
The Journal of Machine Learning Research
Volume 15
Print-Archive Edition

Pages 1–1370

Microtome Publishing
Brookline, Massachusetts
www.mtome.com

The Journal of Machine Learning Research
Volume 15
Print-Archive Edition

The Journal of Machine Learning Research (JMLR) is an open
access journal. All articles published in JMLR are freely available
via electronic distribution. This Print-Archive Edition is published
annually as a means of archiving the contents of the journal in
perpetuity. The contents of this volume are articles published
electronically in JMLR in 2014.

JMLR is abstracted in ACM Computing Reviews, INSPEC, and
Psychological Abstracts/PsycINFO.

JMLR is a publication of Journal of Machine Learning Research,
Inc. For further information regarding JMLR, including open
access to articles, visit http://www.jmlr.org/.

JMLR Print-Archive Edition is a publication of Microtome
Publishing under agreement with Journal of Machine Learning
Research, Inc. For further information regarding the Print-Archive
Edition, including subscription and distribution information and
background on open-access print archiving, visit Microtome
Publishing at http://www.mtome.com/.

Collection copyright © 2014 The Journal of Machine Learning
Research, Inc. and Microtome Publishing. Copyright of individual
articles remains with their respective authors.

ISSN 1532-4435 (print)
ISSN 1533-7928 (online)

JMLR Editorial Board
Editor-in-Chief
Bernhard Schölkopf, MPI for Intelligent Systems, Germany

Editor-in-Chief
Kevin Murphy, Google Research, USA

Managing Editor
Aron Culotta, Illinois Institute of Technology, USA

Production Editor
Charles Sutton, University of Edinburgh, UK

JMLR Web Master
Chiyuan Zhang, Massachusetts Institute of Technology, USA

JMLR Action Editors
Edoardo M. Airoldi, Harvard University, USA Peter Auer, University of Leoben, Austria Francis
Bach, INRIA, France Andrew Bagnell, Carnegie Mellon University, USA David Barber, Univer-
sity College London, UK Mikhail Belkin, Ohio State University, USA Yoshua Bengio, Université
de Montréal, Canada Samy Bengio, Google Research, USA Jeff Bilmes, University of Washing-
ton, USA David Blei, Princeton University, USA Karsten Borgwardt, MPI For Intelligent Systems,
Germany Léon Bottou, Microsoft Research, USA Lawrence Carin, Duke University, USA Fran-
cois Caron, University of Bordeaux, France David Maxwell Chickering, Microsoft Research, USA
Andreas Christman, University of Bayreuth, Germany Alexander Clark, King’s College London,
UK William W. Cohen, Carnegie-Mellon University, USA Corinna Cortes, Google Research,
USA Koby Crammer, Technion, Israel Sanjoy Dasgupta, University of California, San Diego,
USA Rina Dechter, University of California, Irvine, USA Inderjit S. Dhillon, University of Texas,
Austin, USA David Dunson, Duke University, USA Charles Elkan, University of California at
San Diego, USA Rob Fergus, New York University, USA Nando de Freitas, Oxford University,
UK Yoav Freund, University of California at San Diego, USA Kenji Fukumizu, The Institute
of Statistical Mathematics, Japan Sara van de Geer, ETH Zurich, Switzerland Amir Glober-
son, The Hebrew University of Jerusalem, Israel Moises Goldszmidt, Microsoft Research, USA
Russ Greiner, University of Alberta, Canada Arthur Gretton, University College London, UK
Maya Gupta, Google Research, USA Isabelle Guyon, ClopiNet, USA Matthias Hein, Saarland
University, Germany Thomas Hofmann, ETH Zurich, Switzerland Aapo Hyvärinen, University
of Helsinki, Finland Alex Ihler, University of California, Irvine, USA Tommi Jaakkola, Mas-
sachusetts Institute of Technology, USA Samuel Kaski, Aalto University, Finland Sathiya Keerthi,
Microsoft Research, USA Andreas Krause, ETH Zurich, Switzerland Christoph Lampert, Insti-
tute of Science and Technology, Austria Gert Lanckriet, University of California, San Diego, USA
John Langford, Microsoft Research, USA Pavel Laskov, University of Tübingen, Germany Neil
Lawrence, University of Manchester, UK Guy Lebanon, Amazon, USA Daniel Lee, University
of Pennsylvania, USA Jure Leskovec, Stanford University, USA Gábor Lugosi, Pompeu Fabra
University, Spain Ulrike von Luxburg, University of Hamburg, Germany Shie Mannor, Technion,
Israel Robert E. McCulloch, University of Chicago, USA Chris Meek, Microsoft Research, USA
Marina Meila, University of Washington, USA Nicolai Meinshausen, University of Oxford, UK
Vahab Mirrokni, Google Research, USA Mehryar Mohri, New York University, USA Sebastian
Nowozin, Microsoft Research, Cambridge, UK Manfred Opper, Technical University of Berlin,
Germany Una-May O’Reilly, Massachusetts Institute of Technology, USA Laurent Orseau, UMR
AgroParisTech, France Ronald Parr, Duke University, USA Martin Pelikan, Google Inc, USA Jie
Peng, University of California, Davis, USA Jan Peters, Technische Universität Darmstadt, Germany

Avi Pfeffer, Charles River Analytis, USA Joelle Pineau, McGill University, Canada Massimiliano
Pontil, University College London, UK Yuan (Alan) Qi, Purdue University, USA Luc de Raedt,
Katholieke Universiteit Leuven, Belgium Alexander Rakhlin, University of Pennsylvania, USA
Ben Recht, University of California, Berkeley, USA Saharon Rosset, Tel Aviv University, Israel
Ruslan Salakhutdinov, University of Toronto, Canada Marc Schoenauer, INRIA Saclay, France
Matthias Seeger, Amazon, Germany John Shawe-Taylor, University College London, UK Xiao-
tong Shen, University of Minnesota, USA Yoram Singer, Google Research, USA Peter Spirtes,
Carnegie Mellon University, USA Nathan Srebro, Toyota Technical Institute at Chicago, USA Ingo
Steinwart, University of Stuttgart, Germany Amos Storkey, University of Edinburgh, UK Csaba
Szepesvari, University of Alberta, Canada Yee Whye Teh, University of Oxford, UK Olivier
Teytaud, INRIA Saclay, France Ivan Titov, University of Amsterdam, Netherlands Koji Tsuda,
National Institute of Advanced Industrial Science and Technology, Japan Zhuowen Tu, University
of California San Diego, USA Nicolas Vayatis, Ecole Normale Supérieure de Cachan, France S V
N Vishwanathan, Purdue University, USA Manfred Warmuth, University of California at Santa
Cruz, USA Stefan Wrobel, Fraunhofer IAIS and University of Bonn, Germany Eric Xing, Carnegie
Mellon University, USA Bin Yu, University of California at Berkeley, USA Tong Zhang, Rutgers
University, USA Zhihua Zhang, Shanghai Jiao Tong University, China Hui Zou, University of
Minnesota, USA

JMLR-MLOSS Editors
Geoffrey Holmes, University of Waikato, New Zealand Antti Honkela, University of Helsinki,
Finland Balázs Kégl, University of Paris-Sud, France Cheng Soon Ong, University of Melbourne,
Australia Mark Reid, Australian National University, Australia

JMLR Editorial Board
Naoki Abe, IBM TJ Watson Research Center, USA Yasemin Altun, Google Inc, Switzerland
Jean-Yves Audibert, CERTIS, France Jonathan Baxter, Australia National University, Australia
Richard K. Belew, University of California at San Diego, USA Kristin Bennett, Rensselaer Poly-
technic Institute, USA Christopher M. Bishop, Microsoft Research, Cambridge, UK Lashon
Booker, The Mitre Corporation, USA Henrik Boström, Stockholm University/KTH, Sweden Craig
Boutilier, University of Toronto, Canada Nello Cristianini, University of Bristol, UK Peter Dayan,
University College, London, UK Dennis DeCoste, eBay Research, USA Thomas Dietterich, Ore-
gon State University, USA Jennifer Dy, Northeastern University, USA Saso Dzeroski, Jozef Stefan
Institute, Slovenia Ran El-Yaniv, Technion, Israel Peter Flach, Bristol University, UK Emily Fox,
University of Washington, USA Dan Geiger, Technion, Israel Claudio Gentile, Università degli
Studi dell’Insubria, Italy Sally Goldman, Google Research, USA Thore Graepel, Microsoft Re-
search, UK Tom Griffiths, University of California at Berkeley, USA Carlos Guestrin, University
of Washington, USA Stefan Harmeling, University of Düsseldorf, Germany David Heckerman,
Microsoft Research, USA Katherine Heller, Duke University, USA Philipp Hennig, MPI for Intel-
ligent Systems, Germany Larry Hunter, University of Colorado, USA Risi Kondor, University of
Chicago, USA Aryeh Kontorovich, Ben-Gurion University of the Negev, Israel Andreas Krause,
ETH Zurich, Switzerland John Lafferty, University of Chicago, USA Erik Learned-Miller, Uni-
versity of Massachusetts, Amherst, USA Fei Fei Li, Stanford University, USA Yi Lin, University
of Wisconsin, USA Wei-Yin Loh, University of Wisconsin, USA Richard Maclin, University
of Minnesota, USA Sridhar Mahadevan, University of Massachusetts, Amherst, USA Vikash
Mansingkha, Massachusetts Institute of Technology, USA Yishay Mansour, Tel-Aviv University,
Israel Jon McAuliffe, University of California, Berkeley, USA Andrew McCallum, University
of Massachusetts, Amherst, USA Joris Mooij, Radboud University Nijmegen, Netherlands Ray-
mond J. Mooney, University of Texas, Austin, USA Klaus-Robert Muller, Technical University
of Berlin, Germany Guillaume Obozinski, Ecole des Ponts - ParisTech, France Pascal Poupart,
University of Waterloo, Canada Konrad Rieck, University of Göttingen, Germany Cynthia Rudin,
Massachusetts Institute of Technology, USA Robert Schapire, Princeton University, USA Fei Sha,

University of Southern California, USA Shai Shalev-Shwartz, Hebrew University of Jerusalem, Is-
rael Padhraic Smyth, University of California, Irvine, USA Le Song, Georgia Institute of Technol-
ogy, USA Alexander Statnikov, New York University, USA Jean-Philippe Vert, Mines ParisTech,
France Martin J. Wainwright, University of California at Berkeley, USA Chris Watkins, Royal
Holloway, University of London, UK Kilian Weinberger, Washington University, St Louis, USA
Max Welling, University of Amsterdam, Netherlands Chris Williams, University of Edinburgh, UK
David Wipf, Microsoft Research Asia, China Alice Zheng, Microsoft Research Redmond, USA

JMLR Advisory Board
Shun-Ichi Amari, RIKEN Brain Science Institute, Japan Andrew Barto, University of Massachusetts
at Amherst, USA Thomas Dietterich, Oregon State University, USA Jerome Friedman, Stan-
ford University, USA Stuart Geman, Brown University, USA Geoffrey Hinton, University of
Toronto, Canada Michael Jordan, University of California at Berkeley, USA Leslie Pack Kael-
bling, Massachusetts Institute of Technology, USA Michael Kearns, University of Pennsylvania,
USA Steven Minton, InferLink, USA Tom Mitchell, Carnegie Mellon University, USA Stephen
Muggleton, Imperial College London, UK Nils Nilsson, Stanford University, USA Tomaso Poggio,
Massachusetts Institute of Technology, USA Ross Quinlan, Rulequest Research Pty Ltd, Australia
Stuart Russell, University of California at Berkeley, USA Lawrence Saul, University of Califor-
nia at San Diego, USA Terrence Sejnowski, Salk Institute for Biological Studies, USA Richard
Sutton, University of Alberta, Canada Leslie Valiant, Harvard University, USA

Journal of Machine Learning Research
Volume 15, 2014

1 Bridging Viterbi and Posterior Decoding: A Generalized Risk Approach
to Hidden Path Inference Based on Hidden Markov Models
Jüri Lember, Alexey A. Koloydenko

59 Fast SVM Training Using Approximate Extreme Points
Manu Nandan, Pramod P. Khargonekar, Sachin S. Talathi

99 Detecting Click Fraud in Online Advertising: A Data Mining Approach
Richard Oentaryo, Ee-Peng Lim, Michael Finegold, David Lo, Feida Zhu,
Clifton Phua, Eng-Yeow Cheu, Ghim-Eng Yap, Kelvin Sim, Minh Nhut Nguyen,
Kasun Perera, Bijay Neupane, Mustafa Faisal, Zeyar Aung, Wei Lee Woon,
Wei Chen, Dhaval Patel, Daniel Berrar

141 EnsembleSVM: A Library for Ensemble Learning Using Support Vector
Machines
Marc Claesen, Frank De Smet, Johan A.K. Suykens, Bart De Moor

147 A Junction Tree Framework for Undirected Graphical Model Selection
Divyanshu Vats, Robert D. Nowak

193 Axioms for Graph Clustering Quality Functions
Twan van Laarhoven, Elena Marchiori

217 Convex vs Non-Convex Estimators for Regression and Sparse Estima-
tion: the Mean Squared Error Properties of ARD and GLasso
Aleksandr Aravkin, James V. Burke, Alessandro Chiuso, Gianluigi Pillonetto

253 Using Trajectory Data to Improve Bayesian Optimization for Reinforce-
ment Learning
Aaron Wilson, Alan Fern, Prasad Tadepalli

283 Information Theoretical Estimators Toolbox
Zoltán Szabó

289 Off-policy Learning With Eligibility Traces: A Survey
Matthieu Geist, Bruno Scherrer

335 Early Stopping and Non-parametric Regression: An Optimal Data-dependent
Stopping Rule
Garvesh Raskutti, Martin J. Wainwright, Bin Yu

367 Unbiased Generative Semi-Supervised Learning
Patrick Fox-Roberts, Edward Rosten

445 Node-Based Learning of Multiple Gaussian Graphical Models
Karthik Mohan, Palma London, Maryam Fazel, Daniela Witten, Su-In Lee

489 The FASTCLIME Package for Linear Programming and Large-Scale
Precision Matrix Estimation in R
Haotian Pang, Han Liu, Robert Vanderbei

495 LIBOL: A Library for Online Learning Algorithms
Steven C.H. Hoi, Jialei Wang, Peilin Zhao

501 Improving Markov Network Structure Learning Using Decision Trees
Daniel Lowd, Jesse Davis

533 Ground Metric Learning
Marco Cuturi, David Avis

565 Link Prediction in Graphs with Autoregressive Features
Emile Richard, Stéphane Gaı̈ffas, Nicolas Vayatis

595 Adaptivity of Averaged Stochastic Gradient Descent to Local Strong Con-
vexity for Logistic Regression
Francis Bach

629 Random Intersection Trees
Rajen Dinesh Shah, Nicolai Meinshausen

655 Reinforcement Learning for Closed-Loop Propofol Anesthesia: A Study
in Human Volunteers
Brett L Moore, Larry D Pyeatt, Vivekanand Kulkarni, Periklis Panousis, Kevin
Padrez, Anthony G Doufas

697 Clustering Hidden Markov Models with Variational HEM
Emanuele Coviello, Antoni B. Chan, Gert R.G. Lanckriet

749 A Novel M-Estimator for Robust PCA
Teng Zhang, Gilad Lerman

809 Policy Evaluation with Temporal Differences: A Survey and Comparison
Christoph Dann, Gerhard Neumann, Jan Peters

885 Active Learning Using Smooth Relative Regret Approximations with Ap-
plications
Nir Ailon, Ron Begleiter, Esther Ezra

921 An Extension of Slow Feature Analysis for Nonlinear Blind Source Sep-
aration
Henning Sprekeler, Tiziano Zito, Laurenz Wiskott

949 Natural Evolution Strategies
Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, Jürgen
Schmidhuber

981 Conditional Random Field with High-order Dependencies for Sequence
Labeling and Segmentation
Nguyen Viet Cuong, Nan Ye, Wee Sun Lee, Hai Leong Chieu

1011 Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy
Separability
Tomohiko Mizutani

1041 Improving Prediction from Dirichlet Process Mixtures via Enrichment
Sara Wade, David B. Dunson, Sonia Petrone, Lorenzo Trippa

1073 Gibbs Max-margin Topic Models with Data Augmentation
Jun Zhu, Ning Chen, Hugh Perkins, Bo Zhang

1111 A Reliable Effective Terascale Linear Learning System
Alekh Agarwal, Oliveier Chapelle, Miroslav Dudı́k, John Langford

1135 New Learning Methods for Supervised and Unsupervised Preference Ag-
gregation
Maksims N. Volkovs, Richard S. Zemel

1177 Prediction and Clustering in Signed Networks: A Local to Global Per-
spective
Kai-Yang Chiang, Cho-Jui Hsieh, Nagarajan Natarajan, Inderjit S. Dhillon,
Ambuj Tewari

1215 Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders
Francisco J. R. Ruiz, Isabel Valera, Carlos Blanco, Fernando Perez-Cruz

1249 Robust Near-Separable Nonnegative Matrix Factorization Using Linear
Optimization
Nicolas Gillis, Robert Luce

1281 Follow the Leader If You Can, Hedge If You Must
Steven de Rooij, Tim van Erven, Peter D. Grünwald, Wouter M. Koolen

1317 Structured Prediction via Output Space Search
Janardhan Rao Doppa, Alan Fern, Prasad Tadepalli

1351 Fully Simplified Multivariate Normal Updates in Non-Conjugate Varia-
tional Message Passing
Matt P. Wand

1371 Towards Ultrahigh Dimensional Feature Selection for Big Data
Mingkui Tan, Ivor W. Tsang, Li Wang

1431 Adaptive Sampling for Large Scale Boosting
Charles Dubout, Francois Fleuret

1455 Manopt, a Matlab Toolbox for Optimization on Manifolds
Nicolas Boumal, Bamdev Mishra, P.-A. Absil, Rodolphe Sepulchre

1461 Training Highly Multiclass Classifiers
Maya R. Gupta, Samy Bengio, Jason Weston

1493 Locally Adaptive Factor Processes for Multivariate Time Series
Daniele Durante, Bruno Scarpa, David B. Dunson

1523 Iteration Complexity of Feasible Descent Methods for Convex Optimiza-
tion
Po-Wei Wang, Chih-Jen Lin

1549 High-Dimensional Covariance Decomposition into Sparse Markov and
Independence Models
Majid Janzamin, Animashree Anandkumar

1593 The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamilto-
nian Monte Carlo
Matthew D. Hoffman, Andrew Gelman

1625 Confidence Intervals for Random Forests: The Jackknife and the In-
finitesimal Jackknife
Stefan Wager, Trevor Hastie, Bradley Efron

1653 Surrogate Regret Bounds for Bipartite Ranking via Strongly Proper Losses
Shivani Agarwal

1675 Adaptive Minimax Regression Estimation over Sparse ℓq-Hulls
Zhan Wang, Sandra Paterlini, Fuchang Gao, Yuhong Yang

1713 Graph Estimation From Multi-Attribute Data
Mladen Kolar, Han Liu, Eric P. Xing

1751 Hitting and Commute Times in Large Random Neighborhood Graphs
Ulrike von Luxburg, Agnes Radl, Matthias Hein

1799 Bayesian Inference with Posterior Regularization and Applications to In-
finite Latent SVMs
Jun Zhu, Ning Chen, Eric P. Xing

1849 Expectation Propagation for Neural Networks with Sparsity-Promoting
Priors
Pasi Jylänki, Aapo Nummenmaa, Aki Vehtari

1903 Pattern Alternating Maximization Algorithm for Missing Data in High-
Dimensional Problems
Nicolas Städler, Daniel J. Stekhoven, Peter Bühlmann

1929 Dropout: A Simple Way to Prevent Neural Networks from Overfitting
Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan
Salakhutdinov

1959 Sparse Factor Analysis for Learning and Content Analytics
Andrew S. Lan, Andrew E. Waters, Christoph Studer, Richard G. Baraniuk

2009 Causal Discovery with Continuous Additive Noise Models
Jonas Peters, Joris M. Mooij, Dominik Janzing, Bernhard Schölkopf

2055 pystruct - Learning Structured Prediction in Python
Andreas C. Müller, Sven Behnke

2061 The Student-t Mixture as a Natural Image Patch Prior with Application
to Image Compression
Aäron van den Oord, Benjamin Schrauwen

2087 Parallel MCMC with Generalized Elliptical Slice Sampling
Robert Nishihara, Iain Murray, Ryan P. Adams

2113 Classifier Cascades and Trees for Minimizing Feature Evaluation Cost
Zhixiang (Eddie) Xu, Matt J. Kusner, Kilian Q. Weinberger, Minmin Chen,
Olivier Chapelle

2145 Particle Gibbs with Ancestor Sampling
Fredrik Lindsten, Michael I. Jordan, Thomas B. Schön

2185 Ramp Loss Linear Programming Support Vector Machine
Xiaolin Huang, Lei Shi, Johan A.K. Suykens

2213 Clustering Partially Observed Graphs via Convex Optimization
Yudong Chen, Ali Jalali, Sujay Sanghavi, Huan Xu

2239 A Tensor Approach to Learning Mixed Membership Community Models
Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade

2313 Cover Tree Bayesian Reinforcement Learning
Nikolaos Tziortziotis, Christos Dimitrakakis, Konstantinos Blekas

2337 Efficient State-Space Inference of Periodic Latent Force Models
Steven Reece, Siddhartha Ghosh, Alex Rogers, Stephen Roberts, Nicholas R.
Jennings

2399 Spectral Learning of Latent-Variable PCFGs: Algorithms and Sample
Complexity
Shay B. Cohen, Karl Stratos, Michael Collins, Dean P. Foster, Lyle Ungar

2451 On Multilabel Classification and Ranking with Bandit Feedback
Claudio Gentile, Francesco Orabona

2489 Beyond the Regret Minimization Barrier: Optimal Algorithms for Stochas-
tic Strongly-Convex Optimization
Elad Hazan, Satyen Kale

2513 One-Shot-Learning Gesture Recognition using HOG-HOF Features
Jakub Konecny, Michal Hagara

2533 Contextual Bandits with Similarity Information
Aleksandrs Slivkins

2569 Boosting Algorithms for Detector Cascade Learning
Mohammad Saberian, Nuno Vasconcelos

2607 Efficient and Accurate Methods for Updating Generalized Linear Mod-
els with Multiple Feature Additions
Amit Dhurandhar, Marek Petrik

2629 Bayesian Estimation of Causal Direction in Acyclic Structural Equation
Models with Individual-specific Confounder Variables and Non-Gaussian
Distributions
Shohei Shimizu, Kenneth Bollen

2653 A Truncated EM Approach for Spike-and-Slab Sparse Coding
Abdul-Saboor Sheikh, Jacquelyn A. Shelton, Jörg Lücke

2689 Efficient Occlusive Components Analysis
Marc Henniges, Richard E. Turner, Maneesh Sahani, Julian Eggert, Jörg
Lücke

2723 Optimality of Graphlet Screening in High Dimensional Variable Selec-
tion
Jiashun Jin, Cun-Hui Zhang, Qi Zhang

2773 Tensor Decompositions for Learning Latent Variable Models
Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, Matus
Telgarsky

2833 Bayesian Entropy Estimation for Countable Discrete Distributions
Evan Archer, Il Memming Park, Jonathan W. Pillow

2869 Confidence Intervals and Hypothesis Testing for High-Dimensional Re-
gression
Adel Javanmard, Andrea Montanari

2911 QUIC: Quadratic Approximation for Sparse Inverse Covariance Estima-
tion
Cho-Jui Hsieh, Mátyás A. Sustik, Inderjit S. Dhillon, Pradeep Ravikumar

2949 Multimodal Learning with Deep Boltzmann Machines
Nitish Srivastava, Ruslan Salakhutdinov

2981 Optimal Data Collection For Informative Rankings Expose Well-Connected
Graphs
Braxton Osting, Christoph Brune, Stanley J. Osher

3013 Bayesian Co-Boosting for Multi-modal Gesture Recognition
Jiaxiang Wu, Jian Cheng

3037 Effective String Processing and Matching for Author Disambiguation
Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, Felix Wu, Hsiao-Yu Tung, Tong
Yu, Jui-Pin Wang, Cheng-Xia Chang, Chun-Pai Yang, Wei-Cheng Chang,
Kuan-Hao Huang, Tzu-Ming Kuo, Shan-Wei Lin, Young-San Lin, Yu-Chen
Lu, Yu-Chuan Su, Cheng-Kuang Wei, Tu-Chun Yin, Chun-Liang Li, Ting-Wei
Lin, Cheng-Hao Tsai, Shou-De Lin, Hsuan-Tien Lin, Chih-Jen Lin

3065 High-Dimensional Learning of Linear Causal Networks via Inverse Co-
variance Estimation
Po-Ling Loh, Peter Bühlmann

3107 Recursive Teaching Dimension, VC-Dimension and Sample Compres-
sion
Thorsten Doliwa, Gaojian Fan, Hans Ulrich Simon, Sandra Zilles

3133 Do we Need Hundreds of Classifiers to Solve Real World Classification
Problems?
Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, Dinani Amorim

3183 ooDACE Toolbox: A Flexible Object-Oriented Kriging Implementation
Ivo Couckuyt, Tom Dhaene, Piet Demeester

3187 Robust Online Gesture Recognition with Crowdsourced Annotations
Long-Van Nguyen-Dinh, Alberto Calatroni, Gerhard Tröster

3221 Accelerating t-SNE using Tree-Based Algorithms
Laurens van der Maaten

3247 Set-Valued Approachability and Online Learning with Partial Monitor-
ing
Shie Mannor, Vianney Perchet, Gilles Stoltz

3297 Learning Graphical Models With Hubs
Kean Ming Tan, Palma London, Karthik Mohan, Su-In Lee, Maryam Fazel,
Daniela Witten

3333 Inconsistency of Pitman-Yor Process Mixtures for the Number of Com-
ponents
Jeffrey W. Miller, Matthew T. Harrison

3371 Active Contextual Policy Search
Alexander Fabisch, Jan Hendrik Metzen

3401 Matrix Completion with the Trace Norm: Learning, Bounding, and Trans-
ducing
Ohad Shamir, Shai Shalev-Shwartz

3425 Statistical Analysis of Metric Graph Reconstruction
Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman

3447 Alternating Linearization for Structured Regularization Problems
Xiaodong Lin, Minh Pham, Andrzej Ruszczyński

3483 The Gesture Recognition Toolkit
Nicholas Gillian, Joseph A. Paradiso

3489 Convolutional Nets and Watershed Cuts for Real-Time Semantic Label-
ing of RGBD Videos
Camille Couprie, Clément Farabet, Laurent Najman, Yann LeCun

3513 On the Bayes-Optimality of F-Measure Maximizers
Willem Waegeman, Krzysztof Dembczynski, Arkadiusz Jachnik, Weiwei Cheng,
Eyke Hüllermeier

3569 SPMF: A Java Open-Source Pattern Mining Library
Philippe Fournier-Viger, Antonio Gomariz, Ted Gueniche, Azadeh Soltani,
Cheng-Wei Wu, Vincent S. Tseng

3575 Efficient Learning and Planning with Compressed Predictive States
William Hamilton, Mahdi Milani Fard, Joelle Pineau

3621 Revisiting Stein’s Paradox: Multi-Task Averaging
Sergey Feldman, Maya R. Gupta, Bela A. Frigyik

3663 Multi-Objective Reinforcement Learning using Sets of Pareto Dominat-
ing Policies
Kristof Van Moffaert, Ann Nowé

3693 Seeded Graph Matching for Correlated Erdos-Renyi Graphs
Vince Lyzinski, Donniell E. Fishkind, Carey E. Priebe

3721 Asymptotic Accuracy of Distribution-Based Estimation of Latent Vari-
ables
Keisuke Yamazaki

3743 What Regularized Auto-Encoders Learn from the Data-Generating Dis-
tribution
Guillaume Alain, Yoshua Bengio

3775 Revisiting Bayesian Blind Deconvolution
David Wipf, Haichao Zhang

3815 New Results for Random Walk Learning
Jeffrey C. Jackson, Karl Wimmer

3847 Transfer Learning Decision Forests for Gesture Recognition
Norberto A. Goussies, Sebastián Ubalde, Marta Mejail

3871 Semi-Supervised Eigenvectors for Large-Scale Locally-Biased Learning
Toke J. Hansen, Michael W. Mahoney

3915 BayesOpt: A Bayesian Optimization Library for Nonlinear Optimiza-
tion, Experimental Design and Bandits
Ruben Martinez-Cantin

3921 Order-Independent Constraint-Based Causal Structure Learning
Diego Colombo, Marloes H. Maathuis

3963 Effective Sampling and Learning for Mallows Models with Pairwise-Preference
Data
Tyler Lu, Craig Boutilier

4011 Robust Hierarchical Clustering
Maria-Florina Balcan, Yingyu Liang, Pramod Gupta

4053 Parallelizing Exploration-Exploitation Tradeoffs in Gaussian Process Ban-
dit Optimization
Thomas Desautels, Andreas Krause, Joel W. Burdick

4105 Active Imitation Learning: Formal and Practical Reductions to I.I.D.
Learning
Kshitij Judah, Alan P. Fern, Thomas G. Dietterich, Prasad Tadepalli

Journal of Machine Learning Research 15 (2014) 1-58 Submitted 7/10; Revised 7/12; Published 1/14

Bridging Viterbi and Posterior Decoding: A Generalized
Risk Approach to Hidden Path Inference Based on Hidden

Markov Models

Jüri Lember juri.lember@ut.ee
Institute of Mathematical Statistics
Tartu University
J. Liivi 2-507, Tartu, 50409, Estonia

Alexey A. Koloydenko alexey.koloydenko@rhul.ac.uk

Department of Mathematics

Royal Holloway University of London

Egham, TW20 0EX, UK

Editor: Richard Maclin

Abstract

Motivated by the unceasing interest in hidden Markov models (HMMs), this paper re-
examines hidden path inference in these models, using primarily a risk-based framework.
While the most common maximum a posteriori (MAP), or Viterbi, path estimator and the
minimum error, or Posterior Decoder (PD) have long been around, other path estimators,
or decoders, have been either only hinted at or applied more recently and in dedicated
applications generally unfamiliar to the statistical learning community. Over a decade
ago, however, a family of algorithmically defined decoders aiming to hybridize the two
standard ones was proposed elsewhere. The present paper gives a careful analysis of this
hybridization approach, identifies several problems and issues with it and other previously
proposed approaches, and proposes practical resolutions of those. Furthermore, simple
modifications of the classical criteria for hidden path recognition are shown to lead to a
new class of decoders. Dynamic programming algorithms to compute these decoders in
the usual forward-backward manner are presented. A particularly interesting subclass of
such estimators can be also viewed as hybrids of the MAP and PD estimators. Similar to
previously proposed MAP-PD hybrids, the new class is parameterized by a small number of
tunable parameters. Unlike their algorithmic predecessors, the new risk-based decoders are
more clearly interpretable, and, most importantly, work “out-of-the box” in practice, which
is demonstrated on some real bioinformatics tasks and data. Some further generalizations
and applications are discussed in the conclusion.

Keywords: admissible path, decoder, HMM, hybrid, interpolation, MAP sequence, min-
imum error, optimal accuracy, power transform, risk, segmental classification, symbol-by-
symbol, posterior decoding, Viterbi algorithm

1. Introduction

Besides their classical and traditional applications in signal processing and communications
(Viterbi, 1967; Bahl et al., 1974; Hayes et al., 1982; Brushe et al., 1998) (see also further
references in Cappé et al., 2005) and speech recognition (Huang et al., 1990; Jelinek, 1976,

c©2014 Jüri Lember and Alexey A. Koloydenko.

Lember and Koloydenko

2001; McDermott and Hazen, 2004; Ney et al., 1994; Padmanabhan and Picheny, 2002;
Rabiner and Juang, 1993; Rabiner et al., 1986; Shu et al., 2003; Steinbiss et al., 1995; Ström
et al., 1999), hidden Markov models have recently become indispensable in computational
biology and bioinformatics (Burge and Karlin, 1997; Durbin et al., 1998; Eddy, 2004; Krogh,
1998; Brejová et al., 2007b; Majoros and Ohler, 2007) as well as in natural language modeling
(Manning and Schütze, 1999; Vogel et al., 1996) and information security (Mason et al.,
2006).

At the same time, their spatial extensions, known as hidden Markov random field models
(HMRFM), have been immensely influential in spatial statistics (Besag and Green, 1993;
Green and Richardson, 2002; Künsch et al., 1995; McGrory et al., 2009), and particularly
in image analysis, restoration, and segmentation (Besag, 1986; Geman and Geman, 1984;
Li et al., 2000; Marroquin et al., 2003; Winkler, 2003). Indeed, hidden Markov models have
been called ‘one of the most successful statistical modeling ideas that have [emerged] in the
last forty years’ (Cappé et al., 2005).

HM(RF)Ms owe much of their success to the following: The posterior distribution of the
hidden layer inherits the Markov property from the prior distribution (although the posterior
distribution is generally inhomogeneous even if the prior distribution is homogeneous). At
the same time, the marginal law of the observed layer can still include global, that is non-
Markovian, dependence, hence the richness of the observed system (Künsch et al., 1995).

The Markov property of the posterior distribution and the conditional independence
of the observed variables given the hidden ones, have naturally led to a number of com-
putationally feasible methods for inference about the hidden realizations as well as model
parameters. HMMs are also naturally a special case of graphical models (Lauritzen, 1996;
Bishop, 2006, Chap. 8).

HMMs, or one dimensional HMRFMs, have been particularly popular not least due to
the fact that the linear order of the indexing set (usually associated with time) makes explo-
ration of hidden realizations relatively straightforward from the computational viewpoint.
In contrast, higher dimensional HMRFMs generally require approximate, possibly stochas-
tic, techniques in order to compute optimal configurations of the hidden field (Cocozza-
Thivent and Bekkhoucha, 1993; Joshi et al., 2006; Winkler, 2003; McGrory et al., 2009).
In particular, a maximum a posteriori (MAP) estimator of the hidden layer of an HMM is
efficiently and exactly computed by a dynamic programming algorithm bearing the name
of Viterbi, whereas a general higher dimensional HMRFM would employ, for example, a
simulated annealing type method (Geman and Geman, 1984; Winkler, 2003) to produce
approximate solutions to the same task.

There are also various useful extensions of the ordinary HMM, such as variable duration
semi-Markov models, coupled HMMs (Brand et al., 1997), and factorial HMMs (Bishop,
2006, Chap. 13), etc. All of the material in this paper is applicable to those extensions in
a straightforward way. However, to simplify the exposition we focus below on the ordinary
HMM.

1.1 Notation and Main Ingredients

We adopt the machine and statistical learning convention, referring to the hidden and
observed processes as Y and X, respectively, in effect reversing the convention that is more

2

Bridging Viterbi and Posterior Decoding

commonly used in the HMM context. Thus, let Y = {Yt}t≥1 be a Markov chain with state
space S = {1, . . . ,K}, K > 1, and initial probabilities πs = P (Y1 = s), s ∈ S. Although we
include inhomogeneous chains in most of what follows, for brevity we will still be suppressing
the time index wherever this does not cause ambiguity. Hence, we write P = (pij)i,j∈S for
all transition matrices. Let X = {Xt}t≥1 be a process with the following properties. First,
given {Yt}t≥1, the random variables {Xt}t≥1 are conditionally independent. Second, for
each t = 1, 2, . . ., the distribution of Xt depends on {Yt}t≥1 (and t) only through Yt. The
process X is sometimes called the hidden Markov process (HMP) and the pair (Y,X) is
referred to as a hidden Markov model (HMM). The name is motivated by the assumption
that the process Y (sometimes called a regime) is generally non-observable. The conditional
distribution of X1 given Y1 = s is called an emission distribution, written as Ps, s ∈ S. We
shall assume that the emission distributions are defined on a measurable space (X ,B), where
X is usually Rd and B is the corresponding Borel σ-algebra. Without loss of generality, we
assume that the measures Ps have densities fs with respect to some reference measure λ,
such as the counting or Lebesgue measure.

Given a set A, integers m and n, m < n, and a sequence a1, a2, . . . ∈ A∞, we write
anm for the subsequence (am, . . . , an). When m = 1, it will be often suppressed. Thus,
xT := (x1, . . . , xT) and yT := (y1, . . . , yT) stand for the fixed observed and unobserved
realizations, respectively, of the HMM (Xt, Yt)t≥1 up to time T ≥ 1. Any sequence sT ∈ ST
is called a path. This parallel notation (that is, sT in addition to yT) is necessitated largely
by our forthcoming discussion of various loss functions, which do require two arguments.
We shall denote the joint probability density of (xT , yT) by p(xT , yT), that is,

p(xT , yT) := P(Y T = yT)
T∏
t=1

fyt(xt).

To make mathematical expressions more compact, we overload the notation when this causes
no ambiguity. Thus, p(sT) stands for the probability mass function P(Y T = sT) of path
sT , and p(xT) stands for the (unconditional) probability density function

∑
sT∈ST p(x

T , sT)
of the observed data xT . Furthermore, we write pt(s) and pt(s | xT) for P (Yt = s) and
P
(
Yt = s | XT = xT

)
, respectively. It is standard (see Bishop, 2006, Chap. 13; Ephraim

and Merhav, 2002; Cappé et al., 2005) in this context to define the so-called forward and
backward variables

αt(s) := p(xt | Yt = s)P (Yt = s), βt(s) :=

{
1, if t = T
p(xTt+1 | Yt = s), if t < T

, (1)

where p(xt | Yt = s) and p(xTt+1 | Yt = s) are the conditional densities of the data segments
xt and xTt+1, respectively, given Yt = s.

1.2 Path Estimation

Our focus here is estimation of the hidden path yT . This task can also be viewed as
segmentation of the data sequence into regions with distinct class labels (Lember et al.,
2011). Treating yT as missing data (Rabiner, 1989), or parameters, a classical and by far
the most popular solution to this task is to maximize p(xT , sT) in sT ∈ ST . Often, especially

3

Lember and Koloydenko

in the digital communication literature (Lin and Costello Jr., 1983; Brushe et al., 1998),
p(xT , sT) is called the likelihood function which might become potentially problematic in
the presence of any genuine model parameters. Such “maximum likelihood” paths are also
called Viterbi paths or Viterbi alignments after the Viterbi algorithm (Viterbi, 1967; Rabiner,
1989) commonly used for their computation. If p(sT) is thought of as the prior distribution
of Y T , then the Viterbi path also maximizes p(sT | xT) := P(Y T = sT | XT = xT), the
probability mass function of the posterior distribution of Y T , hence the term ‘maximum a
posteriori (MAP) path’.

In spite of its computational attractiveness, inference based on the Viterbi paths may
be unsatisfactory for a number of reasons, including its sub-optimality with regard to the
number of correctly estimated states yt. Also, using the language of information theory,
there is no reason to expect a Viterbi path to be typical (Lember and Koloydenko, 2010).
Indeed, “there might be many similar paths through the model with probabilities that add
up to a higher probability than the single most probable path” (Käll et al., 2005). The fact
that a MAP estimate need not be representative of the posterior distribution has also been
recently discussed in a more general context by Carvalho and Lawrence (2008). Atypicality
of Viterbi paths particularly concerns situations when estimation of yT is combined with
inference about model parameters, such as the transition probabilities pij (Lember and
Koloydenko, 2010). Even when estimating, say, the probability of heads from independent
tosses of a biased coin, we naturally hope to observe a typical realization and not the
constant one of maximum probability.

An alternative and very natural way to estimate yT is by maximizing the posterior prob-
ability pt(s | xT) of each individual hidden state Yt, 1 ≤ t ≤ T (Bahl et al., 1974). We refer
to the corresponding estimator as pointwise maximum a posteriori (PMAP). PMAP is well-
known to maximize the expected number of correctly estimated states (Section 2), hence
the characterization ‘optimal accuracy’ (Holmes and Durbin, 1998). In statistics, especially
spatial statistics and image analysis, this type of estimation is known as Marginal Posterior
Mode (Winkler, 2003) or Maximum Posterior Marginals (Rue, 1995) (MPM) estimation.
This is also known as the posterior decoding (PD) in computational biology (Brejová et al.,
2007b) and machine translation (Ganchev et al., 2008), and has been reported to be par-
ticularly successful in pairwise sequence alignment (Holmes and Durbin, 1998) and when
more than one path has its posterior probability as “high” or nearly as “high” as that of the
Viterbi path (Eddy, 2004). In the wider context of biological applications of discrete high-
dimensional probability models, this has also been called consensus estimation, and in the
absence of constraints, centroid estimation (Carvalho and Lawrence, 2008). In communica-
tions applications of HMMs, largely influenced by the BCJR algorithm (Bahl et al., 1974),
the terms ‘optimal symbol-by-symbol detection’ (Hayes et al., 1982), ‘symbol-by-symbol MAP
estimation’ (Robertson et al., 1995), and ‘MAP state estimation’ (Brushe et al., 1998) have
been used for this. Remarkably, even before observing the data, optimal accuracy (that is,
based on the prior instead of the posterior distribution) decoding can still be more accurate
than the Viterbi decoding (Subsection 5.4).

4

Bridging Viterbi and Posterior Decoding

1.2.1 How Different are PMAP and MAP Inferences and How Much Room is
in between the Two?

This is a natural question in both practice and theory, especially for anyone interested
in improving performance of applications based on these methods while maintaining their
computational attractiveness.

A not so uncommon misconception that the difference between PMAP and Viterbi
inferences is negligible may in part be explained by the concluding remark made by Bahl
et al. (1974) in the special context of linear codes: “Even though Viterbi decoding is not
optimal in the sense of bit error rate, in most applications of interest the performance of both
[PMAP and Viterbi] algorithms would be effectively identical.” This conclusion may in turn
be explained by the dominance of binary chains in the telecommunication applications, and
the binary state space indeed leaves too little room for the two inferences to differ. However,
as HMMs with larger state spaces gained more prominence, it became clear that appreciable
differences between the PMAP and Viterbi inferences do occur (see, for example, Ganchev
et al., 2008). In fact, already two decades after Bahl et al. (1974), Brushe et al. (1998)
contemplated hybridization of the PMAP and Viterbi decoders, writing “Indeed, there may
be applications where a delicate performance dependence exists between [the Viterbi and
PMAP] estimates. In such cases, the use of a hybrid scheme . . . may result in performance
gains.” We return to their idea later in this paper.

Although interesting comparisons of the PMAP and Viterbi decoders on special tasks
(e.g., Ganchev et al., 2008), have been recently reported, we are not aware of any systematic
general studies of the two decoders that would exploit such comparisons in order to design
new interesting hybrid schemes. Soon after the first version of this article was posted on
arXiv, however, Yau and Holmes (2010) reported similar interests in this subject, supported
by real and simulated examples. Of course, it has long been well-known (Rabiner, 1989) that
despite being optimal in the sense of maximizing the expected number of correctly estimated
states, a PMAP path can at the same time have very low, possibly zero, probability. Thus,
on the logarithmic scale, the difference in path probabilities between the PMAP and Viterbi
decoders can easily be infinite. In Section 5, we give a real data example with only six hidden
states to show that besides the infinite difference in the log-probabilities, the two decoders
can differ significantly (by more than 13%) in accuracy. This could have been expected if
the data were indeed generated by an HMM and if that same HMM were used for decoding.
However, when the model is misspecified, which is very common in practice, empirical
performance measures, such as the symbol-by-symbol error rate, are generally biased as
estimators of corresponding model based expected performance measures. In particular, in
such situations there is no guarantee that the PMAP decoding is empirically more accurate
than MAP. Although these points are fairly straightforward, we felt, especially during the
reviewing process, that some readers might still appreciate a concrete illustration, which we
give in Section 5. Other readers can simply glance over Section 5 without interrupting the
overall flow of the manuscript.

It is actually not difficult to constrain the PMAP decoder to admissible paths (Subsection
2.2.1), where admissibility is defined relative to the posterior distribution. Specifically,
given xT , a path yT is called admissible if its posterior probability p(yT | xT) is defined and
positive, that is, if p(xT , yT) > 0. We then point out that constraining the PMAP decoder

5

Lember and Koloydenko

to the paths of positive prior probability, as already done by others (see more below), is not
sufficient (albeit necessary) for admissibility of the PMAP paths. Note that in a slightly
more general form allowing for state aggregation, Käll et al. (2005) do exactly this, that is,
force PMAP paths to have positive prior probability, referring to the result as “a possible
path through the model”. Thus, Käll et al. (2005) appear to ignore that having a positive
prior probability is not sufficient in general for a PMAP path to be “a possible path through
the model”, unless, of course, “the model” is to be understood as the hidden Markov chain
only and not the whole HMM. We will refer to the PMAP decoder constrained to the
admissible paths as the admissibly constrained PMAP, or, simply constrained PMAP. This
also details and clarifies our earlier discussion of admissibility (Lember et al., 2011, Section
2), which, like Rabiner (1989); Käll et al. (2005), also ignored the distinction between a
priori and a posteriori modes of admissibility.

A variation on the same idea of making PMAP paths admissible has been applied
for prediction of membrane proteins, giving rise to the posterior Viterbi decoding (PVD)
(Fariselli et al., 2005). PVD, however, maximizes the product

∏T
t=1 pt(st | xT) (Fariselli

et al., 2005) (and also Equation 9 below) and not the sum
∑T

t=1 pt(st | xT), whereas the two
criteria are no longer equivalent in the presence of path constraints (Subsection 2.2.1). While
acknowledging this latter distinction between their decoder and PVD and not distinguishing
between the prior and posterior modes of admissibility, Käll et al. (2005) appear to be
unaware of the other distinction between their decoder and PVD: PVD paths are guaranteed
to be of not only positive prior probability but also of positive posterior probability, that
is, admissible (in our sense of the term). Holmes and Durbin (1998) proposed a PMAP
decoder to compute optimal pairwise sequence alignments. Holmes and Durbin (1998) used
the term “legitimate alignment”, which suggests admissibility, but the description of their
algorithm (Holmes and Durbin, 1998, Section 3.8) appears to be insufficiently detailed to
verify if the output is guaranteed to be admissible, or only of positive prior probability, or,
if inadmissible solutions are altogether an issue in that context.

Our own experiments (Section 5) show that both PVD and constrained PMAP decoder
can return paths of very low (posterior) probabilities. Moreover, in many applications,
for example, gene identification and protein secondary structure prediction, the pointwise
(e.g., nucleotide level) error rate is not necessarily the main measure of accuracy (see also
Subsection 1.2.2 below), hence the constrained PMAP need not be an ultimate answer
in that respect either. Together with the above problem of atypicality of MAP paths,
this has been addressed by moving from single path inference towards envelopes (Holmes
and Durbin, 1998). Thus, for example, in computational biology a common approach
would be to aggregate individual states into a smaller number of semantic labels (e.g.,
codon, intron, intergenic). In effect, this would realize the notion of path similarity by
mapping many “similar” state paths to a single label path, or annotation (Krogh, 1997;
Käll et al., 2005; Fariselli et al., 2005; Brejová et al., 2007b). However, since this mapping
would usually be many-to-one (what Brejová et al., 2007a refer to as the “multiple path
problem”), the annotation of the Viterbi path would generally be inferior to the optimal (in
the MAP sense) annotation. On the other hand, to compute the MAP annotation in many
practically important HMMs can be NP-hard (Brejová et al., 2007a) (which is not surprizing
given that the coarsened hidden chain on the set of labels is generally no longer Markov).
Unlike the Viterbi/MAP decoder, the PMAP decoder, owing it to its symbol-by-symbol

6

Bridging Viterbi and Posterior Decoding

nature, handles annotations as easily as it does state paths, including the enforcement of
admissibility. Interpreting admissibility relative to the prior distribution, this was shown
by Käll et al. (2005), and this paper extends their result to admissible (that is, of positive
posterior probability) paths and indicates further extensions (Section 8).

A number of alternative heuristic approaches are also known in computational biology,
but none appears to be fully satisfactory (Brejová et al., 2007b). Overall, although the
original Viterbi decoder has still been the most popular paradigm in many applications,
and in computational biology in particular, alternative approaches have often demonstrated
significantly better performance, for example, in predicting various biological features. For
example, Krogh (1997) suggested the 1-best algorithm for optimal labeling. More recently,
Fariselli et al. (2005) have demonstrated PVD to be superior to the 1-best algorithm, and,
not surprisingly, to the Viterbi and PMAP decoders, on tasks of predicting membrane
proteins.

Thus, a starting point of this contribution was that restricting the PMAP decoder to
admissible paths is but one of numerous ways to combine the strong points of the MAP
and PMAP path estimators. Indeed, the popular seminal tutorial (Rabiner, 1989) briefly
mentions maximization of the expected number of correctly decoded (overlapping) blocks
of length two or three, rather than single states as a sensible remedy against vanishing
probabilities (albeit leaving it unclear if prior or posterior probability was meant). With

k ≥ 1 and ŷT (k) being the block length and corresponding path estimate, respectively, this

approach yields Viterbi inference as k increases to T (with ŷT (1) corresponding to PMAP).
Therefore, this could be interpreted as discrete interpolation between the PMAP and Viterbi

inferences. Intuitively, following Rabiner’s logic, one might also expect p(xT , ŷT (k)) to
increase with k. However, this is not true and it is possible for the decoder with k = 2 to

produce an inadmissible (with the prior probability being also zero) path ŷT (2) while the

PMAP path is admissible: p(xT , ŷT (2)) = 0 = p(ŷT (2)) < p(xT , ŷT (1)). We are not aware
of this observation being previously made in the literature. Moreover, our experiments in
Section 5 show that this situation is far from being uncommon.

On a related note, concerned with the same deficiencies of the MAP and PMAP infer-
ences, Yau and Holmes (2010) have most recently also used the decision-theoretic framework
to allow for full asymmetry in the otherwise symmetric pairwise loss (Equation 30 below

with k = 2) that underpins the ŷT (2) inference. This is no doubt a very natural extension
to provide to the end user, and (partially) asymmetric pairwise losses had indeed been in-
corporated in a prominent web-server in the context of RNA secondary structure prediction
(Sato et al., 2009).

Despite the possibility of ŷT (2) or its asymmetric siblings to be inadmissible, we find
the idea of interpolation between the PMAP and Viterbi inferences very interesting. Be-
sides Yau and Holmes (2010) acknowledging the need for intermediate modes of inference,
to the best of our knowledge, the only published work that explicitly proposed such an
interpolation is that of Brushe et al. (1998). However, the approach of Brushe et al. (1998)
is algorithmic, which makes it difficult to interpret its paths in general and analyze their
properties (e.g., asymptotic behavior in particular). More importantly, Brushe et al. (1998)
claim that the family of their interpolating decoders will work in practice, which, as we
explain in detail in Section 6, need not be true apart from trivial situations. Despite these

7

Lember and Koloydenko

and other deficiencies of their approach, it raises some interesting questions and inspires
interesting modifications, which we also discuss in Section 6. It had not been our original
intention to dwell on the algorithmic approach in this manuscript as this approach is pe-
ripheral to the present theme of the risk-based approach. However, encouraged by some
of the reviewers and taking into account their queries on and interest in that particular
discussion, we have now made that discussion into a full section (Section 6), which might,
however, appear somewhat hypertrophied to some readers.

1.2.2 Further Motivation

One other motivation for considering new decoders is that unlike the error rate or path
probability, analytic optimization of other performance measures (e.g., Matthew’s correla-
tion Aydin et al., 2006, Q2, Qok, SOV Fariselli et al., 2005, etc.) used in practice is difficult
if at all possible. Having a large family of computationally efficient decoders, such as the
new generalized hybrid decoders, and using some training data, one can select empirically
a member from the family that optimizes the performance measure of interest. More gener-
ally, it seems advantageous for applications to be aware of the new choices of decoders and
their properties.

Also, depending on the application, the emphasis sometimes shifts from purely auto-
matic decoding with hard decisions to data exploration. Indeed, some performance measures
may be hard to formalize and subsequently hard to compute. For example, an estimated
path can be deemed correct if it is only structurally identical to the true path, say, con-
forming to the description “a long run of 1’s followed by a short run of 2’s followed by a
long run of alternating 2’s and 3’s”. It is then particularly valuable to gain insights into the
topology of the state space in the sense of identifying compartments of high concentration
of the posterior distribution. The significance of identifying clusters (of similar sequences)
of high (total) posterior probability in high-dimensional discrete spaces has been recently
discussed by Carvalho and Lawrence (2008), and a thorough discussion of the advantages
of topological and geometric approaches to analysis of complex data in general has more
recently been given by Carlsson (2009). Thus, it may be beneficial to output a family of
related decodings instead of one or several (“N best”) decodings that are optimal relative
to a single criterion such as MAP. For instance, by slowly varying the optimization criterion
(e.g., decreasing the penalty for false discovery of rare states or transitions), saliency of de-
tections of interesting features can be assessed and a better understanding of a neighborhood
of solutions can be gained (e.g., discerning between an “archipelago” and a “continent”),
all without having to compute, or even define explicitly, a path similarity measure (such
as those based on, for example, BLAST scores Altschul et al., 1990). At the same time,
by varying the optimization criteria more aggressively, alternative structures might be en-
countered coming from neighborhoods of remote (say, in the Hamming distance sense) local
maxima of the posterior distribution. Viewed within this context, this relatively inexpensive
type of “neighborhood” inference might become alternative or complementary to the direct
sampling (from the posterior distribution); see also Section 5 and Section 8.

8

Bridging Viterbi and Posterior Decoding

1.3 Further Notation and Organization of the Rest of the Paper

In this paper, we consider the path inference problem in the more general framework of
statistical learning. Namely, we consider sequence classifier mappings

g : X T → ST , T = 1, 2, . . . ,

and optimality criteria for their selection. When all g’s are obtained using the same de-
coding principle, or optimality criterion, regardless of T , we refer to them collectively as a
classification method, or simply, decoder. This will be the case in this paper, and therefore
we simplify the notation by writing g(xT) instead of g(xT ;T) or the like. In Section 2,
criteria for optimality of g are naturally formulated in terms of risk minimization whereby
R(sT | xT), the risk of of outputting path sT , derives from a suitable loss function. A Bayes
decoder, that is one that minimizes R(g(xT) | xT) over all possible g, will be denoted by v
with a suitable reference to the risk R. In Section 3, we consider families of risk functions
which naturally generalize those corresponding to the Viterbi and PMAP solutions (Sub-
section 2.1). There we will need the full two argument notation v(xT ; ·) using the second
argument to single out an individual member of such a family. Furthermore, as shown
in Section 4, these risk functions define a family of path decoders v(xT ; k) parameterized
by an integer k with k = 1 and k → ∞ corresponding to the PMAP and Viterbi cases,
respectively (Theorem 6). A continuous mapping via k = 1/(1−α), 0 ≤ α ≤ 1 compactifies
this parameterization and further enriches the solution space by including fractional k. It
is then discussed how the new family of decoders can be embedded into yet a wider class
with a principled criterion of optimality. We also compare the new family of decoders with
the Rabiner k-block approach. Any decoder would only be of theoretical interest if it could
not be efficiently computed. In Section 3, we show that all of the newly defined decoders
can be implemented efficiently as a dynamic programming algorithm in the usual forward-
backward manner with essentially the same (computational as well as memory) complexity
as the PMAP or Viterbi decoders (Theorem 4). Recent advances in the asymptotic theory
of some of the main decoders and risks presented in this paper are reviewed in Section 7
together with sketches of how these may be relevant in practice. Various further extensions
are discussed in the concluding Section 8.

1.4 Contributions of the Paper

We review HMM-based decoding within the sound framework of statistical decision theory,
and do so notably more broadly than has been done before, for example, in the prominent
work of Carvalho and Lawrence (2008). We also investigate thoroughly previous work on
combining the desirable properties of the two most common decoders, that is the Viterbi and
optimal accuracy decoders. In doing so, we discover several relevant claims and suggestions
to be unjustified, misleading, or plainly incorrect. We explain in detail those deficiencies,
giving relevant counterexamples, and show how they can be resolved. Some such resolutions
are naturally left within the native frameworks of the originals, whereas others are more
naturally given within the general risk-based framework. All of the resulting decoders are
shown to be easily implementable within the usual forward-backward computational frame-
works of the optimal accuracy and Viterbi decoders. We argue that the richness, flexibility,

9

Lember and Koloydenko

and analytic interpretation of the resulting families of decoders offer new possibilities for
applications and invite further theoretical analysis. Specifically, this paper

1) clarifies the definition of admissibility of hidden paths and shows that, when con-
strained to the paths of positive prior probability, the optimal accuracy decoding can
still return inadmissible paths;

2) shows that the suggestion of Rabiner (1989) to maximize the expected rate of
correctly recognized blocks can lead to inadmissible paths for blocks of size two, and
therefore can be misleading;

3) proposes suitable risk functions to “repair” the above suggestion, and subsequently
designs new families of computationally efficient decoders, providing an experimental
illustration;

4) unifies virtually all of the key decoders within the same risk-based framework;

5) analyzes the relationships between the risks achieved by the different decoders,
yielding a general result on convex decomposition of the key risk functionals for
Markov chains;

6) analyzes the related earlier work of Brushe et al. (1998), and in particular:

(a) explains how the idea of hybridization of the Viterbi and optimal accuracy decoders
proposed in the above work can fail when the Viterbi path is not unique;

(b) establishes that the claims made in the same work regarding the implementation of
their algorithm to hybridize the Viterbi and optimal accuracy decoders are incorrect;

(c) shows how the corresponding forward and backward variables given in the same
work can be scaled to produce an operational decoding algorithm;

(d) shows that the resulting decoders are different from the original hybrid decoders
of Brushe et al. (1998);

(e) proposes an immediately operational algorithm to hybridize the Viterbi and opti-
mal accuracy decoders (at least when the Viterbi path is unique), which is based on
the more common power-transform, and which also allows for extrapolations “beyond”
the optimal accuracy decoder;

7) indicates a number of further extensions of the new families of decoders.

At the same time, a thorough performance evaluation, including asymmetric variants of the
main loss functions, and using several applications with their own performance measures,
is outside the scope of this paper (Section 8).

2. Risk-Based Path Inference

Given a sequence of observations xT with p(xT) > 0, we view the (posterior) risk as a
function

R(· | xT) : ST 7→ [0,∞].

10

Bridging Viterbi and Posterior Decoding

Naturally, we seek a state sequence with minimum risk: v(xT) := arg minsT∈ST R
(
sT | xT

)
.

In the statistical decision and pattern recognition theories, the classifier v is known as the
Bayes classifier (relative to risk R). Within the same framework, the risk is often specified
via a loss-function

L : ST × ST → [0,∞],

interpreting L(sT , yT) as the loss incurred by the decision to predict sT when the actual
state sequence was yT . Therefore, for any state sequence sT ∈ ST , the risk is given by

R(sT | xT) := E[L(sT , Y T) | XT = xT] =
∑

yT∈ST
L(sT , yT)p(yT | xT).

2.1 Standard Path Inferences Re-Examined

The most popular loss function is the so-called symmetrical or zero-one loss L∞ defined as
follows:

L∞(sT , yT) =

{
1, if sT 6= yT ;
0, if sT = yT .

We shall denote the corresponding risk by R∞. With this loss, clearly

R∞(sT | xT) = P(Y T 6= sT | XT = xT) = 1− p(sT | xT), (2)

thus R∞(· | xT) is minimized by a Viterbi path, that is, a sequence of maximum posterior
probability. Let v(·;∞) stand for the corresponding classifier, that is

v(xT ;∞) := arg max
sT∈ST

p(sT | xT),

with a suitable tie-breaking rule.
Note that Viterbi paths also minimize the following risk

R̄∞(sT | xT) := − 1

T
log p(sT | xT). (3)

It can actually be advantageous to use the logarithmic risk (3) since, as we shall see later,
this leads to various natural generalizations (Sections 3 and 4).

When sequences are compared pointwise, it is common to use additive loss functions of
the form

L1(sT , yT) =
1

T

T∑
t=1

l(st, yt), (4)

where l(s, y) ≥ 0 is the loss associated with classifying y as s. Typically, for every state
s, l(s, s) = 0. It is not hard to see that, with L1 as in (4), the corresponding risk can be
represented as follows

R1(sT | xT) =
1

T

T∑
t=1

ρt(st | xT),

where ρt(s | xT) =
∑

y∈S l(s, y)pt(y | xT). Most commonly, l is again symmetrical, or
zero-one, that is l(s, y) = I{s 6=y}, where IA stands for the indicator function of set A. In

11

Lember and Koloydenko

this case, L1 is naturally related to the Hamming distance (Carvalho and Lawrence, 2008).
Then also ρt(st | xT) = 1− pt(st | xT) so that the corresponding risk is

R1(sT | xT) = 1− 1

T

T∑
t=1

pt(st | xT). (5)

Let v(·; 1) stand for the Bayes classifier relative to this R1-risk. It is easy to see from
the above definition of R1, that v(·; 1) delivers PMAP paths, which minimize the expected
number of misclassification errors. In addition to maximizing

∑T
t=1 pt(st | xT), v(·; 1) also

maximizes
∏T
t=1 pt(st | xT), and therefore minimizes the following risk

R̄1(sT | xT) := − 1

T

T∑
t=1

log pt(st | xT). (6)

2.2 Generalizations

Next, we begin to consider various generalizations of the the standard path inferences.

