
q=1r=1
when V was increased. The impact of increasing P on the size of the representative set was
found to be less drastic. This observation indicates that DeriveAE selects fewer approximate

extreme points when V' is larger.

% x100% (Computation time in seconds)

P V=102 | V=5x10° | V=10° | V = 2x10° | V = 3x10°
107 | 7(27) 3(51) | 25(87) | 2.2(161) | 2.1(233)
5x107 | 6.9(66) | 2.9(59) | 2.4(92) | 2.1(166) 2(239)
10° | 7(121) | 2.9(69) | 2.3(98) | 2.1(169) | 1.9(248)
2x10° | 6.9(237) | 2.9(94) | 2.3(110) | 2(176) 1.9(250)

Table 1: The impact of varying P and V on the result of DeriveRS

As described in Section 5.3, we compared several SVM training algorithms with our
implementation of AESVM. We performed a grid search with all combinations of the SVM
hyper-parameters ¢’ = {274,273,...,26.27} and g = {27%,273,272, ..., 2,22}, The hyper-
parameter C’ is related to the hyper-parameter C as C' = % We represent the grid in
terms of C’ as it is used in several SVM solvers such as LIBSVM, LASVM, CVM and
BVM. Furthermore, the use of C’ enables the application of the same hyper-parameter grid

to all data sets. To train AESVM with all the hyper-parameter combinations in the grid,

79

NANDAN, KHARGONEKAR AND TALATHI

the representative set has to be computed using DeriveRS for all values of kernel hyper-
parameter g in the grid. This is because the kernel space varies when the value of g is
varied. For all the computations, the input parameters were set as P = 10° and V = 103.
The first level segregation in DeriveRS was performed using FLS2. Three values of the
tolerance parameter e were investigated, e = 1072,1072 or 1074,

The results of the computation for data sets D1 - D5, are shown in the Table 2. The
percentage of data vectors in the representative set was found to increase with increasing
values of g. This is intuitive, as when g increases the distance between the data vectors in
kernel space increases. With increased distances, more data vectors x; become approximate
extreme points. The increase in the number of approximate extreme points with g causes
the rising trend of computation time shown in Table 2. For a decrease in the value of e,
M increases. This is because, for smaller ¢ fewer x; would satisfy the condition: optimized
p(xi,) < € in CheckPoint(x;, ¥). This results in the selection of a larger number of
approximate extreme points in DeriveAE.

% x100% (Computation time in seconds)
€ Data g:2—14 ng% gzl g—f o =1 g = 21 g = 27
set
DI [0.9(139) 1(138) 1.3(140) [L.7(147) [.4(151) B3.3(157) [.6(163)
D2 [0.6(12) 0.7(13) 0.8(13) [L.2(13) |L.8(14) [2.8(15) W.7(17)
10-2[D3 [0.6(79) 0.6(30) 0.6(80) 0.6(79) 0.6(79) 0.6(79) 0.6(78)
D4 [1.3(55) [1.9(58) PB.1(61) Pp.1(68) B.5(78) [14.5(91) [25.2(111)
D5 B.6(7) 04(8) [17.7(10) P8.1(12) H2.1(14) [8(15) [71(15)
DI |L6(142) [2.2(149) B(160) H.2(168) [6(188) [8.5(208) [12.1(231)
D2 |1.3(13) [L.8(14) [2.6(16) B.8(19) p.7(23) B.8(29) [14.4(35)
103D3 [0.6(80) 0.6(79) 0.6(79) [0.6(79) _ 0.5(80) 0.5(80) 10.6(31)
D4 p.5(71) B.6(86) [I3(106) [19.9(136) [BL.1(172) H48.7(203) [71.3(204)
D5 |25.8(15) B36.4(19) 19.5(22) 63.5(23) [16.2(22) [6.1(21) 93.5(19)
DI [3.8(189) p.4(217) [7.7(253) [10.9(304) [15.2(358) 20.4(418) [26.8(479)
D2 BS(21) p.1(28) 6.9(d0) 9.6(52) [4.3(61) 22.8(79) [35.8(100)
10-4D3 [0.5(78) 0.5(79) [0.5(30) 0.6(81) [0.7(83) 0.9(86) |L.2(90)
D4 [19.4(175)27.1(249)38.1(333) 54.3(394.3) [75.5(387) 92.6(310) 98.8(244)
D5 [56.9(40) 69.1(43) [80.1(41) 88.6(38) [04.9(32) 198.3(26) [09.7(22)

Table 2: The percentage of the data vectors in X* (given by %XlOO) and its computation
time for data sets D1-D5

The results of applying DeriveRS to the high-dimensional data sets D6-D9 are shown in
Table 3. It was observed that % was much larger for D6-D9 than for the other data sets.
We computed the representative set with e = 1072 only, as for smaller values of € we expect
the representative set to be close to 100% of the training set. The increasing trend of the
size of the representative set with increasing g values can be observed in Table 3 also.

80

FasT SVM TRAINING USING APPROXIMATE EXTREME POINTS

2 x100% (Computation time in seconds)
Data [g=5 [|g=35 g= 8=3 [g=1 |[g=2" [g=2°
set
D6 [83.1(12) R3.1(12) R3.1(13) B3.1(12) B3.1(9) B2.7(9) B6(9)
D7 [97.2(317) [99.7(309) |100(325) [100(332) [100(360) [100(330) [100(280)
DS [100(97) [100(75) [100(62) [00(63) [100(67) [00(64) [100(64)
D9 [r2.2(21) [12.2(22) [12.2(21) [r2.7(17) [12.8(15) [74.4(14) [16.1(15)

Table 3: The percentage of data vectors in X* and its computation time for data sets D6-D9
with € = 1072

5.3 Comparison of AESVM to SVM Solvers

To judge the accuracy and efficiency of AESVM, its classification performance was compared
with the SMO implementation in LIBSVM, ver. 3.1. We chose LIBSVM because it is a state-
of-the-art SMO implementation that is routinely used in similar comparison studies. To
compare the efficiency of AESVM to other popular approximate SVM solvers we chose CVM,
BVM, LASVM, SVMPf and RfeatSVM. A description of these methods is given in Section
2. We chose these methods because they are widely cited, their software implementations
are freely available and other studies (Shalev-Shwartz et al., 2011) have reported fast SVM
training using some of these methods. LASVM is also an efficient method for online SVM
training. However, since we do not investigate online SVM learning in this paper, we did not
test the online SVM training performance of LASVM. We compared AESVM with CVM
and BVM even though they are L2-SVM solvers, as they has been reported to be faster
alternatives to SVM implementations such as LIBSVM.

The implementation of AESVM and DeriveRS were built upon the LIBSVM implemen-
tation. All methods except SVMP®! were allocated a cache of size 600 MB. The parameters
for DeriveRS were P = 10° and V = 103, and the first level segregation was performed
using FLS2. To reflect a typical SVM training scenario, we performed a grid search with
all eighty four combinations of the SVM hyper-parameters ¢’ = {274 273, ...,26 27} and
g = {274,273,272 . 21 22} As mentioned earlier, for data sets D2, D3 and D4, five
fold cross-validation was performed. The results of the comparison have been split into
sub-sections given below, due to the large number of SVM solvers and data sets used.

5.3.1 ComPARISON TO CVM, BVM, LASVM aAnD LIBSVM

First we present the results of the performance comparison for D2 in Figures 2 and 3.
For ease of representation, only the results of grid points corresponding to combinations of
C'={274,2721,22,24 26} and g = {27%,272,1,22} are shown in Figures 2 and 3. Figure
2 shows the graph between training time and classification accuracy for the five algorithms.
Figure 3 shows the graph between the number of support vectors and classification accuracy.
We present classification accuracy as the ratio of the number of correct classifications to the
total number of classifications performed. Since the classification time of an SVM algorithm
is directly proportional to the number of support vectors, we represent it in terms of the

81

NANDAN, KHARGONEKAR AND TALATHI

number of support vectors. It can be seen that, AESVM generally gave more accurate
results for a fraction of the training time of the other algorithms, and also resulted in less
classification time. The training time and classification times of AESVM increased when ¢
was reduced. This is expected given the inverse relation of M to € shown in Tables 2 and
3. The variation in accuracy with € is not very noticeable.

12-
10 *
+++ ++
< o o Q # o + ".i.+ +¢_'++
8 < < < 3 «%»41 4% , 20 X .
'.é; o o 8l °° ° Ens os®
- 6 *
(o)} ¥k ok *
c
4 'll}ﬁﬂ‘*
§ | ¢ AESVM,e= 107 a
S 2| © AESVM,e=10"° RN A
o -4 &% o o
®* AESVM, =10 * * *x ™ -
0 « CVM o o El.‘:'.
[] [)
o BVM oo o e
-27| + LASVM o
o LIBSVM °°
-4 0.4 0.5 0.6 0.7 0.8

Classification accuracy

Figure 2: Plot of training time against classification accuracy of the SVM algorithms on D2

Figures 2 and 3 indicate that AESVM gave better results than the other algorithms for
SVM training and classification on D2, in terms of standard metrics. To present a more
quantitative and easily interpretable comparison of the algorithms, we define the seven
performance metrics given below. These metrics combine the results of all runs of each
algorithm into a single value, for each data set. For the first five metrics, we take LIBSVM
as a baseline of comparison, as it gives the most accurate solution among the tested methods.
Furthermore, an important objective of these experiments is to show the similarity of the
results of AESVM and LIBSVM. In the description given below, F can refer to any SVM
algorithm such as AESVM, CVM, LASVM etc.

82

FasT SVM TRAINING USING APPROXIMATE EXTREME POINTS

12
v 11¢ 'L
5 4
8
A R T
8_ < Q@ o 410"41 b @, o 3 <® *
3o T S
5 * AESVM, € = 1072 o "o
| . g O
§ | ° AESVM,e=10" o e
£ * AESVM, e=10"" ° 8 ogg
Z || <CcvMm 0o’ %
S 7./ °© BVM °® ooaog

+ LASVM * ¢ em

o LIBSVM °e o4,

® 0.4 0.5 0.6 0.7 0.8

Classification accuracy

Figure 3: Plot of classification time, represented by the number of support vectors, against
classification accuracy of the SVM algorithms on D2

1. FExpected training time speedup, ET'S: The expected speedup in training time is indi-

cated by:
R S

1 TLT
ETS = ﬁzz T

r=1s=1

Here TL” and TF" are the training times of LIBSVM and F respectively, in the s
cross-validation fold with the 7" set of hyper-parameters of grid search.

2. Owerall training time speedup, OT'S: It indicates overall training time speedup for
the entire grid search with cross-validation, including the time taken to compute the
representative set. The total time taken by DeriveRS to compute the representative
set for all values of g is represented as TX*. For methods other than AESVM and
RfeatSVM2 (see Section 5.3.3), TX* = 0.

R
> 2. TL;
r=1

s=1

NANDAN, KHARGONEKAR AND TALATHI

. Expected classification time speedup, ECS: The expected speedup in classification
time is indicated by:

1 A NL!
ECS = EZZ N
r=1s=1

Here NL and NI are the number of support vectors in the solution of LIBSVM and
F respectively.
. Classification time speedup for optimal hyper-parameters, C'I'S: The speedup in classi-
fication time for the optimal hyper-parameters (hyper-parameters that result in max-
imum classification accuracy) chosen by grid search is indicated by:

S
max y NL
CTS = 8;51
max » NF7

Tos=1

. Root mean squared error of classification accuracy, RMSE: The similarity of the
solution of F to LIBSVM, in terms of its classification accuracy, is indicated by:

— r 7\ 2
RMSE = (RSZZ(CLS — CF")) :

r=1s=1
Here CL} and CF7, are the classification accuracy of LIBSVM and F respectively.

. Mazimum classification accuracy: It gives the best classification results of an SVM
solver, for the set of SVM hyper-parameters that are tested.

1 S

max. acc. = max—, g CF;.
r S -
S=

. Mean and standard deviation of classification accuracies: It indicates the classification
performance of an SVM solver, that can be expected for arbitrary hyper-parameter
values.

| RS LB (15 2
mean acc. = ﬁZZCFZ, and std. acc. = EZ (S;CF’; — mean acc.) .

r=1s=1 r=1 S

The results of the classification performance comparison on data sets D1-D5, are shown

in Table 4. It was observed that for all tested values of ¢, AESVM resulted in large reductions
in training and classification times when compared to LIBSVM for a very small difference
in classification accuracy. Most notably, for D3 the expected and overall training time
speedups were 41728.8 and 488.5 respectively, which is outstanding. Comparing the results
of AESVM for different e values, we see that RM S FE generally improves by decreasing when
€ decreases, while the metrics improve by increasing when € increases. The increase in ET'S
and OT'S is of a larger order than the increase in RM SE when € increases.

84

FasT SVM TRAINING USING APPROXIMATE EXTREME POINTS

Data Solver ETS OTS |ECS |CTS |RMSE | max. acc. | mean & std.
set (x10%) | (x10%) acc. (x10?)
AESVM1[1188.9 |156 5.8 3.3 0.22 94.2 92.4, 0.8
AESVM2 | 314.8 50.4 |[3.8 2.6 0.14 93.6 92.3, 0.7
AESVM3 | 72.7 14.7 |24 1.8 0.06 93.8 92.4, 0.8
D1 CVM 8.9 6.2 1.2 2.3 0.44 94.1 92.7, 0.8
BVM 28.6 21.6 2 1.9 0.6 94.4 92.6, 0.9
LASVM [0.8 0.8 1.1 1 0.12 94.3 92.5, 0.8
LIBSVM 93.9 92.4, 0.8
AESVM1 |6067.6 |134.5 |77.7 |17.8 |3.85 76.5 71.1, 3.3
AESVM2 | 1202.5 86.1 29 9.4 2.43 76.7 72.4, 3.6
AESVM3 | 164.5 21.8 10.9 [6.2 1.73 77.4 73.1, 3.6
D2 CVM 0.7 0.5 4.7 4.3 26.59 70.3 52.2, 0.8
BVM 0.8 0.5 5 5.6 24.06 67.1 54.6, 0.7
LASVM 0.2 0.1 1 1 2.18 78.1 73.5, 0.5
LIBSVM 78.2 74.1, 3.5
AESVM1 |[41728.8 |{488.5 |71.5 |64.4 |0.2 99.9 99.8, 0.1
AESVM2 |21689.3 |468 39.5 |51.5 |0.1 99.9 99.8, 0.1
AESVM3 [12792 429.9 |17.1 |36 0.09 99.9 99.8, 0.1
D3 CVM 60.4 23.9 0.4 0.1 0.33 99.9 99.8, 0.2
BVM 76.8 22.8 (0.6 0.2 0.39 99.9 99.8, 0.2
LASVM 0.9 0.5 0.6 0.7 55.2 99.9 69.3, 29.9
LIBSVM 99.9 99.8, 0.1
AESVM1 | 962 34.6 (24.5 |72.8 |1.5 68.3 61.6, 3.1
AESVM2 | 68.8 6.1 6.3 17.1 0.7 68.1 61, 3.3
AESVM3|6.7 2.3 2.3 5 0.3 68.1 60.8, 3.2
D4 CVM 8 6.2 12.4 |28 94 63.7 55.5, 3.1
BVM 6.6 4.4 12.1 |8.9 9.44 62.3 54.9, 3.4
LASVM |- - - - - - -
LIBSVM 68.2 60.6, 3.2
AESVMI1 | 26.6 4.1 3.3 1.6 0.5 98.8 96.2, 2.6
AESVM2 | 3.1 1.8 1.5 0.9 0.39 98.9 96.3, 2.6
AESVM3|1.3 1.1 1.1 0.9 0.25 99 96.4, 2.6
D5 CVM 0.3 0.2 0.8 0.6 0.74 99 96.6, 2.5
BVM 0.5 0.3 1 0.9 0.84 99.1 97, 2
LASVM 0.6 0.5 1 1.1 0.13 99.2 97, 2
LIBSVM 99 96.6, 2.4

Table 4: Performance comparison of AESVM, CVM, BVM, LASVM and LIBSVM on data
sets D1-D5. AESVM1, AESVM2 and AESVMS3 represent the results of AESVM
with e = 1072,1073, and 10~* respectively.

85

NANDAN, KHARGONEKAR AND TALATHI

Comparing AESVM to CVM, BVM and LASVM, we see that AESVM in general gave
the least values of RMSFE and the largest values of ET'S, OTS, ECS and CTS. In a
few cases LASVM gave low RM SFE values. However, in all our experiments LASVM took
longer to train than the other algorithms including LIBSVM. We could not complete the
evaluation of LASVM for D4 due to its large training time, which was more than 40 hours
for some hyper-parameter combinations. The five algorithms under comparison were found
to give similar maximum classification accuracies for D1, D3 and D5. For D2 and D4, CVM
and BVM gave significantly smaller maximum classification accuracies. Another interesting
result is that for D3, the mean and standard deviation of classification accuracy of LASVM
was found to be widely different from the other algorithms. For all the tested values of
€ the maximum, mean and standard deviation of the classification accuracies of AESVM
were found to be similar.

Next we present the results of performance comparison of CVM, BVM, LASVM, AESVM,
and LIBSVM on the high-dimensional data sets D6-D9. As described in Section 5.2, De-
riveRS was run with only € = 1072 for these data sets. The results of the performance
comparison are shown in Table 5. CVM was found to take longer than 40 hours to train
on D6, D7 and D8 with some hyper-parameter values and hence we could not complete its
evaluation for those data sets. BVM also took longer than 40 hours to train on D7 and it
was also not evaluated for D7. AESVM consistently reported ETS, OT'S, ECS and CTS
values that are larger than 1 unlike the other algorithms, except for D9 where the CTS
value for AESVM was 0.6. However it should be noted that the other methods also had sim-
ilarly low C'TS values for D9. Similar to the results in Table 4, LASVM and BVM resulted
in very large RMSE values for some data sets. The maximum classification accuracies of
all algorithms were similar. On some data sets, BVM and LASVM were observed to give
significantly lower mean and higher standard deviation of classification accuracy.

5.3.2 COMPARISON TO SVMPerf

SVMPef differs from the other SVM solvers in its ability to compute a solution close to
the SVM solution for a given number of support vectors (k). The algorithm complexity
depends on k as O(k?) per iteration. We first used a value of k& = 1000 for our experiments,
as it has been reported to give good performance (Joachims and Yu, 2009). SVMP® was
tested on data sets D1, D4, D5, D6, DS and D9, with the Gaussian kernel'? and the same
hyper-parameter grid as described earlier. The results of the grid search are presented in
Table 6. The results of our experiments on AESVM (with ¢ = 1072) and LIBSVM are
repeated in Table 6 for ease of reference. The maximum, mean and standard deviation of
classification accuracies are represented as max. acc., mean & std. acc. respectively.
Based on the results obtained for k = 1000, other values of k were also tested. For data
sets D1, D4 and D5, though SVMP®™ gave classification accuracies similar to the that of
LIBSVM and AESVM, the training times were similar to or higher than the training times of
LIBSVM. To test the ability of SVMPf to give fast training, we also tested it with k = 400
for D1, D4 and D5. For the high dimensional data sets (D6, D8 and D9), the RM SE values
were significantly higher for SVMP®™, while the mean classification accuracy was noticeably
lower than AESVM. Considering the possibility that the value of £ = 1000 is insufficient to

12. We used the software parameters ‘-t 2 -w 9 -1 2 —b 0’ as suggested in the author’s website.

86

FasT SVM TRAINING USING APPROXIMATE EXTREME POINTS

Data Solver ETS |OTS |ECS |CTS | RMSE | max. acc. | mean & std.

set (x10%) | (x10?) acc. (x10?)
AESVM [1.5 1.4 1.1 1.2 0 85.1 81.4, 2.8
CVM - - - - - -

D6 BVM 0.6 0.6 1.5 1.2 |78 85.2 80.2, 8.9
LASVM (0.8 0.5 1 1.1 0.85 85 81.1, 2.9
LIBSVM 85.1 81.4, 2.8
AESVM |1 1 1 1.1 |0.01 88.3 85.3, 5.7
CVM - - - - - - -

D7 BVM - - - - - - -
LASVM (0.9 0.7 1 0.9 2.37 88.4 85.2, 6.2
LIBSVM 88.6 85.7, 4.8
AESVM |1 1 1 1 0 99.7 92.3, 3.6
CVM - - - - - - -

D8 BVM 4.7 |2.6 [3.2 |3.1 |17.55 99.7 88.5, 18.1
LASVM |1 0.9 1 1 0 99.7 92.3, 3.6
LIBSVM 99.7 92.3, 3.6
AESVM (1.4 1.3 1.1 0.6 |0 99.5 98.8, 0.8
CVM 14 1.2 1.8 0.3 1 99.5 98.9, 0.8

D9 BVM 17.5 |16.9 (4.9 [0.6 |0.09 99.5 98.9, 0.8
LASVM [0.6 0.5 2.3 0.1 27.5 99.5 85.5, 23.9
LIBSVM 99.5 98.8, 0.8

Table 5: Performance comparison of AESVM (with ¢ = 1072), CVM, BVM, LASVM and
LIBSVM on data sets D6-D9

result in an accurate solution for these data sets, we tested D6 and D9 with k£ = 2000 and
D8 with k£ = 3000. Even though the training time increased significantly with an increase in
k, the values of RM SE and the mean and standard deviation of accuracies did not improve
significantly. The training time speedup values of SVMP® are much lower than AESVM
for all tested k values for all data sets, except for D8. The maximum accuracies of all the
algorithms were similar. Due to the ability of SVMP® to approximate w with a small set of
k vectors, the classification time speedups of SVMP®! are significantly higher than AESVM.
However, this approximation comes at the cost of increased training time and sometimes
results in a loss of accuracy, as illustrated in Table 6.

5.3.3 COMPARISON TO RfeatSVM

Rahimi and Recht (2007) proposed a promising method to approximate non-linear kernel
SVM solutions using simpler linear kernel SVMs. This is accomplished by first projecting
the training data set into a randomized feature space and then using any SVM solver with
the linear kernel on the projected data set. We first investigated the classification accuracy
of the solution of RfeatSVM and its similarity to the SVM solution. LIBSVM with the

87

NANDAN, KHARGONEKAR AND TALATHI

Data Solver ETS oTS |ECS |CTS |RMSE |max. acc. | mean & std.
set (x10%) | (x10%) acc. (x10?)

AESVM [1188.9 [156 [5.8 3.3 0.22 [94.2 92.4, 0.8

SVMPeT 6.7 1.6 |17 6.6 [0.89 93.9 92.7, 0.4
D1

k = 400

SvmpPet 3.7 09 [26 2.6 0.74 94 92.7, 0.5

k = 1000

LIBSVM 93.9 92.4, 0.8

AESVM [962 34.6 (245 [728 [1.5 68.3 61.6, 3.1

SVMPeT 110.2 3.7 [467.1 [694.3 [3.7 68.4 62.9, 2.2
D4

k = 400

SVMPeT 3.1 1.2 [186.8 |277.7 [2.14 68.1 61.8, 2.7

k = 1000

LIBSVM 68.2 60.6, 3.2

AESVM [26.6 [4.1 [3.3 1.6 0.5 98.8 96.2, 2.6
D5 SVMPeT 0.8 04 [14.6 [8.2 |29 98.8 96.5, 2.4

k = 400

SVMPeT 0.2 0.1 [5.8 3.3 0.26 |99 96.7, 2.4

k = 1000

LIBSVM 99 96.6, 2.4

AESVM [1.5 1.4 [1.1 1.2 0 85.1 81.4, 2.8
D6 SVMPeT 1.1 0.9 |20 12.1 [9.39 85.2 79.6, 10.7

k = 1000

SVMPeT 0.3 0.2 |10 6 6.5 85.1 80.1, 7.8

= 2000

LIBSVM 85.1 81.4, 2.8

AESVM |1 1 1 1 0 99.7 92.3, 3.6
DS SvMPeT [37.6 [23.8 [49 9.9 [54.2 99.9 55.7, 42.3

k = 1000

SVMPeT |35 1.2 [16.3 |33 51.4 99.8 59.2, 41.6

k = 3000

LIBSVM 99.7 92.3, 3.6

AESVM [1.4 1.3 [1.1 0.6 0 99.5 98.8, 0.8
DY SVMPeT [1.2 09 [21.3 |3 22.6 99.2 86.1, 18.8

k =1000

SVMPT [0.4 03 [10.7 |15 20.6 99.4 87.3,17.3

k =2000

LIBSVM 99.5 98.8, 0.8

Table 6: Performance comparison of SVMP®f AESVM (with € = 1072), and LIBSVM

linear kernel was used to compute the RfeatSVM solution on the projected data sets. This
combination of RfeatSVM and LIBSVM is denoted as RfeatSVM1. We used LIBSVM,

88

FasT SVM TRAINING USING APPROXIMATE EXTREME POINTS

in spite of the availability of faster linear SVM implementations, as it is an exact SVM
solver. Hence only the performance metrics related to accuracy were used to compare the
performance of AESVM, LIBSVM and RfeatSVM1. The random Fourier features method,
described in Algorithm 1 of Rahimi and Recht (2007), was used to project the data sets
D1, D5, D6 and D9 into a randomized feature space of dimension E.

Data [Solver RMSFE |max. acc. |mean & std.
set (x10%) | (x10?%) acc. (x10%)

AESVM 0.25 93.5 92.2,0.9
D1 RfeatSVMI1| 56.18 37.8 36.1,1.3

E = 100

LIBSVM 93.6 92.3,0.9

AESVM 0.9 98.6 95.7,2.8
D5 RfeatSVM1| 5.3 94.7 91.6,1.4

E = 100

LIBSVM 98.9 96.2 ,2.7

AESVM |[0.16 85.1 81.2.2.9
D6 RfeatSVM1| 4 81.6 78,2.2

E = 1000

LIBSVM 85 81.3,3

AESVM 0.15 99.3 98.6,0.8
D9 RfeatSVM1] 0.6 98.7 97.4,0.6

E = 1000

LIBSVM 99.5 98.8,0.9

Table 7: Performance comparison of RfeatSVM1 (RfeatSVM solved using LIBSVM),
AESVM (with € = 1072), and LIBSVM

The results of the accuracy comparison are given in Table 7. We used a smaller hyper-
parameter grid of all twenty four combinations of C' = {274,272/1,22 2% 26} and g =
{274,272,1,22} for our experiments. The results reported in Table 7 for AESVM and
LIBSVM were computed for this smaller grid. We selected the number of dimensions (E)
of the randomized feature space for D1 and D6 based on Rahimi and Recht (2007). The
maximum accuracy for RfeatSVM1 was found to be much less than AESVM and LIBSVM
for all data sets. The RMSFE values for RfeatSVM1 were significantly higher than AESVM
and mean accuracy noticeably lower for most data sets, especially for D1 and D6.

Next we investigated the training and classification time requirements of RfeatSVM by
solving it using the fast linear SVM solver LIBLINEAR (Fan et al., 2008), referred to as
RfeatSVM2 in the remainder of this paper. The entire hyper-parameter grid used in the
previous sections were used in this experiment. The results of the performance comparison
of RfeatSVM2, AESVM and LIBSVM are presented in Table 8. The classification time
shown in Table 8 is the time taken for classification when the SVM solver was trained with

89

NANDAN, KHARGONEKAR AND TALATHI

Data [Solver ETS |OTS |Classification| RMSE | max. acc. | mean & std.
set time (s) (x10%) | (x10?) acc. (x10?%)

AESVM 1188.9| 156 6.1 0.22 94.2 92.4,0.8

RfeatSVM2 | 176.3 | 56.4 0.9 50.3 63.5 43.7,12.9
D1

E = 100

RfeatSVM2 | 77.5 47.7 |44 43.4 89.3 56,24.1

E = 500

LIBSVM 15 93.9 92.4,0.8

AESVM 26.6 4.1 9.7 0.5 98.8 96.2,2.6

RfeatSVM2 | 80.7 |9.2 0.9 38.6 90.5 64.4,20
D5 E = 100

RfeatSVM?2 | 33.2 6.5 4.5 30.9 90.5 70.8,15.5

E = 500

RfeatSVM?2 | 18.4 3.6 13.8 31.5 90.5 70.2,17.8

E = 1000

RfeatSVM?2 | 3.9 0.85 64.5 33.8 90.5 70.2,19.8

E = 5000

LIBSVM 16.8 99 96.6 ,2.4

AESVM 1.5 14 16 0 85.1 81.4,2.8

RfeatSVM2 | 205.7 |43.9 |2.1 27.8 75.3 54.9,9.7
D6 E = 1000

RfeatSVM?2 | 48.8 8.9 10.7 29.1 76.4 53.1,8.1

E = 5000

RfeatSVM?2 | 24.8 5.1 30.9 28.5 76.4 54,9.2

E = 10000

LIBSVM 30.5 85.1 81.4,2.8

AESVM 1.4 1.3 10.5 0 99.5 98.8,0.8

RfeatSVM?2 | 245.1 | 50 2.9 36.9 92.8 63.3,9.9
D9 E = 1000

RfeatSVM?2 | 57.4 12 15.3 39 95.1 61.5,11.2

E = 5000

RfeatSVM2 | 28.9 6.5 45.5 37.4 96.3 63.8,12.9

E = 10000

LIBSVM 5.1 99.5 98.8,0.8

Table 8: Performance comparison of RfeatSVM2 (RfeatSVM solved using LIBLINEAR),
AESVM (with € = 1072), and LIBSVM

its optimal hyper-parameters. For RfeatSVM2 the classification time includes the time
taken to derive the random Fourier features of the test vectors.

The classification time for RfeatSVM2 was generally less than AESVM, for small val-
ues of E. Moreover, it was found that RfeatSVM2 has significantly higher training time

90

FasT SVM TRAINING USING APPROXIMATE EXTREME POINTS

speed-ups than AESVM for small values of E, except for D1 where AESVM was much
faster. However, with increasing E the classification time and training time increased to
more than AESVM for most data sets. For all data sets, the RMSFE, and maximum, mean
and standard deviation of accuracy of RfeatSVM2 were significantly worse than AESVM.
Increasing the number of dimensions E, resulted in only a slight improvement in the clas-
sification performance of RfeatSVM2. An important observation was that the projected
data sets were found to be almost 100% dense, which results in large memory requirements
for RfeatSVM1 and RfeatSVM2. Even though, technically the value of E can be increased
arbitrarily, its value is practically limited by the memory requirements of RfeatSVM.

5.4 Performance with the Polynomial Kernel

To validate our proposal of AESVM as a fast alternative to SVM for all non-linear kernels,
we performed a few experiments with the polynomial kernel, k(x1,x2) = (1 + x7x2)?. The
hyper-parameter grid composed of all twelve combinations of C’ = {27%,272,1,22} and
d = {2,3,4} was used to compute the solutions of AESVM and LIBSVM on the data sets
D1, D4 and D6. The results of the computation of the representative set using DeriveRS
are shown in Table 9. The parameters for DeriveRS were P = 10°, V = 10° and ¢ = 1072,
and the first level segregation was performed using FL.S2. The performance comparison of
AESVM and LIBSVM with the polynomial kernel is shown in Table 10. Like in the case
of the Gaussian kernel, we found that AESVM gave results similar to LIBSVM with the
polynomial kernel, while taking shorter training and classification times.

% x100% (Computation time in seconds)
Data d=2 d=3 d=14
set
D1 8(109) | 13.2(199) | 26(638)
D4 20.1(67) | 48(260.1) | 81.3(1166.4)
D6 87.8(11) |84(12.5) |91(13.7)

Table 9: Results of DeriveRS for the polynomial kernel

6. Discussion

AESVM is a new problem formulation that is almost identical to, but less complex than, the
SVM primal problem. AESVM optimizes over only a subset of the training data set called
the representative set, and consequently, is expected to give fast convergence with most
SVM solvers. In contrast, the other studies mentioned in Section 2 are mostly algorithms
that solve the SVM primal or related problems. Methods such as RSVM also use different
problem formulations. However, they require special algorithms to solve, unlike AESVM.
In fact, AESVM can be solved using many of the methods in Section 2. As described in
Corollary 5, there are some similarities between AESVM and the Gram matrix approxi-
mation methods discussed earlier. It would be interesting to see a comparison of AESVM,
with the core set based method proposed by Gértner and Jaggi (2009). However, due to the

91

NANDAN, KHARGONEKAR AND TALATHI

Data |Solver ETS |OTS |ECS |CTS |RMSE |max. acc. |mean & std.

set (x102) (x10?) acc. (x10?)

D1 AESVM (21.1 |64 2.7 2.6 0.13 93.9 93.4, 0.4
LIBSVM 94.1 93.5, 0.4

D4 AESVM |7 1.6 2.6 1.9 0.8 64.9 61.2, 2.7
LIBSVM 64.5 60.7, 2.5

D6 AESVM | 3.8 5.3 1.1 1.1 0.04 84.6 81,24
LIBSVM 84.6 81, 2.3

Table 10: Performance comparison of AESVM (with ¢ = 1072), and LIBSVM with the
polynomial kernel

) O ()
¢ @
80" 8
o % .\
»
> 60 *
§ 8 S] o
=
(&)
o -2
< 40- ® AESVM, =10
§ O <4 CVM
= o BVM
+ LASVM
20r o gymPert
O RfeatSVM1
0 | | * LIBSVM | | | |
DI D2 D3 D4 D5 D6 D7 D8 D9

Datasets

Figure 4: Plot of mean classification accuracy of all SVM solvers

lack of availability of a software implementation and of published results on L1-SVM with
non-linear kernels using their approach, the authors find such a comparison study beyond
the scope of this paper.

The theoretical and experimental results presented in this paper demonstrate that the
solutions of AESVM and SVM are similar in terms of the resulting classification accuracy.
A summary of the experiments in Section 5, that compared an SMO based AESVM im-
plementation, CVM, BVM, LASVM, LIBSVM, SVMP*! (with k = 1000) and RfeatSVMI,
is presented in Figures 4 to 7. The results of RfeatSVM2 are omitted from Figures 4 to
7, for ease of representation. It can be seen that AESVM typically gave classification per-

92

FasT SVM TRAINING USING APPROXIMATE EXTREME POINTS

100+ @ & ® f
. (|
907 ‘
No ‘
% 80 -
> F
©
5 70 4
I 4
E e ® AESVM, £ = 1072
E <4 CVM
% o BVM
= 50 + LASVM
¢ gvmPerf
a0l O RfeatSVM1
F | | | | | * LIBSVM
DI D2 D3 D4 D5 D6 D7 D8 D9

Datasets

Figure 5: Plot of maximum classification accuracy of all SVM solvers

formance similar to LIBSVM, while giving highest overall training time speedup (OT'S).
Even though RfeatSVM2 gave higher OT'S values in some cases, the degradation in clas-
sification accuracy was worse than in RfeatSVM1 as shown in Tables 7 and 8. AESVM
also gave competitively high classification time speedup for the optimal hyper-parameters
(CTS) in comparison with the other algorithms except S VMPf and RfeatSVM2. Tt was
found that the maximum classification accuracies of all the algorithms except RfeatSVM1
and RfeatSVM2 were similar. RfeatSVM1 and RfeatSVMZ2, and in some cases CVM and
BVM, gave lower maximum classification accuracies. Apart from the excellent experimen-
tal results for AESVM with the Gaussian kernel, AESVM also gave good results with the
polynomial kernel as described in Section 5.4.

The algorithm DeriveRS was generally found to be efficient, especially for the lower
dimensional data sets D1-D5. For the high dimensional data sets D6-D9, the representative
set was almost the same size as the training data set, resulting in small gains in training and
classification time speedups for AESVM. In particular, for D7 and D8 the representative set
computed by DeriveRS was almost 100% of the training set. A similar result was reported
for this data set in Beygelzimer et al. (2006), where a divide and conquer method was used
to speed up nearest neighbor search. Data set D8 is reported to have resulted in nearly
no speedup, compared to a speedup of almost one thousand for other data sets when their
method was used. Their analysis found that the data vectors in D8 were very distant
from each other in comparison with the other data sets.!> This observation can explain
the performance of DeriveRS on D8, as data vectors that are very distant from each other

13. This is indicated by the large expansion constant for D8 illustrated in Beygelzimer et al. (2006).

93

NANDAN, KHARGONEKAR AND TALATHI

180~ ®
TOTS value of AESVM for D3 is 488.5

160 o
Q.
3 140~
g,- ()
@ 120 ® AESVM, £ = 102
£ ,€=10
i= 100" < CVM
ga o BVM
£ 80 + LASVM
£ ¢ symPert
F 60
©
2 40
o

o < o

N
o
T
(o]

o3 ¢ + 8§ & o o 8

@
D1 D2 D3 D4 D5 D6 D7 D8 D9
Datasets

Figure 6: Plot of overall training time speedup (compared to LIBSVM) of all SVM solvers

are expected to have large representative sets. It should be noted that irrespective of the
dimensionality of the data sets, AESVM always resulted in excellent performance in terms
of classification accuracy. There seems to be no relation between data set density and the
performance of DeriveRS and AESVM.

The authors will provide the software implementation of AESVM and DeriveRS upon
request. Based on the presented results, we suggest the parameters e = 1072, P = 10°
and V = 10 for DeriveRS. A possible extension of this paper is to apply the idea of
the representative set to other SVM variants and support vector clustering. It would be
interesting to investigate AESVM solvers implemented using methods other than SMO.
Modifications to DeriveRS using the methods in Section 2 might improve its performance
on high dimensional data sets. The authors will investigate improvements to DeriveRS and
the application of AESVM to the linear kernel in their future work.

Acknowledgments

Dr. Khargonekar acknowledges support from the Eckis professor endowment at the Uni-
versity of Florida. Dr. Talathi was partially supported by the Children’s Miracle Network,
and the Wilder Center of Excellence in Epilepsy Research. The authors acknowledge Mr.
Shivakeshavan R. Giridharan, for providing assistance with computational resources.

94

FasT SVM TRAINING USING APPROXIMATE EXTREME POINTS

801 o« CTS value of SVMP®" for D4 is 277.7
[}

70-
g— ®
360
(1)
Q.
9 50 ® AESVM, &= 1072
£ <4 CVM
a0 o BVM
S + LASVM
g3 . > sy
:§
@20
C_) [)

10- o 0 o

q
o ¥ 4 4 . & e e 8
DI D2 D3 D4 D5 D6 D7 D8 D9
Datasets

Figure 7: Plot of classification time speedup for optimal hyper-parameters (compared to
LIBSVM) of all SVM solvers

References

K. P. Bennett and E. J. Bredensteiner. Duality and geometry in SVM classifiers. In
Proceedings of the Seventeenth International Conference on Machine Learning, pages 57—
64, 2000.

A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In Proceedings
of the 23rd International Conference on Machine Learning, pages 97-104, 2006.