2.2.1 Admissible PMAP and Posterior Viterbi Decoders

Recall (Subsection 1.2.1) that PMAP paths can be inadmissible. According to our definition
of admissibility (Subsection 1.2.1), a path is inadmissible if it is of zero posterior probability.
Although Rabiner (1989) gives no explicit definition of admissibility, or validity, he refers to
forbidden transitions, that is, of zero prior probability (which, of course, also implies zero
posterior probability) as an example of how a path can be “not valid”; the possibility of a
path to have a positive prior probability but zero posterior probability is not discussed there.
As far as we are aware, Käll et al. (2005) were the first to formally write down an amended
PMAP optimization problem to guarantee path validity, or admissibility. However, they
too do not state explicitly if “a possible path through the model” means for them positivity
only of the prior probability or also of the posterior probability. If “the model” is to be
understood as the HMM in its entirety, then this would require positivity of the posterior
probability. However, the optimization presented by Käll et al. (2005) does not guarantee
positivity of the posterior probability, that is, it only guarantees positivity of the prior
probability. Perhaps, it does not happen very often in practice that the PMAP decoder
constrained to return a priori possible paths returns an inadmissible path (it does not
happen in our own experiments in Section 5 as all of our emission probabilities are non-zero
on the entire emission alphabet). However, as the example in Appendix A shows, this is
indeed possible.

Thus, to enforce admissibility properly, R1-risk needs to be minimized over the admis-
sible paths (R1 minimization over the paths of positive prior probability is revisited in
Subsection 2.2.2 below):

min
sT :p(sT |xT)>0

R1(sT | xT) ⇔ max
sT :p(sT |xT)>0

T∑
t=1

pt(st | xT). (7)

Assuming that pt(s | xT), 1 ≤ t ≤ T , s ∈ S, have been precomputed (e.g., by the classical
forward-backward recursion Rabiner, 1989), a solution to (7) can be easily found by a

12

Bridging Viterbi and Posterior Decoding

Viterbi-like recursion (8)

δ1(j) := p1(j | xT), ∀ j ∈ S, (8)

δt+1(j) := max
i

(δt(i) + log rt(i, j)) + pt+1(j | xT) for t = 1, 2, . . . , T − 1, and ∀j ∈ S,

where rt(i, j) := I{pijfj(xt+1)>0} (recall that pij = P(Yt+1 = j | Yt = i) and fj is the density
of the conditional probability distribution of Xt+1 conditioned on Yt+1 = j). To the best of
our knowledge this has not been stated in the literature before. We will refer to this decoder
as the Constrained PMAP decoder.

Next note that in the presence of path constraints, minimization of the R1-risk (5) is no
longer equivalent to minimization of the R̄1-risk (6). In particular, the problem (7) is not
equivalent to the following problem

min
sT :p(sT |xT)>0

R̄1(sT | xT) ⇔ max
sT :p(sT |xT)>0

T∑
t=1

log pt(st | xT). (9)

It is also important to note that the problem (9) above is equivalent to what has been
termed the posterior-Viterbi decoding, or PVD (Fariselli et al., 2005):

min
sT :p(sT)>0

R̄1(sT | xT) ⇔ max
sT :p(sT)>0

T∑
t=1

log pt(st | xT),

that is, unlike in the case of R1(sT | xT) minimization, minimization of R̄1(sT | xT) over
the paths of positive prior probability is indeed sufficient to produce admissible paths.

A solution to (9) can be computed by a related recursion given in (10) below

δ1(j) := log p1(j | xT), ∀j ∈ S, (10)

δt+1(j) := max
i

(
δt(i) + log rij

)
+ log pt+1(j | xT), for t = 1, 2, . . . , T − 1, ∀j ∈ S,

where rij := I{pij>0} (which for inhomogeneous chains will depend on t).

2.2.2 Beyond PVD and A priori Admissible PMAP

Although admissible minimizers of R1 and R̄1 risk are by definition of positive probability,
this probability can still be very small. Indeed, in the above recursions, the weight rij is
1 even when pij is very small. We next replace rij by the true transition probability pij
in minimizing the R̄1-risk (that is maximization of

∏T
t=1 pt(st | xT)). Then the solutions

remain admissible and also tend to maximize the prior path probability. To bring the newly
obtained optimization problem to a more elegant form (11), we pretend that δ1(j) in (10)
above was defined as δ1(j) := log p1(j | xT) + log I{πj>0} (which indeed does not change the
results of the recursion (10)) and replace the last term by log πj .

Thus, with the above replacements, the recursion (10) now solves the following seemingly
unconstrained optimization problem (see Theorem 4)

max
sT

[T∑
t=1

log pt(st | xT) + log p(sT)
]
⇔ min

sT

[
R̄1(sT | xT) + h(sT)

]
, (11)

13

Lember and Koloydenko

where the penalty term

h(sT) = − 1
T log p(sT) =: R̄∞(sT) (12)

is the logarithmic risk based on the prior distribution,1 which does not involve the observed
data.

The thereby modified recursions immediately generalize as follows:

δ1(j) := log p1(j | xT) + C log πj , ∀j ∈ S,
δt+1(j) := max

i

(
δt(i) + C log pij

)
+ log pt+1(j | xT) for t = 1, 2, . . . , T − 1, ∀j ∈ S,

solving

min
sT

[
R̄1(sT | xT) + Ch(sT)

]
, (13)

where C > 0 is a trade-off constant, which can also be viewed as a regularization parameter.
Indeed, Proposition 2 below states that C > 0 implies admissibility of solutions to (13).
In particular, PVD, that is the problem solved by the original recursion (10), can now
be recovered by taking C sufficiently small. (Alternatively, the PVD problem can also be
formally written in the form (13) with C =∞ and h(sT) given, for example, by I{p(sT)=0}.)

What if the actual probabilities pij (πj) were also used in the optimal accuracy/PMAP
decoding? To motivate this, we re-consider the optimal accuracy/PMAP decoding imposing
the positivity constraint not on the posterior but on the prior path probability:

min
sT :p(sT)>0

R1(sT | xT) ⇔ max
sT :p(sT)>0

T∑
t=1

pt(st | xT). (14)

Solution to (14) can be easily found by yet another Viterbi-like recursion given in (15) below

δ1(j) := p1(j | xT), ∀ j ∈ S, (15)

δt+1(j) := max
i

(δt(i) + log rij) + pt+1(j | xT) for t = 1, 2, . . . , T − 1, and ∀j ∈ S,

which is the same as (8) apart from the rij in place of the rt(i, j).
We again replace the indicators rij by the actual probabilities pij . We once more pretend

that δ1(j) in (15) above was defined, this time, as δ1(j) := p1(j | xT)+log I{πj>0}. Replacing
the last term by log πj yields the following problem:

max
sT

[T∑
t=1

pt(st | xt) + log p(sT)
]
⇔ min

sT

[
R1(sT | xT) + R̄∞(sT)

]
. (16)

A more general problem can be written in the form

min
sT

[
R1(sT | xT) + Ch(sT)

]
, (17)

1. More generally, the same type of risk (e.g., R̄∞) can be based on the posterior (p(sT | xT)), joint
(p(sT , xT)) or prior (p(sT)) distribution. Compromising between notational accuracy on the one hand
and notational simplicity and consistency on the other hand, throughout the paper we disambiguate
these cases solely by the argument.

14

Bridging Viterbi and Posterior Decoding

where h is some penalty function (independent of the data xT). Thus, the problem (14) of
optimal accuracy/PMAP decoding over the paths of positive prior probability is obtained
by taking C sufficiently small and h(sT) = R̄∞(sT). (Setting C × h(sT) = ∞× I{p(sT)=0}
also reduces the problem (17) back to (7).)

Clearly, if instead of (14) we started off with (7) (R1(sT | xT) minimization over the
admissible paths), we would arrive at R̄∞(sT | xT) in place of R̄∞(sT) in (16) above.
Inclusion of R̄∞(sT | xT) more generally is treated next in Section 3.

3. Combined Risks

Motivated by the previous section, we consider the following general problem

min
sT

[
C1R̄1(sT | xT) + C2R̄∞(sT | xT) + C3R̄1(sT) + C4R̄∞(sT)

]
, (18)

where Ci ≥ 0, i = 1, 2, 3, 4,
∑4

i=1Ci > 0.2 This is also equivalent to

min
sT

[
C1R̄1(sT | xT) + C2R̄∞(sT , xT) + C3R̄1(sT) + C4R̄∞(sT)

]
, (19)

where, recalling (6), R̄1(sT | xT) = − 1

T

T∑
t=1

log pt(st | xT),

R̄∞(sT , xT) := − 1

T
log p(xT , sT),

= − 1

T
[log p(sT) +

T∑
t=1

log fst(xt)],

= − 1

T
[log πs1 +

T−1∑
t=1

log pstst+1 +

T∑
t=1

log fst(xt)],

recalling (3), R̄∞(sT | xT) = − 1

T
log p(sT | xT),

= R̄∞(sT , xT) +
1

T
log p(xT),

R̄1(sT) := − 1

T

T∑
t=1

log pt(st), (20)

R̄∞(sT) = − 1

T
log p(sT), recalling (12),

= − 1

T
[log πs1 +

T−1∑
t=1

log pstst+1]. (21)

The newly introduced risk R̄1(sT) involves only the prior marginals. Note that the com-
bination C1 = C3 = C4 = 0 corresponds to the MAP/Viterbi decoding; the combination

2. For uniqueness of representation, one may want to additionally require
∑4
i=1 Ci = 1.

15

Lember and Koloydenko

C2 = C3 = C4 = 0 yields the PMAP case, whereas the combinations C1 = C2 = C3 = 0 and
C1 = C2 = C4 = 0 give the maximum a priori decoding and marginal prior mode decoding,
respectively. The case C2 = C3 = 0 subsumes (13) and the case C1 = C3 = 0 is the problem

min
sT

[
R̄∞(sT | xT) + CR̄∞(sT)

]
. (22)

Thus, a solution to (22) is a generalization of the Viterbi decoding that allows one to
suppress (C > 0) contribution of the data.

Remark 1 If C2 > 0, then every solution of (18) is admissible and the minimized risk is
finite.

No less important and perhaps a little less obvious is that C1, C4 > 0 also guarantees ad-
missibility of the solutions, as stated in Proposition 2 below.

Proposition 2 Let C1, C4 > 0. Then, the minimized risk (18) is finite and any minimizer
sT is admissible.

Proof Without loss of generality, assume C2 = C3 = 0. Since p(xT) > 0 (assumed in
the beginning of Section 2), there exists some admissible path sT . Clearly, the combined
risk of this path is finite, hence so is the minimum risk. Now, suppose sT is a minimizer
of the combined risk and suppose further that sT is inadmissible, that is p(sT | xT) = 0.
Since the minimized risk (18) is finite, we must have p(sT) > 0. Therefore, it must be
that p(xT | sT) = 0, and therefore we must have some t, 1 ≤ t ≤ T , such fst(xt) = 0.
This would imply that any path through (t, st) is inadmissible, hence pt(st | xT), the sum
of the posterior probabilities of all such paths, is zero. This implies R̄1(sT | xT) = ∞,
contradicting optimality of sT .

Remark 3 Note that for any xT , the Posterior-Viterbi decoding (Fariselli et al., 2005)
(Problem 9 above) can be obtained by setting C3 = C4 = 0 and taking C2 sufficiently small,
that is, 0 < C2 � C1. Also, PVD can be obtained almost surely by setting C2 = C3 = 0 and
taking C4 sufficiently small, that is, 0 < C4 � C1.

It is fairly intuitive that PVD can be realized as solutions to (18), but we nonetheless prove
this formally in Appendix B.

If the smoothing probabilities pt(s | xT), t = 1, . . . , T and s ∈ S, have been already com-
puted, a solution to (18) can be found also by a standard dynamic programming algorithm.
Let us first introduce more notation. For every t ∈ 1, . . . , T and j ∈ S, let

γt(j) := C1 log pt(j | xT) + C2 log fj(xt) + C3 log pt(j).

Note that the function γt depends on the entire data xT . Next, let us also define the
following scores

δ1(j) := (C2 + C4) log πj + γ1(j), ∀j ∈ S,
δt(j) := max

i

(
δt−1(i) + (C2 + C4) log pij

)
+ γt(j), (23)

for t = 2, 3, . . . , T, and ∀j ∈ S.

16

Bridging Viterbi and Posterior Decoding

Using the above scores δt(j) and a suitable tie-breaking rule, below we define the back-

pointers it(j), terminal state iT , and the optimal path ŷT (iT).

it(j) := arg max
i∈S

[δt(i) + (C2 + C4) log pij], when t = 1, . . . , T − 1;

iT := arg max
i∈S

δT (i); (24)

ŷt(j) :=

{
i1(j), when t = 1;(
ŷt−1(it−1(j)), j

)
, when t = 2, . . . , T .

(25)

Thus, given xt+1 and the best path that ends in state j (at time t+ 1), it(j) represents the
t-th state in this path.

The following theorem formalizes the dynamic programming argument; its proof is stan-
dard and we state it below for completeness only.

Theorem 4 Any solution to (18) can be represented in the form ŷT (iT) provided the ties
in (24) are broken accordingly.

Proof With a slight abuse of notation, for every st ∈ St, let

U(st) =
t∑

u=1

[
γu(su) + (C2 + C4) log psu−1su

]
,

where s0 := 0 and p0s := πs. Hence,

−T [C1R̄1(sT | xT) + C2R̄∞(sT , xT) + C3R̄1(sT) + C4R̄∞(sT)] = U(sT)

and any maximizer of U(sT) is clearly a solution to (18) and (19).

Next, let U(j) := δ1(j) for all j ∈ S, and let

U(st+1) = U(st) + (C2 + C4) log pstst+1 + γt+1(st+1),

for t = 1, 2, . . . , T − 1 and also st ∈ St. By induction on t, these yield

δt(j) = max
st:st=j

U(st)

for every t = 1, 2, . . . , T and for all j ∈ S. Clearly, every maximizer ŷT of U(sT) over
the set ST must end up in iT , or, more precisely, in the set arg maxj∈S δT (j), allowing for
non-uniqueness. Continuing to interpret arg max as a set, recursion (23) implies recursions

(24) and (25), hence any maximizer ŷT can indeed be computed in the form ŷT (iT) via the
forward (recursion (24))-backward (recursion (25)) procedure.

Similarly to the generalized risk minimization of (18), the generalized problem of accuracy
optimization (17) can also be further generalized as follows:

min
sT

[
C1R1(sT | xT) + C2R̄∞(sT | xT) + C3R1(sT) + C4R̄∞(sT)

]
, (26)

17

Lember and Koloydenko

where risk

R1(sT) :=
1

T

T∑
t=1

P(Yt 6= st) = 1− 1

T

T∑
t=1

pt(st) (27)

is the error rate relative to the prior distribution. This problem can also be solved by a
recursion formally identical to that in (23) except for the removed logarithms in the marginal
probabilities:

γt(j) = C1pt(j | xT) + C2 log fj(xt) + C3pt(j). (28)

The following remarks compare this generalized Problem with the generalized Problem
(18) (Remarks 1 and 3, Proposition 2).

Remark 5 1. As in the generalized posterior-Viterbi decoding (18), here C2 > 0 also
implies admissibility of the optimal paths.

2. Now, C4 > 0 implies that the minimized risk is finite for any xT , but unlike in (18),
C1, C4 > 0 is not sufficient to guarantee admissibility almost surely of the solutions to
the problem (26).

3. Taking C3 = C4 = 0, the constrained PMAP problem (Käll et al., 2005) (Problem 7
above) is obtained for some C1, C2 such that 0 < C2 � C1.

We refer to a decoder solving the generalized risk minimization Problem (18) as a generalized
posterior-Viterbi hybrid decoder. Similarly, a decoder solving the generalized optimal accu-
racy Problem (26) is referred to as a generalized PMAP hybrid decoder to distinguish the
product-based risk R̄1(sT | xT) in the former case from the sum-based risk R1(sT | xT) in
the latter case. Both the generalized families, however, naturally extend the PMAP/optimal
accuracy/posterior decoder (Section 2.1).

Corollary 15 of Apendix C establishes the usual trade-off type of resuls for the solutions
to Problems (18) and (26). The results on the trade-off between R̄1 and R̄∞ risks will in
particular be useful in Corollary 8 (see further below) for establishing monotonicity of the
solution to Problem (18).

4. The k-Block Posterior-Viterbi Decoding

The next approach provides a surprisingly different insight into what otherwise has already
been formulated as the generalized Problem (18). This, first of all, helps better understand
how the generalized Problem (18) resolves the drawback of Rabiner’s suggestion (intro-
duced in the last paragraph of Subsection 1.2.1 above). Secondly, the same approach gives
an elegant relationship (Theorem 6, Corollary 7) between the main types of risk, which
surprisingly amounts to, as far as we know, a novel property of ordinary Markov chains
(Equation 34, and Proposition 14 of the concluding Section 8).

Recall (Subsection 1.2) that Rabiner’s compromise between MAP and PMAP is to
maximize the expected number of correctly decoded pairs or triples of (adjacent) states.
With k being the length of the overlapping block (k = 2, 3, . . .) this means to minimize the

18

Bridging Viterbi and Posterior Decoding

conditional risk

Rk(s
T | xT) := 1− 1

T − k + 1

T−k+1∑
t=1

p(st+k−1
t | xT), (29)

which derives from the following loss function:

Lk(s
T , yT) :=

1

T − k + 1

T−k+1∑
t=1

I{st+k−1
t 6=yt+k−1

t }. (30)

When k = 1 this gives the usual R1 maximization, that is, the PMAP decoding, which is
known to fault by allowing inadmissible paths. Just as in (4) with k = 1, we could also
consider a general (possibly asymmetric) loss function lk(s

t+k−1
t , yt+k−1

t) for larger k in (30)
above. Thus, for k = 2 this is the Markov loss function studied by Yau and Holmes (2010).

It is natural to think that minimizers of Rk(s
T | xT) “move” towards Viterbi paths

“monotonically” as k increases to T . Indeed, when k = T , minimization of Rk(s
T | xT)

(29) is equivalent to minimization of R̄∞(sT | xT) achieved by the Viterbi decoding. How-
ever, as the experiments in Section 5 below show, minimizers of (29) are not guaranteed
to be admissible (even if admissibility were defined relative to the prior distribution) for
k > 1. Also, as we already pointed out in Subsection 1.2.1, this approach does not give
monotonicity, that is, allows the optimal path for k = 2 to have lower (prior and posterior)
probabilities than those of the PMAP path (that is, k = 1). Another drawback of using the
loss Lk (30) and its more general variants is that, unlike in the generalized PVD and PMAP
hybrid decoders, the computational complexity of Rabiner’s approach grows with the block
length k. We now show how these drawbacks go away when the sum in (29) is replaced by
a product, eventually arriving at a subfamily of the generalized posterior Viterbi decoders.
Certainly, replacing the sum by the product alters the problem, and it does so in a way that
makes the block-wise coding idea work well. Namely, the longer the block, the larger the
resulting path probability, which is also now guaranteed to be positive already for k = 2.
Moreover, this gives another interpretation of the risks R̄1(sT | xT) + CR̄∞(sT | xT) (see
also Remark 3 above), the prior risks R̄1(sT) +CR̄∞(sT), and consequently the generalized
Problem (18).

Let k be a positive integer. For the time being, let p represent any first order Markov
chain on ST , and let us define

Ūk(s
T) :=

T−1∏
j=1−k

p
(
s

min(j+k,T)
max(j+1,1)

)
, R̄k(s

T) := − 1

T
ln Ūk(s

T).

Thus
Ūk(s

T) = Uk1 · Uk2 · Uk3 ,

where

Uk1 := p(s1) · · · p(sk−2
1)p(sk−1

1),

Uk2 := p(sk1)p(sk+1
2) · · · p(sT−1

T−k)p(s
T
T−k+1),

Uk3 := p(sTT−k+2)p(sTT−k+3) · · · p(sT).

19

Lember and Koloydenko

Thus, R̄k is a natural generalization of R̄1 (introduced first for the posterior distribution in
(6)) since when k = 1, R̄k = R̄1.

Theorem 6 Let k be such that T ≥ k > 1. Then the following recursion holds

R̄k(s
T) = R̄∞(sT) + R̄k−1(sT), ∀sT ∈ ST .

Proof Note that
Uk1 = Uk−1

1 p(sk−1
1), Uk3 = p(sTT−k+2)Uk−1

3 .

Next, for all j such that j + k ≤ T , the Markov property gives

p(sj+kj+1) = p(sj+k | sj+k−1)p(sj+k−1
j+1)

and

Uk2 p(s
T
T−k+2) = p(sk1)p(sk+1

2) · · · p(sTT−k+1)p(sTT−k+2) =

p(sk | sk−1)p(sk−1
1)p(sk+1 | sk)p(sk2) · · · p(sT | sT−1)p(sT−1

T−k+1)p(sTT−k+2) =

p(sk | sk−1)p(sk+1 | sk) · · · p(sT | sT−1)p(sk−1
1) · · · p(sT−1

T−k+1)p(sTT−k+2) =

p(sk | sk−1) · · · p(sT | sT−1)Uk−1
2 .

Hence,

Ūk(s
T) = Uk−1

1 p(sk−1
1)p(sk | sk−1) · · · p(sT | sT−1)Uk−1

2 Uk−1
3 ,

= p(sT1)Uk−1
1 Uk−1

2 Uk−1
3 = p(sT)Ūk−1(sT).

The second equality above also follows from the Markov property. Taking logarithms on
both sides and dividing by −T completes the proof.

Now, we specialize this result to our HMM context, and, thus, p(sT) and p(sT | xT) are
again the prior and posterior hidden path distributions.

Corollary 7 Let k be such that T ≥ k > 1. For all paths sT ∈ ST the prior risks R̄k and
R̄∞ satisfy (31). For every xT ∈ X T and for all paths sT ∈ ST , the posterior risks R̄k and
R̄∞ satisfy (32).

R̄k(s
T) = R̄∞(sT) + R̄k−1(sT), (31)

R̄k(s
T | xT) = R̄∞(sT | xT) + R̄k−1(sT | xT). (32)

Proof Clearly, conditioned on the data xT , Y T remains a first order Markov chain (gener-
ally inhomogeneous even if it was homogeneous a priori). Hence, Theorem 6 applies.

Below, we focus on the posterior distribution and risks, but the discussion readily extends
to any first order Markov chain.

Let v(xT ; k) be a decoder that minimizes R̄k(s
T | xT), returning a path ŷ(k), that is,

ŷ(k) = arg max
sT∈ST

Ūk(s
T | xT) = arg min

sT∈ST
R̄k(s

T | xT). (33)

Corollary (8) below states how R̄k(s
T | xT) minimization is a special case of the generalized

Problem (18). We refer to the generalized posterior-Viterbi hybrid decoders v(xT ; k) as
k-block PVD and summarize their properties in Corollary (8).

20

Bridging Viterbi and Posterior Decoding

Corollary 8 For every xT ∈ X T , and for every sT ∈ ST , we have

R̄k(s
T | xT) = (k − 1)R̄∞(sT | xT) + R̄1(sT | xT), ∀k such that 1 ≤ k ≤ T. (34)

ŷ(k) is admissible, ∀k such that k > 1. (35)

R̄∞(ŷ(k) | xT) ≤ R̄∞(ŷ(k − 1) | xT), ∀k such that 1 < k ≤ T. (36)

R̄1(ŷ(k) | xT) ≥ R̄1(ŷ(k − 1) | xT), ∀k such that 1 < k ≤ T. (37)

Proof Equation (34) follows immediately from Equation (32) of Corollary 7. Admissibility
of ŷ(k) for k > 1 in (35) becomes obvious recalling Remark 1. Inequalities (36) and (37)
are established by Corollary 15.

Equation (34) is also of practical significance showing that ŷ(k) is a solution to (18)
with C1 = 1, C2 = k − 1, C3 = C4 = 0, and as such can be computed in the same fashion
for all k, 1 ≤ k ≤ T (see Theorem 4 above).

Inequality (36) means that the posterior path probability p(ŷ(k) | xT) increases with k.
At the same time, increasing k also increases R̄1-risk, that is, decreases the product of the
(posterior) marginal probabilities of states along the path ŷ(k). Inequalities (36) and (37)
clearly show that as k increases, v(·; k) monotonically moves from v(·; 1) (PMAP) towards
the Viterbi decoder, that is v(·;∞). However, the maximum block length is k = T .

A natural way to complete this bridging of PMAP with MAP is by embedding the R̄k
risks into the family R̄α via α = k−1

k ∈ [0, 1]. Thus, (34) extends to

R̄α(sT | xT) := αR̄∞(sT | xT) + (1− α)R̄1(sT | xT) (38)

with α = 0 and α = 1 corresponding to the PMAP and Viterbi cases, respectively. This
embedding is clearly still within the generalized Problem (18) via C1 = 1 − α, C2 = α,
C3 = C4 = 0. In particular, v(xT ; k(α)) can be computed by using the same dynamic pro-
gramming algorithm of Theorem 4 for all k ∈ [1,∞] (that is, all α ∈ [0, 1]), and inequalities
(36) and (37) are special cases of Corollary 15 (part 1) to Lemma 16.

Recalling Remark 3, we note that on the lower end of 0 ≤ α ≤ 1, before reaching
PMAP (α = 0) we encounter PVD for some sufficiently small α ≈ 0. Note also that in
(35) k need not be integer either, that is, Remark 1 establishes admissibility of ŷ(k(α)),
k(α) = 1/(1− α), for all α ∈ (0, 1] (that is, all k ∈ (1,∞]).

Given xT and a sufficiently large k (equivalently, α ≈ 1), ŷ(k), the minimizer of R̄α(sT |
xT) (38) (and (34)) would become a Viterbi path ŷ(∞) (since ST is finite). However, such
α (and k) would generally depend on xT , and in particular k may need to be larger than
T , that is, ŷ(T) may be different from ŷ(∞).

At the same time, for k > 1 we have

R̄∞(ŷ(∞) | xT) ≤ R̄∞(ŷ(k) | xT) ≤ R̄∞(ŷ(∞) | xT) +
R̄1(ŷ(∞) | xT)

k − 1
, (39)

on which we comment more in Section 7 below. The first inequality of (39) above follows
immediately from the definition of the Viterbi decoder. To obtain the second inequality,
apply (34) to both ŷ(k) and ŷ(∞) and subtract one equation from the other. Dividing the

21

Lember and Koloydenko

resulting terms by k− 1, noticing that R̄k(ŷ(∞) | xT) ≥ R̄k(ŷ(k) | xT) and R̄1(ŷ(k) | xT) ≥
0, and rearranging the other terms yields the result.

Considering the prior chain Y T and risks in (31), we immediately obtain statements
analogous to (34)-(38) extending these new interpretations to the entire generalized Prob-
lem (18). In particular, it might be of general interest to note that for any first order
Markov chain (that is, not necessarily representing the posterior distribution of an HMM)
the following convexly combined risk

R̄α(sT) := αR̄∞(sT) + (1− α)R̄1(sT)

can be efficiently minimized in the usual forward-backward manner (Theorem 4).

5. Experiments

We illustrate the performance of the Viterbi, PMAP, and some of the other known and
new decoders on the task of predicting protein secondary structure in single amino-acid
sequences. We show that the differences in performance between the various decoders
can be significant. For this illustration purpose, our decoders are based entirely on the
ordinary first order HMM. In particular, when decoding an amino-acid sequence, they
do not use cues from decoded homologous sequences (other than by allowing homologous
sequences to be part of the training set for estimation of the model parameters). Certainly,
successful predictors in practice are significantly more elaborate. In particular, they do
exploit intensively information from decoded homologs, and also include interactions at
ranges considerably longer than that of the first order HMM (Aydin et al., 2006). However,
our current goal is not to compete for the absolute record on the task (which, not so long
ago, was reported to be about 70% (Aydin et al., 2006)), but to merely emphasize the
following two points. First, the difference in performance between the Viterbi and PMAP
decoders can be appreciable in practice already with the ordinary first order HMMs having
as few as six hidden states. Secondly, using the new family of decoders (that is, solutions to
the generalized risk minimization 18 and 26) gives a potentially useful additional flexibility
by exercising trade-offs between principled performance measures (Subsection 1.2.2).

Our data are a non-redundant subset of the Protein Data Bank (Berman et al., 2000).
Specifically, the secondary structural elements have been found from their atomic coordi-
nates using SSENVID (Softberry, Inc., 2001) and the resulting data can be freely downloaded
from http://personal.rhul.ac.uk/utah/113/VA/env_seqssnr.txt. The data contain
N = 25713 realizations (xTn(n), yTn(n)), n = 1, 2, . . . , N , with three original hidden states
{a, b, c}, representing α−helix, β−strand, and coil, respectively. The average length T̄ of
a realization is 167 positions. The observations xTn(n) come from a 20 symbol emission
alphabet of amino-acids

X = {A,C,D,E, F,G,H, I,K,L,M,N, P,Q,R, S, T, V,W, Y }.

We further distinguish four subclasses of the α-helix class a. The definition and enumeration
of the final six classes are as follows: Class one consists of the short, up to seven a long,
α-helices. Classes two and three consist of the β-strands (any number of b’s) and coil
sequences (any number of c’s), respectively. Classes four, five, and six derive from the a’s

22

http://personal.rhul.ac.uk/utah/113/VA/env_seqssnr.txt

Bridging Viterbi and Posterior Decoding

that comprise an α-helix of length at least eight, thereafter referred to as long. Specifically,
class four is the so-called N -end, which is the first four a’s of a long α-helix. Similarly,
class six is the so called C-end, which is the last four a’s of a long α-helix. Any a’s in the
middle of a long α-helix are class five. Refining the original classification has been known
to improve prediction of protein secondary structure (Salamov and Solovyev, 1995). For
simplicity, here we only sub-divide the α-helix class (whereas Salamov and Solovyev, 1995
go further) given the limited goals of these experiments.

The (maximum likelihood estimates of the) transition and emission distribution matrices
as well as the vector of the initial probabilities computed from all of the realizations are
given in Appendix E.

The following experiments emulate a typical practical situation by re-estimating these
parameters from N − 1 sequences and using the re-estimated values to decode a remaining
sequence. We repeat the process N times in the leave-one(sequence)-out fashion. We do
not impose stationarity in these experiments as we did not have any prior evidence of
stationarity. Indeed, the (estimated) initial distribution π̂ appears to be very different from
the stationary one (π̂inv, see Appendix E) and many sequences in the data set are quite
short.

Figure 1 displays case 877, which is 149 positions long and is split into two pieces at
position t = 72 (shown in both images). The top (0) row is the ground truth. This case is
typical in several senses. First, in this case the PMAP decoder (row 2) shows the median gain
in accuracy (of about 11%) over the Viterbi decoder (row 1); see subsequent subsections for
a discussion of performance measures. Secondly, the PMAP, or optimal accuracy output, is
inadmissible in this case, which is evident from, for example, the isolated state five (yellow)
island (transitions between states three and five are forbidden). Rows 3 through 5 are
outputs from the PVD, Constrained PMAP, and Rabiner k = 2 decoders, respectively. It is
typical of the PVD and Constrained PMAP decoders to tie. Outputs from other members of
the generalized posterior Viterbi (18) and PMAP (26) hybrid decoders are given in rows 6-
18, and 19-31, respectively. Table 1 gives a detailed legend for interpreting the outputs. The
monotonicity of the generalized PVD hybrid inference (Corollary 15, part 1, and Corollary
8, inequalities 36 and 37) is illustrated by following the posterior risk columns R̄∞ and R̄1

across rows 2 (PMAP), then 6 through 17, and finally 1 (Viterbi); PVD (row 3) is attained
when α ≈ 0 (rows 6-9) and here is also indistinguishable from Constrained PMAP (row
4). The monotonicity of the generalized PMAP hybrid inference (Corollary 15, part 3) is
illustrated by following the R̄∞ and R1 columns across rows 2 (PMAP), then 19 through
30, and finally 1 (Viterbi); Constrained PMAP (row 4) is attained when α ≈ 0 (rows 19-20)
and here is also indistinguishable from PVD (row 3).

Note how the decoder in row 16 (Figure 1) differs from its neighbors, specifically, how
it completely misses the terminal activity, which is to a variable extent captured by both
its “more accurate” (row 15) and “more probable” (row 17) neighbors.

Rows 18 and 31 are the “data blind” maximum a priori and pointwise maximum a priori
decodings, which are members of both the generalized hybrid families. These decoders tie
not only in this but in all the other cases as well; see the structure of the (overall) transition
matrix P in Appendix E also to understand the overwhelming dominance of class 3 (“coil”)
in the absence of the amino-acid information. By adjusting the R1 and R̄1 risk terms in the
generalized decoders, we can easily accommodate unequal classification penalties to begin

23

Lember and Koloydenko

exploring the topology of the posterior distribution (see also Section 8). Thus, for example,
we suppress the dominating class 3 to better reveal activity of the remaining classes as
shown in Figure 2. Specifically, the marginal posterior probabilities pt(s | xT) are replaced
by pt(s | xT)/21 and 4pt(s | xT)/21 for s = 3 and s 6= 3, respectively; the same re-weighting
is also applied to the prior marginal distributions; the Viterbi, Rabiner k = 2, as well as
the MAPriori decoder (rows 2, 5, 18, respectively) are not affected by this adjustment.

Application specific performance measures will usually be of more interest than the
simple measures used here for illustration of the ideas (Section 8). Thus, for example,
regarded as β-strand (state 2) detectors, the original decoders (Figure 1) miss four of the
seven 2-islands. On the other hand, a more dynamic class 2 activity revealed in Figure
2 correlates very well with the seven objects of class 2. The presence of the adjusted
PMAPriori decoder (row 31) also helps to better assess the value of the observed data.

 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 2 2 2 2 2 2

 2 2 2 2 2 2 5 5 5 2 2 2
 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2

 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

 4 4 4 4 5 5 5 6 6 6 6 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 4 4 4 4 5 5 6 6 6 6
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 5 5 5 5 6 6 6 2 2 2 2 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 4 5 5 5 5 6 6 6 2 2 2 2 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 4 5 5 5 5 6 6 6 2 2 2 2 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 4 5 5 5 5 6 6 6 2 2 2 2 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 4 5 5 5 5 6 6 6 2 2 2 2 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 4 5 5 5 5 6 6 6 2 2 2 2 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 4 5 5 5 5 6 6 6 2 2 2 2 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 4 5 5 5 5 6 6 6 2 2 2 2 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5
 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 4 5 5 5 5 6 6 6 2 2 2 2 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 4 5 5 5 5 6 6 6 2 2 2 2 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 4 5 5 5 5 6 6 6 2 2 2 2 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 2 2 2 2 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 2 2 2 2 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5
 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Figure 1: Performance of the well-known and some of the new decoders on Case 877. The
dominant class 3 is represented by blank entries. For further legend, see Table 1.

In addition to using the real data, we simulate synthetic data sets each of which having
the same number N = 25713 of sequences, in the following way. Let {π̂sn}s∈S , P̂n, {P̂sn, s ∈
S} be the estimates of the HMM parameters (initial, transition, and emission distributions,
respectively) obtained from (xTn(n), yTn(n)), the n-th actual realization. Then the n-th

24

Bridging Viterbi and Posterior Decoding

R Output ŷ149 Empir. posterior
o Genera- Alias C1 C2 C3 C4 error risks
w lized rate(%)

PVD PMAP R∞ R1 R1(%)

0 Truth 0 0.4907 1.1311 59.2173

1 + + Viterbi 0 1 0 0 56.3758 0.1604 0.8296 50.3368

2 + + PMAP 1 0 0 0 45.6376 ∞ 0.6905 46.7752

3a + PVD ≈ 1 ≈ 0 0 0 46.9799 0.2486 0.6961 46.9188
3b + ≈ 1 0 0 ≈ 0

4 + Constr. ≈ 1 ≈ 0 0 0 46.9799 0.2468 0.6961 46.9188
PMAP

5 Rabiner n/a n/a n/a n/a 53.0201 0.1823 0.7118 47.4429
k = 2

6 + 0.999 0.001 0 0 46.9799 0.2486 0.6961 46.9188
7 + 0.995 0.005 0 0 46.9799 0.2486 0.6961 46.9188
8 + 0.990 0.010 0 0 46.9799 0.2486 0.6961 46.9188
9 + 0.950 0.050 0 0 46.9799 0.2352 0.6964 46.9322
10 + 0.900 0.100 0 0 46.9799 0.2352 0.6964 46.9322
11 + 2/3 1/3 0 0 53.0201 0.1897 0.7065 47.2499
12 + 0.500 0.500 0 0 54.3624 0.1791 0.7142 47.5372
13 + 1/3 2/3 0 0 56.3758 0.1700 0.7277 48.0356
14 + 0.250 0.750 0 0 57.0470 0.1680 0.7331 48.1738
15 + 0.200 0.800 0 0 57.0470 0.1680 0.7331 48.1738
16 + 0.100 0.900 0 0 57.0470 0.1645 0.7637 48.9620
17 + 0.010 0.990 0 0 56.3758 0.1604 0.8296 50.3368

18 + + MA- 0 0 0 1 57.0470 0.1645 0.7637 48.9620
Prior

19 + 0.999 0.001 0 0 46.9799 0.2486 0.6961 46.9188
20 + 0.995 0.005 0 0 46.9799 0.2486 0.6961 46.9188
21 + 0.990 0.010 0 0 46.3087 0.2417 0.6962 46.9245
22 + 0.950 0.050 0 0 50.3356 0.2009 0.7021 47.0773
23 + 0.900 0.100 0 0 50.3356 0.2009 0.7021 47.0773
24 + 2/3 1/3 0 0 54.3624 0.1776 0.7165 47.6139
25 + 0.500 0.500 0 0 57.0470 0.1680 0.7331 48.1738
26 + 1/3 2/3 0 0 57.0470 0.1680 0.7331 48.1738
27 + 0.250 0.750 0 0 57.0470 0.1645 0.7637 48.9620
28 + 0.200 0.800 0 0 56.3758 0.1604 0.8296 50.3368
29 + 0.100 0.900 0 0 56.3758 0.1604 0.8296 50.3368
30 + 0.010 0.990 0 0 56.3758 0.1604 0.8296 50.3368

31 + + PMA- 0 0 1 0 57.0470 0.1645 0.7637 48.9620
Prior

Table 1: Case 877. Performance of the well-known and some of the new decoders. Worst,
second worst, best and second best entries in each category are highlighted in red,
magenta, blue and cyan respectively. In rows 1, 2, 3a, 6-17, C1 = 1 − α = 1

k and
C2 = α = 1− 1

k .

25

Lember and Koloydenko

 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 2 2 2 2 2 2

 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 5 5 5 5 5 5 6 6 6 6 2 2 2 2 2 2 2 4 4
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 5 5 5 5 5 5 6 6 6 6 2 2 2 2 2 2 2 4 4
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 5 5 5 5 5 5 6 6 6 6 2 2 2 2 2 2 2 4 4
 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 5 5 5 5 5 5 6 6 6 6 2 2 2 2 2 2 2 4 4
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 5 5 5 5 5 5 6 6 6 6 2 2 2 2 2 2 2 4 4
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 5 5 5 5 5 5 6 6 6 6 2 2 2 2 2 2 2 4 4
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 5 5 5 5 5 5 6 6 6 6 2 2 2 2 2 2 2 4 4
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 5 5 5 5 5 5 6 6 6 6 2 2 2 2 2 2 4
 2 4 4 4 5 5 5 5 5 5 6 6 6 6 2 2 2 2 2 2 4
 2 4 4 4 5 5 5 5 5 5 6 6 6 6 2 2 2 2 2 2
 2 4 4 4 5
 2 4 4 4 5
 2 4 5
 2

 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 5 5 5 5 5 5 6 6 6 6 2 2 2 2 2 2 2 4 4
 2 2 2 2 2 2 2 2 4 4 4 4 5 5 5 5 5 5 6 6 6 6 2 2 2 2 2 2 4
 2 2 2 2 2 2 2 4 4 4 4 5 5 5 5 5 5 6 6 6 6 2 2 2 2 2 2 4
 2 4 4 4 5
 2 4 4 4 5
 2

 2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

 4 4 4 4 5 5 5 6 6 6 6 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 4 4 4 4 5 5 6 6 6 6
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 4 4 5 5 5 5 5 6 6 6 6 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
4 4 4 5 5 5 5 5 6 6 6 6 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
4 4 4 5 5 5 5 5 6 6 6 6 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
4 4 4 5 5 5 5 5 6 6 6 6 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
4 4 4 5 5 5 5 5 6 6 6 6 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
4 4 4 5 5 5 5 5 6 6 6 6 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
4 4 5 5 5 5 5 5 6 6 6 6 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
4 4 5 5 5 5 5 5 6 6 6 6 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
4 4 5 5 5 5 5 5 6 6 6 6 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 4 5 5 5 5 5 5 5 6 6 6 6 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 6 6 6 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 6 6 6 6 2 2 2 2 2 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 6 6 6 6 2 2 2 2 2 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5
 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 4 5 5 5 5 5 5 6 6 6 6 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
4 4 5 5 5 5 5 5 6 6 6 6 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
4 4 5 5 5 5 5 5 6 6 6 6 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 6 6 6 6 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 6 6 6 6 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2

72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Figure 2: Performance of the selected decoders on Case 877. The dominant class 3 (blank
entries) is suppressed by an asymmetric loss incorporated into the R1 and R̄1

risks of the generalized hybrid decoders. Subsequently, the remaining classes
reveal more activity, and in particular all of the seven instances of class 2 can be
recognized with essentially only two false alarms.

simulated realization is a sample of length Tn from the (first order homogeneous) HMM with
these parameters (note that the initial distributions {π̂sn}s∈S are necessarily degenerate).
The simulations, first of all, help us obtain interval estimates of the performance measures
(see more below). Also, they are valuable theoretically. Indeed, the analysis based on the
real data tells us what happens in a typical practical scenario in which the (HMM) model
is known to be too crude and yet has to be used for its simplicity. The simulations on the
contrary tell us what happens when the model is correct. By default, the analysis below
refers to the real data, whereas the use of the synthetic data will be acknowledged explicitly.

26

Bridging Viterbi and Posterior Decoding

5.1 Performance Measures and Their Estimation

The performance measures discussed in this subsection will be used in the following two sub-
sections to more completely assess and compare the performance of all the known decoders
(including PMAP and Viterbi), and several new members of the generalized families.

Given a decoder v, our principal performance measures are the R1(v) risk E[R1(v(XT) |
XT)] (see Equation 5) and the R̄∞ risk E[R̄∞(v(XT) | XT)] (3); it is not practical to
operate with R∞ (2) since it is virtually 1 for reasonably long realizations. For the R̄∞
results, see Subsection 5.3.

The R1 risk is simply the point-wise error rate 1
T

∑T
t=1 P (Ŷt 6= Yt), where Ŷ T is the

output of v(XT). This assumes T to be non-random; more generally, T is random and the

R1 risk is then given by ET

[
1
T

∑T
t=1 P

(
Ŷt 6= Yt | T

)]
. We refer to 1−R1 as accuracy when

comparing our decoders (e.g., Section 5.2 below). Note that given a decoder v, R1(v), is
simply a parameter of the underlying population of all (T, xT , yT) that could potentially be
observed. If the current hidden Markov model were not too crude for this population, we
would compute such risks if not analytically, then at least by using Monte-Carlo simulations,
for any g of interest. In reality, however, we need to estimate them from the given data.
The situation is further complicated by the fact that the classification method v is specified
only up to the model parameters, which are unknown and also need to be estimated from
the data.

All in all, we use the usual cross-validation (CV) estimation. Specifically, to decode
xTn(n), we make g use the estimates of the parameters obtained from the remaining N − 1

sequences. Thus, if v outputs ŷTn , then we take the empirical point-wise error rate

ên =
1

Tn

Tn∑
t=1

I{ŷt 6=yt(n)} (40)

to be an estimate of R1(v). Clearly, if v used the same fixed parameters as used in the
definition of R1(v), then E[ên] = R1(v), that is, ên would be unbiased for R1(v), and so
would be the average

êCV =
1

N

N∑
n=1

ên. (41)

Obviously, in reality êCV is likely to be biased. For this reason we also look at the model-
based CV estimate of R1 given by

R̂1 =
1

N

N∑
n=1

R1(ŷTn | xTn(n)). (42)

Computation of R1(· | xT) indeed relies on the model being correct, hence R̂1 is also likely
to be biased. We also report approximate 95% confidence intervals which are based on the
usual normal approximation disregarding, among others, any effects of the variability in the
realization length T .

27

Lember and Koloydenko

If the variation in T were merely an observational artifact, then instead of the above
cross-validation averages (42), we would focus on the total error rate for the entire data set
given by (43) below.

ê =

N∑
n=1

Tn∑
t=1

I{ŷt(n)6=yt(n)}

N∑
n=1

Tn

=

N∑
n=1

w(n)ên, where w(n) =
Tn
N∑
n=1

Tn

. (43)

However, to obtain sensible confidence intervals in this setting, we need to estimate the
variance of ê. Bootstrapping is a possibility, but we instead simulate several (specifically,
15) synthetic data sets as described above in the introduction to this Section, that is, re-
sampling individual realizations (xTn(n), yTn(n)) from the HMM with parameters {π̂sn}s∈S ,
P̂n, {P̂sn, s ∈ S}, n = 1, 2, . . . , N . We then use the t-distribution (on 14 degrees of freedom)
to obtain the 95% margins of error.

5.2 Comparison of the Accuracy of the Viterbi and PMAP Decoders

A histogram of the difference ê(Viterbi, n)− ê(PMAP, n) between the empirical errors (40)
of the Viterbi and PMAP decoders is plotted in Figure 3 (black narrow bins). We also
observe that in 85.35% of the CV rounds the PMAP decoder is more accurate, and in
10.67%—less accurate, than the Viterbi decoder (in 3.98% of the cases the two methods
show the same accuracy). To examine sensitivity of these results to the variation in the
realization length, we superimpose in the same Figure 3 a histogram of the subsample
consisting of the 1000 longest realizations (blue wide bins). Although the subsample spans
a less extreme range (−16.75%, 52.62%) than that of the entire sample, the locations of the
two histograms are very similar, suggesting the average gain of accuracy of about 12% when
replacing the Viterbi decoder by the PMAP one.

We also compare the performance of the Viterbi and PMAP decoders by examining their
R1(· | xT (n)(n)) risks (5), see Figure 4. Note that the difference R̂1(Viterbi) − R̂1(PMAP)
is 9% on average, and is largely unchanged (apart from a minor increase) when recomputed
on the subsample of the 1000 longest realizations (450-2060 positions).

Finally, ê (43) is 59.68% (±0.068%) and 46.10% (±0.047%) for the Viterbi and PMAP
decoders, respectively, and the PMAP comes out 13.58%±0.0463% more accurate than the
Viterbi decoder. The above confidence intervals are, however, likely to be deflated since
the model-based simulations show little variation of ê(Viterbi), ê(PMAP), or the differences
ê(Viterbi)− ê(PMAP). In fact, based on the 15 model-based simulations, the PMAP is only
7.46%± 0.0463% more accurate than the Viterbi decoder, with the individual error rates of
47.49%± 0.047% and 54.95%± 0.068% for the former and the latter, respectively. Finally,
replacing the empirical error rates by the R1(· | xT) risks (which are now computed exactly
since the simulations are model-based), we obtain the difference of 8.55%± 0.0213%.

In summary, the PMAP decoder can be notably more accurate than the Viterbi decoder
in scenarios with as few as six hidden states.

28

Bridging Viterbi and Posterior Decoding

Figure 3: A histogram of the difference between the empirical error rates ê(Viterbi, n) −
ê(PMAP, n) obtained from the full data (black narrow bins) and the subsample
consisting of 1000 longest realizations (blue wide bins). Although in 3.98% of
the entire data set the two methods show the same accuracy (spike at 0), overall
their performance appears to be notably different. The Viterbi decoder is more
accurate in 10.67% of all the cases, and the PMAP decoder is more accurate
in 85.35% of all the cases. The extreme differences (min = −78.69%,max =
89.74%) tend to be observed on short sequences (136 positions and shorter), but
the subsample of the 1000 longest realizations (450-2060 positions) confirms the
effect of the PMAP decoder being more accurate. In particular, on the longest
sequences, the PMAP decoder can be 52.62% more accurate than the Viterbi
decoder, whereas the latter can be at most 16.75% more accurate than the former.

29

Lember and Koloydenko

Figure 4: Histograms of the R1(ŷT (n) | xT (n)(n)) risk of the Viterbi (black, more spread)
and PMAP (blue, more peaked) decoders. Since the first order homogeneous
HMM is only an approximation to the data source, the cross-validation averages
of 48.73% (PMAP), 57.73% (Viterbi), and 9% (PMAP’s gain over Viterbi) are
likely to be biased as estimates of the respective pointwise error rates; see also
Figure 3 for a model independent analysis.

5.3 The R̄∞ Risk of the Viterbi, PMAP and Other Decoders

Next we look at the log-posterior probability rates log(P (ŷT | xT))/T = −R̄∞(ŷT | xT) of
the PMAP, Viterbi and other decoders. In 74.14% of the cases, the PMAP decoder returns

an inadmissible path, that is, log(P (ŷT | xT))/T = −∞. To avoid dealing with an infinite
range, we switch to the exponential scale. Thus, Figure 5 below displays histograms of the

geometric rates
T

√
P (ŷT | xT).

The Rabiner 2-block decoder ŷ(2) returns inadmissible paths in 70.94% of the cases.
In 7.32% of the cases this decoder gives an inadmissible path even when the PMAP path
(for the same realization) is admissible. This illustrates the violation of monotonicity (see

30

Bridging Viterbi and Posterior Decoding

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

log Posterior Probability rate (exponentiated)

D
e
n
s
it
y

True path

Viterbi

PMAP

PVD

Rabiner k=2

New Hybrid k=2

Figure 5: Distributions of the (geometric rates of the) posterior probabilities of selected
decoders. The Constrained PMAP decoder is virtually indistinguishable from
PVD, hence omitted. The PMAP and Rabiner 2-block (see Subsection 1.2.1) de-
coders return inadmissible paths in 74.14% and 70.94% of the cases (not shown),
respectively (hence only 25.86% and 29.06% of the respective distributions are
shown). Just like PVD and the Constrained PMAP decoder, the new hybrid
2-block posterior-Viterbi decoder (33) is guaranteed to produce admissible paths.
Moreover, those paths would generally have a higher probability than the prob-
abilities of the PVD and Constrained PMAP paths.

Subsection 1.2.1) in the path (posterior) probability when using Rabiner’s suggestion to
base decoding on the loss (30).

We also note that the posterior probabilities of the actual hidden paths (blue histogram)
are notably lower than those of the admissible decodings, especially the Viterbi outputs.
However, these effects are not out of line with the model-based simulations.

31

Lember and Koloydenko

5.4 Summary of the Experiments

Figure 6 compares performance of these and other decoders as measured by the averaged
error rate and the averaged (exponentiated) path log-posterior rate

̂
T

√
P (ŷT | xT)

CV
=

1

N

N∑
n=1

Tn

√
P (ŷTn | xTn(n)). (44)

Recall that the family of k-block posterior-Viterbi decoders is naturally parameterized by
the block length k (k = 1 and k →∞ giving the PMAP and Viterbi decoders, respectively).
We have also included the continuous re-parameterization (38) via k = 1

1−α (and α = k−1
k)

which embeds these special cases into the generalized PVD Problem (18) via C1 = α,
C2 = 1− α, C3 = C4 = 0.

Figure 6 displays performance of members of the generalized PVD and generalized
PMAP (Problem 26) families with C1 = α, C2 = 1− α, C3 = C4 = 0 for a subset of values
of α used in Figure 1 and Table 1. The point-wise maximum a priori (C1 = C2 = C4 = 0,
C3 = 1) and the prior-based Viterbi (C1 = C2 = C3 = 0, C4 = 1) decoders are also included,
showing identical performance on these data. Remarkably (but not very surprisingly given
the crudeness of the hidden Markov model for these data), the accuracy of these “data-
blind” decoders on average is still higher than that of the Viterbi (MAP) decoder. We
reiterate that the hidden Markov model is rather crude as a model for the given data.
Furthermore, the estimates of the model parameters used for decoding any given sequence
are obtained from sequences that can generally have very different characteristics from
the sequence being decoded. Therefore, the risks optimized under these conditions may
be misleading, for example, a PMAP path need not have the lowest empirical error rate.
Nonetheless, the empirical error rates of the generalized decoders are still found to follow
the theoretical order of the posterior R1 and R̄1 risks.

6. Algorithmic Approaches

It is also possible (at least when the Viterbi path is unique) to hybridize MAP and PMAP
inferences without introduction of risk/loss functions. We discuss such approaches mainly
because one such approach was taken by Brushe et al. (1998) in what appears to be the
only publication dedicated to hybridization of the MAP and PMAP inferences in HMMs.

First note that the hybridization can be achieved by a suitable transformation of the
forward and backward variables αt(i) and βt(i) defined in (1). To make this concrete,
consider the recursively applied power transformations with µ > 0 given in (45) below

α1(i;µ) := α1(i); (45)

αt(i;µ) :=

 K∑
j=1

(αt−1(j;µ)pji)
µ

 1
µ

fi(xt), t = 2, 3 . . . , T ;

βT (i;µ) := βT (i) = 1;

βt(i;µ) :=

 K∑
j=1

(pijfj(xt+1)βt+1(j;µ))µ

 1
µ

, t = T − 1, T − 2, . . . , 1,

32

Bridging Viterbi and Posterior Decoding

Figure 6: Empirical error (41) (top) and probability rates (44) (bottom) of the popular and
some new members of the generalized PVD (asterisk) and PMAP (circle) families.

for all i ∈ S. Clearly, αt(i; 1) = αt(i) and βt(i; 1) = βt(i), for all i ∈ S and all t = 1, 2, . . . , T .
Thus, µ = 1 leads to the PMAP decoding, that is, at time t returning

ŷt(1) = arg max
i∈S
{αt(i; 1)βt(i; 1)}, (46)

provided some tie-breaking rule.
Using induction on t and continuity of the power transform, it can also be seen that the

following limits exist and are finite for all i ∈ S and all t = 1, 2, . . . , T : limµ→∞ αt(i;µ) =:
αt(i,∞) and limµ→∞ βt(i;µ) =: βt(i;∞), where

αt(i;∞) = max
st:st=i

p(xt, st), t = 1, 2, . . . , T, (47)

= max
j∈S

(αt−1(j;∞)pji) fi(xt), t = 2, 3, . . . , T,

33

Lember and Koloydenko

βt(i;∞) = max
sTt+1∈ST−t

p(xTt+1, s
T
t+1 | Yt = i), t = T − 1, T − 2, . . . , 1, and βT (i;∞) = 1,

max
j∈S

(pijfj(xt+1)βt+1(j;∞)) .

The above convergence follows from the following trivial observation, which we nonetheless
prove below for reasons to become clear later on in the context of Equation (50).

Proposition 9 Let aj(µ), j = 1, 2, . . . ,K, be non-negative as functions of µ ∈ (0,∞).
Assume that aj(µ) converges to some (finite) limit aj as µ → ∞. Assume further that for
any µ, at least some of the aj(µ) are positive. Then we have

lim
µ→∞

 K∑
j=1

aj(µ)µ

 1
µ

= max
1≤j≤K

{aj}.

Proof LetM(µ) = max1≤j≤K{aj(µ)}, and letM = max1≤j≤K{aj}. Write
(∑K

j=1 aj(µ)µ
) 1
µ

=

M(µ)
(∑K

j=1

(
aj(µ)
M(µ)

)µ) 1
µ

and note that as µ→∞, M(µ) converges to M . Also, we have

1 ≤

 K∑
j=1

(
aj(µ)

M(µ)

)µ 1
µ

≤ K
1
µ .

Since K
1
µ → 1, by the Sandwich Theorem the middle term also converges to 1, yielding the

proposed result.

Returning to (47), we note that any Viterbi path ŷT (∞) satisfies the following property:

ŷt(∞) = arg max
i∈S
{αt(i;∞)βt(i;∞)}. (48)

The above property (48) has already been pointed out by Brushe et al. (1998). The main
motivation of Brushe et al. (1998), however, seems to be the case of continuous emission
distributions Ps, which might explain why the authors do not consider the fact that not
every path that satisfies (48) is necessarily Viterbi, or MAP. Thus, ignoring potential non-
uniqueness of the Viterbi paths, Brushe et al. (1998) state, based on (48), that the Viterbi
path can be found symbol-by-symbol. As the following simple example shows, when the
Viterbi path is not unique, the attempt to implement the Viterbi decoding in the symbol-by-
symbol fashion (based on Equation 48) can produce suboptimal (in the MAP sense), or even
inadmissible, paths.

Example 1 Let S = {1, 2, 3} and let {A,B,C,D} be the emission alphabet. Let the initial
distribution π, transition probability matrix P, and the emission distributions fs, s ∈ S, be
defined as follows:

π =

 0.4
0.54
0.06

 P =

0.6 0.4 0
0.1 0.1 0.8
0 0.02 0.98

 A B C D
f1(·) 0.3 0.15 0.25 0.3
f2(·) 0.2 0.3 0.3 0.2
f3(·) 1/6 1/6 1/6 1/2

.

34

Bridging Viterbi and Posterior Decoding

Suppose the sequence x2 = (A,B) has been observed. The (posterior) probabilities of all the
nine paths (i, j) are then summarized in the matrix PP = (P (Y 2 = (i, j) | AB)) below:

PP =

0.0108 0.0144 0
0.0016 0.0032 0.0144

0 0.0001 0.0016

 ,

hence there are two Viterbi paths in this case, namely (1, 2) and (2, 3). Now, α1(i;∞) =
πifi(A), i ∈ S, and β1(i;∞) = maxj∈S P (X2 = B, Y2 = j | Y1 = i) = maxj∈S fj(B)pij, or,
in the vector form:α1(1;∞)
α1(2;∞)
α1(3;∞)

 =

 0.12
0.108
0.01

 ,

β1(1;∞)
β1(2;∞)
β1(3;∞)

 =

 0.12
2/15

49/300

 ,

α1(1;∞)β1(1;∞)
α1(2;∞)β1(2;∞)
α1(3;∞)β1(3;∞)

 =

 0.0144
0.0144

49/30000

 ,

so we have ŷ1(∞) = 1 or ŷ1(∞) = 2. On the other hand, α2(i;∞) = maxj∈S P (X2 =
(A,B), Y 2 = (j, i)), and β2(i,∞) = 1 for all i ∈ S. Therefore,α2(1;∞)

α2(2;∞)
α2(3;∞)

 =

α2(1;∞)β2(1;∞)
α2(2;∞)β2(2;∞)
α2(3;∞)β2(3;∞)

 =

 max{0.0108, 0.0016, 0}
max{0.0144, 0.0032, 0.0001}

max{0, 0.0144, 0.0016}

 =

0.0108
0.0144
0.0144

 .

Therefore, ŷ2(∞) = 2 or ŷ2(∞) = 3. However, the symbol-by-symbol decoding is not aware
that gluing ŷ1(∞) = 1 and ŷ2(∞) = 3 is not only suboptimal, but is actually forbidden, that
is, results in the inadmissible path (1, 3).

In contrast to Viterbi, the PMAP inference (in the absence of constraints) is by definition
point-wise, or symbol-by-symbol, hence violation of admissibility is not surprising there
regardless of the non-uniqueness issue.

All in all, the main idea of Brushe et al. (1998) is to consider “hybrid” decoders that
use intermediate values of the interpolation parameter µ. That is, the hybrid decoder with
parameter µ is defined as a decoder that at time t returns

ŷt(µ) = arg max
i∈S
{αt(i;µ)βt(i;µ)}, (49)

provided some tie-breaking rule.
Note also that in their attempt to hybridize PMAP with Viterbi in this manner, Brushe

et al. (1998) instead of (45) use different transformations that are based on the following
(0,∞)→ R composite mapping

F (µ, d1(µ), d2(µ), . . . , dN (µ)) :=
1 + (N − 1) exp(−µ)

µ
log

 1

N

N∑
j=1

exp (µdj (µ))

 , (50)

where N = K (in our notation) and functions dj (µ) are continuous on [0,∞) with finite
limits dj(∞) as µ → ∞. It is then not hard to verify that as µ → 0, the function (50)

converges to
∑N

j=1 dj(0) (based on Brushe et al., 1998, Proposition 1a). At the same time,
as µ → ∞ the same function converges to max1≤j≤N{dj(∞)} (based on Brushe et al.,

35

Lember and Koloydenko

1998, Proposition 1b). To establish the latter convergence, Brushe et al. (1998) refer to the
Varadhan-Laplace Lemma, although the result can also be obtained with basic calculus, for
example, by using continuity of the logarithmic function, taking the logarithm inside the
limit in Proposition 9, and identifying aj(µ) with edj(µ).

This mapping is then applied recursively to αt(i;µ) and βt(i;µ), the analogs of the
forward and backward variables (κµt (i) and τµt (i), respectively, in the notation of Brushe
et al., 1998), to produce the correct end points/limits, that is, PMAP and Viterbi/MAP
(when the latter is unique). Specifically, the transformed forward and backward variables
would be re-defined as follows:

α1(i;µ) := α1(i); (51)

αt(i;µ) :=
1 + (N − 1) e−µ

µ
log

 1

N

N∑
j=1

eµαt−1(j;µ)pji

 fi (xt) , t = 2, 3, . . . , T ;

βT (i;µ) := βT (i) = 1;

βt(i;µ) :=
1 + (N − 1) e−µ

µ
log

 1

N

N∑
j=1

eµβt+1(j;µ)pijfj(xt+1)

 , t = T − 1, T − 2, . . . , 1.

Above, we took the liberty to correct κµ1 (i) = π(i) (α1(i;µ) = πi in our notation), which
appears in the paper of Brushe et al. (1998) as Equation (22) and also in the proofs of parts
(a) and (b) of their Lemma 1. Clearly, in order for κµ1 (i) (α1(i;µ) in our notation) to match
α1(i) = P (Y1 = i,X1 = x1) (as claimed in their Lemma 1), κµ1 (i) has to equal π(i)bi(O1)
(which is πifi(x1) in our notation). Note that Equation (15) of Brushe et al. (1998) leaves
α1(i) undefined, but instead introduces α0(i), which is defined to be π(i). If that was an
implicit intention to introduce a “silent” state at t = 0, then their Equation (22) and the
relevant parts of the proof of Lemma 1 would also have to start with t = 0 and not with t = 1.
If, on the other hand, t = 0 in Equation (15) was simply a typing error and the intention was
to have t = 1, then the would-be definition of α1(i) = π(i) contradicts an earlier equation
just below their Equation (14), which gives α1(i) = P (O1, q1 = Si) = π(i)b1(O1) (that is,
P (Y1 = i,X1 = x1) = π1f1(x1) in our notation).

Returning to the essence of the approach, note that the only reason stated by Brushe
et al. (1998) for choosing (51) as the family of interpolating transformations is the attain-
ment of the required limits (that is, PMAP when µ → 0, and Viterbi when µ → ∞). It is
therefore not clear if Brushe et al. (1998) realized that besides (51), there are other (sin-
gle parameter) families of transformations, such as (45), with the same limiting behavior.
Naturally, the resulting interpolation generally depends on the choice of the transforma-
tions used. In the absence of any special reason for using (51), (45) may have an appeal
for its simplicity, should one really wish to pursue the idea of algorithmic hybridization.
Moreover, we explain next (Subsection 6.1) why the hybrid decoder defined by (49) and the
transformations (51) does not work in practice except with trivial examples, and we also
show (Subsection 6.3) how this decoder can be modified to become operational. In contrast
to this, we will show (Subsection 6.2) that the hybrid decoder based on the transformations
(45) becomes operational by modifying just the algorithm used for its computation, and not
the decoder. This makes the transformations (45) even more attractive as an alternative to
(51).

36

Bridging Viterbi and Posterior Decoding

6.1 The Hybrid Decoder Based on the Transformations (51) Does Not Work
in Practice Except with Trivial Examples

The key point is that the transform-based algorithmic hybridization attempts to compute
quantities which, at least for µ ≈ 0, are the same order of magnitude as the forward and
backward probabilities αt(i) = P (Xt = xt, Yt = i) and βt(i) = P (xTt+1 | Yt = i). These are
well-known to vanish exponentially fast with T , see, for example, Bishop (2006, 13.2.4) who
also note that “[f]or moderate lengths of chain (say 100 or so), the calculation of the [αt(j)]
will soon exceed the dynamic range of the computer, even if double precision floating point
is used.” The situation clearly gets worse as µ increases. Indeed, recall (47), and note that
maxst:st=i p(x

t, st) = αt(i;∞) ≤
∑

st:st=i
p(xt, st) = αt(i) (which is also αt(j; 1) in Equation

45 and αt(j; 0) in Equation 51). This easily leads to a collapse of computations already
with chains as short as T = 10 (which indeed happens using the data and model from our
experiments of Section 5 above).

We disagree with Brushe et al. (1998) in interpreting the nature of the above numerical
problems when they divert the reader’s attention to the computation of the logsumexp

function used in their transforms (50), (51). We find this is misleading as the log(ea +
eb) = max{a, b}+ log

(
1 + e−|a−b|

)
trick (alluded to by Brushe et al., 1998 in their Remark

below Equation 25) is relevant to the problem of underflow only of the intermediate values
(that is, ea + eb when a or b is negative of a large magnitude, such as the logarithm of a
very small probability). In the case of the transform (50), however, computations of the
transformed, say, forward variable αt(i;µ) (51), do require µdj(µ) = µαt−1(j;µ)pji and not
their logarithm. Thus, at some t underflow in αt(i;µ) occurs for some i, and then eventually
for all i. In terms of the logsumexp function, this means that both ea and eb become 1
(and not zero!) but the logarithm of their average (the core of the transform 50) becomes 0,
transferring the underflow to the next generation, that is, αt+1(i;µ). Thus, storing αt(i;µ)
in the log-domain is irrelevant here since the transforms (50), (51) with or without the
logsumexp trick, do require the actual value of αt(i;µ). One could conceivably introduce
the loglogsumexpexp function to operate on log(αt(i;µ)) and resolve this problem in that
way, but it is not clear if the goal is worth the effort.

Furthermore, insisting that “[t]he computational complexity and numerical implemen-
tation issues associated with the hybrid algorithm can be overcome using the Jacobian
logarithm”, Brushe et al. (1998, p. 3133) repeatedly refer to another paper, which pro-
poses to compute the logsumexp function log(

∑
k exp(ak)) via recursive application of

log(ea+eb) = max{a, b}+ log
(
1 + e−|a−b|

)
. Although this recursive implementation should

indeed be generally more accurate (albeit also computationally more expensive) than the
commonly used single-shift implementation log(

∑
k exp(ak)) = M + log (exp(ak −M))

(M = maxk{ak}), as we just explained above, it is irrelevant to the real problem of com-
puting the transformed forward and backward variables αt(i;µ), βt(i;µ) (κµt (i), τµt (i), re-
spectively, of Brushe et al., 1998). Thus, the approach of Brushe et al. (1998) does not
immediately provide an operational decoding algorithm except for trivially short chains. For
example, using the two-state HMM from the Example 2 and the 64-bit MATLAB (MAT-
LAB, 2011) (but without The Symbolic Math Toolbox) installation on a (64-bit) Linux
machine, the hybrid decoder based on (51) with µ = 1 already fails for T = 40 (with or

37

Lember and Koloydenko

without the logsumexp trick). For comparison, the hybrid decoder based on the power
transform (45) (µ = 1) survives an order of magnitude longer.

A natural question is then whether the transform-based algorithmic hybridization ap-
proach (using (51) or (45), or the like) can at all work in practice. The fact that no such
example has been given by Brushe et al. (1998), or anyone else up to date, casts some
doubt. Below we give reassuring answers, which have been verified to work on several
realistic examples.

Indeed, it is well-known that in practice, to decode the t-th symbol the PMAP decoder
uses the posterior probabilities pt(i | xT) and not the vanishing joint probabilities pt(i |
xT)p(XT = xT) = P (xT , Yt = i) = αt(i)βt(i). The posterior probabilities pt(i | xT)
are computed as α̃t(i)β̃t(i), where α̃t(i) = P (Yt = i | xt) and β̃t(i) = P (xTt+1 | Yt =
i)/p(xTt+1 | xt) are the scaled analogs of the forward and backward probabilities αt(i) and
βt(i) (Bishop, 2006, 13.2.4). This allows PMAP to bypass the aforementioned problem of
numerical underflow.

6.2 The Hybrid Decoder (49) is Invariant to Rescaling of the
Power-Transformed (45) Forward and Backward Variables α(·;µ), β(·;µ).

Let us apply the same normalization approach to the transformed forward and backward
variables, first, using the power transform (45) and then (51). First, recall (e.g., Bishop,
2006, 13.2.4) that α̃t(i) are obtained by replacing the recursive definition

αt(i) = fi(xt)
K∑
j=1

αt−1(j)pji, i = 1, 2, . . . ,K,

by the two-step self-normalized definition

p(xt | xt−1)α̃t(i) = fi(xt)

K∑
j=1

α̃t−1(j)pji, i = 1, 2, . . . ,K,

α̃t(i) =
p(xt | xt−1)α̃t(i)∑K
s=1 p(xt | xt−1)α̃t(s)

, for t = 2, . . . , T,

where α̃1(i) = α1(i)/c1, and c1 := p(x1) =
K∑
s=1

α1(s).

Thus, for all t = 2, 3 . . . T , and for all i = 1, 2, . . . ,K,

α̃t(i) =
fi(xt)

∑K
j=1 α̃t−1(j)pji

ct
, where, also according to Bishop (2006, Equation 13.56),

ct := p(xt | xt−1) =
K∑
s=1

fs(xt)
K∑
j=1

α̃t−1(j)pjs.

Similarly, the rescaled backward variables are given by

β̃T (i) := 1;

β̃t(i) :=

∑K
j=1 pijfj(xt+1)β̃t+1(j)

ct+1
, t = T − 1, T − 2, . . . , 1.

38

Bridging Viterbi and Posterior Decoding

In the same manner, we normalize the αt(i;µ) and βt(i;µ) (defined by equations 45) for
any µ > 0 as follows:

α̃1(i;µ) := α1(i)/c1(µ) = α̃1(i), where c1(µ) := c1 for all µ; (52)

α̃t(i;µ) :=

[∑K
j=1 (α̃t−1(j;µ)pji)

µ
] 1
µ
fi(xt)

ct(µ)
, t = 2, 3, . . . , T ;

β̃T (i;µ) := βT (i) = 1;

β̃t(i;µ) :=

[∑K
j=1

(
pijfj(xt+1)β̃t+1(j;µ)

)µ] 1
µ

ct+1(µ)
, t = T − 1, T − 2, . . . , 1,

where

ct(µ) :=

K∑
s=1

 K∑
j=1

(α̃t−1(j;µ)pjs)
µ

 1
µ

fs(xt), t = 2, 3, . . . , T.

Thus, ct(1) = ct for all t = 1, 2, . . . , T . Also note that, using induction on t and (47),
limµ→1 ct(µ) = ct(1), and the limits ct(∞) := limµ→∞ ct(µ) exist and are finite for all
t = 1, 2, . . . , T .

Proposition 10 For any i ∈ S, we have

1) α̃t(i;µ) = αt(i;µ)∑K
s=1 αt(s;µ)

= αt(i;µ)∏t
m=1 cm(µ)

for all t = 1, 2, . . . , T , and β̃t(i;µ) = βt(i;µ)∏T
m=t+1 cm(µ)

for all t = 1, 2, . . . , T − 1 and for all µ > 0;

2) limµ→1 α̃t(i;µ) = α̃t(i), limµ→1 β̃t(i;µ) = β̃t(i) for all t = 1, 2, . . . , T ;

3) limµ→∞ α̃t(i;µ) = α̃t(i;∞) := αt(i;∞)∑K
s=1 αt(s,∞)

, for all t = 1, 2, . . . , T , and limµ→∞ β̃t(i;µ) =:

β̃t(i;∞) = βt(i;∞)∏T
m=t+1 cm(∞)

, for all t = 1, 2, . . . , T − 1, and, finally, limµ→∞ β̃T (i;µ) =:

β̃T (i;∞) = 1 trivially;

4) The hybrid decoder (49) based on the transformations (45) and the hybrid decoder (49)
based on the transformations (52) are one and the same decoder, provided that both use the
same tie-breaking rule.

Proof The first claim concerning the α̃t is trivially true for t = 1 by definition of α1(i;µ),
that is (45). Now, using induction on t, assume that the claim is true for t − 1. Write
at−1(µ) for (

∑K
s=1 αt−1(s;µ))−1 so that at−1(µ)αt−1(j;µ) = α̃t−1(j;µ) and at−1(µ) =

(
∏t−1
m=1 cm(µ))−1. Then, using (52), we get

α̃t(i;µ) =

(∑K
j=1 (at−1(µ)αt−1(j;µ)pji)

µ
) 1
µ
fi(xt)∑K

s=1

(∑K
j=1 (at−1(µ)αt−1(j;µ)pjs)

µ
) 1
µ
fs(xt)

,

39

Lember and Koloydenko

which, upon cancellation of the at−1(µ), yields the required result(∑K
j=1 (αt−1(j;µ)pji)

µ
) 1
µ
fi(xt)∑K

s=1

(∑K
j=1 (αt−1(j;µ)pjs)

µ
) 1
µ
fs(xt)

=
αt(i;µ)∑K
s=1 αt(s;µ)

.

To see that α̃t(i;µ) also equals αt(i;µ)∏t
m=1 cm(µ)

, write

α̃t(i;µ) =

(∑K
j=1 (at−1(µ)αt−1(j;µ)pji)

µ
) 1
µ
fi(xt)

ct(µ)
=

(∑K
j=1 (αt−1(j;µ)pji)

µ
) 1
µ
fi(xt)

(
∏t−1
m=1 cm(µ))ct(µ)

,

which, recalling the original (unscaled) αt(i;µ) recursion, yields the result.
The β variables are handled analogously.
The second claim is then a straightforward consequence of the first claim and the con-

tinuity (with respect to µ, and in particular at µ = 1) of the power transform; for example,
to establish the result for the β̃t(i;µ), observe that

∏T
m=t+1 cm(µ) →

∏T
m=t+1 cm(1) when

µ→ 1. The third claim also immediately follows from the first one and Proposition 9, also
noticing that

∏T
m=t+1 cm(µ) →

∏T
m=t+1 cm(∞) as µ → ∞. The fourth claim also immedi-

ately follows from the first claim as vt maximizes αt(i;µ)βt(i;µ) if and only if it maximizes
α̃t(i;µ)β̃t(i;µ).

In particular, we arrive at the following characterization of the Viterbi paths ŷT (∞), which
is now possible to compute in practice for a wide range of models and parameters in contrast
to the condition (48):

Corollary 11 For any t = 1, 2, . . . , T , ŷt(∞) = arg maxi∈S{α̃t(i;∞)β̃t(i;∞)}.
Recall (46), and thus note that the PMAP decoder also maximizes α̃t(i; 1)β̃t(i; 1). As a side
note, consider also the following decoder v(xT ; 0) that extrapolates the normalized power-
transformed decoder to µ → 0, that is “beyond” the PMAP decoding. Namely, for any
t = 1, 2, . . . , T , let vt = arg maxi∈S{α̃t(i; 0)β̃t(i; 0)}, where for any i ∈ S,

α̃1(i; 0) := α1(i)/c1 = α̃1(i); (53)

α̃t(i; 0) :=

[∏
j∈St(i)

α̃t−1(j; 0)pji

] 1
Kt(i)

fi(xt)

∑K
s=1

[∏
j∈St(s)

α̃t−1(j; 0)pjs

] 1
Kt(s)

fs(xt)

, t = 2, 3, . . . , T,

where St(i) := {j ∈ S : α̃t−1(j; 0)pji > 0} and Kt(i) := |St(i)|, that is size of St(i);

β̃T (i; 0) := βT (i) = 1;

β̃t(i; 0) :=

[∏
j∈S∗t (i)

pijfj(xt+1)β̃t+1(j; 0)

] 1
K∗t (i)

∑K
s=1

[∏
j∈St+1(s) α̃t(j; 0)pjs

] 1
Kt+1(s) fs(xt+1)

, t = T − 1, T − 2, . . . , 1,

where S∗t (i) := {j ∈ S : pijfj(xt+1)β̃t+1(j; 0) > 0} and K∗t (i) := |S∗t (i)|.

40

Bridging Viterbi and Posterior Decoding

Corollary 12 Assume that limµ→0 α̃t(i;µ) > 0 and limµ→0 β̃t(i;µ) > 0 for all i ∈ S and all
t = 1, 2, . . . , T . Then α̃t(i; 0) = limµ→0 α̃t(i;µ) and limµ→0 β̃t(i;µ) = β̃t(i; 0) for all i ∈ S
and all t = 1, 2, . . . , T , that is the decoder (49) based on the transformations (52) converges
(upto the tie-breaking rule) to the decoder defined by (53) above.

Proof This is a straightforward exercise in calculus, that is, using continuity of the ex-
ponential function and invoking Proposition 1a of Brushe et al. (1998), with the positivity
assumption making all Kt(i) and K∗t (i) equal to K.

Note also that the hybrid decoder (49) based on the original, that is, unnormalized variables
(45), generally does not have a limit as µ→ 0.

6.3 Rescaling of the Forward and Backward Variables α(·;µ) and β(·;µ)
Defined by (51) Alters the Hybrid Decoder (49).

In the same manner as in (52) above, we now normalize the α(·;µ) and β(·;µ) variables
transformed according to (51). Thus, for any µ > 0 and for any i ∈ S, let

α̌1(i;µ) := α1(i)/
K∑
s=1

α1(s) = α̃1(i); (54)

α̌t(i;µ) :=
log
[

1
K

∑K
j=1 e

µα̌t−1(j;µ)pji
]
fi(xt)∑K

s=1 log
[

1
K

∑K
j=1 e

µα̌t−1(j;µ)pjs
]
fs(xt)

, t = 2, 3, . . . , T ;

β̌T (i;µ) := βT (i) = 1, t = T − 1, T − 2, . . . , 1;

β̌t(i;µ) :=
log
[

1
K

∑K
j=1 e

µpijfj(xt+1)β̌t+1(j;µ)
]

∑K
s=1 log

[
1
K

∑K
j=1 e

µα̌t(j;µ)pjs
]
fs(xt+1)

, t = T − 1, T − 2, . . . , 1.

Proposition 13 For any i ∈ S, we have

1) limµ→0 α̌t(i;µ) = α̃t(i), limµ→0 β̌t(i;µ) = β̃t(i) for all t = 1, 2, . . . , T ;

2) limµ→∞ α̌t(i;µ) = α̃t(i;∞) and limµ→∞ β̌t(i;µ) = β̃t(i;∞), for all t = 1, 2, . . . , T .

3) The hybrid decoder (49) based on the transformations (51) and the hybrid decoder (49)
based on the transformations (54) are generally different, even if both use the same tie-
breaking rule.

Proof The first two claims are straightforward extensions of Lemmas 1 and 2 of Brushe

et al. (1998). To see this, first restore the previously reduced factor 1+(K−1)e−µ

µ in both

the numerator and denominator of the expressions for α̌t(i;µ) and β̌t(i;µ). Then apply
induction on t (first in the forward manner for the α variables and then backward for the
β variables). For example, assume that limµ→∞ β̌t+1(i;µ) = β̃t+1(i;∞). Then, as µ→∞,

1 + (K − 1)e−µ

µ
log

 1

K

K∑
j=1

eµpijfj(xt+1)β̌t+1(j;µ)

 → max
j∈S

(
pijfj(xt+1)β̃t+1(j;∞)

)
,

41

Lember and Koloydenko

which is, according to claim 3 of Proposition 10,

max
j∈S

(
pijfj(xt+1)βt+1(j;∞)/

T∏
m=t+2

cm(∞)

)
= max

j∈S
(pijfj(xt+1)βt+1(j;∞)) /

T∏
m=t+2

cm(∞).

Next, recalling (47), we get that the numerator in the expression for limµ→∞ β̌t(i;µ) is

given by βt(i;∞)/
∏T
m=t+2 cm(∞). Observing that the denominator is given by

lim
µ→∞

1 + (K − 1)e−µ

µ

K∑
s=1

log

 1

K

K∑
j=1

eµα̌t(j;µ)pjs

 fs(xt+1) =

K∑
s=1

max
j∈S

(α̃t(j;∞)pjs) fs(xt+1),

which is just ct+1(∞), finally gives limµ→∞ β̌t(i;µ) = βt(i;∞)/
∏T
m=t+1 cm(∞) = β̃t(i;∞),

as required.
As a counter-example proving the last claim, consider the simple HMM from The Math-

Works, Inc. (2012, p. 1840).

Example 2 Let S = {1, 2} and let {1, 2, . . . , 6} be the emission alphabet. Let the initial
distribution π, transition probability matrix P, and the emission distributions fs, s ∈ S, be
defined as follows:

π =

(
2/3
1/3

)
, P =

(
0.95 0.05
0.1 0.9

)
, πtP = πt,

1 2 3 4 5 6
f1(·) 1/6 1/6 1/6 1/6 1/6 1/6
f2(·) 0.1 0.1 0.1 0.1 0.1 0.2

.

Suppose x5 = (2, 6, 6, 4, 1) has been observed. Take µ = 7. Table 2 shows outputs of
the original (top) and normalized (bottom) transformed decoders, respectively. Clearly, the
decoders return different paths.

Note that unlike the normalized hybrid decoder based on the power-transform, this nor-
malized hybrid decoder generally does not satisfy the first claim of Proposition 10. (Indeed,
satisfying these conditions would contradict the third claim of the latter Proposition 13.)

We have also experimented with these normalized hybrid decoders using a subset of real
data (and a realistic HMM with K = 6 states) from our experimental Section 5 and can
indeed confirm convergence of the hybrid decoder based (54) to the PMAP decoder with
µ = 0.001 and to the Viterbi decoder with µ = 10000 for sequences of length T = 100.
Naturally, the above range of µ values would generally need to increase significantly with
T .

Below, we summarize our views on the idea of purely algorithmic hybridization of MAP
and PMAP.

1. The method presented by Brushe et al. (1998) need not work, that is, can fail to converge
to the Viterbi path, when the Viterbi path is not unique, see Example 1 above.

2. Since the method depends on the transformation used, more work may be needed to
understand which (if any) particular transformation/interpolation could be suitable for a
specific application; the choice of (51) made by Brushe et al. (1998) seems to be rather
arbitrary.

42

Bridging Viterbi and Posterior Decoding

t αt(1;µ) βt(1;µ) αt(2;µ) βt(2;µ) αt(1;µ)βt(1;µ) αt(2;µ)βt(2;µ)

10−6 10−6

1 0.11111 6.6968e-05 0.033333 0.00019826 7.4409 6.6088
2 0.010576 0.00071029 0.0091583 0.00085352 7.5121 7.8168
3 0.0009266 0.0083987 0.0022209 0.003471 7.7823 7.7088
4 9.201e-05 0.10141 0.00010268 0.058041 9.3311 5.9598
5 8.1481e-06 1 4.8559e-06 1 8.1481 4.8559

t α̌t(1;µ) β̌t(1;µ) α̌t(2;µ) β̌t(2;µ) α̌t(1;µ)β̌t(1;µ) α̌t(2;µ)β̌t(2;µ)

1 0.76923 0.30879 0.23077 0.97296 0.23753 0.22453
2 0.58963 0.55137 0.41037 0.55227 0.32510 0.22664
3 0.35383 1.15172 0.64617 0.39942 0.40751 0.25809
4 0.46886 1.03712 0.53114 0.59356 0.48626 0.31526
5 0.60611 1 0.39389 1 0.60611 0.39389

Table 2: µ = 7. Top: Output from the original (unnormalized) transformed decoder based
on the transformations (51); the optimal path is (1, 2, 1, 1, 1). Bottom: Output
from the normalized transformed decoder based on the transformations (54); the
optimal path is (1, 1, 1, 1, 1).

3. Also, the choice of (51) does not work in practice except with trivially short sequences;
the underlying transformations can be normalized but this alters the decoder (Proposi-
tion 13). The choice of (45) is better in several aspects, mainly for its rescaling property
(subsection 6.2), that is, the decoder is indeed ready to work in practice.

4. Algorithmically defined estimators are notoriously hard to analyze analytically (Win-
kler, 2003, pp. 25, 129-131). Indeed, it is not clear if the general members of the above
interpolating families (regardless of the transformation used) satisfy any explicit optimality
criteria; this makes it difficult to interpret such decoders. This may also discourage the
use of such decoders in more complex inference cycles (that is, when any genuine model
parameters are to be estimated as well, for example, as in Viterbi Training Koski, 2001;
Lember and Koloydenko, 2008, 2010).

5. The point-wise hybridization scheme (49) can itself be altered. Indeed, other recursion
schemes (see, for example, Koski, 2001, pp. 272-273 for Derin’s formula) can also be applied
for this purpose. However, now more than a decade after Brushe et al. (1998), we are not
aware of any practical application of the idea of algorithmic hybridization of the MAP-
PMAP inferences. Besides the plausible reasons already discussed in Subsection 1.2.1 (that
actually extend to any type of MAP-PMAP hybridization), it is plausible that this particular
type of hybridization has not yet seen application because of the lack of interpretation of its
solutions, and possibly also because of the aforementioned difficulties with implementation
of the original idea of Brushe et al. (1998).3

3. We recently attempted to contact the authors of that paper, but have not received any response by the
time of sending this manuscript to the production editor.

43

Lember and Koloydenko

Appendix D gives a pseudo-code to compute a decoded sequence ŷT (µ) for any µ > 0 using
the power-transform approach (49) with scaling. Naturally, the decoding process can be
parallelized over a range of µ values.

7. Asymptotic Risks

Given an arbitrary decoder g and a risk function R, the quantity R(g(xT) | xT) evaluates the
risk when g is applied to a given sequence xT . Below we will write R(xT) for the minimum
risk minsT R(sT | xT) which is achieved by the Bayes decoder v: R(v(xT) | xT) = R(xT).
Besides R(XT), we are also interested in the random variables R(g(XT) | XT) (depending
on R and g). Thus, Kuljus and Lember (2012) have considered convergence of various risks
of the Viterbi decoder v(·;∞). Since Viterbi paths v(xT ;∞) and v(xT+1;∞) may differ sig-
nificantly, asymptotic analysis of the Viterbi decoding is far from being trivial. Koloydenko
and Lember (2008); Lember and Koloydenko (2008, 2010) constructed a well-defined process
v(X∞;∞), named also after Viterbi, that for a wide class of HMMs extends ad infinitum
finite Viterbi paths v(xT ;∞) and possesses useful ergodic properties. Based on the asymp-
totic theory of Viterbi processes v(X∞;∞), Kuljus and Lember (2012) have shown that
under fairly general assumptions on the HMM, the random variables Rk(v(XT ;∞) | XT),
R̄k(v(XT ;∞) | XT), where k = 1, 2, . . ., and R̄∞(v(XT ;∞) | XT), as well as R̄∞(v(XT ;∞))
(see Equation 12), R̄1(v(XT ;∞)) (see Equation 20), and R1(v(XT ;∞)) (see Equation 27)
all converge (as T →∞) a.s. to constant (that is non-random) limits. Convergence of these
risks implies a.s. convergence of

C1R̄1(v(XT ;∞) | XT) + C2R̄∞(v(XT ;∞) | XT) + C3R̄1(v(XT ;∞)) + C4R̄∞(v(XT ;∞)),

and

C1R1(v(XT ;∞) | XT) + C2R̄∞(v(XT ;∞) | XT) + C3R1(v(XT ;∞)) + C4R̄∞(v(XT ;∞)),

the risks appearing in the generalized problems (18) and (26), respectively. Actually, con-
vergence of R̄∞(v(XT ;∞), XT) is also proved (and used in the proof of convergence of
R̄∞(v(XT ;∞) | XT)). Hence, the minimized risk in (19), evaluated at the Viterbi paths,
converges as well.

The limits—asymptotic risks—are (deterministic) constants that depend only on the
model, and help us assess the Viterbi inference in the following principled way. For example,
let R1(k = ∞) be the limit (as T → ∞) of R1(v(XT ;∞) | XT), which is the asymptotic
misclassification rate of the Viterbi decoding. Thus, for large T , the Viterbi decoding makes
about TR1(k = ∞) misclassification errors. The asymptotic risks might be, in principle,
found theoretically, but in reality this can be rather difficult. However, since all these
asymptotic results also hold in the L1 sense, which implies convergences of expectations,
the limiting risks can be estimated by simulations.

Lember (2011a,b) has also shown that under the same assumptions R1(XT) =
R1(v(XT ; 1) | XT) converges to a constant limit, say R1. Kuljus and Lember (2012)
have at the same time also shown R̄1(XT) = R̄1(v(XT ; 1) | XT) to converge. Clearly
R1(k = ∞) ≥ R1(1), and even if their difference is small, the total number of errors made
by the Viterbi decoder in excess of PMAP in the long run can still be significant.

44

Bridging Viterbi and Posterior Decoding

Presently, we are not aware of a universal method for proving (or improving upon)
the limit theorems for these risks. Recall that convergence of the risks of the Viterbi
decoding is possible due to the existence of the Viterbi process which has nice ergodic
properties. The question whether infinite PMAP processes have similar properties, is still
open. Therefore, convergence of R1(XT) was proven with a completely different method
based on the smoothing probabilities. In fact, all of the limit theorems obtained thus far
have been proven with different methods. We conjecture that these different methods can
be combined so that convergence of the minimized combined risk (18) or (26) could be
proven as well. In summary, as mentioned before, convergence of the minimized combined
risks has thus far been obtained for trivial combinations only, that is with three of the four
constants being zero. Note that while convergence of the intermediate case (38) with its
minimizer v(xT ; k(α)) is an open question, (39) gives

0 ≤ R̄∞(v(xT ; k(α)) | xT)− R̄∞(v(xT ;∞) | xT) ≤ R̄1(v(xT ;∞) | xT)

k − 1
.

This, together with the a.s. convergence of R̄1(v(XT ;∞) | XT), implies that in the long
run, for most sequences xT , R̄∞(v(xT ; k) | xT) will not exceed R̄∞(v(xT ;∞) | xT) by more
than 1

k−1 limT→∞ R̄1(v(XT ;∞) | XT). Since this limit is finite, letting k increase with T ,

we get that R̄∞(v(XT ; kT)) approach limT→∞ R̄∞(v(XT ;∞)) a.s., that is, as the intuition
predicts, the likelihood of v(XT ; kT) approaches that of v(XT ;∞).

Finally, Lember and Koloydenko (2010); Lember et al. (2011) also outline possible ap-
plications of the above asymptotic risk theory. For example, if a certain number of the
true labels y1, y2, . . . , yT can be revealed (say, at some cost), the remaining labels would be
computed by a constrained decoder, for example, the constrained Viterbi decoder. Hav-
ing observed xT , the user then needs to decide which positions are “most informative”
and then acquires their labels. Assuming further that the HMM is stationary, the R1-
like risks P (v(X∞;∞)t 6= Yt | Xt+m

t−m ∈ A) (for any m ≥ 1 and any measurable set
A ∈ X 2m+1), are independent of t (for t = m + 1,m + 2, . . .), and could therefore be
used in the above active learning protocol for the selection of the most informative po-
sitions. Specifically, if A is such that P (v(X∞;∞)t 6= Yt | Xt+m

t−m ∈ A) is high, then
acquire labels at positions t of occurrence of A. Naturally, there are different ways to make
this concrete. For one simple example, suppose only a batch of L labels can be acquired.
Assuming X to be discrete, order all the X words A of length q (that is, A ∈ X q) by
P (v(X∞;∞)t 6= Yt | Xt+m

t−m ∈ A). Finally, from the X of length q that occur in xT , choose L
with the highest P (v(X∞;∞)t 6= Yt | Xt+m

t−m ∈ A). The above asymptotic theory is crucial
also for establishing P (v(X∞;∞)t 6= Yt | Xt+m

t−m ∈ A) as the a.s. limit of easily computable
(e.g., via off-line simulations) empirical measures. In practice, these latter measures would
be used as estimates of P (v(X∞;∞)t 6= Yt | Xt+m

t−m ∈ A) and first experiments along these
lines are given by Lember et al. (2011, Section 4.4). It may also be of interest to test these
ideas with other risks and decoders, such as members of the generalized hybrid families
presented here.

45

Lember and Koloydenko

8. Discussion

The point-wise symmetric zero-one loss l(s, y) = I{s 6=y} in (4), (5), and consequently in
the generalized PMAP hybrid decoding (26), can be easily replaced by a general loss
l(s, y) ≥ 0, s, y ∈ S. In computational terms, this would require multiplying the loss matrix
(l(s, y))s,y∈S by the (prior or) posterior probability vectors (pt(1 | xT), pt(2 | xT), . . . , pt(K |
xT))

′
to obtain the (prior or) posterior risk (ρt(1 | xT), ρt(2 | xT), . . . , ρt(K | xT))

′
vectors

(we use the apostrophe to denote vector transpose). The dynamic programming algorithm
defined by (23) with (28) still stands provided pt(j | xT) (or pt(j), or both) is replaced by
1− ρt(j | xT) (or 1− ρt(j), or both respectively) in the definition of γt(j). If all confusions
of state y are equally undesirable, that is, l(s, y) is of the form l(y)× I{s 6=y}, then the above

adjustment reduces to replacing pt(j | xT) by l(j)pt(j | xT) (for all j ∈ S), which we illus-
trated in Figure 2 when suppressing state 3. Similar adjustments can be made to the R̄1

risks of the generalized PVD family, which was also illustrated in Figure 2.
Using an asymmetric loss could be particularly valuable in practice when, for example,

detection of a rare state or transition needs to be encouraged. Similar views have been
most recently expressed also by Yau and Holmes (2010), who, staying within the additive
risk framework, have proposed a general asymmetric form of the loss (30) with k = 2.
Hybridizing this general asymmetric pairwise loss with the other losses considered in this
work should provide additional flexibility to path inference. A way to incorporate this loss
into our generalized framework is by vectorizing the chain {Yt}t≥1 as {(Yt, Yt+1)}t≥1 and
then following the opening lines of this Section.

Also, using a range of perturbed versions of a loss function can help assess saliency of
particular detections (“islands”). In fact, at the stage of data exploration one may more
generally want to use a collection of outputs produced by using a range of different loss
functions instead of a single one.

The logarithmic risks (3), (6), (12), (20) on the one hand, and the ordinary risks (2),
(5), R∞(sT) = 1−p(sT), (27), on the other hand, can be respectively combined into a single
parameter family of risks by using, for example, the power transformation as shown below
with p for the moment standing for any probability distribution on ST :

R1(sT ;β) =

{
− 1
T

∑T
t=1

pt(st)β−1
β , if β 6= 0;

− 1
T

∑T
t=1 log pt(st), if β = 0;

(55)

R∞(sT ;β) =

{
− 1
T
p(sT)β−1

β , if β 6= 0;

− 1
T log p(sT), if β = 0.

Thus, the family of risk minimization problems given in (56) below

min
sT

[
C1R1(sT | xT ;β1) + C2R∞(sT | xT ;β2) + C3R1(sT ;β3) + C4R∞(sT ;β4)

]
, (56)

Ci ≥ 0 and
∑4

i=1Ci > 0 unifies and generalizes problem (18) (β1 = β2 = β3 = β4 = 0) and
problem (26) (β1 = β3 = 1, β2 = β4 = 0). Clearly, the dynamic programming approach of
Theorem 4 immediately applies to any member of the above family (56) with β2 = β4 = 0.
Also, computations of multiple decoders from this family (at least with β2 = β4 = 0) are
readily parallelizable.

46

Bridging Viterbi and Posterior Decoding

Next, Theorem 6 and Corollaries 7 and 8 obviously generalize to higher order Markov
chains as can be seen from the following Proposition.

Proposition 14 Let p represent a Markov chain of order m, 1 ≤ m ≤ T , on ST . Then
for any sT ∈ ST and for any k ∈ {m,m+ 1, . . .}, we have

R̄k(s
T) = R̄m(sT) + (k −m)R̄∞(sT).

Proof This is a straightforward extension of the proof of Theorem 6.

The present risk-based discussion of HMM path inference also naturally extends to the
problem of optimal labeling or annotation (already mentioned in Subsection 1.2). Namely,
the state space S can be partitioned into subsets S1, S2, . . . , SΛ, for some Λ ≤ K, in which
case λ(s) assigns label λ to every state s ∈ Sλ. The fact that the PMAP problem is as easily
solved over the label space ΛT as it is over ST has already been used in practice. Indeed,
Käll et al. (2005), who also add the constraint of admissibility with respect to the prior
distribution, in effect average pt(st | xT)’s, for each t, within the label classes and then use
recursions (15) to obtain the optimal accuracy labeling of a priori admissible state paths.
This clearly corresponds to using the point loss l(s, s′) = I{λ(s)6=λ(s′)} in (4) when solving

minsT :p(sT)>0R1(sT | xT) (14). With our definition of admissibility (that is, positivity of

the posterior path probability), the same approach (that is, replacing pt(st | xT)’s by their
within class average p̄t(st | xT)) extends to solve minsT :p(sT |xT)>0R1(sT | xT) (7) under
the same loss l(s, s′) = I{λ(s)6=λ(s′)}. Clearly, the generalized problem (56) also immediately
incorporates the above pointwise label-level loss in either the prior R1(·;β3) or posterior
risk R1(·;β1), or both. Since computationally these problems are essentially as light as
recursion (24), (25), and since Käll et al. (2005) report their special case to be successful
in practice, we believe that the above generalizations offer yet more possibilities that are
potentially useful in practice.

Instead of using the same arithmetic averages p̄t(st | xT)’s (or p̄t(st)’s) for the R1 risks
in (56) regardless of β, we can gain additional flexibility by replacing p̄t(st)

β and log p̄t(st)
in (55) (β 6= 0 and β = 0 respectively) with

p̄t(s;β) ∝

 ∑
s′∈Sλ(s)

pt(s′)

|Sλ(s)|

β

, if β 6= 0;

(∏
s′∈Sλ(s)

pt(s
′)

) 1
|Sλ(s)|

, if β = 0.

Certainly, the choice of the basic loss functions, inflection parameters βi and weights Ci
of the respective risks is application dependent, and can be tuned with the help of labeled
data, using, for example, cross-validation.

Finally, these generalizations are presented for the standard HMM setting, and therefore
extensions to more complex and practically more useful HMM-based settings (e.g., semi-
Markov, autoregressive, coupled, etc.) could also be interesting.

47

Lember and Koloydenko

Since the transform based approach, especially the newly proposed power-transform
hybridization, has also generated some interest, it would be interesting to evaluate perfor-
mance of the power-transform hybrids together with the risk-based families on multiple real
applications and using various domain specific performance measures.

Acknowledgments

The first author has been supported by the Estonian Science Foundation Grant nr. 9288
and by targeted financing project SF0180015s12, which has also supported a research visit
of the second author to Tartu University. The second author has also been supported by UK
NIHR Grant i4i II-AR-0209-10012. The authors are also grateful to anonymous reviewers
as well as to the action editor for their thorough reviews of this work, additional references,
and comments and suggestions on improving this manuscript. The authors are also very
thankful to Dr Dario Gasbarra and Dr Kristi Kuljus for reviewing earlier versions of the
manuscript and pointing out two subtle mistakes, as well as to Ufuk Mat for pointing out
some typing errors.

Appendix A. An Example of an Inadmissible Path of Positive Prior
Probability

π =
(
1 1 1 1 1 1 1 1 1

)
/9, P =

5 0 0 0 4 0 0 0 0
1 1 1 1 1 1 1 1 1
0 0 4 0 5 0 0 0 0
1 1 1 1 1 1 1 1 1
0 1 0 1 1 1 2 1 2
1 1 1 1 1 1 1 1 1
3 3 0 0 0 3 0 0 0
1 1 1 1 1 1 1 1 1
0 0 3 3 0 0 0 3 0

/9.

To simplify the verifications, consider an emission alphabet with only four symbols, although
the idea of constructing this example readily extends to larger alphabets (in particular, to
more practically relevant situations where the emission alphabet is larger than the hidden
state space, or the emission distributions are continuous altogether). Then take the following
emission distributions:

P1 P2 P3 P4

1/25 1/20 0 91/100
0 0 1/5 4/5

1/20 1/25 0 91/100
0 0 1/5 4/5

1/10 0 1/5 7/10
0 0 1/5 4/5

1/15 1/15 0 13/15
0 0 1/5 4/5

1/15 1/15 0 13/15

.

48

Bridging Viterbi and Posterior Decoding

Suppose now that a sequence x3 = (1, 2, 3) has been observed. It can then be verified that
the (unconstrained) PMAP decoder returns any of the following paths (5, 1, 5), (5, 3, 5),
(5, 7, 5), or (5, 9, 5), all of which having zero prior (and posterior) probabilities.

When the decoder is subject to the positivity constraint on the prior probabilities, it
would return any of the following paths (5, 2, 5), (5, 4, 5), (5, 5, 5), (5, 6, 5), (5, 8, 5), which,
despite being of positive prior probabilities, all have zero posterior probabilities.

Finally, if the decoder is constrained to produce paths of positive posterior probability,
it would then return any of the following paths (5, 7, 2), (5, 7, 6), (3, 3, 5), (9, 3, 5).

Appendix B. Proof of Remark 3

Proof Assume C3 = C4 = 0. For each C1, C2 > 0, let ŷT C1,C2
∈ ST be a solution to (18),

and let ŷT PV D be the output of PVD. Thus, we have

C1R̄1(ŷT C1,C2
| xT) + C2R̄∞(ŷT C1,C2

| xT) ≤ C1R̄1(ŷT PV D | xT) + C2R̄∞(ŷT PV D | xT).

Then

0 ≤ C1(R̄1(ŷT C1,C2
| xT)− R̄1(ŷT PV D | xT)) ≤ C2(R̄∞(ŷT PV D | xT)− R̄∞(ŷT C1,C2

| xT))

holds for any C1, C2 > 0. Since R̄∞(ŷT PV D | xT) − R̄∞(ŷT C1,C2
| xT) is clearly bounded

(and ST is finite), we obtain R̄1(ŷT C1,C2
| xT) = R̄1(ŷT PV D | xT) for some sufficiently

small C2. Since C2 > 0, all ŷT C1,C2
are admissible (Remark 1 above), therefore for such

sufficiently small C2, ŷT C1,C2
is also a solution to the PVD Problem (9).

The second statement is proved similarly, recalling Proposition 2 to establish admissi-

bility of ŷT C1,C4
almost surely.

Appendix C. Supplementary Results on the Trade-Off between R̄1 and
R̄∞ Risks in Problem (18), and between R1 and R̄∞ Risks in Problem
(26).

Corollary 15 1. Let ŷ and ŷ′ be solutions to Problem (18) with C1 ∈ [0, 1] and C2 =
1 − C1, C3 = C4 = 0 and C ′1 ∈ [0, 1] and C ′2 = 1 − C ′1, C ′3 = C ′4 = 0, respectively.
Assume C1 ≤ C ′1. Then R̄1(ŷ | xT) ≥ R̄1(ŷ′ | xT) and R̄∞(ŷ | xT) ≤ R̄∞(ŷ′ | xT).

2. Let ŷ and ŷ′ be solutions to Problem (18) with C3 ∈ [0, 1] and C4 = 1−C3, C1 = C2 = 0
and C ′3 ∈ [0, 1] and C ′4 = 1− C ′3, C ′1 = C ′2 = 0, respectively. Assume C3 ≤ C ′3. Then
R̄1(ŷ) ≥ R̄1(ŷ′) and R̄∞(ŷ) ≤ R̄∞(ŷ′).

3. Let ŷ and ŷ′ be solutions to Problem (26) with C1 ∈ [0, 1] and C2 = 1−C1, C3 = C4 = 0
and C ′1 ∈ [0, 1] and C ′2 = 1− C ′1, C ′3 = C ′4 = 0, respectively. Assume C1 ≤ C ′1. Then
R1(ŷ | xT) ≥ R1(ŷ′ | xT) and R̄∞(ŷ | xT) ≤ R̄∞(ŷ′ | xT).

4. Let ŷ and ŷ′ be solutions to Problem (26) with C3 ∈ [0, 1] and C4 = 1−C3, C1 = C2 = 0
and C ′3 ∈ [0, 1] and C ′4 = 1−C ′3, C ′1 = C ′2 = 0. Assume C3 ≤ C ′3. Then R1(ŷ) ≥ R1(ŷ′)
and R̄∞(ŷ) ≤ R̄∞(ŷ′).

49

Lember and Koloydenko

Proof A straightforward application of Lemma 16 given below.

Lemma 16 Let F and G be functions from a set A to the extended reals R̄ = R ∪ {±∞}.
Let α1, α2 ∈ [0, 1] be such that α1 ≤ α2. Suppose a1, a2 ∈ A are such that

αiF (ai) + (1− αi)G(ai) ≤ αiF (x) + (1− αi)G(x), i = 1, 2, for all x ∈ A.

Then F (a1) ≥ F (a2) and G(a1) ≤ G(a2).

Although the result is obvious, below we state its proof for completeness.

Proof Write a, b, c, and d for F (a1), G(a1), F (a2), and G(a2), respectively. Then we have

α1(a− c) ≤ (1− α1)(d− b),
α2(a− c) ≥ (1− α2)(d− b),

and therefore

α2α1(a− c) ≤ α2(1− α1)(d− b),
α1α2(a− c) ≥ α1(1− α2)(d− b),

which gives α1(1−α2)(d− b) ≤ α2(1−α1)(d− b). Since α1(1−α2) ≤ α2(1−α1), it follows
that d ≥ b, that is, G(a2) ≥ G(a1). The fact that F (a1) ≥ F (a2) is obtained similarly.

Appendix D. Pseudo-Code for Computing the Hybrid Decoders (49)
Using the Power-Transform with Scaling (52), (53).

Finally, to output the decoded sequence ŷT (µ), a simple tie-breaking rule may be as follows:

for t = 1, 2, . . . , T do
ŷt(µ)← min arg max{α̃t(i;µ)β̃t(i;µ)},

end for

whereas more elaborate rules may involve ordering of the entire state space ST , or simply
outputting all of the winning sequences. (Computations of the transformed and scaled α
and β variables are summarized in Algorithms 1 and 2 respectively.)

50

Bridging Viterbi and Posterior Decoding

Algorithm 1 The forward pass to compute α̃t(i;µ) and the scaling constants ct(µ).

for t = 1, 2, . . . , T do
ct(µ)← 0

end for
for i = 1, 2, . . . ,K do

α1(i)← πifi(x1)
c1(µ)← c1(µ) + πifi(x1)

end for
for i = 1, 2, . . . ,K do

α̃1(i;µ)← α1(i)/c1(µ)
end for
if µ = 0 then

for t = 2, . . . , T do
for i = 1, 2, . . . ,K do

St(i)← {j ∈ S : α̃t−1(j;µ)pji > 0}
Kt(i)← |St(i)|

α̃t(i;µ)←

[∏
j∈St(i)

α̃t−1(j;µ)pji

] 1
Kt(i)

fi(xt)

ct(µ)← ct(µ) + α̃t(i;µ)
end for
for i = 1, 2, . . . ,K do

α̃t(i;µ)← α̃t(i;µ)/ct(µ)
end for

end for
else

for t = 2, . . . , T do
for i = 1, 2, . . . ,K do

α̃t(i;µ)←

[
K∑
j=1

(α̃t−1(j;µ)pji)
µ

] 1
µ

fi(xt)

ct(µ)← ct(µ) + α̃t(i;µ)
end for
for i = 1, 2, . . . ,K do

α̃t(i;µ)← α̃t(i;µ)/ct(µ)
end for

end for
end if

51

Lember and Koloydenko

Algorithm 2 The backward pass to compute β̃t(i;µ).

for i = 1, 2, . . . ,K do
β̃T (i;µ)← 1

end for
if µ = 0 then

for t = T − 1, T − 2, . . . , 1 do
for i = 1, 2, . . . ,K do

S∗t (i)← {j ∈ S : fj(xt+1)pij β̃t+1(j;µ) > 0}
K∗t (i)← |S∗t (i)|

β̃t(i;µ)←

[∏
j∈S∗t (i)

fj(xt+1)pij β̃t+1(j;µ)

] 1
K∗t (i)

/ct+1(µ)

end for
end for

else
for t = T − 1, T − 2, . . . , 1 do

for i = 1, 2, . . . ,K do

β̃t(i;µ)←

[
K∑
j=1

(
fj(xt+1)pij β̃t+1(j;µ)

)µ] 1
µ

/ct+1(µ)

end for
end for

end if

Appendix E. Further Details of the Experiments from Section 5

Below are the estimates of the HMM parameters obtained from the entire data set as
described in Section 5.

π̂ =
(
0.0016 0.0041 0.9929 0.0014 0.0000 0.0000

)
,

1
2
3
4
5
6

P̂ =

0.8359 0.0034 0.1606 0 0 0
0.0022 0.8282 0.1668 0.0028 0 0
0.0175 0.0763 0.8607 0.0455 0 0

0 0 0 0.7500 0.2271 0.0229
0 0 0 0 0.8450 0.1550
0 0.0018 0.2481 0 0 0.7501

 ,

π̂inv =
(
0.0511 0.2029 0.4527 0.0847 0.1240 0.0847

)
,

52

Bridging Viterbi and Posterior Decoding

A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y

P̂1 P̂2 P̂3 P̂4 P̂5 P̂6

0.1059 0.0636 0.0643 0.1036 0.1230 0.1230
0.0107 0.0171 0.0135 0.0081 0.0111 0.0128
0.0538 0.0319 0.0775 0.0634 0.0415 0.0345
0.0973 0.0477 0.0620 0.1120 0.0852 0.0848
0.0436 0.0576 0.0330 0.0371 0.0386 0.0399
0.0303 0.0484 0.1133 0.0447 0.0321 0.0229
0.0203 0.0227 0.0259 0.0188 0.0197 0.0221
0.0564 0.1010 0.0372 0.0557 0.0694 0.0593
0.0672 0.0443 0.0574 0.0560 0.0671 0.0810
0.1227 0.1068 0.0674 0.0994 0.1279 0.1477
0.0240 0.0219 0.0181 0.0214 0.0293 0.0304
0.0299 0.0252 0.0561 0.0259 0.0338 0.0336
0.0333 0.0208 0.0757 0.0472 0.0067 0.0031
0.0443 0.0270 0.0330 0.0469 0.0497 0.0472
0.0594 0.0464 0.0470 0.0522 0.0677 0.0697
0.0496 0.0496 0.0744 0.0485 0.0422 0.0491
0.0395 0.0641 0.0572 0.0465 0.0412 0.0375
0.0591 0.1386 0.0473 0.0685 0.0677 0.0545
0.0168 0.0172 0.0111 0.0135 0.0130 0.0124
0.0359 0.0483 0.0286 0.0306 0.0332 0.0344

.

References

Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman.
Basic local alignment search tool. Journal of Molecular Biology, 215(3):403 – 410, 1990.

Zafer Aydin, Yucel Altunbasak, and Mark Borodovsky. Protein secondary structure pre-
diction for a single-sequence using hidden semi-Markov models. BMC Bioinformatics, 7
(1):178, 2006.

Lalit R. Bahl, John Cocke, Frederick Jelinek, and Josef Raviv. Optimal decoding of linear
codes for minimizing symbol error rate (corresp.). IEEE Transactions on Information
Theory, 20(2):284–287, 1974.

Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat, Helge Weis-
sig, Ilya N. Shindyalov, and Philip E. Bourne. The Protein Data Bank. Nucleic Acids
Research, 28(1):235–242, 2000.

Julian Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical
Society. Series B. Methodological, 48(3):259–302, 1986.

Julian Besag and Peter J. Green. Spatial statistics and Bayesian computation. Journal of
the Royal Statistical Society. Series B. Methodological, 55(1):25–37, 1993.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, New York, 2006.

53

Lember and Koloydenko

Matthew Brand, Nuria Oliver, and Alex Pentland. Coupled hidden Markov models for
complex action recognition. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pages 994–999, S.Juan, Puerto Rico, 1997.

Broňa Brejová, Daniel G. Brown, and Tomáš Vinař. The most probable annotation problem
in hmms and its application to bioinformatics. Journal of Computer and System Sciences,
73(7):1060 – 1077, 2007a.

Broňa Brejová, Daniel G. Brown, and Tomáš Vinař. Advances in hidden Markov models for
sequence annotation. In Ion I. Mǎndoiu and Alexander Zelikovski, editors, Bioinformatics
Algorithms: Techniques and Applications, pages 55–92. John Wiley & Sons, Inc., 2007b.

Gary D. Brushe, Robert E. Mahony, and John B. Moore. A soft output hybrid algorithm
for ML/MAP sequence estimation. IEEE Transactions on Information Theory, 44(7):
3129–3140, 1998.

Chris Burge and Samuel Karlin. Prediction of complete gene structures in human genomic
DNA. Journal of Molecular Biology, 268(1):78 – 94, 1997.

Olivier Cappé, Eric Moulines, and Tobias Rydén. Inference in Hidden Markov Models.
Springer Series in Statistics. Springer, New York, 2005.

Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46
(2):255–308, 2009.

Luis E. Carvalho and Charles E. Lawrence. Centroid estimation in discrete high-dimensional
spaces with applications in biology. Proceedings of the National Academy of Sciences of
the United States of America, 105(9):3209–3214, 2008.

Christiane Cocozza-Thivent and Abdelkrim Bekkhoucha. Estimation in Pickard random
fields and application to image processing. Pattern Recognition, 26(5):747–761, 1993.

Richard Durbin, Sean Eddy, Anders Krogh, and Graeme Mitchison. Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University
Press, 1998.

Sean Eddy. What is a hidden Markov model? Nature Biotechnology, 22(10):1315 – 1316,
2004.

Yariv Ephraim and Neri Merhav. Hidden Markov processes. IEEE Transactions on Infor-
mation Theory, 48(6):1518–1569, June 2002.

Piero Fariselli, Pier Martelli, and Rita Casadio. A new decoding algorithm for hidden
Markov models improves the prediction of the topology of all-beta membrane proteins.
BMC Bioinformatics, 6(Suppl 4):S12, 2005.

Kuzman Ganchev, João V. Graça, and Ben Taskar. Better alignments = better transla-
tions? In Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 986–993, Columbus, Ohio, 2008.

54

Bridging Viterbi and Posterior Decoding

Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6:721–741, 1984.

Peter J. Green and Sylvia Richardson. Hidden Markov models and disease mapping. Journal
of the American Statistical Association, 97(460):1055–1070, 2002.

Jeremiah F. Hayes, Thomas M. Cover, and Juan B. Riera. Optimal sequence detection
and optimal symbol-by-symbol detection: similar algorithms. IEEE Transactions on
Communications, 30(1):152–157, January 1982.

Ian Holmes and Richard Durbin. Dynamic programming alignment accuracy. Journal of
Computational Biology, 5(3):493–504, 1998.

Xuedong Huang, Yasuo. Ariki, and Mervyn Jack. Hidden Markov Models for Speech Recog-
nition. Edinburgh University Press, Edinburgh, UK, 1990.

Frederick Jelinek. Continuous speech recognition by statistical methods. Proceedings of the
IEEE, 64:532–556, April 1976.

Frederick Jelinek. Statistical Methods for Speech Recognition. The MIT Press, Cambridge,
Massachusetts, 2001.

Dhiraj Joshi, Jia Li, and James Z. Wang. A computationally efficient approach to the
estimation of two- and three-dimensional hidden Markov models. IEEE Transactions on
Image Processing, 15(7):1871–1886, 2006.

Lukas Käll, Anders Krogh, and Erik L. L. Sonnhammer. An HMM posterior decoder
for sequence feature prediction that includes homology information. Bioinformatics, 21
(suppl 1):i251–257, 2005.

Alexey A. Koloydenko and Jüri Lember. Infinite Viterbi alignments in the two state hidden
Markov models. Acta et Commentationes Universitatis Tartuensis de Mathematica, (12):
109–124, 2008.

Timo Koski. Hidden Markov Models for Bioinformatics, volume 2 of Computational Biology
Series. Kluwer Academic Publishers, Dordrecht, 2001.

Anders Krogh. Two methods for improving performance of an HMM and their application
for gene finding. In Proceedings of the Fifth International Conference on Intelligent
Systems for Molecular Biology, pages 179–186, Halkidiki, Greece, 1997.

Anders Krogh. An Introduction to Hidden Markov Models for Biological Sequences. In
David B.Searls Steven L. Salzberg and Simon Kasif, editors, Computational Methods in
Molecular Biology. Elsevier Science, first edition, 1998.

Kristi Kuljus and Jüri Lember. Asymptotic risks of Viterbi segmentation. Stochastic Pro-
cesses and Their Applications, 122(9):3312–3341, 2012.

Hans Künsch, Stuart Geman, and Athanasios Kehagias. Hidden Markov random fields. The
Annals of Applied Probability, 5(3):577–602, 1995.

55

Lember and Koloydenko

Steffen L. Lauritzen. Graphical models, volume 17 of Oxford Statistical Science Series.
Oxford University Press, New York, 1996.

Jüri Lember. On approximation of smoothing probabilities for hidden Markov models.
Statistics and Probability Letters, 81(2):310–316, 2011a.

Jüri Lember. A correction on approximation of smoothing probabilities for hidden Markov
models. Statistics and Probability Letters, 81(9):1463–1464, September 2011b.

Jüri Lember and Alexey A. Koloydenko. The Adjusted Viterbi training for hidden Markov
models. Bernoulli, 14(1):180–206, 2008.

Jüri Lember and Alexey A. Koloydenko. A constructive proof of the existence of Viterbi
processes. IEEE Transactions on Information Theory, 56(4):2017–2033, 2010.

Jüri Lember, Kristi Kuljus, and Alexey A. Koloydenko. Theory of segmentation. In Prze-
myslaw Dymarski, editor, Hidden Markov Models, Theory and Applications, Bioinformat-
ics, pages 51–84. InTech, 2011.

Jia Li, Robert M. Gray, and Richard A. Olshen. Multiresolution image classification by
hierarchical modeling with two-dimensional hidden Markov models. IEEE Transactions
on Information Theory, 46(5):1826–1841, 2000.

Shu Lin and Daniel J. Costello Jr. Error Control Coding: Fundamental and Applications.
Computer Applications in Electrical Engineering. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1983.

William H. Majoros and Uwe Ohler. Advancing the state of the art in computational gene
prediction. In Sorin Istrail, Pavel Pevzner, and Michael Waterman, editors, Knowledge
Discovery and Emergent Complexity in Bioinformatics, volume 4366 of Lecture Notes in
Computer Science, pages 81–106. Springer Berlin / Heidelberg, 2007.

Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, Massachusetts, 1999.

Jose L. Marroquin, Edgar Arce Santana, and Salvador Botello. Hidden markov measure field
models for image segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 25(11):1380–1387, 2003.

Joshua Mason, Kathryn Watkins, Jason Eisner, and Adam Stubblefield. A natural language
approach to automated cryptanalysis of two-time pads. In Proceedings of the 13th ACM
Conference on Computer and Communications Security, pages 235–244, Alexandria, Vir-
ginia, 2006.

MATLAB. Version 7.13.0.564 (R2011b). The MathWorks, Inc., Natick, Massachusetts,
2011.

Erik McDermott and Timothy J. Hazen. Minimum classification error training of landmark
models for real-time continuous speech recognition. In Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing, Montreal, Quebec, 2004.

56

Bridging Viterbi and Posterior Decoding

Clare A. McGrory, D. Michael Titterington, Robert W. Reeves, and Anthony N. Pettitt.
Variational Bayes for estimating the parameters of a hidden Potts model. Statistics and
Computing, 19(3):329–340, 2009.

Hermann Ney, Volker Steinbiss, Reinhold Haeb-Umbach, B.-H. Tran, and Ute Essen. An
overview of the Philips research system for large vocabulary continuous speech recogni-
tion. International Journal of Pattern Recognition and Artificial Intelligence, 8(1):33–70,
1994.

Mukund Padmanabhan and Michael A. Picheny. Large-vocabulary speech recognition al-
gorithms. Computer, 35(4):42 – 50, 2002.

Lawrence Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of Speech Recognition. Prentice-
Hall, Inc., Upper Saddle River, New Jersey, 1993.

Lawrence R. Rabiner, Jay G. Wilpon, and Biing-Hwang Juang. A segmental k-means
training procedure for connected word recognition. AT&T Technical Journal, 65(3):21–
31, 1986.

Patrick Robertson, Emmanuelle Villebrun, and Peter Hoeher. A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the log domain. In Proceedings of
IEEE International Conference on Communications, volume 2, pages 1009–1013, Seattle,
Washington, 1995.

Havard Rue. New loss functions in Bayesian imaging. Journal of the American Statistical
Association, 90(431):900–908, 1995.

Asaf A. Salamov and Victor V. Solovyev. Prediction of protein secondary structure by
combining nearest-neighbor algorithms and multiple sequence alignments. Journal of
Molecular Biology, 247(1):11 – 15, 1995.

Kengo Sato, Michiaki Hamada, Kiyoshi Asai, and Toutai Mituyama. Centroidfold: a web
server for RNA secondary structure prediction. Nucleic Acids Research, 37(suppl 2):
W277–W280, 2009.

Han Shu, I. Lee Hetherington, and James Glass. Baum-Welch training for segment-based
speech recognition. In Proceedings of IEEE Workshop on Automatic Speech Recognition
and Understanding, pages 43–48, St. Thomas, U. S. Virgin Islands, 2003.

Softberry, Inc. SSENVID: Protein secondary structure and environment assign-
ment from atomic coordinates. http://linux1.softberry.com/berry.phtml?topic=

ssenvid&group=help&subgroup=propt, 2001. Accessed: 15.10.2011.

Volker Steinbiss, Herman Ney, Xavier L. Aubert, Stefan Besling, Christian Dugast, Ute Es-
sen, Daryl Geller, Reinhold Haeb-Umbach, Reinhard Kneser, Humberto G. Meier, Martin
Oerder, and B.-H. Tran. The Philips research system for continuous-speech recognition.
Philips Journal of Research, 49:317–352, 1995.