M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for selection.
Journal of Computer and System Sciences, 7:448-461, August 1973.

A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with online and
active learning. Journal of Machine Learning Research, 6:1579-1619, December 2005.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

J. Cervantes, X. Li, W. Yu, and K. Li. Support vector machine classification for large data
sets via minimum enclosing ball clustering. Neurocomputing, 71:611-619, January 2008.

C. C. Chang and C. J. Lin. IJCNN 2001 challenge: Generalization ability and text decoding.
In Proceedings of International Joint Conference on Neural Networks, volume 2, pages
1031 -1036, 2001.

95

NANDAN, KHARGONEKAR AND TALATHI

C.C Chang and C.J Lin. LIBSVM: A library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology, 2:1-27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

K. L. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm.
ACM Transaction on Algorithms, 6(4):63:1-63:30, September 2010.

R. Collobert, S. Bengio, and Y. Bengio. A parallel mixture of SVMs for very large scale
problems. Neural Computing, 14(5):1105-1114, 2002.

P. Drineas and M. W. Mahoney. On the Nystrom method for approximating a gram matrix
for improved kernel-based learning. Journal of Machine Learning Research, 6:2153-2175,
December 2005.

R. E. Fan, P. H. Chen, and C. J. Lin. Working set selection using second order information
for training support vector machines. Journal of Machine Learning Research, 6:1889—
1918, 2005.

R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin. LIBLINEAR: A library
for large linear classification. Journal of Machine Learning Research, 9:1871-1874, June
2008.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations.
Journal of Machine Learning Research, 2:243-264, 2002.

V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for support vector ma-
chines. In Proceedings of the 25th International Conference on Machine Learning, pages
320-327, 2008.

B. Gértner and M. Jaggi. Coresets for polytope distance. In Proceedings of the 25th Annual
Symposium on Computational Geometry, pages 33—42, 2009.

J. Guo, N. Takahashi, and T. Nishi. A learning algorithm for improving the classification
speed of support vector machines. In Proceedings of the 2005 European Conference on
Circuit Theory and Design, volume 3, pages 381 — 384, 2005.

C. J. Hsieh, K. W. Chang, C. J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate
descent method for large-scale linear SVM. In Proceedings of the 25th International
Conference on Machine Learning, pages 408-415, 2008.

T. Joachims. Making large-scale support vector machine learning practical. In Advances in
Kernel Methods, pages 169-184. MIT Press, 1999.

T. Joachims. Training linear SVMs in linear time. In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 217-226.
ACM, 2006.

T. Joachims and C. N. J. Yu. Sparse kernel SVMs via cutting-plane training. Machine
Learning, 76:179-193, September 2009.

96

http://www.csie.ntu.edu.tw/~cjlin/libsvm

FasT SVM TRAINING USING APPROXIMATE EXTREME POINTS

B. Kaluza, V. Mirchevska, E. Dovgan, M. Lustrek, and M. Gams. An agent-based approach
to care in independent living. In Ambient Intelligence, pages 177-186. Springer, 2010.

J. Kelley. The cutting-plane method for solving convex programs. Journal of the Society
for Industrial and Applied Mathematics, 8(4):703-712, 1960.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278 —2324, 1998.

Y. J. Lee and O. L. Mangasarian. Rsvm: Reduced support vector machines. In Pro-
ceedings of the First SIAM International Conference on Data Mining, pages 5-7. STAM
Philadelphia, 2001.

M. Nandan, S. S. Talathi, S. Myers, W. L. Ditto, P. P. Khargonekar, and P. R. Carney.
Support vector machines for seizure detection in an animal model of chronic epilepsy.
Journal of Neural Engineering, 7(3), 2010.

E. Osuna and O. Castro. Convex hull in feature space for support vector machines. In Pro-
ceedings of the 8th Ibero-American Conference on Al: Advances in Artificial Intelligence,
pages 411-419, 2002.

E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application to
face detection. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 130 —136, 1997.

D. Pavlov, D. Chudova, and P. Smyth. Towards scalable support vector machines us-
ing squashing. In Proceedings of the Sizth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 295-299. ACM, 2000.

J. C. Platt. Fast training of support vector machines using sequential minimal optimization.
In Advances in Kernel Methods, pages 185-208. MIT Press, 1999.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. Advances in
Neural Information Processing Systems, pages 1177-1184, 2007.

R. T. Rockafellar. Convexr Analysis. Princeton University Press, 1996.

B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regular-
ization, Optimization, and Beyond. MIT Press, 2001.

B. Scholkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector
algorithms. Neural Computation, 12(5):1207-1245, 2000.

S. Shalev-Shwartz and N. Srebro. SVM optimization: Inverse dependence on training set
size. In Proceedings of the 25th International Conference on Machine Learning, pages
928-935, 2008.

S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal estimated sub-
gradient solver for SVM. Mathematical Programming, 127:3-30, March 2011.

97

NANDAN, KHARGONEKAR AND TALATHI

S. S. Talathi, D. U. Hwang, M. L. Spano, J. Simonotto, M. D. Furman, S. M. Myers, J. T.
Winters, W. L. Ditto, and P. R. Carney. Non-parametric early seizure detection in an
animal model of temporal lobe epilepsy. Journal of Neural Engineering, 5:85-98, 2008.

M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. A detailed analysis of the KDD CUP
99 data set. In Proceedings of the 2009 IEEE Symposium Computational Intelligence for
Security and Defense Applications, pages 53—58, 2009.

D. Tax and R. Duin. Support vector data description. Machine Learning, 54(1):45-66,
2004.

C. H. Teo, S. V. N. Vishwanthan, A. J. Smola, and Q. V. Le. Bundle methods for regularized
risk minimization. Journal of Machine Learning Research, 11:311-365, 2010.

I. W. Tsang, J. T. Kwok, P. Cheung, and N. Cristianini. Core vector machines: Fast SVM
training on very large data sets. Journal of Machine Learning Research, 6:363-392, 2005.

I. W. Tsang, A. Kocsor, and J. T. Kwok. Simpler core vector machines with enclosing
balls. In Proceedings of the 2th International Conference on Machine Learning, pages
911-918, 2007.

H. Yu, J. Yang, and J. Han. Classifying large data sets using SVMs with hierarchical clus-
ters. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 306-315, 2003.

G. X. Yuan, C. H. Ho, and C. J. Lin. An improved GLMNET for 11-regularized logis-
tic regression. In Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 33-41, 2011.

T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the 21st International Conference on Machine Learning,
pages 919-926, 2004.

98

Journal of Machine Learning Research 15 (2014) 99-140

Submitted 3/13; Revised 11/13; Published 1/14

Detecting Click Fraud in Online Advertising;:
A Data Mining Approach

Richard Oentaryo

Ee-Peng Lim

Michael Finegold

David Lo

Feida Zhu

Living Analytics Research Centre
Singapore Management University
80 Stamford Road, Singapore

Clifton Phua
SAS Institute Pte. Litd.
20 Anson Road, Singapore

Eng-Yeow Cheu
Ghim-Eng Yap

Kelvin Sim

Minh Nhut Nguyen

Data Analytics Department
Institute for Infocomm Research
1 Fusionopolis Way, Singapore

Kasun Perera
Bijay Neupane
Mustafa Faisal
Zeyar Aung
Wei Lee Woon

Masdar Institute of Science and Technology

Abu Dhabi, United Arab Emirates

Wei Chen

Urban Systems Programme Office
Institute for Infocomm Research
1 Fusionopolis Way, Singapore

Dhaval Patel

ROENTARYO@SMU.EDU.SG
EPLIMQSMU.EDU.SG
MFINEGOLQSMU.EDU.SG
DAVIDLOQ@SMU.EDU.SG
FDZHUQSMU.EDU.SG

CLIFTON.PHUA@SAS.COM

EYCHEUQI2R.A-STAR.EDU.SG
GEYAP@QI2R.A-STAR.EDU.SG
SHSIM@QI2R.A-STAR.EDU.SG
MNNGUYENQ@I2R.A-STAR.EDU.SG

BPERERAQ@MASDAR.AC.AE
BNEUPANEQMASDAR.AC.AE
MFAISAL@QMASDAR.AC.AE
ZAUNGQMASDAR.AC.AE
WWOONQMASDAR.AC.AE

CHENWEIQI2R.A-STAR.EDU.SG

PATELFECQIITR.ERNET.IN

Department of Computer Science and Engineering
Indian Institute of Technology Roorkee
Century Road, Roorkee, Uttarakhand, India

Daniel Berrar BERRAR.D.AAQM.TITECH.AC.JP
Interdisciplinary Graduate School of Science and Engineering

Tokyo Institute of Technology

4259 Nagatsuta, Midori-ku, Yokohama, Japan

Abstract

Click fraud-the deliberate clicking on advertisements with no real interest on the product
or service offered—is one of the most daunting problems in online advertising. Building
an effective fraud detection method is thus pivotal for online advertising businesses. We

(©2014 Richard Oentaryo, Ee-Peng Lim, Michael Finegold, David Lo, Feida Zhu, Clifton Phua, Eng-Yeow Cheu, Ghim-
Eng Yap, Kelvin Sim, Minh Nhut Nguyen, Kasun Perera, Bijay Neupane, Mustafa Faisal, Zeyar Aung, Wei
Lee Woon, Wei Chen, Dhaval Patel and Daniel Berrar

OENTARYO, LiM, FINEGOLD ET AL.

organized a Fraud Detection in Mobile Advertising (FDMA) 2012 Competition, opening
the opportunity for participants to work on real-world fraud data from BuzzCity Pte.
Ltd., a global mobile advertising company based in Singapore. In particular, the task
is to identify fraudulent publishers who generate illegitimate clicks, and distinguish them
from normal publishers. The competition was held from September 1 to September 30,
2012, attracting 127 teams from more than 15 countries. The mobile advertising data
are unique and complex, involving heterogeneous information, noisy patterns with miss-
ing values, and highly imbalanced class distribution. The competition results provide a
comprehensive study on the usability of data mining-based fraud detection approaches in
practical setting. Our principal findings are that features derived from fine-grained time-
series analysis are crucial for accurate fraud detection, and that ensemble methods offer
promising solutions to highly-imbalanced nonlinear classification tasks with mixed vari-
able types and noisy/missing patterns. The competition data remain available for further
studies at http://palanteer.sis.smu.edu.sg/fdma2012/.

Keywords: ensemble learning, feature engineering, fraud detection, imbalanced classifi-
cation

1. Introduction

Advances in data management and web technologies have rendered online advertising as the
ideal choice for small and large businesses to effectively target the appropriate marketing
segments on the fly. The main coordinator in this setting is the advertising commissioner
(also known as ad network), acting as a broker between advertisers and content publish-
ers. An advertiser plans a budget, provides the commissioner with advertisements, and
agrees on a commission for every customer action (e.g., clicking an ad, filling a form, bid-
ding in an auction, etc). A content publisher contracts with the commissioner to display
advertisements on their websites, and gets commissions based on the traffic it drives to
the advertisers. This model, however, may incentivise dishonest publishers to generate il-
legitimate clicks on their sites—a major issue known as click fraud. Click fraud degrades
the reliability of online advertising systems and, if not kept under control, can lead to a
contraction of the advertising market in the long term. There have also been high-profile,
costly litigations from unsatisfied advertisers, giving bad reputation for the commissioners.
Thus, a reliable click fraud detection system is needed to help the commissioners proactively
prevent click fraud and assure their advertisers that their dollars have been well spent.

To this end, we organized a Fraud Detection in Mobile Advertising (FDMA) 2012 Com-
petition, centered around real-world mobile advertising data. The goal is to develop and
crowdsource data mining and machine learning methods capable of building effective pre-
dictive models to detect fraudulent publishers. The competition offers a unique opportunity
to work on click and publisher data sets provided by BuzzCity Pte. Ltd., a global mobile
advertising network that has millions of consumers around the world (particularly in India,
Indonesia and Africa) accessing internet contents and interacting on mobile phones and
devices. Most publishers in the BuzzCity network adopt the cost per click (CPC) payment
scheme, which is subject to abuses by malicious publishers through click fraud. In Q1
2012, over 45 billion ad banners were delivered across the BuzzCity network, having over
10,000 publisher sites and reaching an average of 300 million unique users per month. A
fast and robust detection of the most predictive variables for fraudulent behavior is thus
of great importance. Currently, BuzzCity uses an in-house developed detection mechanism

100

http://palanteer.sis.smu.edu.sg/fdma2012/

DETECTING CLICK FRAUD IN ONLINE ADVERTISING: A DATA MINING APPROACH

to identify fraudulent publishers semi-automatically. The use of data mining and machine
learning methods will provide more detailed insights for improving the detection accuracy,
while reducing the efforts for manual interventions.

Accordingly, the FDMA 2012 Competition aims at providing an empirical platform to
gauge the state-of-the-art data mining and machine learning methods in a setting typical
of industrial applications. We summarize the key contributions of this paper below:

e We present an important application of machine learning and data mining methods
to tackle real-world fraud detection problems, which serves as valuable resources for
industrial and research practitioners. Thus far, there is a lack of comprehensive study
on data mining/machine learning approaches for fraud detection in advertising.

e Our study involves proprietary, industrial data, which are rarely available and pose
a challenging problem for many data mining and machine learning algorithms. The
solutions presented in this paper address some important issues in data mining and
machine learning research, including highly imbalanced distribution of the output
variable, heterogeneous data (mixture of numerical and categorical variables), and
noisy patterns with missing/unknown values.

e We show that exploratory data analysis and feature engineering are crucial milestones
for effective fraud detection. In particular, we present systematic analysis of both
spatial and temporal factors at different levels of granularity, which leads to creation
of good, predictive features for accurate fraud detection.

e We investigate the applicability of a wide range of single and ensemble learning al-
gorithms in fraud detection task. We found that the ensemble algorithms produce
significant improvement over the single algorithms. Also, coupling ensemble learning
with feature ranking analysis leads to discovery of the most important features for
distinguishing between fraudulent and normal behaviors.

e To the best of our knowledge, FDMA 2012 is also the first open international com-
petition and crowdsourcing initiative on fraud detection in online advertising. The
results not only provide useful research insights, but also illustrate how companies
(such as BuzzCity) can use data mining and machine learning methods to obtain
useful, actionable knowledge for improving their business operations.

In this paper, we report the selected, winning entries of the FDMA 2012 Competition,
which provide important insights on click fraud behavior. In Section 2, we give an overview
of the competition data, challenges, and evaluation procedures. Table 1 summarizes the
profiles of the winning teams and contributors of this paper, and Sections 3 to 6 elaborate
in turn their “journeys” and key findings. We next describe the work independently done
by the competition organizer in Section 7. Finally, Section 8 provides concluding remarks.

2. Competition

In this section, we first describe the data set, the task objective, as well as the evaluation
criterion adopted in the competition. We also briefly describe the online website and public
leaderboard systems we built to support the competition.

101

OENTARYO, LiM, FINEGOLD ET AL.

Rank Team name Members Contribution
1 starrystarrynight e Clifton Phua Section 3
e Eng-Yeow Cheu
e Ghim-Eng Yap
e Kelvin Sim
e Minh-Nhut Nguyen
2 TeamMasdar e Kasun Perera Section 4
e Bijay Neupane
e Mustafa A. Faisal
e Zeyar Aung
e Wei Lee Woon

3 DB2 e Wei Chen Section 5
e Dhaval Patel L
4 Tea e Daniel Berrar Section 6

Table 1: Winning teams in the FDMA 2012 Competition.

2.1 Data

The raw data supplied by BuzzCity consist of two categories: publisher database and click
database, both provided in comma-separated values (CSV) format. The publisher database
records the publisher/partners profile, and consists of several fields as listed in Table 2.
On the other hand, the click database captures the click traffic associated with various
publishers. Table 3 lists the fields in the click database. Table 4 provides a sample of the
two largest publishers of each status in the training set, a Fraud and an OK publisher, and
Table 5 lists three click samples from each publisher. There is another Observation status,
comprising small number of new publishers, or publishers who have high click traffic and
not yet deemed as fraudulent. Note that some fields in the publisher and click databases
have been anonymized for privacy protection.

Field Description

publisherid Unique identifier of a publisher

bankaccount Bank account associated with a publisher (anonymized; may be missing/unknown)
address Mailing address of a publisher (anonymized; may be missing/unknown)

status Label of a publisher, which falls into three categories:

e 0OK: Publishers whom BuzzCity deems as having healthy traffic (or those who
slipped their detection mechanisms)

e Observation: Publishers who may have just started their traffic or their traf-
fic statistics deviates from system wide average. BuzzCity does not have any
conclusive stand with these publishers yet

e Fraud: Publishers who are deemed as fraudulent with clear proof. BuzzCity
suspends their accounts and their earnings will not be paid

Table 2: Fields in the publisher database.

2.2 Challenge

The FDMA 2012 competition aims at building a data-driven methodology for effective
detection of fraudulent publishers. In particular, each participant is tasked to highlight
potential Fraud publishers and distinguish them from 0K and Observation (or collectively

102

DETECTING CLICK FRAUD IN ONLINE ADVERTISING: A DATA MINING APPROACH

Field Description

id Unique identifier of a particular click

numericip Public IP address of a clicker/visitor

deviceua Phone model/agent used by a clicker /visitor

publisherid Unique identifier of a publisher

campaignid Unique identifier of a given advertisement campaign

usercountry Country from which the clicker/visitor is

clicktime Timestamp of a given click (in yyyy-mm-dd format)

referredurl URL where ad banners are clicked (anonymized; may be missing/unknown)
channel Publisher’s channel type, which consists of:

ad: Adult sites

co: Community

es: Entertainment and lifestyle
gd: Glamour and dating

in: Information

mc: Mobile content

pp: Premium portal

se: Search, portal, services

Table 3: Fields in the click database.

publisherid bankaccount address status
8iaxj 14vxbyt6sao00s84 Fraud
8jljr OK

Table 4: Publisher sample in raw training data. There are missing values in bankaccount
and address. In pay per click online advertising, Fraud involves a large number
of intentional click charges with no real interest in the advertisements, using au-
tomated scripts or click farms. The perpetrators can be the publishers themselves
or their competitors, or the competitors of advertisers.

Normal) publishers, based on their click traffic and account profiles. This will help shed
light on several key areas, such as identifying the common underlying fraud schemes or

concealment strategies, understanding patterns of dishonest publishers, and developing new

ways for effective prevention/detection plans.

id numericip deviceua publisherid campaignid usercountry clicktime channel referredurl
13417867 3648406743 GT-19100 8iaxj 8fj2j ru 2012-02-09 00:00:00 ad 260kyx5i82hws840
13417870 3756963656 Samsung-S5233 8jljr 8geyk in 2012-02-09 00:00:00 es 15vynjr7rm00gwOg
13417872 693232332 SonyEricsson K70 8jljr 8gkkx ke 2012-02-09 00:00:00 es

13417893 2884200452 Nokia_6300 8jljr 8gp95 vn 2012-02-09 00:00:01 es

13418096 3648406743 GT-19100 8iaxj 8fj2m ru 2012-02-09 00:00:08 ad 24w9x4d25ts00400
13418395 781347853 GT-19003 8iaxj 8fj2j Tu 2012-02-09 00:00:20 ad 4im401arl30gcOgk

Table 5: Click samples in raw training data. There are missing values in referredurl and

deviceua. The raw features include IP address of a clicker (numericip), mobile
device model used by the visitor (deviceua), campaign ID of a particular adver-
tisement campaign (campaignid), country of the visitor (usercountry), publisher
channel type (channel), or an URL where the ad banner is clicked (referredurl).

103

OENTARYO, LiM, FINEGOLD ET AL.

More specifically, we seek to answer this question: Given historical patterns (of both
fraudulent and normal publishers) in some time period (e.g., a 3 day period), how to detect
fraudulent publishers in a future period (e.g., a 3 day period in the week after)? That is,
we are interested in a detection (predictive) model that can generalize well over time. To
this end, BuzzCity provides three sets of publishers and clicks data taken from different
time periods: a training set (for building predictive model), a wvalidation set (for model
selection), and a test set (for evaluating the models’ generalization abilities and determining
the competition winners). Each click data set captures the click traffic over a 3 day period,
while each publisher data set records publishers receiving at least one click in that period.
We summarize the count statistics of the publishers and clicks in Table 6.

It is worth noting that the publisher labels (i.e., Fraud, Observation, OK) were gener-
ated from BuzzCity’s semi-automatic detection mechanism (cf. Section 1) that uses two
types of auxiliary information together: offiine and online; the former corresponds to infor-
mation that BuzzCity deems impossible to automate or does not attempt to computerize
(e.g., manually contact the publishers and verify their responses), while the latter is ob-
tained based on the statistical analysis of the click behavior done by BuzzCity’s proprietary
automated programs. Due to the proprietary nature of this practice and for simplicity,
the details of the label generation process were not given as part of the competition. Here
BuzzCity’s primary interest is whether the competition participants can independently infer
and discover fraudulent patterns based on the click and publisher databases alone, without
using the auxiliary information. Also note that the Fraud and Observation publishers
constitute very small portions of the population relative to the 0K publishers (cf. Table 6),
rendering this problem challenging for many contemporary classification methods.

No. of publishers

Data set Time period No. of clicks Fraud Observation OK Total
Train 9-11 Feb 2012 3,173,834 72 (2.34%) 80 (2.60%) 2,929 (95.07%) 3,081
Validation 23-25 Feb 2012 2,689,005 85 (2.77%) 84 (2.74%) 2,895 (94.48%) 3,064
Test 8-10 Mar 2012 2,598,815 82 (2.73%) 71 (2.37%) 2,847 (94.90%) 3,000

Table 6: Statistics of the competition data.

2.3 Evaluation

For performance evaluation, we chose to adopt the average precision criterion, which favors
algorithms capable of ranking the few useful items ahead of the rest. Such a criterion is par-
ticularly suitable for detecting rare instances such as fraud cases (Zhu, 2004). We describe
the criterion as follows: Let m be the number of relevant (i.e., actual Fraud) instances. We
first ranked the instances according to the prediction/detection scores produced by each
algorithm. Among the ¢t x 100% top-ranked instances, supposing h(t) < t are truly relevant
(also called hits), let r(t) = @ and p(t) = @ be the recall and precision respectively.
Typically, h(t) and p(t) takes values only at a finite number of points ¢; = %,i =1,2,...,n.

Using these variables, the average precision (AP) criterion can be computed as

AP =" p(t:) (r(t:) — r(ti-1)).
=1

104

DETECTING CLICK FRAUD IN ONLINE ADVERTISING: A DATA MINING APPROACH

Essentially, the AP criterion summarizes the precision-recall performances at different
threshold levels, and corresponds to the area under the precision-recall curve (Zhu, 2004).
In the case of fraud detection, simply evaluating precision and recall at a specific threshold
level is inadequate, since these metrics vary with the strictness of a classification algorithm’s
threshold and the range of its prediction outputs. Further details on the AP criterion can
be found in Zhu (2004).

2.4 Website and Leaderboard

Our FDMA 2012 website supports a public leaderboard system displaying the best AP
score and the submission time of each team on the validation set. We ran the competition
for 1 month, from 1 to 30 September 2012, with two submissions per day allowed for each
team. BuzzCity offered a total prize of 7,000 Singapore dollars (SGD) for the competition
winners (i.e., SGD 4,000, 2,000, and 1,000 for the first, second, and third winners respec-
tively). During the competition, the actual publishers’ status labels (i.e., ground-truth)
in the validation set were hidden, and our system computes the average precision for each
submission. The submitting teams received email notifications showing their current scores
and submission time. This allows teams to track their progress and fine-tune their models.
To ensure the models developed do not overfit the validation set, we used the test set for
the final evaluations, the status labels of which were also hidden during the competition.
The test set was only revealed 72 hours before the competition ended.

< 7 . 0
Q- Baseline: 32.29% mej.”' 3,’43'2%%
o Mean: 35.28% o | godian. se.Ur o
o N Median: 32.33% e Std dev: 13.84%
E o | Std dev: 15.72% ®
8 v hall NI
[o
° 24 S
2 z _ |
uj —
o - o -
T T T T T T T 1 I T T T 1
00 01 02 03 04 05 06 07 0.1 0.2 0.3 0.4 05
Average precision Average precision

(a) (b)

Figure 1: Statistics of the average precision scores: (a) Public leaderboard (validation set),
and (b) Private leaderboard (test set).

Figure 1(a) shows the overall statistics of the leaderboard scores as of September 30,
2012, while Figure 1(b) shows the statistics of the final test scores. In total, we had 127
teams registering for the competition, 88 of which explicitly specified their affiliation and
country: 60 from academic institutions and 28 from industry, and 51 were local teams from
Singapore and 37 were overseas teams. A total of 95 teams submitted to the leaderboard
during the competition period. For baseline in the leaderboard, we used the logistic re-

105

OENTARYO, LiM, FINEGOLD ET AL.

Average precision

Rank Team Validation set Test set Affiliation
1 starrystarrynight 59.38% 51.55% Institute of Infocomm Research
2 TeamMasdar 59.39% 46.42% Masdar Institute of Science & Technology
3 DB2 62.21% 46.15% National University of Singapore
4 Tea 51.55% 42.01% Tokyo Institute of Technology
* LARC 57.79% 55.64% Singapore Management University

Table 7: Results of the top teams on the validation and test sets. Team ranks were deter-
mined using the test results.

gression method (Fan et al., 2008), which provides reasonable performance reference close
to the mean or median AP score. The final standings on the validation and test sets are
summarized in Table 7. We also showed the best result obtained by the competition orga-
nizer (dubbed as team LARC) in the last row. Comparing the validation and test results,
the position of the top-3 ranks were reversed, which may be attributed to overfitting.

3. First Winner’s Entry

This section describes the entry from the first winning team, which covers the data pre-
processing or feature extraction techniques and classification method used, followed by the
empirical results and insights obtained by the team.

3.1 Preprocessing and Feature Extraction

Figure 2(a) plots the correlations among some of our features including status, which we
used to ensure feature diversity by excluding new features which are too similar to existing
ones. In Figure 2(b), using specific model parameters described in the next section, we ob-
tained the relative influence or importance of 118 predictive features in the final training set.
A complete listing of the 118 features is available at http://clifton.phua.googlepages.
com/feature-list.txt. In addition, there are two other features: publisherid, which is
not used for model building, and status, which is the class or dependent feature. Adding
all the features’ relative influence will sum up to a score of one hundred. On one extreme,
there are a few features with relative influence above three. On another extreme, there are
a few features with negligible influence on the results such as channel-related features (see
Section 3.3.3 on a discussion of leveraging the predictiveness of the raw channel feature).
The average relative influence per feature is about 0.88%.

The 118 predictive features can be grouped into three types of features: 67 click behavior
(57%), 40 repetitive click behavior (34%), and 11 high-risk click behavior (9%). The average
rank of all the features (based on the model output, as described in Section 3.2) is 69, 35,
and 69 respectively, meaning that duplicated clicks are likely to be invalid clicks. We use
simple statistical features based on average, standard deviation, and percentages, and none
of our features are created directly from status or specific values from raw anonymized
features, such as bankaccount, address, numericip, campaignid, and referredurl.

106

http://clifton.phua.googlepages.com/feature-list.txt
http://clifton.phua.googlepages.com/feature-list.txt

DETECTING CLICK FRAUD IN ONLINE ADVERTISING: A DATA MINING APPROACH

total_clicks . .
Feature in decreasing

08 relative influence

distinct_iplong
distinct_agent
distinct_cid

distinct_cntr
distinet_referer
night_click_percent
morning_click_percent
afternoon_click_percent
evening_click_percent

night_referer_percent

morming_refere

afternoon_referer_percent
evening_referer_percent
night_agent_percent

agent_percent

Relative
influence (%)
T T T T T T
0 1 2 3 4 5

afterr

(a) (b)

Figure 2: (a) Correlation plot of some click behavior features in the training set. (b) Rela-
tive influence of all features in the training set.

3.2 Method

Gradient boosting is a machine learning technique used for classification problems with a
suitable loss function, which produces a final prediction model in the form of an ensemble of
weak prediction decision trees (Friedman, 2000). We used the implementation of generalized
boosted regression model (GBM) in R’s gbm package (Ridgeway, 2007). The final parameters
used on the final training data set for our best average precision on the test data set are:

e distribution (loss function): ”bernoulli” - also tested “Adaboost” distribution

e n.trees (number of iterations): 5000 - tested 100 to 5000 decision trees

shrinkage (learning rate): 0.001 - tested 0.001 to 0.01

interaction.depth (tree depth): 5 - tested 2 to 5

e n.minobsinnode (minimum observations in terminal node): 5 - tested 2 to 5

In the early to mid stages of the competition, we used two layers of GBM to select the
most important features. During the final stages, we focused on only one layer of GBM
as we had identified the three best types of features. Initially, we also tried random forest
(Breiman, 2001) (decision trees ensemble algorithm) in R’s randomForest package as well
as RIPPER (Cohen, 1995) (rule induction algorithm) in WEKA (Hall et al., 2009). As the
random forest and RIPPER did not perform as well as GBM on the validation set, we did
not conduct further explorations on them or other classification algorithms. If we did find
alternative algorithms that perform on par with (or better than) GBM, we could train a
set of base classifiers and combine them with stacking (Wolpert, 1992).

107

OENTARYO, LiM, FINEGOLD ET AL.

3.3 Result and Discussion

This section describes several key empirical results and insights gained by the first winner.

3.3.1 SPATIAL AND TEMPORAL PATTERNS

In Table 8, we list the top-10 features of each type to show that our features capture some
temporal and spatial aspects of clicks for each publisher. Within the one minute interval,
fraudulent clicks have significantly more duplicates than normal ones. For repetitive click
behavior features, the shorter intervals produce better results after we tested one, five, fif-
teen, thirty, and sixty minutes intervals using Chao-Shen entropy (Chao and Shen, 2003).
Chao-Shen entropy is a non-parametric estimation of Shannon’s index of diversity. It com-
bines the Horvitz-Thompson estimator (Horvitz and Thompson, 1952) and the concept of
sample coverage proposed by Good (1953) to adjust for unseen observations in a sample. For
example, there are multi-feature duplicates such as avg_spiky ReAgCnIpCi (average num-
ber of the same referredurl, deviceua, usercountry, numericip, and campaignid being
duplicated in one minute), as well as single feature duplicates such as std_spiky numericip
(standard deviation of numericip being duplicated in one minute).

For our top click behavior and duplication features, we created conditional features based
on finer-grained time intervals to better capture temporal dynamics of click fraud behavior.
We divided a day into four six-hour periods: night (12am to 5:59am), morning (6am to
11:59am), afternoon (12pm to 5:59pm), and evening (6pm to 11:59pm). For example,
night _referredurl_percent is the number of distinct referredurls at night divided by the
total number of distinct referredurls, and night_avg spiky referredurl is the average
number of the same referredurl being duplicated within one minute at night. Also, we
divided an hour into four fifteen-minute periods: first (0-14), second (15-29), third (30-44),
and last (45-59). For example, second_15 minute_percent is the number of clicks between
15th to 29th minute divided by total number of clicks.

Fraudulent clicks tend to come from some countries (or finer-grained spatial regions)
more than others, for example, businesses in India and Indonesia are hardest hit by fraud
(Kroll Advisory Solutions, 2012). Most clicks on mobile advertisements also come from
these two countries. We tested the top five, ten, fifteen, twenty, and twenty-five high-risk
countries (out of two hundred over countries), and found that the top ten high-risk countries
works best. For example, usercountry_in_percent and usercountry_id_percent are the
percentages of invalid clicks originating from India and Indonesia respectively. The large
numbers of invalid clicks coming from usercountry_sg_percent or Singapore could be due
to BuzzCity’s penetration tests being conducted from there.

3.3.2 PERFORMANCE

Using the GBM configuration with the 118 features mentioned in Section 3.1, our team
was ranked fourth with an average precision of 59.38% on the validation set, as displayed
on the public leaderboard. After the competition ended and teams submitted their results
based on the test data, we were ranked the first with the average precision of 51.55%.
(The second winner finished the line with an average precision of 46.42%, and the third
winner with 46.15%.) As such, comparing our result with that of the other top teams, we
can conclude that our GBM model fits the data well.

108

DETECTING CLICK FRAUD IN ONLINE ADVERTISING: A DATA MINING APPROACH

Rank Feature Relative influence
6 std_per_hour_density 3.12
12 total_clicks 1.76
14 brand_Generic_percent 1.71
15 avg_distinct_referredurl 1.62
19 std_total_clicks 1.43
23 night_referredurl_percent 1.19
24 second_ 15_minute_percent 1.18
27 distinct_referredurl 1.15
29 std_distinct_referredurl 1.12
30 morning_click_percent 1.1

(a)

Rank Feature Relative influence
2 std_spiky numericip 3.81
3 avg_spiky ReAgCnIpCi 3.69
4 night_avg_spiky_referredurl 3.66
5 avg_spiky_deviceua 3.29
8 avg_spiky referredurl 2.67
9 avg_spiky_ReAgCn 2.59
10 night_avg_spiky ReAgCnIpCi 2.49
11 afternoon_avg_spiky_ReAgCnIpCi 1.98
13 afternoon_avg_spiky_deviceua 1.75
16 std_spiky referredurl 1.6

®)

Rank Feature Relative influence
1 usercountry_id_percent 5.49
7 usercountry_sg-percent 2.69
49 usercountry_other_percent 0.72
72 usercountry_us_percent 0.44
77 usercountry_th_percent 0.39
84 usercountry_uk_percent 0.34
91 usercountry_in_percent 0.26
103 usercountry ng _percent 0.05
104 usercountry_tr_percent 0.04
106 usercountry_ru_percent 0.04

(c)

Table 8: Top-10 features by type in final training data set: (a) By click behavior, (b) By
repetitive click behavior, and (c¢) By high-risk click behavior.

3.3.3 OTHER POTENTIALS

In Table 9, we show that there is some potential for an alternative approach using the
channel of each fraudulent publisher. Fraudulent mobile and adult content publishers tend
to produce much more invalid clicks than the other fraudulent publishers, especially at night
and morning periods. In contrast, fraudulent entertainment, lifestyle, and premium portal
publishers produce a lot less invalid clicks, and tend to have relatively more invalid clicks
during afternoon and evening periods. We attempted to split the data sets and build models

109

OENTARYO, LiM, FINEGOLD ET AL.

separately by channel, but did not have enough time to integrate/normalize the different
sets of prediction scores in a meaningful way.

Night Morning Afternoon Evening

Channel Publisher Fraud clicks Fraud clicks Fraud clicks Fraud clicks Fraud clicks
count (fraud %) (fraud %) (fraud %) (fraud %) (fraud %)

Adult (ad) 10 47226 (37%) 15435 (12%) 6439 (5%) 11299 (9%) 14053 (11%)
Mobile content (mc) 23 41941 (33%) 13589 (11%) 9284 (7%) 9623 (8%) 9445 (7%)
Community (co) 12 16411 (13%) 7218 (6%) 3301 (3%) 2612 (2%) 3280 (3%)
Entertainment and lifestyle (es) 14 14433 (11%) 2649 (2%) 3265 (3%) 3573 (3%) 4946 (4%)
Search, portal, services (se) 4 3180 (3%) 682 (1%) 572 (0%) 689 (1%) 1568 (1%)
Premium portal (pp) 6 2026 (2%) 351 (0%) 608 (0%) 732 (1%) 904 (1%)
Information (in) 3 893 (1%) 49 (0%) 284 (0%) 428 (0%) 132 (0%)

Total 72 127010 (100%) 89973 (31%) 23753 (19%) 28956 (23%) 34328 (27%)

Table 9: High risk categories in final training data set.

3.3.4 RECOMMENDATIONS

We conclude this section by addressing several key questions in relation to a broader context:

What is the underlying click fraud scheme? Simply put, a relatively large
number of clicks or rapid duplicate clicks, or a high percentage of clicks from high-risk
countries have been shown to be important fraud indicators.

What sort of concealment strategies commonly used by fraudulent parties?
The Tuzhilin Report (Tuzhilin, 2006) on the Google AdWords/AdSense system lists
ten possible strategies or sources of invalid clicks. The hard-to-detect click fraud tends
to come from organized crime in hard-to-prosecute countries (Chambers, 2012). For
example, hard-to-detect and hard-to-prosecute click fraud uses existing user traffic
including 0-size iframes, forced searching, and zombie computers.

How to interpret data for patterns of dishonest publishers and websites?
From a machine learning point-of-view, some decision tree and rule induction algo-
rithms can provide high interpretability to fraud patterns. However, the key step prior
to this is still to engineer the best features using domain knowledge and experimenta-
tion, and to allow investigators to discern and validate these fraud patterns from top
ranked features, even through black-box classification algorithms.

How to build effective fraud prevention/detection plans? Effective fraud de-
tection plans need to have elements of resilience, adaptivity, and quality data (Phua
et al., 2012). Resilience is “defense-in-depth” with multiple, sequential, and indepen-
dent layers of defense. For example, BuzzCity already has anomaly-based detectors
to place some publishers under observation, and they can consider adding classifier-
based detectors to their click fraud detection system. In the context of click fraud,
the classifier-based detectors need to be adaptive to changing fraud and normal click
behavior. The classifier-based detectors also need to use quality data with timely
updates when publishers are discovered to be fraudulent. Other than increasing ad-
vertisers’ awareness of click/conversion ratios, having better customer service and
fraud policies, and improving automated filters, one can pursue click fraud more ag-
gressively, switch from cost-per-click to cost-per-action advertising model, or cultivate
trust with advertisers by having independent audits (Jansen, 2007).

110

DETECTING CLICK FRAUD IN ONLINE ADVERTISING: A DATA MINING APPROACH

4. Second Winner’s Entry

In this section, we describe the second winner’s entry. Following the organization of Section
3, we elaborate the preprocessing/feature extraction technique and classification method
used by the team, as well as their empirical results and insights.

4.1 Preprocessing and Feature Extraction

We first analyzed each attribute in the raw click and publisher database, and evaluated
its effects on the behavior of a publisher. We observed that not all features are useful;
attributes from the publisher database such as address, bankaccount can be excluded from
the feature construction process. To facilitate different experiment settings, we considered
three data sets. In the first data set, all publishers labeled as Observation were relabeled as
OK. In the second data set, all publishers labeled as Observation were relabeled as Fraud.
Finally, the third data set retains all the three (original) labels. Training and testing were
performed accordingly on all the three data sets.

Feature extraction is another important facet for building the prediction model. Prop-
erly selected features should be able to capture properties or trends that are specific to
fraudulent publishers and are robust against their evolving behavior. We took each raw
attribute in the click database and model the publisher’s click pattern by creating several
statistical features based on that particular attribute. The feature extraction procedures
applied to different attributes are detailed hereafter.

4.1.1 ATTRIBUTE: CLICKTIME

Fraudulent publishers often disguise their activities using various tricks such as generating
very sparse click sequences, changes in IP addresses, issuing clicks from different computers
in different countries and so on. Others stick to the conservative approach of generating
the maximum number of clicks in a given interval. It is important for any fraud detection
system to recognize both kinds of concealment strategies. Accordingly, we derived several
statistical features from the clicktime attribute in the click database, with the number
of clicks for each publisher observed over different time intervals: 1 minute, 5 minutes, 1
hours, 3 hours and 6 hours. The goal is to capture both the short and long term behavior
of the publishers, based on the observation that publishers often try to act rationally and
have constant clicks in very sparse time intervals.

Specifically, for each time interval, we counted the number of clicks each publisher
receives and aggregated these counts using several features: maximum clicks, average click,
click skewness, and click variance. Click variance measures the deviation of number of
clicks from the average clicks (norm) of a publisher, while click skewness is a measure of
the asymmetry of the click distribution. Figure 3 shows all the features we derived from
the attribute clicktime from the raw click database.

4.1.2 ATTRIBUTE: NUMERICIP

Internet protocol (IP) address is another attribute that can be used to characterize the
behavior of a publisher, since it is a reflection of the number of computers/mobile devices
used or different times at which the user clicks on a particular advertisement. Since many

111

OENTARYO, LiM, FINEGOLD ET AL.

clicktime

No. of clicks per 1 min No. of clicks per 5 mins No. of clicks per 3 hours No. of clicks per 6 hours

> Average — Average — Average — Average

—> Maximum > Maximum > Maximum > Maximum

—> Variance —> Variance > Variance —> Variance

L > Skewness L > Skewness > Skewness L > Skewness

Figure 3: Feature creation from the clicktime attribute.

Feature Description
MaxSameIPClicks Maximum number of clicks from all unique IP addresses associated with a publisher
NoOfIPs Number of clicks from all unique IP addresses associated with a publisher
ClickOverIPRatio Ratio of the number of clicks over the number of unique IP addresses for a publisher
EntropySameIPClicks Entropy of the number of clicks from all IP addresses associated with a publisher
VarSameIPClicks Variance of the number of clicks from all IP addresses associated with a publisher

Table 10: Features derived from the numericip attribute.

IP addresses are dynamically allocated when users connects via an internet service provider
(ISP), it is not unusual for the same user to have different IP addresses. For a given 3-
day period, we observed changes in the IP addresses and number of clicks from a given IP
address for a given publisher id. We used parametric measures over IP address attribute
(numericip) to define the behavior of a publisher. Table 10 lists the feature set created
from the numericip attribute.

Some fraudulent publishers may try to increase their reward by clicking repeatedly on
an advertisement but all of these clicks might come from the same IP. From the data, we
observed that many clicks originating from the same IP or an unusually large click to IP
ratio tend to be associated with fraudulent behavior, and may place the associated publisher
under suspicion. We also observed that lower variance in the number of clicks from each IP
is indicative of a legitimate publisher, whereas higher variances might indicate a fraudulent
publisher. Similarly, the entropy for the distribution of the number of clicks originating
from each IP can be another useful indicator of fraudulent activity.

4.1.3 ATTRIBUTE: DEVICEUA

The deviceua attribute is the phone model that the visitors use to browse the web and
click on advertisements. As mentioned, a fraudulent visitor might use one phone, but
with many dynamically allocated TP addresses. Thus, we use the following measures to
derive features from deviceua attribute in the set of attributes: MaxSameAgentClicks,

112

DETECTING CLICK FRAUD IN ONLINE ADVERTISING: A DATA MINING APPROACH

MaxSameAgentClicks, VarSameAgentClicks, and SkewnessSameAgentClicks. These fea-
tures also calculated in a similar way to those for the numericip attribute.

4.1.4 OTHER ATTRIBUTES

We also used the same method to generate features for country and campaignid. On the
other hand, each publisher is assigned to only one channel, thus we avoid taking channel to
derive more attributes. Instead, we defined the prior probability of being fraud for a given
channel based on the training set. That is, we computed number of visitors for each channel,
and then the number of fraudulent publishers in that set to obtain the prior probability.
Finally, for the referredurl attribute we derived ReferrerOverClickRatio by computing
the number of referred clicks over the total number of clicks for a given publisher.

At the end of feature extraction process, we had 41 different features created from
different individual and set of attributes from the data set. The full list of those 41 features
is provided in www.dnagroup.org/PDF/FDMA12_TeamMasdar_AppendixA.pdf.

4.2 Method

In this section, we describe our machine learning framework for addressing fraud detection
problem. We first present our base classification models, followed by data resampling strate-
gies for handling imbalanced label distribution. Finally, we discuss on ensemble learning
methods that combine several base classifiers for improved detection performance.

4.2.1 BASE CLASSIFIER

Our approach to detecting fraud consists of employing contemporary classification mod-
els over data derived from click database. We tuned the parameters of these models such
that they work robustly with the train and validation data sets, and can generalize well
to unseen test set. We tried a range of different model parameters that yielded the high-
est precision and area under the receiver operating characteristics (AUC) curve, with low
standard deviation to ensure performance consistency.

We explored a variety of classification methods including decision tree, neural network,
and support vector machine. For each method, we also employed different learning algo-
rithms. Our preliminary experiments on the train and validation sets revealed that the
decision tree technique is particularly promising and gave good prediction results. As such,
we shall focus on decision tree-based models in the subsequent sections.

4.2.2 RESAMPLING

As mentioned, only a small fraction of publishers are fraudulent, and the skewed nature of
the data would drive the prediction model to be more biased towards the majority class. In
light of this issue, we used various resampling strategies such as up/downsampling and the
synthetic minority oversampling technique (SMOTE) (Chawla et al., 2002). Upsampling
was done by replicating samples from the minority class until their number is equal to the
that of the majority class. Conversely, downsampling randomly discards the majority class
until the class distribution is balanced. In our experiments, we tried both up/downsampling

113

www.dnagroup.org/PDF/FDMA12_TeamMasdar_AppendixA.pdf

OENTARYO, LiM, FINEGOLD ET AL.

Base tree Ensemble (meta) learner
C4.5 tree Bagging, Metacost, Logitboost, random subspace
REP tree Bagging, Metacost, Logitboost

Random forest Bagging, Metacost, Logitboost

Table 11: Decision tree algorithms and the corresponding meta-learning algorithms.

and SMOTE, followed by shuffling of the data instances. Results obtained with and without
sampling methods shall be discussed in Section 4.3.

4.2.3 ENSEMBLE LEARNING

Decision tree-based algorithms are weak learners known for their stability issues. To im-
prove a weak classifier, one may construct many weak classifiers instead of a single one, and
to combine them into a powerful decision rule. Recently, a number of combining techniques
have been developed, the most popular being bagging (Breiman, 1996), boosting (Freund
and Schapire, 1996) and the random subspace method (Ho, 1998). In bagging, one samples
the training set, generating random independent bootstrap replicates, constructs the clas-
sifier on each of these, and aggregates them by a simple majority vote in the final decision
rule. In boosting, classifiers are constructed on weighted versions of the training set, which
depend on previous classification results. In the random subspace method, classifiers are
constructed in random subspaces of the data feature space. These classifiers are typically
combined by simple majority voting.

Generated features

Model with Model without
resampling/SMOTE resampling/SMOTE
(29%) (45%)
3labels 2 labels 2 labels
(45%) (“Observation” to “OK”) (“Observation” to “Fraud”)
(50.37%) (46.1%)
Bagging with Bagging with Bagging with MetaCost LogitBoost Random subspace
J48 tree REP tree random forest with J48 tree with J48 tree with J48 tree
(50.37%) (46.82%) (51.4%) (43.77%) (44.82%) (50%)
Final model: Average : = chosen
prediction of 6 classifiers
(59.39%) l:l = not chosen

Figure 4: The final classification model comprising an ensemble of six learners.

114

DETECTING CLICK FRAUD IN ONLINE ADVERTISING: A DATA MINING APPROACH

For bagging, we considered the standard algorithm (Breiman, 1996) and MetaCost
(Domingos, 1999), a special type of bagging that produces a single cost-sensitive classi-
fier of the base learner, giving the benefits of fast classification and interpretable output.
For boosting, we considered the LogitBoost method (Friedman et al., 2000), which treats
AdaBoost (Freund and Schapire, 1995) as a generalized additive model and applies the cost
functional of logistic regression. Finally, we used the standard random subspace method
(Ho, 1998), with decision trees as the base learners.

We built classification models using different combinations of base learners and meta-
learning algorithm, as shown in Table 11, and evaluated them using the train and validations
sets. The base learners are C4.5 decision tree (Quinlan, 1993), reduced error pruning (REP)
tree (Su and Zhang, 2006), and random forest (Breiman, 2001). Our final classifier consists
of an ensemble of six models, which gave the best overall performance in terms of precision,
recall, and area under the ROC curve. The goal of evaluating all three measures is to build
a model that can detect high percentage of Fraud cases, while maintaining high degree
of precision. The “journey” towards the final classification model and the scores of the
constituent learners are presented in Figure 4.

4.3 Results and Discussion

In this section, we summarize the key observations and results obtained using our proposed
machine learning approach as described in Section 4.2.

4.3.1 EFFECT OF RESAMPLING

To see the effect of resampling on the model performance, we conducted experiments with
both up/downsampling and SMOTE (Chawla et al., 2002). The resampling and SMOTE
performed very well on the training set but performed badly on the validation set. That is,
results using the original data were found to be over 15% better than those obtained using
resampling and SMOTE.

4.3.2 Two- vS. THREE-CLASS TASK

Different models were trained using data sets containing only 2 classes (i.e., OK and Fraud),
and all 3 classes (i.e, OK, Observation and Fraud). For the 2-class setting, two approaches
were taken: In the first approach, all Observation cases were converted to 0K, and in the
second approach all Observation cases were treated as Fraud cases. In the 3-class setting,
we simply used the labels provided with the data. Of all three approaches, the 2-class
data set gave the best performance. The AP score obtained using the J48 tree for the
(Observation — OK conversion case was 50.37%, and for the Observation — Fraud case
we got 46.1%. When we used all 3 classes, the precision score was 45%. Thus, we deem
that converting all Observation cases to OK was the best approach.

4.3.3 PERFORMANCE

We evaluated the prediction performance of different algorithms for all data sets. Few
algorithms which gave best result alone are mentioned above. There were many algorithms
with very low true positive and false negative rates, thus giving very high precision scores.

115

OENTARYO, LiM, FINEGOLD ET AL.

These algorithms were able to obtain high precision because of their low false positive value.
We were only interested on algorithms which have high true positive rates and precision.
The precision scores of the different algorithms when applied on the 2-class validation set
were C4.5 tree: 50.37%, REP tree: 46.82%, and LogitBoost: 44.82%, as per Figure 4.

With our ensemble approach, we were able to pass the baseline score but none of the
algorithms alone was able to obtain precision higher than 50.37%. We analyzed the results
and found that every algorithm has a drawback, which was either a high false positive rate
or a lower rate of true positives. This indicated that choosing any one of the algorithms
represented a trade-off between high sensitivity on the one hand, and higher precision on the
other. Subsequently, we combined the results from the different algorithms trained using
the 2-class data set. Six different algorithms were chosen which obtained higher values for
precision, recall and AUC when evaluated alone. This method proved to be the best as we
obtained an average precision of 59.39% on the validation set. It also performed well on
the final test set, achieving a score of 46.42%.

5. Third Winner’s Entry

This section describes the third winner’s entry, from the preprocessing and feature extraction
methods to the classification algorithms and empirical results, as per the previous sections.

5.1 Preprocessing and Feature Extraction

Click fraud can be generated through various ways (Dave et al., 2012), such as (1) botnets
(where malware on the user’s computer clicks on ads in the background), (2) tricking or
confusing users into clicking ads (e.g., on parked domains), and (3) directly paying users
to click on ads. To deal with various fraud patterns, we first need to extract publisher’s
feature from various statistics such as mean, standard deviation, count from different views
and at different time granularities. We can analyse these features and choose the most
discriminative ones to build an effective classifier.

5.1.1 CLICK STATISTICS BY PUBLISHER

We calculate the basic click statistics of each publisher (i.e., publisherid), unique count
of attribute such as numericip, country, deviceua, referredurl, campaignid and total
visit. The features used in this work and their descriptions are shown in Table 12:

Feature Description
unique_count(numericip) unique count of the IP
unique_count(country) unique count of the country
unique_count(deviceua) unique count of the deviceua
unique_count(referredurl) unique count of the referredurl
unique_count(campaignid) unique count of the campaignid

total_visit count of the click log’s row

Table 12: Features derived from the click statistics of each publisher.

116

DETECTING CLICK FRAUD IN ONLINE ADVERTISING: A DATA MINING APPROACH

5.1.2 CLICK STATISTICS BY NUMERICIP

The fraudulent visitors may visit the advertisements from the same IP address. In order
to capture this, we calculate the average access, standard deviation, counting by grouping
each IP for each publisher in different time granularity (by second, by min, by day). For
example, in the Table 13, suppose it is the full click log for the publisher “8kxij”, we can
get the average access by IP in minute granularity is 5, standard deviation is 0, and the
counting for the IP 2,919, 155, 822 visit is 5. We can also get the same statistics in different
time granularity such as by day, hour, second. The feature created is shown in Table 14.

id numericip deviceua campaignid usercountry clicktime channel referredurl
8kxij 2,919,155,822 Nokia X6 8gava us 2012-02-09 07:23:13.0 mc ?
8kxij 2,919,155,822 Nokia X6 8gava us 2012-02-09 07:23:13.0 mc ?
8kxij 2,919,155,822 Nokia X6 8gghw us 2012-02-09 07:23:13.0 mc ?
8kxij 2,919,155,822 Nokia X6 8gghw us 2012-02-09 07:23:19.0 mc ?
8kxij 2,919,155,822 Nokia X6 8gava us 2012-02-09 07:23:19.0 mc ?

Table 13: Example of fraud pattern: Clicking from the same IP address.

Feature Description

avg_IP _sec average visit by IP per second

std_IP _sec standard deviation of average visit by IP per second
count_IP _sec sum of visit count (larger that 2) by IP per second
avg_IP_min average visit by IP in minute level

std_IP_min standard deviation of average visit by IP per minute

count_ IP_min sum of visit count (larger that 2) by IP per minute
avg_IP_hour average visit by IP per hour

std_IP_hour standard deviation of average visit by IP per hour
count_IP_hour sum of visit count (larger that 2) by IP per hour
avg_IP_day average visit by IP per day

std_IP_day standard deviation of average visit by IP per day

count_IP_day sum of visit count (larger that 2) by IP per day

Table 14: Click statistics by IP address.

We also conjecture that fraudulent visitors will visit the advertisements not from the
same IP address but from the same subnetwork (see Table 15). For this, we tried to obtain
the same statistics by each subnetwork instead of IP. The subnetwork of different granularity
can be obtained by dividing the IP by 1,000 or 1,000,000 and rounding the result. Based
on this, we got the same statistics as shown in Table 14 for different subnetwork.

id numericip deviceua campaignid usercountry clicktime channel referredurl
8jk0d 1,917,853,114 MSIE_6.0 8gpbq cn 2012-02-09 11:52:27.0 se ?
8jk0d 1,917,853,057 MSIE_6.0 8gpbq cn 2012-02-09 11:56:13.0 se ?
8jk0d 1,917,853,952 MSIE_6.0 8gpbq cn 2012-02-09 11:58:49.0 se ?
8jk0d 1,917,853,022 MSIE_6.0 8gpbq cn 2012-02-09 12:06:55.0 se ?

Table 15: Example of fraud pattern from the same subnetwork.

117

OENTARYO, LiM, FINEGOLD ET AL.

5.1.3 CLICK STATISTICS BY DEVICEUA

Sometimes the malicious publishers use the same deviceua but different IP to access a
website at different time periods. For example, in Table 16, the fraudulent visitor using
same deviceua MSIE 6.0 visits the same publisher using different IP at different times, while
there is no other deviceua visiting this publisher during these time period. To capture this
behavior, we sorted the click by clicktime and then deviceua. Afterwards, for each click
log row, we compared with the next click log row. If the deviceua is the same, we kept the
current row, otherwise it is removed. We can then calculate the portion of the filtering rows
over the total rows for each publisher; we call this feature deviceual. For example, in the
Table 16, after filtering, we have 8 rows left, so the final result will be 8/11. In addition, we
tried to sort the click data by deviceua only and calculate the statistics again as discussed
above. This feature is named as deviceua?2.

id numericip deviceua campaignid usercountry clicktime channel referredurl
8jk0d 1,917,852,952 MSIE_6.0 8gpbq cn 2012-02-11 02:55:50.0 se ?
8jk0d 1,917,853,022 MSIE_6.0 8gpbq cn 2012-02-11 02:56:36.0 se ?
8jk0d 1,917,853,060 MSIE_6.0 8gpbq cn 2012-02-11 03:53:12.0 se ?
8jk0d 1,917,852,993 MSIE_6.0 8gpbq cn 2012-02-11 04:49:42.0 se ?
8jk0d 701,380,683 Nokia2600c 8k7xb ng 2012-02-11 04:51:58.0 se ?
8jk0d 1,917,852,993 MSIE_6.0 8gpbq cn 2012-02-11 05:33:51.0 se ?
8jk0d 1,917,853,114 MSIE_6.0 8gpbq cn 2012-02-11 06:30:02.0 se ?
8jk0d 1,917,853,146 MSIE_6.0 8gpbq cn 2012-02-11 07:09:23.0 se ?
8jk0d 1,917,853,146 MSIE_6.0 8gpbq cn 2012-02-11 07:31:21.0 se ?
8jk0d 1,917,852,993 MSIE_6.0 8gpbq cn 2012-02-11 07:53:16.0 se ?
8jk0d 1,917,852,952 MSIE_6.0 8gpbq cn 2012-02-11 07:55:14.0 se ?

Table 16: Example of fraud pattern from one deviceua but different IP at different times.

5.1.4 CLICK STATISTICS BY CAMPAIGNID

The click data also suggest that malicious publishers may access the same advertisement
campaign repeatedly using the same IP address and phone agent at a brief time period.
This is shown in Table 17, where campaignid “8gkwy” was accessed many times by the
same numericip and deviceua. These clicks are thus likely to be illegitimate. Accordingly,
we calculated the average access, standard deviation, counting by grouping campaignid
for each publisher in different time granularity (by second, by minute, by day). We then
obtained results similar to Table 14, grouped by campaignid instead of by numericip.

id numericip deviceua campaignid usercountry clicktime channel referredurl
8kvbw 3,251,257,947 Iphone 8gkwx dk 2012-02-09 02:36:05.0 co ?
8kvbw 3,251,257,947 Iphone 8gkwx dk 2012-02-09 02:36:16.0 co ?
8kvbw 3,251,257,947 Iphone 8gkwx dk 2012-02-09 02:36:40.0 co ?
8kvbw 3,251,257,947 Iphone 8gkwx dk 2012-02-09 02:38:01.0 co ?
8kvbw 3,251,257,947 Iphone 8gkwx dk 2012-02-09 02:38:09.0 co ?
8kvbw 3,251,257,947 Iphone 8gkwx dk 2012-02-09 02:38:26.0 co ?

Table 17: Example of fraud pattern on the same campaign ID.

118

DETECTING CLICK FRAUD IN ONLINE ADVERTISING: A DATA MINING APPROACH

5.1.5 CLICK STATISTICS BY NUMERICIP+DEVICEUA

The numericip corresponds to a public IP address that may be assigned to different clickers
at different time periods. Hence, an IP address may not uniquely identify a clicker. A better
estimate is to use numericip+deviceua for identification. Using this identifier, we calcu-
lated the average access, standard deviation, counting by grouping numericip+deviceua
for each publisher in different time resolutions. Again, we obtained the statistics similar to
Table 14, grouped by numericip+deviceua instead of by numericip.

5.2 Method

We employed a linear blending of many predictive models, and our approach consists of
three main steps. In the first step, we created our own validation set from the training set
(since the validation set provided by the competition organizer has no label). Specifically,
the internal validation set was generated by randomly selecting a subset of publishers in the
training set such that the original class (status) distribution is maintained (i.e., stratified
sampling). We chose this approach instead of cross-validation procedure for simplicity and
computational efficiency. In the second step, we optimized the meta-parameters of the
models and picked the configuration that yielded the best result on the internal validation
set. Finally, using the best meta-parameters found, the third step consists of retraining the
model on the combined train and internal validation sets. The model was then evaluated
on the test set and the prediction scores were recorded for submission.

5.2.1 CLASSIFICATION ALGORITHMS

The classification methods we considered for this competition are listed in Table 18. Most
of these techniques are tree/rule-based classifiers (except for Bayesian network and resilient
propagation (RPROP)), which we selected due to their relatively good performances. All
methods were trained and evaluated using the three step procedure described above.

5.2.2 BLENDING

To combine the predictions of all the classification algorithms in Table 18, we used a linear
blending method. A simple way to compute the final prediction is to average all predictions
in the ensemble, but better results can be achieved by computing weighted sum of the
predictions. In this work, we performed blending via weighted sum approach, where the
weight coefficients were learned using linear regression. Furthermore, we normalized all
inputs (i.e., the predictions) to [0, 1]. We optimized the weight coefficients based on the
average precision for 10-fold cross-validation.

5.3 Results and Discussion

Below we summarize our main experimental results, focusing on our mode performances as
well as findings on several important features indicative of fraudulent behavior.

119

OENTARYO, LiM, FINEGOLD ET AL.

Type Method Description

Single FT tree A type of decision trees with logistic regression functions at the
(Gama, 2004) inner nodes and/or leaves
REP tree A decision tree is built using information gain or variance and
(Su and Zhang, 2006) then pruned using reduced-error pruning (REP) method
Decision table Rule-based classifier that uses simple decision table majority
(Kohavi, 1995) voting, providing a precise yet compact representation
Bayesian network Directed graphical model for encoding statistical dependencies
(Neapolitan, 2003) among a set of variables
RPROP Learning for feed-forward neural networks that locally adapts
(Riedmiller and Braun, 1993) the weight updates based on the error function’s behavior

Ensemble LAD tree - A multi-class alternating decision tree that is built using the
(Holmes et al., 2002) LogitBoost strategy
NB tree N Decision tree with Naive Bayes classifiers at the leaf nodes
(Kohavi, 1996)
Random forest Combination of tree predictors such that each tree depends on the
(Breiman, 2001) values of a random vector sampled independently
Rotation forest Classifier ensemble based on feature extraction. Features are split
(Rodrguez et al., 2006) into subsets and principal component analysis is applied to each
Tree ensemble Variant of random forest whereby each tree model is learned on
(Berthold et al., 2009) different set of records and/or attributes

Table 18: Classification methods employed for the FDMA 2012 Competition.

5.3.1 PERFORMANCE

The performances of the individual models and their blending are shown in Table 19. For
the single models, RPROP performed the best, suggesting that neural network approach
is suitable for the detection task. Among the ensemble approaches, only the tree ensemble
outperformed RPROP, but the improvement was marginal. Lastly, the linear blending
approach gave better result than all its constituent models. Hence, we chose it as our final
model for the competition submissions. We obtained an average precision of 62.21% and
46.15% on the validation and test sets, respectively.

Type Method Average Precision
Single FT tree 36.3%
REP tree 35.8%
Bayes network 33.7%
RPROP 48.3%
Ensemble LAD tree 37.0%
NB tree 37.9%
Random forest 47.7%
Random subspace 38.9%
Rotation forest 42.9%
Tree ensemble 49.3%
Ensemble of ensemble Blending 52.3%

Table 19: Performance for different algorithms on the internal validation set.

120

DETECTING CLICK FRAUD IN ONLINE ADVERTISING: A DATA MINING APPROACH

5.3.2 IMPORTANT FEATURES

To prune inconsequential features and improve prediction performance, we performed iter-
ative feature elimination (Guyon and Elisseeff, 2003) as follows. Initially, classification is
performed using the complete N features. In the next N — 1 iterations, each of the input
features is disabled once. Then the algorithm discards the feature that influences the pre-
diction result the least (in this case giving the smallest degradation in average precision).
The subsequent n — 2 iterations follow where each of the remaining features is ruled out
once. The total number of iterations is therefore N « (N + 1)/2 — 1. Finally, we had all
computed levels of the feature elimination together with the average precision. We specified
an error threshold and select the level with fewest features that has a prediction error below
the threshold. Table 20 lists the final set of features after the elimination, which represent
the important variables potentially correlated with fraudulent cases.

Feature Description
unique_count(referredurl) Unique count of referredurl
unique_count(campaignid) Unique count of campaignid

unique_count(country) Unique count of country

total_visit Count of the click log’s row

count_ip_hour Sum of visit count (> 2) by numericip per hour

count_ip_ag_sec Sum of visit count (> 2) by numericip+deviceua per second
count_ip_ag-day Sum of visit count (> 2) by numericip+deviceua per day

count_sip2_sec Sum of visit count (> 2) by subnetwork (divided by 1,000,000) per second
count_sip2_min Sum of visit count (> 2) by subnetwork (divided by 1,000,000) per minute
count_sip2_hour Sum of visit count (> 2) by subnetwork (divided by 1,000,000) per hour
count_sip_day Sum of visit count (> 2) by subnetwork (divided by 1,000) per day
avg_sip2_day Average visit by subnetwork (divided by 1,000,000) per day

avg_ip-ag_min Average visit by numericip+deviceua per minute

avg-ip-ag-day Average visit by numericip+deviceua per day

avg_campaignid_min Average visit by campaignid per minute

deviceual Statistics for click data sorted by time and deviceua, as discussed in Section 5.1.3
deviceua2 Statistics for click data sorted by deviceua, as discussed in Section 5.1.3

Table 20: Final feature set after backward elimination.

6. Runner-up’s Entry

In this section, we elaborate the approach and results obtained by the runner up (i.e., fourth
winner), with similar organization as that of the previous sections.

6.1 Preprocessing and Feature Extraction

For each publisher, we considered the following basic attributes: (1) total number of clicks,
(2) number of clicks from the same computer (inferred from attribute numericip), (3)
distinct IP addresses (inferred from numericip), (4) distinct parts of the IP addresses,
(5) publisher’s channel type (inferred from channel), (6) phone models used by clickers
(inferred from deviceua); (7) advertisement campaign (inferred from campaignid); and (8)
number of clicks from different countries (geo tracking; inferred from usercountry).

Click fraud, notably manual click fraud, is known to correlate with the geographical
location of the clicker. The heatmaps in Figure 5 visualize the geo tracking of clicks from
the training set with respect to the status of the publisher. For all three groups (Fraud,
Observation, and OK), the clicks originate from only a few countries (cf. columns). For

121

OENTARYO, LiM, FINEGOLD ET AL.

W Fraud Um Observation

L
el

I
I

Figure 5: Geo tracking of clicks. Columns show the 197 countries of origin; rows show the
publishers from the training set. For each publisher, the click percentage from
each country is color-coded. Darker colors reflect higher percentages; yellow is
0% and dark red is 100%. Rows and columns are clustered based on complete
linkage. For status OK, only those publishers with at least 50 clicks are shown.

about half of the publishers in each group (cf. rows), the clicks are distributed across
these countries, while for the rest the majority of clicks come from only a small number of
countries. In fact, we found such clusters in all three groups.

Geo tracking alone, however, is not reliable for click fraud detection. There may be
various explanations for the observed clusters, such as (obviously) the type and the target
of the advertisements. Furthermore, malicious scripts could generate fraudulent clicks, and
these scripts could run on computers in different geographical locations. In that case, we
might fail to detect any clusters.

6.1.1 CLICK PROFILES

For each publisher and each unique IP address, we investigated the click profile, that is,
the time delay between consecutive clicks. For the majority of fraudulent publishers in the
training set, we observed that the number of unique IP addresses was below 3000. Only for
two fraudulent publishers, we observed that clicks were coming from more than 3000 unique
IP addresses. To derive the click profile, we discarded all publishers for which we observed
clicks coming from more than 3000 unique IP addresses. This approach was of course far
from being ideal, but it reduced the computational time considerably.

6.1.2 LoNG CLICK PROFILE

We assumed that many consecutive clicks from the same IP address in short time intervals
were suspicious. So for each publisher, we counted how many clicks from the same IP address
occurred each day in less than 5s, between 5s and 10s, between 10s and 20s, between 20s and
30s, and so on up to the interval > 300s. Furthermore, we required that at least 10 clicks
must have come from each IP address. Table 21 shows an example of a set of consecutive
clicks from the same IP address for the publisher 8ih09.

122

DETECTING CLICK FRAUD IN ONLINE ADVERTISING: A DATA MINING APPROACH

id deviceua campaignid usercountry date clicktime category referredurl same URL gap
14090783 Opera_-Mini 8flxe fr 2012-02-09 08:53:21.0 in 24940f5c4q6880c8 0 0
14096272 Opera_-Mini 8flxd fr 2012-02-09 09:02:01.0 in 24940f5c¢4q6880c8 1 520
14096576 Opera_-Mini 8flyo fr 2012-02-09 09:02:30.0 in 24940f5c¢4q6880c8 1 29
14135449 Opera_Mini 8flyo fr 2012-02-09 09:59:33.0 in 24940f5c¢4q6880c8 1 3423
14149730 Opera_-Mini 8flyo fr 2012-02-09 10:18:31.0 in 24940f5c¢4q6880c8 1 1138
14153291 Opera-Mini 8flyp fr 2012-02-09 10:23:32.0 in 14qhcdsqvou88kos 0 301
14153584 Opera-Mini 8flyu fr 2012-02-09 10:23:57.0 in 14ghcdsqvou88kos 1 25
14154864 Opera-Mini 8flyp fr 2012-02-09 10:25:42.0 in 24940f5c¢4q6880c8 0 105
14197361 Apple-iPhone 8flyo fr 2012-02-09 11:23:23.0 in 3gzab0jfnzcwddwe 0 3461
14197602 Apple_iPhone 8jdc9 fr 2012-02-09 11:23:42.0 in 14ghcdsqvou88kos 0 19
14198413 Apple_iPhone 8flxc fr 2012-02-09 11:24:50.0 in 14ghcdsqvou88kos 1 68
14198584 Apple_iPhone 8flyp fr 2012-02-09 11:25:05.0 in 14ghcdsqvou88kos 1 15
14199113 Apple_iPhone 8flys fr 2012-02-09 11:25:51.0 in 14ghcdsqvou88kos 1 46
14201181 Apple_iPhone 8flxe fr 2012-02-09 11:28:31.0 in 14ghcdsqvou88kos 1 160
14206726 Apple_iPhone 8flxf fr 2012-02-09 11:35:50.0 in 23ge85exom8084s0 0 439
14217945 Apple_iPhone 8flyu fr 2012-02-09 11:50:32.0 in 23ge85exom8084s0 1 882
15754245 Opera_Mini 8gpdb fr 2012-02-10 10:18:52.0 in 3cu2xmfag82sosk4 0 0
15764598 Opera_-Mini 8gpd5 fr 2012-02-10 10:33:56.0 in 4jyefurnmxkwoodw 0 904
15768527 HTC_Vision 8gdka fr 2012-02-10 10:39:47.0 in 1rbl5y69ej34gg8w 0 351
15768829 HTC_Vision 8gpd5 fr 2012-02-10 10:40:17.0 in 3cu2xmfag82sosk4 0 30
15777019 Opera_Mini 8gpd5 fr 2012-02-10 10:52:51.0 in 3cu2xmfag82sosk4 1 754

783581 Opera_Mini 8gpdb fr 2012-02-11 10:34:38.0 in 1rbl5y69ej34gg8w 0 0
901789 SPH-P100 8gpd5 fr 2012-02-11 13:01:12.0 in 1rbl5y69ej34gg8w 1 8794
902642 SPH-P100 8gdka fr 2012-02-11 13:02:09.0 in 3cu2xmfag82sosk4 0 57
903031 SPH-P100 8gpd5 fr 2012-02-11 13:02:38.0 in 3cu2xmfag82sosk4 1 29

Table 21: Example of 25 consecutive clicks from the same IP for publisher 8ih09.

For the clicks in Table 21, we see the following interval frequencies: (0,0,2,4, 0,1,1,1,
0,0,0,1, 0,0,0,0, 1,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,11), where the ith element represents
the count for the i*? interval. For example, we observe two clicks with a time gap between
10s and 20s (id 14197602 with 19s and id 14198584 with 15s). We also tracked the relative
counts, that is, the interval counts divided by the respective set size. For each publisher, we
proceeded analogously for all IP addresses and derived the cumulative interval frequency
count, which is the long click profile. For the publisher 8ih09, for instance, this profile is
(0,0,17,25, 26,30,20,21, 19,14,7,5,9,9,7,2, 7,8,4,3, 7,3,3,2, 1,1,2,3, 1,1,1,41), where
the i*" element represents the cumulative count for the " interval. We saw that clicks
from the same IP address tend to occur in relatively short sequences for 8ih09, which is in
fact labeled as Fraud. By contrast, let us consider the profile of a publisher labeled as 0K,
for example, 8i7wi. Its long click profile is (0,0,4,3, 0,0,2,1, 0,1,1,0, 1,1,0,1, 0,0,0,0,
0,0,0,0,0,2,0,1,1,0,0,76); here, short click sequences are less frequent. Another publisher,
8jkh1, is labeled as Observation, and its long click profile is (6,13,11,19, 22,8,13,13,
21,17,13,14, 11,7,12,9, 5,8,7,7, 5,8,1,5, 6,5,2,1, 2,2,5,404).

Figure 6(a) shows the click frequencies per interval, derived from all long click profiles
per group. We see that, overall, consecutive clicks that follow one another rather quickly
occur more often for fraudulent publishers than for those with status Observation or OK.

6.1.3 SHORT CLICK PROFILE

The short click profile was derived in the same way as the long click profile, except that at
least 5 (and not 10) consecutive clicks must have come from the same IP address. Figure 6(b)
shows the click frequencies per interval, derived from all short click profiles per group. Again,
we observed that quick consecutive clicks occur more often in fraudulent publishers than in
those with status Observation or OK.

123

OENTARYO, LiM, FINEGOLD ET AL.

Fraud
3%
10
g °*7
>
2
g 97 7
o
Z
4 -
i |“
0 - |||I|II"|I"|II|IIII||
Interval
109 Fraud
36%
8 —i
g
> 0
o
c
g Y
o
e 4
w
) ‘“
o |||||||I|Illlluum..
Interval
20 7 Fraud
15
S
g
c
S 104
o
o
'S
| |
0 - ||||I||"|I|I||..|||..
Interval

Frequency [%]

Frequency [%]

Frequency [%]

10 1

20 9

1l [T
0

. h“"l
o | ||||||IIII|||I||||.|..|

Observation

V4

Interval

(a)

Observation

Vs

Interval

(b)

Observation

0 -

I |||‘|II||
Interval

()

52%

Frequency [%]

Frequency [%]

Frequency [%]

0 -

OK

Interval

10 1 OK

0 -

20

Interval

OK

o

Interval

h‘||""""""“llllllllllll

Vi

Vi

V4

Figure 6: Click frequency per interval based on (a) long click profiles,
click profiles, and (c) click profiles from the same URL. The intervals are
[0s, 5s],]5s, 10s],]10s, 20s], ...]300s, +00).

6.1.4 CLicKkS COMING FROM THE SAME URL

(b) short

The long and short click profiles ignored the URL where an advertisement had been clicked
on. It is possible, however, that a fraudulent (human) clicker does not navigate too often
from one web site to another. To derive a pattern of clicks coming from the same URL, we

124

DETECTING CLICK FRAUD IN ONLINE ADVERTISING: A DATA MINING APPROACH

Figure 7: Publishers (from the training set) ranked from left to right based on decreasing
values of redflag. Solid black bars denote publishers with status Fraud; gray bars
denote publishers with status Observation; white bars denote publishers with
status OK. Fraudulent publishers and those under observation are significantly
concentrated towards the left hand side (P < 0.001, Kruskal-Wallis test).

asked for each publisher: how many clicks came from the same IP address and the same
URL in less than 5s, between 5s and 10s, between 10s and 20s, and so on up to the interval
> 300s. At least 5 clicks must have come from each IP address. A problem with this
approach, however, was that the URL information was missing for many clickers.

Consider again Table 21. The column referredurl contains encrypted information about
the URL. The column same URL contains a flag, indicating whether the clicker has left
(= 0) or stayed (= 1) on the same URL. We considered only those time gaps that refer to
the same URL; thus, we ignored the gap of 19s for id 14197602, for example, because the
clicker has navigated from 3gza50jfnzcw44wc to 14ghcdsqvou88kos.

Figure 6(c) shows the click frequencies per interval, derived from all click profiles from
identical URLs. Similarly, we observed that quick consecutive clicks occur more often in
fraudulent publishers than in those with status Observation or OK.

6.1.5 REDFLAG

For each publisher, we checked if there were at least 5 clicks from the same IP address and
the same URL and with a time gap of less than 20s. If so, we incremented a flag (redflag)
for that publisher. In Figure 7, publishers from the training set are ranked from left to
right based on decreasing values of redflag. Fraudulent publishers (black) and those under
observation (gray) are concentrated towards the left hand side. Thus, the larger redflag,
the more suspicious is the publisher. Redflag is in fact a significant indicator of fraudulent
behavior (P < 0.001, Kruskal-Wallis test).

6.2 Method

According to the rules of the competition, each team was allowed to submit the predictions
of two models for the final evaluation. Below we describe our two models.

For the first model, we used only the basic attributes and the long click profile. The
algorithm was random forests (Breiman, 2001), which first generates a number of unpruned
decision trees from bootstrap samples of the train set. Each tree uses a random subset of
features. Subsequently, the algorithm combines the trees into one “forest” whose predictions
stem from aggregating the predictions of the individual trees.

125

OENTARYO, LiM, FINEGOLD ET AL.

Because of the drastic class imbalance in the train set, either cost-sensitive learning
or up/down-sampling is necessary. For random forests, both approaches were shown to
be on par in terms of performance (Chen et al., 2004). Up/down-sampling, however, is
computationally less expensive because each tree uses only a small subset of the train set.
Given the time constraints, we adopted only one approach: up/down-sampling. A multitude
of sample sizes were tested, and the models were selected based on the out-of-bag (OOB)
error rate. Our preliminary results suggested that the differences between the predictive
performance of the models were not so large. From all models, we finally selected seven
(Table 22) and combined them into one ensemble of random forests. This is model #1, and
it was submitted for the final evaluation.