57

http://linux1.softberry.com/berry.phtml?topic=ssenvid&group=help&subgroup=propt
http://linux1.softberry.com/berry.phtml?topic=ssenvid&group=help&subgroup=propt

Lember and Koloydenko

Nikko Ström, I. Lee Hetherington, Timothy J. Hazen, Eric Sandness, and James Glass.
Acoustic modeling improvements in a segment-based speech recognizer. In Proceedings
of IEEE Workshop on Automatic Speech Recognition and Understanding, pages 139–142,
Keystone, Colorado, 1999.

The MathWorks, Inc. Statistics ToolboxTM User’s Guide. Natick, Massachusetts, R2012a
edition, 2012.

Andrew Viterbi. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory, 13(2):260–269, 1967.

Stephan Vogel, Hermann Ney, and Christoph Tillmann. HMM-based word alignment in sta-
tistical translation. In Proceedings of the 16th Conference on Computational Linguistics,
volume 2, pages 836–841, Copenhagen, Denmark, 1996.

Gerhard Winkler. Image Analysis, Random Fields and Markov chain Monte Carlo Methods,
volume 27 of Applications of Mathematics (New York). Springer-Verlag, Berlin, second
edition, 2003.

Christopher Yau and Chris C. Holmes. A decision theoretic approach for segmental classi-
fication using Hidden Markov models. ArXiv e-prints, 2010. URL http://arxiv.org/

abs/1007.4532.

58

http://arxiv.org/abs/1007.4532
http://arxiv.org/abs/1007.4532

Journal of Machine Learning Research 15 (2014) 59-98 Submitted 3/12; Revised 5/13; Published 1/14

Fast SVM Training Using Approximate Extreme Points

Manu Nandan mnandan@ufl.edu
Department of Computer and Information Science and Engineering
University of Florida
Gainesville, FL 32611, USA

Pramod P. Khargonekar ppk@ece.ufl.edu
Department of Electrical and Computer Engineering
University of Florida
Gainesville, FL 32611, USA

Sachin S. Talathi talathi@gmail.com

Qualcomm Research Center

5775 Morehouse Dr

San Diego, CA 92121, USA

Editor: Sathiya Keerthi

Abstract

Applications of non-linear kernel support vector machines (SVMs) to large data sets is
seriously hampered by its excessive training time. We propose a modification, called the
approximate extreme points support vector machine (AESVM), that is aimed at overcoming
this burden. Our approach relies on conducting the SVM optimization over a carefully
selected subset, called the representative set, of the training data set. We present analytical
results that indicate the similarity of AESVM and SVM solutions. A linear time algorithm
based on convex hulls and extreme points is used to compute the representative set in
kernel space. Extensive computational experiments on nine data sets compared AESVM
to LIBSVM (Chang and Lin, 2011), CVM (Tsang et al., 2005) , BVM (Tsang et al.,
2007), LASVM (Bordes et al., 2005), SVMperf (Joachims and Yu, 2009), and the random
features method (Rahimi and Recht, 2007). Our AESVM implementation was found to
train much faster than the other methods, while its classification accuracy was similar
to that of LIBSVM in all cases. In particular, for a seizure detection data set, AESVM
training was almost 500 times faster than LIBSVM and LASVM and 20 times faster than
CVM and BVM. Additionally, AESVM also gave competitively fast classification times.

Keywords: support vector machines, convex hulls, large scale classification, non-linear
kernels, extreme points

1. Introduction

Several real world applications require solutions of classification problems on large data sets.
Even though SVMs are known to give excellent classification results, their application to
problems with large data sets is impeded by the burdensome training time requirements.
Recently, much progress has been made in the design of fast training algorithms (Fan et al.,
2008; Shalev-Shwartz et al., 2011) for SVMs with the linear kernel (linear SVMs). However,
many applications require SVMs with non-linear kernels for accurate classification. Training

c©2014 Manu Nandan, Pramod P. Khargonekar and Sachin S. Talathi.

Nandan, Khargonekar and Talathi

time complexity for SVMs with non-linear kernels is typically quadratic in the size of the
training data set (Shalev-Shwartz and Srebro, 2008). The difficulty of the long training
time is exacerbated when grid search with cross-validation is used to derive the optimal
hyper-parameters, since this requires multiple SVM training runs. Another problem that
sometimes restricts the applicability of SVMs is the long classification time. The time
complexity of SVM classification is linear in the number of support vectors and in some
applications the number of support vectors is found to be very large (Guo et al., 2005).

In this paper, we propose a new approach for fast SVM training. Consider a two class
data set of N data vectors, X = {xi : xi ∈ RD, i = 1, 2, ..., N}, and the corresponding target
labels Y = {yi : yi ∈ [−1, 1], i = 1, 2, ..., N}. The SVM primal problem can be represented
as the following unconstrained optimization problem (Teo et al., 2010; Shalev-Shwartz et al.,
2011):

min
w,b

F1(w, b) =
1

2
‖w‖2 +

C

N

N∑
i=1

l(w, b, φ(xi)), (1)

where l(w, b, φ(xi)) = max{0, 1− yi(wTφ(xi) + b)}, ∀xi ∈ X

and φ : RD → H, b ∈ R, and w ∈ H, a Hilbert space.

Here l(w, b, φ(xi)) is the hinge loss of xi. Note that SVM formulations where the penalty
parameter C is divided by N have been used extensively (Schölkopf et al., 2000; Franc and
Sonnenburg, 2008; Joachims and Yu, 2009). These formulations enable better analysis of
the scaling of C with N (Joachims, 2006). The problem in (1) requires optimization over
N variables. In general, for SVM training algorithms, the training time will reduce if the
size of the training data set is reduced.

In this paper, we present an alternative to (1), called approximate extreme points support
vector machines (AESVM), that requires optimization over only a subset of the training data
set. The AESVM formulation is:

min
w,b

F2(w, b) =
1

2
‖w‖2 +

C

N

M∑
t=1

βtl(w, b, φ(xt)), (2)

where xt ∈ X∗,w ∈ H, and b ∈ R.

Here M is the number of vectors in the selected subset of X, called the representative set
X∗. The constants βt are defined in (9). We will prove in Section 3.2 that:

• F1(w∗1, b
∗
1)− F2(w∗2, b

∗
2) ≤ C

√
Cε, where (w∗1, b

∗
1) and (w∗2, b

∗
2) are the solutions of (1)

and (2) respectively.

• Under the assumptions given in corollary 4, F1(w∗2, b
∗
2)− F1(w∗1, b

∗
1) ≤ 2C

√
Cε.

• The AESVM problem minimizes an upper bound of a low rank Gram matrix approx-
imation of the SVM objective function.

Based on these results we claim that solving the problem in (2) yields a solution close
to that of (1) for a small value of ε, the approximation error bound. As a by-product of the

60

Fast SVM Training Using Approximate Extreme Points

reduction in size of the training set, AESVM is also observed to result in fast classification.
Considering that the representative set will have to be computed several times if grid search
is used to find the optimum hyper-parameter combination, we also propose fast algorithms
to compute Z∗. In particular, we present an algorithm of time complexity O(N) and
an alternative algorithm of time complexity O(N log2

N
P) to compute Z∗, where P is a

predefined large integer.

Our main contribution is the new AESVM formulation that can be used for fast SVM
training. We develop and analyze our technique along the following lines:

• Theoretical: Theorems 1 and 2 and Corollaries 3 to 5 provide some theoretical basis
for the use of AESVM as a computationally less demanding alternative to the SVM
formulation.

• Algorithmic: The algorithm DeriveRS, described in Section 4, computes the represen-
tative set in linear time.

• Experimental: Our extensive experiments on nine data sets of varying characteristics
illustrate the suitability of applying AESVM to classification on large data sets.

This paper is organized as follows: in Section 2, we briefly discuss recent research on
fast SVM training that is closely related to this work. Next, we provide the definition of
the representative set and discuss properties of AESVM. In Section 4, we present efficient
algorithms to compute the representative set and analyze its computational complexity.
Section 5 describes the results of our computational experiments. We compared AESVM
to the widely used LIBSVM library, core vector machines (CVM), ball vector machines
(BVM), LASVM, SVMperf, and the random features method by Rahimi and Recht (2007).
Our experiments used eight publicly available data sets and a data set on EEG from an
animal model of epilepsy (Talathi et al., 2008; Nandan et al., 2010). We conclude with a
discussion of the results of this paper in Section 6.

2. Related Work

Several methods have been proposed to efficiently solve the SVM optimization problem.
SVMs require special algorithms, as standard optimization algorithms such as interior point
methods (Boyd and Vandenberghe, 2004; Shalev-Shwartz et al., 2011) have large memory
and training time requirements that make it infeasible for large data sets. In the following
sections we discuss the most widely used strategies to solve the SVM optimization problem.
We present a comparison of some of these methods to AESVM in Section 6. SVM solvers
can be broadly divided into two categories as described below.

2.1 Dual Optimization

The SVM primal problem is a convex optimization problem with strong duality (Boyd and
Vandenberghe, 2004). Hence its solution can be arrived at by solving its dual formulation

61

Nandan, Khargonekar and Talathi

given below:

max
α

L1(α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi,xj), (3)

subject to 0 ≤ αi ≤
C

N
and

N∑
i=1

αiyi = 0.

Here K(xi,xj) = φ(xi)
Tφ(xj), is the kernel product (Schölkopf and Smola, 2001) of the

data vectors xi and xj , and α is a vector of all variables αi. Solving the dual problem is
computationally simpler, especially for non-linear kernels and a majority of the SVM solvers
use dual optimization. Some of the major dual optimization algorithms are discussed below.

Decomposition methods (Osuna et al., 1997) have been widely used to solve (3). These
methods optimize over a subset of the training data set, called the ‘working set’, at each al-
gorithm iteration. SVMlight (Joachims, 1999) and SMO (Platt, 1999) are popular examples
of decomposition methods. Both these methods have a quadratic time complexity for linear
and non-linear SVM kernels (Shalev-Shwartz and Srebro, 2008). Heuristics such as shrink-
ing and caching (Joachims, 1999) enable fast convergence of decomposition methods and
reduce their memory requirements. LIBSVM (Chang and Lin, 2011) is a very popular im-
plementation of SMO. A dual coordinate descent (Hsieh et al., 2008) SVM solver computes
the optimal α value by modifying one variable αi per algorithm iteration. Dual coordinate
descent SVM solvers, such as LIBLINEAR (Fan et al., 2008), have been proposed primarily
for the linear kernel.

Approximations of the Gram matrix (Fine and Scheinberg, 2002; Drineas and Mahoney,
2005), have been proposed to increase training speed and reduce memory requirements of
SVM solvers. The Gram matrix is the NxN square matrix composed of the kernel products
K(xi,xj), ∀xi,xj ∈ X. Training set selection methods attempt to reduce the SVM training
time by optimizing over a selected subset of the training set. Several distinct approaches
have been used to select the subset. Some methods use clustering based approaches (Pavlov
et al., 2000) to select the subsets. In Yu et al. (2003), hierarchical clustering is performed
to derive a data set that has more data vectors near the classification boundary than away
from it. Minimum enclosing ball clustering is used in Cervantes et al. (2008) to remove data
vectors that are unlikely to contribute to the SVM training. Random sampling of training
data is another approach followed by approximate SVM solvers. Lee and Mangasarian
(2001) proposed reduced support vector machines (RSVM), in which only a random subset
of the training data set is used. Bordes et al. (2005) proposed the LASVM algorithm that
uses active selection techniques to train SVMs on a subset of the training data set.

A core set (Clarkson, 2010) can be loosely defined as the subset of X for which the
solution of an optimization problem such as (3) has a solution similar to that for the entire
data set X. Tsang et al. (2005) proved that the L2-SVM is a reformulation of the minimum
enclosing ball problem for some kernels. They proposed core vector machine (CVM) that
approximately solves the L2-SVM formulation using core sets. A simplified version of CVM
called ball vector machine (BVM) was proposed in Tsang et al. (2007), where only an
enclosing ball is computed. Gärtner and Jaggi (2009) proposed an algorithm to solve the
L1-SVM problem, by computing the shortest distance between two polytopes (Bennett and

62

Fast SVM Training Using Approximate Extreme Points

Bredensteiner, 2000) using core sets. However, there are no published results on solving
L1-SVM with non-linear kernels using their algorithm.

Another method used to approximately solve the SVM problem is to map the data
vectors into a randomized feature space that is relatively low dimensional compared to the
kernel space H (Rahimi and Recht, 2007). Inner products of the projections of the data
vectors are approximations of their kernel product. This effectively reduces the non-linear
SVM problem into the simpler linear SVM problem, enabling the use of fast linear SVM
solvers. This method is referred as RfeatSVM in the following sections of this document.

2.2 Primal Optimization

In recent years, linear SVMs have found increased use in applications with high-dimensional
data sets. This has led to a surge in publications on efficient primal SVM solvers, which are
mostly used for linear SVMs. To overcome the difficulties caused by the non-differentiability
of the primal problem, the following methods are used.

Stochastic sub-gradient descent (Zhang, 2004) uses the sub-gradient computed at some
data vector xi to iteratively update w. Shalev-Shwartz et al. (2011) proposed a stochastic
sub-gradient descent SVM solver, Pegasos, that is reported to be among the fastest linear
SVM solvers. Cutting plane algorithms (Kelley, 1960) solve the primal problem by succes-
sively tightening a piecewise linear approximation. It was employed by Joachims (2006)
to solve linear SVMs with their implementation SVMperf. This work was generalized in
Joachims and Yu (2009) to include non-linear SVMs by approximately estimating w with
arbitrary basis vectors using the fix-point iteration method (Schölkopf and Smola, 2001).
Teo et al. (2010) proposed a related method for linear SVMs, that corrected some stability
issues in the cutting plane methods.

3. Analysis of AESVM

As mentioned in the introduction, AESVM is an optimization problem on a subset of the
training data set called the representative set. In this section we first define the representa-
tive set. Then we present some properties of AESVM. These results are intended to provide
theoretical justifications for the use of AESVM as an approximation to the SVM problem
(1).

3.1 Definition of the Representative Set

The convex hull of a set X is the smallest convex set containing X (Rockafellar, 1996) and
can be obtained by taking all possible convex combinations of elements of X. Assuming X
is finite, the convex hull is a polygon. The extreme points of X, EP (X), are defined to be
the vertices of the convex polygon formed by the convex hull of X. Any vector xi in X can
be represented as a convex combination of vectors in EP (X):

xi =
∑

xt∈EP (X)

πi,txt, where 0 ≤ πi,t ≤ 1, and
∑

xt∈EP (X)

πi,t = 1.

We can see that functions of any data vector in X can be computed using only EP (X)
and the convex combination weights {πi,t}. The design of AESVM is motivated by the

63

Nandan, Khargonekar and Talathi

intuition that the use of extreme points may provide computational efficiency. However,
extreme points are not useful in all cases, as for some kernels all data vectors are extreme
points in kernel space. For example, for the Gaussian kernel, K(xi,xi) = φ(xi)

Tφ(xi) = 1.
This implies that all the data vectors lie on the surface of the unit ball in the Gaussian kernel
space1 and therefore are extreme points. Hence, we introduce the concept of approximate
extreme points.

Consider the set of transformed data vectors:

Z = {zi : zi = φ(xi),∀xi ∈ X}. (4)

Here, the explicit representation of vectors in kernel space is only for the ease of under-
standing and all the computations are performed using kernel products. Let V be a positive
integer that is much smaller than N and ε be a small positive real number. For notational
simplicity, we assume N is divisible by V . Let Zl be subsets of Z for l = 1, 2, ..., (NV), such
that Z = ∪

l
Zl and Zl ∩ Zm = ∅ for l 6= m, where m = 1, 2, ..., (NV). We require that the

subsets Zl satisfy |Zl| = V,∀l and

∀zi, zj ∈ Zl, we have yi = yj , (5)

where |Zl| denotes the cardinality of Zl. Let Zlq be an arbitrary subset of Zl, Zlq ⊆ Zl.
Next, for any zi ∈ Zl we define:

f(zi,Zlq) = min
µi
‖zi −

∑
zt∈Zlq

µi,tzt‖2, (6)

s.t. 0 ≤ µi,t ≤ 1, and
∑

zt∈Zlq

µi,t = 1.

A subset Z∗l is said to be an ε - approximate extreme points subset of Zl if:

max
zi∈Zl

f(zi, Z
∗
l) ≤ ε.

We will drop the prefix ε for simplicity and refer to Z∗l as approximate extreme points subset.
Note that it is not unique. Intuitively, its cardinality will be related to computational savings
obtained using the approach proposed in this paper. We have chosen to not use approximate
extreme points subset of smallest cardinality to maintain flexibility.

It can be seen that µi,t for zt ∈ Z∗l are analogous to the convex combination weights
πi,t for xt ∈ EP (X). The representative set Z∗ of Z is the union of the sets of approximate
extreme points of its subsets Zl.

Z∗ =

N
V∪
l=1

Z∗l .

The representative set has properties that are similar to EP (X). Given any zi ∈ Z, we
can find Zl such that zi ∈ Zl. Let γi,t = {µi,t for zt ∈ Z∗l and zi ∈ Zl, and 0 otherwise}.
Now using (6), we can write:

zi =
∑
zt∈Z∗

γi,tzt + τi. (7)

1. We define the square of the distance of x from origin in kernel space as K(x,x).

64

Fast SVM Training Using Approximate Extreme Points

Here τi is a vector that accounts for the approximation error f(zi,Zlq) in (6). From (6) and
(7) we can conclude that:

‖τi‖2 ≤ ε ∀ zi ∈ Z. (8)

Since ε will be set to a very small positive constant, we can infer that τi is a very small
vector. The weights γi,t are used to define βt in (2) as:

βt =
N∑
i=1

γi,t. (9)

For ease of notation, we refer to the set X∗ := {xt : zt ∈ Z∗} as the representative
set of X in the remainder of this paper. For the sake of simplicity, we assume that all
γi,t, βt,X, and X∗ are arranged so that X∗ is positioned as the first M vectors of X, where
M = |Z∗|.

3.2 Properties of AESVM

Consider the following optimization problem.

min
w,b

F3(w, b) =
1

2
‖w‖2 +

C

N

N∑
i=1

l(w, b,ui), (10)

where ui =

M∑
t=1

γi,tzt, zt ∈ Z∗,w ∈ H, and b ∈ R.

We use the problem in (10) as an intermediary between (1) and (2). The intermediate
problem (10) has a direct relation to the AESVM problem, as given in the following theorem.
The properties of the max function given below are relevant to the following discussion:

max(0, A+B) ≤ max(0, A) +max(0, B), (11)

max(0, A−B) ≥ max(0, A)−max(0, B), (12)

N∑
i=1

max(0, ciA) = max(0, A)
N∑
i=1

ci, (13)

for A,B, ci ∈ R and ci ≥ 0.

Theorem 1 Let F3(w, b) and F2(w, b) be as defined in (10) and (2) respectively. Then,

F3(w, b) ≤ F2(w, b) ,∀w ∈ H and b ∈ R.

65

Nandan, Khargonekar and Talathi

Proof Let L2(w, b,X∗) = C
N

M∑
t=1
l(w, b, zt)

N∑
i=1
γi,t and L3(w, b,X∗) = C

N

N∑
i=1
l(w, b,ui), where

ui =
M∑
t=1
γi,tzt. From the properties of γi,t in (6), and from (5) we get:

L3(w, b,X∗) =
C

N

N∑
i=1

max

[
0,

{
1− yi(wT

M∑
t=1

γi,tzt + b)

}]

=
C

N

N∑
i=1

max

[
0,

M∑
t=1

γi,t
{

1− yt(wT zt + b)
}]

.

Using properties (11) and (13) we get:

L3(w, b,X∗) ≤ C

N

N∑
i=1

M∑
t=1

max
[
0, γi,t

{
1− yt(wT zt + b)

}]
=
C

N

M∑
t=1

max
[
0, 1− yt(wT zt + b)

] N∑
i=1

γi,t

= L2(w, b,X∗).

Adding 1
2‖w‖

2 to both sides of the inequality above we get

F3(w, b) ≤ F2(w, b).

The following theorem gives a relationship between the SVM problem and the interme-
diate problem.
Theorem 2 Let F1(w, b) and F3(w, b) be as defined in (1) and (10) respectively. Then,

− C

N

N∑
i=1

max
{

0, yiw
T τi
}
≤ F1(w, b)− F3(w, b) ≤ C

N

N∑
i=1

max
{

0,−yiwT τi
}
,

∀w ∈ H and b ∈ R, where τi ∈ H is the vector defined in (7).

Proof Let L1(w, b,X) = C
N

N∑
i=1
l(w, b, zi), denote the average hinge loss that is minimized

in (1) and L3(w, b,X∗) be as defined in Theorem 1. Using (7) and (1) we get:

L1(w, b,X) =
C

N

N∑
i=1

max
{

0, 1− yi(wT zi + b)
}

=
C

N

N∑
i=1

max

{
0, 1− yi(wT (

M∑
t=1

γi,tzt + τi) + b)

}
.

66

Fast SVM Training Using Approximate Extreme Points

From the properties of γi,t in (6), and from (5) we get:

L1(w, b,X) =
C

N

N∑
i=1

max

{
0,

M∑
t=1

γi,t(1− yt(wT zt + b))− yiwT τi

}
. (14)

Using (11) on (14), we get:

L1(w, b,X) ≤ C

N

N∑
i=1

max

[
0,

M∑
t=1

γi,t
{

1− yt(wT zt + b)
}]

+
C

N

N∑
i=1

max
{

0,−yiwT τi
}

= L3(w, b,X∗) +
C

N

N∑
i=1

max
{

0,−yiwT τi
}
.

Using (12) on (14), we get:

L1(w, b,X) ≥ C

N

N∑
i=1

max

[
0,

M∑
t=1

γi,t
{

1− yt(wT zt + b)
}]
− C

N

N∑
i=1

max
{

0, yiw
T τi
}

= L3(w, b,X∗)− C

N

N∑
i=1

max
{

0, yiw
T τi
}
.

From the two inequalities above we get,

L3(w, b,X∗)− C

N

N∑
i=1

max
{

0, yiw
T τi
}
≤ L1(w, b,X)

≤ L3(w, b,X∗) +
C

N

N∑
i=1

max
{

0,−yiwT τi
}
.

Adding 1
2‖w‖

2 to the inequality above we get

F3(w, b)− C

N

N∑
i=1

max
{

0, yiw
T τi
}
≤ F1(w, b) ≤ F3(w, b) +

C

N

N∑
i=1

max
{

0,−yiwT τi
}
.

Using the above theorems we derive the following corollaries. These results provide the
theoretical justification for AESVM.

Corollary 3 Let (w∗1, b
∗
1) be the solution of (1) and (w∗2, b

∗
2) be the solution of (2). Then,

F1(w∗1, b
∗
1)− F2(w∗2, b

∗
2) ≤ C

√
Cε.

67

Nandan, Khargonekar and Talathi

Proof It is known that ‖w∗1‖ ≤
√
C (see Shalev-Shwartz et al., 2011, Theorem 1). It is

straight forward to see that the same result also applies to AESVM, ‖w∗2‖ ≤
√
C . Based

on (8) we know that ‖τi‖ ≤
√
ε. From Theorem 2 we get:

F1(w∗2, b
∗
2)− F3(w∗2, b

∗
2) ≤ C

N

N∑
i=1

max
{

0,−yiw∗T2 τi
}
≤ C

N

N∑
i=1

‖w∗2‖‖τi‖

≤ C

N

N∑
i=1

√
Cε = C

√
Cε.

Since (w∗1, b
∗
1) is the solution of (1), F1(w∗1, b

∗
1) ≤ F1(w∗2, b

∗
2). Using this property and

Theorem 1 in the inequality above, we get:

F1(w∗1, b
∗
1)− F2(w∗2, b

∗
2) ≤ F1(w∗1, b

∗
1)− F3(w∗2, b

∗
2)

≤ F1(w∗2, b
∗
2)− F3(w∗2, b

∗
2) ≤ C

√
Cε.

Now we demonstrate some properties of AESVM using the dual problem formulations
of AESVM and the intermediate problem. The dual form of AESVM is given by:

max
α̂

L2(α̂) =
M∑
t=1

α̂t −
1

2

M∑
t=1

M∑
s=1

α̂tα̂sytysz
T
t zs, (15)

subject to 0 ≤ α̂t ≤
C

N

N∑
i=1

γi,t and
M∑
t=1

α̂tyt = 0.

The dual form of the intermediate problem is given by:

max
ᾰ

L3(ᾰ) =
N∑
i=1

ᾰi −
1

2

N∑
i=1

N∑
j=1

ᾰiᾰjyiyju
T
i uj , (16)

subject to 0 ≤ ᾰi ≤
C

N
and

N∑
i=1

ᾰiyi = 0.

Consider the mapping function h : RN → RM , defined as

h(ᾰ) = {α̃t : α̃t =
N∑
i=1

γi,tᾰi}. (17)

It can be seen that the objective functions L2(h(ᾰ)) and L3(ᾰ) are identical.

L2(h(ᾰ)) =

M∑
t=1

α̃t −
1

2

M∑
t=1

M∑
s=1

α̃tα̃sytysz
T
t zs

=

N∑
i=1

ᾰi −
1

2

N∑
i=1

N∑
j=1

ᾰiᾰjyiyju
T
i uj

= L3(ᾰ).

68

Fast SVM Training Using Approximate Extreme Points

It is also straight forward to see that, for any feasible ᾰ of (16), h(ᾰ) is a feasible point of
(15) as it satisfies the constraints in (15). However, the converse is not always true. With
that clarification, we present the following corollary.
Corollary 4 Let (w∗1, b

∗
1) be the solution of (1) and (w∗2, b

∗
2) be the solution of (2). Let α̂2 be

the dual variable corresponding to (w∗2, b
∗
2). Let h(ᾰ2) be as defined in (17). If there exists

an ᾰ2 such that h(ᾰ2) = α̂2 and ᾰ2 is a feasible point of (16), then,

F1(w∗2, b
∗
2)− F1(w∗1, b

∗
1) ≤ 2C

√
Cε.

Proof Let (w∗3, b
∗
3) be the solution of (10) and ᾰ3 the solution of (16). We know that

L3(ᾰ2) = L2(α̂2) = F2(w∗2, b
∗
2) and L3(ᾰ3) = F3(w∗3, b

∗
3). Since L3(ᾰ3) ≥ L3(ᾰ2), we get

F3(w∗3, b
∗
3) ≥ F2(w∗2, b

∗
2).

But, from Theorem 1 we know F3(w∗3, b
∗
3) ≤ F3(w∗2, b

∗
2) ≤ F2(w∗2, b

∗
2). Hence

F3(w∗3, b
∗
3) = F3(w∗2, b

∗
2).

From the above result we get

F3(w∗2, b
∗
2)− F3(w∗1, b

∗
1) ≤ 0. (18)

From Theorem 2 we have the following inequalities:

−C
N

N∑
i=1

max
{

0, yiw
∗T
1 τi

}
≤ F1(w∗1, b

∗
1)− F3(w∗1, b

∗
1), and (19)

F1(w∗2, b
∗
2)− F3(w∗2, b

∗
2) ≤ C

N

N∑
i=1

max
{

0,−yiw∗T2 τi
}
. (20)

Adding (19) and (20) we get:

F1(w∗2, b
∗
2)− F1(w∗1, b

∗
1) ≤ R+

C

N

N∑
i=1

[
max

{
0,−yiw∗T2 τi

}
+max

{
0, yiw

∗T
1 τi

}]
, (21)

where R = F3(w∗2, b
∗
2)−F3(w∗1, b

∗
1). Using (18) and the properties ‖w∗2‖ ≤

√
C and ‖w∗1‖ ≤√

C in (21) we get

F1(w∗2, b
∗
2)− F1(w∗1, b

∗
1) ≤ C

N

N∑
i=1

[
max

{
0,−yiw∗T2 τi

}
+max

{
0, yiw

∗T
1 τi

}]
≤ C

N

N∑
i=1

‖w∗2‖‖τi‖+ ‖w∗1‖‖τi‖

≤ C

N

N∑
i=1

2
√
Cε = 2C

√
Cε.

69

Nandan, Khargonekar and Talathi

Now we prove a relationship between AESVM and the Gram matrix approximation
methods mentioned in Section 2.1.
Corollary 5 Let L1(α), L3(ᾰ), and F2(w, b) be the objective functions of the SVM dual
(3), intermediate dual (16) and AESVM (2) respectively. Let zi, τi, and ui be as defined
in (4), (7), and (10) respectively. Let G and G̃ be the NxN matrices with Gij = yiyjz

T
i zj

and G̃ij = yiyju
T
i uj respectively. Then for any feasible ᾰ, α,w, and b:

1. Rank of G̃ = M,L1(α) =
N∑
i=1
αi − 1

2αGαT , L3(ᾰ) =
N∑
i=1
ᾰi − 1

2 ᾰG̃ᾰT , and

Trace(G− G̃) ≤ Nε+ 2
M∑
t=1

zTt

N∑
i=1

γi,tτi.

2. F2(w, b) ≥ L3(ᾰ).

Proof Using G, the SVM dual objective function L1(α) can be represented as:

L1(α) =

N∑
i=1

αi −
1

2
αGαT .

Similarly, L3(ᾰ) can be represented using G̃ as:

L3(ᾰ) =

N∑
i=1

ᾰi −
1

2
ᾰG̃ᾰT .

Applying ui =
M∑
t=1
γi,tzt, ∀zt ∈ Z∗ to the definition of G̃, we get:

G̃ = ΓAΓT .

Here A is the MxM matrix comprised of Ats = ytysz
T
t zs, ∀zt, zs ∈ Z∗ and Γ is the NxM

matrix with the elements Γit = γi,t. Hence the rank of G̃ = M and intermediate dual
problem (16) is a low rank approximation of the SVM dual problem (3).

The Gram matrix approximation error can be quantified using (7) and (8) as:

Trace(G− G̃) =
N∑
i=1

[
zTi zi − (

M∑
t=1

γi,tzt)
T (

M∑
s=1

γi,szs)

]

=
N∑
i=1

[
τTi τi + 2

M∑
t=1

γi,tz
T
t τi

]
≤ Nε+ 2

M∑
t=1

zTt

N∑
i=1

γi,tτi.

By the principle of duality, we know that F3(w, b) ≥ L3(ᾰ), ∀w ∈ H and b ∈ R, where
ᾰ is any feasible point of (16). Using Theorem 1 on the inequality above, we get

F2(w, b) ≥ L3(ᾰ), ∀w ∈ H, b ∈ R and feasible ᾰ.

70

Fast SVM Training Using Approximate Extreme Points

Thus the AESVM problem minimizes an upper bound F2(w, b), of a rank M Gram matrix
approximation of L1(α).

Based on the theoretical results in this section, it is reasonable to suggest that for small
values of ε, the solution of AESVM is close to the solution of SVM.

4. Computation of the Representative Set

In this section, we present algorithms to compute the representative set. The AESVM
formulation can be solved with any standard SVM solver such as SMO and hence we do
not discuss methods to solve it. As described in Section 3.1, we require an algorithm to
compute approximate extreme points in kernel space. Osuna and Castro (2002) proposed
an algorithm to derive extreme points of the convex hull of a data set in kernel space.
Their algorithm is computationally intensive, with a time complexity of O(N S(N)), and
is unsuitable for large data sets as S(N) typically has a super-linear dependence on N. The
function S(N) denotes the time complexity of a SVM solver (required by their algorithm),
to train on a data set of size N. We next propose two algorithms leveraging the work by
Osuna and Castro (2002) to compute the representative set in kernel space Z∗ with much
smaller time complexities.

We followed the divide and conquer approach to develop our algorithms. The data
set is first divided into subsets Xq, q = 1, 2, .., Q, where |Xq| < P , Q ≥ N

P and X =
{X1,X2, ..,XQ}. The parameter P is a predefined large integer. It is desired that each
subset Xq contains data vectors that are more similar to each other than data vectors in
other subsets. Our notion of similarity of data vectors in a subset, is that the distances be-
tween data vectors within a subset is less than the distances between data vectors in distinct
subsets. Since performing such a segregation is computationally expensive, heuristics are
used to greatly simplify the process. Instead of computing the distance of all data vectors
from each other, only the distance from a few selected data vectors are used to segregate
the data in the methods FLS2 and SLS described below.

The first level of segregation is followed by another level of segregation. We can regard
the first level of segregation as coarse segregation and the second as fine segregation. Finally,
the approximate extreme points of the subsets obtained after segregation, are computed.
The two different algorithms to compute the representative set differ only in the first level
of segregation as described below.

4.1 First Level of Segregation

We propose the methods, FLS1 and FLS2 given below to perform a first level of segregation.
In the following description we use arrays ∆′ and ∆′2 of N elements. Each element of ∆′

(∆′2), δi (δ2
i) , contains the index in X of the last data vector of the subset to which xi

belongs. It is straight forward to replace this N element array with a smaller array of size
equal to the number of subsets. We use a N element array for ease of description. The set
X′ denotes any set of data vectors.

1. FLS1(X′, P)

71

Nandan, Khargonekar and Talathi

For some applications, such as anomaly detection on sequential data, data vectors are
found to be homogeneous within intervals. For example, the atmospheric conditions typi-
cally do not change within a few minutes and hence weather data is homogeneous for a short
span. For such data sets it is enough to segregate the data vectors based on its position in
the training data set. The same method can also be used on very large data sets without
any homogeneity, in order to reduce computation time. The complexity of this method is
O(N ′), where N ′ = |X′| .

[X′,∆′] = FLS1(X′, P)

1. For outerIndex = 1 to ceiling(|X
′|

P)

2. For innerIndex = (outerIndex - 1)P to min((outerIndex)P ,|X′|)
3. Set δinnerIndex = min((outerIndex)P, |X′|)

2. FLS2(X′, P)

When the data set is not homogeneous within intervals or it is not excessively large we
use the more sophisticated algorithm, FLS2, of time complexity O(N ′ log2

N ′

P) given below.
In step 1 of FLS2, the distance di in kernel space of all xi ∈ X′ from xj is computed as
di = ‖φ(xi) − φ(xj)‖2 = k(xi,xi) + k(xj ,xj) − 2k(xi,xj). The algorithm FLS2(X′, P), in
effect builds a binary search tree, with each node containing the data vector xk selected in
step 2 that partitions a subset of the data set into two. The size of the subsets successively
halve, on downward traversal from the root of the tree to the other nodes. When the size of
all the subsets at a level become ≤ P the algorithm halts. The complexity of FLS2 can be
derived easily when the algorithm is considered as an incomplete binary search tree building
method. The last level of such a tree will have O(N

′

P) nodes and consequently the height

of the tree is O(log2
N ′

P). At each level of the tree the calls to the BFPRT algorithm (Blum
et al., 1973) and the rearrangement of the data vectors in steps 2 and 3 are of O(N ′) time
complexity. Hence the overall time complexity of FLS2(X′, P) is O(N ′ log2

N ′

P).

4.2 Second Level of Segregation

After the initial segregation, another method SLS(X′, V,∆′) is used to further segregate each
set Xq into smaller subsets Xqr of maximum size V , Xq = {Xq1 ,Xq2 ,,XqR}, where V is

predefined (V < P) and R = ceiling(
|Xq|
V). The algorithm SLS(X′, V,∆′) is given below.

In step 2.b, xt is the data vector in Xq that is farthest from the origin in the space of the
data vectors. For some kernels, such as the Gaussian kernel, all data vectors are equidistant
from the origin in kernel space. If the algorithm chooses al in step 2.b based on distances in
such kernel spaces, the choice would be arbitrary and such a situation is avoided here. Each
iteration of the For loop in step 2 involves several runs of the BFPRT algorithm, with each
run followed by a rearrangement of Xq. Specifically, the BFPRT algorithm is first run on P
data vectors, then on P −V data vectors, then on P −2V data vectors and so on. The time
complexity of each iteration of the For loop including the BFPRT algorithm run and the
rearrangement of data vectors is: O(P +(P −V)+(P −2V)+ ..+V)⇒ O(P

2

V). The overall

72

Fast SVM Training Using Approximate Extreme Points

[X′,∆′] = FLS2(X′, P)

1. Compute distance di in kernel space of all xi ∈ X′ from the first vector xj in X′

2. Select xk such that there exists |X
′|

2 data vectors xi ∈ X′ with di < dk, using the
linear time BFPRT algorithm

3. Using xk, rearrange X′ as X′ = {X1,X2}, where X1 = {xi : di < dk,xi ∈ X′} and
X2 = {xi : xi ∈ X′ and xi 6∈ X1}

4. If |X
′|

2 ≤ P
For i where xi ∈ X1, set δi = index of last data vector in X1.

For i where xi ∈ X2, set δi = index of last data vector in X2.

5. If |X
′|

2 > P

Run FLS2(X1, P) and FLS2(X2, P)

complexity of SLS(X′, V,∆′) considering the Q For loop iterations is O(N
′

P
P 2

V) ⇒ O(N
′P
V),

since Q = O(N
′

P).

[X′,∆′2] = SLS(X′, V,∆′)

1. Initialize l = 1

2. For q = 1 to Q

(a) Identify subset Xq of X′ using ∆′

(b) Set al = φ(xt), where xt ∈ argmax
i

‖xi‖2,xi ∈ Xq

(c) Compute distance di in kernel space of all xi ∈ Xq from al

(d) Select xk such that, there exists V data vectors xi ∈ Xq with di < dk, using the
BFPRT algorithm

(e) Using xk, rearrange Xq as Xq = {X1,X2}, where X1 = {xi : di < dk,xi ∈ Xq}
and X2 = {xi : xi ∈ Xq and xi 6∈ X1}

(f) For i where xi ∈ X1, set δ2
i = index of last data vector in X1, where δ2

i is the ith

element of ∆′2

(g) Remove X1 from Xq

(h) If |X2| > V

Set: l = l + 1 and al = xk

Repeat steps 2.c to 2.h

(i) If |X2| ≤ V
For i where xi ∈ X2, set δ2

i = index of last data vector in X2

73

Nandan, Khargonekar and Talathi

4.3 Computation of the Approximate Extreme Points

After computing the subsets Xqr , the algorithm DeriveAE is applied to each Xqr to compute
its approximate extreme points. The algorithm DeriveAE is described below. DeriveAE uses
three routines. SphereSet(Xqr) returns all xi ∈ Xqr that lie on the surface of the smallest
hypersphere in kernel space that contains Xqr . It computes the hypersphere as a hard
margin support vector data descriptor (SVDD) (Tax and Duin, 2004). SphereSort(Xqr)
returns data vectors xi ∈ Xqr sorted in descending order of distance in the kernel space
from the center of the SVDD hypersphere. CheckPoint(xi,Ψ) returns TRUE if xi is an
approximate extreme point of the set Ψ in kernel space. The operator A\B indicates a
set operation that returns the set of the members of A excluding A ∩ B. The matrix X∗qr
contains the approximate extreme points of Xqr and βqr is a |X∗qr | sized vector.

[X∗qr , βqr] = DeriveAE(Xqr)

1. Initialize: X∗qr = SphereSet(Xqr) and Ψ = ∅
2. Set ζ = SphereSort(Xqr\X∗qr)

3. For each xi taken in order from ζ, call the routine CheckPoint(xi,X
∗
qr ∪Ψ)

If it returns FALSE, then set Ψ = Ψ ∪ xi

4. Initialize a matrix Γ of size |Xqr |x|X∗qr | with all elements set to 0

Set µk,k = 1 ∀xk ∈ X∗qr , where µi,j is the element in the ith row and jth column
of Γ

5. For each xi ∈ Xqr and xi 6∈ X∗qr , execute CheckPoint(xi,X
∗
qr)

Set the ith row of Γ = µi, where µi is the result of CheckPoint(xi,X
∗
qr)

6. For j = 1 to |X∗qr |

Set βjqr =
|Xqr |∑
k=1

µk,j

CheckPoint(xi,Ψ) is computed by solving the following quadratic optimization problem:

min
µi

p(xi,Ψ) = ‖φ(xi)−
|Ψ|∑
t=1

µi,tφ(xt)‖2,

s.t. xt ∈ Ψ, 0 ≤ µi,t ≤ 1 and

|Ψ|∑
t=1

µi,t = 1,

where ‖φ(xi)−
|Ψ|∑
t=1
µi,tφ(xt)‖2 = K(xt,xt)+

|Ψ|∑
t=1

|Ψ|∑
s=1

µi,tµi,sK(xt,xs)−2
|Ψ|∑
t=1
µi,tK(xi,xt). If the

optimized value of p(xi,Ψ) ≤ ε, CheckPoint(xi,Ψ) returns TRUE and otherwise it returns
FALSE. It can be seen that the formulation of p(xi,Ψ) is similar to (6). The value of µi
computed by CheckPoint(zi,Ψ0), is used in step 5 of DeriveAE.

74

Fast SVM Training Using Approximate Extreme Points

Now we compute the time complexity of DeriveAE. We use the fact that the opti-
mization problem in CheckPoint(xi,Ψ) is essentially the same as the dual optimization
problem of SVM given in (3). Since DeriveAE solves several SVM training problems in
steps 1,3, and 5, it is necessary to know the training time complexity of a SVM. As any
SVM solver method can be used, we denote the training time complexity of each step
of DeriveAE that solves an SVM problem as O(S(Aqr)). Here Aqr is the largest value
of X∗qr ∪ Ψ during the run of DeriveAE(Xqr). This enables us to derive a generic ex-
pression for the complexity of DeriveAE, independent of the SVM solver method used.
Hence the time complexity of step 1 is O(S(Aqr)). The time complexity of steps 3 and
5 are O(V S(Aqr)) and O(Aqr S(Aqr)) respectively. The time complexity of step 2 is
O(V |Ψ1| + V log2V), where Ψ1 = SphereSet(Xqr). Hence the time complexity of De-
riveAE is O(V |Ψ1|+V log2V +V S(Aqr). Since |Ψ1| is typically very small, we denote the
time complexity of DeriveAE by O(V log2V +V S(Aqr)). For SMO based implementations
of DeriveAE, such as the implementation we used for Section 5, typically S(Aqr) = O(A2

qr).

4.4 Combining All the Methods to Compute X∗

To derive X∗, it is required to first rearrange X, so that data vectors from each class
are grouped together as X = {X+,X−}. Here X+ = {xi : yi = 1,xi ∈ X} and X− =
{xi : yi = −1,xi ∈ X}. Then the selected segregation methods are run on X+ and
X− separately. The algorithm DeriveRS given below, combines all the algorithms defined
earlier in this section with a few additional steps, to compute the representative set of
X. The complexity of DeriveRS2 can easily be computed by summing the complexities of
its steps. The complexity of steps 1 and 6 is O(N). The complexity of step 2 is O(N) if
FLS1 is run or O(N log2

N
P) if FLS2 is run. In step 3, the O(NPV) method SLS is run.

In steps 4 and 5, DeriveAE is run on all the subsets Xqr giving a total complexity of

O(N log2V + V
Q∑
q=1

R∑
r=1

S(Aqr)). Here we use the fact that the number of subsets Xqr is

O(NV). Thus the complexity of DeriveRS is O(N(PV + log2V)+V
Q∑
q=1

R∑
r=1

S(Aqr)) when FLS1

is used and O(N(log2
N
P + P

V + log2V) + V
Q∑
q=1

R∑
r=1

S(Aqr)) when FLS2 is used.

5. Experiments

We focused our experiments on an SMO (Fan et al., 2005) based implementation of AESVM
and DeriveRS. We evaluated the classification performance of AESVM using the nine data
sets, described below. Next, we present an evaluation of the algorithm DeriveRS, followed
by an evaluation of AESVM.

2. We present DeriveRS as one algorithm in spite of its two variants that use FLS1 or FLS2, for simplicity
and to conserve space.

75

Nandan, Khargonekar and Talathi

[X∗,Y∗, β] = DeriveRS(X,Y,P,V)

1. Set X+ = {xi : xi ∈ X, yi = 1} and X− = {xi : xi ∈ X, yi = −1}

2. Run [X+,∆+] = FLS(X+,P) and [X−,∆−] = FLS(X−,P), where FLS is FLS1 or
FLS2

3. Run [X+,∆+
2] = SLS(X+,V,∆+) and [X−,∆−2] = SLS(X−,V,∆−)

4. Using ∆+
2 , identify each subset Xqr of X+ and run [X∗qr , βqr] = DeriveAE(Xqr)

Set N+∗ = sum of number of data vectors in all X∗qr derived from X+

5. Using ∆−2 , identify each subset Xqr of X− and run [X∗qr , βqr] = DeriveAE(Xqr)

Set N−∗ = sum of number of data vectors in all X∗qr derived from X−

6. Combine in the same order, all X∗qr to obtain X∗ and all βqr to obtain β

Set Y∗ = {yi : yi = 1 for i = 1, 2, .., N+∗; and yi = −1 for i = 1 + N+∗, 2 +
N+∗, .., N−∗ +N+∗}

5.1 Data Sets

Nine data sets of varied size, dimensionality and density were used to evaluate DeriveRS
and our AESVM implementation. For data sets D2, D3 and D4, we performed five fold cross
validation. We did not perform five fold cross-validation on the other data sets, because
they have been widely used in their native form with a separate training and testing set.

D1 KDD’99 intrusion detection data set:3 This data set is available as a training set of
4898431 data vectors and a testing set of 311027 data vectors, with forty one features
(D = 41). As described in Tavallaee et al. (2009), a huge portion of this data set is
comprised of repeated data vectors. Experiments were conducted only on the distinct
data vectors. The number of distinct training set vectors was N = 1074974 and the
number of distinct testing set vectors was N = 77216. The training set density =
33%.

D2 Localization data for person activity:4 This data set has been used in a study on agent-
based care for independent living (Kaluža et al., 2010). It hasN = 164860 data vectors
of seven features. It is comprised of continuous recordings from sensors attached to
five people and can be used to predict the activity that was performed by each person
at the time of data collection. In our experiments we used this data set to validate
a binary problem of classifying the activities ‘lying’ and ‘lying down’ from the other
activities. Features 3 and 4, that gives the time information, were not used in our
experiments. Hence for this data set D = 5. The data set density = 96%.

3. D1 is available for download at http://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data.
4. D2 is available for download at http://archive.ics.uci.edu/ml/datasets/Localization+Data+for+

Person+Activity.

76

http://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data
http://archive.ics.uci.edu/ml/datasets/Localization+Data+for+Person+Activity
http://archive.ics.uci.edu/ml/datasets/Localization+Data+for+Person+Activity

Fast SVM Training Using Approximate Extreme Points

D3 Seizure detection data set: This data set has N = 982863 data vectors, three features
(D = 3) and density = 100%. It is comprised of continuous EEG recordings from rats
induced with status epilepticus and is used to evaluate algorithms that classify seizure
events from seizure-free EEG. An important characteristic of this data set is that it
is highly unbalanced, the total number of data vectors corresponding to seizures is
minuscule compared to the remaining data. Details of the data set can be found in
Nandan et al. (2010), where it is used as data set A.

D4 Forest cover type data set:5 This data set has N = 581012 data vectors and fifty four
features (D = 54) and density = 22%. It is used to classify the forest cover of areas
of 30mx30m size into one of seven types. We followed the method used in Collobert
et al. (2002), where a classification of forest cover type 2 from the other cover types
was performed.

D5 IJCNN1 data set:6 This data set was used in IJCNN 2001 generalization ability chal-
lenge (Chang and Lin, 2001). The training set and testing set have 49990 (N = 49990)
and 91701 data vectors respectively. It has 22 features (D = 22) and training set den-
sity = 59%

D6 Adult income data set:7 This data set derived from the 1994 Census database, was used
to classify incomes over $50000 from those below it. The training set has N = 32561
with D = 123 and density = 11%, while the testing set has 16281 data vectors. The
data is pre-processed as described in Platt (1999).

D7 Epsilon data set:8 This is a data set that was used for 2008 Pascal large scale learning
challenge and in Yuan et al. (2011). It is comprised of 400000 data vectors that are
100% dense with D = 2000. Since this is too large for our experiments, we used the
first 10% of the training set9 giving N = 40000. The testing set has 100000 data
vectors.

D8 MNIST character recognition data set:10 The widely used data set (Lecun et al., 1998)
of hand written characters has a training set of N = 60000, D = 780 and density =
19%. We performed the binary classification task of classifying the character ‘0’ from
the others. The testing set has 10000 data vectors.

5. D4 is available for download at http://archive.ics.uci.edu/ml/datasets/Covertype.
6. D5 is available for download at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.

html#ijcnn1.
7. D6 is available for download at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.

html#a9a.
8. D7 is available for download at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.

html#epsilon.
9. AESVM and the other SVM solvers are fully capable of training on this data set. However, the excessive

training time makes it impractical to train the solvers on the entire data set for this paper.
10. D8 is available for download at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

multiclass.html#mnist.

77

http://archive.ics.uci.edu/ml/datasets/Covertype
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#ijcnn1
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#ijcnn1
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#epsilon
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#epsilon
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#mnist
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#mnist

Nandan, Khargonekar and Talathi

D9 w8a data set:11 This artificial data set used in Platt (1999) was randomly generated
and has D = 300 features. The training set has N = 49749 with a density = 4% and
the testing set has 14951 data vectors.

5.2 Evaluation of DeriveRS

We began our experiments with an evaluation of the algorithm DeriveRS, described in
Section 4. The performance of the two methods FLS1 and FLS2 were compared first.
DeriveRS was run on D1, D2, D4 and D5 with the parameters P = 104, V = 103, ε = 10−2,
and g = [2−4, 2−3, 2−2, ..., 22], first with FLS1 and then FLS2. For D2, DeriveRS was run
on the entire data set for this particular experiment, instead of performing five fold cross-
validation. This was done because, D2 is a small data set and the difference between the
two first level segregation methods can be better observed when the data set is as large as
possible. The relatively small value of P = 104 was also chosen considering the small size
of D2 and D5. To evaluate the effectiveness of FLS1 and FLS2, we also ran DeriveRS with
FLS1 and FLS2 after randomly reordering each data set. The results are shown in Figure
1.

Figure 1: Performance of variants of DeriveRS with g = [2−4, 2−3, 2−2, ..., 22], for data sets
D1, D2, D4, and D5. The results of DeriveRS with FLS1 and FLS2, after ran-
domly reordering the data sets are shown as Random+FLS1 and Random+FLS2,
respectively

11. D9 is available for download at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.
html#w8a.

78

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#w8a
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#w8a

Fast SVM Training Using Approximate Extreme Points

For all data sets, FLS2 gave smaller representative sets than FLS1. For D1, DeriveRS
with FLS2 was significantly faster and gave much smaller results than FLS1. For D2, D4
and D5, even though the representative sets derived by FLS1 and FLS2 are almost equal
in size, FLS1 took noticeably less time. The results of DeriveRS obtained after randomly
rearranging the data sets, indicate the utility of FLS2. For all the data sets, the results of
FLS2 after random reordering was seen to be significantly better than the results of FLS1
after random rearrangement. Hence we can infer that the good results obtained with FLS2
are not caused by any pre-existing order in the data sets. A sharp increase was observed in
representative set sizes and computation times for FLS1, when the data sets were randomly
rearranged.

Next we investigated the impact of changes in the values of the parameters P and
V on the performance of DeriveRS. All combinations of P = {104, 5x104, 105, 2x105} and
V = {102, 5x102, 103, 2x103, 3x103} were used to compute the representative set of D1. The
computations were performed for ε = 10−2 and g = 1. The method FLS2 was used for the
first level segregation in DeriveRS. The results are shown in Table 1. As expected for an

algorithm of time complexity O(N(log2
N
P + P

V + log2V) +V
Q∑
q=1

R∑
r=1

S(Aqr)), the computation

time was generally observed to increase for an increase in the value of V or P . It should be
noted that our implementation of DeriveRS was based on SMO and hence S(Aqr) = O(A2

qr).
In some cases the computation time decreased when P or V increased. This is caused by a

decrease in the value of O(
Q∑
q=1

R∑
r=1

A2
qr), which is inferred from the observed decrease of the

size of the representative set M (M ≈
Q∑
q=1

R∑
r=1

Aqr). A sharp decrease in M was observed

when V was increased. The impact of increasing P on the size of the representative set was
found to be less drastic. This observation indicates that DeriveAE selects fewer approximate
extreme points when V is larger.

M
N x100% (Computation time in seconds)

P V = 102 V = 5x102 V = 103 V = 2x103 V = 3x103

104 7(27) 3(51) 2.5(87) 2.2(161) 2.1(233)

5x104 6.9(66) 2.9(59) 2.4(92) 2.1(166) 2(239)

105 7(121) 2.9(69) 2.3(98) 2.1(169) 1.9(248)

2x105 6.9(237) 2.9(94) 2.3(110) 2(176) 1.9(250)

Table 1: The impact of varying P and V on the result of DeriveRS

As described in Section 5.3, we compared several SVM training algorithms with our
implementation of AESVM. We performed a grid search with all combinations of the SVM
hyper-parameters C ′ = {2−4, 2−3, ..., 26, 27} and g = {2−4, 2−3, 2−2, ..., 21, 22}. The hyper-
parameter C ′ is related to the hyper-parameter C as C ′ = C

N . We represent the grid in
terms of C ′ as it is used in several SVM solvers such as LIBSVM, LASVM, CVM and
BVM. Furthermore, the use of C ′ enables the application of the same hyper-parameter grid
to all data sets. To train AESVM with all the hyper-parameter combinations in the grid,

79

Nandan, Khargonekar and Talathi

the representative set has to be computed using DeriveRS for all values of kernel hyper-
parameter g in the grid. This is because the kernel space varies when the value of g is
varied. For all the computations, the input parameters were set as P = 105 and V = 103.
The first level segregation in DeriveRS was performed using FLS2. Three values of the
tolerance parameter ε were investigated, ε = 10−2, 10−3 or 10−4.

The results of the computation for data sets D1 - D5, are shown in the Table 2. The
percentage of data vectors in the representative set was found to increase with increasing
values of g. This is intuitive, as when g increases the distance between the data vectors in
kernel space increases. With increased distances, more data vectors xi become approximate
extreme points. The increase in the number of approximate extreme points with g causes
the rising trend of computation time shown in Table 2. For a decrease in the value of ε,
M increases. This is because, for smaller ε fewer xi would satisfy the condition: optimized
p(xi,Ψ) ≤ ε in CheckPoint(xi,Ψ). This results in the selection of a larger number of
approximate extreme points in DeriveAE.

M
N x100% (Computation time in seconds)

ε Data
set

g = 1
24

g = 1
23

g = 1
22

g = 1
2 g = 1 g = 21 g = 22

10−2

D1 0.9(139) 1(138) 1.3(140) 1.7(147) 2.4(151) 3.3(157) 4.6(163)
D2 0.6(12) 0.7(13) 0.8(13) 1.2(13) 1.8(14) 2.8(15) 4.7(17)
D3 0.6(79) 0.6(80) 0.6(80) 0.6(79) 0.6(79) 0.6(79) 0.6(78)
D4 1.3(55) 1.9(58) 3.1(61) 5.1(68) 8.5(78) 14.5(91) 25.2(111)
D5 5.6(7) 10.4(8) 17.7(10) 28.1(12) 42.1(14) 58(15) 71(15)

10−3

D1 1.6(142) 2.2(149) 3(160) 4.2(168) 6(188) 8.5(208) 12.1(231)
D2 1.3(13) 1.8(14) 2.6(16) 3.8(19) 5.7(23) 8.8(29) 14.4(35)
D3 0.6(80) 0.6(79) 0.6(79) 0.6(79) 0.5(80) 0.5(80) 0.6(81)
D4 5.5(71) 8.6(86) 13(106) 19.9(136) 31.1(172) 48.7(203) 71.3(204)
D5 25.8(15) 36.4(19) 49.5(22) 63.5(23) 76.2(22) 86.1(21) 93.5(19)

10−4

D1 3.8(189) 5.4(217) 7.7(253) 10.9(304) 15.2(358) 20.4(418) 26.8(479)
D2 3.8(21) 5.1(28) 6.9(40) 9.6(52) 14.3(61) 22.8(79) 35.8(100)
D3 0.5(78) 0.5(79) 0.5(80) 0.6(81) 0.7(83) 0.9(86) 1.2(90)
D4 19.4(175) 27.1(249) 38.1(333) 54.3(394.3) 75.5(387) 92.6(310) 98.8(244)
D5 56.9(40) 69.1(43) 80.1(41) 88.6(38) 94.9(32) 98.3(26) 99.7(22)

Table 2: The percentage of the data vectors in X∗ (given by M
N x100) and its computation

time for data sets D1-D5

The results of applying DeriveRS to the high-dimensional data sets D6-D9 are shown in
Table 3. It was observed that M

N was much larger for D6-D9 than for the other data sets.
We computed the representative set with ε = 10−2 only, as for smaller values of ε we expect
the representative set to be close to 100% of the training set. The increasing trend of the
size of the representative set with increasing g values can be observed in Table 3 also.

80

Fast SVM Training Using Approximate Extreme Points

M
N x100% (Computation time in seconds)

Data
set

g = 1
24

g = 1
23

g = 1
22

g = 1
2 g = 1 g = 21 g = 22

D6 83.1(12) 83.1(12) 83.1(13) 83.1(12) 83.1(9) 82.7(9) 86(9)

D7 97.2(317) 99.7(309) 100(325) 100(332) 100(360) 100(330) 100(280)

D8 100(97) 100(75) 100(62) 100(63) 100(67) 100(64) 100(64)

D9 72.2(21) 72.2(22) 72.2(21) 72.7(17) 72.8(15) 74.4(14) 76.1(15)

Table 3: The percentage of data vectors in X∗ and its computation time for data sets D6-D9
with ε = 10−2

5.3 Comparison of AESVM to SVM Solvers

To judge the accuracy and efficiency of AESVM, its classification performance was compared
with the SMO implementation in LIBSVM, ver. 3.1. We chose LIBSVM because it is a state-
of-the-art SMO implementation that is routinely used in similar comparison studies. To
compare the efficiency of AESVM to other popular approximate SVM solvers we chose CVM,
BVM, LASVM, SVMperf, and RfeatSVM. A description of these methods is given in Section
2. We chose these methods because they are widely cited, their software implementations
are freely available and other studies (Shalev-Shwartz et al., 2011) have reported fast SVM
training using some of these methods. LASVM is also an efficient method for online SVM
training. However, since we do not investigate online SVM learning in this paper, we did not
test the online SVM training performance of LASVM. We compared AESVM with CVM
and BVM even though they are L2-SVM solvers, as they has been reported to be faster
alternatives to SVM implementations such as LIBSVM.

The implementation of AESVM and DeriveRS were built upon the LIBSVM implemen-
tation. All methods except SVMperf were allocated a cache of size 600 MB. The parameters
for DeriveRS were P = 105 and V = 103, and the first level segregation was performed
using FLS2. To reflect a typical SVM training scenario, we performed a grid search with
all eighty four combinations of the SVM hyper-parameters C ′ = {2−4, 2−3, ..., 26, 27} and
g = {2−4, 2−3, 2−2, ..., 21, 22}. As mentioned earlier, for data sets D2, D3 and D4, five
fold cross-validation was performed. The results of the comparison have been split into
sub-sections given below, due to the large number of SVM solvers and data sets used.

5.3.1 Comparison to CVM, BVM, LASVM and LIBSVM

First we present the results of the performance comparison for D2 in Figures 2 and 3.
For ease of representation, only the results of grid points corresponding to combinations of
C ′ = {2−4, 2−2, 1, 22, 24, 26} and g = {2−4, 2−2, 1, 22} are shown in Figures 2 and 3. Figure
2 shows the graph between training time and classification accuracy for the five algorithms.
Figure 3 shows the graph between the number of support vectors and classification accuracy.
We present classification accuracy as the ratio of the number of correct classifications to the
total number of classifications performed. Since the classification time of an SVM algorithm
is directly proportional to the number of support vectors, we represent it in terms of the

81

Nandan, Khargonekar and Talathi

number of support vectors. It can be seen that, AESVM generally gave more accurate
results for a fraction of the training time of the other algorithms, and also resulted in less
classification time. The training time and classification times of AESVM increased when ε
was reduced. This is expected given the inverse relation of M to ε shown in Tables 2 and
3. The variation in accuracy with ε is not very noticeable.

0.4 0.5 0.6 0.7 0.8
−4

−2

0

2

4

6

8

10

12

lo
g

(T
ra

in
in

g
 t

im
e

)

Classification accuracy

AESVM, ε= 10
−2

AESVM, ε= 10
−3

AESVM, ε= 10
−4

CVM

BVM

LASVM

LIBSVM

Figure 2: Plot of training time against classification accuracy of the SVM algorithms on D2

Figures 2 and 3 indicate that AESVM gave better results than the other algorithms for
SVM training and classification on D2, in terms of standard metrics. To present a more
quantitative and easily interpretable comparison of the algorithms, we define the seven
performance metrics given below. These metrics combine the results of all runs of each
algorithm into a single value, for each data set. For the first five metrics, we take LIBSVM
as a baseline of comparison, as it gives the most accurate solution among the tested methods.
Furthermore, an important objective of these experiments is to show the similarity of the
results of AESVM and LIBSVM. In the description given below, F can refer to any SVM
algorithm such as AESVM, CVM, LASVM etc.

82

Fast SVM Training Using Approximate Extreme Points

0.4 0.5 0.6 0.7 0.8
6

7

8

9

10

11

12
lo

g
(N

u
m

b
e

r
o

f
s

u
p

p
o

rt
 v

e
c

to
rs

)

Classification accuracy

AESVM, ε= 10
−2

AESVM, ε= 10
−3

AESVM, ε= 10
−4

CVM

BVM

LASVM

LIBSVM

Figure 3: Plot of classification time, represented by the number of support vectors, against
classification accuracy of the SVM algorithms on D2

1. Expected training time speedup, ETS: The expected speedup in training time is indi-
cated by:

ETS =
1

RS

R∑
r=1

S∑
s=1

TLrs
TFrs

.

Here TLrs and TFrs are the training times of LIBSVM and F respectively, in the sth

cross-validation fold with the rth set of hyper-parameters of grid search.

2. Overall training time speedup, OTS: It indicates overall training time speedup for
the entire grid search with cross-validation, including the time taken to compute the
representative set. The total time taken by DeriveRS to compute the representative
set for all values of g is represented as TX∗. For methods other than AESVM and
RfeatSVM2 (see Section 5.3.3), TX∗ = 0.

OTS =

R∑
r=1

S∑
s=1

TLrs

R∑
r=1

S∑
s=1

TFrs + TX∗
.

83

Nandan, Khargonekar and Talathi

3. Expected classification time speedup, ECS: The expected speedup in classification
time is indicated by:

ECS =
1

RS

R∑
r=1

S∑
s=1

NLrs
NFrs

.

Here NLrs and NFrs are the number of support vectors in the solution of LIBSVM and
F respectively.

4. Classification time speedup for optimal hyper-parameters, CTS: The speedup in classi-
fication time for the optimal hyper-parameters (hyper-parameters that result in max-
imum classification accuracy) chosen by grid search is indicated by:

CTS =

max
r

S∑
s=1

NLrs

max
r

S∑
s=1

NFrs

.

5. Root mean squared error of classification accuracy, RMSE: The similarity of the
solution of F to LIBSVM, in terms of its classification accuracy, is indicated by:

RMSE =

(
1

RS

R∑
r=1

S∑
s=1

(CLrs − CFrs)2

)0.5

.

Here CLrs and CFrs are the classification accuracy of LIBSVM and F respectively.

6. Maximum classification accuracy: It gives the best classification results of an SVM
solver, for the set of SVM hyper-parameters that are tested.

max. acc. = max
r

1

S

S∑
s=1

CFrs.

7. Mean and standard deviation of classification accuracies: It indicates the classification
performance of an SVM solver, that can be expected for arbitrary hyper-parameter
values.

mean acc. =
1

RS

R∑
r=1

S∑
s=1

CFrs, and std. acc. =

√√√√ 1

R

R∑
r=1

(
1

S

S∑
s=1

CFrs −mean acc.

)2

.

The results of the classification performance comparison on data sets D1-D5, are shown
in Table 4. It was observed that for all tested values of ε, AESVM resulted in large reductions
in training and classification times when compared to LIBSVM for a very small difference
in classification accuracy. Most notably, for D3 the expected and overall training time
speedups were 41728.8 and 488.5 respectively, which is outstanding. Comparing the results
of AESVM for different ε values, we see that RMSE generally improves by decreasing when
ε decreases, while the metrics improve by increasing when ε increases. The increase in ETS
and OTS is of a larger order than the increase in RMSE when ε increases.

84

Fast SVM Training Using Approximate Extreme Points

Data
set

Solver ETS OTS ECS CTS RMSE
(x102)

max. acc.
(x102)

mean & std.
acc. (x102)

D1

AESVM1 1188.9 156 5.8 3.3 0.22 94.2 92.4, 0.8
AESVM2 314.8 50.4 3.8 2.6 0.14 93.6 92.3, 0.7
AESVM3 72.7 14.7 2.4 1.8 0.06 93.8 92.4, 0.8
CVM 8.9 6.2 1.2 2.3 0.44 94.1 92.7, 0.8
BVM 28.6 21.6 2 1.9 0.6 94.4 92.6, 0.9
LASVM 0.8 0.8 1.1 1 0.12 94.3 92.5, 0.8
LIBSVM 93.9 92.4, 0.8

D2

AESVM1 6067.6 134.5 77.7 17.8 3.85 76.5 71.1, 3.3
AESVM2 1202.5 86.1 29 9.4 2.43 76.7 72.4, 3.6
AESVM3 164.5 21.8 10.9 6.2 1.73 77.4 73.1, 3.6
CVM 0.7 0.5 4.7 4.3 26.59 70.3 52.2, 0.8
BVM 0.8 0.5 5 5.6 24.06 67.1 54.6, 0.7
LASVM 0.2 0.1 1 1 2.18 78.1 73.5, 0.5
LIBSVM 78.2 74.1, 3.5

D3

AESVM1 41728.8 488.5 71.5 64.4 0.2 99.9 99.8, 0.1
AESVM2 21689.3 468 39.5 51.5 0.1 99.9 99.8, 0.1
AESVM3 12792 429.9 17.1 36 0.09 99.9 99.8, 0.1
CVM 60.4 23.9 0.4 0.1 0.33 99.9 99.8, 0.2
BVM 76.8 22.8 0.6 0.2 0.39 99.9 99.8, 0.2
LASVM 0.9 0.5 0.6 0.7 55.2 99.9 69.3, 29.9
LIBSVM 99.9 99.8, 0.1

D4

AESVM1 962 34.6 24.5 72.8 1.5 68.3 61.6, 3.1
AESVM2 68.8 6.1 6.3 17.1 0.7 68.1 61, 3.3
AESVM3 6.7 2.3 2.3 5 0.3 68.1 60.8, 3.2
CVM 8 6.2 12.4 28 9.4 63.7 55.5, 3.1
BVM 6.6 4.4 12.1 8.9 9.44 62.3 54.9, 3.4
LASVM - - - - - - -
LIBSVM 68.2 60.6, 3.2

D5

AESVM1 26.6 4.1 3.3 1.6 0.5 98.8 96.2, 2.6
AESVM2 3.1 1.8 1.5 0.9 0.39 98.9 96.3, 2.6
AESVM3 1.3 1.1 1.1 0.9 0.25 99 96.4, 2.6
CVM 0.3 0.2 0.8 0.6 0.74 99 96.6, 2.5
BVM 0.5 0.3 1 0.9 0.84 99.1 97, 2
LASVM 0.6 0.5 1 1.1 0.13 99.2 97, 2
LIBSVM 99 96.6, 2.4

Table 4: Performance comparison of AESVM, CVM, BVM, LASVM and LIBSVM on data
sets D1-D5. AESVM1, AESVM2 and AESVM3 represent the results of AESVM
with ε = 10−2, 10−3, and 10−4 respectively.

85

Nandan, Khargonekar and Talathi

Comparing AESVM to CVM, BVM and LASVM, we see that AESVM in general gave
the least values of RMSE and the largest values of ETS, OTS, ECS and CTS. In a
few cases LASVM gave low RMSE values. However, in all our experiments LASVM took
longer to train than the other algorithms including LIBSVM. We could not complete the
evaluation of LASVM for D4 due to its large training time, which was more than 40 hours
for some hyper-parameter combinations. The five algorithms under comparison were found
to give similar maximum classification accuracies for D1, D3 and D5. For D2 and D4, CVM
and BVM gave significantly smaller maximum classification accuracies. Another interesting
result is that for D3, the mean and standard deviation of classification accuracy of LASVM
was found to be widely different from the other algorithms. For all the tested values of
ε the maximum, mean and standard deviation of the classification accuracies of AESVM
were found to be similar.

Next we present the results of performance comparison of CVM, BVM, LASVM, AESVM,
and LIBSVM on the high-dimensional data sets D6-D9. As described in Section 5.2, De-
riveRS was run with only ε = 10−2 for these data sets. The results of the performance
comparison are shown in Table 5. CVM was found to take longer than 40 hours to train
on D6, D7 and D8 with some hyper-parameter values and hence we could not complete its
evaluation for those data sets. BVM also took longer than 40 hours to train on D7 and it
was also not evaluated for D7. AESVM consistently reported ETS, OTS, ECS and CTS
values that are larger than 1 unlike the other algorithms, except for D9 where the CTS
value for AESVM was 0.6. However it should be noted that the other methods also had sim-
ilarly low CTS values for D9. Similar to the results in Table 4, LASVM and BVM resulted
in very large RMSE values for some data sets. The maximum classification accuracies of
all algorithms were similar. On some data sets, BVM and LASVM were observed to give
significantly lower mean and higher standard deviation of classification accuracy.

5.3.2 Comparison to SVMperf

SVMperf differs from the other SVM solvers in its ability to compute a solution close to
the SVM solution for a given number of support vectors (k). The algorithm complexity
depends on k as O(k2) per iteration. We first used a value of k = 1000 for our experiments,
as it has been reported to give good performance (Joachims and Yu, 2009). SVMperf was
tested on data sets D1, D4, D5, D6, D8 and D9, with the Gaussian kernel12 and the same
hyper-parameter grid as described earlier. The results of the grid search are presented in
Table 6. The results of our experiments on AESVM (with ε = 10−2) and LIBSVM are
repeated in Table 6 for ease of reference. The maximum, mean and standard deviation of
classification accuracies are represented as max. acc., mean & std. acc. respectively.

Based on the results obtained for k = 1000, other values of k were also tested. For data
sets D1, D4 and D5, though SVMperf gave classification accuracies similar to the that of
LIBSVM and AESVM, the training times were similar to or higher than the training times of
LIBSVM. To test the ability of SVMperf to give fast training, we also tested it with k = 400
for D1, D4 and D5. For the high dimensional data sets (D6, D8 and D9), the RMSE values
were significantly higher for SVMperf, while the mean classification accuracy was noticeably
lower than AESVM. Considering the possibility that the value of k = 1000 is insufficient to

12. We used the software parameters ‘-t 2 -w 9 –i 2 –b 0’ as suggested in the author’s website.

86

Fast SVM Training Using Approximate Extreme Points

Data
set

Solver ETS OTS ECS CTS RMSE
(x102)

max. acc.
(x102)

mean & std.
acc. (x102)

D6

AESVM 1.5 1.4 1.1 1.2 0 85.1 81.4, 2.8
CVM - - - - - - -
BVM 0.6 0.6 1.5 1.2 7.8 85.2 80.2, 8.9
LASVM 0.8 0.5 1 1.1 0.85 85 81.1, 2.9
LIBSVM 85.1 81.4, 2.8

D7

AESVM 1 1 1 1.1 0.01 88.3 85.3, 5.7
CVM - - - - - - -
BVM - - - - - - -
LASVM 0.9 0.7 1 0.9 2.37 88.4 85.2, 6.2
LIBSVM 88.6 85.7, 4.8

D8

AESVM 1 1 1 1 0 99.7 92.3, 3.6
CVM - - - - - - -
BVM 4.7 2.6 3.2 3.1 17.55 99.7 88.5, 18.1
LASVM 1 0.9 1 1 0 99.7 92.3, 3.6
LIBSVM 99.7 92.3, 3.6

D9

AESVM 1.4 1.3 1.1 0.6 0 99.5 98.8, 0.8
CVM 1.4 1.2 1.8 0.3 1 99.5 98.9 , 0.8
BVM 17.5 16.9 4.9 0.6 0.09 99.5 98.9 , 0.8
LASVM 0.6 0.5 2.3 0.1 27.5 99.5 85.5, 23.9
LIBSVM 99.5 98.8, 0.8

Table 5: Performance comparison of AESVM (with ε = 10−2), CVM, BVM, LASVM and
LIBSVM on data sets D6-D9

result in an accurate solution for these data sets, we tested D6 and D9 with k = 2000 and
D8 with k = 3000. Even though the training time increased significantly with an increase in
k, the values of RMSE and the mean and standard deviation of accuracies did not improve
significantly. The training time speedup values of SVMperf are much lower than AESVM
for all tested k values for all data sets, except for D8. The maximum accuracies of all the
algorithms were similar. Due to the ability of SVMperf to approximate w with a small set of
k vectors, the classification time speedups of SVMperf are significantly higher than AESVM.
However, this approximation comes at the cost of increased training time and sometimes
results in a loss of accuracy, as illustrated in Table 6.

5.3.3 Comparison to RfeatSVM

Rahimi and Recht (2007) proposed a promising method to approximate non-linear kernel
SVM solutions using simpler linear kernel SVMs. This is accomplished by first projecting
the training data set into a randomized feature space and then using any SVM solver with
the linear kernel on the projected data set. We first investigated the classification accuracy
of the solution of RfeatSVM and its similarity to the SVM solution. LIBSVM with the

87

Nandan, Khargonekar and Talathi

Data
set

Solver ETS OTS ECS CTS RMSE
(x102)

max. acc.
(x102)

mean & std.
acc. (x102)

D1

AESVM 1188.9 156 5.8 3.3 0.22 94.2 92.4, 0.8

SVMperf

k = 400
6.7 1.6 17 6.6 0.89 93.9 92.7, 0.4

SVMperf

k = 1000
3.7 0.9 2.6 2.6 0.74 94 92.7, 0.5

LIBSVM 93.9 92.4, 0.8

D4

AESVM 962 34.6 24.5 72.8 1.5 68.3 61.6, 3.1

SVMperf

k = 400
10.2 3.7 467.1 694.3 3.7 68.4 62.9, 2.2

SVMperf

k = 1000
3.1 1.2 186.8 277.7 2.14 68.1 61.8, 2.7

LIBSVM 68.2 60.6, 3.2

D5

AESVM 26.6 4.1 3.3 1.6 0.5 98.8 96.2, 2.6

SVMperf

k = 400
0.8 0.4 14.6 8.2 2.9 98.8 96.5, 2.4

SVMperf

k = 1000
0.2 0.1 5.8 3.3 0.26 99 96.7, 2.4

LIBSVM 99 96.6, 2.4

D6

AESVM 1.5 1.4 1.1 1.2 0 85.1 81.4, 2.8

SVMperf

k = 1000
1.1 0.9 20 12.1 9.39 85.2 79.6, 10.7

SVMperf

k = 2000
0.3 0.2 10 6 6.5 85.1 80.1, 7.8

LIBSVM 85.1 81.4, 2.8

D8

AESVM 1 1 1 1 0 99.7 92.3, 3.6

SVMperf

k = 1000
37.6 23.8 49 9.9 54.2 99.9 55.7, 42.3

SVMperf

k = 3000
3.5 1.2 16.3 3.3 51.4 99.8 59.2, 41.6

LIBSVM 99.7 92.3, 3.6

D9

AESVM 1.4 1.3 1.1 0.6 0 99.5 98.8, 0.8

SVMperf

k =1000
1.2 0.9 21.3 3 22.6 99.2 86.1, 18.8

SVMperf

k =2000
0.4 0.3 10.7 1.5 20.6 99.4 87.3, 17.3

LIBSVM 99.5 98.8, 0.8

Table 6: Performance comparison of SVMperf, AESVM (with ε = 10−2), and LIBSVM

linear kernel was used to compute the RfeatSVM solution on the projected data sets. This
combination of RfeatSVM and LIBSVM is denoted as RfeatSVM1. We used LIBSVM,

88

Fast SVM Training Using Approximate Extreme Points

in spite of the availability of faster linear SVM implementations, as it is an exact SVM
solver. Hence only the performance metrics related to accuracy were used to compare the
performance of AESVM, LIBSVM and RfeatSVM1. The random Fourier features method,
described in Algorithm 1 of Rahimi and Recht (2007), was used to project the data sets
D1, D5, D6 and D9 into a randomized feature space of dimension E.

Data
set

Solver RMSE
(x102)

max. acc.
(x102)

mean & std.
acc. (x102)

D1
AESVM 0.25 93.5 92.2,0.9
RfeatSVM1
E = 100

56.18 37.8 36.1,1.3

LIBSVM 93.6 92.3,0.9

D5
AESVM 0.9 98.6 95.7,2.8
RfeatSVM1
E = 100

5.3 94.7 91.6,1.4

LIBSVM 98.9 96.2 ,2.7

D6
AESVM 0.16 85.1 81.2,2.9
RfeatSVM1
E = 1000

4 81.6 78,2.2

LIBSVM 85 81.3,3

D9
AESVM 0.15 99.3 98.6,0.8
RfeatSVM1
E = 1000

0.6 98.7 97.4,0.6

LIBSVM 99.5 98.8,0.9

Table 7: Performance comparison of RfeatSVM1 (RfeatSVM solved using LIBSVM),
AESVM (with ε = 10−2), and LIBSVM

The results of the accuracy comparison are given in Table 7. We used a smaller hyper-
parameter grid of all twenty four combinations of C ′ = {2−4, 2−2, 1, 22, 24, 26} and g =
{2−4, 2−2, 1, 22} for our experiments. The results reported in Table 7 for AESVM and
LIBSVM were computed for this smaller grid. We selected the number of dimensions (E)
of the randomized feature space for D1 and D6 based on Rahimi and Recht (2007). The
maximum accuracy for RfeatSVM1 was found to be much less than AESVM and LIBSVM
for all data sets. The RMSE values for RfeatSVM1 were significantly higher than AESVM
and mean accuracy noticeably lower for most data sets, especially for D1 and D6.

Next we investigated the training and classification time requirements of RfeatSVM by
solving it using the fast linear SVM solver LIBLINEAR (Fan et al., 2008), referred to as
RfeatSVM2 in the remainder of this paper. The entire hyper-parameter grid used in the
previous sections were used in this experiment. The results of the performance comparison
of RfeatSVM2, AESVM and LIBSVM are presented in Table 8. The classification time
shown in Table 8 is the time taken for classification when the SVM solver was trained with

89

Nandan, Khargonekar and Talathi

Data
set

Solver ETS OTS Classification
time (s)

RMSE
(x102)

max. acc.
(x102)

mean & std.
acc. (x102)

D1

AESVM 1188.9 156 6.1 0.22 94.2 92.4,0.8
RfeatSVM2
E = 100

176.3 56.4 0.9 50.3 63.5 43.7,12.9

RfeatSVM2
E = 500

77.5 47.7 4.4 43.4 89.3 56,24.1

LIBSVM 15 93.9 92.4,0.8

D5

AESVM 26.6 4.1 9.7 0.5 98.8 96.2,2.6
RfeatSVM2
E = 100

80.7 9.2 0.9 38.6 90.5 64.4,20

RfeatSVM2
E = 500

33.2 6.5 4.5 30.9 90.5 70.8,15.5

RfeatSVM2
E = 1000

18.4 3.6 13.8 31.5 90.5 70.2,17.8

RfeatSVM2
E = 5000

3.9 0.85 64.5 33.8 90.5 70.2,19.8

LIBSVM 16.8 99 96.6 ,2.4

D6

AESVM 1.5 1.4 16 0 85.1 81.4,2.8
RfeatSVM2
E = 1000

205.7 43.9 2.1 27.8 75.3 54.9,9.7

RfeatSVM2
E = 5000

48.8 8.9 10.7 29.1 76.4 53.1,8.1

RfeatSVM2
E = 10000

24.8 5.1 30.9 28.5 76.4 54,9.2

LIBSVM 30.5 85.1 81.4,2.8

D9

AESVM 1.4 1.3 10.5 0 99.5 98.8,0.8
RfeatSVM2
E = 1000

245.1 50 2.9 36.9 92.8 63.3,9.9

RfeatSVM2
E = 5000

57.4 12 15.3 39 95.1 61.5,11.2

RfeatSVM2
E = 10000

28.9 6.5 45.5 37.4 96.3 63.8,12.9

LIBSVM 5.1 99.5 98.8,0.8

Table 8: Performance comparison of RfeatSVM2 (RfeatSVM solved using LIBLINEAR),
AESVM (with ε = 10−2), and LIBSVM

its optimal hyper-parameters. For RfeatSVM2 the classification time includes the time
taken to derive the random Fourier features of the test vectors.

The classification time for RfeatSVM2 was generally less than AESVM, for small val-
ues of E. Moreover, it was found that RfeatSVM2 has significantly higher training time

90

Fast SVM Training Using Approximate Extreme Points

speed-ups than AESVM for small values of E, except for D1 where AESVM was much
faster. However, with increasing E the classification time and training time increased to
more than AESVM for most data sets. For all data sets, the RMSE, and maximum, mean
and standard deviation of accuracy of RfeatSVM2 were significantly worse than AESVM.
Increasing the number of dimensions E, resulted in only a slight improvement in the clas-
sification performance of RfeatSVM2. An important observation was that the projected
data sets were found to be almost 100% dense, which results in large memory requirements
for RfeatSVM1 and RfeatSVM2. Even though, technically the value of E can be increased
arbitrarily, its value is practically limited by the memory requirements of RfeatSVM.

5.4 Performance with the Polynomial Kernel

To validate our proposal of AESVM as a fast alternative to SVM for all non-linear kernels,
we performed a few experiments with the polynomial kernel, k(x1,x2) = (1 + xT1 x2)d. The
hyper-parameter grid composed of all twelve combinations of C ′ = {2−4, 2−2, 1, 22} and
d = {2, 3, 4} was used to compute the solutions of AESVM and LIBSVM on the data sets
D1, D4 and D6. The results of the computation of the representative set using DeriveRS
are shown in Table 9. The parameters for DeriveRS were P = 105, V = 103 and ε = 10−2,
and the first level segregation was performed using FLS2. The performance comparison of
AESVM and LIBSVM with the polynomial kernel is shown in Table 10. Like in the case
of the Gaussian kernel, we found that AESVM gave results similar to LIBSVM with the
polynomial kernel, while taking shorter training and classification times.

M
N x100% (Computation time in seconds)

Data
set

d = 2 d = 3 d = 4

D1 8(109) 13.2(199) 26(638)

D4 20.1(67) 48(260.1) 81.3(1166.4)

D6 87.8(11) 84(12.5) 91(13.7)

Table 9: Results of DeriveRS for the polynomial kernel

6. Discussion

AESVM is a new problem formulation that is almost identical to, but less complex than, the
SVM primal problem. AESVM optimizes over only a subset of the training data set called
the representative set, and consequently, is expected to give fast convergence with most
SVM solvers. In contrast, the other studies mentioned in Section 2 are mostly algorithms
that solve the SVM primal or related problems. Methods such as RSVM also use different
problem formulations. However, they require special algorithms to solve, unlike AESVM.
In fact, AESVM can be solved using many of the methods in Section 2. As described in
Corollary 5, there are some similarities between AESVM and the Gram matrix approxi-
mation methods discussed earlier. It would be interesting to see a comparison of AESVM,
with the core set based method proposed by Gärtner and Jaggi (2009). However, due to the

91

Nandan, Khargonekar and Talathi

Data
set

Solver ETS OTS ECS CTS RMSE
(x102)

max. acc.
(x102)

mean & std.
acc. (x102)

D1
AESVM 21.1 6.4 2.7 2.6 0.13 93.9 93.4, 0.4
LIBSVM 94.1 93.5, 0.4

D4
AESVM 7 1.6 2.6 1.9 0.8 64.9 61.2, 2.7
LIBSVM 64.5 60.7, 2.5

D6
AESVM 3.8 5.3 1.1 1.1 0.04 84.6 81, 2.4
LIBSVM 84.6 81, 2.3

Table 10: Performance comparison of AESVM (with ε = 10−2), and LIBSVM with the
polynomial kernel

D1 D2 D3 D4 D5 D6 D7 D8 D9
0

20

40

60

80

100

M
e
a
n

 A
c
c
u

ra
c
y
 x

 1
0

2

Datasets

AESVM, ε= 10
−2

CVM

BVM

LASVM

SVM
perf

RfeatSVM1

LIBSVM

Figure 4: Plot of mean classification accuracy of all SVM solvers

lack of availability of a software implementation and of published results on L1-SVM with
non-linear kernels using their approach, the authors find such a comparison study beyond
the scope of this paper.

The theoretical and experimental results presented in this paper demonstrate that the
solutions of AESVM and SVM are similar in terms of the resulting classification accuracy.
A summary of the experiments in Section 5, that compared an SMO based AESVM im-
plementation, CVM, BVM, LASVM, LIBSVM, SVMperf (with k = 1000) and RfeatSVM1,
is presented in Figures 4 to 7. The results of RfeatSVM2 are omitted from Figures 4 to
7, for ease of representation. It can be seen that AESVM typically gave classification per-

92

Fast SVM Training Using Approximate Extreme Points

D1 D2 D3 D4 D5 D6 D7 D8 D9

40

50

60

70

80

90

100

M
a
x

im
u

m
 A

c
c

u
ra

c
y
 x

 1
0

2

Datasets

AESVM, ε= 10
−2

CVM

BVM

LASVM

SVM
perf

RfeatSVM1

LIBSVM

Figure 5: Plot of maximum classification accuracy of all SVM solvers

formance similar to LIBSVM, while giving highest overall training time speedup (OTS).
Even though RfeatSVM2 gave higher OTS values in some cases, the degradation in clas-
sification accuracy was worse than in RfeatSVM1 as shown in Tables 7 and 8. AESVM
also gave competitively high classification time speedup for the optimal hyper-parameters
(CTS) in comparison with the other algorithms except SVMperf and RfeatSVM2. It was
found that the maximum classification accuracies of all the algorithms except RfeatSVM1
and RfeatSVM2 were similar. RfeatSVM1 and RfeatSVM2, and in some cases CVM and
BVM, gave lower maximum classification accuracies. Apart from the excellent experimen-
tal results for AESVM with the Gaussian kernel, AESVM also gave good results with the
polynomial kernel as described in Section 5.4.

The algorithm DeriveRS was generally found to be efficient, especially for the lower
dimensional data sets D1-D5. For the high dimensional data sets D6-D9, the representative
set was almost the same size as the training data set, resulting in small gains in training and
classification time speedups for AESVM. In particular, for D7 and D8 the representative set
computed by DeriveRS was almost 100% of the training set. A similar result was reported
for this data set in Beygelzimer et al. (2006), where a divide and conquer method was used
to speed up nearest neighbor search. Data set D8 is reported to have resulted in nearly
no speedup, compared to a speedup of almost one thousand for other data sets when their
method was used. Their analysis found that the data vectors in D8 were very distant
from each other in comparison with the other data sets.13 This observation can explain
the performance of DeriveRS on D8, as data vectors that are very distant from each other

13. This is indicated by the large expansion constant for D8 illustrated in Beygelzimer et al. (2006).

93

Nandan, Khargonekar and Talathi

D1 D2 D3 D4 D5 D6 D7 D8 D9
0

20

40

60

80

100

120

140

160

180
↑OTS value of AESVM for D3 is 488.5

O
v
e

ra
ll

 T
ra

in
in

g
 T

im
e
 S

p
e

e
d

u
p

Datasets

AESVM, ε= 10
−2

CVM

BVM

LASVM

SVM
perf

Figure 6: Plot of overall training time speedup (compared to LIBSVM) of all SVM solvers

are expected to have large representative sets. It should be noted that irrespective of the
dimensionality of the data sets, AESVM always resulted in excellent performance in terms
of classification accuracy. There seems to be no relation between data set density and the
performance of DeriveRS and AESVM.

The authors will provide the software implementation of AESVM and DeriveRS upon
request. Based on the presented results, we suggest the parameters ε = 10−2, P = 105

and V = 103 for DeriveRS. A possible extension of this paper is to apply the idea of
the representative set to other SVM variants and support vector clustering. It would be
interesting to investigate AESVM solvers implemented using methods other than SMO.
Modifications to DeriveRS using the methods in Section 2 might improve its performance
on high dimensional data sets. The authors will investigate improvements to DeriveRS and
the application of AESVM to the linear kernel in their future work.

Acknowledgments

Dr. Khargonekar acknowledges support from the Eckis professor endowment at the Uni-
versity of Florida. Dr. Talathi was partially supported by the Children’s Miracle Network,
and the Wilder Center of Excellence in Epilepsy Research. The authors acknowledge Mr.
Shivakeshavan R. Giridharan, for providing assistance with computational resources.

94

Fast SVM Training Using Approximate Extreme Points

D1 D2 D3 D4 D5 D6 D7 D8 D9
0

10

20

30

40

50

60

70

80 ←CTS value of SVM
perf

for D4 is 277.7

C
la

s
s
if

ic
a

ti
o

n
 T

im
e

 S
p

e
e
d

u
p

Datasets

AESVM, ε= 10
−2

CVM

BVM

LASVM

SVM
perf

Figure 7: Plot of classification time speedup for optimal hyper-parameters (compared to
LIBSVM) of all SVM solvers

References

K. P. Bennett and E. J. Bredensteiner. Duality and geometry in SVM classifiers. In
Proceedings of the Seventeenth International Conference on Machine Learning, pages 57–
64, 2000.

A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In Proceedings
of the 23rd International Conference on Machine Learning, pages 97–104, 2006.

M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for selection.
Journal of Computer and System Sciences, 7:448–461, August 1973.

A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with online and
active learning. Journal of Machine Learning Research, 6:1579–1619, December 2005.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

J. Cervantes, X. Li, W. Yu, and K. Li. Support vector machine classification for large data
sets via minimum enclosing ball clustering. Neurocomputing, 71:611–619, January 2008.

C. C. Chang and C. J. Lin. IJCNN 2001 challenge: Generalization ability and text decoding.
In Proceedings of International Joint Conference on Neural Networks, volume 2, pages
1031 –1036, 2001.

95

Nandan, Khargonekar and Talathi

C.C Chang and C.J Lin. LIBSVM: A library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology, 2:1–27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

K. L. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm.
ACM Transaction on Algorithms, 6(4):63:1–63:30, September 2010.

R. Collobert, S. Bengio, and Y. Bengio. A parallel mixture of SVMs for very large scale
problems. Neural Computing, 14(5):1105–1114, 2002.

P. Drineas and M. W. Mahoney. On the Nyström method for approximating a gram matrix
for improved kernel-based learning. Journal of Machine Learning Research, 6:2153–2175,
December 2005.

R. E. Fan, P. H. Chen, and C. J. Lin. Working set selection using second order information
for training support vector machines. Journal of Machine Learning Research, 6:1889–
1918, 2005.

R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin. LIBLINEAR: A library
for large linear classification. Journal of Machine Learning Research, 9:1871–1874, June
2008.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations.
Journal of Machine Learning Research, 2:243–264, 2002.

V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for support vector ma-
chines. In Proceedings of the 25th International Conference on Machine Learning, pages
320–327, 2008.

B. Gärtner and M. Jaggi. Coresets for polytope distance. In Proceedings of the 25th Annual
Symposium on Computational Geometry, pages 33–42, 2009.

J. Guo, N. Takahashi, and T. Nishi. A learning algorithm for improving the classification
speed of support vector machines. In Proceedings of the 2005 European Conference on
Circuit Theory and Design, volume 3, pages 381 – 384, 2005.

C. J. Hsieh, K. W. Chang, C. J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate
descent method for large-scale linear SVM. In Proceedings of the 25th International
Conference on Machine Learning, pages 408–415, 2008.

T. Joachims. Making large-scale support vector machine learning practical. In Advances in
Kernel Methods, pages 169–184. MIT Press, 1999.

T. Joachims. Training linear SVMs in linear time. In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 217–226.
ACM, 2006.

T. Joachims and C. N. J. Yu. Sparse kernel SVMs via cutting-plane training. Machine
Learning, 76:179–193, September 2009.

96

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Fast SVM Training Using Approximate Extreme Points

B. Kaluža, V. Mirchevska, E. Dovgan, M. Luštrek, and M. Gams. An agent-based approach
to care in independent living. In Ambient Intelligence, pages 177–186. Springer, 2010.

J. Kelley. The cutting-plane method for solving convex programs. Journal of the Society
for Industrial and Applied Mathematics, 8(4):703–712, 1960.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278 –2324, 1998.

Y. J. Lee and O. L. Mangasarian. Rsvm: Reduced support vector machines. In Pro-
ceedings of the First SIAM International Conference on Data Mining, pages 5–7. SIAM
Philadelphia, 2001.

M. Nandan, S. S. Talathi, S. Myers, W. L. Ditto, P. P. Khargonekar, and P. R. Carney.
Support vector machines for seizure detection in an animal model of chronic epilepsy.
Journal of Neural Engineering, 7(3), 2010.

E. Osuna and O. Castro. Convex hull in feature space for support vector machines. In Pro-
ceedings of the 8th Ibero-American Conference on AI: Advances in Artificial Intelligence,
pages 411–419, 2002.

E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application to
face detection. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 130 –136, 1997.

D. Pavlov, D. Chudova, and P. Smyth. Towards scalable support vector machines us-
ing squashing. In Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 295–299. ACM, 2000.

J. C. Platt. Fast training of support vector machines using sequential minimal optimization.
In Advances in Kernel Methods, pages 185–208. MIT Press, 1999.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. Advances in
Neural Information Processing Systems, pages 1177–1184, 2007.

R. T. Rockafellar. Convex Analysis. Princeton University Press, 1996.

B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regular-
ization, Optimization, and Beyond. MIT Press, 2001.

B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector
algorithms. Neural Computation, 12(5):1207–1245, 2000.

S. Shalev-Shwartz and N. Srebro. SVM optimization: Inverse dependence on training set
size. In Proceedings of the 25th International Conference on Machine Learning, pages
928–935, 2008.

S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal estimated sub-
gradient solver for SVM. Mathematical Programming, 127:3–30, March 2011.

97

Nandan, Khargonekar and Talathi

S. S. Talathi, D. U. Hwang, M. L. Spano, J. Simonotto, M. D. Furman, S. M. Myers, J. T.
Winters, W. L. Ditto, and P. R. Carney. Non-parametric early seizure detection in an
animal model of temporal lobe epilepsy. Journal of Neural Engineering, 5:85–98, 2008.

M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. A detailed analysis of the KDD CUP
99 data set. In Proceedings of the 2009 IEEE Symposium Computational Intelligence for
Security and Defense Applications, pages 53–58, 2009.

D. Tax and R. Duin. Support vector data description. Machine Learning, 54(1):45–66,
2004.

C. H. Teo, S. V. N. Vishwanthan, A. J. Smola, and Q. V. Le. Bundle methods for regularized
risk minimization. Journal of Machine Learning Research, 11:311–365, 2010.

I. W. Tsang, J. T. Kwok, P. Cheung, and N. Cristianini. Core vector machines: Fast SVM
training on very large data sets. Journal of Machine Learning Research, 6:363–392, 2005.

I. W. Tsang, A. Kocsor, and J. T. Kwok. Simpler core vector machines with enclosing
balls. In Proceedings of the 24th International Conference on Machine Learning, pages
911–918, 2007.

H. Yu, J. Yang, and J. Han. Classifying large data sets using SVMs with hierarchical clus-
ters. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 306–315, 2003.

G. X. Yuan, C. H. Ho, and C. J. Lin. An improved GLMNET for l1-regularized logis-
tic regression. In Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 33–41, 2011.

T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the 21st International Conference on Machine Learning,
pages 919–926, 2004.

98

Journal of Machine Learning Research 15 (2014) 99-140 Submitted 3/13; Revised 11/13; Published 1/14

Detecting Click Fraud in Online Advertising:
A Data Mining Approach

Richard Oentaryo roentaryo@smu.edu.sg
Ee-Peng Lim eplim@smu.edu.sg
Michael Finegold mfinegol@smu.edu.sg
David Lo davidlo@smu.edu.sg
Feida Zhu fdzhu@smu.edu.sg
Living Analytics Research Centre
Singapore Management University
80 Stamford Road, Singapore

Clifton Phua clifton.phua@sas.com
SAS Institute Pte. Ltd.
20 Anson Road, Singapore

Eng-Yeow Cheu eycheu@i2r.a-star.edu.sg
Ghim-Eng Yap geyap@i2r.a-star.edu.sg
Kelvin Sim shsim@i2r.a-star.edu.sg
Minh Nhut Nguyen mnnguyen@i2r.a-star.edu.sg
Data Analytics Department
Institute for Infocomm Research
1 Fusionopolis Way, Singapore

Kasun Perera bperera@masdar.ac.ae
Bijay Neupane bneupane@masdar.ac.ae
Mustafa Faisal mfaisal@masdar.ac.ae
Zeyar Aung zaung@masdar.ac.ae
Wei Lee Woon wwoon@masdar.ac.ae
Masdar Institute of Science and Technology
Abu Dhabi, United Arab Emirates

Wei Chen chenwei@i2r.a-star.edu.sg
Urban Systems Programme Office
Institute for Infocomm Research
1 Fusionopolis Way, Singapore

Dhaval Patel patelfec@iitr.ernet.in
Department of Computer Science and Engineering
Indian Institute of Technology Roorkee
Century Road, Roorkee, Uttarakhand, India

Daniel Berrar berrar.d.aa@m.titech.ac.jp

Interdisciplinary Graduate School of Science and Engineering

Tokyo Institute of Technology

4259 Nagatsuta, Midori-ku, Yokohama, Japan

Abstract

Click fraud–the deliberate clicking on advertisements with no real interest on the product
or service offered–is one of the most daunting problems in online advertising. Building
an effective fraud detection method is thus pivotal for online advertising businesses. We

c©2014 Richard Oentaryo, Ee-Peng Lim, Michael Finegold, David Lo, Feida Zhu, Clifton Phua, Eng-Yeow Cheu, Ghim-
Eng Yap, Kelvin Sim, Minh Nhut Nguyen, Kasun Perera, Bijay Neupane, Mustafa Faisal, Zeyar Aung, Wei
Lee Woon, Wei Chen, Dhaval Patel and Daniel Berrar

Oentaryo, Lim, Finegold et al.

organized a Fraud Detection in Mobile Advertising (FDMA) 2012 Competition, opening
the opportunity for participants to work on real-world fraud data from BuzzCity Pte.
Ltd., a global mobile advertising company based in Singapore. In particular, the task
is to identify fraudulent publishers who generate illegitimate clicks, and distinguish them
from normal publishers. The competition was held from September 1 to September 30,
2012, attracting 127 teams from more than 15 countries. The mobile advertising data
are unique and complex, involving heterogeneous information, noisy patterns with miss-
ing values, and highly imbalanced class distribution. The competition results provide a
comprehensive study on the usability of data mining-based fraud detection approaches in
practical setting. Our principal findings are that features derived from fine-grained time-
series analysis are crucial for accurate fraud detection, and that ensemble methods offer
promising solutions to highly-imbalanced nonlinear classification tasks with mixed vari-
able types and noisy/missing patterns. The competition data remain available for further
studies at http://palanteer.sis.smu.edu.sg/fdma2012/.

Keywords: ensemble learning, feature engineering, fraud detection, imbalanced classifi-
cation

1. Introduction

Advances in data management and web technologies have rendered online advertising as the
ideal choice for small and large businesses to effectively target the appropriate marketing
segments on the fly. The main coordinator in this setting is the advertising commissioner
(also known as ad network), acting as a broker between advertisers and content publish-
ers. An advertiser plans a budget, provides the commissioner with advertisements, and
agrees on a commission for every customer action (e.g., clicking an ad, filling a form, bid-
ding in an auction, etc). A content publisher contracts with the commissioner to display
advertisements on their websites, and gets commissions based on the traffic it drives to
the advertisers. This model, however, may incentivise dishonest publishers to generate il-
legitimate clicks on their sites–a major issue known as click fraud. Click fraud degrades
the reliability of online advertising systems and, if not kept under control, can lead to a
contraction of the advertising market in the long term. There have also been high-profile,
costly litigations from unsatisfied advertisers, giving bad reputation for the commissioners.
Thus, a reliable click fraud detection system is needed to help the commissioners proactively
prevent click fraud and assure their advertisers that their dollars have been well spent.

To this end, we organized a Fraud Detection in Mobile Advertising (FDMA) 2012 Com-
petition, centered around real-world mobile advertising data. The goal is to develop and
crowdsource data mining and machine learning methods capable of building effective pre-
dictive models to detect fraudulent publishers. The competition offers a unique opportunity
to work on click and publisher data sets provided by BuzzCity Pte. Ltd., a global mobile
advertising network that has millions of consumers around the world (particularly in India,
Indonesia and Africa) accessing internet contents and interacting on mobile phones and
devices. Most publishers in the BuzzCity network adopt the cost per click (CPC) payment
scheme, which is subject to abuses by malicious publishers through click fraud. In Q1
2012, over 45 billion ad banners were delivered across the BuzzCity network, having over
10,000 publisher sites and reaching an average of 300 million unique users per month. A
fast and robust detection of the most predictive variables for fraudulent behavior is thus
of great importance. Currently, BuzzCity uses an in-house developed detection mechanism

100

http://palanteer.sis.smu.edu.sg/fdma2012/

Detecting Click Fraud in Online Advertising: A Data Mining Approach

to identify fraudulent publishers semi-automatically. The use of data mining and machine
learning methods will provide more detailed insights for improving the detection accuracy,
while reducing the efforts for manual interventions.

Accordingly, the FDMA 2012 Competition aims at providing an empirical platform to
gauge the state-of-the-art data mining and machine learning methods in a setting typical
of industrial applications. We summarize the key contributions of this paper below:

• We present an important application of machine learning and data mining methods
to tackle real-world fraud detection problems, which serves as valuable resources for
industrial and research practitioners. Thus far, there is a lack of comprehensive study
on data mining/machine learning approaches for fraud detection in advertising.

• Our study involves proprietary, industrial data, which are rarely available and pose
a challenging problem for many data mining and machine learning algorithms. The
solutions presented in this paper address some important issues in data mining and
machine learning research, including highly imbalanced distribution of the output
variable, heterogeneous data (mixture of numerical and categorical variables), and
noisy patterns with missing/unknown values.

• We show that exploratory data analysis and feature engineering are crucial milestones
for effective fraud detection. In particular, we present systematic analysis of both
spatial and temporal factors at different levels of granularity, which leads to creation
of good, predictive features for accurate fraud detection.

• We investigate the applicability of a wide range of single and ensemble learning al-
gorithms in fraud detection task. We found that the ensemble algorithms produce
significant improvement over the single algorithms. Also, coupling ensemble learning
with feature ranking analysis leads to discovery of the most important features for
distinguishing between fraudulent and normal behaviors.

• To the best of our knowledge, FDMA 2012 is also the first open international com-
petition and crowdsourcing initiative on fraud detection in online advertising. The
results not only provide useful research insights, but also illustrate how companies
(such as BuzzCity) can use data mining and machine learning methods to obtain
useful, actionable knowledge for improving their business operations.

In this paper, we report the selected, winning entries of the FDMA 2012 Competition,
which provide important insights on click fraud behavior. In Section 2, we give an overview
of the competition data, challenges, and evaluation procedures. Table 1 summarizes the
profiles of the winning teams and contributors of this paper, and Sections 3 to 6 elaborate
in turn their “journeys” and key findings. We next describe the work independently done
by the competition organizer in Section 7. Finally, Section 8 provides concluding remarks.

2. Competition

In this section, we first describe the data set, the task objective, as well as the evaluation
criterion adopted in the competition. We also briefly describe the online website and public
leaderboard systems we built to support the competition.

101

Oentaryo, Lim, Finegold et al.

Rank Team name Members Contribution

1 starrystarrynight • Clifton Phua Section 3
• Eng-Yeow Cheu
• Ghim-Eng Yap
• Kelvin Sim
• Minh-Nhut Nguyen

2 TeamMasdar • Kasun Perera Section 4
• Bijay Neupane
• Mustafa A. Faisal
• Zeyar Aung
• Wei Lee Woon

3 DB2 • Wei Chen Section 5
• Dhaval Patel

4 Tea • Daniel Berrar Section 6

Table 1: Winning teams in the FDMA 2012 Competition.

2.1 Data

The raw data supplied by BuzzCity consist of two categories: publisher database and click
database, both provided in comma-separated values (CSV) format. The publisher database
records the publisher/partners profile, and consists of several fields as listed in Table 2.
On the other hand, the click database captures the click traffic associated with various
publishers. Table 3 lists the fields in the click database. Table 4 provides a sample of the
two largest publishers of each status in the training set, a Fraud and an OK publisher, and
Table 5 lists three click samples from each publisher. There is another Observation status,
comprising small number of new publishers, or publishers who have high click traffic and
not yet deemed as fraudulent. Note that some fields in the publisher and click databases
have been anonymized for privacy protection.

Field Description

publisherid Unique identifier of a publisher
bankaccount Bank account associated with a publisher (anonymized; may be missing/unknown)
address Mailing address of a publisher (anonymized; may be missing/unknown)
status Label of a publisher, which falls into three categories:

• OK: Publishers whom BuzzCity deems as having healthy traffic (or those who
slipped their detection mechanisms)

• Observation: Publishers who may have just started their traffic or their traf-
fic statistics deviates from system wide average. BuzzCity does not have any
conclusive stand with these publishers yet

• Fraud: Publishers who are deemed as fraudulent with clear proof. BuzzCity
suspends their accounts and their earnings will not be paid

Table 2: Fields in the publisher database.

2.2 Challenge

The FDMA 2012 competition aims at building a data-driven methodology for effective
detection of fraudulent publishers. In particular, each participant is tasked to highlight
potential Fraud publishers and distinguish them from OK and Observation (or collectively

102

Detecting Click Fraud in Online Advertising: A Data Mining Approach

Field Description

id Unique identifier of a particular click
numericip Public IP address of a clicker/visitor
deviceua Phone model/agent used by a clicker/visitor
publisherid Unique identifier of a publisher
campaignid Unique identifier of a given advertisement campaign
usercountry Country from which the clicker/visitor is
clicktime Timestamp of a given click (in yyyy-mm-dd format)
referredurl URL where ad banners are clicked (anonymized; may be missing/unknown)
channel Publisher’s channel type, which consists of:

• ad: Adult sites
• co: Community
• es: Entertainment and lifestyle
• gd: Glamour and dating
• in: Information
• mc: Mobile content
• pp: Premium portal
• se: Search, portal, services

Table 3: Fields in the click database.

publisherid bankaccount address status

8iaxj 14vxbyt6sao00s84 Fraud
8jljr OK

Table 4: Publisher sample in raw training data. There are missing values in bankaccount

and address. In pay per click online advertising, Fraud involves a large number
of intentional click charges with no real interest in the advertisements, using au-
tomated scripts or click farms. The perpetrators can be the publishers themselves
or their competitors, or the competitors of advertisers.

Normal) publishers, based on their click traffic and account profiles. This will help shed
light on several key areas, such as identifying the common underlying fraud schemes or
concealment strategies, understanding patterns of dishonest publishers, and developing new
ways for effective prevention/detection plans.

id numericip deviceua publisherid campaignid usercountry clicktime channel referredurl

13417867 3648406743 GT-I9100 8iaxj 8fj2j ru 2012-02-09 00:00:00 ad 26okyx5i82hws84o
13417870 3756963656 Samsung S5233 8jljr 8geyk in 2012-02-09 00:00:00 es 15vynjr7rm00gw0g
13417872 693232332 SonyEricsson K70 8jljr 8gkkx ke 2012-02-09 00:00:00 es
13417893 2884200452 Nokia 6300 8jljr 8gp95 vn 2012-02-09 00:00:01 es
13418096 3648406743 GT-I9100 8iaxj 8fj2m ru 2012-02-09 00:00:08 ad 24w9x4d25ts00400
13418395 781347853 GT-I9003 8iaxj 8fj2j ru 2012-02-09 00:00:20 ad 4im401arl30gc0gk

Table 5: Click samples in raw training data. There are missing values in referredurl and
deviceua. The raw features include IP address of a clicker (numericip), mobile
device model used by the visitor (deviceua), campaign ID of a particular adver-
tisement campaign (campaignid), country of the visitor (usercountry), publisher
channel type (channel), or an URL where the ad banner is clicked (referredurl).

103

Oentaryo, Lim, Finegold et al.

More specifically, we seek to answer this question: Given historical patterns (of both
fraudulent and normal publishers) in some time period (e.g., a 3 day period), how to detect
fraudulent publishers in a future period (e.g., a 3 day period in the week after)? That is,
we are interested in a detection (predictive) model that can generalize well over time. To
this end, BuzzCity provides three sets of publishers and clicks data taken from different
time periods: a training set (for building predictive model), a validation set (for model
selection), and a test set (for evaluating the models’ generalization abilities and determining
the competition winners). Each click data set captures the click traffic over a 3 day period,
while each publisher data set records publishers receiving at least one click in that period.
We summarize the count statistics of the publishers and clicks in Table 6.

It is worth noting that the publisher labels (i.e., Fraud, Observation, OK) were gener-
ated from BuzzCity’s semi-automatic detection mechanism (cf. Section 1) that uses two
types of auxiliary information together: offline and online; the former corresponds to infor-
mation that BuzzCity deems impossible to automate or does not attempt to computerize
(e.g., manually contact the publishers and verify their responses), while the latter is ob-
tained based on the statistical analysis of the click behavior done by BuzzCity’s proprietary
automated programs. Due to the proprietary nature of this practice and for simplicity,
the details of the label generation process were not given as part of the competition. Here
BuzzCity’s primary interest is whether the competition participants can independently infer
and discover fraudulent patterns based on the click and publisher databases alone, without
using the auxiliary information. Also note that the Fraud and Observation publishers
constitute very small portions of the population relative to the OK publishers (cf. Table 6),
rendering this problem challenging for many contemporary classification methods.

No. of publishers
Data set Time period No. of clicks Fraud Observation OK Total

Train 9-11 Feb 2012 3,173,834 72 (2.34%) 80 (2.60%) 2,929 (95.07%) 3,081
Validation 23-25 Feb 2012 2,689,005 85 (2.77%) 84 (2.74%) 2,895 (94.48%) 3,064
Test 8-10 Mar 2012 2,598,815 82 (2.73%) 71 (2.37%) 2,847 (94.90%) 3,000

Table 6: Statistics of the competition data.

2.3 Evaluation

For performance evaluation, we chose to adopt the average precision criterion, which favors
algorithms capable of ranking the few useful items ahead of the rest. Such a criterion is par-
ticularly suitable for detecting rare instances such as fraud cases (Zhu, 2004). We describe
the criterion as follows: Let π be the number of relevant (i.e., actual Fraud) instances. We
first ranked the instances according to the prediction/detection scores produced by each
algorithm. Among the t× 100% top-ranked instances, supposing h(t) ≤ t are truly relevant

(also called hits), let r(t) = h(t)
π and p(t) = h(t)

t be the recall and precision respectively.
Typically, h(t) and p(t) takes values only at a finite number of points ti = i

n , i = 1, 2, ..., n.
Using these variables, the average precision (AP) criterion can be computed as

AP =

n∑
i=1

p(ti) (r(ti)− r(ti−1)) .

104

Detecting Click Fraud in Online Advertising: A Data Mining Approach

Essentially, the AP criterion summarizes the precision-recall performances at different
threshold levels, and corresponds to the area under the precision-recall curve (Zhu, 2004).
In the case of fraud detection, simply evaluating precision and recall at a specific threshold
level is inadequate, since these metrics vary with the strictness of a classification algorithm’s
threshold and the range of its prediction outputs. Further details on the AP criterion can
be found in Zhu (2004).

2.4 Website and Leaderboard

Our FDMA 2012 website supports a public leaderboard system displaying the best AP
score and the submission time of each team on the validation set. We ran the competition
for 1 month, from 1 to 30 September 2012, with two submissions per day allowed for each
team. BuzzCity offered a total prize of 7,000 Singapore dollars (SGD) for the competition
winners (i.e., SGD 4,000, 2,000, and 1,000 for the first, second, and third winners respec-
tively). During the competition, the actual publishers’ status labels (i.e., ground-truth)
in the validation set were hidden, and our system computes the average precision for each
submission. The submitting teams received email notifications showing their current scores
and submission time. This allows teams to track their progress and fine-tune their models.
To ensure the models developed do not overfit the validation set, we used the test set for
the final evaluations, the status labels of which were also hidden during the competition.
The test set was only revealed 72 hours before the competition ended.

(a) (b)

Figure 1: Statistics of the average precision scores: (a) Public leaderboard (validation set),
and (b) Private leaderboard (test set).

Figure 1(a) shows the overall statistics of the leaderboard scores as of September 30,
2012, while Figure 1(b) shows the statistics of the final test scores. In total, we had 127
teams registering for the competition, 88 of which explicitly specified their affiliation and
country: 60 from academic institutions and 28 from industry, and 51 were local teams from
Singapore and 37 were overseas teams. A total of 95 teams submitted to the leaderboard
during the competition period. For baseline in the leaderboard, we used the logistic re-

105

Oentaryo, Lim, Finegold et al.

Average precision
Rank Team Validation set Test set Affiliation

1 starrystarrynight 59.38% 51.55% Institute of Infocomm Research
2 TeamMasdar 59.39% 46.42% Masdar Institute of Science & Technology
3 DB2 62.21% 46.15% National University of Singapore
4 Tea 51.55% 42.01% Tokyo Institute of Technology

(*) LARC 57.79% 55.64% Singapore Management University

Table 7: Results of the top teams on the validation and test sets. Team ranks were deter-
mined using the test results.

gression method (Fan et al., 2008), which provides reasonable performance reference close
to the mean or median AP score. The final standings on the validation and test sets are
summarized in Table 7. We also showed the best result obtained by the competition orga-
nizer (dubbed as team LARC) in the last row. Comparing the validation and test results,
the position of the top-3 ranks were reversed, which may be attributed to overfitting.

3. First Winner’s Entry

This section describes the entry from the first winning team, which covers the data pre-
processing or feature extraction techniques and classification method used, followed by the
empirical results and insights obtained by the team.

3.1 Preprocessing and Feature Extraction

Figure 2(a) plots the correlations among some of our features including status, which we
used to ensure feature diversity by excluding new features which are too similar to existing
ones. In Figure 2(b), using specific model parameters described in the next section, we ob-
tained the relative influence or importance of 118 predictive features in the final training set.
A complete listing of the 118 features is available at http://clifton.phua.googlepages.
com/feature-list.txt. In addition, there are two other features: publisherid, which is
not used for model building, and status, which is the class or dependent feature. Adding
all the features’ relative influence will sum up to a score of one hundred. On one extreme,
there are a few features with relative influence above three. On another extreme, there are
a few features with negligible influence on the results such as channel-related features (see
Section 3.3.3 on a discussion of leveraging the predictiveness of the raw channel feature).
The average relative influence per feature is about 0.88%.

The 118 predictive features can be grouped into three types of features: 67 click behavior
(57%), 40 repetitive click behavior (34%), and 11 high-risk click behavior (9%). The average
rank of all the features (based on the model output, as described in Section 3.2) is 69, 35,
and 69 respectively, meaning that duplicated clicks are likely to be invalid clicks. We use
simple statistical features based on average, standard deviation, and percentages, and none
of our features are created directly from status or specific values from raw anonymized
features, such as bankaccount, address, numericip, campaignid, and referredurl.

106

http://clifton.phua.googlepages.com/feature-list.txt
http://clifton.phua.googlepages.com/feature-list.txt

Detecting Click Fraud in Online Advertising: A Data Mining Approach

(a) (b)

Figure 2: (a) Correlation plot of some click behavior features in the training set. (b) Rela-
tive influence of all features in the training set.

3.2 Method

Gradient boosting is a machine learning technique used for classification problems with a
suitable loss function, which produces a final prediction model in the form of an ensemble of
weak prediction decision trees (Friedman, 2000). We used the implementation of generalized
boosted regression model (GBM) in R’s gbm package (Ridgeway, 2007). The final parameters
used on the final training data set for our best average precision on the test data set are:

• distribution (loss function): ”bernoulli” - also tested “Adaboost” distribution

• n.trees (number of iterations): 5000 - tested 100 to 5000 decision trees

• shrinkage (learning rate): 0.001 - tested 0.001 to 0.01

• interaction.depth (tree depth): 5 - tested 2 to 5

• n.minobsinnode (minimum observations in terminal node): 5 - tested 2 to 5

In the early to mid stages of the competition, we used two layers of GBM to select the
most important features. During the final stages, we focused on only one layer of GBM
as we had identified the three best types of features. Initially, we also tried random forest
(Breiman, 2001) (decision trees ensemble algorithm) in R’s randomForest package as well
as RIPPER (Cohen, 1995) (rule induction algorithm) in WEKA (Hall et al., 2009). As the
random forest and RIPPER did not perform as well as GBM on the validation set, we did
not conduct further explorations on them or other classification algorithms. If we did find
alternative algorithms that perform on par with (or better than) GBM, we could train a
set of base classifiers and combine them with stacking (Wolpert, 1992).

107

Oentaryo, Lim, Finegold et al.

3.3 Result and Discussion

This section describes several key empirical results and insights gained by the first winner.

3.3.1 Spatial and Temporal Patterns

In Table 8, we list the top-10 features of each type to show that our features capture some
temporal and spatial aspects of clicks for each publisher. Within the one minute interval,
fraudulent clicks have significantly more duplicates than normal ones. For repetitive click
behavior features, the shorter intervals produce better results after we tested one, five, fif-
teen, thirty, and sixty minutes intervals using Chao-Shen entropy (Chao and Shen, 2003).
Chao-Shen entropy is a non-parametric estimation of Shannon’s index of diversity. It com-
bines the Horvitz-Thompson estimator (Horvitz and Thompson, 1952) and the concept of
sample coverage proposed by Good (1953) to adjust for unseen observations in a sample. For
example, there are multi-feature duplicates such as avg spiky ReAgCnIpCi (average num-
ber of the same referredurl, deviceua, usercountry, numericip, and campaignid being
duplicated in one minute), as well as single feature duplicates such as std spiky numericip

(standard deviation of numericip being duplicated in one minute).

For our top click behavior and duplication features, we created conditional features based
on finer-grained time intervals to better capture temporal dynamics of click fraud behavior.
We divided a day into four six-hour periods: night (12am to 5:59am), morning (6am to
11:59am), afternoon (12pm to 5:59pm), and evening (6pm to 11:59pm). For example,
night referredurl percent is the number of distinct referredurls at night divided by the
total number of distinct referredurls, and night avg spiky referredurl is the average
number of the same referredurl being duplicated within one minute at night. Also, we
divided an hour into four fifteen-minute periods: first (0-14), second (15-29), third (30-44),
and last (45-59). For example, second 15 minute percent is the number of clicks between
15th to 29th minute divided by total number of clicks.

Fraudulent clicks tend to come from some countries (or finer-grained spatial regions)
more than others, for example, businesses in India and Indonesia are hardest hit by fraud
(Kroll Advisory Solutions, 2012). Most clicks on mobile advertisements also come from
these two countries. We tested the top five, ten, fifteen, twenty, and twenty-five high-risk
countries (out of two hundred over countries), and found that the top ten high-risk countries
works best. For example, usercountry in percent and usercountry id percent are the
percentages of invalid clicks originating from India and Indonesia respectively. The large
numbers of invalid clicks coming from usercountry sg percent or Singapore could be due
to BuzzCity’s penetration tests being conducted from there.

3.3.2 Performance

Using the GBM configuration with the 118 features mentioned in Section 3.1, our team
was ranked fourth with an average precision of 59.38% on the validation set, as displayed
on the public leaderboard. After the competition ended and teams submitted their results
based on the test data, we were ranked the first with the average precision of 51.55%.
(The second winner finished the line with an average precision of 46.42%, and the third
winner with 46.15%.) As such, comparing our result with that of the other top teams, we
can conclude that our GBM model fits the data well.

108

Detecting Click Fraud in Online Advertising: A Data Mining Approach

Rank Feature Relative influence

6 std per hour density 3.12
12 total clicks 1.76
14 brand Generic percent 1.71
15 avg distinct referredurl 1.62
19 std total clicks 1.43
23 night referredurl percent 1.19
24 second 15 minute percent 1.18
27 distinct referredurl 1.15
29 std distinct referredurl 1.12
30 morning click percent 1.1

(a)

Rank Feature Relative influence

2 std spiky numericip 3.81
3 avg spiky ReAgCnIpCi 3.69
4 night avg spiky referredurl 3.66
5 avg spiky deviceua 3.29
8 avg spiky referredurl 2.67
9 avg spiky ReAgCn 2.59
10 night avg spiky ReAgCnIpCi 2.49
11 afternoon avg spiky ReAgCnIpCi 1.98
13 afternoon avg spiky deviceua 1.75
16 std spiky referredurl 1.6

(b)

Rank Feature Relative influence

1 usercountry id percent 5.49
7 usercountry sg percent 2.69
49 usercountry other percent 0.72
72 usercountry us percent 0.44
77 usercountry th percent 0.39
84 usercountry uk percent 0.34
91 usercountry in percent 0.26
103 usercountry ng percent 0.05
104 usercountry tr percent 0.04
106 usercountry ru percent 0.04

(c)

Table 8: Top-10 features by type in final training data set: (a) By click behavior, (b) By
repetitive click behavior, and (c) By high-risk click behavior.

3.3.3 Other Potentials

In Table 9, we show that there is some potential for an alternative approach using the
channel of each fraudulent publisher. Fraudulent mobile and adult content publishers tend
to produce much more invalid clicks than the other fraudulent publishers, especially at night
and morning periods. In contrast, fraudulent entertainment, lifestyle, and premium portal
publishers produce a lot less invalid clicks, and tend to have relatively more invalid clicks
during afternoon and evening periods. We attempted to split the data sets and build models

109

Oentaryo, Lim, Finegold et al.

separately by channel, but did not have enough time to integrate/normalize the different
sets of prediction scores in a meaningful way.