In addition to the reduced data set, we included the following data for our second
model: short click profile, click profile from identical URLs, and redflag. The algorithm
was random forest with up/down-sampling. We tested again various parameters (number
of trees, terminal node size, sampling ratios) and selected the final model on the basis of the
OOB error rate. The final model consisted of 50 trees with a terminal node size of 3. The
percentages for the bootstrap samples were: 97% for class Fraud, 88% for Observation,
and 61% for OK. This is model #2, and it was submitted for the final evaluation.

ntree nodesize Fraud Observation OK OOB error

1 250 5 90% 63% 41% 4.64%
2 250 5 90% 63% 41% 4.67%
3 250 3 83% 75% 51% 4.64%
4 250 3 69% 38% 34% 4.48%
5 250 3 69% 38% 34% 4.74%
6 250 3 90% 44% 51% 4.54%
7 250 4 83% 63% 68% 4.45%

Table 22: Individual random forests with up- and down-sampling (ntree: number of trees
in each forest; nodesize: number of terminal nodes in each tree).

6.3 Results and Discussion

How well can the three click profiles discriminate the publishers? To address this question,
we trained three random forests, each using only one of these click profiles and no further
data. Each model consisted of 250 trees, each with 3 terminal nodes. The sampling was
90% for Fraud, 75% for Observation, and 61% for OK. Table 23 shows the classification
results of these three models (not submitted for the final evaluation).

6.3.1 PERFORMANCE

Table 24 shows the classification results of the two models that were submitted for eval-
uation on the final test set. Model #2 (single random forest, 50 trees) achieved a better
performance on both the training and the validation set. However, the performance on the
final test remarkably deteriorated, compared with the performance of model #1 (ensemble
of random forests, 1750 trees) that used only the reduced data set.

126

DETECTING CLICK FRAUD IN ONLINE ADVERTISING: A DATA MINING APPROACH

Click profile OOB error Average precision (validation)
Long 4.61% 47.67%
Short 4.64% 46.77%
Clicks from same URL 4.51% 47.89%

Table 23: Classification results of random forests using only click profiles.

Model # OOB error Average precision (validation) Average precision (test)
1 4.61% 49.99% 42.01%
2 3.66% 51.55% 36.94%

Table 24: Classification results of the final two models.

6.3.2 REMARKS

Two problems made this competition particularly challenging. First, there is the problem of
concept drift. The train, validation, and test data sets came from different time windows. A
publisher may appear across different sets with a similar pattern, but the provided, actual
status label may be different. For example, a publisher may have been labeled as OK in
early February and then as Observation in late February, perhaps because this publisher
showed a suspicious pattern.

Second, there is no “ground truth” about which publishers are indeed really fraudu-
lent, which are truly 0K, and which should be under scrutiny. The real status labels were
generated by some fraud detection algorithm (here called “ground model”, for short), but
how reliable are its predictions? Consider the following example. For one publisher in the
train set, we observed 5706 total clicks. All clicks came from the same IP address, and 3307
(58%) occurred in less than 5s. Also, is it not suspicious that 1086 consecutive clicks (19%)
have an interval of even 0s? It is tempting to speculate that a script generated these clicks.
Surprisingly, the status of that publisher is OK in the train set. In the validation set, the
click profiles of that publisher may also raise attention: more than 70% of all 1149 clicks —
from one and only IP address — occurred in less than 5s, with 248 clicks having a time gap
of 0s. Several similar examples of questionable status labels could be found.

7. Organizer’s Entry

In this section, we describe the work by the FDMA 2012 organizer’s research team, which
was carried out independently from the other competition participants. The description
will follow the same organization as that of the previous sections.

7.1 Preprocessing and Feature Extraction

We first analyzed the basic statistics of the publishers, derived by grouping the entries in
the click database by publisher. For each publisher, we computed the probability distribu-
tion (i.e., normalized frequency) of the number of clicks, number of visitors (identified by
numericip), number of referredurls, and the ratio of the number of clicks over the num-
ber of visitors. Figure 8 shows the four distributions in the train set respectively, grouped
by the publisher’s status. Interestingly, we can see from Figure 8(a) that the Fraud publish-
ers have lower click probability than the OK publishers. This can be attributed to the fact

127

OENTARYO, LiM, FINEGOLD ET AL.

Probability (#clicks |status) Probability (%P addresses |status)

1 : 1 T
— ‘ —&— 0K . —&— 0K
= | —— Observation = —&— Observation
=05f Fraud =05 Fraud
a a
I i
0 [Lii L3 7N oy | 1 0 o 1 1 o
0] 2 4 6 8 10 2 3 4 5 6
Hclicks X 104 #P addresses X 104
(a) (b)
Probability (Hreferers | status) . Probability (click-per-IP ratio | status)
1 . . . T T T T T
— L, —e— 0K — —=—0K
= —&— Observation E —#— Observation
=05 Fraud =035 Fraud
= =
l:lh_ (=
0 1% . . . 0 Bl o o e s s s
0 200 400 600 800 1000 0 20 40 60 80 100 120
Hreferers click-per-IP ratio
(c) (d)

Figure 8: Distribution of the train data set: (a) Number of clicks, (b) Number of unique
visitors (numericip), (c) Number of unique referrers (referredurl), and (d)
Click per visitor ratio (number of clicks divided by number of unique visitors).

that BuzzCity blocks the traffic of a publisher as soon as its system deems the publisher as
fraudulent. Figure 8(b) shows a similar observation for the distribution of the visitors.

For referrer (referredurl) distribution, we found Fraud publishers to be quite different
from OK ones, and the former have low probability similar to the Observation publish-
ers. Further investigation revealed that many Fraud publishers have missing/unknown
referredurl fields. Hence, features derived from referredurl can be good indicators for
fraudulent acts. Lastly, the distribution of the click per visitor ratio in Figure 8(c) shows
that Fraud publishers have higher ratio than the other groups, suggesting that the former
focus on more efficient use of resources (IP address, in this case) to inflate the click traffic.
This motivates us to investigate other ratio-based features (e.g., click per referredurl ratio,
click per deviceua ratio, click per country ratio, etc). Note that, if the denominator of the
ratio (e.g., number of visitors) is zero, the ratio value will be set to zero.

We extracted several basic ratio features from the click database, as listed in Table 25(a).
Since each publisher is associated with only one of the 10 channel categories (cf. Table 3),
we also derived 10 Boolean features where only one feature can be set to 1 (true). From
the publisher database, on the other hand, we computed two Boolean features: whether a
publisher has a bank account (nonempty bank account), and whether (s)he has an address
(nonempty address). Altogether, we have 5+ 10 + 2 = 17 basic features. With these basic
features alone, however, we found the detection unsatisfactory. To improve the results, we
conducted fine-grained analysis on the spatiotemporal aspects of the publishers’ click traffic,
leading to two new types of features: spatial and time series. Table 25(b)-(c) respectively
list the spatial and time series features used in this work.

128

DETECTING CLICK FRAUD IN ONLINE ADVERTISING: A DATA MINING APPROACH

Feature type f##features Feature type #features
Click per visitor ratio 1 Click fraction from top 20 countries 20
Click per ad ratio 1 Click fraction from missing country 1
Click per deviceua ratio 1 Click fraction from other countries 1
Click per country ratio 1 Click fraction from missing referredurl 1
Click per referredurl ratio 1 Click fraction from missing deviceua 1
Category (binary) 10 (b)
Nonempty account (binary) 1
Nonempty address (binary) 1
@

Feature type F#features

Click series 6x3=18

Visitor series 6x3=18

Ad series 6x3=18

Deviceua series 6x3=18

Country series 6x3=18

Referredurl series 6x3=18

Click per visitor ratio series 6x3=18

Click per ad ratio series 6x3=18

Click per deviceua ratio series 6x3=18

Click per country ratio series 6x3=18

Click per referredurl ratio series 6 x 3 =18

Gap interval series 6x3=18

(c)

Table 25: List of features extracted from the BuzzCity’s databases: (a) Basic features, (b)
Spatial features, and (¢) Time series features.

For the spatial features, we computed for each publisher the fraction of clicks coming
from different usercountry, referredurl and deviceua. For the usercountry case, we
considered the following top 20 countries in terms of their total number of clicks: {bd
(Bangladesh), br (Brazil), et (Ethiopia), gh (Ghana), id (Indonesia), in (India), ir (Iran),
ke (Kenya), mx (Mexico), my (Malaysia), ng (Nigeria), pk (Pakistan), ru (Russia), sa (Saudi
Arabia), th (Thailand), tr (Turkey), uk (United Kingdom), us (United States), vn (Viet-
nam), and za (South Africa). We further computed the click fraction from missing/unknown
country, and collate the click fraction from the remaining countries. Finally, we calculated
the click fractions from missing referredurl and deviceua, which according to our pre-
liminary studies correlate with the probability of fraud.

For the time series features, we broke down the 3-day span of each (train, validation,
or test) data set into windows of 1 minute long, and tracked several values of interest (e.g.,
number of clicks in each minute, number of visitors per minute, duration between etc).
This resulted in a time series vector of length 4,320 (i.e., 3 days = 4.320 minutes) for each
value type. We also experimented with longer time interval (e.g., 1 hour and 1 day), but
the results were worse than the 1 minute interval. Next, we computed several statistical
features aggregating the time series values over the 3-day period. That is, we generated 6
statistical features for each time series: nonzero count, mean, mazximum, sum, sum of square,
and standard deviation. Note that, as most publishers have sparse time series, we filtered
out all zero values prior to computing the statistical features. For example, given the series

129

OENTARYO, LiM, FINEGOLD ET AL.

value v(t) at time window t = {1,2,...,4320}, the mean of the series is 7 = % Ev(tﬁéo u(t),
where N = [{v(t)|v(t) # 0}| is the number of nonzero entries in the series. Our preliminary
studies showed that such approach led to better results than including zero values.

To capture trending patterns, we also derived the same set of statistical features for the
positive and negative gradients of the series. Given a count/ratio value v(t) at time ¢, the
positive gradient d*(¢) and negative gradient d~(t) are respectively computed as

dH(t) = v(t+1) —v(t),if v(t) < v(t+ 1),
d(t) =v(t) —v(t+1),if v(t) >v(t+1)

where t = {1,2,...,4319}. As before, we ruled out all zero values when constructing the
gradient vectors d*(¢) and d~(t), and in turn when computing the 6 statistical features
summarizing the gradients. Thus, for each time series type, we have 6 x 3 = 18 features.

We also included a special time series called gap interval series. The gap interval refers
the gap between the timestamps of two consecutive clicks. So if a publisher receives C
clicks, then we have a gap interval series of length C'—1 (in contrast to the other time series
that consists of 1-minute windows). We summarizes this series using the same 6 x 3 = 18
feature set. In sum, each publisher has 12 types of time series (as per Table 25) and hence
a total of 18 x 12 = 216 time series features.

Adding all the basic, spatial, and time series features, we have a total of 17+216424 =
257 features. Not all these features were useful though, and feature elimination steps shall be
carried out to improve the classification results. This is discussed in Section 7.2.2. Finally,
after generating all the features, we normalized the feature values to be within [0, 1].

7.2 Method

This section describes our proposed approach to tackling fraud detection task. We first
describe the classification models we used, followed by refinement of the models via a feature
elimination phase.

7.2.1 CLASSIFICATION ALGORITHMS

We considered various single and ensemble-typed classification algorithms for the fraud
detection task. As our single classifiers, we employed the following popular algorithms:

e Logistic regression: A popular classification method which extends linear regression
analysis to model the relationship between a set of predictive variables and a binary
outcome variable. It produces an outcome probability between 0 and 1. In this work,
we employed the L2-regularized logistic regression implemented in the LIBLINEAR
framework (Fan et al., 2008). To cope with the imbalanced class distribution, we
adjusted the class weights to be inversely proportional to class frequencies.

e Support vector machine (SVM): A state-of-the-art classification method that aims
at maximizing the margin of separation between data points from different classes.
Intuitively, larger margin implies lower generalization error. We employed the SVM
implementation in the LIBSVM framework (Chang and Lin, 2011), with different
kernel functions including linear, polynomial, and radial basis kernels. As with logistic
regression, we defined class weights to be inversely proportional to class frequencies.

130

DETECTING CLICK FRAUD IN ONLINE ADVERTISING: A DATA MINING APPROACH

o k-nearest neighbors (k-NN): A type of instance-based learning or non-generalizing
learning: it does not attempt to construct a general internal model, but simply stores
instances of the training data (Cover, 1967). Classification is computed from a simple
majority vote of the nearest neighbors of each point; a query point is assigned the
class that has the most representatives within the nearest neighbors of the point.

On the other hand, we employed several decision tree-based ensemble classifiers, which
have been widely used in data mining competitions:

e Random forest: Each tree in the forest is built from a sample drawn with replacement
(i.e., bootstrap sample) from the train set (Breiman, 2001). Moreover, when splitting
a node during the tree construction, the split chosen is not the best split among all
features, but rather the best among a random subset of the features. In contrast to
the original work (Breiman, 2001), which lets each classifier vote for a single class, we
combined the tree classifiers by averaging their probabilistic predictions.

e Gradient tree boosting (GTB): Generalization of boosting to arbitrary differentiable
loss functions (Friedman, 2000). GTB is an accurate off-the-shelf classification method
that builds an additive model in a forward stage-wise fashion; it allows for the opti-
mization of arbitrary differentiable loss functions. In each stage, regression trees are
fit on the negative gradient of the binomial or multinomial deviance loss function.

e Extremely randomized trees (Extra tree): In this tree-based ensemble approach, ran-
domness goes one step further in the way splits are computed. Similar to random
forest, a random subset of candidate features is used, but instead of looking for the
most discriminative thresholds, thresholds are drawn at random for each candidate
feature and the best of these randomly-generated thresholds is picked as the splitting
rule (Geurts et al., 2006). To arrive at the final decision, we again combined the tree
classifiers by averaging their probabilistic predictions.

7.2.2 FEATURE ELIMINATION

As mentioned, the complete 257 features are not all useful, and further improvement can
be attained by removing inconsequential or noisy features. To this end, we devised a simple
wrapper-based feature selection approach which we refer to as backward feature elimination.
Algorithm 1 outlines the approach, which is inspired by the method described in Guyon and
Elisseeff (2003). The algorithm requires as input the set of features and their predefined
ranking or relative importance. The feature importance can be computed in several ways.
In tree-based ensemble methods (e.g., random forest and GTB), features at the top of the
tree are used to contribute to the final prediction decision of a larger fraction of the input
samples. The expected fraction of the samples they contribute to can thus be used as an
estimate of the relative importance of the features. In logistic regression or linear SVM, the
feature importance can be estimated from the absolute values of its weight coefficients. For
other methods that do not naturally give feature ranking (e.g., nonlinear SVM or k-NN), we
estimated the feature importance using the F-value of the analysis of variance (ANOVA)
test (Box, 1953). A higher the F-value implies a higher feature importance.

131

OENTARYO, LiM, FINEGOLD ET AL.

Algorithm 1 Backward feature elimination.

Require: Features set F = {f;} and their ranks r;, minimum number of features m, train
data T and validation data V

1: R« {} and Fyest < F // Initialization

2: M < train(F, T) // Train M using features F from T

3: AP < evaluate(M, F, V) // Evaluate M using features F from V
4: APpes < AP

5. Fg < sort(F) // Sort the features set in ascending order of r;

6: for i =1 to |F5| —m do

7. R+ RU{fi}

8: M « train(F;\ R, T) // Train M using features Fg \ R from T
9: AP « evaluate(M, F,\ R, V) // Evaluate M using features F, \ R from V
10: if APy < AP then

11: APyos < AP

12: Fpest — Fs \ R

13: end if

14: end for

15: return Fy.q

Our feature elimination method starts from the full feature set and eliminates features
one by one from the lowest rank. An updated classifier is then generated from the remaining
features. Our approach bears some similarities to the recursive feature elimination (Guyon
et al., 2002), but instead of re-ranking the features after each elimination step, we still refer
to the original (full) feature ranking. We also kept track of all performances obtained by
each elimination, rather than stopping the elimination when a performance degradation is
detected. The process is repeated until the minimum number of features m is reached. For
SVM, logistic regression, and k-NN, we set m = 1. For tree-based ensemble methods, we
set m as the maximum number of features max Feat (i.e., m = maxFeat), since the largest
tree in the ensemble most likely has mazFeat features.

7.3 Results and Discussion

We present hereafter the experimental results obtained by the approach described in Section
7.2. We first discuss the detection performance obtained using the full 257 feature set,
followed by identification of the most important features based on our best models. Finally,
we present improved detection results using our simplified models after feature elimination.

7.3.1 PERFORMANCE

Table 26 shows the prediction results of all classifiers using the complete features listed
in Figure 25. The best configuration for each classifier was determined using grid search
on the corresponding (meta) parameter space. For logistic regression and SVM, we varied
the penalty parameter C' within the range {2_5,2_3,2_1,21, .. .,215} and then selected
the parameter that gave the best AP score on the validation set. We also experimented
with different kernels for the SVM, including linear, polynomial (with degree 2), and radial

132

DETECTING CLICK FRAUD IN ONLINE ADVERTISING: A DATA MINING APPROACH

Average precision

Type Method Best parameter Validation Test

Single Logistic regression ~ C = 512 41.20% 29.65%
SVM (Linear) C =32 29.74% 23.73%
SVM (Polynomial) C = 8192, degree = 2 29.33% 20.02%
SVM (Radial basis) C = 128 30.37% 23.63%
k-NN k = 5, weight = ”distance” 28.78% 33.46%

Ensemble Random forest ntrees = 100, maxFeat = 6 57.53% 51.44%
GTB ntrees = 900, max Feat = 28, depth = 5 48.78% 49.25%
Extra trees ntrees = 200, maxFeat = 28 55.36% 54.04%

Table 26: Performances of various classifiers for the validation and test sets. For SVM and
logistic regression, C' is the penalty parameter controlling the tradeoff between
training errors and margin maximization. For the ensemble methods, nirees is
the number of tree models in the ensemble, mazrFeat is the maximum number
of features allowed for each tree, and depth is the maximum depth of a tree.

basis kernels. As for k-NN, we took the parameter k from the range {1,3,5,...,15}. We
also considered “uniform” and “distance” weight functions for the k-NN predictions, giving
equal weight and weight proportional to the inverse of distance to the neighborhood points,
respectively. Out of these single classifiers, k-NN with ’distance’ weight yielded the best
score on the test set, suggesting that the decision boundary for the Fraud class is complex.
For SVM, employing nonlinear kernel in place of linear kernel did not improve the result.

We further experimented with the tree ensemble methods (i.e., random forest, GTB, and
Extra trees). For each method, we selected the best combination of ntree, maxFeat, and
depth from the range {100,200, 300, ...,1000}, {2,4,6,...,30}, and {1,2,3,4,5}, respec-
tively. Among the three methods, we found that the extremely randomized trees yielded
the best AP score int the test set, followed by the random forest which performed best
on the validation set. In comparison to the single classifiers, we can see that the ensemble
methods produced substantially higher AP scores. A plausible explanation is that ensem-
ble methods try to exploit the local different behavior of the base learners to enhance the
accuracy of the overall system. Also, using mixture of base models (instead of choosing
just one) can help reduce the risk of (accidentally) selecting a poorly performing classifier,
thereby reducing the overall system variance. Yet another key ingredient of effective ensem-
ble system is the diversity of its constituent models. In the case of extremely randomized
trees, the randomization of the split thresholds (in addition to the bootstrapping step in
random forest) helps promote the diversity, leading not only to faster ensemble construction
but also reduced variance of the overall system.

7.3.2 FEATURE RANKING

In Figure 9, we show the top 10 features found by our two best classifiers, Extra trees and
random forest, whereby feature importance was estimated from the expected fraction of
the samples the tree components contribute to (cf. Section 7.2.2). These features revealed
several interesting observations. For instance, the top three features of the extremely ran-
domized trees suggest that Fraud publishers tend to have missing/unknown referredurl,

133

OENTARYO, LiM, FINEGOLD ET AL.

Feature importances (Extra-Trees) .
0.025 Feature importances (Random Forest)"

244: click per referrer ratio 0.020
220: click fraction from Indonesia

239: click fraction from unknown referrer
240: click per visitor ratio

241: click per agent ratio

75: sum of duration uptrend 0.015
211: average of click per referrer uptrend
129: sum of click per agent uptrend

114: count of click per visitor uptrend
126: count of click per agent uptrend

239: click fraction from unknown referrer
43: average of click per visitor
75: sum of duration uptrend

0.020 244: click per referrer ratio

240: click per visitor ratio

69: sum of click per referrer

47: std dev of click per visitor

74: max duration uptrend

117: sum of click per visitor uptrend

213: sum of click per referrer downtrend

0.015

0.010

0.010

0.005
0.005

0000544 220 239 240 211 129 114 126 0.000 244 240 69 47 74 117 213

(a) (b)

Figure 9: Feature ranking obtained by: (a) Extra trees, and (b) Random forest.

Full features Reduced features
Type Method Validation AP Test AP #features Validation AP Test AP
Single Logistic regression 41.20% 29.65% 46 / 257 46.02% 31.18%
SVM (Linear) 30.45% 21.89% 38 / 257 36.75% 26.91%
SVM (Polynomial) 22.69% 16.72% 256 / 257 28.42% 20.23%
SVM (Radial basis) 34.32% 23.38% 255 / 257 39.10% 23.66%
k-NN 28.78% 33.46% 257 / 257 28.78% 33.46%
Ensemble Random forest 57.53% 51.44% 59 / 257 58.84% 52.17%
GTB 48.78% 49.25% 235 / 257 58.33% 49.90%
Extra trees 55.36% 54.04% 118 / 257 57.79% 55.64%

Table 27: Performances of single and ensemble classifiers after feature elimination.

which would be captured by the high click per referredurl ratio and high click fraction from
unknown referredurl. Moreover, high click traffic from high-risk countries such as In-
donesia can indicate fraudulent behavior (similar to the findings from the first competition
winner). We can also observe that the ratio features and their related time series features,
particularly the sum, count and uptrend (positive gradient) features, may be indicative of
fraudulent behaviors. Similar observations were found by random forest, although the click
fraction from high-risk countries were not deemed as important. This, in turn, may explain
its inferior performance with respect to Extra trees.

7.3.3 MODEL SIMPLIFICATION

Using the feature elimination procedure outlined in Algorithm 1, we can remove incon-
sequential features and further improve the detection performance. Table 27 shows the
consolidated results of different classifiers after feature elimination. In general, feature
elimination improved both performances on the validation and test sets, while simplifying
the classification models. We observed a large portion of features being removed by the
logistic regression, linear SVM, random forest, and Extra trees, leading to a fair amount of
improvements. By contrast, only small improvements were observed in GTB and nonlinear
SVMs, which can be attributed to the marginal feature removals.

134

DETECTING CLICK FRAUD IN ONLINE ADVERTISING: A DATA MINING APPROACH

8. Conclusion

The results of the FDMA 2012 competition exceeded our expectations in several ways.
First, we had high level of participation, although this is our first time organizing such a
competition. Second, the participants turned in good results quickly, and the performances
continually improved toward the end of the competition, showing the interesting potentials
of various feature engineering and data mining methods. We conclude this paper by summa-
rizing the solutions proposed by the winning teams, and then providing several important
lessons we can learn from the competition results.

8.1 Methods Employed

We briefly comment on the methods commonly used by the winning teams as well as the
remaining participants, as follows:

e Preprocessing: From the competition, we can see that most participants focused
on time-series features generated through analyzing the click traffic of a publisher
at multiple time resolutions (windows) and taking the statistics across time. Only a
few participants used spatial features by grouping the click traffic based on country,
referredurl, channel, etc. Simple normalization was also often used to improve the
performance of the classifiers, such as normalization to [0, 1]. Feature transformation
methods (e.g., principal component analysis) were rarely used and reported not to
bring performance improvements.

e Feature selection: Feature selection approaches broadly fall into two types: filter
and wrapper methods (Guyon and Elisseeff, 2003). Filter methods include feature
selection algorithms that are independent of any predictors, filtering out features that
have little chance to be useful in data analysis. Filters are usually less computationally
intensive than wrappers, but they produce a feature set which is not tuned to a
specific type of predictive model. On the other hand, algorithms of the wrapper
type are wrapped around predictors, providing them subsets of features and receiving
their feedback (usually accuracy). These wrapper approaches are aimed at improving
results of the specific predictors they work with. Some participants used feature
selection methods and reported that, in general, the wrapper methods performed
better than the filter methods.

e Classification algorithm: In this competition, ensembles of decision trees were the
most widely used approach, providing fairly fast learning and well suited to highly-
skewed class distribution, noisy nonlinear patterns, and mixed variable types. More
specifically, this success can be attributed to several factors. First, there is a lack
of data to properly represent the true distribution, in which case the learning algo-
rithm can find many different hypotheses that all give the same accuracy on the train
data. By constructing an ensemble out of these accurate classifiers, the algorithm can
7average” their votes and reduce the risk of choosing the wrong classifier. Second,
many learning algorithms work by some form of local search that may get stuck in
local optima. An ensemble built by running the local search from many different ini-
tial conditions may provide better approximation to the true, unknown function than

135

OENTARYO, LiM, FINEGOLD ET AL.

any of the individual classifiers. Lastly, for many data sets, the true function cannot
be captured by a single hypothesis. By forming weighted sums of hypotheses in an
ensemble, we can expand the space of representable functions.

All in all, ensemble methods combined with wrapper methods proved to be an effective
approach for fraud detection. In practice, however, single models would still be preferred,
owing to interpretability and tractability reasons. Future endeavors in this enterprise in-
clude devising a novel class of single classification algorithms, capable of matching the
performances obtained by the top ranking participants.

8.2 What We Have Learned

The results from the FDMA 2012 Competition offer important insights on fraudulent be-
havior in online advertising. Below we summarize the key findings of the winning teams:

e First winner’s entry: From a temporal standpoint, detecting large and /or duplicate
clicks and distinguishing between morning and night traffics are important indicators
for fraudulent acts. In spatial context, it was shown that high click fractions from top
10 high-risk countries provide strong signals for click fraud. For model selection, it is
also important to have a model that balances between accuracy and overfitting.

e Second winner’s entry: Fraudulent partners often try to act rationally by mim-
icking legitimate ones. Large variance on deviceua suggests that fraudulent partners
use many agents to act rationally. An ensemble model that averages the predictions
of different algorithms helps to gracefully deal with highly skewed class distribution,
and can lead to better performance than that of the individual methods.

e Third winner’s entry: Analyzing time series at different granularity levels (e.g.,
sec, min, hour, day) is important, and simple statistics (e.g., average, count) worked
well in detecting click fraud. Backward feature elimination can be used to derive the
most important fraud indicators. Linear blending of different models were found to
give the best performance and improve the performance of the individual models.

e Runner-up’s entry: Many consecutive clicks from the same IP address in a short-
time interval are considered suspicious. The ensemble of random forests was found to
be an effective fraud detection method. The problem of concept drift was observed in
the competition data, and the “ground-truth” labels in the data may be inaccurate
and biased toward BuzzCity’s internal detection procedure.

e Organizer’s entry: Fine-grained analysis of time series at short interval (1 minute)
is crucial for deriving informative features for fraudulent publishers. The best model
showed that referredurl-based features, for example, click per referredurl ratio and
fraction of missing/unknown referredurl, provide informative indicators for fraud.
Also, the high fraction of clicks from high-risk countries may be used as a signal for
click fraud. Lastly, the combination of tree-based ensemble classifiers and backward
feature elimination leads to a promising approach to tackle highly-imbalanced data.

136

DETECTING CLICK FRAUD IN ONLINE ADVERTISING: A DATA MINING APPROACH

8.3 Research Outlook

Despite the encouraging results and practical usability of our solutions to fraud detection
task, there remains a considerable need for further work on this important topic. An obvious
room for improvement is how the current methods can be used to tackle more sophisticated
types of click fraud. For instance, fraudsters can work together as a group, allowing them
to not only gain more with less (shared) resources, but also reduce the risk of getting
detected. The solutions presented in this paper are currently unable to catch such coalition
attacks. Several works have been dedicated to identify coalition fraud in online advertising
(Metwally et al., 2007; Kim et al., 2011). However, these methods have so far been focused
on investigating network topology structure (e.g., a bipartite graph of publishers and site
visitors), without probing into the detailed spatial and temporal characteristics of either the
individuals or group of individuals involved. Future research is needed to augment extrinsic
network/group features with fine-grained analysis of spatio-temporal features.

A related research question concerns the adaptability of the current methods in the
face of rapidly-evolving fraudulent behavior and strategies. For instance, several solutions
presented in this paper use deviceua (user agent) as a feature, which may be easily ex-
ploited by malicious parties once it is known. Although ensemble approaches and the use of
multiple complementary features can address this issue to some extent, there is a need for
more general and robust learning methodologies. A plausible approach is to employ online
learning (Shalev-Shwartz, 2012), which helps deal with concept drift pertaining to the be-
havioral changes of fraudulent parties, without having to retrain the prediction model from
scratch. Another interesting direction to address the issue is to develop a transfer learning
capability (Pan and Yang, 2010), using information from (multiple) auxiliary domains. Such
approach is useful to deal with future data having different feature space and/or different
distribution, while minimizing the model re-calibration efforts.

Acknowledgments

We are grateful to BuzzCity Pte. Ltd. for the competition data, prizes, and fruitful dis-
cussions. Special thanks go to Clifford Chew and Elvin Tan of BuzzCity, who contributed
their inputs on the data and related domain knowledge. We also thank the organizers of the
Asian Conference on Machine Learning (ACML) 2012 for hosting the FDMA 2012 Work-
shop. This work is supported by the National Research Foundation under its International
Research Centre @ Singapore Funding Initiative and administered by the Interactive Digital
Media (IDM) Programme Office.

References

M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Ké&tter, T. Meinl, P. Ohl, K. Thiel,
and B. Wiswedel. KNIME-The Konstanz information miner: Version 2.0 and beyond.
SIGKDD Ezplorations Newsletter, 11(1):26-31, 2009.

G. E. P. Box. Non-normality and tests on variances. Biometrika, 30(3/4):318-335, 1953.

L. Breiman. Bagging predictors. Machine Learning, 24:123-140, 1996.

137

OENTARYO, LiM, FINEGOLD ET AL.

L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

C. Chambers. Is click fraud a ticking time bomb under Google? Forbes
Magazine, 2012. URL http://www.forbes.com/sites/investor/2012/06/18/
is-click-fraud-a-ticking-time-bomb-under-google/.

C. C. Chang and C. J. Lin. LIBSVM: A library for support vector machines. ACM Trans-
actions on Intelligent Systems Technology, 2(3):27:1-27:27, 2011.

A. Chao and T. Shen. Nonparametric estimation of shannon’s index of diversity when there
are unseen species in sample. Environmental and Ecological Statistics, 10:429-443, 2003.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321—
357, 2002.

C. Chen, A. Liaw, and L. Breiman. Using random forests to learn imbalanced data. Tech-
nical Report No. 666, Department of Statistics, University of California, Berkeley, 2004.

W. Cohen. Fast effective rule induction. In Proceedings of the International Conference on
Machine Learning, pages 115-123, Tahoe City, California, 1995.

T. Cover. Nearest neighbor pattern classification. IEEE Transactions on Information
Theory, 13(1):21-27, 1967.

V. Dave, S. Guha, and Y. Zhang. Measuring and fingerprinting click-spam in ad networks. In
ACM SIGCOMM Computer Communication Review, volume 42, pages 175186, Helsinki,
Finland, 2012.

P. Domingos. MetaCost: A general method for making classifiers cost-sensitive. In Proceed-
ings of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 155-164, 1999.

R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin. LIBLINEAR: A library
for large linear classification. Journal of Machine Learning Research, 9:1871-1874, 2008.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. In Proceedings of the Furopean Conference on Computational
Learning Theory, pages 23-37, London, UK, 1995.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In Proceedings
of the International Conference on Machine Learning, pages 148-156, Bari, Italy, 1996.

J. Friedman. Greedy function approximation: A gradient boosting machine. Annals of
Statistics, 29:1189-1232, 2000.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view
of boosting. Annals of Statistics, 28(2):337-407, 2000.

J. Gama. Functional trees. Machine Learning, 55(3):219-250, 2004.

138

http://www.forbes.com/sites/investor/2012/06/18/is-click-fraud-a-ticking-time-bomb-under-google/
http://www.forbes.com/sites/investor/2012/06/18/is-click-fraud-a-ticking-time-bomb-under-google/

DETECTING CLICK FRAUD IN ONLINE ADVERTISING: A DATA MINING APPROACH

P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine Learning, 63
(1):3-42, 2006.

I. Good. The population frequencies of species and the estimation of population parameters.
Biometrika, 40:237-264, 1953.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of
Machine Learning Research, 3:1157-1182, 2003.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification
using support vector machines. Maching Learning, 46(1-3):389-422, 2002.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten. The WEKA
data mining software: An update. SIGKDD FEzplorations Newsletter, 11(1):10-18, 2009.

T. K. Ho. The random subspace method for constructing decision forests. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 20(8):832-844, 1998.

G. Holmes, B. Pfahringer, R. Kirkby, E. Frank, and M. Hall. Multiclass alternating decision
trees. In Proceedings of the European Conference on Machine Learning, pages 161-172,
Helsinki, Finland, 2002.

D. Horvitz and D. Thompson. A generalization of sampling without replacement from a
finite universe. Journal of the American Statistical Association, 47:663—-685, 1952.

B. Jansen. Click fraud. IEEE Computer, 40(7):85-86, 2007.

C. Kim, H. Miao, and K. Shim. CATCH: A detecting algorithm for coalition attacks of hit
inflation in internet advertising. Information Systems, 36(8):1105 — 1123, 2011.

R. Kohavi. The power of decision tables. In Proceedings of the Furopean Conference on
Machine Learning, pages 174-189, Heraclion, Crete, Greece, 1995.

R. Kohavi. Scaling up the accuracy of naive Bayes classifiers: A decision-tree hybrid. In
Proceedings of the International Conference on Knowledge Discovery and Data Mining,
pages 202-207, Portland, OR, 1996.

Kroll Advisory Solutions. Global fraud report, 2012. URL http://www.krolladvisory.
com/insights-reports/global-fraud-reports/.

A. Metwally, D. Agrawal, and A. El Abbadi. DETECTIVES: Detecting coalition hit infla-
tion attacks in advertising networks streams. In Proceedings of the International Confer-
ence on World Wide Web, pages 241-250, 2007.

R. E. Neapolitan. Learning Bayesian networks. Prentice-Hall, Inc., 2003.

S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345-1359, 2010.

C. Phua, K. Smith-Miles, V. Lee, and R. Gayler. Resilient identity crime detection. IEEFE
Transactions on Knowledge and Data Engineering, 24(3):533-546, 2012.

139

http://www.krolladvisory.com/insights-reports/global-fraud-reports/
http://www.krolladvisory.com/insights-reports/global-fraud-reports/

OENTARYO, LiM, FINEGOLD ET AL.

J. R. Quinlan. C4.5: Programs for machine learning. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, 1993.

G. Ridgeway. Generalized boosted models: A guide to the gbm package, 2007. URL
http://cran.open-source-solution.org/web/packages/gbm/vignettes/gbm.pdf.

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning:
The RPROP algorithm. In Proceedings of the IEEE International Conference on Neural
Networks, pages 586-591, San Francisco, CA, 1993.

J. J. Rodrguez, L. I. Kuncheva, and C. J. Alonso. Rotation forest: A new classifier ensemble
method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10):1619—
1630, 2006.

S. Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends
in Machine Learning, 4(2):107-194, 2012. ISSN 1935-8237.

J. Su and H. Zhang. A fast decision tree learning algorithm. In Proceedings of the AAAI
National Conference on Artificial Intelligence, pages 500-505, Boston, MA, 2006.

A. Tuzhilin. The lane’s gifts v. Google report, 2006. URL http://googleblog.blogspot .
sg/pdf/Tuzhilin_Report.pdf.

D. Wolpert. Stacked generalization. Neural Networks, 5:241-259, 1992.

M. Zhu. Recall, precision and average precision. Technical Report (Working Paper 2004-09),
University of Waterloo, 2004.

140

http://cran.open-source-solution.org/web/packages/gbm/vignettes/gbm.pdf
http://googleblog.blogspot.sg/pdf/Tuzhilin_Report.pdf
http://googleblog.blogspot.sg/pdf/Tuzhilin_Report.pdf

Journal of Machine Learning Research 15 (2014) 141-145 Submitted 4/13; Revised 10/13; Published 1/14

EnsembleSVM: A Library for Ensemble Learning Using
Support Vector Machines

Marc Claesen MARC.CLAESEN@ESAT.KULEUVEN.BE
KU Leuven, ESAT — STADIUS/iMinds Future Health

Kasteelpark Arenberg 10, box 2446

3001 Leuven, Belgium

Frank De Smet FRANK.DESMET@CM.BE
KU Leuven, Department of Public Health and Primary Care, Environment and Health
Kapucijnenvoer 35 blok d, box 7001

3000 Leuven, Belgium

Johan A.K. Suykens JOHAN.SUYKENS@ESAT.KULEUVEN.BE
Bart De Moor BART.DEMOOR@ESAT.KULEUVEN.BE
KU Leuven, ESAT — STADIUS/iMinds Future Health

Kasteelpark Arenberg 10, box 2446

3001 Leuven, Belgium

Editor: Geoff Holmes

Abstract

EnsembleSVM is a free software package containing efficient routines to perform ensemble
learning with support vector machine (SVM) base models. It currently offers ensemble
methods based on binary SVM models. Our implementation avoids duplicate storage and
evaluation of support vectors which are shared between constituent models. Experimental
results show that using ensemble approaches can drastically reduce training complexity
while maintaining high predictive accuracy. The EnsembleSVM software package is freely
available online at http://esat.kuleuven.be/stadius/ensemblesvm.

Keywords: classification, ensemble learning, support vector machine, bagging

1. Introduction

Data sets are becoming increasingly large. Machine learning practitioners are confronted
with problems where the main computational constraint is the amount of time available.
Problems become particularly challenging when the training sets no longer fit into memory.
Accurately solving the dual problem for SVM training with nonlinear kernels requires a run
time which is at least quadratic in the size of the training set n, thus training complexity
is Q(n?) (Bottou and Lin, 2007; List and Simon, 2009).

EnsembleSVM employs a divide-and-conquer strategy by aggregating many SVM models,
trained on small subsamples of the training set. Through subdivision, total training time
decreases significantly, even though more models need to be trained. For example, training
p classifiers on subsamples of size n/p, results in an approximate complexity of (n?/p).
This reduction in complexity helps in dealing with large data sets and nonlinear kernels.

(©2014 Marc Claesen, Frank De Smet, Johan A.K. Suykens and Bart De Moor.

http://esat.kuleuven.be/stadius/ensemblesvm

CLAESEN, DE SMET, SUYKENS AND DE MOOR

Ensembles of SVM models have been used in various applications (Wang et al., 2009;
Linghu and Sun, 2010; Mordelet and Vert, 2011). Collobert et al. (2002) use ensembles
for large scale learning and employ a neural network to aggregate base models. Valentini
and Dietterich (2003) provide an implementation which allows base models to use different
kernels. For efficiency reasons, we require base models to share a single kernel function.

While other implementations mainly focus on improving predictive performance, our
framework primarily aims to (i) make nonlinear large-scale learning feasible through com-
plexity reductions and (ii) enable fast prototyping of novel ensemble algorithms.

2. Software Description

The EnsembleSVM software is freely available online under a LGPL license. EnsembleSVM
provides ensembles of instance-weighted SVMs, as defined in Equation (1). The default ap-
proach we offer is bagging, which is commonly used to improve the performance of unstable
classifiers (Breiman, 1996). In bagging, base models are trained on bootstrap subsamples
of the training set and their predictions are aggregated through majority voting.

Base model flexibility is maximized by using instance-weighted binary support vector
machine classifiers, as defined in Equation (1). This formulation lets users define misclassifi-
cation penalties per training instance C;, ¢ = 1,...,n and encompasses popular approaches
such as C-SVC and class-weighted SVM (Cortes and Vapnik, 1995; Osuna et al., 1997).

1 7 =
in — Ci&; 1
glél}) 2W W—I—; i&i (1)
subject to y;(wlo(x;) +p) > 1—&;, 1=1,...,n,
§& >0, i=1,...,n

When aggregating SVM models, the base models often share support vectors (SVs).
The EnsembleSVM software intelligently caches distinct SVs to ensure that they are only
stored and used for kernel evaluations once. As a result, EnsembleSVM models are smaller
and faster in prediction than ensemble implementations based on wrappers.

2.1 Implementation

EnsembleSVM has been implemented in C++ and makes heavy use of the standard library.
The main implementation focus is training speed. We use facilities provided by the C++11
standard and thus require a moderately recent compiler, such as gcc > 4.7 or clang > 3.2.
A portable Makefile system based on GNU autotools is used to build EnsembleSVM.

EnsembleSVM interfaces with LIBSVM to train base models (Chang and Lin, 2011). Our
code must be linked to LIBSVM but does not depend on a specific version. This allows users
to choose the desired version of the LIBSVM software in the back-end.

The EnsembleSVM programming framework is designed to facilitate prototyping of en-
semble algorithms using SVM base models. We particularly provide extensive support to
define novel aggregation schemes, should the available options be insufficient. Key compo-
nents are extensively documented and on a broad overview is provided on our wiki.!

1. The EnsembleSVM development wiki is available at https://github.com/claesenm/EnsembleSVM/wiki.

142

https://github.com/claesenm/EnsembleSVM/wiki

ENSEMBLESVM

The EnsembleSVM library was built with extensibility and user contributions in mind.
Major API functions are well documented to lower the threshold for external development.
The executable tools provided with EnsembleSVM are essentially wrappers for the library
itself. The tools can be considered as use cases of the main API functions to help developers.

2.2 Tools

The main tools in this package are esvm-train and esvm-predict, used to train and
predict with ensemble models. Both of these are pthread-parallelized. Additionally, the
merge-models tool can be used to merge standard LIBSVM models into ensembles. Finally,
esvm-edit provides facilities to modify the aggregation scheme used by an ensemble.

EnsembleSVM includes a variety of extra tools to facilitate basic operations such as
stratified bootstrap sampling, cross-validation, replacing categorical features by dummy
variables, splitting data sets and sparsifying standard data sets. We recommend retaining
the original ratio of positives and negatives in the training set when subsampling.

3. Benchmark Results

To illustrate the potential of our software, EnsembleSVM 2.0 has been benchmarked with
respect to LIBSVM 3.17. To keep the experiments simple, we use majority voting to aggregate
predictions, even though more sophisticated methods are offered. For reference, we also list
the best obtained accuracy with a linear model, trained using LIBLINEAR (Fan et al., 2008).
Linear methods are common in large-scale learning due to their speed, but may result in
significantly decreased accuracy. This is why scalable nonlinear methods are desirable.

We used two binary classification problems, namely the covtype and ijcnni data sets.?
Both data sets are balanced. Features were always scaled to [0,1]. We have used C-
SVC as SVM and base models (V i : C; = C'). Reported numbers are averages of 5 test
runs to ensure reproducibility. We used the RBF kernel, defined by the kernel function
K(xi,Xj) = e~ Ixi=x;l1* Optimal parameter selection was done through cross-validation.

The covtype data set is a common classification benchmark featuring 54 dimensions
(Blackard and Dean, 1999). We randomly sampled balanced training and test sets of 100, 000
and 40, 000 instances respectively and classified class 2 versus all others. The ijcnnl data
set was used in a machine learning challenge during IJCNN 2001 (Prokhorov, 2001). It
contains 35,000 training instances in 22 dimensions.

Results in Table 1 show several interesting trends. Training EnsembleSVM models is
orders of magnitude faster, because training SVMs on small subsets significantly reduces
complexity. Subsampling induces smaller kernels per base model resulting in lower over-
all memory use. Due to our parallelized implementation, ensemble models were faster in
prediction than LIBSVM models in both experiments despite having twice as many SVs.

The ensembles in these experiments are competitive with a traditional SVM even though
we used simple majority voting. For covtype, ensemble accuracy is 3% lower than a single
SVM and for ijcnni the ensemble is marginally better (0.2%). Linear SVM falls far short
in terms of accuracy for both experiments, but is trained much faster (< 2 seconds).

2. Both data sets are available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.
html.

143

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

CLAESEN, DE SMET, SUYKENS AND DE MOOR

data set test set accuracy no. of SVs time (s)
LIBSVM LIBLINEAR ESVM LIBSVM ESVM LIBSVM ESVM

covtype 0.92 0.76 0.89 26516 50590 728 35

ijcnni 0.98 0.92 0.98 3564 7026 9.5 0.3

Table 1: Summary of benchmark results per data set: test set accuracy, number of sup-
port vectors and training time. Accuracies are listed for a single LIBSVM model,
LIBLINEAR model and an ensemble model.

We obtained good results with very basic aggregation. Collobert et al. (2002) illustrated
that more sophisticated aggregation methods can improve the predictive performance of en-
sembles. Others have reported performance improvements over standard SVM for ensembles
using majority voting (Valentini and Dietterich, 2003; Wang et al., 2009).

4. Conclusions

EnsembleSVM provides users with efficient tools to experiment with ensembles of SVMs.
Experimental results show that training ensemble models is significantly faster than training
standard LIBSVM models while maintaining competitive predictive accuracy.

Linear methods are frequently applied in large-scale learning, mainly due to their low
training complexity. Linear methods are known to have competitive accuracy for high
dimensional problems. As our benchmarks showed, the difference in accuracy may be large
for low dimensional problems. As such, fast nonlinear methods remain desirable in large-
scale learning, particularly for low dimensional tasks with many training instances. Our
benchmarks illustrate the potential of the ensemble approaches offered by EnsembleSVM.

Ensemble performance may be improved by using more complex aggregation schemes.
EnsembleSVM currently offers various aggregation schemes, both linear and nonlinear. Ad-
ditionally, it facilitates fast prototyping of novel methods.

EnsembleSVM strives to provide high-quality, user-friendly tools and an intuitive pro-
gramming framework for ensemble learning with SVM base models. The software will be
kept up to date by incorporating promising new methods and ideas when they are presented
in the literature. User requests and suggestions are welcome and appreciated.

Acknowledgments

Frank De Smet is a member of the medical management department of the National Alliance
of Christian Mutualities. Acknowledged funding sources: Marc Claesen (IWT grant number
111065); Research Council KU Leuven: GOA MaNet, CoE SymBioSys; EU: ERC AdG A-
DATADRIVE-B.

144

ENSEMBLESVM

References

Jock A. Blackard and Denis J. Dean. Comparative accuracies of artificial neural networks
and discriminant analysis in predicting forest cover types from cartographic variables.
Computers and Electronics in Agriculture, 24(3):131-151, December 1999.

Léon Bottou and Chih-Jen Lin. Support vector machine solvers. In Léon Bottou, Olivier
Chapelle, Dennis DeCoste, and Jason Weston, editors, Large Scale Kernel Machines,
pages 301-320, Cambridge, MA, USA, 2007. MIT Press.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123-140, August 1996.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Ronan Collobert, Samy Bengio, and Yoshua Bengio. A parallel mixture of SVMs for very
large scale problems. Neural Computation, 14(5):1105-1114, 2002.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):
273-297, September 1995.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
LIBLINEAR: A library for large linear classification. Journal of Machine Learning Re-
search, 9:1871-1874, June 2008.

Bin Linghu and Bing-Yu Sun. Constructing effective SVM ensembles for image classification.
In Knowledge Acquisition and Modeling (KAM), 2010 3rd International Symposium on,
pages 80-83, 2010.

Nikolas List and Hans Ulrich Simon. SVM-optimization and steepest-descent line search.
In Proceedings of the 22nd Annual Conference on Computational Learning Theory, 2009.

Fantine Mordelet and Jean-Philippe P. Vert. ProDiGe: Prioritization Of Disease Genes with
multitask machine learning from positive and unlabeled examples. BMC' bioinformatics,
12(1):389+, 2011.

Edgar Osuna, Robert Freund, and Federico Girosi. Support Vector Machines: Training and
Applications. Technical Report AIM-1602, 1997.

Danil Prokhorov. IJCNN 2001 neural network competition. Slide Presentation in IJCNN’01,
2001.

Giorgio Valentini and Thomas G. Dietterich. Low bias bagged support vector machines.
In International Conference on Machine Learning, ICML-2003, pages 752-759. Morgan
Kaufmann, 2003.

Shi-jin Wang, Avin Mathew, Yan Chen, Li-feng Xi, Lin Ma, and Jay Lee. Empirical analysis
of support vector machine ensemble classifiers. Expert Systems with Applications, 36(3,
Part 2):6466 — 6476, 2009.

145

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Journal of Machine Learning Research 15 (2014) 147-191 Submitted 4/13; Revised 9/13; Published 1/14

A Junction Tree Framework for
Undirected Graphical Model Selection

Divyanshu Vats DVATS@RICE.EDU
Department of Electrical and Computer Engineering
Rice University

Houston, TX 77005, USA

Robert D. Nowak NOWAKQECE.WISC.EDU
Department of Electrical and Computer Engineering

University of Wisconsin—Madison

Madison, WI 53706, USA

Editor: Sebastian Nowozin

Abstract

An undirected graphical model is a joint probability distribution defined on an undirected
graph G*, where the vertices in the graph index a collection of random variables and
the edges encode conditional independence relationships among random variables. The
undirected graphical model selection (UGMS) problem is to estimate the graph G* given
observations drawn from the undirected graphical model. This paper proposes a framework
for decomposing the UGMS problem into multiple subproblems over clusters and subsets
of the separators in a junction tree. The junction tree is constructed using a graph that
contains a superset of the edges in G*. We highlight three main properties of using junction
trees for UGMS. First, different regularization parameters or different UGMS algorithms
can be used to learn different parts of the graph. This is possible since the subproblems
we identify can be solved independently of each other. Second, under certain conditions,
a junction tree based UGMS algorithm can produce consistent results with fewer obser-
vations than the usual requirements of existing algorithms. Third, both our theoretical
and experimental results show that the junction tree framework does a significantly better
job at finding the weakest edges in a graph than existing methods. This property is a
consequence of both the first and second properties. Finally, we note that our framework
is independent of the choice of the UGMS algorithm and can be used as a wrapper around
standard UGMS algorithms for more accurate graph estimation.

Keywords: Graphical models, Markov random fields, junction trees, model selection,
graphical model selection, high-dimensional statistics, graph decomposition

1. Introduction

An undirected graphical model is a joint probability distribution Px of a random vector X
defined on an undirected graph G*. The graph G* consists of a set of vertices V = {1,...,p}
and a set of edges F(G*) C V x V. The vertices index the p random variables in X and
the edges E(G*) characterize conditional independence relationships among the random
variables in X (Lauritzen, 1996). We study undirected graphical models (also known as
Markov random fields) so that the graph G* is undirected, that is, if an edge (,j) € E(G*),

(©2014 Divyanshu Vats and Robert D. Nowak.

VATS AND NOWAK

[£235] [13.45] [3456] [456.7

[L35] 345] [456]

(8) Graph G* (b) Graph H (c) Junction tree (d) Region graph

Figure 1: Our framework for estimating the graph in (a) using (b) computes the junction
tree in (c) and uses a region graph representation in (d) of the junction tree to
decompose the UGMS problem into multiple subproblems.

then (j,7) € E(G*). The undirected graphical model selection (UGMS) problem is to
estimate G* given n observations X" = (X W ... X (")) drawn from Pyx. This problem is
of interest in many areas including biological data analysis, financial analysis, and social
network analysis; see Koller and Friedman (2009) for some more examples.

This paper studies the following problem: Given the observations X"
drawn from Px and a graph H that contains all the true edges E(G*), and
possibly some extra edges, estimate the graph G*.

A natural question to ask is how can the graph H be selected in the first place? One
way of doing so is to use screening algorithms, such as in Fan and Lv (2008) or in Vats (to
appear), to eliminate edges that are clearly non-existent in G*. Another method can be
to use partial prior information about X to remove unnecessary edges. For example, this
could be based on (i) prior knowledge about statistical properties of genes when analyzing
gene expressions, (ii) prior knowledge about companies when analyzing stock returns, or
(iii) demographic information when modeling social networks. Yet another method can be
to use clever model selection algorithms that estimate more edges than desired. Assuming
an initial graph H has been computed, our main contribution in this paper is to show how
a junction tree representation of H can be used as a wrapper around UGMS algorithms for
more accurate graph estimation.

1.1 Overview of the Junction Tree Framework

A junction tree is a tree-structured representation of an arbitrary graph (Robertson and
Seymour, 1986). The vertices in a junction tree are clusters of vertices from the original
graph. An edge in a junction tree connects two clusters. Junction trees are used in many
applications to reduce the computational complexity of solving graph related problems
(Arnborg and Proskurowski, 1989). Figure 1(c) shows an example of a junction tree for the
graph in Figure 1(b). Notice that each edge in the junction tree is labeled by the set of
vertices common to both clusters connected by the edge. These set of vertices are referred
to as a separator.

Let H be a graph that contains all the edges in G*. We show that the UGMS problem
can be decomposed into multiple subproblems over clusters and subsets of the separators
in a junction tree representation of H. In particular, using the junction tree, we construct

148

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

Figure 2: Structure of the graph used to analyze the junction tree framework for UGMS.

a region graph, which is a directed graph over clusters of vertices. An example of a region
graph for the junction tree in Figure 1(c) is shown in Figure 1(d). The first two rows in the
region graph are the clusters and separators of the junction tree, respectively. The rest of the
rows contain subsets of the separators.! The multiple subproblems we identify correspond
to estimating a subset of edges over each cluster in the region graph. For example, the
subproblem over the cluster {1,2,3,5} in Figure 1(d) estimates the edges (2,3) and (2,5).

We solve the subproblems over the region graph in an iterative manner. First, all
subproblems in the first row of the region graph are solved in parallel. Second, the region
graph is updated taking into account the edges removed in the first step. We keep solving
subproblems over rows in the region graph and update the region graph until all the edges
in the graph H have been estimated.

As illustrated above, our framework depends on a junction tree representation of the
graph H that contains a superset of the true edges. Given any graph, there may exist several
junction tree representations. An optimal junction tree is a junction tree representation
such that the maximum size of the cluster is as small as possible. Since we apply UGMS
algorithms to the clusters of the junction tree, and the complexity of UGMS depends on
the number of vertices in the graph, it is useful to apply our framework using optimal
junction trees. Unfortunately, it is computationally intractable to find optimal junction
trees (Arnborg et al., 1987). However, there exists several computationally efficient greedy
heuristics that compute close to optimal junction trees (Kjaerulff, 1990; Berry et al., 2003).
We use such heuristics to find junction trees when implementing our algorithms in practice.

1.2 Advantages of Using Junction Trees

We highlight three main advantages of the junction tree framework for UGMS.

Choosing Regularization Parameters and UGMS Algorithms: UGMS algorithms typically
depend on a regularization parameter that controls the number of estimated edges. This
regularization parameter is usually chosen using model selection algorithms such as cross-
validation or stability selection. Since each subproblem we identify in the region graph
is solved independently, different regularization parameters can be used to learn different
parts of the graph. This has advantages when the true graph G* has different charac-
teristics in different parts of the graph. Further, since the subproblems are independent,
different UGMS algorithms can be used to learn different parts of the graph. Our numerical
simulations clearly show the advantages of this property.

Reduced Sample Complexity: One of the key results of our work is to show that in many
cases, the junction tree framework is capable of consistently estimating a graph under weaker
conditions than required by previously proposed methods. For example, we show that if

1. See Algorithm 1 for details on how to exactly construct the region graph.

149

VATS AND NOWAK

G* consists of two main components that are separated by a relatively small number of
vertices (see Figure 2 for a general example), then, under certain conditions, the number of
observations needed for consistent estimation scales like log(pmin), where ppi, is the number
of vertices in the smaller of the two components. In contrast, existing methods are known
to be consistent if the observations scale like log p, where p is the total number of vertices. If
the smaller component were, for example, exponentially smaller than the larger component,
then the junction tree framework is consistent with about log log p observations. For generic
problems, without structure that can be exploited by the junction tree framework, we
recover the standard conditions for consistency.

Learning Weak FEdges: A direct consequence of choosing different regularization parameters
and the reduced sample complexity is that certain weak edges, not estimated using standard
algorithms, may be estimated when using the junction tree framework. We show this
theoretically and using numerical simulations on both synthetic and real world data.

1.3 Related Work

Several algorithms have been proposed in the literature for learning undirected graph-
ical models. Some examples include References Spirtes and Glymour (1991), Kalisch
and Biihlmann (2007), Banerjee et al. (2008), Friedman et al. (2008), Meinshausen and
Bithlmann (2006), Anandkumar et al. (2012a) and Cai et al. (2011) for learning Gaussian
graphical models, references Liu et al. (2009), Xue and Zou (2012), Liu et al. (2012a), Laf-
ferty et al. (2012) and Liu et al. (2012b) for learning non-Gaussian graphical models, and
references Bresler et al. (2008), Bromberg et al. (2009), Ravikumar et al. (2010), Netrapalli
et al. (2010), Anandkumar et al. (2012b), Jalali et al. (2011), Johnson et al. (2012) and Yang
et al. (2012) for learning discrete graphical models. Although all of the above algorithms
can be modified to take into account prior knowledge about a graph H that contains all the
true edges (see Appendix B for some examples), our junction tree framework is fundamen-
tally different than the standard modification of these algorithms. The main difference is
that the junction tree framework allows for using the global Markov property of undirected
graphical models (see Definition 1) when learning graphs. This allows for improved graph
estimation, as illustrated by both our theoretical and numerical results. We note that all
of the above algorithms can be used in conjunction with the junction tree framework.

Junction trees have been used for performing exact probabilistic inference in graphical
models (Lauritzen and Spiegelhalter, 1988). In particular, given a graphical model, and
its junction tree representation, the computational complexity of exact inference is expo-
nential in the size of the cluster in the junction tree with the most of number of vertices.
This has motivated a line of research for learning thin junction trees so that the maximum
size of the cluster in the estimated junction tree is small so that inference is computa-
tionally tractable (Chow and Liu, 1968; Bach and Jordan, 2001; Karger and Srebro, 2001;
Chechetka and Guestrin, 2007; Kumar and Bach, 2013). We also make note of algorithms
for learning decomposable graphical models where the graph structure is assumed to tri-
angulated (Malvestuto, 1991; Giudici and Green, 1999). In general, the goal in the above
algorithms is to learn a joint probability distribution that approximates a more complex
probability distribution so that computations, such as inference, can be done in a tractable
manner. On the other hand, this paper considers the problem of learning the structure of

150

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

the graph that best represents the conditional dependencies among the random variables
under consideration.

There are two notable algorithms in the literature that use junction trees for learning
graphical models. The first is an algorithm presented in Xie and Geng (2008) that uses
junction trees to find the direction of edges for learning directed graphical models. Unfor-
tunately, this algorithm cannot be used for UGMS. The second is an algorithm presented
in Ma et al. (2008) for learning chain graphs, that are graphs with both directed and undi-
rected edges. The algorithm in Ma et al. (2008) uses a junction tree representation to learn
an undirected graph before orienting some of the edges to learn a chain graph. Our pro-
posed algorithm, and subsequent analysis, differs from the work in Ma et al. (2008) in the
following ways:

(i) Our algorithm identifies an ordering on the edges, which subsequently results in a
lower sample complexity and the possibility of learning weak edges in a graph. The
ordering on the edges is possible because of our novel region graph interpretation for
learning graphical models. For example, when learning the graph in Figure 1(a) using
Figure 1(b), the algorithm in Ma et al. (2008) learns the edge (3,5) by applying a
UGMS algorithm to the vertices {1,2,3,4,5,6}. In contrast, our proposed algorithm
first estimates all edges in the second layer of the region graph in Figure 1(d), re-
estimates the region graph, and then only applies a UGMS algorithm to {3,4,5} to
determine if the edge (3, 4) belongs to the graph. In this way, our algorithm, in general,
requires applying a UGMS algorithm to a smaller number of vertices when learning
edges over separators in a junction tree representation.

(ii) Our algorithm for using junction trees for UGMS is independent of the choice of the
UGMS algorithm, while the algorithm presented in Ma et al. (2008) uses conditional
independence tests for UGMS.

(iii) Our algorithm, as discussed in (i), has the additional advantage of learning certain
weak edges that may not be estimated when using standard UGMS algorithms. We
theoretically quantify this property of our algorithm, while no such theory was pre-
sented in Ma et al. (2008).

Recent work has shown that solutions to the graphical lasso (gLasso) (Friedman et al.,
2008) problem for UGMS over Gaussian graphical models can be computed, under certain
conditions, by decomposing the problem over connected components of the graph computed
by thresholding the empirical covariance matrix (Witten et al., 2011; Mazumder and Hastie,
2012). The methods in Witten et al. (2011) and Mazumder and Hastie (2012) are useful
for computing solutions to gLasso for particular choices of the regularization parameter
and not for accurately estimating graphs. Thus, when using glLasso for UGMS, we can
use the methods in Witten et al. (2011) and Mazumder and Hastie (2012) to solve gLasso
when performing model selection for choosing suitable regularization parameters. Finally,
we note that recent work in Loh and Wainwright (2012) uses properties of junction trees to
learn discrete graphical models. The algorithm in Loh and Wainwright (2012) is designed for
learning discrete graphical models and our methods can be used to improve its performance.

151

VATS AND NOWAK

1.4 Paper Organization

The rest of the paper is organized as follows:

e Section 2 reviews graphical models and formulates the undirected graphical model
selection (UGMS) problem.

e Section 3 shows how junction trees can be represented as region graphs and outlines
an algorithm for constructing a region graph from a junction tree.

e Section 4 shows how the region graphs can be used to apply a UGMS algorithm to
the clusters and separators of a junction tree.

e Section 5 presents our main framework for using junction trees for UGMS. In partic-
ular, we show how the methods in Sections 3-4 can be used iteratively to estimate a
graph.

e Section 6 reviews the PC-Algorithm, which we use to study the theoretical properties
of the junction tree framework.

e Section 7 presents theoretical results on the sample complexity of learning graphical
models using the junction tree framework. We also highlight advantages of using the
junction tree framework as summarized in Section 1.2.

e Section 8 presents numerical simulations to highlight the advantages of using junction
trees for UGMS in practice.

e Section 9 summarizes the paper and outlines some future work.

2. Preliminaries

In this section, we review some necessary background on graphs and graphical models that
we use in this paper. Section 2.1 reviews some graph theoretic concepts. Section 2.2 reviews
undirected graphical models. Section 2.3 formally defines the undirected graphical model
selection (UGMS) problem. Section 2.4 reviews junction trees, which we use use as a tool
for decomposing UGMS into multiple subproblems.

2.1 Graph Theoretic Concepts

A graph is a tuple G = (V, E(G)), where V is a set of vertices and E(G) C V x V are
edges connecting vertices in V. For any graph H, we use the notation F(H) to denote its
edges. We only consider undirected graphs where if (vi,v2) € E(G), then (v2,v1) € E(G)
for v, v2 € V. Some graph theoretic notations that we use in this paper are summarized
as follows:

e Neighbor neg(i): Set of nodes connected to .

e Path {i,s1,...,54,7}: A sequence of nodes such that (,s1), (S4,7), (Sk, Sk+1) € E for
k=1,....d—1.

152

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

e Separator S: A set of nodes such that all paths from ¢ to j contain at least one node
in S. The separator S is minimal if no proper subset of S separates ¢ and j.

e Induced Subgraph G[A] = (A, E(G[A])): A graph over the nodes A such that E(G[A])
contains the edges only involving the nodes in A.

e Complete graph K 4: A graph that contains all possible edges over the nodes A.

For two graphs G1 = (V1, E(G1)) and G2 = (Va, E(G2)), we define the following standard
operations:

e Graph Union: G1 UGe = (V1 U Vo, By U E3).
e Graph Difference: G1\G2 = (V1, E1\E3).

2.2 Undirected Graphical Models

Definition 1 (Undirected Graphical Model, Lauritzen, 1996) An undirected graph-
ical model is a probability distribution Px defined on a graph G* = (V,E(G*)), where
V ={1,...,p} indezes the random vector X = (X1,...,X,) and the edges E(G*) encode
the following Markov property: for a set of nodes A, B, and S, if S separates A and B,
then X4 1 Xp|Xs.

The Markov property outlined above is referred to as the global Markov property. Undirected
graphical models are also referred to as Markov random fields or Markov networks in the
literature. When the joint probability distribution Px is non-degenerate, that is, Px >
0, the Markov property in Definition 1 are equivalent to the pairwise and local Markov
properties:

e Pairwise Markov property: For all (i,7) ¢ E, X; L X;[Xy -
e Local Markov property: For alli € V', X; L XV\{neg(i)U{i}}|Xneg(z’)'

In this paper, we always assume Px > 0 and say Px is Markov on G to reflect the
Markov properties. Examples of conditional independence relations conveyed by a proba-
bility distribution defined on the graph in Figure 3(d) are X; L Xg|{X2, X4} and X4 L
Xg|{ X2, X5, Xs}.

2.3 Undirected Graphical Model Section (UGMS)

Definition 2 (UGMS) The undirected graphical model selection (UGMS) problem is to
estimate a graph G* such that the joint probability distribution Px is Markov on G*, but
not Markov on any subgraph of G*.

The last statement in Definition 2 is important, since, if Px is Markov on G*, then it is
also Markov on any graph that contains G*. For example, all probability distributions are
Markov on the complete graph. Thus, the UGMS problem is to find the minimal graph
that captures the Markov properties associated with a joint probability distribution. In the
literature, this is also known as finding the minimal I-map.

153

VATS AND NOWAK

Let ¥ be an abstract UGMS algorithm that takes as inputs a set of n i.i.d. observations
X" ={XW, . .. XM} drawn from Px and a regularization parameter \,. The output of ¥
is a graph @n, where A, controls the number of edges estimated in @n Note the dependence
of the regularization parameter on n. We assume WV is consistent, which is formalized in the
following assumption.

Assumption 1 There exists a A, for which P(@n = G*) — 1 as n — oo, where @n =
(X" \y).

We give examples of ¥ in Appendix B. Assumption 1 also takes into account the high-
dimensional case where p depends on n in such a way that p,n — oo.

2.4 Junction Trees

Junction trees (Robertson and Seymour, 1986) are used extensively for efficiently solving
various graph related problems, see Arnborg and Proskurowski (1989) for some examples.
Reference Lauritzen and Spiegelhalter (1988) shows how junction trees can be used for
exact inference (computing marginal distribution given a joint distribution) over graphical
models. We use junction trees as a tool for decomposing the UGMS problem into multiple
subproblems.

Definition 3 (Junction tree) For an undirected graph G = (V, E(Q)), a junction tree
J = (C,E(T)) is a tree-structured graph over clusters of nodes in V such that

(i) Each node in 'V is associated with at least one cluster in C.
(ii) For every edge (i,j) € E(G), there exists a cluster Cy € C such that i,j € C.

(i1i) J satisfies the running intersection property: For all clusters Cy, Cy, and Cy, such
that Cy, separates Cy, and Cy, in the tree defined by E(J), C, N Cy, C Cy.

The first property in Definition 3 says that all nodes must be mapped to at least one
cluster of the junction tree. The second property states that each edge of the original graph
must be contained within a cluster. The third property, known as the running intersection
property, is the most important since it restricts the clusters and the trees that can be be
formed. For example, consider the graph in Figure 3(a). By simply clustering the nodes
over edges, as done in Figure 3(b), we can not get a valid junction tree (Wainwright, 2002).
By making appropriate clusters of size three, we get a valid junction tree in Fig. 3(c). In
other words, the running intersection property says that for two clusters with a common
node, all the clusters on the path between the two clusters must contain that common node.

Proposition 4 (Robertson and Seymour, 1986) Let J = (C, E(J)) be a junction tree
of the graph G. Let Sy, = C,NCy. For each (Cy,Cy) € €, we have the following properties:

1. Sy # 0.

2. Sy separates Cy\Syy and Cy,\Syy.

154

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

Figure 3: (a) An undirected graph, (b) Invalid junction tree since {1,2} separates {1,3}
and {3,4},but 3 ¢ {1,2}. (c) Valid junction tree for the graph in (a). (d) A grid
graph. (e) Junction tree representation of (d).

The set of nodes 5, on the edges are called the separators of the junction tree. Propo-
sition 4 says that all clusters connected by an edge in the junction tree have at least one
common node and the common nodes separate nodes in each cluster. For example, consider
the junction tree in Figure 3(e) of the graph in Figure 3(d). We can infer that 1 and 5 are
separated by 2 and 4. Similarly, we can also infer that 4 and 6 are separated by 2, 5, and 8.
It is clear that if a graphical model is defined on the graph, then the separators can be used
to easily define conditional independence relationships. For example, using Figure 3(e), we
can conclude that X7 I X5 given X5 and X4. As we will see in later Sections, Proposition 4
allow the decomposition of UGMS into multiple subproblems over clusters and subsets of
the separators in a junction tree.

3. Overview of Region Graphs

In this section, we show how junction trees can be represented as region graphs. As we
will see in Section 5, region graphs allow us to easily decompose the UGMS problem into
multiple subproblems. There are many different types of region graphs and we refer the
readers to Yedidia et al. (2005) for a comprehensive discussion about region graphs and how
they are useful for characterizing graphical models. The region graph we present in this
section differs slightly from the standard definition of region graphs. This is mainly because
our goal is to estimate edges, while the standard region graphs defined in the literature are
used for computations over graphical models.

A region is a collection of nodes, which in this paper can be the clusters of the junction
tree, separators of the junction tree, or subsets of the separators. A region graph G =
(R, E (G)) is a directed graph where the vertices are regions and the edges represent directed
edges from one region to another. We use the notation E () to emphasize that region graphs
contain directed edges. A description of region graphs is given as follows:

e The set E(G) contains directed edges so that if (R,S) € E(G), then there exists a
directed edge from region R to region S.

e Whenever R — S, then S C R.

Algorithm 1 outlines an algorithm to construct region graphs given a junction tree
representation of a graph H. We associate a label [with every region in R and group

155

VATS AND NOWAK

3568 |5,6|8,9| |2,3,5,6| |2,3,4,6| |3,4,6,7|

N>

(b) Junction tree (c) Region graph

Figure 4: (a) An example of H. (b) A junction tree representation of H. (c) A region graph
representation of (b) computed using Algorithm 1.

Algorithm 1: Constructing region graphs
Input: A junction tree J = (C, E(J)) of a graph H.
Output: A region graph G = (R, E(g))

1 R' = C, where C are the clusters of the junction tree 7.

2 Let R? be all the separators of J, that is, R? = {Su, = C, N C, : (Cy, Cy) € E(T)}.

3 To construct R?, find all possible pairwise intersections of regions in R?. Add all
intersecting regions with cardinality greater than one to R3.

4 Repeat previous step to construct R4, ..., R% until there are no more intersecting
regions of cardinality greater than one.

5 For R e R! and S € R, add the edge (R, S) to E(G) if S C R.

6 Let R ={R!, ..., R}

regions with the same label to partition R into L groups R',...,R%. In Algorithm 1, we
initialize R! and R? to be the clusters and separators of a junction tree J, respectively,
and then iteratively find R3,..., RY by computing all possible intersections of regions with
the same label. The edges in E(G) are only drawn from a region in R to a region in
R!*L. Figure 4(c) shows an example of a region graph computed using the junction tree in
Figure 4(b).

Remark 5 Note that the construction of the region graph depends on the junction tree.
Using methods in Vats and Moura (2012), we can always construct junction trees such
that the region graph only has two sets of regions, namely the clusters of the junction tree
and the separators of the junction tree. However, in this case, the size of the regions or
clusters may be too large. This may not be desirable since the computational complexity
of applying UGMS algorithms to region graphs, as shown in Section 5, depends on the size
of the regions.

Remark 6 (Region graph vs. Junction tree) For every junction tree, Algorithm 1
outputs a unique region graph. The junction tree only characterizes the relationship between
the clusters in a junction tree. A region graph extends the junction tree representation to
characterize the relationships between the clusters as well as the separators. For example,
in Figure 4(c), the region {5,6} is in the third row and is a subset of two separators of the

156

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

junction tree. Thus, the only difference between the region graph and the junction tree is
the additional set of regions introduced in R3, ..., RE.

Remark 7 From the construction in Algorithm 1, R may have two or more regions that
are the same but have different labels. For example, in Figure 4(c), the region {3,5} is in
both R? and R3. We can avoid this situation by removing {3,5} from R? and adding an
edge from the region {1,3,5} in R! to the region {3,5} in R3. For notational simplicity
and for the purpose of illustration, we allow for duplicate regions. This does not change the
theory or the algorithms that we develop.

4. Applying UGMS to Region Graphs

Before presenting our framework for decomposing UGMS into multiple subproblems, we
first show how UGMS algorithms can be applied to estimate a subset of edges in a region of
a region graph. In particular, for a region graph G = (R,E(g)), we want to identify a set
of edges in the induced subgraph H[R)] that can be estimated by applying a UGMS algorithm
to either R or a set of vertices that contains R. With this goal in mind, define the children
ch(R) of a region R as follows:

Children: ch(R) = {S: (R,S) € 5} . (1)

We say R connects to S if (R,S) € E(G). Thus, the children in (1) consist of all regions
that R connects to. For example, in Figure 4(c),

ch({2,3,4,6}) = {{2,3,6}, {3,4,6}}.

If there exists a direct path from S to R, we say S is an ancestor of R. The set of all
ancestors of R is denoted by an(R). For example, in Figure 4(c),

an({5,6,8,9}) = 0,
an({3,5,6}) = {{3,5,6,8},{2,3,5,6}},and
an({3,6}) = {{3,5,6},{2,3,6},{3,4,6},{2,3,5,6},{2,3,4,6},{3,4,6,7},{3,5,6,8} } }.

The notation R takes the union of all regions in an(R) and R so that

rR= |J s (2)

Se{an(R),R}

Thus, R contains the union of all clusters in the junction tree that contain R. An illustration
of some of the notations defined on region graphs is shown in Figure 5. Using ch(R), define
the subgraph HJ, as?

Hp = H[R\ {Usecnm)Ks} (3)
where H[R] is the induced subgraph that contains all edges in H over the region R and Kg
is the complete graph over S. In words, Hy, is computed by removing all edges from H[R)]
that are contained in another separator. For example, in Figure 4(c), when R = {5,6, 8},
E(Hy) = {(5,8),(6,8)}. The subgraph Hj, is important since it identifies the edges that
can be estimated when applying a UGMS algorithm to the set of vertices R.

2. For graphs G1 and G2, E(G1\G2) = E(G1)\E(G2) and E(G1 U G2) = E(G1) U E(G2).

157

VATS AND NOWAK

Algorithm 2: UGMS over regions in a region graph
1: Input: Region graph G = (R,E(g)), a region R, observations X", and a UGMS
algorithm W.
2: Compute H}, using (3) and R using (2).
3: Apply ¥ to %% to estimate edges in Hj,. See Appendix B for examples.

4: Return the estimated edges ER.

Figure 5: Notations defined on region graphs. The children ch(R) are the set of regions
that R connects to. The ancestors an(R) are all the regions that have a directed
path to the region R. The set R takes the union of all regions in an(R) and R.

Proposition 8 Suppose E(G*) C E(H). All edges in Hy, can be estimated by solving a
UGMS problem over the vertices R.

Proof See Appendix C. |

Proposition 8 says that all edges in H}, can be estimated by applying a UGMS algorithm
to the set of vertices R. The intuition behind the result is that only those edges in the
region R can be estimated whose Markov properties can be deduced using the vertices in
R. Moreover, the edges not estimated in H|[R] share an edge with another region that does
not contain all the vertices in R. Algorithm 2 summarizes the steps involved in estimating
the edges in Hj, using the UGMS algorithm ¥ defined in Section 2.3. Some examples on
how to use Algorithm 2 to estimate some edges of the graph in Figure 4(a) using the region
graph in Figure 4(c) are described as follows.

1. Let R = {1,3,5}. This region only connects to {3,5}. This means that all edges,
except the edge (3,5) in H[R], can be estimated by applying ¥ to R.

2. Let R = {3,5,6}. The children of this region are {3,5}, {5,6}, and {3,6}. This means
that Hj, = (), that is, no edge over H[R] can be estimated by applying ¥ to {3,5,6}.

158

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

Notation Description

G* = (V,E(G*)) | Unknown graph that we want to estimate.

Known graph such that E(G*) C E(H).

= (R,E(G)) Region graph of H constructed using Algorithm 1.

(RY,...,R¥) | Partitioning of the regions in R into L labels.

The set of vertices used when applying ¥ to estimate edges over R.
See (2) for definition.

Edges in H[R] that can be estimated using Algorithm 2.

See (3) for definition.

JRND T
I

=

Table 1: A summary of some notations.

3. Let R = {3,4,6}. This region only connects to {3,6}. Thus, all edges except (3,6)
can be estimated. The regions {2,3,4,6} and {3,4,6,7} connect to R, so ¥ needs to
be applied to R = {2,3,4,6,7}.