Night Morning Afternoon Evening
Channel Publisher Fraud clicks Fraud clicks Fraud clicks Fraud clicks Fraud clicks

count (fraud %) (fraud %) (fraud %) (fraud %) (fraud %)
Adult (ad) 10 47226 (37%) 15435 (12%) 6439 (5%) 11299 (9%) 14053 (11%)
Mobile content (mc) 23 41941 (33%) 13589 (11%) 9284 (7%) 9623 (8%) 9445 (7%)
Community (co) 12 16411 (13%) 7218 (6%) 3301 (3%) 2612 (2%) 3280 (3%)
Entertainment and lifestyle (es) 14 14433 (11%) 2649 (2%) 3265 (3%) 3573 (3%) 4946 (4%)
Search, portal, services (se) 4 3180 (3%) 682 (1%) 572 (0%) 689 (1%) 1568 (1%)
Premium portal (pp) 6 2926 (2%) 351 (0%) 608 (0%) 732 (1%) 904 (1%)
Information (in) 3 893 (1%) 49 (0%) 284 (0%) 428 (0%) 132 (0%)
Total 72 127010 (100%) 39973 (31%) 23753 (19%) 28956 (23%) 34328 (27%)

Table 9: High risk categories in final training data set.

3.3.4 Recommendations

We conclude this section by addressing several key questions in relation to a broader context:

• What is the underlying click fraud scheme? Simply put, a relatively large
number of clicks or rapid duplicate clicks, or a high percentage of clicks from high-risk
countries have been shown to be important fraud indicators.

• What sort of concealment strategies commonly used by fraudulent parties?
The Tuzhilin Report (Tuzhilin, 2006) on the Google AdWords/AdSense system lists
ten possible strategies or sources of invalid clicks. The hard-to-detect click fraud tends
to come from organized crime in hard-to-prosecute countries (Chambers, 2012). For
example, hard-to-detect and hard-to-prosecute click fraud uses existing user traffic
including 0-size iframes, forced searching, and zombie computers.

• How to interpret data for patterns of dishonest publishers and websites?
From a machine learning point-of-view, some decision tree and rule induction algo-
rithms can provide high interpretability to fraud patterns. However, the key step prior
to this is still to engineer the best features using domain knowledge and experimenta-
tion, and to allow investigators to discern and validate these fraud patterns from top
ranked features, even through black-box classification algorithms.

• How to build effective fraud prevention/detection plans? Effective fraud de-
tection plans need to have elements of resilience, adaptivity, and quality data (Phua
et al., 2012). Resilience is “defense-in-depth” with multiple, sequential, and indepen-
dent layers of defense. For example, BuzzCity already has anomaly-based detectors
to place some publishers under observation, and they can consider adding classifier-
based detectors to their click fraud detection system. In the context of click fraud,
the classifier-based detectors need to be adaptive to changing fraud and normal click
behavior. The classifier-based detectors also need to use quality data with timely
updates when publishers are discovered to be fraudulent. Other than increasing ad-
vertisers’ awareness of click/conversion ratios, having better customer service and
fraud policies, and improving automated filters, one can pursue click fraud more ag-
gressively, switch from cost-per-click to cost-per-action advertising model, or cultivate
trust with advertisers by having independent audits (Jansen, 2007).

110

Detecting Click Fraud in Online Advertising: A Data Mining Approach

4. Second Winner’s Entry

In this section, we describe the second winner’s entry. Following the organization of Section
3, we elaborate the preprocessing/feature extraction technique and classification method
used by the team, as well as their empirical results and insights.

4.1 Preprocessing and Feature Extraction

We first analyzed each attribute in the raw click and publisher database, and evaluated
its effects on the behavior of a publisher. We observed that not all features are useful;
attributes from the publisher database such as address, bankaccount can be excluded from
the feature construction process. To facilitate different experiment settings, we considered
three data sets. In the first data set, all publishers labeled as Observation were relabeled as
OK. In the second data set, all publishers labeled as Observation were relabeled as Fraud.
Finally, the third data set retains all the three (original) labels. Training and testing were
performed accordingly on all the three data sets.

Feature extraction is another important facet for building the prediction model. Prop-
erly selected features should be able to capture properties or trends that are specific to
fraudulent publishers and are robust against their evolving behavior. We took each raw
attribute in the click database and model the publisher’s click pattern by creating several
statistical features based on that particular attribute. The feature extraction procedures
applied to different attributes are detailed hereafter.

4.1.1 Attribute: clicktime

Fraudulent publishers often disguise their activities using various tricks such as generating
very sparse click sequences, changes in IP addresses, issuing clicks from different computers
in different countries and so on. Others stick to the conservative approach of generating
the maximum number of clicks in a given interval. It is important for any fraud detection
system to recognize both kinds of concealment strategies. Accordingly, we derived several
statistical features from the clicktime attribute in the click database, with the number
of clicks for each publisher observed over different time intervals: 1 minute, 5 minutes, 1
hours, 3 hours and 6 hours. The goal is to capture both the short and long term behavior
of the publishers, based on the observation that publishers often try to act rationally and
have constant clicks in very sparse time intervals.

Specifically, for each time interval, we counted the number of clicks each publisher
receives and aggregated these counts using several features: maximum clicks, average click,
click skewness, and click variance. Click variance measures the deviation of number of
clicks from the average clicks (norm) of a publisher, while click skewness is a measure of
the asymmetry of the click distribution. Figure 3 shows all the features we derived from
the attribute clicktime from the raw click database.

4.1.2 Attribute: numericip

Internet protocol (IP) address is another attribute that can be used to characterize the
behavior of a publisher, since it is a reflection of the number of computers/mobile devices
used or different times at which the user clicks on a particular advertisement. Since many

111

Oentaryo, Lim, Finegold et al.

clicktime

No. of clicks per 1 min No. of clicks per 5 mins No. of clicks per 3 hours No. of clicks per 6 hours

Average

Maximum

Variance

Skewness

Average

Maximum

Variance

Skewness

Average

Maximum

Variance

Skewness

Average

Maximum

Variance

Skewness

Figure 3: Feature creation from the clicktime attribute.

Feature Description
MaxSameIPClicks Maximum number of clicks from all unique IP addresses associated with a publisher
NoOfIPs Number of clicks from all unique IP addresses associated with a publisher
ClickOverIPRatio Ratio of the number of clicks over the number of unique IP addresses for a publisher
EntropySameIPClicks Entropy of the number of clicks from all IP addresses associated with a publisher
VarSameIPClicks Variance of the number of clicks from all IP addresses associated with a publisher

Table 10: Features derived from the numericip attribute.

IP addresses are dynamically allocated when users connects via an internet service provider
(ISP), it is not unusual for the same user to have different IP addresses. For a given 3-
day period, we observed changes in the IP addresses and number of clicks from a given IP
address for a given publisher id. We used parametric measures over IP address attribute
(numericip) to define the behavior of a publisher. Table 10 lists the feature set created
from the numericip attribute.

Some fraudulent publishers may try to increase their reward by clicking repeatedly on
an advertisement but all of these clicks might come from the same IP. From the data, we
observed that many clicks originating from the same IP or an unusually large click to IP
ratio tend to be associated with fraudulent behavior, and may place the associated publisher
under suspicion. We also observed that lower variance in the number of clicks from each IP
is indicative of a legitimate publisher, whereas higher variances might indicate a fraudulent
publisher. Similarly, the entropy for the distribution of the number of clicks originating
from each IP can be another useful indicator of fraudulent activity.

4.1.3 Attribute: deviceua

The deviceua attribute is the phone model that the visitors use to browse the web and
click on advertisements. As mentioned, a fraudulent visitor might use one phone, but
with many dynamically allocated IP addresses. Thus, we use the following measures to
derive features from deviceua attribute in the set of attributes: MaxSameAgentClicks,

112

Detecting Click Fraud in Online Advertising: A Data Mining Approach

MaxSameAgentClicks, VarSameAgentClicks, and SkewnessSameAgentClicks. These fea-
tures also calculated in a similar way to those for the numericip attribute.

4.1.4 Other Attributes

We also used the same method to generate features for country and campaignid. On the
other hand, each publisher is assigned to only one channel, thus we avoid taking channel to
derive more attributes. Instead, we defined the prior probability of being fraud for a given
channel based on the training set. That is, we computed number of visitors for each channel,
and then the number of fraudulent publishers in that set to obtain the prior probability.
Finally, for the referredurl attribute we derived ReferrerOverClickRatio by computing
the number of referred clicks over the total number of clicks for a given publisher.

At the end of feature extraction process, we had 41 different features created from
different individual and set of attributes from the data set. The full list of those 41 features
is provided in www.dnagroup.org/PDF/FDMA12_TeamMasdar_AppendixA.pdf.

4.2 Method

In this section, we describe our machine learning framework for addressing fraud detection
problem. We first present our base classification models, followed by data resampling strate-
gies for handling imbalanced label distribution. Finally, we discuss on ensemble learning
methods that combine several base classifiers for improved detection performance.

4.2.1 Base Classifier

Our approach to detecting fraud consists of employing contemporary classification mod-
els over data derived from click database. We tuned the parameters of these models such
that they work robustly with the train and validation data sets, and can generalize well
to unseen test set. We tried a range of different model parameters that yielded the high-
est precision and area under the receiver operating characteristics (AUC) curve, with low
standard deviation to ensure performance consistency.

We explored a variety of classification methods including decision tree, neural network,
and support vector machine. For each method, we also employed different learning algo-
rithms. Our preliminary experiments on the train and validation sets revealed that the
decision tree technique is particularly promising and gave good prediction results. As such,
we shall focus on decision tree-based models in the subsequent sections.

4.2.2 Resampling

As mentioned, only a small fraction of publishers are fraudulent, and the skewed nature of
the data would drive the prediction model to be more biased towards the majority class. In
light of this issue, we used various resampling strategies such as up/downsampling and the
synthetic minority oversampling technique (SMOTE) (Chawla et al., 2002). Upsampling
was done by replicating samples from the minority class until their number is equal to the
that of the majority class. Conversely, downsampling randomly discards the majority class
until the class distribution is balanced. In our experiments, we tried both up/downsampling

113

www.dnagroup.org/PDF/FDMA12_TeamMasdar_AppendixA.pdf

Oentaryo, Lim, Finegold et al.

Base tree Ensemble (meta) learner

C4.5 tree Bagging, Metacost, Logitboost, random subspace
REP tree Bagging, Metacost, Logitboost
Random forest Bagging, Metacost, Logitboost

Table 11: Decision tree algorithms and the corresponding meta-learning algorithms.

and SMOTE, followed by shuffling of the data instances. Results obtained with and without
sampling methods shall be discussed in Section 4.3.

4.2.3 Ensemble Learning

Decision tree-based algorithms are weak learners known for their stability issues. To im-
prove a weak classifier, one may construct many weak classifiers instead of a single one, and
to combine them into a powerful decision rule. Recently, a number of combining techniques
have been developed, the most popular being bagging (Breiman, 1996), boosting (Freund
and Schapire, 1996) and the random subspace method (Ho, 1998). In bagging, one samples
the training set, generating random independent bootstrap replicates, constructs the clas-
sifier on each of these, and aggregates them by a simple majority vote in the final decision
rule. In boosting, classifiers are constructed on weighted versions of the training set, which
depend on previous classification results. In the random subspace method, classifiers are
constructed in random subspaces of the data feature space. These classifiers are typically
combined by simple majority voting.

Generated features

Model with
resampling/SMOTE

(29%)

Model without
resampling/SMOTE

(45%)

3 labels
(45%)

2 labels
(“Observation” to “OK”)

(50.37%)

2 labels
(“Observation” to “Fraud”)

(46.1%)

Bagging with
J48 tree

(50.37%)

Bagging with
REP tree
(46.82%)

Bagging with
random forest

(51.4%)

MetaCost
with J48 tree

(43.77%)

LogitBoost
with J48 tree

(44.82%)

Random subspace
with J48 tree

(50%)

Final model: Average
prediction of 6 classifiers

(59.39%)

= chosen

= not chosen

Figure 4: The final classification model comprising an ensemble of six learners.

114

Detecting Click Fraud in Online Advertising: A Data Mining Approach

For bagging, we considered the standard algorithm (Breiman, 1996) and MetaCost
(Domingos, 1999), a special type of bagging that produces a single cost-sensitive classi-
fier of the base learner, giving the benefits of fast classification and interpretable output.
For boosting, we considered the LogitBoost method (Friedman et al., 2000), which treats
AdaBoost (Freund and Schapire, 1995) as a generalized additive model and applies the cost
functional of logistic regression. Finally, we used the standard random subspace method
(Ho, 1998), with decision trees as the base learners.

We built classification models using different combinations of base learners and meta-
learning algorithm, as shown in Table 11, and evaluated them using the train and validations
sets. The base learners are C4.5 decision tree (Quinlan, 1993), reduced error pruning (REP)
tree (Su and Zhang, 2006), and random forest (Breiman, 2001). Our final classifier consists
of an ensemble of six models, which gave the best overall performance in terms of precision,
recall, and area under the ROC curve. The goal of evaluating all three measures is to build
a model that can detect high percentage of Fraud cases, while maintaining high degree
of precision. The “journey” towards the final classification model and the scores of the
constituent learners are presented in Figure 4.

4.3 Results and Discussion

In this section, we summarize the key observations and results obtained using our proposed
machine learning approach as described in Section 4.2.

4.3.1 Effect of Resampling

To see the effect of resampling on the model performance, we conducted experiments with
both up/downsampling and SMOTE (Chawla et al., 2002). The resampling and SMOTE
performed very well on the training set but performed badly on the validation set. That is,
results using the original data were found to be over 15% better than those obtained using
resampling and SMOTE.

4.3.2 Two- vs. Three-Class Task

Different models were trained using data sets containing only 2 classes (i.e., OK and Fraud),
and all 3 classes (i.e, OK, Observation and Fraud). For the 2-class setting, two approaches
were taken: In the first approach, all Observation cases were converted to OK, and in the
second approach all Observation cases were treated as Fraud cases. In the 3-class setting,
we simply used the labels provided with the data. Of all three approaches, the 2-class
data set gave the best performance. The AP score obtained using the J48 tree for the
(Observation → OK conversion case was 50.37%, and for the Observation → Fraud case
we got 46.1%. When we used all 3 classes, the precision score was 45%. Thus, we deem
that converting all Observation cases to OK was the best approach.

4.3.3 Performance

We evaluated the prediction performance of different algorithms for all data sets. Few
algorithms which gave best result alone are mentioned above. There were many algorithms
with very low true positive and false negative rates, thus giving very high precision scores.

115

Oentaryo, Lim, Finegold et al.

These algorithms were able to obtain high precision because of their low false positive value.
We were only interested on algorithms which have high true positive rates and precision.
The precision scores of the different algorithms when applied on the 2-class validation set
were C4.5 tree: 50.37%, REP tree: 46.82%, and LogitBoost: 44.82%, as per Figure 4.

With our ensemble approach, we were able to pass the baseline score but none of the
algorithms alone was able to obtain precision higher than 50.37%. We analyzed the results
and found that every algorithm has a drawback, which was either a high false positive rate
or a lower rate of true positives. This indicated that choosing any one of the algorithms
represented a trade-off between high sensitivity on the one hand, and higher precision on the
other. Subsequently, we combined the results from the different algorithms trained using
the 2-class data set. Six different algorithms were chosen which obtained higher values for
precision, recall and AUC when evaluated alone. This method proved to be the best as we
obtained an average precision of 59.39% on the validation set. It also performed well on
the final test set, achieving a score of 46.42%.

5. Third Winner’s Entry

This section describes the third winner’s entry, from the preprocessing and feature extraction
methods to the classification algorithms and empirical results, as per the previous sections.

5.1 Preprocessing and Feature Extraction

Click fraud can be generated through various ways (Dave et al., 2012), such as (1) botnets
(where malware on the user’s computer clicks on ads in the background), (2) tricking or
confusing users into clicking ads (e.g., on parked domains), and (3) directly paying users
to click on ads. To deal with various fraud patterns, we first need to extract publisher’s
feature from various statistics such as mean, standard deviation, count from different views
and at different time granularities. We can analyse these features and choose the most
discriminative ones to build an effective classifier.

5.1.1 Click Statistics by Publisher

We calculate the basic click statistics of each publisher (i.e., publisherid), unique count
of attribute such as numericip, country, deviceua, referredurl, campaignid and total
visit. The features used in this work and their descriptions are shown in Table 12:

Feature Description

unique count(numericip) unique count of the IP
unique count(country) unique count of the country
unique count(deviceua) unique count of the deviceua
unique count(referredurl) unique count of the referredurl
unique count(campaignid) unique count of the campaignid
total visit count of the click log’s row

Table 12: Features derived from the click statistics of each publisher.

116

Detecting Click Fraud in Online Advertising: A Data Mining Approach

5.1.2 Click Statistics by numericip

The fraudulent visitors may visit the advertisements from the same IP address. In order
to capture this, we calculate the average access, standard deviation, counting by grouping
each IP for each publisher in different time granularity (by second, by min, by day). For
example, in the Table 13, suppose it is the full click log for the publisher “8kxij”, we can
get the average access by IP in minute granularity is 5, standard deviation is 0, and the
counting for the IP 2, 919, 155, 822 visit is 5. We can also get the same statistics in different
time granularity such as by day, hour, second. The feature created is shown in Table 14.

id numericip deviceua campaignid usercountry clicktime channel referredurl
8kxij 2,919,155,822 Nokia X6 8gava us 2012-02-09 07:23:13.0 mc ?
8kxij 2,919,155,822 Nokia X6 8gava us 2012-02-09 07:23:13.0 mc ?
8kxij 2,919,155,822 Nokia X6 8gghw us 2012-02-09 07:23:13.0 mc ?
8kxij 2,919,155,822 Nokia X6 8gghw us 2012-02-09 07:23:19.0 mc ?
8kxij 2,919,155,822 Nokia X6 8gava us 2012-02-09 07:23:19.0 mc ?

Table 13: Example of fraud pattern: Clicking from the same IP address.

Feature Description

avg IP sec average visit by IP per second
std IP sec standard deviation of average visit by IP per second
count IP sec sum of visit count (larger that 2) by IP per second

avg IP min average visit by IP in minute level
std IP min standard deviation of average visit by IP per minute
count IP min sum of visit count (larger that 2) by IP per minute

avg IP hour average visit by IP per hour
std IP hour standard deviation of average visit by IP per hour
count IP hour sum of visit count (larger that 2) by IP per hour

avg IP day average visit by IP per day
std IP day standard deviation of average visit by IP per day
count IP day sum of visit count (larger that 2) by IP per day

Table 14: Click statistics by IP address.

We also conjecture that fraudulent visitors will visit the advertisements not from the
same IP address but from the same subnetwork (see Table 15). For this, we tried to obtain
the same statistics by each subnetwork instead of IP. The subnetwork of different granularity
can be obtained by dividing the IP by 1,000 or 1,000,000 and rounding the result. Based
on this, we got the same statistics as shown in Table 14 for different subnetwork.

id numericip deviceua campaignid usercountry clicktime channel referredurl

8jk0d 1,917,853,114 MSIE 6.0 8gp6q cn 2012-02-09 11:52:27.0 se ?
8jk0d 1,917,853,057 MSIE 6.0 8gp6q cn 2012-02-09 11:56:13.0 se ?
8jk0d 1,917,853,952 MSIE 6.0 8gp6q cn 2012-02-09 11:58:49.0 se ?
8jk0d 1,917,853,022 MSIE 6.0 8gp6q cn 2012-02-09 12:06:55.0 se ?

Table 15: Example of fraud pattern from the same subnetwork.

117

Oentaryo, Lim, Finegold et al.

5.1.3 Click Statistics by deviceua

Sometimes the malicious publishers use the same deviceua but different IP to access a
website at different time periods. For example, in Table 16, the fraudulent visitor using
same deviceua MSIE 6.0 visits the same publisher using different IP at different times, while
there is no other deviceua visiting this publisher during these time period. To capture this
behavior, we sorted the click by clicktime and then deviceua. Afterwards, for each click
log row, we compared with the next click log row. If the deviceua is the same, we kept the
current row, otherwise it is removed. We can then calculate the portion of the filtering rows
over the total rows for each publisher; we call this feature deviceua1. For example, in the
Table 16, after filtering, we have 8 rows left, so the final result will be 8/11. In addition, we
tried to sort the click data by deviceua only and calculate the statistics again as discussed
above. This feature is named as deviceua2.

id numericip deviceua campaignid usercountry clicktime channel referredurl

8jk0d 1,917,852,952 MSIE 6.0 8gp6q cn 2012-02-11 02:55:50.0 se ?
8jk0d 1,917,853,022 MSIE 6.0 8gp6q cn 2012-02-11 02:56:36.0 se ?
8jk0d 1,917,853,060 MSIE 6.0 8gp6q cn 2012-02-11 03:53:12.0 se ?
8jk0d 1,917,852,993 MSIE 6.0 8gp6q cn 2012-02-11 04:49:42.0 se ?
8jk0d 701,380,683 Nokia2600c 8k7xb ng 2012-02-11 04:51:58.0 se ?
8jk0d 1,917,852,993 MSIE 6.0 8gp6q cn 2012-02-11 05:33:51.0 se ?
8jk0d 1,917,853,114 MSIE 6.0 8gp6q cn 2012-02-11 06:30:02.0 se ?
8jk0d 1,917,853,146 MSIE 6.0 8gp6q cn 2012-02-11 07:09:23.0 se ?
8jk0d 1,917,853,146 MSIE 6.0 8gp6q cn 2012-02-11 07:31:21.0 se ?
8jk0d 1,917,852,993 MSIE 6.0 8gp6q cn 2012-02-11 07:53:16.0 se ?
8jk0d 1,917,852,952 MSIE 6.0 8gp6q cn 2012-02-11 07:55:14.0 se ?

Table 16: Example of fraud pattern from one deviceua but different IP at different times.

5.1.4 Click Statistics by campaignid

The click data also suggest that malicious publishers may access the same advertisement
campaign repeatedly using the same IP address and phone agent at a brief time period.
This is shown in Table 17, where campaignid “8gkwy” was accessed many times by the
same numericip and deviceua. These clicks are thus likely to be illegitimate. Accordingly,
we calculated the average access, standard deviation, counting by grouping campaignid

for each publisher in different time granularity (by second, by minute, by day). We then
obtained results similar to Table 14, grouped by campaignid instead of by numericip.

id numericip deviceua campaignid usercountry clicktime channel referredurl

8kv5w 3,251,257,947 Iphone 8gkwx dk 2012-02-09 02:36:05.0 co ?
8kv5w 3,251,257,947 Iphone 8gkwx dk 2012-02-09 02:36:16.0 co ?
8kv5w 3,251,257,947 Iphone 8gkwx dk 2012-02-09 02:36:40.0 co ?
8kv5w 3,251,257,947 Iphone 8gkwx dk 2012-02-09 02:38:01.0 co ?
8kv5w 3,251,257,947 Iphone 8gkwx dk 2012-02-09 02:38:09.0 co ?
8kv5w 3,251,257,947 Iphone 8gkwx dk 2012-02-09 02:38:26.0 co ?

Table 17: Example of fraud pattern on the same campaign ID.

118

Detecting Click Fraud in Online Advertising: A Data Mining Approach

5.1.5 Click Statistics by numericip+deviceua

The numericip corresponds to a public IP address that may be assigned to different clickers
at different time periods. Hence, an IP address may not uniquely identify a clicker. A better
estimate is to use numericip+deviceua for identification. Using this identifier, we calcu-
lated the average access, standard deviation, counting by grouping numericip+deviceua

for each publisher in different time resolutions. Again, we obtained the statistics similar to
Table 14, grouped by numericip+deviceua instead of by numericip.

5.2 Method

We employed a linear blending of many predictive models, and our approach consists of
three main steps. In the first step, we created our own validation set from the training set
(since the validation set provided by the competition organizer has no label). Specifically,
the internal validation set was generated by randomly selecting a subset of publishers in the
training set such that the original class (status) distribution is maintained (i.e., stratified
sampling). We chose this approach instead of cross-validation procedure for simplicity and
computational efficiency. In the second step, we optimized the meta-parameters of the
models and picked the configuration that yielded the best result on the internal validation
set. Finally, using the best meta-parameters found, the third step consists of retraining the
model on the combined train and internal validation sets. The model was then evaluated
on the test set and the prediction scores were recorded for submission.

5.2.1 Classification Algorithms

The classification methods we considered for this competition are listed in Table 18. Most
of these techniques are tree/rule-based classifiers (except for Bayesian network and resilient
propagation (RPROP)), which we selected due to their relatively good performances. All
methods were trained and evaluated using the three step procedure described above.

5.2.2 Blending

To combine the predictions of all the classification algorithms in Table 18, we used a linear
blending method. A simple way to compute the final prediction is to average all predictions
in the ensemble, but better results can be achieved by computing weighted sum of the
predictions. In this work, we performed blending via weighted sum approach, where the
weight coefficients were learned using linear regression. Furthermore, we normalized all
inputs (i.e., the predictions) to [0, 1]. We optimized the weight coefficients based on the
average precision for 10-fold cross-validation.

5.3 Results and Discussion

Below we summarize our main experimental results, focusing on our mode performances as
well as findings on several important features indicative of fraudulent behavior.

119

Oentaryo, Lim, Finegold et al.

Type Method Description

Single FT tree A type of decision trees with logistic regression functions at the
(Gama, 2004) inner nodes and/or leaves
REP tree A decision tree is built using information gain or variance and
(Su and Zhang, 2006) then pruned using reduced-error pruning (REP) method
Decision table Rule-based classifier that uses simple decision table majority
(Kohavi, 1995) voting, providing a precise yet compact representation
Bayesian network Directed graphical model for encoding statistical dependencies
(Neapolitan, 2003) among a set of variables
RPROP Learning for feed-forward neural networks that locally adapts
(Riedmiller and Braun, 1993) the weight updates based on the error function’s behavior

Ensemble LAD tree A multi-class alternating decision tree that is built using the
(Holmes et al., 2002) LogitBoost strategy
NB tree Decision tree with Naive Bayes classifiers at the leaf nodes
(Kohavi, 1996)
Random forest Combination of tree predictors such that each tree depends on the
(Breiman, 2001) values of a random vector sampled independently
Rotation forest Classifier ensemble based on feature extraction. Features are split
(Rodrguez et al., 2006) into subsets and principal component analysis is applied to each
Tree ensemble Variant of random forest whereby each tree model is learned on
(Berthold et al., 2009) different set of records and/or attributes

Table 18: Classification methods employed for the FDMA 2012 Competition.

5.3.1 Performance

The performances of the individual models and their blending are shown in Table 19. For
the single models, RPROP performed the best, suggesting that neural network approach
is suitable for the detection task. Among the ensemble approaches, only the tree ensemble
outperformed RPROP, but the improvement was marginal. Lastly, the linear blending
approach gave better result than all its constituent models. Hence, we chose it as our final
model for the competition submissions. We obtained an average precision of 62.21% and
46.15% on the validation and test sets, respectively.

Type Method Average Precision

Single FT tree 36.3%
REP tree 35.8%
Bayes network 33.7%
RPROP 48.3%

Ensemble LAD tree 37.0%
NB tree 37.9%
Random forest 47.7%
Random subspace 38.9%
Rotation forest 42.9%
Tree ensemble 49.3%

Ensemble of ensemble Blending 52.3%

Table 19: Performance for different algorithms on the internal validation set.

120

Detecting Click Fraud in Online Advertising: A Data Mining Approach

5.3.2 Important Features

To prune inconsequential features and improve prediction performance, we performed iter-
ative feature elimination (Guyon and Elisseeff, 2003) as follows. Initially, classification is
performed using the complete N features. In the next N − 1 iterations, each of the input
features is disabled once. Then the algorithm discards the feature that influences the pre-
diction result the least (in this case giving the smallest degradation in average precision).
The subsequent n − 2 iterations follow where each of the remaining features is ruled out
once. The total number of iterations is therefore N ∗ (N + 1)/2 − 1. Finally, we had all
computed levels of the feature elimination together with the average precision. We specified
an error threshold and select the level with fewest features that has a prediction error below
the threshold. Table 20 lists the final set of features after the elimination, which represent
the important variables potentially correlated with fraudulent cases.

Feature Description
unique count(referredurl) Unique count of referredurl
unique count(campaignid) Unique count of campaignid
unique count(country) Unique count of country
total visit Count of the click log’s row
count ip hour Sum of visit count (> 2) by numericip per hour
count ip ag sec Sum of visit count (> 2) by numericip+deviceua per second
count ip ag day Sum of visit count (> 2) by numericip+deviceua per day
count sip2 sec Sum of visit count (> 2) by subnetwork (divided by 1,000,000) per second
count sip2 min Sum of visit count (> 2) by subnetwork (divided by 1,000,000) per minute
count sip2 hour Sum of visit count (> 2) by subnetwork (divided by 1,000,000) per hour
count sip day Sum of visit count (> 2) by subnetwork (divided by 1,000) per day
avg sip2 day Average visit by subnetwork (divided by 1,000,000) per day
avg ip ag min Average visit by numericip+deviceua per minute
avg ip ag day Average visit by numericip+deviceua per day
avg campaignid min Average visit by campaignid per minute
deviceua1 Statistics for click data sorted by time and deviceua, as discussed in Section 5.1.3
deviceua2 Statistics for click data sorted by deviceua, as discussed in Section 5.1.3

Table 20: Final feature set after backward elimination.

6. Runner-up’s Entry

In this section, we elaborate the approach and results obtained by the runner up (i.e., fourth
winner), with similar organization as that of the previous sections.

6.1 Preprocessing and Feature Extraction

For each publisher, we considered the following basic attributes: (1) total number of clicks,
(2) number of clicks from the same computer (inferred from attribute numericip), (3)
distinct IP addresses (inferred from numericip), (4) distinct parts of the IP addresses,
(5) publisher’s channel type (inferred from channel), (6) phone models used by clickers
(inferred from deviceua); (7) advertisement campaign (inferred from campaignid); and (8)
number of clicks from different countries (geo tracking ; inferred from usercountry).

Click fraud, notably manual click fraud, is known to correlate with the geographical
location of the clicker. The heatmaps in Figure 5 visualize the geo tracking of clicks from
the training set with respect to the status of the publisher. For all three groups (Fraud,
Observation, and OK), the clicks originate from only a few countries (cf. columns). For

121

Oentaryo, Lim, Finegold et al.

Figure 5: Geo tracking of clicks. Columns show the 197 countries of origin; rows show the
publishers from the training set. For each publisher, the click percentage from
each country is color-coded. Darker colors reflect higher percentages; yellow is
0% and dark red is 100%. Rows and columns are clustered based on complete
linkage. For status OK, only those publishers with at least 50 clicks are shown.

about half of the publishers in each group (cf. rows), the clicks are distributed across
these countries, while for the rest the majority of clicks come from only a small number of
countries. In fact, we found such clusters in all three groups.

Geo tracking alone, however, is not reliable for click fraud detection. There may be
various explanations for the observed clusters, such as (obviously) the type and the target
of the advertisements. Furthermore, malicious scripts could generate fraudulent clicks, and
these scripts could run on computers in different geographical locations. In that case, we
might fail to detect any clusters.

6.1.1 Click Profiles

For each publisher and each unique IP address, we investigated the click profile, that is,
the time delay between consecutive clicks. For the majority of fraudulent publishers in the
training set, we observed that the number of unique IP addresses was below 3000. Only for
two fraudulent publishers, we observed that clicks were coming from more than 3000 unique
IP addresses. To derive the click profile, we discarded all publishers for which we observed
clicks coming from more than 3000 unique IP addresses. This approach was of course far
from being ideal, but it reduced the computational time considerably.

6.1.2 Long Click Profile

We assumed that many consecutive clicks from the same IP address in short time intervals
were suspicious. So for each publisher, we counted how many clicks from the same IP address
occurred each day in less than 5s, between 5s and 10s, between 10s and 20s, between 20s and
30s, and so on up to the interval > 300s. Furthermore, we required that at least 10 clicks
must have come from each IP address. Table 21 shows an example of a set of consecutive
clicks from the same IP address for the publisher 8ih09.

122

Detecting Click Fraud in Online Advertising: A Data Mining Approach

id deviceua campaignid usercountry date clicktime category referredurl same URL gap
14090783 Opera Mini 8flxe fr 2012-02-09 08:53:21.0 in 24940f5c4q688oc8 0 0
14096272 Opera Mini 8flxd fr 2012-02-09 09:02:01.0 in 24940f5c4q688oc8 1 520
14096576 Opera Mini 8flyo fr 2012-02-09 09:02:30.0 in 24940f5c4q688oc8 1 29
14135449 Opera Mini 8flyo fr 2012-02-09 09:59:33.0 in 24940f5c4q688oc8 1 3423
14149730 Opera Mini 8flyo fr 2012-02-09 10:18:31.0 in 24940f5c4q688oc8 1 1138
14153291 Opera Mini 8flyp fr 2012-02-09 10:23:32.0 in 14qhcdsqvou88kos 0 301
14153584 Opera Mini 8flyu fr 2012-02-09 10:23:57.0 in 14qhcdsqvou88kos 1 25
14154864 Opera Mini 8flyp fr 2012-02-09 10:25:42.0 in 24940f5c4q688oc8 0 105
14197361 Apple iPhone 8flyo fr 2012-02-09 11:23:23.0 in 3gza50jfnzcw44wc 0 3461
14197602 Apple iPhone 8jdc9 fr 2012-02-09 11:23:42.0 in 14qhcdsqvou88kos 0 19
14198413 Apple iPhone 8flxc fr 2012-02-09 11:24:50.0 in 14qhcdsqvou88kos 1 68
14198584 Apple iPhone 8flyp fr 2012-02-09 11:25:05.0 in 14qhcdsqvou88kos 1 15
14199113 Apple iPhone 8flys fr 2012-02-09 11:25:51.0 in 14qhcdsqvou88kos 1 46
14201181 Apple iPhone 8flxe fr 2012-02-09 11:28:31.0 in 14qhcdsqvou88kos 1 160
14206726 Apple iPhone 8flxf fr 2012-02-09 11:35:50.0 in 23ge85exom8084s0 0 439
14217945 Apple iPhone 8flyu fr 2012-02-09 11:50:32.0 in 23ge85exom8084s0 1 882
15754245 Opera Mini 8gpd5 fr 2012-02-10 10:18:52.0 in 3cu2xmfag82sosk4 0 0
15764598 Opera Mini 8gpd5 fr 2012-02-10 10:33:56.0 in 4jyefurnmxkwoo4w 0 904
15768527 HTC Vision 8gdka fr 2012-02-10 10:39:47.0 in 1rbl5y69ej34gg8w 0 351
15768829 HTC Vision 8gpd5 fr 2012-02-10 10:40:17.0 in 3cu2xmfag82sosk4 0 30
15777019 Opera Mini 8gpd5 fr 2012-02-10 10:52:51.0 in 3cu2xmfag82sosk4 1 754

783581 Opera Mini 8gpd5 fr 2012-02-11 10:34:38.0 in 1rbl5y69ej34gg8w 0 0
901789 SPH-P100 8gpd5 fr 2012-02-11 13:01:12.0 in 1rbl5y69ej34gg8w 1 8794
902642 SPH-P100 8gdka fr 2012-02-11 13:02:09.0 in 3cu2xmfag82sosk4 0 57
903031 SPH-P100 8gpd5 fr 2012-02-11 13:02:38.0 in 3cu2xmfag82sosk4 1 29

Table 21: Example of 25 consecutive clicks from the same IP for publisher 8ih09.

For the clicks in Table 21, we see the following interval frequencies: (0, 0, 2, 4, 0, 1, 1, 1,
0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11), where the ith element represents
the count for the ith interval. For example, we observe two clicks with a time gap between
10s and 20s (id 14197602 with 19s and id 14198584 with 15s). We also tracked the relative
counts, that is, the interval counts divided by the respective set size. For each publisher, we
proceeded analogously for all IP addresses and derived the cumulative interval frequency
count, which is the long click profile. For the publisher 8ih09, for instance, this profile is
(0, 0, 17, 25, 26, 30, 20, 21, 19, 14, 7, 5, 9, 9, 7, 2, 7, 8, 4, 3, 7, 3, 3, 2, 1, 1, 2, 3, 1, 1, 1, 41), where
the ith element represents the cumulative count for the ith interval. We saw that clicks
from the same IP address tend to occur in relatively short sequences for 8ih09, which is in
fact labeled as Fraud. By contrast, let us consider the profile of a publisher labeled as OK,
for example, 8i7wi. Its long click profile is (0, 0, 4, 3, 0, 0, 2, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 76); here, short click sequences are less frequent. Another publisher,
8jkh1, is labeled as Observation, and its long click profile is (6, 13, 11, 19, 22, 8, 13, 13,
21, 17, 13, 14, 11, 7, 12, 9, 5, 8, 7, 7, 5, 8, 1, 5, 6, 5, 2, 1, 2, 2, 5, 404).

Figure 6(a) shows the click frequencies per interval, derived from all long click profiles
per group. We see that, overall, consecutive clicks that follow one another rather quickly
occur more often for fraudulent publishers than for those with status Observation or OK.

6.1.3 Short Click Profile

The short click profile was derived in the same way as the long click profile, except that at
least 5 (and not 10) consecutive clicks must have come from the same IP address. Figure 6(b)
shows the click frequencies per interval, derived from all short click profiles per group. Again,
we observed that quick consecutive clicks occur more often in fraudulent publishers than in
those with status Observation or OK.

123

Oentaryo, Lim, Finegold et al.

(a)

(b)

(c)

Figure 6: Click frequency per interval based on (a) long click profiles, (b) short
click profiles, and (c) click profiles from the same URL. The intervals are
[0s, 5s],]5s, 10s],]10s, 20s], ...]300s,+∞).

6.1.4 Clicks Coming from the Same URL

The long and short click profiles ignored the URL where an advertisement had been clicked
on. It is possible, however, that a fraudulent (human) clicker does not navigate too often
from one web site to another. To derive a pattern of clicks coming from the same URL, we

124

Detecting Click Fraud in Online Advertising: A Data Mining Approach

Figure 7: Publishers (from the training set) ranked from left to right based on decreasing
values of redflag. Solid black bars denote publishers with status Fraud; gray bars
denote publishers with status Observation; white bars denote publishers with
status OK. Fraudulent publishers and those under observation are significantly
concentrated towards the left hand side (P < 0.001, Kruskal-Wallis test).

asked for each publisher: how many clicks came from the same IP address and the same
URL in less than 5s, between 5s and 10s, between 10s and 20s, and so on up to the interval
> 300s. At least 5 clicks must have come from each IP address. A problem with this
approach, however, was that the URL information was missing for many clickers.

Consider again Table 21. The column referredurl contains encrypted information about
the URL. The column same URL contains a flag, indicating whether the clicker has left
(= 0) or stayed (= 1) on the same URL. We considered only those time gaps that refer to
the same URL; thus, we ignored the gap of 19s for id 14197602, for example, because the
clicker has navigated from 3gza50jfnzcw44wc to 14qhcdsqvou88kos.

Figure 6(c) shows the click frequencies per interval, derived from all click profiles from
identical URLs. Similarly, we observed that quick consecutive clicks occur more often in
fraudulent publishers than in those with status Observation or OK.

6.1.5 Redflag

For each publisher, we checked if there were at least 5 clicks from the same IP address and
the same URL and with a time gap of less than 20s. If so, we incremented a flag (redflag)
for that publisher. In Figure 7, publishers from the training set are ranked from left to
right based on decreasing values of redflag. Fraudulent publishers (black) and those under
observation (gray) are concentrated towards the left hand side. Thus, the larger redflag,
the more suspicious is the publisher. Redflag is in fact a significant indicator of fraudulent
behavior (P < 0.001, Kruskal-Wallis test).

6.2 Method

According to the rules of the competition, each team was allowed to submit the predictions
of two models for the final evaluation. Below we describe our two models.

For the first model, we used only the basic attributes and the long click profile. The
algorithm was random forests (Breiman, 2001), which first generates a number of unpruned
decision trees from bootstrap samples of the train set. Each tree uses a random subset of
features. Subsequently, the algorithm combines the trees into one “forest” whose predictions
stem from aggregating the predictions of the individual trees.

125

Oentaryo, Lim, Finegold et al.

Because of the drastic class imbalance in the train set, either cost-sensitive learning
or up/down-sampling is necessary. For random forests, both approaches were shown to
be on par in terms of performance (Chen et al., 2004). Up/down-sampling, however, is
computationally less expensive because each tree uses only a small subset of the train set.
Given the time constraints, we adopted only one approach: up/down-sampling. A multitude
of sample sizes were tested, and the models were selected based on the out-of-bag (OOB)
error rate. Our preliminary results suggested that the differences between the predictive
performance of the models were not so large. From all models, we finally selected seven
(Table 22) and combined them into one ensemble of random forests. This is model #1, and
it was submitted for the final evaluation.

In addition to the reduced data set, we included the following data for our second
model: short click profile, click profile from identical URLs, and redflag. The algorithm
was random forest with up/down-sampling. We tested again various parameters (number
of trees, terminal node size, sampling ratios) and selected the final model on the basis of the
OOB error rate. The final model consisted of 50 trees with a terminal node size of 3. The
percentages for the bootstrap samples were: 97% for class Fraud, 88% for Observation,
and 61% for OK. This is model #2, and it was submitted for the final evaluation.

ntree nodesize Fraud Observation OK OOB error

1 250 5 90% 63% 41% 4.64%
2 250 5 90% 63% 41% 4.67%
3 250 3 83% 75% 51% 4.64%
4 250 3 69% 38% 34% 4.48%
5 250 3 69% 38% 34% 4.74%
6 250 3 90% 44% 51% 4.54%
7 250 4 83% 63% 68% 4.45%

Table 22: Individual random forests with up- and down-sampling (ntree: number of trees
in each forest; nodesize: number of terminal nodes in each tree).

6.3 Results and Discussion

How well can the three click profiles discriminate the publishers? To address this question,
we trained three random forests, each using only one of these click profiles and no further
data. Each model consisted of 250 trees, each with 3 terminal nodes. The sampling was
90% for Fraud, 75% for Observation, and 61% for OK. Table 23 shows the classification
results of these three models (not submitted for the final evaluation).

6.3.1 Performance

Table 24 shows the classification results of the two models that were submitted for eval-
uation on the final test set. Model #2 (single random forest, 50 trees) achieved a better
performance on both the training and the validation set. However, the performance on the
final test remarkably deteriorated, compared with the performance of model #1 (ensemble
of random forests, 1750 trees) that used only the reduced data set.

126

Detecting Click Fraud in Online Advertising: A Data Mining Approach

Click profile OOB error Average precision (validation)

Long 4.61% 47.67%
Short 4.64% 46.77%
Clicks from same URL 4.51% 47.89%

Table 23: Classification results of random forests using only click profiles.

Model # OOB error Average precision (validation) Average precision (test)

1 4.61% 49.99% 42.01%
2 3.66% 51.55% 36.94%

Table 24: Classification results of the final two models.

6.3.2 Remarks

Two problems made this competition particularly challenging. First, there is the problem of
concept drift. The train, validation, and test data sets came from different time windows. A
publisher may appear across different sets with a similar pattern, but the provided, actual
status label may be different. For example, a publisher may have been labeled as OK in
early February and then as Observation in late February, perhaps because this publisher
showed a suspicious pattern.

Second, there is no “ground truth” about which publishers are indeed really fraudu-
lent, which are truly OK, and which should be under scrutiny. The real status labels were
generated by some fraud detection algorithm (here called “ground model”, for short), but
how reliable are its predictions? Consider the following example. For one publisher in the
train set, we observed 5706 total clicks. All clicks came from the same IP address, and 3307
(58%) occurred in less than 5s. Also, is it not suspicious that 1086 consecutive clicks (19%)
have an interval of even 0s? It is tempting to speculate that a script generated these clicks.
Surprisingly, the status of that publisher is OK in the train set. In the validation set, the
click profiles of that publisher may also raise attention: more than 70% of all 1149 clicks –
from one and only IP address – occurred in less than 5s, with 248 clicks having a time gap
of 0s. Several similar examples of questionable status labels could be found.

7. Organizer’s Entry

In this section, we describe the work by the FDMA 2012 organizer’s research team, which
was carried out independently from the other competition participants. The description
will follow the same organization as that of the previous sections.

7.1 Preprocessing and Feature Extraction

We first analyzed the basic statistics of the publishers, derived by grouping the entries in
the click database by publisher. For each publisher, we computed the probability distribu-
tion (i.e., normalized frequency) of the number of clicks, number of visitors (identified by
numericip), number of referredurls, and the ratio of the number of clicks over the num-
ber of visitors. Figure 8 shows the four distributions in the train set respectively, grouped
by the publisher’s status. Interestingly, we can see from Figure 8(a) that the Fraud publish-
ers have lower click probability than the OK publishers. This can be attributed to the fact

127

Oentaryo, Lim, Finegold et al.

(a) (b)

(c) (d)

Figure 8: Distribution of the train data set: (a) Number of clicks, (b) Number of unique
visitors (numericip), (c) Number of unique referrers (referredurl), and (d)
Click per visitor ratio (number of clicks divided by number of unique visitors).

that BuzzCity blocks the traffic of a publisher as soon as its system deems the publisher as
fraudulent. Figure 8(b) shows a similar observation for the distribution of the visitors.

For referrer (referredurl) distribution, we found Fraud publishers to be quite different
from OK ones, and the former have low probability similar to the Observation publish-
ers. Further investigation revealed that many Fraud publishers have missing/unknown
referredurl fields. Hence, features derived from referredurl can be good indicators for
fraudulent acts. Lastly, the distribution of the click per visitor ratio in Figure 8(c) shows
that Fraud publishers have higher ratio than the other groups, suggesting that the former
focus on more efficient use of resources (IP address, in this case) to inflate the click traffic.
This motivates us to investigate other ratio-based features (e.g., click per referredurl ratio,
click per deviceua ratio, click per country ratio, etc). Note that, if the denominator of the
ratio (e.g., number of visitors) is zero, the ratio value will be set to zero.

We extracted several basic ratio features from the click database, as listed in Table 25(a).
Since each publisher is associated with only one of the 10 channel categories (cf. Table 3),
we also derived 10 Boolean features where only one feature can be set to 1 (true). From
the publisher database, on the other hand, we computed two Boolean features: whether a
publisher has a bank account (nonempty bank account), and whether (s)he has an address
(nonempty address). Altogether, we have 5 + 10 + 2 = 17 basic features. With these basic
features alone, however, we found the detection unsatisfactory. To improve the results, we
conducted fine-grained analysis on the spatiotemporal aspects of the publishers’ click traffic,
leading to two new types of features: spatial and time series. Table 25(b)-(c) respectively
list the spatial and time series features used in this work.

128

Detecting Click Fraud in Online Advertising: A Data Mining Approach

Feature type #features

Click per visitor ratio 1
Click per ad ratio 1
Click per deviceua ratio 1
Click per country ratio 1
Click per referredurl ratio 1
Category (binary) 10
Nonempty account (binary) 1
Nonempty address (binary) 1

(a)

Feature type #features

Click fraction from top 20 countries 20
Click fraction from missing country 1
Click fraction from other countries 1
Click fraction from missing referredurl 1
Click fraction from missing deviceua 1

(b)

Feature type #features

Click series 6 × 3 = 18
Visitor series 6 × 3 = 18
Ad series 6 × 3 = 18
Deviceua series 6 × 3 = 18
Country series 6 × 3 = 18
Referredurl series 6 × 3 = 18
Click per visitor ratio series 6 × 3 = 18
Click per ad ratio series 6 × 3 = 18
Click per deviceua ratio series 6 × 3 = 18
Click per country ratio series 6 × 3 = 18
Click per referredurl ratio series 6 × 3 = 18
Gap interval series 6 × 3 = 18

(c)

Table 25: List of features extracted from the BuzzCity’s databases: (a) Basic features, (b)
Spatial features, and (c) Time series features.

For the spatial features, we computed for each publisher the fraction of clicks coming
from different usercountry, referredurl and deviceua. For the usercountry case, we
considered the following top 20 countries in terms of their total number of clicks: {bd
(Bangladesh), br (Brazil), et (Ethiopia), gh (Ghana), id (Indonesia), in (India), ir (Iran),
ke (Kenya), mx (Mexico), my (Malaysia), ng (Nigeria), pk (Pakistan), ru (Russia), sa (Saudi
Arabia), th (Thailand), tr (Turkey), uk (United Kingdom), us (United States), vn (Viet-
nam), and za (South Africa). We further computed the click fraction from missing/unknown
country, and collate the click fraction from the remaining countries. Finally, we calculated
the click fractions from missing referredurl and deviceua, which according to our pre-
liminary studies correlate with the probability of fraud.

For the time series features, we broke down the 3-day span of each (train, validation,
or test) data set into windows of 1 minute long, and tracked several values of interest (e.g.,
number of clicks in each minute, number of visitors per minute, duration between etc).
This resulted in a time series vector of length 4,320 (i.e., 3 days = 4.320 minutes) for each
value type. We also experimented with longer time interval (e.g., 1 hour and 1 day), but
the results were worse than the 1 minute interval. Next, we computed several statistical
features aggregating the time series values over the 3-day period. That is, we generated 6
statistical features for each time series: nonzero count, mean, maximum, sum, sum of square,
and standard deviation. Note that, as most publishers have sparse time series, we filtered
out all zero values prior to computing the statistical features. For example, given the series

129

Oentaryo, Lim, Finegold et al.

value v(t) at time window t = {1, 2, . . . , 4320}, the mean of the series is v = 1
N

∑
v(t)6=0 v(t),

where N = |{v(t)|v(t) 6= 0}| is the number of nonzero entries in the series. Our preliminary
studies showed that such approach led to better results than including zero values.

To capture trending patterns, we also derived the same set of statistical features for the
positive and negative gradients of the series. Given a count/ratio value v(t) at time t, the
positive gradient d+(t) and negative gradient d−(t) are respectively computed as

d+(t) = v(t+ 1)− v(t), if v(t) < v(t+ 1),

d−(t) = v(t)− v(t+ 1), if v(t) > v(t+ 1)

where t = {1, 2, . . . , 4319}. As before, we ruled out all zero values when constructing the
gradient vectors d+(t) and d−(t), and in turn when computing the 6 statistical features
summarizing the gradients. Thus, for each time series type, we have 6× 3 = 18 features.

We also included a special time series called gap interval series. The gap interval refers
the gap between the timestamps of two consecutive clicks. So if a publisher receives C
clicks, then we have a gap interval series of length C−1 (in contrast to the other time series
that consists of 1-minute windows). We summarizes this series using the same 6 × 3 = 18
feature set. In sum, each publisher has 12 types of time series (as per Table 25) and hence
a total of 18× 12 = 216 time series features.

Adding all the basic, spatial, and time series features, we have a total of 17+216+24 =
257 features. Not all these features were useful though, and feature elimination steps shall be
carried out to improve the classification results. This is discussed in Section 7.2.2. Finally,
after generating all the features, we normalized the feature values to be within [0, 1].

7.2 Method

This section describes our proposed approach to tackling fraud detection task. We first
describe the classification models we used, followed by refinement of the models via a feature
elimination phase.

7.2.1 Classification Algorithms

We considered various single and ensemble-typed classification algorithms for the fraud
detection task. As our single classifiers, we employed the following popular algorithms:

• Logistic regression: A popular classification method which extends linear regression
analysis to model the relationship between a set of predictive variables and a binary
outcome variable. It produces an outcome probability between 0 and 1. In this work,
we employed the L2-regularized logistic regression implemented in the LIBLINEAR
framework (Fan et al., 2008). To cope with the imbalanced class distribution, we
adjusted the class weights to be inversely proportional to class frequencies.

• Support vector machine (SVM): A state-of-the-art classification method that aims
at maximizing the margin of separation between data points from different classes.
Intuitively, larger margin implies lower generalization error. We employed the SVM
implementation in the LIBSVM framework (Chang and Lin, 2011), with different
kernel functions including linear, polynomial, and radial basis kernels. As with logistic
regression, we defined class weights to be inversely proportional to class frequencies.

130

Detecting Click Fraud in Online Advertising: A Data Mining Approach

• k-nearest neighbors (k-NN): A type of instance-based learning or non-generalizing
learning: it does not attempt to construct a general internal model, but simply stores
instances of the training data (Cover, 1967). Classification is computed from a simple
majority vote of the nearest neighbors of each point; a query point is assigned the
class that has the most representatives within the nearest neighbors of the point.

On the other hand, we employed several decision tree-based ensemble classifiers, which
have been widely used in data mining competitions:

• Random forest : Each tree in the forest is built from a sample drawn with replacement
(i.e., bootstrap sample) from the train set (Breiman, 2001). Moreover, when splitting
a node during the tree construction, the split chosen is not the best split among all
features, but rather the best among a random subset of the features. In contrast to
the original work (Breiman, 2001), which lets each classifier vote for a single class, we
combined the tree classifiers by averaging their probabilistic predictions.

• Gradient tree boosting (GTB): Generalization of boosting to arbitrary differentiable
loss functions (Friedman, 2000). GTB is an accurate off-the-shelf classification method
that builds an additive model in a forward stage-wise fashion; it allows for the opti-
mization of arbitrary differentiable loss functions. In each stage, regression trees are
fit on the negative gradient of the binomial or multinomial deviance loss function.

• Extremely randomized trees (Extra tree): In this tree-based ensemble approach, ran-
domness goes one step further in the way splits are computed. Similar to random
forest, a random subset of candidate features is used, but instead of looking for the
most discriminative thresholds, thresholds are drawn at random for each candidate
feature and the best of these randomly-generated thresholds is picked as the splitting
rule (Geurts et al., 2006). To arrive at the final decision, we again combined the tree
classifiers by averaging their probabilistic predictions.

7.2.2 Feature Elimination

As mentioned, the complete 257 features are not all useful, and further improvement can
be attained by removing inconsequential or noisy features. To this end, we devised a simple
wrapper-based feature selection approach which we refer to as backward feature elimination.
Algorithm 1 outlines the approach, which is inspired by the method described in Guyon and
Elisseeff (2003). The algorithm requires as input the set of features and their predefined
ranking or relative importance. The feature importance can be computed in several ways.
In tree-based ensemble methods (e.g., random forest and GTB), features at the top of the
tree are used to contribute to the final prediction decision of a larger fraction of the input
samples. The expected fraction of the samples they contribute to can thus be used as an
estimate of the relative importance of the features. In logistic regression or linear SVM, the
feature importance can be estimated from the absolute values of its weight coefficients. For
other methods that do not naturally give feature ranking (e.g., nonlinear SVM or k-NN), we
estimated the feature importance using the F -value of the analysis of variance (ANOVA)
test (Box, 1953). A higher the F -value implies a higher feature importance.

131

Oentaryo, Lim, Finegold et al.

Algorithm 1 Backward feature elimination.

Require: Features set F = {fi} and their ranks ri, minimum number of features m, train
data T and validation data V

1: R← {} and Fbest ← F // Initialization
2: M ← train(F, T) // Train M using features F from T
3: AP ← evaluate(M , F, V) // Evaluate M using features F from V
4: APbest ← AP
5: Fs ← sort(F) // Sort the features set in ascending order of ri
6: for i = 1 to |Fs| −m do
7: R← R ∪ {fi}
8: M ← train(Fs \R, T) // Train M using features Fs \R from T
9: AP ← evaluate(M , Fs \R, V) // Evaluate M using features Fs \R from V

10: if APbest ≤ AP then
11: APbest ← AP
12: Fbest ← Fs \R
13: end if
14: end for
15: return Fbest

Our feature elimination method starts from the full feature set and eliminates features
one by one from the lowest rank. An updated classifier is then generated from the remaining
features. Our approach bears some similarities to the recursive feature elimination (Guyon
et al., 2002), but instead of re-ranking the features after each elimination step, we still refer
to the original (full) feature ranking. We also kept track of all performances obtained by
each elimination, rather than stopping the elimination when a performance degradation is
detected. The process is repeated until the minimum number of features m is reached. For
SVM, logistic regression, and k-NN, we set m = 1. For tree-based ensemble methods, we
set m as the maximum number of features maxFeat (i.e., m = maxFeat), since the largest
tree in the ensemble most likely has maxFeat features.

7.3 Results and Discussion

We present hereafter the experimental results obtained by the approach described in Section
7.2. We first discuss the detection performance obtained using the full 257 feature set,
followed by identification of the most important features based on our best models. Finally,
we present improved detection results using our simplified models after feature elimination.

7.3.1 Performance

Table 26 shows the prediction results of all classifiers using the complete features listed
in Figure 25. The best configuration for each classifier was determined using grid search
on the corresponding (meta) parameter space. For logistic regression and SVM, we varied
the penalty parameter C within the range

{
2−5, 2−3, 2−1, 21, . . . , 215

}
and then selected

the parameter that gave the best AP score on the validation set. We also experimented
with different kernels for the SVM, including linear, polynomial (with degree 2), and radial

132

Detecting Click Fraud in Online Advertising: A Data Mining Approach

Average precision
Type Method Best parameter Validation Test

Single Logistic regression C = 512 41.20% 29.65%
SVM (Linear) C = 32 29.74% 23.73%
SVM (Polynomial) C = 8192, degree = 2 29.33% 20.02%
SVM (Radial basis) C = 128 30.37% 23.63%
k-NN k = 5, weight = ”distance” 28.78% 33.46%

Ensemble Random forest ntrees = 100,maxFeat = 6 57.53% 51.44%
GTB ntrees = 900,maxFeat = 28, depth = 5 48.78% 49.25%
Extra trees ntrees = 200,maxFeat = 28 55.36% 54.04%

Table 26: Performances of various classifiers for the validation and test sets. For SVM and
logistic regression, C is the penalty parameter controlling the tradeoff between
training errors and margin maximization. For the ensemble methods, ntrees is
the number of tree models in the ensemble, maxFeat is the maximum number
of features allowed for each tree, and depth is the maximum depth of a tree.

basis kernels. As for k-NN, we took the parameter k from the range {1, 3, 5, ..., 15}. We
also considered “uniform” and “distance” weight functions for the k-NN predictions, giving
equal weight and weight proportional to the inverse of distance to the neighborhood points,
respectively. Out of these single classifiers, k-NN with ’distance’ weight yielded the best
score on the test set, suggesting that the decision boundary for the Fraud class is complex.
For SVM, employing nonlinear kernel in place of linear kernel did not improve the result.

We further experimented with the tree ensemble methods (i.e., random forest, GTB, and
Extra trees). For each method, we selected the best combination of ntree, maxFeat, and
depth from the range {100, 200, 300, . . . , 1000}, {2, 4, 6, . . . , 30}, and {1, 2, 3, 4, 5}, respec-
tively. Among the three methods, we found that the extremely randomized trees yielded
the best AP score int the test set, followed by the random forest which performed best
on the validation set. In comparison to the single classifiers, we can see that the ensemble
methods produced substantially higher AP scores. A plausible explanation is that ensem-
ble methods try to exploit the local different behavior of the base learners to enhance the
accuracy of the overall system. Also, using mixture of base models (instead of choosing
just one) can help reduce the risk of (accidentally) selecting a poorly performing classifier,
thereby reducing the overall system variance. Yet another key ingredient of effective ensem-
ble system is the diversity of its constituent models. In the case of extremely randomized
trees, the randomization of the split thresholds (in addition to the bootstrapping step in
random forest) helps promote the diversity, leading not only to faster ensemble construction
but also reduced variance of the overall system.

7.3.2 Feature Ranking

In Figure 9, we show the top 10 features found by our two best classifiers, Extra trees and
random forest, whereby feature importance was estimated from the expected fraction of
the samples the tree components contribute to (cf. Section 7.2.2). These features revealed
several interesting observations. For instance, the top three features of the extremely ran-
domized trees suggest that Fraud publishers tend to have missing/unknown referredurl,

133

Oentaryo, Lim, Finegold et al.

(a) (b)

Figure 9: Feature ranking obtained by: (a) Extra trees, and (b) Random forest.

Full features Reduced features
Type Method Validation AP Test AP #features Validation AP Test AP

Single Logistic regression 41.20% 29.65% 46 / 257 46.02% 31.18%
SVM (Linear) 30.45% 21.89% 38 / 257 36.75% 26.91%
SVM (Polynomial) 22.69% 16.72% 256 / 257 28.42% 20.23%
SVM (Radial basis) 34.32% 23.38% 255 / 257 39.10% 23.66%
k-NN 28.78% 33.46% 257 / 257 28.78% 33.46%

Ensemble Random forest 57.53% 51.44% 59 / 257 58.84% 52.17%
GTB 48.78% 49.25% 235 / 257 58.33% 49.90%
Extra trees 55.36% 54.04% 118 / 257 57.79% 55.64%

Table 27: Performances of single and ensemble classifiers after feature elimination.

which would be captured by the high click per referredurl ratio and high click fraction from
unknown referredurl. Moreover, high click traffic from high-risk countries such as In-
donesia can indicate fraudulent behavior (similar to the findings from the first competition
winner). We can also observe that the ratio features and their related time series features,
particularly the sum, count and uptrend (positive gradient) features, may be indicative of
fraudulent behaviors. Similar observations were found by random forest, although the click
fraction from high-risk countries were not deemed as important. This, in turn, may explain
its inferior performance with respect to Extra trees.

7.3.3 Model Simplification

Using the feature elimination procedure outlined in Algorithm 1, we can remove incon-
sequential features and further improve the detection performance. Table 27 shows the
consolidated results of different classifiers after feature elimination. In general, feature
elimination improved both performances on the validation and test sets, while simplifying
the classification models. We observed a large portion of features being removed by the
logistic regression, linear SVM, random forest, and Extra trees, leading to a fair amount of
improvements. By contrast, only small improvements were observed in GTB and nonlinear
SVMs, which can be attributed to the marginal feature removals.