5. UGMS Using Junction Trees: A General Framework

In this section, we present the junction tree framework for UGMS using the results from
Sections 3-4. Section 5.1 presents the junction tree framework. Section 5.2 discusses the
computational complexity of the framework. Section 5.3 highlights the advantages of using
junction trees for UGMS using some examples. We refer to Table 1 for a summary of all
the notations that we use in this section.

5.1 Description of Framework

Recall that Algorithm 2 shows that to estimate a subset of edges in H[R], where R is a
region in the region graph G, the UGMS algorithm ¥ in Assumption 1 needs to be applied
to the set R defined in (2). Given this result, a straightforward approach to decomposing
the UGMS problem is to apply Algorithm 2 to each region R and combine all the estimated
edges. This will work since for any R,S € R such that R # S, E(Hp) N E(Hg) = 0.
This means that each application of Algorithm 2 estimates a different set of edges in the
graph. However, for some edges, this may require applying a UGMS algorithm to a large
set of nodes. For example, in Figure 4(c), when applying Algorithm 2 to R = {3,6}, the
UGMS algorithm needs to be applied to R = {2,3,4,5,6,7,8}, which is almost the full set
of vertices. To reduce the problem size of the subproblems, we apply Algorithms 1 and 2
in an iterative manner as outlined in Algorithm 3.

Figure 6 shows a high level description of Algorithm 3. We first find a junction tree and
then a region graph of the graph H using Algorithm 1. We then find the row in the region
graph over which edges can be estimated and apply Algorithm 2 to each region in that row.
We note that when estimating edges over a region, we use model selection algorithms to
choose an appropriate regularization parameter to select the number of edges to estimate.
Next, all estimated edges are added to G and all edges that are estimated are removed from
H. Thus, H now represents all the edges that are left to be estimated and G U H contains

159

VATS AND NOWAK

Find Junction Tree Apply UGMS to a
X" H ——> | and Region Graph |[—————>»| row of region graph
(Algorithm 1) (Algorithm 2)
e /
\
Have all edges Yes

———>» Output graph
been estimated?

Figure 6: A high level overview of the junction tree framework for UGMS in Algorithm 3.

Algorithm 3: Junction Tree Framework for UGMS
See Table 1 for notations.

Step 1. Initialize G so that E(CA?) = () and find the region graph G of H.
Step 2. Find the smallest £ such that there exists a region R € R’ such that E(H}) # 0.
Step 3. Apply Algorithm 2 to each region in RY.

Step 4. Add all estimated edges to G and remove edges from H that have been estimated.
Now H U G contains all the edges in G*.

Step 5. Compute a new junction tree and region graph G using the graph GUH.

Step 6. If E(H) = (), stop the algorithm, else go to Step 2.

all the edges in G*. We repeat the above steps on a new region graph computed using GUH
and stop the algorithm when H is an empty graph.

An example illustrating the junction tree framework is shown in Figure 7. The region
graph in Figure 7(b) is constructed using the graph H in Figure 7(a). The true graph G*
we want to estimate is shown in Figure 1(a). The top and bottom in Figure 7(c) show the
graphs G and H , respectively, after estimating all the edges in R! of Figure 7(b). The edges
in G are represented by double lines to distinguish them from the edges in H. Figure 7(d)
shows the region graph of GUH. Figure 7(e) shows the updated G and H where only the
edges (4,5) and (5,6) are left to be estimated. This is done by applying Algorithm 2 to
the regions in R? of Figure 7(f). Notice that we did not include the region {1,2} in the
last region graph since we know all edges in this region have already been estimated. In
general, if F(H[R]) = () for any region R, we can remove this region and thereby reduce the
computational complexity of constructing region graphs.

160

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

Q. ® 6
M235| 345 3456 [456.7]
NN/ N/ @@ O

& @ @ @©
(a) GraphH (b) Region graph of (a) (c) Steps 2,3, and 4 ap-
plied to (b)

oo o @

@ >—6, @
1,2| 1,34,5] |4,56] |56,7 1,34|(3.4.5]|4,56((56,7 @,
12] 1345] | |||®®®||I || II/I

@ @ O+ ®© °
(d) Step5 (e) Steps 2,3, and 4 ap- (f) Step5 (g) Star graph
plied to (d)

Figure 7: Example to illustrate the junction tree framework in Algorithm 3.

5.2 Computational Complexity

In this section, we discuss the computational complexity of the junction tree framework.
It is difficult to write down a closed form expression since the computational complexity
depends on the structure of the junction tree. Moreover, merging clusters in the junction
tree can easily control the computations. With this in mind, the main aim in this section
is to show that the complexity of the framework is roughly the same as that of applying a
standard UGMS algorithm. Consider the following observations.

1. Computing H: Assuming no prior knowledge about H is given, this graph needs
to be computed from the observations. This can be done using standard screening
algorithms, such as those in Fan and Lv (2008) and Vats (to appear), or by applying a
UGMS algorithm with a regularization parameter that selects a larger number of edges
(than that computed by using a standard UGMS algorithm). Thus, the complexity
of computing H is roughly the same as that of applying a UGMS algorithm to all the
vertices in the graph.

2. Applying UGMS to regions: Recall from Algorithm 2 that we apply a UGMS algorithm
to observations over R to estimate edges over the vertices R, where R is a region in
a region graph representation of H. Since |R| < p, it is clear that the complexity of
Algorithm 2 is less than that of applying a UGMS algorithm to estimate all edges in
the graph.

3. Computing junction trees: For a given graph, there exists several junction tree repre-
sentations. The computational complexity of applying UGMS algorithms to a junction
tree depends on the size of the clusters, the size of the separators, and the degree of the
junction tree. In theory, it is useful to select a junction tree so that the overall com-
putational complexity of the framework is as small as possible. However, this is hard

161

VATS AND NOWAK

since there can be an exponential number of possible junction tree representations.
Alternatively, we can select a junction tree so that the maximum size of the clusters
is as small as possible. Such junction trees are often referred to as optimal junction
trees in the literature. Although finding optimal junction trees is also hard (Arnborg
et al., 1987), there exists several computationally tractable heuristics for finding close
to optimal junction trees (Kjaerulff, 1990; Berry et al., 2003). The complexity of such
algorithms range from O(p?) to O(p?), depending on the degree of approximation.
We note that this time complexity is less than that of standard UGMS algorithms.

It is clear that the complexity of all the intermediate steps in the framework is less than
that of applying a standard UGMS algorithm. The overall complexity of the framework
depends on the number of clusters in the junction tree and the size of the separators in the
junction tree. The size of the separators in a junction tree can be controlled by merging
clusters that share a large separator. This step can be done in linear time. Removing large
separators also reduces the total number of clusters in a junction tree. In the worst case,
if all the separators in H are too large, the junction tree will only have one cluster that
contains all the vertices. In this case, using the junction tree framework will be no different
than using a standard UGMS algorithm.

5.3 Advantages of using Junction Trees and Region Graphs

An alternative approach to estimating G* using H is to modify some current UGMS algo-
rithms (see Appendix B for some concrete examples). For example, neighborhood selection
based algorithms first estimate the neighborhood of each vertex and then combine all the
estimated neighborhoods to construct an estimate G of G* (Meinshausen and Biihlmann,
2006; Bresler et al., 2008; Netrapalli et al., 2010; Ravikumar et al., 2010). Two ways in
which these algorithms can be modified when given H are described as follows:

1. A straightforward approach is to decompose the UGMS problem into p different sub-
problems of estimating the neighborhood of each vertex. The graph H can be used
to restrict the estimated neighbors of each vertex to be subsets of the neighbors in H.
For example, in Figure 7(a), the neighborhood of 1 is estimated from the set {2,3,4,5}
and the neighborhood of 3 is estimated from the set {1,4,5,6}. This approach can be
compared to independently applying Algorithm 2 to each region in the region graph.
For example, when using the region graph, the edge (1,4) can be estimated by apply-
ing a UGMS algorithm to {1,3,4,5}. In comparison, when not using region graphs,
the edge (1,4) is estimated by applying a UGMS algorithm to {1, 2, 3,4,5}. In general,
using region graphs results in smaller subproblems. A good example to illustrate this
is the star graph in Figure 7(g). A junction tree representation of the star graph can
be computed so that all clusters will have size two. Subsequently, the junction tree
framework will only require applying a UGMS algorithm to a pair of nodes. On the
other hand, neighborhood selection needs to be applied to all the nodes to estimate
the neighbors of the central node 1 which is connected to all other nodes.

2. An alternative approach is to estimate the neighbors of each vertex in an iterative
manner. However, it is not clear what ordering should be chosen for the vertices. The

162

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

region graph approach outlined in Section 5.1 leads to a natural choice for choosing
which edges to estimate in the graph so as to reduce the problem size of subsequent
subproblems. Moreover, iteratively applying neighborhood selection may still lead to
large subproblems. For example, suppose the star graph in Figure 7(g) is in fact the
true graph. In this case, using neighborhood selection always leads to applying UGMS
to all the nodes in the graph.

From the above discussion, it is clear that using junction trees for UGMS leads to smaller
subproblems and a natural choice of an ordering for estimating edges in the graph. We will
see in Section 7 that the smaller subproblems lead to weaker conditions on the number of
observations required for consistent graph estimation. Moreover, our numerical simulations
in Section 8 empirically show the advantages of using junction tree over neighborhood
selection based algorithms.

6. PC-Algorithm for UGMS

So far, we have presented the junction tree framework using an abstract undirected graph-
ical model selection (UMGS) algorithm. This shows that our framework can be used in
conjunction with any UGMS algorithm. In this section, we review the PC-Algorithm,
since we use it to analyze the junction tree framework in Section 7. The PC-Algorithm
was originally proposed in the literature for learning directed graphical models (Spirtes and
Glymour, 1991). The first stage of the PC-Algorithm, which we refer to as PC, estimates an
undirected graph using conditional independence tests. The second stage orients the edges
in the undirected graph to estimate a directed graph. We use the first stage of the PC-
Algorithm for UGMS. Algorithm 4 outlines PC. Variants of the PC-Algorithm for learning
undirected graphical models have recently been analyzed in Anandkumar et al. (2012b,a).
The main property used in PC is the global Markov property of undirected graphical models
which states that if a set of vertices S separates ¢ and j, then X; 1L X;|Xg. As seen in
Line 5 of Algorithm 4, PC deletes an edge (¢,) if it identifies a conditional independence
relationship. Some properties of PC are summarized as follows:

1. Parameter k: PC iteratively searches for separators for an edge (i, j) by searching for
separators of size 0,1, ..., k. This is reflected in Line 2 of Algorithm 4. Theoretically,
the algorithm can automatically stop after searching for all possible separators for
each edge in the graph. However, this may not be computationally tractable, which
is why k needs to be specified.

2. Conditional Independence Test: Line 5 of Algorithm 4 uses a conditional indepen-
dence test to determine if an edge (i, j) is in the true graph. This makes PC extremely
flexible since nonparametric independence tests may be used, see Hoeffding (1948),
Rasch et al. (2012) and Zhang et al. (2012) for some examples. In this paper, for
simplicity, we only consider Gaussian graphical models. In this case, conditional in-
dependence can be tested using the conditional correlation coeflicient defined as

—1
2ij — Yisdg ¢S,

9
v 20152558

Conditional correlation coefficient: Pijls =

163

VATS AND NOWAK

Algorithm 4: PC-Algorithm for UGMS: PC(k, X", H, L)

= I B NV R S

Inputs:

k: An integer that controls the computational complexity of PC.
X™: n ii.d. observations.

H: A graph that contains all the true edges G*.

L: A graph that contains the edges that need to be estimated.

Output: A graph G that contains edges in L that are estimated to be in G*.
G+ L
for each k € {0,1,...,x} do

~

for each (i,7) € E(G) do
S;; < Neighbors of 7 or j in H depending on which one has lower cardinality.
if 35CS;y, |S] =k, st. X; L X;|Xg (computed using X™) then
L Delete edge (i,j) from G and H.

Return G.

where Px ~ N(0,), Y A,B is the covariance matrix of X4 and Xpg, and Ya,B|s I8 the
conditional covariance defined by

—1
YaBs =XaB—Xas¥geXB,s -

Whenever X; I X;|Xg, then p;;g = 0. This motivates the following test for inde-
pendence:

Conditional Independence Test: [p;;is| < A\n = X; L X;[X5, (4)

where p;;|g is computed using the empirical covariance matrix from the observations

X"™. The regularization parameter A\, controls the number of edges estimated in G.

. The graphs H and L: Recall that H contains all the edges in G*. The graph L contains

edges that need to be estimated since, as seen in Algorithm 2, we apply UGMS to only
certain parts of the graph instead of the whole graph. As an example, to estimate
edges in a region R of a region graph representation of H, we apply Algorithm 4 as
follows:

Gr=PC(n, X", H,Hy}) , (5)
where HY, is defined in (3). Notice that we do not use R in (5). This is because Line 4
of Algorithm 4 automatically finds the set of vertices to apply the PC algorithm to.
Alternatively, we can apply Algorithm 4 using R as follows:

Gr = PC (1, X, Kz, H) | (6)

where K% is the complete graph over R.

. The set S;;: An important step in Algorithm 4 is specifying the set S;; in Line 4 to

restrict the search space for finding separators for an edge (7, j). This step significantly
reduces the computational complexity of PC and differentiates PC from the first stage
of the SGS-Algorithm (Spirtes et al., 1990), which specifies S;; = V\ {4, j}.

164

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

7. Theoretical Analysis of Junction Tree based PC

We use the PC-algorithm to analyze the junction tree based UGMS algorithm. Our main
result, stated in Theorem 9, shows that when using the PC-Algorithm with the junction
tree framework, we can potentially estimate the graph using fewer number of observations
than what is required by the standard PC-Algorithm. As we shall see in Theorem 9, the
particular gain in performance depends on the structure of the graph.

Section 7.1 discusses the assumptions we place on the graphical model. Section 7.2
presents the main theoretical result highlighting the advantages of using junction trees.
Throughout this section, we use standard asymptotic notation so that f(n) = Q(g(n))
implies that there exists an N and a constant ¢ such that for all n > N, f(n) > cg(n). For
f(n) = 0O(g(n)), replace > by <.

7.1 Assumptions

(A1) Gaussian graphical model: We assume X = (Xi,...,X,) ~ Py, where Px is a
multivariate normal distribution with mean zero and covariance . Further, Px is
Markov on G* and not Markov on any subgraph of G*. It is well known that this is
assumption translates into the fact that Zi_jl = 0 if and only if (4,) ¢ G* (Speed and
Kiiveri, 1986).

(A2) Faithfulness: If X; L X;|Xg, then i and j are separated by® S. This assumption is
important for the PC algorithm to output the correct graph. Further, note that the
Markov assumption is different since it goes the other way: if ¢ and j are separated
by S, then X; I X;|Xg. Thus, when both (A1) and (A2) hold, we have that X; 1L
Xl Xs <= (i,7) &€ G*.

(A3) Separator Size n: For all (i,j) ¢ G*, there exists a subset of nodes S C V\{i,j},
where |S| < 7, such that S is a separator for ¢ and j in G*. This assumption allows
us to use kK = 1 when using PC.

(A4) Conditional Correlation Coefficient pyjis and ¥: Under (A3), we assume that p;;s
satisfies
sup{loyis| 1ij € V.S CV,|S| <m}} < M <1,

where M is a constant. Further, we assume that max; g)<, 25 < L < oo.

(A5) High-Dimensionality We assume that the number of vertices in the graph p scales
with n so that p — oo as n — oo. Furthermore, both p;; 5 and n are assumed to be
functions of n and p unless mentioned otherwise.

(A6) Structure of G*: Under (A3), we assume that there exists a set of vertices V1, V3,
and T such that T separates Vi and V5 in G* and |T'| < 7. Figure 8(a) shows the
general structure of this assumption.

Assumptions (A1)-(A5) are standard conditions for proving high-dimensional consis-
tency of the PC-Algorithm for Gaussian graphical models. The structural constraints on

3. If S is the empty set, then there is no path between i and j.

165

VATS AND NOWAK

ViuUT VoUT

~

T

(8) Structure of the graph in (A5) (b) Region graph of (a)

Figure 8: General Structure of the graph we use in showing the advantages of the junction
tree framework.

the graph in Assumption (A6) are required for showing the advantages of the junction tree
framework. We note that although (A6) appears to be a strong assumption, there are
several graph families that satisfy this assumption. For example, the graph in Figure 1(a)
satisfies (A6) with V; = {1,2}, Vo = {1,3,4,5,6,7}, and T = {1}. In general, if there
exists a separator in the graph of size less than 7, then (A6) is clearly satisfied. Further,
we remark that we only assume the existence of the sets Vi, Vo, and T and do not assume
that these sets are known a priori. We refer to Remark 17 for more discussions about (A6)
and some extensions of this assumption.

7.2 Theoretical Result and Analysis

Recall PC in Algorithm 4. Since we assume (A1), the conditional independence test in (4)
can be used in Line 5 of Algorithm 4. To analyze the junction tree framework, consider the
following steps to construct G using PC when given n i.i.d. observations X":

Step 1. Compute H: Apply PC using a regularization parameter A2 such that
H =PC(|T], X", Ky,Ky),

where Ky is the complete graph over the nodes V. In the above equation, we apply
PC to remove all edges for which there exists a separator of size less than or equal
to |T|.

Step 2. Estimate a subset of edges over V43 UT and Vo UT using regularization parameters
AL and A2, respectively, such that

Gy, = PC (0, X", H[V; UT| U Kr, Hi 1) ,for k= 1,2,
where Hy, = H[Vi UT]\Kr as defined in (3).

Step 3. Estimate edges over T using a regularization parameter \.:

~

Gr = PC (n,%”, HIT Uneg, g, (T)) H[T]) .

Step 4. Final estimate is G = évl U éVQ U Gr.

166

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

Step 1 is the screening algorithm used to eliminate some edges from the complete graph.
For the region graph in Figure 8(b), Step 2 corresponds to applying PC to the regions V; UT
and Vo UT. Step 3 corresponds to applying PC to the region 7" and all neighbors of T’
estimated so far. Step 4 merges all the estimated edges. Although the neighbors of T are
sufficient to estimate all the edges in T, in general, depending on the graph, a smaller set
of vertices is required to estimate edges in 1. The main result is stated using the following
terms defined on the graphical model:

p1 =MW1l +[T], p2 = [Va| + [T, pr = |T Unec~(T)|, nr = |T],

po = inf{|pyis| 4,7 s.t. |S| < mr & [pyyis| > 0},

p1 = inf{|p;;s| :i € V1,5 € ViUT s.t. (i,5) € E(G"),S CV1UT,|S] <n},
p2 = inf{|p;;s| 11 € Vo, j € Vo UT s.t. (i,5) € E(G"), S CVaUT,|S| <n},
pr = inf{|p;isl 24,5 € T s.t. (i,5) € E,S CT Uneg~(T),nr < |S| < n},

The term pg is a measure of how hard it is to learn the graph H in Step 1 so that E(G*) C
E(H) and all edges that have a separator of size less than |T'| are deleted in H. The terms p;
and po are measures of how hard it is learn the edges in G*[V; UT|\ K7 and G*[Vo UT|\ K1
(Step 2), respectively, given that E(G*) C E(H). The term pr is a measure of how hard
it is learn the graph over the nodes T' given that we know the edges that connect V; to T’
and V5 to T

Theorem 9 Under Assumptions (A1)-(A6), there exists a conditional independence test
such that if

n = Q (max { py *nrlog(p), p *nlog(p1), p3 *nlog(ps). pr>nlog(pr)}) (7)
then P(G # @) — 0 as n — oc.

Proof See Appendix E. |

We now make several remarks regarding Theorem 9 and its consequences.

Remark 10 (Comparison to Necessary Conditions) Using results from Wang et al.
(2010), it follows that a necessary condition for any algorithm to recover the graph G* that
satisfies Assumptions (A1) and (A6) is that n = Q(max{0;?log(p; — d), 05 >log(p2 — d)},
where d is the maximum degree of the graph and #; and 05 are defined as follows:

. 25|
min — k=1,2.
(4.5)€G*[VkUITN\G*[T] | ’21_1123‘_3'1‘

If n is a constant and p; and pg are chosen so that the corresponding expressions dominate all
other expressions, then (7) reduces to n = Q(max{p; *log(p1), p; > log(p2)}). Furthermore,
for certain classes of Gaussian graphical models, namely walk summable graphical models
(Malioutov et al., 2006), the results in Anandkumar et al. (2012a) show that there exists
conditions under which p; = Q(61) and ps = Q(#2). In this case, (7) is equivalent to
n = Q(max{0;?log(p1), 0 *log(p2)}). Thus, as long as pi,ps > d, there exists a family

167

VATS AND NOWAK

of graphical models for which the sufficient conditions in Theorem 9 nearly match the
necessary conditions for asymptotically reliable estimation of the graph. We note that the
particular family of graphical models is quite broad, and includes forests, scale-free graphs,
and some random graphs. We refer to Anandkumar et al. (2012a) for a characterization of
such graphical models.

Remark 11 (Choice of Regularization Parameters) We use the conditional indepen-
dence test in (4) that thresholds the conditional correlation coefficient. From the proof in
Appendix E, the thresholds, which we refer to as the regularization parameter, are chosen
as follows:

)\?L = O(po) and py = Q2 (nr log(p)/n))
)\:2:0(’0]6) and Pk:Q(nlog(m)/n),k:l,%
A= O(pr) and pr = Q (nlog(pT)/n) :

We clearly see that different regularization parameters are used to estimate different parts
of the graph. Furthermore, just like in the traditional analysis of UGMS algorithms, the
optimal choice of the regularization parameter depends on unknown parameters of the
graphical model. In practice, we use model selection algorithms to select regularization
parameters. We refer to Section 8 for more details.

Remark 12 (Weaker Condition) If we do not use the junction tree based approach
outlined in Steps 1-4, and instead directly apply PC, the sufficient condition on the number
of observations will be n = Q(p, 2 nlog(p)), where

Pmin ‘= 1Df{|ﬂz]\s| : (’57]) € E(G*)7 |S| < 77} :

This result is proved in Appendix D using results from Kalisch and Bithlmann (2007) and
Anandkumar et al. (2012a). Since ppi, < min{po, p1, p2, pr}, it is clear that (7) is a weaker
condition. The main reason for this difference is that the junction tree approach defines an
ordering on the edges to test if an edge belongs to the true graph. This ordering allows for
a reduction in separator search space (see S;; in Algorithm 4) for testing edges over the set
T. Standard analysis of PC assumes that the edges are tested randomly, in which case, the

separator search space is always upper bounded by the full set of nodes.

Remark 13 (Reduced Sample Complexity) Suppose 7, pg, and pp are constants and
p1 < pe2. In this case, (7) reduces to

n = Q (max {log(p), p; *log(p1), p; *log(p2) }) - (8)
If pIQ =Q (max {p52 log(p2)/log(p1), log(p)}), then (8) reduces to
n = Q (p; *log(p1)) -
2

On the other hand, if we do not use junction trees, n = 2 (p;m log(p)), where ppin <
p1. Thus, if py < p, for example p; = log(p), then using the junction tree based PC

168

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

Figure 9: Junction tree representation with clusters Vi,..., Vs and separators denotes by
rectangular boxes. We can cluster vertices in the junction tree to get a two cluster
representation as in Figure 8.

requires lower number of observations for consistent UGMS. Informally, the above condition
says that if the graph structure in (A6) is easy to identify, p; < pa, and the minimal
conditional correlation coefficient over the true edges lies in the smaller cluster (but not
over the separator), the junction tree framework may accurately learn the graph using
significantly less number of observations.

Remark 14 (Learning Weak Edges) We now analyze Theorem 9 to see how the condi-
tional correlation coefficients scale for high-dimensional consistency. Under the assumption
in Remark 13, it is easy to see that the minimal conditional correlation coefficient scales
as Q(y/log(p1)/n) when using junction trees and as Q(y/log(p)/n) when not using junction
trees. This suggests that when p; < p, it may be possible to learn edges with weaker
conditional correlation coefficients when using junction trees. Our numerical simulations in
Section 8 empirically show this property of the junction tree framework.

Remark 15 (Computational complexity) It is easy to see that the worst case compu-
tational complexity of the PC-Algorithm is O(p"*?) since there are O(p?) edges and testing

for each edge requires a search over at most O(p") separators. The worst case computational

7n+2 n+2

complexity of Steps 1-4 is roughly O <p|T|+2 + p717+2 +py " +pp) Under the conditions

in Remark 8.3 and when p; < p, this complexity is roughly O(p"*?), which is the same as
the standard PC-Algorithm. In practice, especially when the graph is sparse, the compu-
tational complexity is much less than O(p"*2) since the PC-Algorithm restricts the search
space for finding separators.

Remark 16 (Using other UGMS Algorithms) Although our analysis used the
PC-Algorithm to derive sufficient conditions for accurately estimating the graph, we can
easily use other algorithms, such as the graphical Lasso or the neighborhood selection based
Lasso, for analysis. The main difference will be in the assumptions imposed on the graphical
model.

Remark 17 (Extensions) We have analyzed the junction tree framework assuming that

the junction tree of H only has two clusters. One way to generalize our analysis to junction
trees with multiple clusters is to merge clusters so that the resulting junction tree admits

169

VATS AND NOWAK

the structure in Figure 8. For example, suppose the graph G* has a junction tree repre-
sentation as in Figure 9 with five clusters. If |V} N V5| < 7, then we can merge the clusters
Vo, Vs, ..., Vs so that the resulting junction tree admits the two cluster representation in
Figure 8. Furthermore, we can also generalize Theorem 9 to cases when |T'| = . The main
change in the analysis will be in the definition of pg. For example, if the graph is a chain so
that the first p; vertices are associated with “weak edges”, we can get similar results as in
Theorem 9. Finally, we note that a full analysis of the junction tree framework, that also
incorporates the step of updating the junction tree in Algorithm 3, is challenging and will
be addressed in future work.

8. Numerical Simulations

In this section, we present numerical simulations that highlight the advantages of using
the junction tree framework for UGMS. Throughout this section, we assume a Gaussian
graphical model such that Px ~ A(0,071) is Markov on G*. It is well known that this
implies that (i,7j) ¢ G* <= 0;; = 0 (Speed and Kiiveri, 1986). Some algorithmic details
used in the simulations are described as follows.

Computing H: We apply Algorithm 4 with a suitable value of k in such a way that the
separator search space S;; (see Line 4) is restricted to be small. In other words, we do
not test for all possible conditional independence tests so as to restrict the computational
complexity of the screening algorithm. We use the conditional partial correlation to test
for conditional independence and choose a separate threshold to test for each edge in the
graph. The thresholds for the conditional independence test are computed using 5-fold
cross-validation. The computational complexity of this step is roughly O(p?) since there
are O(p?) edges to be tested. Note that this method for computing H is equivalent to Step 1
in Section 7.2 with |T'| = k. Finally, we note that the above method does not guarantee
that all edges in G* will be included in H. This can result in false edges being included
in the junction tree estimated graphs. To avoid this situation, once a graph estimate G
has been computed using the junction tree based UGMS algorithm, we apply conditional
independence tests again to prune the estimated edge set.

Computing the junction tree: We use standard algorithms in the literature for computing
close to optimal junction trees.* Once the junction tree is computed, we merge clusters so
that the maximum size of the separator is at most x + 1, where k is the parameter used
when computing the graph H. For example, in Figure 9, if the separator associated with V5
and V3 has cardinality greater than s + 1, then we merge Vo and V3 and resulting junction
tree is such that Vi, V4, and V5 all connect to the cluster Vo U V3.

UGMS Algorithms: We apply the junction tree framework in conjunction with graphical
Lasso (gL) (Banerjee et al., 2008), neighborhood selection using Lasso (nL) (Meinshausen
and Biihlmann, 2006), and the PC-Algorithm (PC) (Spirtes and Glymour, 1991). See
Appendix B for a review of gL and nL and Algorithm 4 for PC. When using nL, we use the
intersection rule to combine neighborhood estimates. Further, we use the adaptive Lasso
(Zou, 2006) for finding neighbors of a vertex since this is known to give superior results for
variable selection (van de Geer et al., 2011).

4. We use the GreedyFillin heuristic. This is known to give good results with reasonable computational
time (Kjaerulff, 1990).

170

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

Choosing Regularization Parameters: An important step when applying UGMS algorithms
is to choose a suitable regularization parameter. It is now well known that classical methods,
such as cross-validation and information criterion based methods, tend to choose a much
larger number of edges when compared to an oracle estimator for high-dimensional problems
(Meinshausen and Biithlmann, 2010; Liu et al., 2010). Several alternative methods have been
proposed in the literature; see for example stability selection (Meinshausen and Biihlmann,
2010; Liu et al., 2010) and extended Bayesian information (EBIC) criterion (Chen and
Chen, 2008; Foygel and Drton, 2010). In all our simulations, we use EBIC since it is much
faster than stability based methods when the distribution is Gaussian. EBIC selects a
regularization parameter /):n as follows:

An = max {n [log det©, — trace(§®)} + |E(Gy,)|logn + 49| E(G,,)| logp} ,

An>0

where § is the empirical covariance matrix, o A, 1s the estimate of the inverse covariance
matrix and |E(G),)| is the number of edges in the estimated graph. The estimate A,
depends on a parameter « € [0, 1] such that v = 0 results in the BIC estimate and increasing
~ produces sparser graphs. The authors in reference Foygel and Drton (2010) suggest that
v = 0.5 is a reasonable choice for high-dimensional problems. When solving subproblems
using Algorithm 2, the logp term is replaced by log|R], 8) A, is replaced by the inverse
covariance over the vertices R, and |CA¥ A, | 18 replaced by the number of edges estimated from
the graph Hp,.

Small subproblems: Whenever | R| is small (less than 8 in our simulations), we independently
test whether each edge is in G* using hypothesis testing. This shows the application of using
different algorithms to learn different parts of the graph.

8.1 Results on Synthetic Graphs

We assume that ©; = 1 for alli =1,...,p. We refer to all edges connected to the first py
vertices as weak edges and the rest of the edges are referred to as strong edges. The different
types of synthetic graphical models we study are described as follows:

e Chain (CH; and CH3): ©; ;41 =py fori=1,...,p1 — 1 (weak edges) and ©; ;41 = p2
for i = p1,p — 1 (strong edges). For CHi, p; = 0.15 and py = 0.245. For CH,
P1 = 0.075 and P2 = 0.245. Let ®ij == @]Z

e Cycle (CYy and CY3): ©; ;41 = p1 fori =1,...,p1 — 1 (weak edges) and O; ;11 = p2
for i = p1,p — 1 (strong edges). In addition, ©;;43 = p; for i = 1,...,p; — 3 and
;43 = p2 for i = p1,p1 +1,...,p — 3. This introduces multiple cycles in the graph.
For CYq, p1 = 0.15 and po = 0.245. For CY3, p; = 0.075 and p2 = 0.245.

e Hub (HB; and HB;): For the first p; vertices, construct as many star® graphs of size
dy as possible. For the remaining vertices, construct star graphs of size dz (at most
one may be of size less than dy). The hub graph G* is constructed by taking a union
of all star graphs. For (i,7) € G* s.t. 4,5 < p1, let ©; ; = 1/d;. For the remaining
edges, let ©;; = 1/dy. For HBy, di = 8 and dy = 5. For HBy, dy =12 and dp = 5.

5. A star is a tree where one vertex is connected all other vertices.

171

VATS AND NOWAK

e Neighborhood graph (NB; and NB;): Randomly place vertices on the unit square at
coordinates y1,...,y,. Let ©;; = 1/p; with probability (v27)~!exp(—4|ly; — y;][3),
otherwise ©;; = 0 for all 4, j € {1,...,p1} such that i > j. Foralli,j € {p1+1,...,p}
such that ¢ > j, ©;; = pa. For edges over the first p; vertices, delete edges so that each
vertex is connected to at most dy other vertices. For the vertices p1 + 1, ..., p, delete
edges such that the neighborhood of each vertex is at most ds. Finally, randomly add
four edges from a vertex in {1,...,p1} to a vertex in {p1,p1 + 1,...,p} such that for
each such edge, ©;; = p1. We let ps = 0.245, di = 6, and do = 4. For NBy, p; = 0.15
and for NBjy, ps = 0.075.

Notice that the parameters associated with the weak edges are lower than the parameters
associated with the strong edges. Some comments regarding notation and usage of various
algorithms is given as follows.

e The junction tree versions of the UGMS algorithms are denoted by JgL, JPC, and
JnL.

e We use EBIC with v = 0.5 to choose regularization parameters when estimating
graphs using JglL and JPC. To objectively compare JgL (JPC) and gL (PC), we make
sure that the number of edges estimated by gL (PC) is roughly the same as the number
of edges estimated by JgL (JPC).

e The nL and JnL estimates are computed differently since it is difficult to control the
number of edges estimated using both these algorithms.® We apply both nL and JnL
for multiple different values of v (the parameter for EBIC) and choose graphs so that
the number of edges estimated is closest to the number of edges estimated by gL.

e When applying PC and JPC, we choose as 1, 2, 1, and 3 for Chain, Cycle, Hub, and
Neighborhood graphs, respectively. When computing H, we choose « as 0, 1, 0, and
2 for Chain, Cycle, Hub, and Neighborhood graphs, respectively.

Tables 2-5 summarize the results for the different types of synthetic graphical models.
For an estimate G of G*, we evaluate G using the weak edge discovery rate (WEDR), false
discovery rate (FDR), true positive rate (TPR), and the edit distance (ED).

weak edges in G

WEDR =
of weak edges in G*’
FDR — # of edges in G\f} ’
of edges in G
TPR — # of edges in GNG

of edges in G*
ED = {# edges in G\G*} + {# edges in G*\G},

6. Recall that both these algorithms use different regularization parameters. Thus, there may exist multiple
different estimates with the same number of edges.

172

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

Model n Alg WEDR FDR TPR ED |G
CH; 300 JgL 0.305 (0.005) 0.048 (0.001) 0.767 (0.002) 27.0 (0.176) 79.8
p =100 gl 0.180 (0.004) 0.061 (0.001) 0.757 (0.001) 29.0 (0.153) 79.8
" JPC 0.312(0.004) ~ 0.047 (0.001) "0.775(0.001) ~ 26.0 (0.162) 80.5
PC 0.264 (0.005) 0.047 (0.001) 0.781 (0.001) 25.6 (0.169) 81.2
" Jnl ~ 03306 (0.005) ~ 0.072 (0.001)" 0769 (0.002) ~ 2838 (0.188) ~€2.1
nL 0.271 (0.005) 0.073 (0.001) 0.757 (0.001) 30.0 (0.197) 80.9
CH, 300 JgL 0.052 (0.002) 0.067 (0.001) 0.727 (0.001) 32.2 (0.173) 77.3
p =100 gl 0.009 (0.001) 0.062 (0.001) 0.733 (0.002) 31.3 (0.162) 77.4
" JPC '0.048(0.002) ~ 0.064 (0.001) 0.735 (0.001) ~ 31.2 (0.169) ~77.8
PC 0.0337 (0.002) 0.055 (0.001) 0.748 (0.001) 29.3 (0.144) 78.4
Il ~ 0:0527(0.002) ~ 0.077 (0.001)" 0733 (0.001) ~ 325 (0.186) 787
nL 0.039 (0.002) 0.086 (0.001) 0.723 (0.001) 34.2 (0.216) 78.4
CH; 500 JgL 0.596 (0.006) 0.021 (0.001) 0.916 (0.001) 10.2 (0.133) 92.6
p =100 gl 0.44 (0.005) 0.050 (0.001) 0.889 (0.001) 15.6 (0.132) 92.7
" JPC” 0612 (0.005) ~ 0.022 (0.001) 0.9217(0.001) ~ 9.86 (0.138) ~93.2
PC 0.577 (0.005) 0.032 (0.001) 0.916 (0.001) 11.4 (0.124) 93.7
" JnL ~ '0.623 (0.005) 0.059 (0.001) 0.922 (0.001) ~ 13.5 (0.133) ~97.0
nL 0.596 (0.005) 0.069 (0.001) 0.918 (0.001) 14.9 (0.164) 97.6
CH, 500 JgL 0.077 (0.002) 0.044 (0.001) 0.816 (0.001) 22.0 (0.107) 84.5
p = 100 gl 0.0211 (0.001) 0.053 (0.001) 0.808 (0.000) 23.5 (0.082) 84.6
“ JPC” 0.0737(0.002) ~ 0.042 (0.001) 0.817(0.001) ~ 217 (0.082) €45
PC 0.0516 (0.002) 0.049 (0.001) 0.815 (0.001) 22.5 (0.092) 84.9
“Jnl ~ 0.076 (0.002) ~ 0.070 (0.001) 0.818(0.001) ~ 242 (0.102) ~87.2
nL 0.066 (0.002) 0.077 (0.001) 0.815 (0.001) 25.1 (0.126) 87.5

Table 2: Results for Chain graphs: p = 100 and p; = 20

Recall that the weak edges are over the first p; vertices in the graph. Naturally, we want
WEDR and TPR to be large and FDR and ED to be small. Each entry in the table shows
the mean value and standard error (in brackets) over 50 observations. We now make some
remarks regarding the results.

Remark 18 (Graphical Lasso) Of all the algorithms, graphical Lasso (glL) performs the
worst. On the other hand, junction tree based gL significantly improves the performance
of gL. Moreover, the performance of JgL is comparable, and sometimes even better, when
compared to JPC and JnL. This suggests that when using gL in practice, it is beneficial to
apply a screening algorithm to remove some edges and then use the junction tree framework
in conjunction with gL.

Remark 19 (PC-Algorithm and Neighborhood Selection) Although using junction
trees in conjunction with the PC-Algorithm (PC) and neighborhood selection (nL) does
improve the graph estimation performance, the difference is not as significant as glL. The
reason is because both PC and nL make use of the local Markov property in the graph
H. The junction tree framework further improves the performance of these algorithms by
making use of the global Markov property, in addition to the local Markov property.

Remark 20 (Chain Graph) Although the chain graph does not satisfy the conditions
in (A6), the junction tree estimates still outperforms the non-junction tree estimates. This
suggests the advantages of using junction trees beyond the graphs considered in (A6). We
suspect that correlation decay properties, which have been studied extensively in Anand-
kumar et al. (2012b,a), can be used to weaken the assumption in (A6).