134

Detecting Click Fraud in Online Advertising: A Data Mining Approach

8. Conclusion

The results of the FDMA 2012 competition exceeded our expectations in several ways.
First, we had high level of participation, although this is our first time organizing such a
competition. Second, the participants turned in good results quickly, and the performances
continually improved toward the end of the competition, showing the interesting potentials
of various feature engineering and data mining methods. We conclude this paper by summa-
rizing the solutions proposed by the winning teams, and then providing several important
lessons we can learn from the competition results.

8.1 Methods Employed

We briefly comment on the methods commonly used by the winning teams as well as the
remaining participants, as follows:

• Preprocessing: From the competition, we can see that most participants focused
on time-series features generated through analyzing the click traffic of a publisher
at multiple time resolutions (windows) and taking the statistics across time. Only a
few participants used spatial features by grouping the click traffic based on country,
referredurl, channel, etc. Simple normalization was also often used to improve the
performance of the classifiers, such as normalization to [0, 1]. Feature transformation
methods (e.g., principal component analysis) were rarely used and reported not to
bring performance improvements.

• Feature selection: Feature selection approaches broadly fall into two types: filter
and wrapper methods (Guyon and Elisseeff, 2003). Filter methods include feature
selection algorithms that are independent of any predictors, filtering out features that
have little chance to be useful in data analysis. Filters are usually less computationally
intensive than wrappers, but they produce a feature set which is not tuned to a
specific type of predictive model. On the other hand, algorithms of the wrapper
type are wrapped around predictors, providing them subsets of features and receiving
their feedback (usually accuracy). These wrapper approaches are aimed at improving
results of the specific predictors they work with. Some participants used feature
selection methods and reported that, in general, the wrapper methods performed
better than the filter methods.

• Classification algorithm: In this competition, ensembles of decision trees were the
most widely used approach, providing fairly fast learning and well suited to highly-
skewed class distribution, noisy nonlinear patterns, and mixed variable types. More
specifically, this success can be attributed to several factors. First, there is a lack
of data to properly represent the true distribution, in which case the learning algo-
rithm can find many different hypotheses that all give the same accuracy on the train
data. By constructing an ensemble out of these accurate classifiers, the algorithm can
”average” their votes and reduce the risk of choosing the wrong classifier. Second,
many learning algorithms work by some form of local search that may get stuck in
local optima. An ensemble built by running the local search from many different ini-
tial conditions may provide better approximation to the true, unknown function than

135

Oentaryo, Lim, Finegold et al.

any of the individual classifiers. Lastly, for many data sets, the true function cannot
be captured by a single hypothesis. By forming weighted sums of hypotheses in an
ensemble, we can expand the space of representable functions.

All in all, ensemble methods combined with wrapper methods proved to be an effective
approach for fraud detection. In practice, however, single models would still be preferred,
owing to interpretability and tractability reasons. Future endeavors in this enterprise in-
clude devising a novel class of single classification algorithms, capable of matching the
performances obtained by the top ranking participants.

8.2 What We Have Learned

The results from the FDMA 2012 Competition offer important insights on fraudulent be-
havior in online advertising. Below we summarize the key findings of the winning teams:

• First winner’s entry: From a temporal standpoint, detecting large and/or duplicate
clicks and distinguishing between morning and night traffics are important indicators
for fraudulent acts. In spatial context, it was shown that high click fractions from top
10 high-risk countries provide strong signals for click fraud. For model selection, it is
also important to have a model that balances between accuracy and overfitting.

• Second winner’s entry: Fraudulent partners often try to act rationally by mim-
icking legitimate ones. Large variance on deviceua suggests that fraudulent partners
use many agents to act rationally. An ensemble model that averages the predictions
of different algorithms helps to gracefully deal with highly skewed class distribution,
and can lead to better performance than that of the individual methods.

• Third winner’s entry: Analyzing time series at different granularity levels (e.g.,
sec, min, hour, day) is important, and simple statistics (e.g., average, count) worked
well in detecting click fraud. Backward feature elimination can be used to derive the
most important fraud indicators. Linear blending of different models were found to
give the best performance and improve the performance of the individual models.

• Runner-up’s entry: Many consecutive clicks from the same IP address in a short-
time interval are considered suspicious. The ensemble of random forests was found to
be an effective fraud detection method. The problem of concept drift was observed in
the competition data, and the “ground-truth” labels in the data may be inaccurate
and biased toward BuzzCity’s internal detection procedure.

• Organizer’s entry: Fine-grained analysis of time series at short interval (1 minute)
is crucial for deriving informative features for fraudulent publishers. The best model
showed that referredurl-based features, for example, click per referredurl ratio and
fraction of missing/unknown referredurl, provide informative indicators for fraud.
Also, the high fraction of clicks from high-risk countries may be used as a signal for
click fraud. Lastly, the combination of tree-based ensemble classifiers and backward
feature elimination leads to a promising approach to tackle highly-imbalanced data.

136

Detecting Click Fraud in Online Advertising: A Data Mining Approach

8.3 Research Outlook

Despite the encouraging results and practical usability of our solutions to fraud detection
task, there remains a considerable need for further work on this important topic. An obvious
room for improvement is how the current methods can be used to tackle more sophisticated
types of click fraud. For instance, fraudsters can work together as a group, allowing them
to not only gain more with less (shared) resources, but also reduce the risk of getting
detected. The solutions presented in this paper are currently unable to catch such coalition
attacks. Several works have been dedicated to identify coalition fraud in online advertising
(Metwally et al., 2007; Kim et al., 2011). However, these methods have so far been focused
on investigating network topology structure (e.g., a bipartite graph of publishers and site
visitors), without probing into the detailed spatial and temporal characteristics of either the
individuals or group of individuals involved. Future research is needed to augment extrinsic
network/group features with fine-grained analysis of spatio-temporal features.

A related research question concerns the adaptability of the current methods in the
face of rapidly-evolving fraudulent behavior and strategies. For instance, several solutions
presented in this paper use deviceua (user agent) as a feature, which may be easily ex-
ploited by malicious parties once it is known. Although ensemble approaches and the use of
multiple complementary features can address this issue to some extent, there is a need for
more general and robust learning methodologies. A plausible approach is to employ online
learning (Shalev-Shwartz, 2012), which helps deal with concept drift pertaining to the be-
havioral changes of fraudulent parties, without having to retrain the prediction model from
scratch. Another interesting direction to address the issue is to develop a transfer learning
capability (Pan and Yang, 2010), using information from (multiple) auxiliary domains. Such
approach is useful to deal with future data having different feature space and/or different
distribution, while minimizing the model re-calibration efforts.

Acknowledgments

We are grateful to BuzzCity Pte. Ltd. for the competition data, prizes, and fruitful dis-
cussions. Special thanks go to Clifford Chew and Elvin Tan of BuzzCity, who contributed
their inputs on the data and related domain knowledge. We also thank the organizers of the
Asian Conference on Machine Learning (ACML) 2012 for hosting the FDMA 2012 Work-
shop. This work is supported by the National Research Foundation under its International
Research Centre @ Singapore Funding Initiative and administered by the Interactive Digital
Media (IDM) Programme Office.

References

M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl, P. Ohl, K. Thiel,
and B. Wiswedel. KNIME–The Konstanz information miner: Version 2.0 and beyond.
SIGKDD Explorations Newsletter, 11(1):26–31, 2009.

G. E. P. Box. Non-normality and tests on variances. Biometrika, 30(3/4):318–335, 1953.

L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

137

Oentaryo, Lim, Finegold et al.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

C. Chambers. Is click fraud a ticking time bomb under Google? Forbes
Magazine, 2012. URL http://www.forbes.com/sites/investor/2012/06/18/

is-click-fraud-a-ticking-time-bomb-under-google/.

C. C. Chang and C. J. Lin. LIBSVM: A library for support vector machines. ACM Trans-
actions on Intelligent Systems Technology, 2(3):27:1–27:27, 2011.

A. Chao and T. Shen. Nonparametric estimation of shannon’s index of diversity when there
are unseen species in sample. Environmental and Ecological Statistics, 10:429–443, 2003.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321–
357, 2002.

C. Chen, A. Liaw, and L. Breiman. Using random forests to learn imbalanced data. Tech-
nical Report No. 666, Department of Statistics, University of California, Berkeley, 2004.

W. Cohen. Fast effective rule induction. In Proceedings of the International Conference on
Machine Learning, pages 115–123, Tahoe City, California, 1995.

T. Cover. Nearest neighbor pattern classification. IEEE Transactions on Information
Theory, 13(1):21–27, 1967.

V. Dave, S. Guha, and Y. Zhang. Measuring and fingerprinting click-spam in ad networks. In
ACM SIGCOMM Computer Communication Review, volume 42, pages 175–186, Helsinki,
Finland, 2012.

P. Domingos. MetaCost: A general method for making classifiers cost-sensitive. In Proceed-
ings of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 155–164, 1999.

R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin. LIBLINEAR: A library
for large linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. In Proceedings of the European Conference on Computational
Learning Theory, pages 23–37, London, UK, 1995.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In Proceedings
of the International Conference on Machine Learning, pages 148–156, Bari, Italy, 1996.

J. Friedman. Greedy function approximation: A gradient boosting machine. Annals of
Statistics, 29:1189–1232, 2000.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view
of boosting. Annals of Statistics, 28(2):337–407, 2000.

J. Gama. Functional trees. Machine Learning, 55(3):219–250, 2004.

138

http://www.forbes.com/sites/investor/2012/06/18/is-click-fraud-a-ticking-time-bomb-under-google/
http://www.forbes.com/sites/investor/2012/06/18/is-click-fraud-a-ticking-time-bomb-under-google/

Detecting Click Fraud in Online Advertising: A Data Mining Approach

P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine Learning, 63
(1):3–42, 2006.

I. Good. The population frequencies of species and the estimation of population parameters.
Biometrika, 40:237–264, 1953.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of
Machine Learning Research, 3:1157–1182, 2003.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification
using support vector machines. Maching Learning, 46(1–3):389–422, 2002.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten. The WEKA
data mining software: An update. SIGKDD Explorations Newsletter, 11(1):10–18, 2009.

T. K. Ho. The random subspace method for constructing decision forests. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

G. Holmes, B. Pfahringer, R. Kirkby, E. Frank, and M. Hall. Multiclass alternating decision
trees. In Proceedings of the European Conference on Machine Learning, pages 161–172,
Helsinki, Finland, 2002.

D. Horvitz and D. Thompson. A generalization of sampling without replacement from a
finite universe. Journal of the American Statistical Association, 47:663–685, 1952.

B. Jansen. Click fraud. IEEE Computer, 40(7):85–86, 2007.

C. Kim, H. Miao, and K. Shim. CATCH: A detecting algorithm for coalition attacks of hit
inflation in internet advertising. Information Systems, 36(8):1105 – 1123, 2011.

R. Kohavi. The power of decision tables. In Proceedings of the European Conference on
Machine Learning, pages 174–189, Heraclion, Crete, Greece, 1995.

R. Kohavi. Scaling up the accuracy of näıve Bayes classifiers: A decision-tree hybrid. In
Proceedings of the International Conference on Knowledge Discovery and Data Mining,
pages 202–207, Portland, OR, 1996.

Kroll Advisory Solutions. Global fraud report, 2012. URL http://www.krolladvisory.

com/insights-reports/global-fraud-reports/.

A. Metwally, D. Agrawal, and A. El Abbadi. DETECTIVES: Detecting coalition hit infla-
tion attacks in advertising networks streams. In Proceedings of the International Confer-
ence on World Wide Web, pages 241–250, 2007.

R. E. Neapolitan. Learning Bayesian networks. Prentice-Hall, Inc., 2003.

S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345–1359, 2010.

C. Phua, K. Smith-Miles, V. Lee, and R. Gayler. Resilient identity crime detection. IEEE
Transactions on Knowledge and Data Engineering, 24(3):533–546, 2012.

139

http://www.krolladvisory.com/insights-reports/global-fraud-reports/
http://www.krolladvisory.com/insights-reports/global-fraud-reports/

Oentaryo, Lim, Finegold et al.

J. R. Quinlan. C4.5: Programs for machine learning. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, 1993.

G. Ridgeway. Generalized boosted models: A guide to the gbm package, 2007. URL
http://cran.open-source-solution.org/web/packages/gbm/vignettes/gbm.pdf.

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning:
The RPROP algorithm. In Proceedings of the IEEE International Conference on Neural
Networks, pages 586–591, San Francisco, CA, 1993.

J. J. Rodrguez, L. I. Kuncheva, and C. J. Alonso. Rotation forest: A new classifier ensemble
method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10):1619–
1630, 2006.

S. Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends
in Machine Learning, 4(2):107–194, 2012. ISSN 1935-8237.

J. Su and H. Zhang. A fast decision tree learning algorithm. In Proceedings of the AAAI
National Conference on Artificial Intelligence, pages 500–505, Boston, MA, 2006.

A. Tuzhilin. The lane’s gifts v. Google report, 2006. URL http://googleblog.blogspot.

sg/pdf/Tuzhilin_Report.pdf.

D. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

M. Zhu. Recall, precision and average precision. Technical Report (Working Paper 2004-09),
University of Waterloo, 2004.

140

http://cran.open-source-solution.org/web/packages/gbm/vignettes/gbm.pdf
http://googleblog.blogspot.sg/pdf/Tuzhilin_Report.pdf
http://googleblog.blogspot.sg/pdf/Tuzhilin_Report.pdf

Journal of Machine Learning Research 15 (2014) 141-145 Submitted 4/13; Revised 10/13; Published 1/14

EnsembleSVM: A Library for Ensemble Learning Using
Support Vector Machines

Marc Claesen marc.claesen@esat.kuleuven.be
KU Leuven, ESAT – STADIUS/iMinds Future Health
Kasteelpark Arenberg 10, box 2446
3001 Leuven, Belgium

Frank De Smet frank.desmet@cm.be
KU Leuven, Department of Public Health and Primary Care, Environment and Health
Kapucijnenvoer 35 blok d, box 7001
3000 Leuven, Belgium

Johan A.K. Suykens johan.suykens@esat.kuleuven.be

Bart De Moor bart.demoor@esat.kuleuven.be

KU Leuven, ESAT – STADIUS/iMinds Future Health

Kasteelpark Arenberg 10, box 2446

3001 Leuven, Belgium

Editor: Geoff Holmes

Abstract

EnsembleSVM is a free software package containing efficient routines to perform ensemble
learning with support vector machine (SVM) base models. It currently offers ensemble
methods based on binary SVM models. Our implementation avoids duplicate storage and
evaluation of support vectors which are shared between constituent models. Experimental
results show that using ensemble approaches can drastically reduce training complexity
while maintaining high predictive accuracy. The EnsembleSVM software package is freely
available online at http://esat.kuleuven.be/stadius/ensemblesvm.

Keywords: classification, ensemble learning, support vector machine, bagging

1. Introduction

Data sets are becoming increasingly large. Machine learning practitioners are confronted
with problems where the main computational constraint is the amount of time available.
Problems become particularly challenging when the training sets no longer fit into memory.
Accurately solving the dual problem for SVM training with nonlinear kernels requires a run
time which is at least quadratic in the size of the training set n, thus training complexity
is Ω(n2) (Bottou and Lin, 2007; List and Simon, 2009).

EnsembleSVM employs a divide-and-conquer strategy by aggregating many SVM models,
trained on small subsamples of the training set. Through subdivision, total training time
decreases significantly, even though more models need to be trained. For example, training
p classifiers on subsamples of size n/p, results in an approximate complexity of Ω(n2/p).
This reduction in complexity helps in dealing with large data sets and nonlinear kernels.

c©2014 Marc Claesen, Frank De Smet, Johan A.K. Suykens and Bart De Moor.

http://esat.kuleuven.be/stadius/ensemblesvm

Claesen, De Smet, Suykens and De Moor

Ensembles of SVM models have been used in various applications (Wang et al., 2009;
Linghu and Sun, 2010; Mordelet and Vert, 2011). Collobert et al. (2002) use ensembles
for large scale learning and employ a neural network to aggregate base models. Valentini
and Dietterich (2003) provide an implementation which allows base models to use different
kernels. For efficiency reasons, we require base models to share a single kernel function.

While other implementations mainly focus on improving predictive performance, our
framework primarily aims to (i) make nonlinear large-scale learning feasible through com-
plexity reductions and (ii) enable fast prototyping of novel ensemble algorithms.

2. Software Description

The EnsembleSVM software is freely available online under a LGPL license. EnsembleSVM

provides ensembles of instance-weighted SVMs, as defined in Equation (1). The default ap-
proach we offer is bagging, which is commonly used to improve the performance of unstable
classifiers (Breiman, 1996). In bagging, base models are trained on bootstrap subsamples
of the training set and their predictions are aggregated through majority voting.

Base model flexibility is maximized by using instance-weighted binary support vector
machine classifiers, as defined in Equation (1). This formulation lets users define misclassifi-
cation penalties per training instance Ci, i = 1, . . . , n and encompasses popular approaches
such as C-SVC and class-weighted SVM (Cortes and Vapnik, 1995; Osuna et al., 1997).

min
w,ξ,ρ

1

2
wTw +

n∑
i=1

Ciξi, (1)

subject to yi(w
Tφ(xi) + ρ) ≥ 1− ξi, i = 1, . . . , n,

ξi ≥ 0, i = 1, . . . , n.

When aggregating SVM models, the base models often share support vectors (SVs).
The EnsembleSVM software intelligently caches distinct SVs to ensure that they are only
stored and used for kernel evaluations once. As a result, EnsembleSVM models are smaller
and faster in prediction than ensemble implementations based on wrappers.

2.1 Implementation

EnsembleSVM has been implemented in C++ and makes heavy use of the standard library.
The main implementation focus is training speed. We use facilities provided by the C++11

standard and thus require a moderately recent compiler, such as gcc ≥ 4.7 or clang ≥ 3.2.
A portable Makefile system based on GNU autotools is used to build EnsembleSVM.

EnsembleSVM interfaces with LIBSVM to train base models (Chang and Lin, 2011). Our
code must be linked to LIBSVM but does not depend on a specific version. This allows users
to choose the desired version of the LIBSVM software in the back-end.

The EnsembleSVM programming framework is designed to facilitate prototyping of en-
semble algorithms using SVM base models. We particularly provide extensive support to
define novel aggregation schemes, should the available options be insufficient. Key compo-
nents are extensively documented and on a broad overview is provided on our wiki.1

1. The EnsembleSVM development wiki is available at https://github.com/claesenm/EnsembleSVM/wiki.

142

https://github.com/claesenm/EnsembleSVM/wiki

EnsembleSVM

The EnsembleSVM library was built with extensibility and user contributions in mind.
Major API functions are well documented to lower the threshold for external development.
The executable tools provided with EnsembleSVM are essentially wrappers for the library
itself. The tools can be considered as use cases of the main API functions to help developers.

2.2 Tools

The main tools in this package are esvm-train and esvm-predict, used to train and
predict with ensemble models. Both of these are pthread-parallelized. Additionally, the
merge-models tool can be used to merge standard LIBSVM models into ensembles. Finally,
esvm-edit provides facilities to modify the aggregation scheme used by an ensemble.

EnsembleSVM includes a variety of extra tools to facilitate basic operations such as
stratified bootstrap sampling, cross-validation, replacing categorical features by dummy
variables, splitting data sets and sparsifying standard data sets. We recommend retaining
the original ratio of positives and negatives in the training set when subsampling.

3. Benchmark Results

To illustrate the potential of our software, EnsembleSVM 2.0 has been benchmarked with
respect to LIBSVM 3.17. To keep the experiments simple, we use majority voting to aggregate
predictions, even though more sophisticated methods are offered. For reference, we also list
the best obtained accuracy with a linear model, trained using LIBLINEAR (Fan et al., 2008).
Linear methods are common in large-scale learning due to their speed, but may result in
significantly decreased accuracy. This is why scalable nonlinear methods are desirable.

We used two binary classification problems, namely the covtype and ijcnn1 data sets.2

Both data sets are balanced. Features were always scaled to [0, 1]. We have used C-
SVC as SVM and base models (∀ i : Ci = C). Reported numbers are averages of 5 test
runs to ensure reproducibility. We used the RBF kernel, defined by the kernel function
κ(xi,xj) = e−γ||xi−xj ||2 . Optimal parameter selection was done through cross-validation.

The covtype data set is a common classification benchmark featuring 54 dimensions
(Blackard and Dean, 1999). We randomly sampled balanced training and test sets of 100, 000
and 40, 000 instances respectively and classified class 2 versus all others. The ijcnn1 data
set was used in a machine learning challenge during IJCNN 2001 (Prokhorov, 2001). It
contains 35, 000 training instances in 22 dimensions.

Results in Table 1 show several interesting trends. Training EnsembleSVM models is
orders of magnitude faster, because training SVMs on small subsets significantly reduces
complexity. Subsampling induces smaller kernels per base model resulting in lower over-
all memory use. Due to our parallelized implementation, ensemble models were faster in
prediction than LIBSVM models in both experiments despite having twice as many SVs.

The ensembles in these experiments are competitive with a traditional SVM even though
we used simple majority voting. For covtype, ensemble accuracy is 3% lower than a single
SVM and for ijcnn1 the ensemble is marginally better (0.2%). Linear SVM falls far short
in terms of accuracy for both experiments, but is trained much faster (< 2 seconds).

2. Both data sets are available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.
html.

143

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

Claesen, De Smet, Suykens and De Moor

data set test set accuracy no. of SVs time (s)
LIBSVM LIBLINEAR ESVM LIBSVM ESVM LIBSVM ESVM

covtype 0.92 0.76 0.89 26516 50590 728 35
ijcnn1 0.98 0.92 0.98 3564 7026 9.5 0.3

Table 1: Summary of benchmark results per data set: test set accuracy, number of sup-
port vectors and training time. Accuracies are listed for a single LIBSVM model,
LIBLINEAR model and an ensemble model.

We obtained good results with very basic aggregation. Collobert et al. (2002) illustrated
that more sophisticated aggregation methods can improve the predictive performance of en-
sembles. Others have reported performance improvements over standard SVM for ensembles
using majority voting (Valentini and Dietterich, 2003; Wang et al., 2009).

4. Conclusions

EnsembleSVM provides users with efficient tools to experiment with ensembles of SVMs.
Experimental results show that training ensemble models is significantly faster than training
standard LIBSVM models while maintaining competitive predictive accuracy.

Linear methods are frequently applied in large-scale learning, mainly due to their low
training complexity. Linear methods are known to have competitive accuracy for high
dimensional problems. As our benchmarks showed, the difference in accuracy may be large
for low dimensional problems. As such, fast nonlinear methods remain desirable in large-
scale learning, particularly for low dimensional tasks with many training instances. Our
benchmarks illustrate the potential of the ensemble approaches offered by EnsembleSVM.

Ensemble performance may be improved by using more complex aggregation schemes.
EnsembleSVM currently offers various aggregation schemes, both linear and nonlinear. Ad-
ditionally, it facilitates fast prototyping of novel methods.

EnsembleSVM strives to provide high-quality, user-friendly tools and an intuitive pro-
gramming framework for ensemble learning with SVM base models. The software will be
kept up to date by incorporating promising new methods and ideas when they are presented
in the literature. User requests and suggestions are welcome and appreciated.

Acknowledgments

Frank De Smet is a member of the medical management department of the National Alliance
of Christian Mutualities. Acknowledged funding sources: Marc Claesen (IWT grant number
111065); Research Council KU Leuven: GOA MaNet, CoE SymBioSys; EU: ERC AdG A-
DATADRIVE-B.

144

EnsembleSVM

References

Jock A. Blackard and Denis J. Dean. Comparative accuracies of artificial neural networks
and discriminant analysis in predicting forest cover types from cartographic variables.
Computers and Electronics in Agriculture, 24(3):131–151, December 1999.

Léon Bottou and Chih-Jen Lin. Support vector machine solvers. In Léon Bottou, Olivier
Chapelle, Dennis DeCoste, and Jason Weston, editors, Large Scale Kernel Machines,
pages 301–320, Cambridge, MA, USA, 2007. MIT Press.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, August 1996.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Ronan Collobert, Samy Bengio, and Yoshua Bengio. A parallel mixture of SVMs for very
large scale problems. Neural Computation, 14(5):1105–1114, 2002.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):
273–297, September 1995.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
LIBLINEAR: A library for large linear classification. Journal of Machine Learning Re-
search, 9:1871–1874, June 2008.

Bin Linghu and Bing-Yu Sun. Constructing effective SVM ensembles for image classification.
In Knowledge Acquisition and Modeling (KAM), 2010 3rd International Symposium on,
pages 80–83, 2010.

Nikolas List and Hans Ulrich Simon. SVM-optimization and steepest-descent line search.
In Proceedings of the 22nd Annual Conference on Computational Learning Theory, 2009.

Fantine Mordelet and Jean-Philippe P. Vert. ProDiGe: Prioritization Of Disease Genes with
multitask machine learning from positive and unlabeled examples. BMC bioinformatics,
12(1):389+, 2011.

Edgar Osuna, Robert Freund, and Federico Girosi. Support Vector Machines: Training and
Applications. Technical Report AIM-1602, 1997.

Danil Prokhorov. IJCNN 2001 neural network competition. Slide Presentation in IJCNN’01,
2001.

Giorgio Valentini and Thomas G. Dietterich. Low bias bagged support vector machines.
In International Conference on Machine Learning, ICML-2003, pages 752–759. Morgan
Kaufmann, 2003.

Shi-jin Wang, Avin Mathew, Yan Chen, Li-feng Xi, Lin Ma, and Jay Lee. Empirical analysis
of support vector machine ensemble classifiers. Expert Systems with Applications, 36(3,
Part 2):6466 – 6476, 2009.

145

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Journal of Machine Learning Research 15 (2014) 147-191 Submitted 4/13; Revised 9/13; Published 1/14

A Junction Tree Framework for
Undirected Graphical Model Selection

Divyanshu Vats dvats@rice.edu
Department of Electrical and Computer Engineering
Rice University
Houston, TX 77005, USA

Robert D. Nowak nowak@ece.wisc.edu

Department of Electrical and Computer Engineering

University of Wisconsin–Madison

Madison, WI 53706, USA

Editor: Sebastian Nowozin

Abstract

An undirected graphical model is a joint probability distribution defined on an undirected
graph G∗, where the vertices in the graph index a collection of random variables and
the edges encode conditional independence relationships among random variables. The
undirected graphical model selection (UGMS) problem is to estimate the graph G∗ given
observations drawn from the undirected graphical model. This paper proposes a framework
for decomposing the UGMS problem into multiple subproblems over clusters and subsets
of the separators in a junction tree. The junction tree is constructed using a graph that
contains a superset of the edges in G∗. We highlight three main properties of using junction
trees for UGMS. First, different regularization parameters or different UGMS algorithms
can be used to learn different parts of the graph. This is possible since the subproblems
we identify can be solved independently of each other. Second, under certain conditions,
a junction tree based UGMS algorithm can produce consistent results with fewer obser-
vations than the usual requirements of existing algorithms. Third, both our theoretical
and experimental results show that the junction tree framework does a significantly better
job at finding the weakest edges in a graph than existing methods. This property is a
consequence of both the first and second properties. Finally, we note that our framework
is independent of the choice of the UGMS algorithm and can be used as a wrapper around
standard UGMS algorithms for more accurate graph estimation.

Keywords: Graphical models, Markov random fields, junction trees, model selection,
graphical model selection, high-dimensional statistics, graph decomposition

1. Introduction

An undirected graphical model is a joint probability distribution PX of a random vector X
defined on an undirected graph G∗. The graph G∗ consists of a set of vertices V = {1, . . . , p}
and a set of edges E(G∗) ⊆ V × V . The vertices index the p random variables in X and
the edges E(G∗) characterize conditional independence relationships among the random
variables in X (Lauritzen, 1996). We study undirected graphical models (also known as
Markov random fields) so that the graph G∗ is undirected, that is, if an edge (i, j) ∈ E(G∗),

c©2014 Divyanshu Vats and Robert D. Nowak.

Vats and Nowak

1

2 4

3

6

5
7

(a) Graph G∗

1

2 4

3

6

5
7

(b) Graph H

1,3,4,5 1,2,3,5

3,4,5,6 4,5,6,7

1,3,5

3,4,5
4,5,6

(c) Junction tree

1,2,3,5 1,3,4,5 3,4,5,6 4,5,6,7

1,3,5 3,4,5 4,5,6

3,5 4,5

(d) Region graph

1

Figure 1: Our framework for estimating the graph in (a) using (b) computes the junction
tree in (c) and uses a region graph representation in (d) of the junction tree to
decompose the UGMS problem into multiple subproblems.

then (j, i) ∈ E(G∗). The undirected graphical model selection (UGMS) problem is to
estimate G∗ given n observations Xn =

(
X(1), . . . , X(n)

)
drawn from PX . This problem is

of interest in many areas including biological data analysis, financial analysis, and social
network analysis; see Koller and Friedman (2009) for some more examples.

This paper studies the following problem: Given the observations Xn

drawn from PX and a graph H that contains all the true edges E(G∗), and
possibly some extra edges, estimate the graph G∗.

A natural question to ask is how can the graph H be selected in the first place? One
way of doing so is to use screening algorithms, such as in Fan and Lv (2008) or in Vats (to
appear), to eliminate edges that are clearly non-existent in G∗. Another method can be
to use partial prior information about X to remove unnecessary edges. For example, this
could be based on (i) prior knowledge about statistical properties of genes when analyzing
gene expressions, (ii) prior knowledge about companies when analyzing stock returns, or
(iii) demographic information when modeling social networks. Yet another method can be
to use clever model selection algorithms that estimate more edges than desired. Assuming
an initial graph H has been computed, our main contribution in this paper is to show how
a junction tree representation of H can be used as a wrapper around UGMS algorithms for
more accurate graph estimation.

1.1 Overview of the Junction Tree Framework

A junction tree is a tree-structured representation of an arbitrary graph (Robertson and
Seymour, 1986). The vertices in a junction tree are clusters of vertices from the original
graph. An edge in a junction tree connects two clusters. Junction trees are used in many
applications to reduce the computational complexity of solving graph related problems
(Arnborg and Proskurowski, 1989). Figure 1(c) shows an example of a junction tree for the
graph in Figure 1(b). Notice that each edge in the junction tree is labeled by the set of
vertices common to both clusters connected by the edge. These set of vertices are referred
to as a separator.

Let H be a graph that contains all the edges in G∗. We show that the UGMS problem
can be decomposed into multiple subproblems over clusters and subsets of the separators
in a junction tree representation of H. In particular, using the junction tree, we construct

148

A Junction Tree Framework for Undirected Graphical Model Selection

Journal of Machine Learning Research () Submitted 4/13; Revised 9/13; Published -

�

�

�
�

�

�
�

�

� �

�

�

�

��

�
�

�

�

�

�

�
�

�

TV1 V2

c© Divyanshu Vats and Robert D. Nowak.

Figure 2: Structure of the graph used to analyze the junction tree framework for UGMS.

a region graph, which is a directed graph over clusters of vertices. An example of a region
graph for the junction tree in Figure 1(c) is shown in Figure 1(d). The first two rows in the
region graph are the clusters and separators of the junction tree, respectively. The rest of the
rows contain subsets of the separators.1 The multiple subproblems we identify correspond
to estimating a subset of edges over each cluster in the region graph. For example, the
subproblem over the cluster {1, 2, 3, 5} in Figure 1(d) estimates the edges (2, 3) and (2, 5).

We solve the subproblems over the region graph in an iterative manner. First, all
subproblems in the first row of the region graph are solved in parallel. Second, the region
graph is updated taking into account the edges removed in the first step. We keep solving
subproblems over rows in the region graph and update the region graph until all the edges
in the graph H have been estimated.

As illustrated above, our framework depends on a junction tree representation of the
graph H that contains a superset of the true edges. Given any graph, there may exist several
junction tree representations. An optimal junction tree is a junction tree representation
such that the maximum size of the cluster is as small as possible. Since we apply UGMS
algorithms to the clusters of the junction tree, and the complexity of UGMS depends on
the number of vertices in the graph, it is useful to apply our framework using optimal
junction trees. Unfortunately, it is computationally intractable to find optimal junction
trees (Arnborg et al., 1987). However, there exists several computationally efficient greedy
heuristics that compute close to optimal junction trees (Kjaerulff, 1990; Berry et al., 2003).
We use such heuristics to find junction trees when implementing our algorithms in practice.

1.2 Advantages of Using Junction Trees

We highlight three main advantages of the junction tree framework for UGMS.

Choosing Regularization Parameters and UGMS Algorithms: UGMS algorithms typically
depend on a regularization parameter that controls the number of estimated edges. This
regularization parameter is usually chosen using model selection algorithms such as cross-
validation or stability selection. Since each subproblem we identify in the region graph
is solved independently, different regularization parameters can be used to learn different
parts of the graph. This has advantages when the true graph G∗ has different charac-
teristics in different parts of the graph. Further, since the subproblems are independent,
different UGMS algorithms can be used to learn different parts of the graph. Our numerical
simulations clearly show the advantages of this property.

Reduced Sample Complexity: One of the key results of our work is to show that in many
cases, the junction tree framework is capable of consistently estimating a graph under weaker
conditions than required by previously proposed methods. For example, we show that if

1. See Algorithm 1 for details on how to exactly construct the region graph.

149

Vats and Nowak

G∗ consists of two main components that are separated by a relatively small number of
vertices (see Figure 2 for a general example), then, under certain conditions, the number of
observations needed for consistent estimation scales like log(pmin), where pmin is the number
of vertices in the smaller of the two components. In contrast, existing methods are known
to be consistent if the observations scale like log p, where p is the total number of vertices. If
the smaller component were, for example, exponentially smaller than the larger component,
then the junction tree framework is consistent with about log log p observations. For generic
problems, without structure that can be exploited by the junction tree framework, we
recover the standard conditions for consistency.

Learning Weak Edges: A direct consequence of choosing different regularization parameters
and the reduced sample complexity is that certain weak edges, not estimated using standard
algorithms, may be estimated when using the junction tree framework. We show this
theoretically and using numerical simulations on both synthetic and real world data.

1.3 Related Work

Several algorithms have been proposed in the literature for learning undirected graph-
ical models. Some examples include References Spirtes and Glymour (1991), Kalisch
and Bühlmann (2007), Banerjee et al. (2008), Friedman et al. (2008), Meinshausen and
Bühlmann (2006), Anandkumar et al. (2012a) and Cai et al. (2011) for learning Gaussian
graphical models, references Liu et al. (2009), Xue and Zou (2012), Liu et al. (2012a), Laf-
ferty et al. (2012) and Liu et al. (2012b) for learning non-Gaussian graphical models, and
references Bresler et al. (2008), Bromberg et al. (2009), Ravikumar et al. (2010), Netrapalli
et al. (2010), Anandkumar et al. (2012b), Jalali et al. (2011), Johnson et al. (2012) and Yang
et al. (2012) for learning discrete graphical models. Although all of the above algorithms
can be modified to take into account prior knowledge about a graph H that contains all the
true edges (see Appendix B for some examples), our junction tree framework is fundamen-
tally different than the standard modification of these algorithms. The main difference is
that the junction tree framework allows for using the global Markov property of undirected
graphical models (see Definition 1) when learning graphs. This allows for improved graph
estimation, as illustrated by both our theoretical and numerical results. We note that all
of the above algorithms can be used in conjunction with the junction tree framework.

Junction trees have been used for performing exact probabilistic inference in graphical
models (Lauritzen and Spiegelhalter, 1988). In particular, given a graphical model, and
its junction tree representation, the computational complexity of exact inference is expo-
nential in the size of the cluster in the junction tree with the most of number of vertices.
This has motivated a line of research for learning thin junction trees so that the maximum
size of the cluster in the estimated junction tree is small so that inference is computa-
tionally tractable (Chow and Liu, 1968; Bach and Jordan, 2001; Karger and Srebro, 2001;
Chechetka and Guestrin, 2007; Kumar and Bach, 2013). We also make note of algorithms
for learning decomposable graphical models where the graph structure is assumed to tri-
angulated (Malvestuto, 1991; Giudici and Green, 1999). In general, the goal in the above
algorithms is to learn a joint probability distribution that approximates a more complex
probability distribution so that computations, such as inference, can be done in a tractable
manner. On the other hand, this paper considers the problem of learning the structure of

150

A Junction Tree Framework for Undirected Graphical Model Selection

the graph that best represents the conditional dependencies among the random variables
under consideration.

There are two notable algorithms in the literature that use junction trees for learning
graphical models. The first is an algorithm presented in Xie and Geng (2008) that uses
junction trees to find the direction of edges for learning directed graphical models. Unfor-
tunately, this algorithm cannot be used for UGMS. The second is an algorithm presented
in Ma et al. (2008) for learning chain graphs, that are graphs with both directed and undi-
rected edges. The algorithm in Ma et al. (2008) uses a junction tree representation to learn
an undirected graph before orienting some of the edges to learn a chain graph. Our pro-
posed algorithm, and subsequent analysis, differs from the work in Ma et al. (2008) in the
following ways:

(i) Our algorithm identifies an ordering on the edges, which subsequently results in a
lower sample complexity and the possibility of learning weak edges in a graph. The
ordering on the edges is possible because of our novel region graph interpretation for
learning graphical models. For example, when learning the graph in Figure 1(a) using
Figure 1(b), the algorithm in Ma et al. (2008) learns the edge (3, 5) by applying a
UGMS algorithm to the vertices {1, 2, 3, 4, 5, 6}. In contrast, our proposed algorithm
first estimates all edges in the second layer of the region graph in Figure 1(d), re-
estimates the region graph, and then only applies a UGMS algorithm to {3, 4, 5} to
determine if the edge (3, 4) belongs to the graph. In this way, our algorithm, in general,
requires applying a UGMS algorithm to a smaller number of vertices when learning
edges over separators in a junction tree representation.

(ii) Our algorithm for using junction trees for UGMS is independent of the choice of the
UGMS algorithm, while the algorithm presented in Ma et al. (2008) uses conditional
independence tests for UGMS.

(iii) Our algorithm, as discussed in (i), has the additional advantage of learning certain
weak edges that may not be estimated when using standard UGMS algorithms. We
theoretically quantify this property of our algorithm, while no such theory was pre-
sented in Ma et al. (2008).

Recent work has shown that solutions to the graphical lasso (gLasso) (Friedman et al.,
2008) problem for UGMS over Gaussian graphical models can be computed, under certain
conditions, by decomposing the problem over connected components of the graph computed
by thresholding the empirical covariance matrix (Witten et al., 2011; Mazumder and Hastie,
2012). The methods in Witten et al. (2011) and Mazumder and Hastie (2012) are useful
for computing solutions to gLasso for particular choices of the regularization parameter
and not for accurately estimating graphs. Thus, when using gLasso for UGMS, we can
use the methods in Witten et al. (2011) and Mazumder and Hastie (2012) to solve gLasso
when performing model selection for choosing suitable regularization parameters. Finally,
we note that recent work in Loh and Wainwright (2012) uses properties of junction trees to
learn discrete graphical models. The algorithm in Loh and Wainwright (2012) is designed for
learning discrete graphical models and our methods can be used to improve its performance.

151

Vats and Nowak

1.4 Paper Organization

The rest of the paper is organized as follows:

• Section 2 reviews graphical models and formulates the undirected graphical model
selection (UGMS) problem.

• Section 3 shows how junction trees can be represented as region graphs and outlines
an algorithm for constructing a region graph from a junction tree.

• Section 4 shows how the region graphs can be used to apply a UGMS algorithm to
the clusters and separators of a junction tree.

• Section 5 presents our main framework for using junction trees for UGMS. In partic-
ular, we show how the methods in Sections 3-4 can be used iteratively to estimate a
graph.

• Section 6 reviews the PC-Algorithm, which we use to study the theoretical properties
of the junction tree framework.

• Section 7 presents theoretical results on the sample complexity of learning graphical
models using the junction tree framework. We also highlight advantages of using the
junction tree framework as summarized in Section 1.2.

• Section 8 presents numerical simulations to highlight the advantages of using junction
trees for UGMS in practice.

• Section 9 summarizes the paper and outlines some future work.

2. Preliminaries

In this section, we review some necessary background on graphs and graphical models that
we use in this paper. Section 2.1 reviews some graph theoretic concepts. Section 2.2 reviews
undirected graphical models. Section 2.3 formally defines the undirected graphical model
selection (UGMS) problem. Section 2.4 reviews junction trees, which we use use as a tool
for decomposing UGMS into multiple subproblems.

2.1 Graph Theoretic Concepts

A graph is a tuple G = (V,E(G)), where V is a set of vertices and E(G) ⊆ V × V are
edges connecting vertices in V . For any graph H, we use the notation E(H) to denote its
edges. We only consider undirected graphs where if (v1, v2) ∈ E(G), then (v2, v1) ∈ E(G)
for v1, v2 ∈ V . Some graph theoretic notations that we use in this paper are summarized
as follows:

• Neighbor neG(i): Set of nodes connected to i.

• Path {i, s1, . . . , sd, j}: A sequence of nodes such that (i, s1), (sd, j), (sk, sk+1) ∈ E for
k = 1, . . . , d− 1.

152

A Junction Tree Framework for Undirected Graphical Model Selection

• Separator S: A set of nodes such that all paths from i to j contain at least one node
in S. The separator S is minimal if no proper subset of S separates i and j.

• Induced Subgraph G[A] = (A,E(G[A])): A graph over the nodes A such that E(G[A])
contains the edges only involving the nodes in A.

• Complete graph KA: A graph that contains all possible edges over the nodes A.

For two graphsG1 = (V1, E(G1)) andG2 = (V2, E(G2)), we define the following standard
operations:

• Graph Union: G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2).

• Graph Difference: G1\G2 = (V1, E1\E2).

2.2 Undirected Graphical Models

Definition 1 (Undirected Graphical Model, Lauritzen, 1996) An undirected graph-
ical model is a probability distribution PX defined on a graph G∗ = (V,E(G∗)), where
V = {1, . . . , p} indexes the random vector X = (X1, . . . , Xp) and the edges E(G∗) encode
the following Markov property: for a set of nodes A, B, and S, if S separates A and B,
then XA ⊥⊥ XB|XS.

The Markov property outlined above is referred to as the global Markov property. Undirected
graphical models are also referred to as Markov random fields or Markov networks in the
literature. When the joint probability distribution PX is non-degenerate, that is, PX >
0, the Markov property in Definition 1 are equivalent to the pairwise and local Markov
properties:

• Pairwise Markov property: For all (i, j) /∈ E, Xi ⊥⊥ Xj |XV \{i,j}.

• Local Markov property: For all i ∈ V , Xi ⊥⊥ XV \{neG(i)∪{i}}|XneG(i).

In this paper, we always assume PX > 0 and say PX is Markov on G to reflect the
Markov properties. Examples of conditional independence relations conveyed by a proba-
bility distribution defined on the graph in Figure 3(d) are X1 ⊥⊥ X6|{X2, X4} and X4 ⊥⊥
X6|{X2, X5, X8}.

2.3 Undirected Graphical Model Section (UGMS)

Definition 2 (UGMS) The undirected graphical model selection (UGMS) problem is to
estimate a graph G∗ such that the joint probability distribution PX is Markov on G∗, but
not Markov on any subgraph of G∗.

The last statement in Definition 2 is important, since, if PX is Markov on G∗, then it is
also Markov on any graph that contains G∗. For example, all probability distributions are
Markov on the complete graph. Thus, the UGMS problem is to find the minimal graph
that captures the Markov properties associated with a joint probability distribution. In the
literature, this is also known as finding the minimal I-map.

153

Vats and Nowak

Let Ψ be an abstract UGMS algorithm that takes as inputs a set of n i.i.d. observations
Xn = {X(1), . . . , X(n)} drawn from PX and a regularization parameter λn. The output of Ψ
is a graph Ĝn, where λn controls the number of edges estimated in Ĝn. Note the dependence
of the regularization parameter on n. We assume Ψ is consistent, which is formalized in the
following assumption.

Assumption 1 There exists a λn for which P (Ĝn = G∗) → 1 as n → ∞, where Ĝn =
Ψ(Xn, λn).

We give examples of Ψ in Appendix B. Assumption 1 also takes into account the high-
dimensional case where p depends on n in such a way that p, n→∞.

2.4 Junction Trees

Junction trees (Robertson and Seymour, 1986) are used extensively for efficiently solving
various graph related problems, see Arnborg and Proskurowski (1989) for some examples.
Reference Lauritzen and Spiegelhalter (1988) shows how junction trees can be used for
exact inference (computing marginal distribution given a joint distribution) over graphical
models. We use junction trees as a tool for decomposing the UGMS problem into multiple
subproblems.

Definition 3 (Junction tree) For an undirected graph G = (V,E(G)), a junction tree
J = (C, E(J)) is a tree-structured graph over clusters of nodes in V such that

(i) Each node in V is associated with at least one cluster in C.

(ii) For every edge (i, j) ∈ E(G), there exists a cluster Ck ∈ C such that i, j ∈ Ck.

(iii) J satisfies the running intersection property: For all clusters Cu, Cv, and Cw such
that Cw separates Cu and Cv in the tree defined by E(J), Cu ∩ Cv ⊂ Cw.

The first property in Definition 3 says that all nodes must be mapped to at least one
cluster of the junction tree. The second property states that each edge of the original graph
must be contained within a cluster. The third property, known as the running intersection
property, is the most important since it restricts the clusters and the trees that can be be
formed. For example, consider the graph in Figure 3(a). By simply clustering the nodes
over edges, as done in Figure 3(b), we can not get a valid junction tree (Wainwright, 2002).
By making appropriate clusters of size three, we get a valid junction tree in Fig. 3(c). In
other words, the running intersection property says that for two clusters with a common
node, all the clusters on the path between the two clusters must contain that common node.

Proposition 4 (Robertson and Seymour, 1986) Let J = (C, E(J)) be a junction tree
of the graph G. Let Suv = Cu∩Cv. For each (Cu, Cv) ∈ E, we have the following properties:

1. Suv 6= ∅.

2. Suv separates Cu\Suv and Cv\Suv.

154

A Junction Tree Framework for Undirected Graphical Model Selection

1

2 3

4

(a)

1 31 2

2 4 3 4

(b)

1 2 3

2 3 4

(c)

1 2 3

4 5 6

7 8 9

(d)

1 2 4

2 4 5 8

4 7 8

2 5 6 8

2 3 6

6 8 9

(e)

Figure 3: (a) An undirected graph, (b) Invalid junction tree since {1, 2} separates {1, 3}
and {3, 4},but 3 /∈ {1, 2}. (c) Valid junction tree for the graph in (a). (d) A grid
graph. (e) Junction tree representation of (d).

The set of nodes Suv on the edges are called the separators of the junction tree. Propo-
sition 4 says that all clusters connected by an edge in the junction tree have at least one
common node and the common nodes separate nodes in each cluster. For example, consider
the junction tree in Figure 3(e) of the graph in Figure 3(d). We can infer that 1 and 5 are
separated by 2 and 4. Similarly, we can also infer that 4 and 6 are separated by 2, 5, and 8.
It is clear that if a graphical model is defined on the graph, then the separators can be used
to easily define conditional independence relationships. For example, using Figure 3(e), we
can conclude that X1 ⊥⊥ X5 given X2 and X4. As we will see in later Sections, Proposition 4
allow the decomposition of UGMS into multiple subproblems over clusters and subsets of
the separators in a junction tree.

3. Overview of Region Graphs

In this section, we show how junction trees can be represented as region graphs. As we
will see in Section 5, region graphs allow us to easily decompose the UGMS problem into
multiple subproblems. There are many different types of region graphs and we refer the
readers to Yedidia et al. (2005) for a comprehensive discussion about region graphs and how
they are useful for characterizing graphical models. The region graph we present in this
section differs slightly from the standard definition of region graphs. This is mainly because
our goal is to estimate edges, while the standard region graphs defined in the literature are
used for computations over graphical models.

A region is a collection of nodes, which in this paper can be the clusters of the junction
tree, separators of the junction tree, or subsets of the separators. A region graph G =
(R, ~E(G)) is a directed graph where the vertices are regions and the edges represent directed
edges from one region to another. We use the notation ~E(·) to emphasize that region graphs
contain directed edges. A description of region graphs is given as follows:

• The set ~E(G) contains directed edges so that if (R,S) ∈ ~E(G), then there exists a
directed edge from region R to region S.

• Whenever R −→ S, then S ⊆ R.

Algorithm 1 outlines an algorithm to construct region graphs given a junction tree
representation of a graph H. We associate a label l with every region in R and group

155

Vats and Nowak

Journal of Machine Learning Research () Submitted 4/13; Revised 9/13; Published -

1

2

3

5

6

74

8

9

(a)

5,6,8,9

3,4,6,72,3,4,6

1,3,5

2,3,5,6

3,5,6,83,5

5,6,83,5,6

2,3,6

3,4,6

C1

C2C3

C4

C5 C6

(b) Junction tree

1,3,5 3,5,6,8 5,6,8,9 2,3,5,6 2,3,4,6 3,4,6,7

3,5,6 5,6,8 2,3,6 3,4,6

3,5 5,6 3,6

3,5

(c) Region graph

c© Divyanshu Vats and Robert D. Nowak.

Figure 4: (a) An example of H. (b) A junction tree representation of H. (c) A region graph
representation of (b) computed using Algorithm 1.

Algorithm 1: Constructing region graphs

Input: A junction tree J = (C, E(J)) of a graph H.

Output: A region graph G = (R, ~E(G)).
1 R1 = C, where C are the clusters of the junction tree J .
2 Let R2 be all the separators of J , that is, R2 = {Suv = Cu ∩Cv : (Cu, Cv) ∈ E(J)}.
3 To construct R3, find all possible pairwise intersections of regions in R2. Add all

intersecting regions with cardinality greater than one to R3.
4 Repeat previous step to construct R4, . . . ,RL until there are no more intersecting

regions of cardinality greater than one.

5 For R ∈ R` and S ∈ R`+1, add the edge (R,S) to ~E(G) if S ⊆ R.
6 Let R = {R1, . . . ,RL}.

regions with the same label to partition R into L groups R1, . . . ,RL. In Algorithm 1, we
initialize R1 and R2 to be the clusters and separators of a junction tree J , respectively,
and then iteratively find R3, . . . ,RL by computing all possible intersections of regions with
the same label. The edges in ~E(G) are only drawn from a region in Rl to a region in
Rl+1. Figure 4(c) shows an example of a region graph computed using the junction tree in
Figure 4(b).

Remark 5 Note that the construction of the region graph depends on the junction tree.
Using methods in Vats and Moura (2012), we can always construct junction trees such
that the region graph only has two sets of regions, namely the clusters of the junction tree
and the separators of the junction tree. However, in this case, the size of the regions or
clusters may be too large. This may not be desirable since the computational complexity
of applying UGMS algorithms to region graphs, as shown in Section 5, depends on the size
of the regions.

Remark 6 (Region graph vs. Junction tree) For every junction tree, Algorithm 1
outputs a unique region graph. The junction tree only characterizes the relationship between
the clusters in a junction tree. A region graph extends the junction tree representation to
characterize the relationships between the clusters as well as the separators. For example,
in Figure 4(c), the region {5, 6} is in the third row and is a subset of two separators of the

156

A Junction Tree Framework for Undirected Graphical Model Selection

junction tree. Thus, the only difference between the region graph and the junction tree is
the additional set of regions introduced in R3, . . . ,RL.

Remark 7 From the construction in Algorithm 1, R may have two or more regions that
are the same but have different labels. For example, in Figure 4(c), the region {3, 5} is in
both R2 and R3. We can avoid this situation by removing {3, 5} from R2 and adding an
edge from the region {1, 3, 5} in R1 to the region {3, 5} in R3. For notational simplicity
and for the purpose of illustration, we allow for duplicate regions. This does not change the
theory or the algorithms that we develop.

4. Applying UGMS to Region Graphs

Before presenting our framework for decomposing UGMS into multiple subproblems, we
first show how UGMS algorithms can be applied to estimate a subset of edges in a region of
a region graph. In particular, for a region graph G = (R, ~E(G)), we want to identify a set
of edges in the induced subgraph H[R] that can be estimated by applying a UGMS algorithm
to either R or a set of vertices that contains R. With this goal in mind, define the children
ch(R) of a region R as follows:

Children: ch(R) =
{
S : (R,S) ∈ ~E

}
. (1)

We say R connects to S if (R,S) ∈ ~E(G). Thus, the children in (1) consist of all regions
that R connects to. For example, in Figure 4(c),

ch({2, 3, 4, 6}) = {{2, 3, 6}, {3, 4, 6}} .
If there exists a direct path from S to R, we say S is an ancestor of R. The set of all
ancestors of R is denoted by an(R). For example, in Figure 4(c),

an({5, 6, 8, 9}) = ∅,
an({3, 5, 6}) = {{3, 5, 6, 8}, {2, 3, 5, 6}}, and

an({3, 6}) = {{3, 5, 6}, {2, 3, 6}, {3, 4, 6}, {2, 3, 5, 6}, {2, 3, 4, 6}, {3, 4, 6, 7}, {3, 5, 6, 8}}}.

The notation R takes the union of all regions in an(R) and R so that

R =
⋃

S∈{an(R),R}

S . (2)

Thus, R contains the union of all clusters in the junction tree that contain R. An illustration
of some of the notations defined on region graphs is shown in Figure 5. Using ch(R), define
the subgraph H ′R as2

H ′R = H[R]\
{
∪S∈ch(R)KS

}
, (3)

where H[R] is the induced subgraph that contains all edges in H over the region R and KS

is the complete graph over S. In words, H ′R is computed by removing all edges from H[R]
that are contained in another separator. For example, in Figure 4(c), when R = {5, 6, 8},
E(H ′R) = {(5, 8), (6, 8)}. The subgraph H ′R is important since it identifies the edges that
can be estimated when applying a UGMS algorithm to the set of vertices R.

2. For graphs G1 and G2, E(G1\G2) = E(G1)\E(G2) and E(G1 ∪G2) = E(G1) ∪ E(G2).

157

Vats and Nowak

Algorithm 2: UGMS over regions in a region graph

1: Input: Region graph G = (R, ~E(G)), a region R, observations Xn, and a UGMS
algorithm Ψ.

2: Compute H ′R using (3) and R using (2).
3: Apply Ψ to Xn

R
to estimate edges in H ′R. See Appendix B for examples.

4: Return the estimated edges ÊR.

Journal of Machine Learning Research () Submitted 4/13; Revised 9/13; Published -

� � �

� � � � � �R

� � �

�
�
�
�

ch(R)

an(R)

c© Divyanshu Vats and Robert D. Nowak.

Figure 5: Notations defined on region graphs. The children ch(R) are the set of regions
that R connects to. The ancestors an(R) are all the regions that have a directed
path to the region R. The set R takes the union of all regions in an(R) and R.

Proposition 8 Suppose E(G∗) ⊆ E(H). All edges in H ′R can be estimated by solving a
UGMS problem over the vertices R.

Proof See Appendix C.

Proposition 8 says that all edges in H ′R can be estimated by applying a UGMS algorithm
to the set of vertices R. The intuition behind the result is that only those edges in the
region R can be estimated whose Markov properties can be deduced using the vertices in
R. Moreover, the edges not estimated in H[R] share an edge with another region that does
not contain all the vertices in R. Algorithm 2 summarizes the steps involved in estimating
the edges in H ′R using the UGMS algorithm Ψ defined in Section 2.3. Some examples on
how to use Algorithm 2 to estimate some edges of the graph in Figure 4(a) using the region
graph in Figure 4(c) are described as follows.

1. Let R = {1, 3, 5}. This region only connects to {3, 5}. This means that all edges,
except the edge (3, 5) in H[R], can be estimated by applying Ψ to R.

2. Let R = {3, 5, 6}. The children of this region are {3, 5}, {5, 6}, and {3, 6}. This means
that H ′R = ∅, that is, no edge over H[R] can be estimated by applying Ψ to {3, 5, 6}.

158

A Junction Tree Framework for Undirected Graphical Model Selection

Notation Description

G∗ = (V,E(G∗)) Unknown graph that we want to estimate.
H Known graph such that E(G∗) ⊆ E(H).

G = (R, ~E(G)) Region graph of H constructed using Algorithm 1.
R = (R1, . . . ,RL) Partitioning of the regions in R into L labels.

R The set of vertices used when applying Ψ to estimate edges over R.
See (2) for definition.

H ′R Edges in H[R] that can be estimated using Algorithm 2.
See (3) for definition.

Table 1: A summary of some notations.

3. Let R = {3, 4, 6}. This region only connects to {3, 6}. Thus, all edges except (3, 6)
can be estimated. The regions {2, 3, 4, 6} and {3, 4, 6, 7} connect to R, so Ψ needs to
be applied to R = {2, 3, 4, 6, 7}.

5. UGMS Using Junction Trees: A General Framework

In this section, we present the junction tree framework for UGMS using the results from
Sections 3-4. Section 5.1 presents the junction tree framework. Section 5.2 discusses the
computational complexity of the framework. Section 5.3 highlights the advantages of using
junction trees for UGMS using some examples. We refer to Table 1 for a summary of all
the notations that we use in this section.

5.1 Description of Framework

Recall that Algorithm 2 shows that to estimate a subset of edges in H[R], where R is a
region in the region graph G, the UGMS algorithm Ψ in Assumption 1 needs to be applied
to the set R defined in (2). Given this result, a straightforward approach to decomposing
the UGMS problem is to apply Algorithm 2 to each region R and combine all the estimated
edges. This will work since for any R,S ∈ R such that R 6= S, E(H ′R) ∩ E(H ′S) = ∅.
This means that each application of Algorithm 2 estimates a different set of edges in the
graph. However, for some edges, this may require applying a UGMS algorithm to a large
set of nodes. For example, in Figure 4(c), when applying Algorithm 2 to R = {3, 6}, the
UGMS algorithm needs to be applied to R = {2, 3, 4, 5, 6, 7, 8}, which is almost the full set
of vertices. To reduce the problem size of the subproblems, we apply Algorithms 1 and 2
in an iterative manner as outlined in Algorithm 3.

Figure 6 shows a high level description of Algorithm 3. We first find a junction tree and
then a region graph of the graph H using Algorithm 1. We then find the row in the region
graph over which edges can be estimated and apply Algorithm 2 to each region in that row.
We note that when estimating edges over a region, we use model selection algorithms to
choose an appropriate regularization parameter to select the number of edges to estimate.
Next, all estimated edges are added to Ĝ and all edges that are estimated are removed from
H. Thus, H now represents all the edges that are left to be estimated and Ĝ ∪H contains

159

Vats and Nowak
Journal of Machine Learning Research () Submitted 4/13; Revised 9/13; Published -

Apply UGMS to a
row of region graph

(Algorithm 2)

Find Junction Tree
and Region Graph

(Algorithm 1)

Have all edges

been estimated?

Xn,H

Output graph

No

Yes

c© Divyanshu Vats and Robert D. Nowak.

Figure 6: A high level overview of the junction tree framework for UGMS in Algorithm 3.

Algorithm 3: Junction Tree Framework for UGMS

See Table 1 for notations.

Step 1. Initialize Ĝ so that E(Ĝ) = ∅ and find the region graph G of H.

Step 2. Find the smallest ` such that there exists a region R ∈ R` such that E(H ′R) 6= ∅.

Step 3. Apply Algorithm 2 to each region in R`.

Step 4. Add all estimated edges to Ĝ and remove edges from H that have been estimated.
Now H ∪ Ĝ contains all the edges in G∗.

Step 5. Compute a new junction tree and region graph G using the graph Ĝ ∪H.

Step 6. If E(H) = ∅, stop the algorithm, else go to Step 2.

all the edges in G∗. We repeat the above steps on a new region graph computed using Ĝ∪H
and stop the algorithm when H is an empty graph.

An example illustrating the junction tree framework is shown in Figure 7. The region
graph in Figure 7(b) is constructed using the graph H in Figure 7(a). The true graph G∗

we want to estimate is shown in Figure 1(a). The top and bottom in Figure 7(c) show the
graphs Ĝ and H, respectively, after estimating all the edges in R1 of Figure 7(b). The edges
in Ĝ are represented by double lines to distinguish them from the edges in H. Figure 7(d)
shows the region graph of Ĝ ∪H. Figure 7(e) shows the updated Ĝ and H where only the
edges (4, 5) and (5, 6) are left to be estimated. This is done by applying Algorithm 2 to
the regions in R2 of Figure 7(f). Notice that we did not include the region {1, 2} in the
last region graph since we know all edges in this region have already been estimated. In
general, if E(H[R]) = ∅ for any region R, we can remove this region and thereby reduce the
computational complexity of constructing region graphs.

160

A Junction Tree Framework for Undirected Graphical Model Selection

Journal of Machine Learning Research () Submitted 4/13; Revised 9/13; Published -

1

2 4

3

6

5
7

(a) Graph H

1,2,3,5 1,3,4,5 3,4,5,6 4,5,6,7

1,3,5 3,4,5 4,5,6

3,5 4,5

(b) Region graph of (a)

1

2 4

3

6

5
7

1

2 4

3

6

5
7

Ĝ

H

(c) Steps 2,3, and 4 ap-
plied to (b)

1,3,4,5 4,5,61,2

4,5

5,6,7

5,6

(d) Step 5

1

2 4

3

6

5
7

1

2 4

3

6

5
7

Ĝ

H

(e) Steps 2,3, and 4 ap-
plied to (d)

4,5,6

3,4

5,6,7

4,5

1,3,4 3,4,5

5,6

(f) Step 5

1

2
4

3

6
5

7

(g) Star graph

c© Divyanshu Vats and Robert D. Nowak.