173

VATS AND NOWAK

Model n Alg WEDR FDR TPR ED |G
CY, 300 JgL 0.314 (0.003) 0.036 (0.001) 0.814 (0.001) 28.5 (0.142) 111
p =100 gl 0.105 (0.003) 0.057 (0.001) 0.798 (0.001) 32.9 (0.16) 112
~JPC” 0326 (0.004) ~ 0.030 (0.001) ~0.819(0.001) ~ 27.27(0.18) ~ T1Z
PC 0.307 (0.004) 0.027 (0.001) 0.826 (0.001) 26 (0.169) 112
“JnL ~ 0342 (0.004) ~ 0.043 (0.001)” ~0.813(0.001) ~ 29.5 (0.175) ~ 112 ~
nL 0.299 (0.004) 0.044 (0.001) 0.793 (0.001) 32.3 (0.192) 110
CY> 300 JgL 0.047 (0.002) 0.045 (0.001) 0.762 (0.001) 36.2 (0.163) 105
p = 100 gl 0.001 (0.001) 0.049 (0.001) 0.759 (0.001) 37.0 (0.172) 105
"~ JPC” 0.043 (0.002) ~ 0.042 (0.001)” ~0.764(0.001) ~ 35.6 (0.174) ~ 105 -
PC 0.027 (0.002) 0.036 (0.001) 0.773 (0.001) 33.7 (0.137) 106
" JnL~ 0.042 (0.002) 0.058 (0.002) 0.754 (0.001) ~ 38.6 (0.210) = 106
nL 0.035 (0.002) 0.057 (0.002) 0.743 (0.001) 39.9 (0.228) 104
CY; 500 JgL 0.532 (0.005) 0.022 (0.001) 0.907 (0.001) 15.1 (0.139) 122
p =100 gl 0278 (0.001) 0.071 (0.001) 0.862 (0.001) 26.9 (0.178) 122
" JPC™ '0.61 (0.004) ~ 0.012 (0.001) 0.925(0.001) ~ 11.9°(0.150) ~ 124 -
PC 0.609 (0.004) 0.020 (0.001) 0.925 (0.001) 12.5 (0.134) 125
" JnL 0.612 (0.005) 0.028 (0.001) 0.924 (0.001) 13.6 (0.151) 125 ~
nL 0.584 (0.005) 0.041 (0.001) 0.919 (0.001) 15.9 (0.171) 126
CY> 500 JgL 0.086 (0.003) 0.039 (0.001) 0.821 (0.001) 28.1 (0.116) 113
p =100 gl 0.004 (0.001) 0.058 (0.001) 0.805 (0.000) 32.3 (0.088) 113
~JPC” 0.087 (0.002) ~ 0.034 (0.001)" ~0.825 (0.001) ~ 27.0(0.099) ~ T13 ~
PC 0.074 (0.002) 0.040 (0.001) 0.823 (0.001) 27.9 (0.010) 113
" JnL~ 0.085 (0.003) 0.045 (0.001) 0.824 (0.001) 28.4 (0.147) ~ 114 ~
nL 0.069 (0.003) 0.053 (0.001) 0.821 (0.001) 29.8 (0.158) 114
Table 3: Results for Cycle graphs, p = 100 and p; = 20
Model n Alg WEDR FDR TPR ED el
HB; 300 JgL 0.204 (0.004) 0.039 (0.001) 0.755 (0.002) 22.3 (0.151) 63.7
p =100 gl 0.154 (0.004) 0.038 (0.001) 0.758 (0.002) 22.1 (0.130) 63.8
~JPC” 0.204 (0.004) ~ 0.038 (0.001) 0.753 (0.002) ~ 224 (0.160) 634
PC 0.193 (0.004) 0.038 (0.001) 0.762 (0.002) 21.7 (0.143) 64.2
" JnL ~ 0.245 (0.005) ~ 0.089 (0.001) 0.750 (0.002) ~ 26.2 (0.174) 66.7
nL 0.247 (0.005) 0.098 (0.002) 0.752 (0.002) 26.8 (0.198) 67.6
HB, 300 JgL 0.044 (0.002) 0.047 (0.001) 0.710 (0.001) 26.7 (0.116) 61.2
p =100 gl 0.013 (0.002) 0.043 (0.001) 0.716 (0.001) 26.0 (0.121) 61.4
“JPC” 0.048 (0.002) ~ 0.043 (0.001) ~0.700 (0.001) ~ 26,5 (0.108) ~60.8 ~
PC 0.029 (0.002) 0.038 (0.001) 0.718 (0.001) 25.5 (0.121) 61.3
“JnL ~ 0.054 (0.003) ~ 0.083 (0.001) 0.704 (0.001) ~ 29.6 (0.146) ~63.0
nL 0.0467 (0.002) 0.096 (0.001) 0.700 (0.001) 30.7 (0.138) 63.5
HB; 500 JgL 0.413 (0.007) 0.026 (0.001) 0.870 (0.002) 12.4 (0.156) 724
p =100 gl 0.364 (0.007) 0.035 (0.001) 0.863 (0.002) 13.7 (0.144) 72.5
" JPC 0.438 (0.007) ~ 0.027 (0.001) 0.878 (0.002) ~ 11.9 (0.148) ~73.1
PC 0.448 (0.007) 0.027 (0.001) 0.882 (0.001) 11.6 (0.141) 73.4
“JnL ~ 0.507 (0.006) ~ 0.076 (0.001) 0.890 (0.001) ~ 149 (0.152) ~78.2
nL 0.52 (0.007) 0.091 (0.001) 0.893 (0.002) 15.9 (0.191) 79.6
HB, 500 JgL 0.086 (0.003) 0.042 (0.001) 0.794 (0.001) 19.8 (0.086) 68.0
p =100 gl 0.050 (0.002) 0.047 (0.001) 0.789 (0.001) 20.6 (0.098) 68.0
“JPC” 0,097 (0.003) ~ 0.040 (0.001) 0.798 (0.001) ~ 19.3 (0.109) 682
PC 0.087 (0.003) 0.044 (0.001) 0.797 (0.001) 19.7 (0.111) 68.4
“Jnl T 0.1237(0.004) ~ 0.081 (0.002) T0.804 (0.001) 222 (0.15) 721"
nL 0.106 (0.003) 0.105 (0.002) 0.801 (0.001) 24.1 (0.143) 73.4
Table 4: Results for Hub graphs:p = 100 and p; = 20

174

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

Model n Alg WEDR FDR TPR ED el
NB; 300 JgL 0.251 (0.002) 0.030 (0.000) 0.813 (0.000) 126 (0.329) 498
p = 100 gl 0.102 (0.0015) 0.039 (0.000) 0.806 (0.001) 135 (0.345) 498
“ JPC” 0259 (0.002) ~ 0.031 (0.000) ~0.814 (0.000) ~ 126 (0.260) ~ 499 ~
PC 0.255 (0.002) 0.036 (0.000) 0.813 (0.000) 129 (0.330) 501
" Jnl ~ 0254 (0.002) ~ 0.035 (0.000) ~0.812 (0.001) ~ 129 (0.461) ~ 500 ~
nL 0.226 (0.002) 0.039 (0.000) 0.804 (0.001) 136 (0.458) 497
NB; 300 JgL 0.005 (0.000) 0.043 (0.000) 0.784 (0.001) 149 (0.385) 486
p =100 gl 0.000 (0.000) 0.036 (0.000) 0.790 (0.000) 142 (0.259) 487
* JPC” 0004 (30.000) ~ 0.042 (0.000) ~0.7847(0.001) ~ 148 (0.376) ~ 486
PC 0.003 (0.000) 0.048 (0.000) 0.782 (0.000) 153 (0.239) 488
" JnL ~ 0:005 (0.000) ~ 0.046 (0.000) ~0.783 (0.000) ~ 151 (0.356) ~ 488 ~
nL 0.003 (0.000) 0.050 (0.000) 0.775 (0.000) 158 (0.374) 485
NB; 500 JgL 0.449 (0.001) 0.018 (0.000) 0.921 (0.000) 57.1 (0.199) 557
p =100 gl 0.319 (0.002) 0.035 (0.000) 0.905 (0.000) 75.8 (0.242) 557
* JPC” 0489 (0.002) ~ 0.019 (0.000) ~0.925 (0.000) ~ 52.8 (0.189) ~ 558 ~
PC 0.496 (0.002) 0.023 (0.000) 0.920 (0.000) 60.2 (0.214) 559
" JnL~ 0.508 (0.003) ~ '0.027 (0.000) 0.929 (0.000) = 57.9 (0.348) = 567
nL 0.494 (0.003) 0.033 (0.000) 0.927 (0.000) 62.3 (0.400) 570
NB; 500 JgL 0.008 (0.000) 0.033 (0.000) 0.870 (0.000) 95.0 (0.206) 534
p = 100 gl 0.000 (0.000) 0.034 (0.000) 0.869 (0.000) 96.0 (0.214) 534
" JPC” 0:009 (0.000) ~ 0.032 (0.000) ~0.870 (0.000) ~ 94.27(0.215) ~ 534
PC 0.005 (0.000) 0.040 (0.000) 0.865 (0.000) 102 (0.207) 536
" JnL ~ 0.001 (0.000) 0.038 (0.000) 0.871 (0.000) = 97.3 (0.220) ~ 538 ~
nL 0.005 (0.000) 0.043 (0.000) 0.870 (0.000) 101 (0.234) 540
Table 5: Results for Neighborhood graph, p = 300 and p; = 30

Remark 21 (Hub Graph) For the hub graph HB;, the junction tree estimate does not
result in a significant difference in performance, especially for the PC and nL algorithms.
This is mainly because this graph is extremely sparse with multiple components. For the
number of observations considered, H removes a significant number of edges. However, for
HB;, the junction tree estimate, in general, performs slightly better. This is because the
parameters associated with the weak edges in HB, are smaller than that of HB;.

Remark 22 (General Conclusion) We see that, in general, the WEDR and TPR are
higher, while the FDR and ED are lower, for junction tree based algorithms. This clearly
suggests that using junction trees results in more accurate graph estimation. Moreover, the
higher WEDR suggest that the main differences between the two algorithms are over the
weak edges, that is, junction tree based algorithms are estimating more weak edges when
compared to a non junction tree based algorithm.

8.2 Analysis of Stock Returns Data

We applied our methods to the data set in Choi et al. (2011) of n = 216 monthly stock
returns of p = 85 companies in the S&P 100. We computed H using « = 1. We applied
JgL using EBIC with v = 0.5 and applied gL so that both graphs have the same number
of edges. This allows us to objectively compare the gL and JgL graphs. Figure 10 shows
the two estimated graphs in such a way that the vertices are positioned so that the JgL
graph looks aesthetically pleasing. In Figure 11, the vertices are positioned so that gL looks
aesthetically pleasing. In each graph, we mark the common edges by bold lines and the

175

VATS AND NOWAK

TYC e
\ FDX
CMCSA RIN
\ AMGN
XRX‘IBM CBS ORCL MEE
Ms
SLB S
HD,
B\H AL cvs "Pymir
N / / SNS MDT
VX

TGT 2
/ XOM

(! NSC °,I i
cop a’ V\CHON

PR T
- DO
\ ‘l /I
’ A
/ v MMKD /IP '{gt‘\ . @ FC
OoXyY WMB DA: ;/: e~ --"
, AA L

1
, HPQ—qx
AEP

\ : ‘ —WB
N>\ITC—S \10/9%&1 A Z.P{VI’BA{
AVP \ B GE/P \ / ' \AXP

}1 ETR__ . F/) \

Mo

W
\ S e
UTX \, \ BAX
. \,
MY
/DELL pe \\ KO- MRKPE "
DI AAPL M HY
ABF—INJ
PG, ’ LE
7 CPB
EXC T

(a) Junction tree based graphical Lasso

TYC -
' FDX
CMCSA ! RTN
(" AMGN
XRXqgp cBs RCL iR
\\ \ ' I MS
\ \ , o
SLB * 6 v ¥
N ' ' HD, 1
B\H AL . L avs Bl L
' o y SNS MDT
ok A !)
\
XoMm oo TGT " -
! DOW, - - - —HON NSC/
cop a - \\"ip’ A, [:
; N\ Q\MY =
OXY WMB O VA >
. MCD ! W
 _ BE——
HP! \\ - v /
\ TE——=—=—gpifam——AIC | —"M-BAC
o EM / -7 7’ ~oD l
AVP- - - PRde o ___ SGE - S
b _ - - A= g0 - - MSFT == === =R wyE
\ -
VL2 UTX // \ BAX
Y 2T MY
-z J‘;\ /D o BA Ko yF
DI WAPL /~/ HN
ABF—INJ]
\ LE
\ B
CPB
EXC -
vz/

(b) Graphical Lasso

Figure 10: Graph over a subset of companies in the S&P 100. The positioning of the

vertices is chosen so that the junction tree based graph is aesthetically pleasing.

The edges common in (a) and (b) are marked by bold lines and the remaining
edges are marked by dashed lines

176

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

(a) Junction tree based graphical Lasso

Mo CMCSA
WMB
JNJ‘/P i)(. b4
| MRKBMY T &
AB RIN
BAX SLB
AAPL
& HA]\BHI
DELL EMC @ XY
vy cop
TXN ' ko—PG Fov
/ PEP— B
MSEr INTC
WM 20

D
XR)\'\ TYC /s HN\Z—-SLE
ARSAY MS, ‘
\I/ PJ(\ - i CcPB =
B NSC
\ DIS ~BK i
\ BAC
/

CB§
WYAA NeP

\ FDX
\
.{D. D, 3 ORCL
&]\l WF(\;—I%JSB
/< P N/ UNH
MMM DOW™ RF
! ETR—SO
HON SN,
EXC -AEP
AMGN SNS

MDT
JF!

(b) Graphical Lasso

Figure 11: Graph over a subset of companies in the S&P 100. The positioning of the vertices
is chosen so that the graphical Lasso based graph is aesthetically pleasing. The
edges common in (a) and (b) are marked by bold lines and the remaining edges
are marked by dashed lines.

177

VATS AND NOWAK

remaining edges by dashed lines. Some conclusions that we draw from the estimated graphs
are summarized as follows:

e The gL graph in Figure 11(b) seems well structured with multiple different clusters
of nodes with companies that seem to be related to each other. A similar clustering
is seen for the JgL graph in Figure 10(a) with the exception that there are now con-
nections between the clusters. As observed in Choi et al. (2011) and Chandrasekaran
et al. (2012), it has been hypothesized that the “actual” graph over the companies is
dense since there are several unobserved companies that induce conditional dependen-
cies between the observed companies. These induced conditional dependencies can be
considered to be the weak edges of the “actual” graph. Thus, our results suggest that
the junction tree based algorithm is able to detect such weak edges.

e We now focus on some specific edges and nodes in the graphs. The 11 vertices repre-
sented by smaller squares and shaded in green are not connected to any other vertex
in gl. On the other hand, all these 11 vertices are connected to at least one other
vertex in JgL (see Figure 10). Moreover, several of these edges are meaningful. For
example, CBS and CMCSA are in the television industry, TGT and CVS are stores,
AEP and WMB are energy companies, GD and RTN are defense companies, and
MDT and UNH are in the healthcare industry. Finally, the three vertices represented
by larger squares and shaded in pink, are not connected to any vertex in JglL and are
connected to at least one other vertex in gl. Only the edges associated with EXC
seem to be meaningful.

8.3 Analysis of Gene Expression Data

Graphical models have been used extensively for studying gene interactions using gene
expression data (Nevins et al., 2004; Wille et al., 2004). The gene expression data we study
is the Lymph node status data which contains n = 148 expression values from p = 587 genes
(Li and Toh, 2010). Since there is no ground truth available, the main aim in this section is
to highlight the differences between the estimates JgL (junction tree estimate) and gL (non
junction tree estimate). Just like in the stock returns data, we compute the graph H using
x = 1. Both the JgL and gL graphs contain 831 edges. Figure 12 shows the graphs JgL and
gL under different placements of the vertices. We clearly see significant differences between
the estimated graphs. This suggests that using the junction tree framework may lead to
new scientific interpretations when studying biological data.

9. Summary and Future Work

We have outlined a general framework that can be used as a wrapper around any arbi-
trary undirected graphical model selection (UGMS) algorithm for improved graph estima-
tion. Our framework takes as input a graph H that contains all (or most of) the edges
in G*, decomposes the UGMS problem into multiple subproblems using a junction tree
representation of H, and then solves subprolems iteratively to estimate a graph. Our the-
oretical results show that certain weak edges, which cannot be estimated using standard
algorithms, can be estimated when using the junction tree framework. We supported the

178

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

NRLK

A

%

=

N

(b) Graphical Lasso

(c¢) Junction tree based graphical Lasso (d) Graphical Lasso

Figure 12: Graph over genes computed using gene expression data. For (a) and (b), the
vertices are chosen so that the junction tree estimate is aesthetically pleasing.
For (c) and (d), the vertices are chosen so that the graphical Lasso estimate
is aesthetically pleasing. Further, in (a) and (c), we only show edges that are
estimated in the junction tree estimate, but not estimated using graphical Lasso.
Similarly, for (b) and (c), we only show edges that are estimated by graphical
Lasso, but not by the junction tree estimate.

179

VATS AND NOWAK

theory with numerical simulations on both synthetic and real world data. All the data and
code used in our numerical simulations can be found at http://www. ima.umn.edu/~dvats/
JunctionTreeUGMS.html.

Our work motivates several interesting future research directions. In our framework,
we used a graph H to decompose the UGMS problem into multiple subproblems. Alter-
natively, we can also focus on directly finding such decompositions. Another interesting
research direction is to use the decompositions to develop parallel algorithms for UGMS
for estimating extremely large graphs. Finally, motivated by the differences in the graphs
obtained using gene expression data, another research problem of interest is to study the sci-
entific consequences of using the junction tree framework on various computational biology
data sets.

Acknowledgments

The first author thanks the Institute for Mathematics and its Applications (IMA) for fi-
nancial support in the form of a postdoctoral fellowship. The authors thank Vincent Tan
for discussions and comments on an earlier version of the paper. The authors thank the
anonymous reviewers for comments which significantly improved this manuscript.

Appendix A. Marginal Graph

Definition 23 The marginal graph G*™[A] of a graph G* over the nodes A is defined as
a graph with the following properties

1. B(G*[A]) C E(G*™[A]).

2. For an edge (i,7) € E(Ka)\E(G*[A)), if all paths from i to j in G* pass through a
subset of the nodes in A, then (i,75) ¢ G*™[A].

3. For an edge (i,j) € E(Ka)\E(G*[4]), if there exists a path from i to j in G* such
that all nodes in the path, except i and j, are in V\A, then (i,j) € G*™[A].

The graph K4 is the complete graph over the vertices A. The first condition in Defi-
nition 23 says that the marginal graph contains all edges in the induced subgraph over A.
The second and third conditions say which edges not in G*[A] are in the marginal graph.
As an example, consider the graph in Figure 13(a) and let A = {1,2,3,4,5}. From the
second condition, the edge (3,4) is not in the marginal graph since all paths from 3 to 4
pass through a subset of the nodes in A. From the third condition, the edge (4,5) is in
the marginal graph since there exists a path {4,8,5} that does not go through any nodes
in A\{4,5}. Similarly, the marginal graph over A = {4,5,6,7,8} can be constructed as in
Figure 13(c). The importance of marginal graphs is highlighted in the following proposition.

Proposition 24 If Px > 0 is Markov on G* = (V, E(G*)) and not Markov on any subgraph

of G*, then for any subset of vertices A C V', Px, is Markov on the marginal graph G*™[A]
and not Markov on any subgraph of G*™[A].

180

http://www.ima.umn.edu/~dvats/JunctionTreeUGMS.html
http://www.ima.umn.edu/~dvats/JunctionTreeUGMS.html

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

Figure 13: (a) A graph over eight nodes. (b) The marginal graph over {1,2,3,4,5}. (c)
The marginal graph over {4,5,6,7,8}.

Proof Suppose Px, is Markov on the graph G4 and not Markov on any subgraph of G 4.
We will show that G4 = G™[A].

o If (i,j) € G, then X; [X;|Xg for every S C V\{i,j}. Thus, G[A] C G 4.

e For any edge (i,7) € K4 \G[A4], suppose that for every path from i to j contains at
least one node from A\{i,j}. Then, there exists a set of nodes S C A\{i, j} such that
Xi A Xj|XS and (Z,]) ¢ GA.

e For any edge (i,7) € K4\G[A], suppose that there exists a path from i to j such
that all nodes in the path, except ¢ and j, are in V\ A. This means we cannot find a
separator for i and j in the set A, so (i,7) € G 4.

From the construction of G'4 and Definition 23, it is clear that G4 = G™[A]. [|

Using Proposition 24, it is clear that if the UGMS algorithm ¥ in Assumption 1 is
applied to a subset of vertices A, the output will be a consistent estimator of the marginal
graph G*™[A]. Note that from Definition 23, although the marginal graph contains all
edges in G*[4], it may contain additional edges as well. Given only the marginal graph
G*™[A], it is not clear how to identify edges that are in G*[A]. For example, suppose G* is
a graph over four nodes and let the graph be a single cycle. The marginal graph over any
subset of three nodes is always the complete graph. Given the complete graph over three
nodes, computing the induced subgraph over the three nodes is nontrivial.

Appendix B. Examples of UGMS Algorithms

We give examples of standard UGMS algorithms and show how they can be used to im-
plement step 3 in Algorithm 2 when estimating edges in a region of a region graph. For
simplicity, we review algorithms for UGMS when Px is a Gaussian distribution with mean
zero and covariance X*. Such distributions are referred to as Gaussian graphical mod-
els. It is well known (Speed and Kiiveri, 1986) that that the inverse covariance matrix
©* = (¥*)~!, also known as precision matrix, is such that for all i # 7, @;‘j # 0 if and
only if (7,7) € E(G*). In other words, the graph G* can be estimated given an estimate of
the covariance or inverse covariance matrix of X. We review two standard algorithms for
estimating G*: graphical Lasso and neighborhood selection using Lasso (nLasso).

181

VATS AND NOWAK

B.1 Graphical Lasso (gLasso)

Define the empirical covariance matrix S 4 over a set of vertices A C V as follows:
ZX(fﬂ

Recall from Algorithm 2, we apply a UGMS algorithm R to estimate edges in H}, defined in
(3). The graphical Lasso (gLasso) estimates Er by solving the following convex optimization
problem:

~

O = arg max __ ¢ logdet(©) — trace (> A Z Oij ¢, (9)
©>0,0;;=0V (i,j)¢H™ R (i.4)eHY

E\R:{(Z,j)EH‘AéU%O}

The graph H™[R] is the marginal graph over R (see Appendix A). When R =V, H = Ky,
and H, = Ky, the above equations recover the standard gLasso estimator, which was
first proposed in Banerjee et al. (2008). Equation (9) can be solved using algorithms in
Yuan and Lin (2007), Banerjee et al. (2008), Scheinberg et al. (2010) and Hsieh et al.
(2011). Theoretical properties of the estimates © and Ep have been studied in Ravikumar
et al. (2011). Note that the regularization parameter in (9) controls the sparsity of Eg.
A larger A corresponds to a sparser solution. Further, we only regularize the terms in ©;;
corresponding to the edges that need to be estimated, that is, the edges in Hj. Finally,
Equation (9) also accounts for the edges H by computing the marginal graph over R. In
general, H™ [}—%] can be replaced by any graph that is superset of H™ m]

B.2 Neighborhood Selection (nLasso)

Using the local Markov property of undirected graphical models (see Definition 1), we
know that if Px is Markov on G*, then P (Xi \ XV\Z') = (X | Xneg()). This motivates
an algorithm for estimating the neighborhood of each node and then combining all these
estimates to estimate G*. For Gaussian graphical models, this can be achieved by solving a
Lasso problem (Tibshirani, 1996) at each node (Meinshausen and Biihlmann, 2006). Recall
that we are interested in estimating all edges in H}, by applying a UGMS algorithm to R.
The neighborhood selection using Lasso (nLasso) algorithm is given as follows:

H// —_ KE\Hm [m ,

ok . n n 9
- - A il 0 s 1
B T8 iene I v X% — X"B||5 + | S8 (10)
ZE”er(k)
et ={i: B £ 0},
Brp=J {0 iem}.
keR

182

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

Notice that in the above algorithm if 7 is estimated to be a neighbor of j, then we include the
edge (i, 7) even if j is not estimated to be a neighbor of ¢. This is called the union rule for
combining neighborhood estimates. In our numerical simulations, we use the intersection
rule to combine neighborhood estimates, that is, (7,) is estimated only if 7 is estimated to
be a neighbor of j and j is estimated to be a neighbor of i. Theoretical analysis of nLasso
has been carried out in Meinshausen and Biithlmann (2006) and Wainwright (2009). Note
that, when estimating the neighbors of a node k, we only penalize the neighbors in H,.
Further, we use prior knowledge about some of the edges by using the graph H in (10).
References Bresler et al. (2008), Netrapalli et al. (2010) and Ravikumar et al. (2010) extend
the neighborhood selection based method to discrete valued graphical models.

Appendix C. Proof of Proposition 8

We first prove the following result.

Lemma 25 For any (i,j) € Hp, there either exists no non-direct path from i to j in H or
all non-direct paths in H pass through a subset of R.

Proof We first show the result for R € R'. This means that R is one of the clusters in
the junction tree used to construct the region graph and ch(R) is the set of all separators of
cardinality greater than one connected to the cluster R in the junction tree. Subsequently,
R = R. If ch(R) = (), the claim trivially holds. Let ch(R) # () and suppose there exists a
non-direct path from i to j that passes through a set of vertices S not in R. Then, there will
exist a separator S in the junction tree such that S separates {i,5} and S. Thus, all paths
in H from i and j to S pass through S. This implies that either there is no non-direct path
from ¢ to j in H or else we have reached a contradiction about the existence of a non-direct
path from i to j that passes through the set S not in R.

Now, suppose R € R! for I > 1. The set an(R) contains all the clusters in the junction
tree than contain R. From the running intersection property of junction trees, all these
clusters must form a subtree in the original junction tree. Merge R into one cluster and
find a new junction tree J’ by keeping the rest of the clusters the same. It is clear R will
be in the first row of the updated region graph. The arguments used above can be repeated
to prove the claim. |

We now prove Proposition 8.

Case 1: Let (4,7) € Hp and (7,7) ¢ G*. If there exists no non-direct path from i to j in
H, then the edge (i,7) can be estimated by solving a UGMS problem over i and j. By the
definition of R, 4, j € R. Suppose there does exist non-direct paths from ¢ to j in H. From
Lemma 25, all such paths pass through R. Thus, the conditional independence of X; and
X can be determined from XE\{z‘,j}'

Case 2: Let (i,j) € Hp and (4,5) € G*. From Lemma 25 and using the fact that
E(G*) C E(H), we know that all paths from i to j pass through R. This means that if
X I Xj’XR\{i,j}7 then X; £ Xj‘XV\{z',j}-

183

VATS AND NOWAK

Appendix D. Analysis of the PC-Algorithm in Algorithm 4

In this section, we present the analysis of Algorithm 4 using results from Anandkumar
et al. (2012a) and Kalisch and Bithlmann (2007). The analysis presented here is for the
non-junction tree based algorithm. Throughout this section, assume

~

G =PC(n,X",Ky,Ky),

where Ky is the complete graph over the vertices V. Further, let the threshold for the
conditional independence test in (4) be A,. We are interested in finding conditions under
which G = G* with high probability.

Theorem 26 Under Assumptions (A1)-(A5), there exists a conditional independence test
such that if

n = Q(p,5,1108(p)) or pin = U/nlog(p)/n),
thenP(CA}#G)—)O asn — oo.
We now prove Theorem 26. Define the set B, as follows:
By =A{(i,5,9) 4,5 € V.i# 5,5 CV\{i,j}, S| < n}.
The following concentration inequality follows from Anandkumar et al. (2012a).

Lemma 27 Under Assumption (A4), there exists constants ¢1 and ca such that for e < M,

sup P (|lpijis| — 1Pijisl| > €) < crexp (—ea(n—n)€?) ,
(17_]75)637]

where n is the number of vector valued measurements made of X;, X;, and Xg.

Let P, = P(CATY # @), where the probability measure P is with respect to Px. Recall
that we threshold the empirical conditional partial correlation p;;s to test for conditional
independence, that is, ;g < Ay = X; L X;[Xs. An error may occur if there exists

two distinct vertices i and j such that either p;;5 = 0 and [py;is] > An or |pi;5] > 0 and
Pijis| < An. Thus, we have

P. < P(&) + P(&),

PE)=P| |J {3Sst |pyjsl >} |
(102G

P&) =P |J {3Sst piysl <A}
(3,5)€G

We will find conditions under which P(€1) — 0 and P(£2) — 0 which will imply that
P, — 0. The term P(&7), the probability of including an edge in G that does not belong to

184

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

the true graph, can be upper bounded as follows:

PE)<P| |J {3Sst Bysl>A}| <P U {Ipijis| > An} |
(i) ¢G (i) £G,SCV\{i.g}
<p™* sup P (sl >)
(4,4,5)€By,

< c1p"exp (—ea(n —n)A2) = crexp ((n+2)log(p) — ca(n — n)AZ) .

The terms p"*2 comes from the fact that there are at most p? number of edges and the
algorithm searches over at most p” number of separators for each edge. Choosing A, such

that
(n—mn)A2

m ——— P = oo 11
np—oo (14 2) log(p) =

ensures that P(£1) — 0 as n, p — oo. Further, choose \,, such that for c3 < 1
An < C3Pmin - (12)

The term P(&2), the probability of not including an edge in G that does belong to the true
graph, can be upper bounded as follows:

P(&) <P U {38 s.t |pijisl < At]

(i.5)eG

<P U lpijis| = 1Pigis| > pijisl — An |
(4,5)€G,SCV\{i,5}

<p"™? sup P (‘pij|S| — |Pijisl > |pijis| — /\n) ;
(iyjzs)EB”]

<p"™? sup P (llpigs| — 1Pijisll > pmin — An)
(4,4,9)€By,

< e1p"?exp (—ca(n — 0)(Pmin — An)?) = crexp ((n + 2) log(p) — ca(n — n)piq,mg)
13

To get (13), we use (12) so that (pmin — An) > (1 — ¢3)pmin. For some constant cs > 0,
suppose that for all n > n/ and p > p/,

ca(n —1)prin > (12 + ¢5) log(p) - (14)
Given (14), P(&;) — 0 as n,p — co. In asymptotic notation, we can write (14) as
n = Qpy.0,n108(p))

which proves the Theorem. The conditional independence test is such that A, is chosen
to satisfy (11) and (12). In asymptotic notation, we can show that A\, = O(pmin) and
A2 = Q (nlog(p)/n) satisfies (11) and (12).

185

VATS AND NOWAK

Appendix E. Proof of Theorem 9

To prove the theorem, it is sufficient to establish that

po = (nr log(p)/n) (15)
p1 =S (vnlog pl)/n) (16)
p2 = (nlog P2)/”> (17)

(18)

pr = (nlog(pT)/n)

16

18

Let H be the graph estimated in Step 1. An error occurs if for an edge (i,j) € G*
there exists a subset of vertices S such that |S| < gy and |p;;s| < A Using the proof of
Theorem 26 (see analysis of P(&)), it is easy to see that n = Q(py 07 log(p)) is sufficient
for P(E(G*) ¢ E(H)) — 0 as n — 0. Further, the threshold is chosen such that A2 = O(py)
and (\2)2 = Q (nrlog(p)/n). This proves (15).

In Step 2, we estimate the graphs Gh and Go by applying the PC-Algorithm to the
vertices V1 UT and Vo UT, respectively. For Gl, given that all edges that have a separator
of size nr have been removed, we can again use the analysis in the proof of Theorem 26 to
show that for AL = O(p1) and (A\L)? = Q (nlog(p1)/n), n = Q(py *nlog(p1)) is sufficient for
P(Gy # G*[Vi UT|\\K7)|G* C H) = 0 as n — co. This proves (16). Using similar analysis,
we can prove (17) and (18).

The probability of error can be written as

2
P.<P(G* ¢ H)+ Y _ P(Gy # G [V, UT\K7|G* C H)
k=1
+ P(Gr # G*[T)|G* € H,G = G[Vi UT|*\Kr, G*[Va UT] = G[Va UT|\K7) .

Given (15)-(18), each term on the right goes to 0 as n — oo, so P, — 0 as n — oo.

References

A. Anandkumar, V. Y. F. Tan, F. Huang, and A. S. Willsky. High-dimensional Gaussian
graphical model selection: Walk summability and local separation criterion. Journal of
Machine Learning Research, 13:2293-2337, 2012a.

A. Anandkumar, V. Y. F. Tan, F. Huang, and A. S. Willsky. High-dimensional structure
learning of Ising models: Local separation criterion. Annals of Statistics, 40(3):1346-1375,
2012b.

S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in
ak-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277-284, 1987.

S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted
to partial k-trees. Discrete Applied Mathematics, 23(1):11-24, April 1989.

186

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

F. R. Bach and M. I. Jordan. Thin junction trees. In Advances in Neural Information
Processing Systems (NIPS), pages 569-576. MIT Press, 2001.

O. Banerjee, L. E. Ghaoui, and A. d’Aspremont. Model selection through sparse maxi-
mum likelihood estimation for multivariate Gaussian or binary data. Journal of Machine
Learning Research, 9:485-516, June 2008.

A. Berry, P. Heggernes, and G. Simonet. The minimum degree heuristic and the minimal
triangulation process. In Graph-Theoretic Concepts in Computer Science, pages 58-70.
Springer, 2003.

G. Bresler, E. Mossel, and A. Sly. Reconstruction of Markov random fields from sam-
ples: Some observations and algorithms. In Ashish Goel, Klaus Jansen, Jos Rolim, and
Ronitt Rubinfeld, editors, Approzimation, Randomization and Combinatorial Optimiza-
tion. Algorithms and Techniques, volume 5171 of Lecture Notes in Computer Science,
pages 343-356. Springer Berlin, 2008.

F. Bromberg, D. Margaritis, and V. Honavar. Efficient Markov network structure discovery
using independence tests. Journal of Artificial Intelligence Research (JAIR), 35:449-484,
20009.

T. Cai, W. Liu, and X. Luo. A constrained ¢; minimization approach to sparse precision
matrix estimation. Journal of the American Statistical Association, 106(494):594-607,
2011.

V. Chandrasekaran, P.A. Parrilo, and A.S. Willsky. Latent variable graphical model selec-
tion via convex optimization. Annals of Statistics, 40(4):1935-1967, 2012.

A. Chechetka and C. Guestrin. Efficient principled learning of thin junction trees. In
Advances in Neural Information Processing Systems (NIPS), pages 273-280, December
2007.

J. Chen and Z. Chen. Extended Bayesian information criteria for model selection with large
model spaces. Biometrika, 95(3):759-771, 2008.

M. J. Choi, V. Y. F. Tan, A. Anandkumar, and A. S. Willsky. Learning latent tree graphical
models. Journal of Machine Learning Research, 12:1771-1812, May 2011.

C. Chow and C. Liu. Approximating discrete probability distributions with dependence
trees. IEEE Transactions on Information Theory, 14(3):462-467, May 1968.

J. Fan and J. Lv. Sure independence screening for ultrahigh dimensional feature space.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(5):849—
911, 2008.

R. Foygel and M. Drton. Extended Bayesian information criteria for Gaussian graphical
models. In Advances in Neural Information Processing Systems (NIPS), pages 604-612,
2010.

187

VATS AND NOWAK

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the
graphical Lasso. Biostatistics, 9(3):432—441, July 2008.

P. Giudici and P. J. Green. Decomposable graphical gaussian model determination.
Biometrika, 86(4):785-801, 1999.

W. Hoeffding. A non-parametric test of independence. The Annals of Mathematical Statis-
tics, 19(4):546-557, 1948.

C. Hsieh, M. A. Sustik, I. S. Dhillon, and P. Ravikumar. Sparse inverse covariance matrix
estimation using quadratic approximation. In Advances in Neural Information Processing
Systems 2/, pages 23302338, 2011.

A. Jalali, C. Johnson, and P. Ravikumar. On learning discrete graphical models using
greedy methods. In Advances in Neural Information Processing Systems (NIPS), pages
1935-1943, 2011.

C. C. Johnson, A. Jalali, and P. Ravikumar. High-dimensional sparse inverse covariance
estimation using greedy methods. Journal of Machine Learning Research - Proceedings
Track, 22:574-582, 2012.

M. Kalisch and P. Biihlmann. Estimating high-dimensional directed acyclic graphs with
the PC algorithm. Journal of Machine Learning Research, 8:613—636, 2007.

D. Karger and N. Srebro. Learning Markov networks: Maximum bounded tree-width
graphs. In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 392-401, 2001.

U. B. Kjaerulff. Triangulation of graphs - algorithms giving small total state space. Technical
Report Research Report R-90-09, Department of Mathematics and Computer Science,
Aalborg University, Denmark, 1990.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. The
MIT Press, 2009.

K. S. S. Kumar and F. Bach. Convex relaxations for learning bounded-treewidth decom-
posable graphs. In Proceedings of the International Conference on Machine Learning
(ICML), 2013.

J. Lafferty, H. Liu, and L. Wasserman. Sparse nonparametric graphical models. Statistical
Science, 27(4):519-537, 2012.

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society.
Series B (Methodological), 50(2):157-224, 1988.

S. L. Lauritzen. Graphical Models. Oxford University Press, USA, 1996.

L. Li and K. C. Toh. An inexact interior point method for ¢;-regularized sparse covariance
selection. Mathematical Programming Computation, 2(3):291-315, 2010.

188

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

H. Liu, K. Roeder, and L. Wasserman. Stability approach to regularization selection (stars)
for high dimensional graphical models. In Advances in Neural Information Processing
Systems (NIPS), 2010.

H. Liu, F. Han, M. Yuan, J. Lafferty, and L. Wasserman. High dimensional semiparametric
Gaussian copula graphical models. Annals of Statistics, 40(4):2293-2326, 2012a.

H. Liu, J. Lafferty, and L. Wasserman. The nonparanormal: Semiparametric estimation
of high dimensional undirected graphs. The Journal of Machine Learning Research, 10:
2295-2328, 2009.

H. Liu, F. Han, and C. Zhang. Transelliptical graphical models. In Advances in Neural
Information Processing Systems (NIPS), pages 809-817, 2012b.

P. Loh and M. J. Wainwright. Structure estimation for discrete graphical models: General-
ized covariance matrices and their inverses. In Advances in Neural Information Processing
Systems (NIPS), pages 2096-2104, 2012.

Z. Ma, X. Xie, and Z. Geng. Structural learning of chain graphs via decomposition. Journal
of Machine Learning Research, 9:2847-2880, December 2008.

D. M. Malioutov, J. K. Johnson, and A. S. Willsky. Walk-sums and belief propagation
in gaussian graphical models. The Journal of Machine Learning Research, 7:2031-2064,
2006.

F. M. Malvestuto. Approximating discrete probability distributions with decomposable
models. IEEFE Transactions on Systems, Man and Cybernetics, 21(5):1287-1294, 1991.

R. Mazumder and T. Hastie. Exact covariance thresholding into connected components for
large-scale graphical lasso. Journal of Machine Learning Research, 13:781-794, March
2012. ISSN 1532-4435.

N. Meinshausen and P. Biihlmann. Stability selection. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 72(4):417-473, 2010.

N. Meinshausen and P. Bithlmann. High-dimensional graphs and variable selection with the
lasso. Annals of Statistics, 34(3):1436-1462, 2006.

P. Netrapalli, S. Banerjee, S. Sanghavi, and S. Shakkottai. Greedy learning of Markov
network structure. In 2010 48th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pages 1295-1302, 2010.

A. Dobra, C. Hans, B. Jones, J. R. Nevins, and G. Yao, and M. West. Sparse graphical
models for exploring gene expression data. Journal of Multivariate Analysis, 90:196-212,
2004.

M. J Rasch, A. Gretton, Y. Murayama, W. Maass, N. K Logothetis, L. Wiskott, G. Kem-
permann, L. Wiskott, G. Kempermann, B. Scholkopf, et al. A kernel two-sample test.
Journal of Machine Learning Research, 2:299, 2012.

189

VATS AND NOWAK

P. Ravikumar, M. J. Wainwright, and J. Lafferty. High-dimensional Ising model selection
using ¢;-regularized logistic regression. Annals of Statistics, 38(3):1287-1319, 2010.

P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu. High-dimensional covariance
estimation by minimizing ¢1-penalized log-determinant divergence. FElectronic Journal of
Statistics, 5:935-980, 2011.

N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms, 7(3):309 — 322, 1986.

K. Scheinberg, S. Ma, and D. Goldfarb. Sparse inverse covariance selection via alternating
linearization methods. In Advances in Neural Information Processing Systems (NIPS),
pages 2101-2109, 2010.

T. P. Speed and H. T. Kiiveri. Gaussian Markov distributions over finite graphs. The
Annals of Statistics, 14(1):138-150, 1986.

P. Spirtes and C. Glymour. An algorithm for fast recovery of sparse causal graphs. Social
Science Computer Review, 9:62-72, 1991.

P. Spirtes, C. Glymour, and R. Scheines. Causality from probability. In Advanced Computing
for the Social Sciences, 1990.

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal
Statistical Society, Series B, 58(1):267-288, 1996.

S. van de Geer, P. Bithlmann, and S. Zhou. The adaptive and the thresholded Lasso for
potentially misspecified models (and a lower bound for the lasso). Electronic Journal of
Statistics, 5:688-749, 2011.

D. Vats. High-dimensional screening using multiple grouping of variables. IEEE Transac-
tions On Signal Processing, to appear.

D. Vats and J. M. F. Moura. Finding non-overlapping clusters for generalized inference
over graphical models. IEEE Transactions on Signal Processing, 60(12):6368 6381, Dec.
2012.

M. J. Wainwright. Stochastic Processes on Graphs: Geometric and Variational Approaches.
PhD thesis, Department of EECS, Massachusetts Institute of Technology, 2002.

M. J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery us-
ing /1-constrained quadratic programming (Lasso). IEEE Transactions on Information
Theory, 55(5):2183-2202, 2009. ISSN 0018-9448.

W. Wang, M. J. Wainwright, and K. Ramchandran. Information-theoretic bounds on model
selection for Gaussian Markov random fields. In IEEE International Symposium on In-
formation Theory (ISIT), 2010.

A. Wille, P. Zimmermann, E. Vranovd, A. Firholz, O. Laule, S. Bleuler, L. Hennig,
A. Prelic, P. Von Rohr, L. Thiele, et al. Sparse graphical Gaussian modeling of the
isoprenoid gene network in arabidopsis thaliana. Genome Biol, 5(11):R92, 2004.

190

A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

D. M. Witten, J. H. Friedman, and N. Simon. New insights and faster computations for the
graphical lasso. Journal of Computational and Graphical Statistics, 20(4):892-900, 2011.

X. Xje and Z. Geng. A recursive method for structural learning of directed acyclic graphs.
Journal of Machine Learning Research, 9:459-483, 2008.

L. Xue and H. Zou. Regularized rank-based estimation of high-dimensional nonparanormal
graphical models. The Annals of Statistics, 40(5):2541-2571, 2012.

E. Yang, G. Allen, Z. Liu, and P. Ravikumar. Graphical models via generalized linear
models. In Advances in Neural Information Processing Systems, pages 1367—1375, 2012.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free-energy approximations and
generalized belief propagation algorithms. IEEE Transactions on Information Theory,
51(7):2282-2312, 2005.

M. Yuan and Yi Lin. Model selection and estimation in the Gaussian graphical model.
Biometrika, 94(1):19-35, 2007.

K. Zhang, J. Peters, D. Janzing, and B. Scholkopf. Kernel-based conditional independence
test and application in causal discovery. Arziv preprint arXiv:1202.3775, 2012.

H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical
Association, 101(476):1418-1429, 2006.

191

Journal of Machine Learning Research 15 (2014) 193-215 Submitted 7/13; Revised 11/13; Published 1/14

Axioms for Graph Clustering Quality Functions

Twan van Laarhoven TVANLAARHOVENQ@CS.RU.NL
Elena Marchiori ELENAM@CS.RU.NL
Institute for Computing and Information Sciences

Radboud University Nigmegen

Postbus 9010

6500 GL Nijmegen, The Netherlands

Editor: Vahab Mirrokni

Abstract

We investigate properties that intuitively ought to be satisfied by graph clustering quality
functions, that is, functions that assign a score to a clustering of a graph. Graph clustering,
also known as network community detection, is often performed by optimizing such a
function. Two axioms tailored for graph clustering quality functions are introduced, and the
four axioms introduced in previous work on distance based clustering are reformulated and
generalized for the graph setting. We show that modularity, a standard quality function for
graph clustering, does not satisfy all of these six properties. This motivates the derivation of
a new family of quality functions, adaptive scale modularity, which does satisfy the proposed
axioms. Adaptive scale modularity has two parameters, which give greater flexibility in the
kinds of clusterings that can be found. Standard graph clustering quality functions, such
as normalized cut and unnormalized cut, are obtained as special cases of adaptive scale
modularity.

In general, the results of our investigation indicate that the considered axiomatic frame-
work covers existing ‘good’ quality functions for graph clustering, and can be used to derive
an interesting new family of quality functions.

Keywords: graph clustering, modularity, axiomatic framework

1. Introduction

Following the work by Kleinberg (2002) there have been various contributions to the the-
oretical foundation and analysis of clustering, such as axiomatic frameworks for quality
functions (Ackerman and Ben-David, 2008), for criteria to compare clusterings (Meila,
2005), uniqueness theorems for specific types of clustering (Zadeh and Ben-David, 2009;
Ackerman and Ben-David, 2013; Carlsson, Mémoli, Ribeiro, and Segarra, 2013), taxonomy
of clustering paradigms (Ackerman et al., 2010a), and characterization of diversification
systems (Gollapudi and Sharma, 2009).

Kleinberg focused on clustering functions, which are functions from a distance function
to a clustering. He showed that there are no clustering functions that simultaneously satisfy
three intuitive properties: scale invariance, consistency and richness. Ackerman and Ben-
David (2008) continued on this work, and showed that the impossibility result does not
apply when formulating these properties in terms of quality functions instead of clustering
functions, where consistency is replaced with a weaker property called monotonicity.

(©2014 Twan van Laarhoven and Elena Marchiori.

VAN LAARHOVEN AND MARCHIORI

Both of these previous works are formulated in terms of distance functions over a fixed
domain. In this paper we focus on weighted graphs, where the weight of an edge indicates
the strength of a connection. The clustering problem on graphs is also known as network
community detection.

Graphs provide additional freedoms over distance functions. In particular, it is possible
for two points to be unrelated, indicated by a weight of 0. These zero-weight edges in turn
make it natural to consider graphs over different sets of nodes as part of a larger graph.
Secondly, we can allow for self loops. Self loops can indicate internal edges in a node. This
notation is used for instance by Blondel et al. (2008), where a graph is contracted based on
a fine-grained clustering.

In this setting, where edges with weight 0 are possible, Kleinberg’s impossibility result
does not apply. This can be seen by considering the connected components of a graph. This
is a graph clustering function that satisfies all three of Kleinberg’s axioms: scale invariance,
consistency and richness (see Section 4.2).

Our focus is on the investigation of graph clustering quality functions, which are func-
tions from a graph and a clustering to a real number ‘quality’. A notable example is
modularity (Newman and Girvan, 2004). In particular we ask which properties of quality
functions intuitively ought to hold, and which are often assumed to hold when reason-
ing informally about graph clustering. Such properties might be called axioms for graph
clustering.

The rest of this paper is organized as follows: Section 2 gives basic definitions. Next,
section 3 discusses different ways in which properties could be formulated.

In Section 4 of this paper we propose an axiomatic framework that consists of six
properties of graph clustering quality functions: the (adaption of) the four axioms from
Kleinberg (2002) and Ackerman and Ben-David (2008) (permutation invariance, scale in-
variance, richness and monotonicity); and two additional properties specific for the graph
setting (continuity and the locality).

Then, in Section 5, we show that modularity does not satisfy the monotonicity and
locality properties.

This result motivates the analysis of variants of modularity, leading to the derivation of
a new parametric quality function in Section 6, that satisfies all properties. This quality
function, which we call adaptive scale modularity, has two parameters, M and ~ which can
be tuned to control the resolution of the clustering. We show that quality functions similar
to normalized cut and unnormalized cut are obtained in the limit when M goes to zero and
to infinity, respectively. Furthermore, setting v to 0 yields a parametric quality function
similar to that proposed by Reichardt and Bornholdt (2004).

1.1 Related Work

Previous axiomatic studies of clustering quality functions have focused mainly on hierar-
chical clustering and on weakest and strongest link style quality functions (Kleinberg, 2002;
Ackerman and Ben-David, 2008; Zadeh and Ben-David, 2009; Carlsson et al., 2013). Pa-
pers in this line of work that focussed also on the partitional setting include Puzicha et al.
(1999), Ackerman et al. (2012) and Ackerman et al. (2013). Puzicha et al. (1999) investi-
gated a particular class of clustering quality functions obtained by requiring the function to

194

AX10MS FOR GRAPH CLUSTERING QUALITY FUNCTIONS

decompose into a certain additive form. Ackerman et al. (2012) considered clustering in the
weighted setting, in which every data point is assigned a real valued weight. They performed
a theoretical analysis on the influence of weighted data on standard clustering algorithms.
Ackerman et al. (2013) analyzed robustness of clustering algorithms to the addition of a
small set of points, and investigated the robustness of popular clustering methods.

All these studies are framed in terms of distance (or similarity and dissimilarity) func-
tions.

Bubeck and Luxburg (2009) studied statistical consistency of clustering methods. They
introduced the so-called nearest neighbor clustering and showed its consistency also for
standard graph based quality functions, such as normalized cut, ratio cut, and modularity.
Here we do not focus on properties of methods to optimize clustering quality, but on natural
properties that quality functions for graph clustering should satisfy.

Related works on graph clustering quality functions mainly focus on the so-called resolu-
tion limit, that is, the tendency of a quality function to prefer either small or large clusters.
In particular, Fortunato and Barthélemy (2007) proved that modularity may not detect
clusters smaller than a scale which depends on the total size of the network and on the
degree of interconnectedness of the clusters. van Laarhoven and Marchiori (2013) showed
that the resolution limit is the most important difference between quality functions in graph
clustering optimized using local search optimization.

To mitigate the resolution limit phenomenon, the quality function may be extended with
a so-called resolution parameter. For example, Reichardt and Bornholdt (2006) proposed
a formulation of graph clustering (therein called network community detection) based on
principles from statistical mechanics. This interpretation leads to the introduction of a
family of quality functions with a parameter that allows to control the clustering resolution.
In Section 6.1 we will show that this extension is a special case of adaptive scale modularity.

Traag, Van Dooren, and Nesterov (2011) formalized the notion of resolution-free quality
functions, that is, not suffering from the resolution limit, and provided a characterization
of this class of quality functions. Their notion is essentially an axiom, and we will discuss
the relation to our axioms in Section 4.1.1.

2. Definitions and Notation

A symmetric weighted graph is a pair (V,E) of a finite set V' of nodes and a function
E :V xV — R of edge weights, where E(i,j) = E(j,7) for all 4, j € V. Edges with larger
weights represent stronger connections, so missing edges can get weight 0. Note that this
is the opposite of the convention used in distance based clustering. We explicitly allow for
self loops, that is, nodes for which E(i,i) > 0.

A clustering C of a graph G = (V| E) is a partition of its nodes. That is, | JC =V and
for all ¢1,co € C, ¢c1 Neg # 0 if and only if ¢; = co. When two nodes i and j are in the
same cluster in clustering C, that is, when ¢, j € ¢ for some ¢ € C, then we write i ~¢ j.
Otherwise we write i ¢ j.

A clustering C is a refinement of a clustering D, written C' C D, when for every cluster
c € C there is a cluster d € D such that ¢ C d.

A graph clustering quality function (or objective function) @ is a function from graphs
G and clusterings of G to real numbers. We adopt the convention that a higher quality

195

VAN LAARHOVEN AND MARCHIORI

indicates a ‘better’ clustering. As a generalization, we will sometimes work with parame-
terized families of quality functions. A single quality function can be seen as a family with
no parameters.

Let G1 = (Vi1, E1) and Gy = (Va, E2) be two graphs and let V,, C V; NV, be a subset
of the common nodes. We say that the graphs agree on V, if Fy(i,j) = FEs(i,j) for all
i,j € V. We say that the graphs also agree on the neighborhood of V, If

o F1(i,j) = Es(i,j) for all i € V, and j € V1 N Va,
e F1(i,j)=0foralli eV, and j € V1 \ Vo, and
o By(i,j)=0forallieV, and j € Vo \ V4.

This means that for nodes in V, the weights and endpoints of incident edges are exactly the
same in the two graphs.

3. On the Form of Axioms

There are three different ways to state potential axioms for clustering:

1. As a property of clustering functions, as in Kleinberg (2002). For example, scale
invariance of a clustering function C' would be written as “C(G) = C(aG), for all
graphs G, a > 0”. l.e. the optimal clustering is invariant under scaling of edge

weights.

2. As a property of the values of a quality function @), as in Ackerman and Ben-David
(2008). For example “Q(G,C) = Q(aG, (), for all graphs G, all clustering C' of G,
and a > 0”. L.e. the quality is invariant under scaling of edge weights.

3. As a property of the relation between qualities of different clustering, or equivalently,
as a property of an ordering of clusterings for a particular graph. For example
“QIG,C) > Q(G,D) = Q(aG,C) > Q(aG,D)” 1e. the ‘better than’ relation for
clusterings is invariant under scaling of edge weights.

The third form is slightly more flexible than the other two. Any quality function that
satisfies a property in the second style will also satisfy the corresponding property in the
third style, but the converse is not true. Note also that if D is not restricted in a property in
the third style, then one can take C(G) = argmax Q(G, C) to obtain a clustering function
and an axiom in the first style.

Most properties are more easily stated and proved in the second, absolute, style. There-
fore, we adopt the second style unless doing so requires us to make specific choices.

4. Axioms for Graph Clustering Quality Functions

Kleinberg defined three axioms for distance based clustering functions. In Ackerman and
Ben-David (2008) the authors reformulated these into four axioms for clustering quality
functions. These axioms can easily be adapted to the graph setting.

The first property that one expects for graph clustering is that the quality of a clustering
depends only on the graph, that is, only on the weight of edges between nodes, not on the
identity of nodes. We formalize this in the permutation invariance axiom,

196

AX10MS FOR GRAPH CLUSTERING QUALITY FUNCTIONS

Definition 1 (Permutation invariance) A graph clustering quality function @ is per-
mutation invariant if for all graphs G = (V, E) and all isomorphisms f : V. — V' it is
the case that Q(G,C) = Q(f(G), f(C)); where f is extended to graphs and clusterings by
fO)={{f(@)|iect|ceC}and f(V,E)) = (V',(i,5) = E(f~1(0), f1(1)))-

The second property, scale invariance, requires that the quality doesn’t change when
edge weights are scaled uniformly. This is an intuitive axiom when one thinks in terms of
units: a graph with edges in “m/s” can be scaled to a graph with edges in “km/h”. The
quality should not be affected by such a transformation, perhaps up to a change in units.

Ackerman and Ben-David (2008) defined scale invariance by insisting that the quality
stays equal when distances are scaled. In contrast, in Puzicha et al. (1999) the quality
should scale proportional with the scaling of distances. We generalize both of these previous
definitions by only considering the relations between the quality of two clusterings.

Definition 2 (Scale invariance) A graph clustering quality function @ is scale invariant
if for all graphs G = (V, E), all clusterings C1,Cs of G and all constants o > 0, Q(G,C1) <
Q(G,Cy) if and only if Q(aG,C1) < Q(aG,Cy). Where oG = (V, (i,j) — «aFE(i,j)) is a
graph with edge weights scaled by a factor a.

This formulation is flexible enough for single quality functions. However, families of
quality functions could have parameters that are also scale dependent. For such families we
therefore propose to use as an axiom a more flexible property that also allows the parameters
to be scaled,

Definition 3 (Scale invariant family) A family of quality function Qp parameterized by
P € P is scale invariant if for all constants P € P and « > 0 there is a P' € P such that
for all graphs G = (V, E), and all clusterings C1,Co of G, Qp(G,Cy) < Qp(G,Cs) if and
only if Qp(aG,Cr) < Qp(aG,Cy).

Thirdly, we want to rule out trivial quality functions. This is done by requiring richness,
that is, that by changing the edge weights any clustering can be made optimal for that
quality function.

Definition 4 (Richness) A graph clustering quality function @ is rich if for all sets V
and all non-trivial partitions C* of V', there is a graph G = (V,E) such that C* is the
Q-optimal clustering of V', that is, argmax~ Q(G,C) = C*.

The last axiom that Ackerman and Ben-David consider is by far the most interesting.
Intuitively, we expect that when the edges within a cluster are strengthened, or when edges
between clusters are weakened, that this does not decrease the quality. Formally we call
such a change of a graph a consistent improvement,

Definition 5 (Consistent improvement) Let G = (V, E) be a graph and C' a clustering
of G. A graph G' = (V,E') is a C-consistent improvement of G if for all nodes i and j,
E'(i,j) > E(i,j) whenever i ~¢ j and E'(i,7) < E(i,j) whenever i /¢ j.

We say that a quality function that does not decrease under consistent improvement is
monotonic. In previous work this axiom is often called consistency.

197

VAN LAARHOVEN AND MARCHIORI

Definition 6 (Monotonicity) A graph clustering quality function @ is monotonic if for
all graphs G, all clusterings C of G and all C-consistent improvements G' of G it is the
case that Q(G',C) > Q(G, C).

4.1 Locality

In the graph setting it also becomes natural to look at combining different graphs. With
distance functions this is impossible, since it is not clear what the distance between nodes
from the two different sets should be. But for graphs we can take the edge weight between
nodes not in both graphs to be zero, which is the case when the graphs agree on the
neighborhood of some set.

Consider adding nodes to one side of a large network, then we would not want the
clustering on the other side of the network to change if there is no direct connection. For
example, if a new protein is discovered in yeast, then the clustering of unrelated proteins in
humans should remain the same. Similarly, we can consider any two graphs with disjoint
node sets as one larger graph. Then the quality of clusterings of the two original graphs
should relate directly to quality on the combined graph.

In general, local changes to a graph should have only local consequences to a clustering.
Or in other words, the contribution of a single cluster to the total quality should only
depend on nodes in the neighborhood of that cluster.

Definition 7 (Locality) A graph clustering quality function @ is local if for all graphs
G1 = (Vi, E1) and Go = (Va, Ey) that agree on a set V, and its neighborhood, and for all
clusterings Cy, Dy of V,, C1 of V1\V, and Cy of Vo \ Vg, if Q(G1,C,UCY) > Q(G1, D,UCH)
then Q(Gz2,Cy U C2) > Q(Ga, Dy U Cy).

Any quality function that has a preference for a fixed number of clusters will not be
local. On the other hand, a quality function that is written as a sum over clusters, where
each summand depends only on properties of nodes and edges in one cluster and not on
global properties, is local.

Ackerman et al. (2010b) defined a similar locality property for clustering functions.
Their definition differs from ours in three ways. First of all, they looked at k-clustering,
where the number of clusters is given and fixed. Secondly, their locality property only
implies a consistent clustering when the rest of the graph is removed, corresponding to
Vo = Vi NV,. They do not consider the other direction, where more nodes and edges are
added. Finally, their locality property requires only agreement of the overlapping set V,
not on its neighborhood. That means that clustering functions should also give the same
results if edges with one endpoint in V, are removed.

4.1.1 RELATION TO RESOLUTION-LIMIT-FREE QUALITY FUNCTIONS

Traag et al. (2011) introduced the notion of resolution-limit-free quality functions, which
is similar to locality. They then showed that resolution-limit-free quality functions do not
suffer from the resolution limit as described by Fortunato and Barthélemy (2007). Their
definition is as follows.

198

AX10MS FOR GRAPH CLUSTERING QUALITY FUNCTIONS

Definition 8 (Resolution-limit-free) Call a clustering C' of a graph G Q-optimal if for
all clustering C' of G we have that Q(G,C) > Q(G,C"). Let C be a Q-optimal clustering of
a graph G1. Then the quality function Q is called resolution-limit-free if for each subgraph
Go induced by D C C, the partition D 1is also QQ-optimal.

There are three differences compared to our locality property. First of all, Definition 8
refers only to the optimal clustering, not to the quality, that is, it is a property in the style
of Kleinberg. Secondly, locality does not require that Go be a subgraph of G;. Locality is
stronger in that sense. Thirdly, and perhaps most importantly, in the subgraph G induced
by D C C, edges from a node in D to nodes not in D will be removed. That means
that while G; and G5 agree on the set of common nodes, they do not also agree on their
neighborhood. So in this sense locality is weaker than resolution-limit-freedom.

The notion of resolution-limit-free quality functions was born out of the need to avoid
the resolution limit of graph clustering. And indeed locality is not enough to guarantee
that a quality function is free from this resolution limit.

We could look at a stronger version of locality, which replaces agreement on the neigh-
borhood of a set V, by plain agreement on that set. Such a strong locality property would
imply resolution-limit-freedom. However, it is a very strong property in that it rules out
many sensible quality functions. In particular, a strongly local quality function can not
depend on the weight of edges entering or leaving a cluster, because that weight can be
different in another graph that agrees only on that cluster.

The solution used by Traag et al. is to use the number of nodes instead of the volume
of a cluster. In this way they obtain a resolution-limit-free variant of the Potts model by
Reichardt and Bornholdt (2004), which they call the constant Potts model. But this comes
at the cost of scale invariance.

4.2 Continuity

In the context of graphs, perhaps the most intuitive clustering function is finding the con-
nected components of a graph. As a quality function, we could write

Qcoco(Gy C) = 1[0 = CA'coco(G)L

where the function Ceoco yields the connected components of a graph.

This quality function is clearly permutation invariant, scale invariant, rich, and local.
Since a consistent change can only remove edges between clusters and add edges within
clusters, the coco quality function is also monotonic.

In fact, all of Kleinberg’s axioms (reformulated in terms of graphs) also hold for C’COCO,
which seems to refute their impossibility result. However, the impossibility proof can not
be directly transfered to graphs, because it involves a multiplication and division by a
maximum distance. In the graph setting this would be multiplication and division by a
minimum edge weight, which can be zero.

Still, despite connected components satisfying all previously defined properties (except
for strong locality), it is not a very useful quality function. In many real-world graphs, most
nodes are part of one giant connected component (Bollobés, 2001). We would also like the
clustering to be influenced by the weight of edges, not just by their existence. A natural
way to rule out such degenerate quality functions is to require continuity.

199

VAN LAARHOVEN AND MARCHIORI

Definition 9 (Continuity) A quality function Q is continuous if a small change in the
graph leads to a small change in the quality. Formally, Q) is continuous if for every e > 0
and every graph G = (V, E) there exists a 6 > 0 such that for all graphs G' = (V, E'), if
E(i,j) — 6 < E'(i,7) < E(i,j) + 6 for all nodes i and j, then Q(G',C) — e < Q(G,C) <
Q(G',C) + € for all clusterings C of G.

Connected components clustering is not continuous, because adding an edge with a
small weight § between clusters changes the connected components, and hence dramatically
changes the quality.

Continuous quality functions have an important property in practice, in that they pro-
vide a degree of robustness to noise. A clustering that is optimal with regard to a continuous
quality function will still be close to optimal after a small change to the graph.

4.3 Summary of Axioms

We propose to consider the following six properties as axioms for graph clustering quality
functions,

1. Permutation invariance (definition 1),
2. Scale invariance (definition 2),

3. Richness (definition 4),

4. Monotonicity (definition 6),

5. Locality (definition 7), and

6. Continuity (definition 9).

As mentioned previously, for families of quality functions we replace scale invariance by
scale invariance for families (definition 3).

In the next section we will show that this set of axioms is consistent by defining a quality
function and a family of quality functions that satisfies all of them. Additionally, the fact
that there are quality functions that satisfy only some of the axioms shows that they are
(at least partially) independent.

5. Modularity

For graph clustering one of the most popular quality functions is modularity (Newman and
Girvan, 2004), despite its limitations (Good et al., 2010; Traag et al., 2011),

Qmodularity (G, C) = Z(wc - (%)2) (1)

v v
ceC v v

In this expression ve(G) = > ;. > iev E(i,) is the volume of a cluster, while w.(G) =
> je . E(i,7) is the within cluster weight. vy is the volume of the entire graph. We leave
the argument G implicit for readability.

It is easy to see that modularity is permutation invariant, scale invariant and continuous.

200

AX10MS FOR GRAPH CLUSTERING QUALITY FUNCTIONS

Theorem 1 Modularity is rich.

The proof of Theorem 1 is in appendix A.

An important aspect of modularity is that volume and within weight are normalized
with respect to the total volume of the graph. This ensures that the quality function is
scale invariant, but it also means that the quality can change in unexpected ways when the
total volume of the graph changes. This leads us to Theorem 2.

Theorem 2 Modularity is not local.

Proof Consider the graphs

2 2 2 2 4
Siefie] s eiralt el
1 ’ OO0

which agree on the set V,, = {a,b}. Note that we draw the graphs as directed graphs, to
make it clear that each undirected edge is counted twice for the purposes of volume and
within cluster weight. Now take the clusterings C, = {{a}, {b}} and D, = {{a,b}} of V,;
Cy ={}of V1 \ V; and Cy = {{c}} of Vo \ V. Then

Qmodularity(Gla Ca U Cl) = 1/6 >0= Qmodularity(Gla Da U 01)7

while
Qmodularity(G27 Ca U 02) = 23/50 < 24/50 = Qmodularity(G27 Da U 02)

This counterexample shows that modularity is not local. |

Even without changing the node set, changes in the total volume can be problematic,
as shown by the following theorem.

Theorem 3 Modularity is not monotonic.

Proof Consider the graphs

G@ G'@

and the clustering C' = {{a},{b},{c}}. G is a C-consistent improvement of G, be-
cause the weight of a between-cluster edge is decreased. The modularity of C in G is
Qmodularity (G, C) = 1/8, while the modularity of C' in G’ is Qmodularity (G', C) = 0. So mod-
ularity can decrease with a consistent change of a graph, and hence it is not a monotonic
quality function. [|

201

VAN LAARHOVEN AND MARCHIORI

Monotonicity might be too strong a condition. When the goal is to find a clustering of
a single graph, we are not actually interested in the absolute value of a quality function.
Rather, what is of interest is the optimal clustering, and which changes to the graph preserve
this optimum. At a smaller scaler, we can look at the relation between two clusterings. If
C' is better then D on a graph G, then on what other graphs is C' better then D?

We therefore define a relative version of monotonicity, in the hopes that modularity does
satisfy this weaker version.

Definition 10 (Relative monotonicity) A quality function @ is relatively monotonic if
for all graphs G and G’ and clusterings C and D, if G’ is a C-consistent improvement of
G and G is a D-consistent improvement of G' and Q(G,C) > Q(G, D) then Q(G',C) >
Q@ D).

Theorem 4 Modularity is not relatively monotonic.

Proof Take the graphs

Jorogy] food

and the clusterings C' = {{a,b,c},{d}} and D = {{a}, {b},{c,d}}. G’ is a C-consistent im-
provement of GG, because the weight of a within cluster edge is increased. G is a D-consistent
improvement of G’, because the weight of a between cluster edge is decreased. How-
ever Qmodularity(Ga C) = 20/121 > 16/121 = Qmodularity(G7 D) while Qmodularity(lec) =
24/169 < 28/121 = Qmodularity(G’, D). This counterexample shows that modularity is not
relatively monotonic. []

6. Adaptive Scale Modularity

The problems with modularity stem from the fact that the total volume can change when
changes are made to the graph. It is therefore natural to look at a variant of modularity
where the total volume is replaced by a constant M,

QM-ixed (G, C) = Z(lﬁ — (;\)2)2>

ceC

This quality function is obviously local. It is also a scale invariant family parameterized by
M. However, this fixed scale modularity quality function is not scale invariant for any fixed
scale M > 0.

We might hope that fixed scale modularity would be monotonic, because it doesn’t suffer
from the problem where changes in the edge weights affect the total volume. Unfortunately,
fixed scale modularity has problems when the volume of a cluster starts to exceed M /2.

202

AX10MS FOR GRAPH CLUSTERING QUALITY FUNCTIONS

In that case, increasing the weight of within cluster edges starts to decrease the fixed scale
modularity. Looking at a cluster ¢ with volume v, = w, + b,

8@M—ﬁxed (G, C) 1 2’06

Ow M M?

This derivative is negative when 2v, > M, so in that case increasing the weight of a within-
cluster edge will decrease the quality. Hence fixed scale modularity is not monotonic.

The above argument also suggests a possible solution: add 2v. to the normalization
factor M. Or more generally, add yv. with v > 2, which leads to the quality function

We Ve 2
CRRCICIS 3) Gty g

ceC

This adaptive scale modularity quality function is clearly still permutation invariant,
continuous and local. For M = 0 it is also scale invariant. Since the value of M should
scale along with the edge weights, adaptive scale modularity is a scale invariant family
parameterized by M. Additionally, we have the following two theorems:

Theorem 5 Adaptive scale modularity is rich for all M >0 and v > 1.
Theorem 6 Adaptive scale modularity is monotonic for all M > 0 and v > 2.

The proofs of these theorems can be found in appendices B and C.

This shows that adaptive scale modularity satisfies all six axioms we have defined for
families of graph clustering quality functions, and the six axioms for single quality functions
when M = 0. This shows that our extended set of axioms is consistent.

6.1 Relation to Other Quality Functions

Interestingly, in the limit as M goes to 0, the adaptive-scale quality function becomes similar
to normalized cut (Shi and Malik, 2000) with an added constant,

QU:’Y(G7 C) = l Z(% _ l)

Teeo % 7

This 0-adaptive modularity is also scale invariant as a single quality function.
Conversely, when M goes to infinity the quality goes to 0. However, the quality function
approaches unnormalized cut in behavior:

lim M- Quy(G,C) =) we.

M—o0
ceC

This expression is similar to the Constant Potts model (CPM) by Traag et al. (2011),

Qepm(G.C) = Y <wc - m?) -

ceC

203

VAN LAARHOVEN AND MARCHIORI

In contrast to the quality functions discussed thus far, CPM uses the number of nodes
instead of volume to control the size of clusters. Like adaptive scale modularity, the constant
Potts model satisfies all six axioms (as a family).

As stated before, the fixed scale and adaptive scale modularity quality functions are a
scale invariant family; they are not scale invariant for a fixed value of M (except for M = 0).
This is not a large problem in practice, since scale invariance is often sacrificed to overcome
the resolution limit of modularity (Fortunato and Barthélemy, 2007). In fact, fixed scale
modularity is proportional to the quality function introduced by Reichardt and Bornholdt
(2004),

U2

Qra(G,C) = Z(wc - 'YRBﬁ): M - Qnr-fixea (G, C),
ceC

with M = vy /yrB.

6.2 Parameter Dependence Analysis

There has been a lot of interest in the so called resolution limit of modularity.

This problem can be illustrated with a simple graph that consists of a ring of cliques,
where each clique is connected to the next one with a single edge. We would like the
clusters in the optimal clustering to correspond to the cliques in the ring. It was observed
by Fortunato and Barthélemy (2007) that, as the number of cliques in the ring increases, at
some point the clustering with the highest modularity will have multiple cliques per cluster.

This resolution problem stems from the fact that the behavior of modularity depends on
the total volume of the graph. Both the fixed scale and adaptive scale modularity quality
functions instead have a parameter M, and hence do not suffer from this problem. In
fact, any local quality function will not have a resolution limit in the sense of Fortunato
and Barthélemy. A similar observation was made by Traag et al. (2011) in the context of
modularity like quality functions.

In real situations graphs are not uniform as in the ring-of-cliques model. But we can still
take simple uniform problems as a building block for larger and more complex graphs, since
for local quality functions the rest of the network doesn’t matter. Therefore we will look
at a simple problem with two subgraphs of varying sizes connected by a varying number of
edges. More precisely, we take two cliques each with within weight w, connected by edges
with weight b. The total volume of this (sub)graph is then 2w + 2b.

There are three possible outcomes when clustering such a two-clique network: (1) the
optimal solution has a single cluster; (2) the optimal solution has two clusters, corresponding
to the two cliques; (3) the optimal solution has more than two clusters, splitting the cliques
apart. See Figure 1 for an illustration. Which of these outcomes is desirable depends on
the circumstances.

Another heterogeneous resolution limit model was proposed by Lancichinetti and Fortu-
nato (2011). In this situation there are two cliques of equal size connected by a single edge,
and a random subgraph. Now the ideal solution would be to find three clusters, one for
each clique and one for the random subgraph. The optimal split of the random subgraph
will roughly cut it in half, with a fixed fraction of the volume being between the two clusters
(Reichardt and Bornholdt, 2007). So this model can be considered as a combination of two

204

AX10MS FOR GRAPH CLUSTERING QUALITY FUNCTIONS

2w —+ 2b

Figure 1: An illustration of the possible outcomes when clustering a two-clique network.
Clusters are indicated by circles. In outcome (3), the vertical edges each have
weight w/4, while the horizontal and diagonal ones have weight b/4.

instances of our simpler problem, one for the two cliques and one for the random subgraph.!
Hence, we want outcome (2) for the cliques, and outcome (1) for the random subgraph.

In Figure 2 we show which graphs give which outcomes for adaptive scale modularity
with various parameter settings. The first column, v = 0, is of particular interest, since it
corresponds to fixed scale modularity and hence also to Qrp and to modularity in certain
graphs. In the third row we can see that when 2v = 2w 4 2b > M = 100 the cliques are
split apart. This is precisely the region in which monotonicity no longer holds. Overall,
the parameter M has the effect of determining the scale; each row in this figure is merely
the previous row magnified by a factor 10. Increasing M has the effect of merging small
clusters. On the other hand, the « parameter controls the slope of the boundary between
outcomes (1) and (2), that is, the fraction of edges that should be within a cluster. This is
most clearly seen when M = 0, while otherwise the effect of M dominates for small clusters.

7. Conclusion and Open Questions

In this paper we presented an axiomatic framework for graph clustering quality functions
consisting of six properties. We showed that modularity does not satisfy the monotonicity
property. This motivated the derivation of a new family of quality functions, adaptive scale
modularity, that satisfies all properties and has standard graph clustering quality functions
as special cases. Results of an experimental parameter dependence analysis showed the high
flexibility of adaptive scale modularity. However, adaptive scale modularity should not be
considered the solution to all the problems of modularity, but rather an example of how
axioms can be used in practice.

An overview of the discussed axioms and quality functions can be found in table 1.
Many more quality functions have been proposed in the literature, so this list is by no
means exhaustive. An interesting topic for future research is to make a survey of which
existing quality functions satisfy which of the proposed properties.

We also investigated resolution-limit-free quality functions as defined by Traag et al.
(2011). As illustrated in section 6.2, adaptive scale modularity allows to perform clustering
at various resolutions, by varying the values of its two parameters. However it is not
resolution-limit-free.

1. Lancichinetti and Fortunato include edges between the cliques and the random subgraph to ensure that
the entire network is connected, these edges are not relevant to the problem.

205

0
50
N
g
[T
= 20
10
0
50
N
g8
I a
= 20
10
0
50
0
30
§ a
— 20
Il
= 10

Figure 2: The behavior of Qs for varying parameter values. The graph consists of two
subgraphs with w internal weight each, connected by an edge with weigh b. Hence
the volume of the total graph is 2w + 2b. In region (1) the optimal clustering
has a single cluster, In region (2) (light blue) the optimal clustering separates the
subgraphs. In region (3) (red, hatched) the subgraphs themselves will be split

apart.

Our paper did not address questions such as finding a best quality function (Almeida,
Guedes, Jr., and Zaki, 2011), or selecting a significant resolution scale (Traag et al., 2013).
The aim was to provide necessary conditions about what a good quality function is, in order
to rule out and/or to improve quality functions. The proposed axioms and the introduction

VAN LAARHOVEN AND MARCHIORI

(D)) .
| il y e
_ @ /’/
/ ~ y %
i @ @® y
/ ; (D ///
[t -)//
/ / RETY il /// CZ)
; R N | e (2) . g
)y
i /% @ @ O 4
L ‘\i/‘ | /// - =5 ///
’,r"‘ 3 ///’/ //’/) e (2)
/,,/ (2) -~ > o P) & <
@ @ @ @
// p 7
s
- /"/1 //// @
I | e B —

of adaptive scale modularity are an effort in this direction.

We also did not address the question of finding a clustering with the highest quality.
Finding the optimal value of quality functions such as modularity is NP-hard (Brandes et al.,
2008), but several heuristic and approximation algorithms have been developed. One class
of algorithms uses a divisive approach, see for instance Newman (2006) and Ruan and Zhang
(2008). For such a tactic to be valid, an optimal or close to optimal clustering of a subgraph

206

AX10MS FOR GRAPH CLUSTERING QUALITY FUNCTIONS

3 =

& E

.% ic_ﬁ(/

B 8 g

o z z z

2 5 B g &

= Z Z 2 g8 = E

= s 2 £ % % £

s 0§ =