Figure 7: Example to illustrate the junction tree framework in Algorithm 3.

5.2 Computational Complexity

In this section, we discuss the computational complexity of the junction tree framework.
It is difficult to write down a closed form expression since the computational complexity
depends on the structure of the junction tree. Moreover, merging clusters in the junction
tree can easily control the computations. With this in mind, the main aim in this section
is to show that the complexity of the framework is roughly the same as that of applying a
standard UGMS algorithm. Consider the following observations.

1. Computing H: Assuming no prior knowledge about H is given, this graph needs
to be computed from the observations. This can be done using standard screening
algorithms, such as those in Fan and Lv (2008) and Vats (to appear), or by applying a
UGMS algorithm with a regularization parameter that selects a larger number of edges
(than that computed by using a standard UGMS algorithm). Thus, the complexity
of computing H is roughly the same as that of applying a UGMS algorithm to all the
vertices in the graph.

2. Applying UGMS to regions: Recall from Algorithm 2 that we apply a UGMS algorithm
to observations over R to estimate edges over the vertices R, where R is a region in
a region graph representation of H. Since |R| ≤ p, it is clear that the complexity of
Algorithm 2 is less than that of applying a UGMS algorithm to estimate all edges in
the graph.

3. Computing junction trees: For a given graph, there exists several junction tree repre-
sentations. The computational complexity of applying UGMS algorithms to a junction
tree depends on the size of the clusters, the size of the separators, and the degree of the
junction tree. In theory, it is useful to select a junction tree so that the overall com-
putational complexity of the framework is as small as possible. However, this is hard

161

Vats and Nowak

since there can be an exponential number of possible junction tree representations.
Alternatively, we can select a junction tree so that the maximum size of the clusters
is as small as possible. Such junction trees are often referred to as optimal junction
trees in the literature. Although finding optimal junction trees is also hard (Arnborg
et al., 1987), there exists several computationally tractable heuristics for finding close
to optimal junction trees (Kjaerulff, 1990; Berry et al., 2003). The complexity of such
algorithms range from O(p2) to O(p3), depending on the degree of approximation.
We note that this time complexity is less than that of standard UGMS algorithms.

It is clear that the complexity of all the intermediate steps in the framework is less than
that of applying a standard UGMS algorithm. The overall complexity of the framework
depends on the number of clusters in the junction tree and the size of the separators in the
junction tree. The size of the separators in a junction tree can be controlled by merging
clusters that share a large separator. This step can be done in linear time. Removing large
separators also reduces the total number of clusters in a junction tree. In the worst case,
if all the separators in H are too large, the junction tree will only have one cluster that
contains all the vertices. In this case, using the junction tree framework will be no different
than using a standard UGMS algorithm.

5.3 Advantages of using Junction Trees and Region Graphs

An alternative approach to estimating G∗ using H is to modify some current UGMS algo-
rithms (see Appendix B for some concrete examples). For example, neighborhood selection
based algorithms first estimate the neighborhood of each vertex and then combine all the
estimated neighborhoods to construct an estimate Ĝ of G∗ (Meinshausen and Bühlmann,
2006; Bresler et al., 2008; Netrapalli et al., 2010; Ravikumar et al., 2010). Two ways in
which these algorithms can be modified when given H are described as follows:

1. A straightforward approach is to decompose the UGMS problem into p different sub-
problems of estimating the neighborhood of each vertex. The graph H can be used
to restrict the estimated neighbors of each vertex to be subsets of the neighbors in H.
For example, in Figure 7(a), the neighborhood of 1 is estimated from the set {2, 3, 4, 5}
and the neighborhood of 3 is estimated from the set {1, 4, 5, 6}. This approach can be
compared to independently applying Algorithm 2 to each region in the region graph.
For example, when using the region graph, the edge (1, 4) can be estimated by apply-
ing a UGMS algorithm to {1, 3, 4, 5}. In comparison, when not using region graphs,
the edge (1, 4) is estimated by applying a UGMS algorithm to {1, 2, 3, 4, 5}. In general,
using region graphs results in smaller subproblems. A good example to illustrate this
is the star graph in Figure 7(g). A junction tree representation of the star graph can
be computed so that all clusters will have size two. Subsequently, the junction tree
framework will only require applying a UGMS algorithm to a pair of nodes. On the
other hand, neighborhood selection needs to be applied to all the nodes to estimate
the neighbors of the central node 1 which is connected to all other nodes.

2. An alternative approach is to estimate the neighbors of each vertex in an iterative
manner. However, it is not clear what ordering should be chosen for the vertices. The

162

A Junction Tree Framework for Undirected Graphical Model Selection

region graph approach outlined in Section 5.1 leads to a natural choice for choosing
which edges to estimate in the graph so as to reduce the problem size of subsequent
subproblems. Moreover, iteratively applying neighborhood selection may still lead to
large subproblems. For example, suppose the star graph in Figure 7(g) is in fact the
true graph. In this case, using neighborhood selection always leads to applying UGMS
to all the nodes in the graph.

From the above discussion, it is clear that using junction trees for UGMS leads to smaller
subproblems and a natural choice of an ordering for estimating edges in the graph. We will
see in Section 7 that the smaller subproblems lead to weaker conditions on the number of
observations required for consistent graph estimation. Moreover, our numerical simulations
in Section 8 empirically show the advantages of using junction tree over neighborhood
selection based algorithms.

6. PC-Algorithm for UGMS

So far, we have presented the junction tree framework using an abstract undirected graph-
ical model selection (UMGS) algorithm. This shows that our framework can be used in
conjunction with any UGMS algorithm. In this section, we review the PC-Algorithm,
since we use it to analyze the junction tree framework in Section 7. The PC-Algorithm
was originally proposed in the literature for learning directed graphical models (Spirtes and
Glymour, 1991). The first stage of the PC-Algorithm, which we refer to as PC, estimates an
undirected graph using conditional independence tests. The second stage orients the edges
in the undirected graph to estimate a directed graph. We use the first stage of the PC-
Algorithm for UGMS. Algorithm 4 outlines PC. Variants of the PC-Algorithm for learning
undirected graphical models have recently been analyzed in Anandkumar et al. (2012b,a).
The main property used in PC is the global Markov property of undirected graphical models
which states that if a set of vertices S separates i and j, then Xi ⊥⊥ Xj |XS . As seen in
Line 5 of Algorithm 4, PC deletes an edge (i, j) if it identifies a conditional independence
relationship. Some properties of PC are summarized as follows:

1. Parameter κ: PC iteratively searches for separators for an edge (i, j) by searching for
separators of size 0, 1, . . . , κ. This is reflected in Line 2 of Algorithm 4. Theoretically,
the algorithm can automatically stop after searching for all possible separators for
each edge in the graph. However, this may not be computationally tractable, which
is why κ needs to be specified.

2. Conditional Independence Test: Line 5 of Algorithm 4 uses a conditional indepen-
dence test to determine if an edge (i, j) is in the true graph. This makes PC extremely
flexible since nonparametric independence tests may be used, see Hoeffding (1948),
Rasch et al. (2012) and Zhang et al. (2012) for some examples. In this paper, for
simplicity, we only consider Gaussian graphical models. In this case, conditional in-
dependence can be tested using the conditional correlation coefficient defined as

Conditional correlation coefficient: ρij|S =
Σij − Σi,SΣ−1

S,SΣS,j√
Σi,i|SΣj,j|S

,

163

Vats and Nowak

Algorithm 4: PC-Algorithm for UGMS: PC(κ,Xn, H, L)

Inputs:
κ: An integer that controls the computational complexity of PC.
Xn: n i.i.d. observations.
H: A graph that contains all the true edges G∗.
L: A graph that contains the edges that need to be estimated.

Output: A graph Ĝ that contains edges in L that are estimated to be in G∗.

1 Ĝ← L
2 for each k ∈ {0, 1, . . . , κ} do

3 for each (i, j) ∈ E(Ĝ) do
4 Sij ← Neighbors of i or j in H depending on which one has lower cardinality.
5 if ∃ S ⊂ Sij, |S| = k, s.t. Xi ⊥⊥ Xj |XS (computed using Xn) then

6 Delete edge (i, j) from Ĝ and H.

7 Return Ĝ.

where PX ∼ N (0,Σ), ΣA,B is the covariance matrix of XA and XB, and ΣA,B|S is the
conditional covariance defined by

ΣA,B|S = ΣA,B − ΣA,SΣ−1
S,SΣB,S .

Whenever Xi ⊥⊥ Xj |XS , then ρij|S = 0. This motivates the following test for inde-
pendence:

Conditional Independence Test: |ρ̂ij|S | < λn =⇒ Xi ⊥⊥ Xj |XS , (4)

where ρ̂ij|S is computed using the empirical covariance matrix from the observations

Xn. The regularization parameter λn controls the number of edges estimated in Ĝ.

3. The graphs H and L: Recall that H contains all the edges in G∗. The graph L contains
edges that need to be estimated since, as seen in Algorithm 2, we apply UGMS to only
certain parts of the graph instead of the whole graph. As an example, to estimate
edges in a region R of a region graph representation of H, we apply Algorithm 4 as
follows:

ĜR = PC
(
η,Xn, H,H ′R

)
, (5)

where H ′R is defined in (3). Notice that we do not use R in (5). This is because Line 4
of Algorithm 4 automatically finds the set of vertices to apply the PC algorithm to.
Alternatively, we can apply Algorithm 4 using R as follows:

ĜR = PC
(
η,Xn

R
,KR, H

′
R

)
, (6)

where KR is the complete graph over R.

4. The set Sij: An important step in Algorithm 4 is specifying the set Sij in Line 4 to
restrict the search space for finding separators for an edge (i, j). This step significantly
reduces the computational complexity of PC and differentiates PC from the first stage
of the SGS-Algorithm (Spirtes et al., 1990), which specifies Sij = V \{i, j}.

164

A Junction Tree Framework for Undirected Graphical Model Selection

7. Theoretical Analysis of Junction Tree based PC

We use the PC-algorithm to analyze the junction tree based UGMS algorithm. Our main
result, stated in Theorem 9, shows that when using the PC-Algorithm with the junction
tree framework, we can potentially estimate the graph using fewer number of observations
than what is required by the standard PC-Algorithm. As we shall see in Theorem 9, the
particular gain in performance depends on the structure of the graph.

Section 7.1 discusses the assumptions we place on the graphical model. Section 7.2
presents the main theoretical result highlighting the advantages of using junction trees.
Throughout this section, we use standard asymptotic notation so that f(n) = Ω(g(n))
implies that there exists an N and a constant c such that for all n ≥ N , f(n) ≥ cg(n). For
f(n) = O(g(n)), replace ≥ by ≤.

7.1 Assumptions

(A1) Gaussian graphical model: We assume X = (X1, . . . , Xp) ∼ PX , where PX is a
multivariate normal distribution with mean zero and covariance Σ. Further, PX is
Markov on G∗ and not Markov on any subgraph of G∗. It is well known that this is
assumption translates into the fact that Σ−1

ij = 0 if and only if (i, j) /∈ G∗ (Speed and
Kiiveri, 1986).

(A2) Faithfulness: If Xi ⊥⊥ Xj |XS , then i and j are separated by3 S. This assumption is
important for the PC algorithm to output the correct graph. Further, note that the
Markov assumption is different since it goes the other way: if i and j are separated
by S, then Xi ⊥⊥ Xj |XS . Thus, when both (A1) and (A2) hold, we have that Xi ⊥⊥
Xj |XS ⇐⇒ (i, j) /∈ G∗.

(A3) Separator Size η: For all (i, j) /∈ G∗, there exists a subset of nodes S ⊂ V \{i, j},
where |S| ≤ η, such that S is a separator for i and j in G∗. This assumption allows
us to use κ = η when using PC.

(A4) Conditional Correlation Coefficient ρij|S and Σ: Under (A3), we assume that ρij|S
satisfies

sup{|ρij|S | : i, j ∈ V, S ⊂ V, |S| ≤ η}} ≤M < 1 ,

where M is a constant. Further, we assume that maxi,S,|S|≤η Σi,i|S ≤ L <∞.

(A5) High-Dimensionality We assume that the number of vertices in the graph p scales
with n so that p → ∞ as n → ∞. Furthermore, both ρij|S and η are assumed to be
functions of n and p unless mentioned otherwise.

(A6) Structure of G∗: Under (A3), we assume that there exists a set of vertices V1, V2,
and T such that T separates V1 and V2 in G∗ and |T | < η. Figure 8(a) shows the
general structure of this assumption.

Assumptions (A1)-(A5) are standard conditions for proving high-dimensional consis-
tency of the PC-Algorithm for Gaussian graphical models. The structural constraints on

3. If S is the empty set, then there is no path between i and j.

165

Vats and Nowak

Journal of Machine Learning Research () Submitted 4/13; Revised 9/13; Published -

�

�

�
�

�

�
�

�

� �

�

�

�

��

�
�

�

�

�

�

�
�

�

TV1 V2

(a) Structure of the graph in (A5)

V1∪T V2∪T

T

(b) Region graph of (a)

c© Divyanshu Vats and Robert D. Nowak.

Figure 8: General Structure of the graph we use in showing the advantages of the junction
tree framework.

the graph in Assumption (A6) are required for showing the advantages of the junction tree
framework. We note that although (A6) appears to be a strong assumption, there are
several graph families that satisfy this assumption. For example, the graph in Figure 1(a)
satisfies (A6) with V1 = {1, 2}, V2 = {1, 3, 4, 5, 6, 7}, and T = {1}. In general, if there
exists a separator in the graph of size less than η, then (A6) is clearly satisfied. Further,
we remark that we only assume the existence of the sets V1, V2, and T and do not assume
that these sets are known a priori. We refer to Remark 17 for more discussions about (A6)
and some extensions of this assumption.

7.2 Theoretical Result and Analysis

Recall PC in Algorithm 4. Since we assume (A1), the conditional independence test in (4)
can be used in Line 5 of Algorithm 4. To analyze the junction tree framework, consider the
following steps to construct Ĝ using PC when given n i.i.d. observations Xn:

Step 1. Compute H: Apply PC using a regularization parameter λ0
n such that

H = PC(|T |,Xn,KV ,KV) ,

where KV is the complete graph over the nodes V . In the above equation, we apply
PC to remove all edges for which there exists a separator of size less than or equal
to |T |.

Step 2. Estimate a subset of edges over V1 ∪ T and V2 ∪ T using regularization parameters
λ1
n and λ2

n, respectively, such that

ĜVk = PC
(
η,Xn, H[Vk ∪ T] ∪KT , H

′
Vk∪T

)
, for k = 1, 2,

where H ′Vk∪T = H[Vk ∪ T]\KT as defined in (3).

Step 3. Estimate edges over T using a regularization parameter λTn :

ĜT = PC
(
η,Xn, H[T ∪ ne

ĜV1∪ĜV2
(T)], H[T]

)
.

Step 4. Final estimate is Ĝ = ĜV1 ∪ ĜV2 ∪ ĜT .

166

A Junction Tree Framework for Undirected Graphical Model Selection

Step 1 is the screening algorithm used to eliminate some edges from the complete graph.
For the region graph in Figure 8(b), Step 2 corresponds to applying PC to the regions V1∪T
and V2 ∪ T . Step 3 corresponds to applying PC to the region T and all neighbors of T
estimated so far. Step 4 merges all the estimated edges. Although the neighbors of T are
sufficient to estimate all the edges in T , in general, depending on the graph, a smaller set
of vertices is required to estimate edges in T . The main result is stated using the following
terms defined on the graphical model:

p1 = |V1|+ |T | , p2 = |V2|+ |T | , pT = |T ∪ neG∗(T)| , ηT = |T | ,
ρ0 = inf{|ρij|S | : i, j s.t. |S| ≤ ηT & |ρij|S | > 0} ,
ρ1 = inf{|ρij|S | : i ∈ V1, j ∈ V1 ∪ T s.t. (i, j) ∈ E(G∗), S ⊆ V1 ∪ T, |S| ≤ η} ,
ρ2 = inf{|ρij|S | : i ∈ V2, j ∈ V2 ∪ T s.t. (i, j) ∈ E(G∗), S ⊆ V2 ∪ T, |S| ≤ η} ,
ρT = inf{|ρij|S | : i, j ∈ T s.t. (i, j) ∈ E,S ⊆ T ∪ neG∗(T), ηT < |S| ≤ η} ,

The term ρ0 is a measure of how hard it is to learn the graph H in Step 1 so that E(G∗) ⊆
E(H) and all edges that have a separator of size less than |T | are deleted in H. The terms ρ1

and ρ2 are measures of how hard it is learn the edges in G∗[V1 ∪ T]\KT and G∗[V2∪T]\KT

(Step 2), respectively, given that E(G∗) ⊆ E(H). The term ρT is a measure of how hard
it is learn the graph over the nodes T given that we know the edges that connect V1 to T
and V2 to T .

Theorem 9 Under Assumptions (A1)-(A6), there exists a conditional independence test
such that if

n = Ω
(
max

{
ρ−2

0 ηT log(p), ρ−2
1 η log(p1), ρ−2

2 η log(p2), ρ−2
T η log(pT)

})
, (7)

then P (Ĝ 6= G)→ 0 as n→∞.

Proof See Appendix E.

We now make several remarks regarding Theorem 9 and its consequences.

Remark 10 (Comparison to Necessary Conditions) Using results from Wang et al.
(2010), it follows that a necessary condition for any algorithm to recover the graph G∗ that
satisfies Assumptions (A1) and (A6) is that n = Ω(max{θ−2

1 log(p1 − d), θ−2
2 log(p2 − d)},

where d is the maximum degree of the graph and θ1 and θ2 are defined as follows:

θk = min
(i,j)∈G∗[Vk∪T]\G∗[T]

|Σ−1
ij |√

|Σ−1
ii Σ−1

jj |
, k = 1, 2 .

If η is a constant and ρ1 and ρ2 are chosen so that the corresponding expressions dominate all
other expressions, then (7) reduces to n = Ω(max{ρ−2

1 log(p1), ρ−2
2 log(p2)}). Furthermore,

for certain classes of Gaussian graphical models, namely walk summable graphical models
(Malioutov et al., 2006), the results in Anandkumar et al. (2012a) show that there exists
conditions under which ρ1 = Ω(θ1) and ρ2 = Ω(θ2). In this case, (7) is equivalent to
n = Ω(max{θ−2

1 log(p1), θ−2
2 log(p2)}). Thus, as long as p1, p2 � d, there exists a family

167

Vats and Nowak

of graphical models for which the sufficient conditions in Theorem 9 nearly match the
necessary conditions for asymptotically reliable estimation of the graph. We note that the
particular family of graphical models is quite broad, and includes forests, scale-free graphs,
and some random graphs. We refer to Anandkumar et al. (2012a) for a characterization of
such graphical models.

Remark 11 (Choice of Regularization Parameters) We use the conditional indepen-
dence test in (4) that thresholds the conditional correlation coefficient. From the proof in
Appendix E, the thresholds, which we refer to as the regularization parameter, are chosen
as follows:

λ0
n = O(ρ0) and ρ0 = Ω

(√
ηT log(p)/n

)
,

λkn = O(ρk) and ρk = Ω
(√

η log(pk)/n
)
, k = 1, 2 ,

λTn = O(ρT) and ρT = Ω
(√

η log(pT)/n
)
.

We clearly see that different regularization parameters are used to estimate different parts
of the graph. Furthermore, just like in the traditional analysis of UGMS algorithms, the
optimal choice of the regularization parameter depends on unknown parameters of the
graphical model. In practice, we use model selection algorithms to select regularization
parameters. We refer to Section 8 for more details.

Remark 12 (Weaker Condition) If we do not use the junction tree based approach
outlined in Steps 1-4, and instead directly apply PC, the sufficient condition on the number
of observations will be n = Ω(ρ−2

minη log(p)), where

ρmin := inf{|ρij|S | : (i, j) ∈ E(G∗), |S| ≤ η} .

This result is proved in Appendix D using results from Kalisch and Bühlmann (2007) and
Anandkumar et al. (2012a). Since ρmin ≤ min{ρ0, ρ1, ρ2, ρT }, it is clear that (7) is a weaker
condition. The main reason for this difference is that the junction tree approach defines an
ordering on the edges to test if an edge belongs to the true graph. This ordering allows for
a reduction in separator search space (see Sij in Algorithm 4) for testing edges over the set
T . Standard analysis of PC assumes that the edges are tested randomly, in which case, the
separator search space is always upper bounded by the full set of nodes.

Remark 13 (Reduced Sample Complexity) Suppose η, ρ0, and ρT are constants and
ρ1 < ρ2. In this case, (7) reduces to

n = Ω
(
max

{
log(p), ρ−2

1 log(p1), ρ−2
2 log(p2)

})
. (8)

If ρ−2
1 = Ω

(
max

{
ρ−2

2 log(p2)/ log(p1), log(p)
})

, then (8) reduces to

n = Ω
(
ρ−2

1 log(p1)
)
.

On the other hand, if we do not use junction trees, n = Ω
(
ρ−2
min log(p)

)
, where ρmin ≤

ρ1. Thus, if p1 � p, for example p1 = log(p), then using the junction tree based PC

168

A Junction Tree Framework for Undirected Graphical Model Selection

Journal of Machine Learning Research () Submitted 4/13; Revised 9/13; Published -

V2

V1

V3

V4

V5

V1

∪5
i=2Vi

c© Divyanshu Vats and Robert D. Nowak.

Figure 9: Junction tree representation with clusters V1, . . . , V5 and separators denotes by
rectangular boxes. We can cluster vertices in the junction tree to get a two cluster
representation as in Figure 8.

requires lower number of observations for consistent UGMS. Informally, the above condition
says that if the graph structure in (A6) is easy to identify, p1 � p2, and the minimal
conditional correlation coefficient over the true edges lies in the smaller cluster (but not
over the separator), the junction tree framework may accurately learn the graph using
significantly less number of observations.

Remark 14 (Learning Weak Edges) We now analyze Theorem 9 to see how the condi-
tional correlation coefficients scale for high-dimensional consistency. Under the assumption
in Remark 13, it is easy to see that the minimal conditional correlation coefficient scales
as Ω(

√
log(p1)/n) when using junction trees and as Ω(

√
log(p)/n) when not using junction

trees. This suggests that when p1 � p, it may be possible to learn edges with weaker
conditional correlation coefficients when using junction trees. Our numerical simulations in
Section 8 empirically show this property of the junction tree framework.

Remark 15 (Computational complexity) It is easy to see that the worst case compu-
tational complexity of the PC-Algorithm is O(pη+2) since there are O(p2) edges and testing
for each edge requires a search over at most O(pη) separators. The worst case computational

complexity of Steps 1-4 is roughly O
(
p|T |+2 + pη+2

1 + pη+2
2 + pη+2

T

)
. Under the conditions

in Remark 8.3 and when p1 � p, this complexity is roughly O(pη+2), which is the same as
the standard PC-Algorithm. In practice, especially when the graph is sparse, the compu-
tational complexity is much less than O(pη+2) since the PC-Algorithm restricts the search
space for finding separators.

Remark 16 (Using other UGMS Algorithms) Although our analysis used the
PC-Algorithm to derive sufficient conditions for accurately estimating the graph, we can
easily use other algorithms, such as the graphical Lasso or the neighborhood selection based
Lasso, for analysis. The main difference will be in the assumptions imposed on the graphical
model.

Remark 17 (Extensions) We have analyzed the junction tree framework assuming that
the junction tree of H only has two clusters. One way to generalize our analysis to junction
trees with multiple clusters is to merge clusters so that the resulting junction tree admits

169

Vats and Nowak

the structure in Figure 8. For example, suppose the graph G∗ has a junction tree repre-
sentation as in Figure 9 with five clusters. If |V1 ∩ V2| < η, then we can merge the clusters
V2, V3, . . . , V5 so that the resulting junction tree admits the two cluster representation in
Figure 8. Furthermore, we can also generalize Theorem 9 to cases when |T | = η. The main
change in the analysis will be in the definition of ρ0. For example, if the graph is a chain so
that the first p1 vertices are associated with “weak edges”, we can get similar results as in
Theorem 9. Finally, we note that a full analysis of the junction tree framework, that also
incorporates the step of updating the junction tree in Algorithm 3, is challenging and will
be addressed in future work.

8. Numerical Simulations

In this section, we present numerical simulations that highlight the advantages of using
the junction tree framework for UGMS. Throughout this section, we assume a Gaussian
graphical model such that PX ∼ N (0,Θ−1) is Markov on G∗. It is well known that this
implies that (i, j) /∈ G∗ ⇐⇒ Θij = 0 (Speed and Kiiveri, 1986). Some algorithmic details
used in the simulations are described as follows.

Computing H: We apply Algorithm 4 with a suitable value of κ in such a way that the
separator search space Sij (see Line 4) is restricted to be small. In other words, we do
not test for all possible conditional independence tests so as to restrict the computational
complexity of the screening algorithm. We use the conditional partial correlation to test
for conditional independence and choose a separate threshold to test for each edge in the
graph. The thresholds for the conditional independence test are computed using 5-fold
cross-validation. The computational complexity of this step is roughly O(p2) since there
are O(p2) edges to be tested. Note that this method for computing H is equivalent to Step 1
in Section 7.2 with |T | = κ. Finally, we note that the above method does not guarantee
that all edges in G∗ will be included in H. This can result in false edges being included
in the junction tree estimated graphs. To avoid this situation, once a graph estimate Ĝ
has been computed using the junction tree based UGMS algorithm, we apply conditional
independence tests again to prune the estimated edge set.

Computing the junction tree: We use standard algorithms in the literature for computing
close to optimal junction trees.4 Once the junction tree is computed, we merge clusters so
that the maximum size of the separator is at most κ + 1, where κ is the parameter used
when computing the graph H. For example, in Figure 9, if the separator associated with V2

and V3 has cardinality greater than κ+ 1, then we merge V2 and V3 and resulting junction
tree is such that V1, V4, and V5 all connect to the cluster V2 ∪ V3.

UGMS Algorithms: We apply the junction tree framework in conjunction with graphical
Lasso (gL) (Banerjee et al., 2008), neighborhood selection using Lasso (nL) (Meinshausen
and Bühlmann, 2006), and the PC-Algorithm (PC) (Spirtes and Glymour, 1991). See
Appendix B for a review of gL and nL and Algorithm 4 for PC. When using nL, we use the
intersection rule to combine neighborhood estimates. Further, we use the adaptive Lasso
(Zou, 2006) for finding neighbors of a vertex since this is known to give superior results for
variable selection (van de Geer et al., 2011).

4. We use the GreedyFillin heuristic. This is known to give good results with reasonable computational
time (Kjaerulff, 1990).

170

A Junction Tree Framework for Undirected Graphical Model Selection

Choosing Regularization Parameters: An important step when applying UGMS algorithms
is to choose a suitable regularization parameter. It is now well known that classical methods,
such as cross-validation and information criterion based methods, tend to choose a much
larger number of edges when compared to an oracle estimator for high-dimensional problems
(Meinshausen and Bühlmann, 2010; Liu et al., 2010). Several alternative methods have been
proposed in the literature; see for example stability selection (Meinshausen and Bühlmann,
2010; Liu et al., 2010) and extended Bayesian information (EBIC) criterion (Chen and
Chen, 2008; Foygel and Drton, 2010). In all our simulations, we use EBIC since it is much
faster than stability based methods when the distribution is Gaussian. EBIC selects a
regularization parameter λ̂n as follows:

λ̂n = max
λn>0

{
n
[
log det Θ̂λn − trace(ŜΘ)

]
+ |E(Ĝλn)| log n+ 4γ|E(Ĝλn)| log p

}
,

where Ŝ is the empirical covariance matrix, Θ̂λn is the estimate of the inverse covariance
matrix and |E(Ĝλn)| is the number of edges in the estimated graph. The estimate λ̂n
depends on a parameter γ ∈ [0, 1] such that γ = 0 results in the BIC estimate and increasing
γ produces sparser graphs. The authors in reference Foygel and Drton (2010) suggest that
γ = 0.5 is a reasonable choice for high-dimensional problems. When solving subproblems
using Algorithm 2, the log p term is replaced by log |R|, Θ̂λn is replaced by the inverse
covariance over the vertices R, and |Ĝλn | is replaced by the number of edges estimated from
the graph H ′R.
Small subproblems: Whenever |R| is small (less than 8 in our simulations), we independently
test whether each edge is in G∗ using hypothesis testing. This shows the application of using
different algorithms to learn different parts of the graph.

8.1 Results on Synthetic Graphs

We assume that Θii = 1 for all i = 1, . . . , p. We refer to all edges connected to the first p1

vertices as weak edges and the rest of the edges are referred to as strong edges. The different
types of synthetic graphical models we study are described as follows:

• Chain (CH1 and CH2): Θi,i+1 = ρ1 for i = 1, . . . , p1 − 1 (weak edges) and Θi,i+1 = ρ2

for i = p1, p − 1 (strong edges). For CH1, ρ1 = 0.15 and ρ2 = 0.245. For CH2,
ρ1 = 0.075 and ρ2 = 0.245. Let Θij = Θji.

• Cycle (CY1 and CY2): Θi,i+1 = ρ1 for i = 1, . . . , p1 − 1 (weak edges) and Θi,i+1 = ρ2

for i = p1, p − 1 (strong edges). In addition, Θi,i+3 = ρ1 for i = 1, . . . , p1 − 3 and
Θi,i+3 = ρ2 for i = p1, p1 + 1, . . . , p− 3. This introduces multiple cycles in the graph.
For CY1, ρ1 = 0.15 and ρ2 = 0.245. For CY2, ρ1 = 0.075 and ρ2 = 0.245.

• Hub (HB1 and HB2): For the first p1 vertices, construct as many star5 graphs of size
d1 as possible. For the remaining vertices, construct star graphs of size d2 (at most
one may be of size less than d2). The hub graph G∗ is constructed by taking a union
of all star graphs. For (i, j) ∈ G∗ s.t. i, j ≤ p1, let Θi,j = 1/d1. For the remaining
edges, let Θij = 1/d2. For HB1, d1 = 8 and d2 = 5. For HB2, d1 = 12 and d2 = 5.

5. A star is a tree where one vertex is connected all other vertices.

171

Vats and Nowak

• Neighborhood graph (NB1 and NB2): Randomly place vertices on the unit square at
coordinates y1, . . . , yp. Let Θij = 1/ρ1 with probability (

√
2π)−1 exp(−4||yi − yj ||22),

otherwise Θij = 0 for all i, j ∈ {1, . . . , p1} such that i > j. For all i, j ∈ {p1 +1, . . . , p}
such that i > j, Θij = ρ2. For edges over the first p1 vertices, delete edges so that each
vertex is connected to at most d1 other vertices. For the vertices p1 + 1, . . . , p, delete
edges such that the neighborhood of each vertex is at most d2. Finally, randomly add
four edges from a vertex in {1, . . . , p1} to a vertex in {p1, p1 + 1, . . . , p} such that for
each such edge, Θij = ρ1. We let ρ2 = 0.245, d1 = 6, and d2 = 4. For NB1, ρ1 = 0.15
and for NB2, ρ2 = 0.075.

Notice that the parameters associated with the weak edges are lower than the parameters
associated with the strong edges. Some comments regarding notation and usage of various
algorithms is given as follows.

• The junction tree versions of the UGMS algorithms are denoted by JgL, JPC, and
JnL.

• We use EBIC with γ = 0.5 to choose regularization parameters when estimating
graphs using JgL and JPC. To objectively compare JgL (JPC) and gL (PC), we make
sure that the number of edges estimated by gL (PC) is roughly the same as the number
of edges estimated by JgL (JPC).

• The nL and JnL estimates are computed differently since it is difficult to control the
number of edges estimated using both these algorithms.6 We apply both nL and JnL
for multiple different values of γ (the parameter for EBIC) and choose graphs so that
the number of edges estimated is closest to the number of edges estimated by gL.

• When applying PC and JPC, we choose κ as 1, 2, 1, and 3 for Chain, Cycle, Hub, and
Neighborhood graphs, respectively. When computing H, we choose κ as 0, 1, 0, and
2 for Chain, Cycle, Hub, and Neighborhood graphs, respectively.

Tables 2-5 summarize the results for the different types of synthetic graphical models.
For an estimate Ĝ of G∗, we evaluate Ĝ using the weak edge discovery rate (WEDR), false
discovery rate (FDR), true positive rate (TPR), and the edit distance (ED).

WEDR =
weak edges in Ĝ

of weak edges in G∗
,

FDR =
of edges in Ĝ\G∗

of edges in Ĝ
,

TPR =
of edges in Ĝ ∩G∗

of edges in G∗
,

ED = {# edges in Ĝ\G∗}+ {# edges in G∗\Ĝ} ,

6. Recall that both these algorithms use different regularization parameters. Thus, there may exist multiple
different estimates with the same number of edges.

172

A Junction Tree Framework for Undirected Graphical Model Selection

Model n Alg WEDR FDR TPR ED |Ĝ|
CH1 300 JgL 0.305 (0.005) 0.048 (0.001) 0.767 (0.002) 27.0 (0.176) 79.8
p = 100 gL 0.180 (0.004) 0.061 (0.001) 0.757 (0.001) 29.0 (0.153) 79.8

JPC 0.312 (0.004) 0.047 (0.001) 0.775 (0.001) 26.0 (0.162) 80.5
PC 0.264 (0.005) 0.047 (0.001) 0.781 (0.001) 25.6 (0.169) 81.2
JnL 0.306 (0.005) 0.072 (0.001) 0.769 (0.002) 28.8 (0.188) 82.1
nL 0.271 (0.005) 0.073 (0.001) 0.757 (0.001) 30.0 (0.197) 80.9

CH2 300 JgL 0.052 (0.002) 0.067 (0.001) 0.727 (0.001) 32.2 (0.173) 77.3
p = 100 gL 0.009 (0.001) 0.062 (0.001) 0.733 (0.002) 31.3 (0.162) 77.4

JPC 0.048 (0.002) 0.064 (0.001) 0.735 (0.001) 31.2 (0.169) 77.8
PC 0.0337 (0.002) 0.055 (0.001) 0.748 (0.001) 29.3 (0.144) 78.4
JnL 0.052 (0.002) 0.077 (0.001) 0.733 (0.001) 32.5 (0.186) 78.7
nL 0.039 (0.002) 0.086 (0.001) 0.723 (0.001) 34.2 (0.216) 78.4

CH1 500 JgL 0.596 (0.006) 0.021 (0.001) 0.916 (0.001) 10.2 (0.133) 92.6
p = 100 gL 0.44 (0.005) 0.050 (0.001) 0.889 (0.001) 15.6 (0.132) 92.7

JPC 0.612 (0.005) 0.022 (0.001) 0.921 (0.001) 9.86 (0.128) 93.2
PC 0.577 (0.005) 0.032 (0.001) 0.916 (0.001) 11.4 (0.124) 93.7
JnL 0.623 (0.005) 0.059 (0.001) 0.922 (0.001) 13.5 (0.133) 97.0
nL 0.596 (0.005) 0.069 (0.001) 0.918 (0.001) 14.9 (0.164) 97.6

CH2 500 JgL 0.077 (0.002) 0.044 (0.001) 0.816 (0.001) 22.0 (0.107) 84.5
p = 100 gL 0.0211 (0.001) 0.053 (0.001) 0.808 (0.000) 23.5 (0.082) 84.6

JPC 0.073 (0.002) 0.042 (0.001) 0.817 (0.001) 21.7 (0.082) 84.5
PC 0.0516 (0.002) 0.049 (0.001) 0.815 (0.001) 22.5 (0.092) 84.9
JnL 0.076 (0.002) 0.070 (0.001) 0.818 (0.001) 24.2 (0.102) 87.2
nL 0.066 (0.002) 0.077 (0.001) 0.815 (0.001) 25.1 (0.126) 87.5

Table 2: Results for Chain graphs: p = 100 and p1 = 20

Recall that the weak edges are over the first p1 vertices in the graph. Naturally, we want
WEDR and TPR to be large and FDR and ED to be small. Each entry in the table shows
the mean value and standard error (in brackets) over 50 observations. We now make some
remarks regarding the results.

Remark 18 (Graphical Lasso) Of all the algorithms, graphical Lasso (gL) performs the
worst. On the other hand, junction tree based gL significantly improves the performance
of gL. Moreover, the performance of JgL is comparable, and sometimes even better, when
compared to JPC and JnL. This suggests that when using gL in practice, it is beneficial to
apply a screening algorithm to remove some edges and then use the junction tree framework
in conjunction with gL.

Remark 19 (PC-Algorithm and Neighborhood Selection) Although using junction
trees in conjunction with the PC-Algorithm (PC) and neighborhood selection (nL) does
improve the graph estimation performance, the difference is not as significant as gL. The
reason is because both PC and nL make use of the local Markov property in the graph
H. The junction tree framework further improves the performance of these algorithms by
making use of the global Markov property, in addition to the local Markov property.

Remark 20 (Chain Graph) Although the chain graph does not satisfy the conditions
in (A6), the junction tree estimates still outperforms the non-junction tree estimates. This
suggests the advantages of using junction trees beyond the graphs considered in (A6). We
suspect that correlation decay properties, which have been studied extensively in Anand-
kumar et al. (2012b,a), can be used to weaken the assumption in (A6).

173

Vats and Nowak

Model n Alg WEDR FDR TPR ED |Ĝ|
CY1 300 JgL 0.314 (0.003) 0.036 (0.001) 0.814 (0.001) 28.5 (0.142) 111
p = 100 gL 0.105 (0.003) 0.057 (0.001) 0.798 (0.001) 32.9 (0.16) 112

JPC 0.326 (0.004) 0.030 (0.001) 0.819 (0.001) 27.2 (0.18) 112
PC 0.307 (0.004) 0.027 (0.001) 0.826 (0.001) 26 (0.169) 112
JnL 0.342 (0.004) 0.043 (0.001) 0.813 (0.001) 29.5 (0.175) 112
nL 0.299 (0.004) 0.044 (0.001) 0.793 (0.001) 32.3 (0.192) 110

CY2 300 JgL 0.047 (0.002) 0.045 (0.001) 0.762 (0.001) 36.2 (0.163) 105
p = 100 gL 0.001 (0.001) 0.049 (0.001) 0.759 (0.001) 37.0 (0.172) 105

JPC 0.043 (0.002) 0.042 (0.001) 0.764 (0.001) 35.6 (0.174) 105
PC 0.027 (0.002) 0.036 (0.001) 0.773 (0.001) 33.7 (0.137) 106
JnL 0.042 (0.002) 0.058 (0.002) 0.754 (0.001) 38.6 (0.210) 106
nL 0.035 (0.002) 0.057 (0.002) 0.743 (0.001) 39.9 (0.228) 104

CY1 500 JgL 0.532 (0.005) 0.022 (0.001) 0.907 (0.001) 15.1 (0.139) 122
p = 100 gL 0.278 (0.001) 0.071 (0.001) 0.862 (0.001) 26.9 (0.178) 122

JPC 0.61 (0.004) 0.012 (0.001) 0.925 (0.001) 11.9 (0.150) 124
PC 0.609 (0.004) 0.020 (0.001) 0.925 (0.001) 12.5 (0.134) 125
JnL 0.612 (0.005) 0.028 (0.001) 0.924 (0.001) 13.6 (0.151) 125
nL 0.584 (0.005) 0.041 (0.001) 0.919 (0.001) 15.9 (0.171) 126

CY2 500 JgL 0.086 (0.003) 0.039 (0.001) 0.821 (0.001) 28.1 (0.116) 113
p = 100 gL 0.004 (0.001) 0.058 (0.001) 0.805 (0.000) 32.3 (0.088) 113

JPC 0.087 (0.002) 0.034 (0.001) 0.825 (0.001) 27.0 (0.099) 113
PC 0.074 (0.002) 0.040 (0.001) 0.823 (0.001) 27.9 (0.010) 113
JnL 0.085 (0.003) 0.045 (0.001) 0.824 (0.001) 28.4 (0.147) 114
nL 0.069 (0.003) 0.053 (0.001) 0.821 (0.001) 29.8 (0.158) 114

Table 3: Results for Cycle graphs, p = 100 and p1 = 20

Model n Alg WEDR FDR TPR ED |Ĝ|
HB1 300 JgL 0.204 (0.004) 0.039 (0.001) 0.755 (0.002) 22.3 (0.151) 63.7
p = 100 gL 0.154 (0.004) 0.038 (0.001) 0.758 (0.002) 22.1 (0.130) 63.8

JPC 0.204 (0.004) 0.038 (0.001) 0.753 (0.002) 22.4 (0.160) 63.4
PC 0.193 (0.004) 0.038 (0.001) 0.762 (0.002) 21.7 (0.143) 64.2
JnL 0.245 (0.005) 0.089 (0.001) 0.750 (0.002) 26.2 (0.174) 66.7
nL 0.247 (0.005) 0.098 (0.002) 0.752 (0.002) 26.8 (0.198) 67.6

HB2 300 JgL 0.044 (0.002) 0.047 (0.001) 0.710 (0.001) 26.7 (0.116) 61.2
p = 100 gL 0.013 (0.002) 0.043 (0.001) 0.716 (0.001) 26.0 (0.121) 61.4

JPC 0.048 (0.002) 0.043 (0.001) 0.709 (0.001) 26.5 (0.108) 60.8
PC 0.029 (0.002) 0.038 (0.001) 0.718 (0.001) 25.5 (0.121) 61.3
JnL 0.054 (0.003) 0.083 (0.001) 0.704 (0.001) 29.6 (0.146) 63.0
nL 0.0467 (0.002) 0.096 (0.001) 0.700 (0.001) 30.7 (0.138) 63.5

HB1 500 JgL 0.413 (0.007) 0.026 (0.001) 0.870 (0.002) 12.4 (0.156) 72.4
p = 100 gL 0.364 (0.007) 0.035 (0.001) 0.863 (0.002) 13.7 (0.144) 72.5

JPC 0.438 (0.007) 0.027 (0.001) 0.878 (0.002) 11.9 (0.148) 73.1
PC 0.448 (0.007) 0.027 (0.001) 0.882 (0.001) 11.6 (0.141) 73.4
JnL 0.507 (0.006) 0.076 (0.001) 0.890 (0.001) 14.9 (0.152) 78.2
nL 0.52 (0.007) 0.091 (0.001) 0.893 (0.002) 15.9 (0.191) 79.6

HB2 500 JgL 0.086 (0.003) 0.042 (0.001) 0.794 (0.001) 19.8 (0.086) 68.0
p = 100 gL 0.050 (0.002) 0.047 (0.001) 0.789 (0.001) 20.6 (0.098) 68.0

JPC 0.097 (0.003) 0.040 (0.001) 0.798 (0.001) 19.3 (0.109) 68.2
PC 0.087 (0.003) 0.044 (0.001) 0.797 (0.001) 19.7 (0.111) 68.4
JnL 0.123 (0.004) 0.084 (0.002) 0.804 (0.001) 22.2 (0.15) 72.1
nL 0.106 (0.003) 0.105 (0.002) 0.801 (0.001) 24.1 (0.143) 73.4

Table 4: Results for Hub graphs:p = 100 and p1 = 20

174

A Junction Tree Framework for Undirected Graphical Model Selection

Model n Alg WEDR FDR TPR ED |Ĝ|
NB1 300 JgL 0.251 (0.002) 0.030 (0.000) 0.813 (0.000) 126 (0.329) 498
p = 100 gL 0.102 (0.0015) 0.039 (0.000) 0.806 (0.001) 135 (0.345) 498

JPC 0.259 (0.002) 0.031 (0.000) 0.814 (0.000) 126 (0.260) 499
PC 0.255 (0.002) 0.036 (0.000) 0.813 (0.000) 129 (0.330) 501
JnL 0.254 (0.002) 0.035 (0.000) 0.812 (0.001) 129 (0.461) 500
nL 0.226 (0.002) 0.039 (0.000) 0.804 (0.001) 136 (0.458) 497

NB1 300 JgL 0.005 (0.000) 0.043 (0.000) 0.784 (0.001) 149 (0.385) 486
p = 100 gL 0.000 (0.000) 0.036 (0.000) 0.790 (0.000) 142 (0.259) 487

JPC 0.004 (0.000) 0.042 (0.000) 0.784 (0.001) 148 (0.376) 486
PC 0.003 (0.000) 0.048 (0.000) 0.782 (0.000) 153 (0.239) 488
JnL 0.005 (0.000) 0.046 (0.000) 0.783 (0.000) 151 (0.356) 488
nL 0.003 (0.000) 0.050 (0.000) 0.775 (0.000) 158 (0.374) 485

NB1 500 JgL 0.449 (0.001) 0.018 (0.000) 0.921 (0.000) 57.1 (0.199) 557
p = 100 gL 0.319 (0.002) 0.035 (0.000) 0.905 (0.000) 75.8 (0.242) 557

JPC 0.489 (0.002) 0.019 (0.000) 0.925 (0.000) 52.8 (0.189) 558
PC 0.496 (0.002) 0.023 (0.000) 0.920 (0.000) 60.2 (0.214) 559
JnL 0.508 (0.003) 0.027 (0.000) 0.929 (0.000) 57.9 (0.348) 567
nL 0.494 (0.003) 0.033 (0.000) 0.927 (0.000) 62.3 (0.400) 570

NB2 500 JgL 0.008 (0.000) 0.033 (0.000) 0.870 (0.000) 95.0 (0.206) 534
p = 100 gL 0.000 (0.000) 0.034 (0.000) 0.869 (0.000) 96.0 (0.214) 534

JPC 0.009 (0.000) 0.032 (0.000) 0.870 (0.000) 94.2 (0.215) 534
PC 0.005 (0.000) 0.040 (0.000) 0.865 (0.000) 102 (0.207) 536
JnL 0.001 (0.000) 0.038 (0.000) 0.871 (0.000) 97.3 (0.220) 538
nL 0.005 (0.000) 0.043 (0.000) 0.870 (0.000) 101 (0.234) 540

Table 5: Results for Neighborhood graph, p = 300 and p1 = 30

Remark 21 (Hub Graph) For the hub graph HB1, the junction tree estimate does not
result in a significant difference in performance, especially for the PC and nL algorithms.
This is mainly because this graph is extremely sparse with multiple components. For the
number of observations considered, H removes a significant number of edges. However, for
HB2, the junction tree estimate, in general, performs slightly better. This is because the
parameters associated with the weak edges in HB2 are smaller than that of HB1.

Remark 22 (General Conclusion) We see that, in general, the WEDR and TPR are
higher, while the FDR and ED are lower, for junction tree based algorithms. This clearly
suggests that using junction trees results in more accurate graph estimation. Moreover, the
higher WEDR suggest that the main differences between the two algorithms are over the
weak edges, that is, junction tree based algorithms are estimating more weak edges when
compared to a non junction tree based algorithm.

8.2 Analysis of Stock Returns Data

We applied our methods to the data set in Choi et al. (2011) of n = 216 monthly stock
returns of p = 85 companies in the S&P 100. We computed H using κ = 1. We applied
JgL using EBIC with γ = 0.5 and applied gL so that both graphs have the same number
of edges. This allows us to objectively compare the gL and JgL graphs. Figure 10 shows
the two estimated graphs in such a way that the vertices are positioned so that the JgL
graph looks aesthetically pleasing. In Figure 11, the vertices are positioned so that gL looks
aesthetically pleasing. In each graph, we mark the common edges by bold lines and the

175

Vats and Nowak

OXY

HAL

SLB

SLE

CPB

HNZ

KO

PEP

MO

WY

IP

DOW

AMGN

ABT

BMY

JNJ

MRKPFE

WYE

PG

AVP

CL

WMB DD

COP

CVX

XOM

AA

CAT

BHI

DELL

AAPL

HPQ

IBM

EMC

S

XRX

TXN

INTC

TYC

GE

F

BA

HON

UTX

GD

RTN

BAX

MMM

MDT

BNI

NSC

FDX

T

VZ

CBS

CMCSA

AEP

ETR

EXC

SO

HD

TGT

WMT

MCD

SNS

CVS

BAC
C

JPM

RF

WB

WFC

BK

USB

AXP

MER

MS

CI

AIG

DIS

MSFT

ORCL

UNH

SP100

(a) Junction tree based graphical Lasso

OXY

HAL

SLB

SLE

CPB

HNZ

KO

PEP

MO

WY

IP

DOW

AMGN

ABT

BMY

JNJ

MRKPFE

WYE

PG

AVP

CL

WMB DD

COP

CVX

XOM

AA

CAT

BHI

DELL

AAPL

HPQ

IBM

EMC

S

XRX

TXN

INTC

TYC

GE

F

BA

HON

UTX

GD

RTN

BAX

MMM

MDT

BNI

NSC

FDX

T

VZ

CBS

CMCSA

AEP

ETR

EXC

SO

HD

TGT

WMT

MCD

SNS

CVS

BAC
C

JPM

RF

WB

WFC

BK

USB

AXP

MER

MS

CI

AIG

DIS

MSFT

ORCL

UNH

SP100

(b) Graphical Lasso

Figure 10: Graph over a subset of companies in the S&P 100. The positioning of the
vertices is chosen so that the junction tree based graph is aesthetically pleasing.
The edges common in (a) and (b) are marked by bold lines and the remaining
edges are marked by dashed lines

176

A Junction Tree Framework for Undirected Graphical Model Selection

OXY

HAL

SLB

SLE

CPB

HNZ

KO
PEP

MO

WY

IP
DOW

AMGN

ABT

BMY
JNJ

MRK

PFE WYE

PG

AVP CL

WMB

DD

COP
CVX

XOM

AA

CAT

BHI

DELL

AAPL

HPQ

IBM

EMC

S

XRX

TXN

INTC

TYC

GE

F

BA

HON

UTX

GD

RTN

BAX

MMM

MDT

BNI

NSC

FDX

T

VZ

CBS

CMCSA

AEP

ETR

EXC

SO

HD

TGT

WMT

MCD

SNS

CVS

BAC

C
JPM

RF

WB

WFC

BK

USB

AXP MER

MS

CI

AIG

DIS

MSFT

ORCL

UNH

SP100

(a) Junction tree based graphical Lasso

OXY

HAL

SLB

SLE

CPB

HNZ

KO
PEP

MO

WY

IP
DOW

AMGN

ABT

BMY
JNJ

MRK

PFE WYE

PG

AVP CL

WMB

DD

COP
CVX

XOM

AA

CAT

BHI

DELL

AAPL

HPQ

IBM

EMC

S

XRX

TXN

INTC

TYC

GE

F

BA

HON

UTX

GD

RTN

BAX

MMM

MDT

BNI

NSC

FDX

T

VZ

CBS

CMCSA

AEP

ETR

EXC

SO

HD

TGT

WMT

MCD

SNS

CVS

BAC

C
JPM

RF

WB

WFC

BK

USB

AXP MER

MS

CI

AIG

DIS

MSFT

ORCL

UNH

SP100

(b) Graphical Lasso

Figure 11: Graph over a subset of companies in the S&P 100. The positioning of the vertices
is chosen so that the graphical Lasso based graph is aesthetically pleasing. The
edges common in (a) and (b) are marked by bold lines and the remaining edges
are marked by dashed lines.

177

Vats and Nowak

remaining edges by dashed lines. Some conclusions that we draw from the estimated graphs
are summarized as follows:

• The gL graph in Figure 11(b) seems well structured with multiple different clusters
of nodes with companies that seem to be related to each other. A similar clustering
is seen for the JgL graph in Figure 10(a) with the exception that there are now con-
nections between the clusters. As observed in Choi et al. (2011) and Chandrasekaran
et al. (2012), it has been hypothesized that the “actual” graph over the companies is
dense since there are several unobserved companies that induce conditional dependen-
cies between the observed companies. These induced conditional dependencies can be
considered to be the weak edges of the “actual” graph. Thus, our results suggest that
the junction tree based algorithm is able to detect such weak edges.

• We now focus on some specific edges and nodes in the graphs. The 11 vertices repre-
sented by smaller squares and shaded in green are not connected to any other vertex
in gL. On the other hand, all these 11 vertices are connected to at least one other
vertex in JgL (see Figure 10). Moreover, several of these edges are meaningful. For
example, CBS and CMCSA are in the television industry, TGT and CVS are stores,
AEP and WMB are energy companies, GD and RTN are defense companies, and
MDT and UNH are in the healthcare industry. Finally, the three vertices represented
by larger squares and shaded in pink, are not connected to any vertex in JgL and are
connected to at least one other vertex in gL. Only the edges associated with EXC
seem to be meaningful.

8.3 Analysis of Gene Expression Data

Graphical models have been used extensively for studying gene interactions using gene
expression data (Nevins et al., 2004; Wille et al., 2004). The gene expression data we study
is the Lymph node status data which contains n = 148 expression values from p = 587 genes
(Li and Toh, 2010). Since there is no ground truth available, the main aim in this section is
to highlight the differences between the estimates JgL (junction tree estimate) and gL (non
junction tree estimate). Just like in the stock returns data, we compute the graph H using
κ = 1. Both the JgL and gL graphs contain 831 edges. Figure 12 shows the graphs JgL and
gL under different placements of the vertices. We clearly see significant differences between
the estimated graphs. This suggests that using the junction tree framework may lead to
new scientific interpretations when studying biological data.

9. Summary and Future Work

We have outlined a general framework that can be used as a wrapper around any arbi-
trary undirected graphical model selection (UGMS) algorithm for improved graph estima-
tion. Our framework takes as input a graph H that contains all (or most of) the edges
in G∗, decomposes the UGMS problem into multiple subproblems using a junction tree
representation of H, and then solves subprolems iteratively to estimate a graph. Our the-
oretical results show that certain weak edges, which cannot be estimated using standard
algorithms, can be estimated when using the junction tree framework. We supported the

178

A Junction Tree Framework for Undirected Graphical Model Selection

(a) Junction tree based graphical Lasso (b) Graphical Lasso

(c) Junction tree based graphical Lasso (d) Graphical Lasso

Figure 12: Graph over genes computed using gene expression data. For (a) and (b), the
vertices are chosen so that the junction tree estimate is aesthetically pleasing.
For (c) and (d), the vertices are chosen so that the graphical Lasso estimate
is aesthetically pleasing. Further, in (a) and (c), we only show edges that are
estimated in the junction tree estimate, but not estimated using graphical Lasso.
Similarly, for (b) and (c), we only show edges that are estimated by graphical
Lasso, but not by the junction tree estimate.

179

Vats and Nowak

theory with numerical simulations on both synthetic and real world data. All the data and
code used in our numerical simulations can be found at http://www.ima.umn.edu/~dvats/
JunctionTreeUGMS.html.

Our work motivates several interesting future research directions. In our framework,
we used a graph H to decompose the UGMS problem into multiple subproblems. Alter-
natively, we can also focus on directly finding such decompositions. Another interesting
research direction is to use the decompositions to develop parallel algorithms for UGMS
for estimating extremely large graphs. Finally, motivated by the differences in the graphs
obtained using gene expression data, another research problem of interest is to study the sci-
entific consequences of using the junction tree framework on various computational biology
data sets.

Acknowledgments

The first author thanks the Institute for Mathematics and its Applications (IMA) for fi-
nancial support in the form of a postdoctoral fellowship. The authors thank Vincent Tan
for discussions and comments on an earlier version of the paper. The authors thank the
anonymous reviewers for comments which significantly improved this manuscript.

Appendix A. Marginal Graph

Definition 23 The marginal graph G∗,m[A] of a graph G∗ over the nodes A is defined as
a graph with the following properties

1. E(G∗[A]) ⊆ E(G∗,m[A]).

2. For an edge (i, j) ∈ E(KA)\E(G∗[A]), if all paths from i to j in G∗ pass through a
subset of the nodes in A, then (i, j) /∈ G∗,m[A].

3. For an edge (i, j) ∈ E(KA)\E(G∗[A]), if there exists a path from i to j in G∗ such
that all nodes in the path, except i and j, are in V \A, then (i, j) ∈ G∗,m[A].

The graph KA is the complete graph over the vertices A. The first condition in Defi-
nition 23 says that the marginal graph contains all edges in the induced subgraph over A.
The second and third conditions say which edges not in G∗[A] are in the marginal graph.
As an example, consider the graph in Figure 13(a) and let A = {1, 2, 3, 4, 5}. From the
second condition, the edge (3, 4) is not in the marginal graph since all paths from 3 to 4
pass through a subset of the nodes in A. From the third condition, the edge (4, 5) is in
the marginal graph since there exists a path {4, 8, 5} that does not go through any nodes
in A\{4, 5}. Similarly, the marginal graph over A = {4, 5, 6, 7, 8} can be constructed as in
Figure 13(c). The importance of marginal graphs is highlighted in the following proposition.

Proposition 24 If PX > 0 is Markov on G∗ = (V,E(G∗)) and not Markov on any subgraph
of G∗, then for any subset of vertices A ⊆ V , PXA is Markov on the marginal graph G∗,m[A]
and not Markov on any subgraph of G∗,m[A].

180

http://www.ima.umn.edu/~dvats/JunctionTreeUGMS.html
http://www.ima.umn.edu/~dvats/JunctionTreeUGMS.html

A Junction Tree Framework for Undirected Graphical Model Selection

1 2

5

6

8

4 73

(a)

1 2

5

43

(b)

5

6

8

4 7

(c)

1

Figure 13: (a) A graph over eight nodes. (b) The marginal graph over {1, 2, 3, 4, 5}. (c)
The marginal graph over {4, 5, 6, 7, 8}.

Proof Suppose PXA is Markov on the graph ǦA and not Markov on any subgraph of ǦA.
We will show that ǦA = Gm[A].

• If (i, j) ∈ G, then Xi 6⊥⊥ Xj |XS for every S ⊆ V \{i, j}. Thus, G[A] ⊂ ǦA.

• For any edge (i, j) ∈ KA\G[A], suppose that for every path from i to j contains at
least one node from A\{i, j}. Then, there exists a set of nodes S ⊆ A\{i, j} such that
Xi ⊥⊥ Xj |XS and (i, j) /∈ ǦA.

• For any edge (i, j) ∈ KA\G[A], suppose that there exists a path from i to j such
that all nodes in the path, except i and j, are in V \A. This means we cannot find a
separator for i and j in the set A, so (i, j) ∈ ǦA.

From the construction of ǦA and Definition 23, it is clear that ǦA = Gm[A].

Using Proposition 24, it is clear that if the UGMS algorithm Ψ in Assumption 1 is
applied to a subset of vertices A, the output will be a consistent estimator of the marginal
graph G∗,m[A]. Note that from Definition 23, although the marginal graph contains all
edges in G∗[A], it may contain additional edges as well. Given only the marginal graph
G∗,m[A], it is not clear how to identify edges that are in G∗[A]. For example, suppose G∗ is
a graph over four nodes and let the graph be a single cycle. The marginal graph over any
subset of three nodes is always the complete graph. Given the complete graph over three
nodes, computing the induced subgraph over the three nodes is nontrivial.

Appendix B. Examples of UGMS Algorithms

We give examples of standard UGMS algorithms and show how they can be used to im-
plement step 3 in Algorithm 2 when estimating edges in a region of a region graph. For
simplicity, we review algorithms for UGMS when PX is a Gaussian distribution with mean
zero and covariance Σ∗. Such distributions are referred to as Gaussian graphical mod-
els. It is well known (Speed and Kiiveri, 1986) that that the inverse covariance matrix
Θ∗ = (Σ∗)−1, also known as precision matrix, is such that for all i 6= j, Θ∗ij 6= 0 if and
only if (i, j) ∈ E(G∗). In other words, the graph G∗ can be estimated given an estimate of
the covariance or inverse covariance matrix of X. We review two standard algorithms for
estimating G∗: graphical Lasso and neighborhood selection using Lasso (nLasso).

181

Vats and Nowak

B.1 Graphical Lasso (gLasso)

Define the empirical covariance matrix ŜA over a set of vertices A ⊂ V as follows:

ŜA =
1

n

n∑

k=1

X
(k)
A

(
X

(k)
A

)T
.

Recall from Algorithm 2, we apply a UGMS algorithm R to estimate edges in H ′R defined in

(3). The graphical Lasso (gLasso) estimates ÊR by solving the following convex optimization
problem:

Θ̂ = arg max
Θ�0,Θij=0 ∀ (i,j)/∈Hm[R]

log det(Θ)− trace

(
ŜR Θ

)
− λ

∑

(i,j)∈H′R

Θij

 , (9)

ÊR = {(i, j) ∈ H ′A : Θ̂ij 6= 0} .

The graph Hm[R] is the marginal graph over R (see Appendix A). When R = V , H = KV ,
and H ′A = KV , the above equations recover the standard gLasso estimator, which was
first proposed in Banerjee et al. (2008). Equation (9) can be solved using algorithms in
Yuan and Lin (2007), Banerjee et al. (2008), Scheinberg et al. (2010) and Hsieh et al.
(2011). Theoretical properties of the estimates Θ̂ and ÊR have been studied in Ravikumar
et al. (2011). Note that the regularization parameter in (9) controls the sparsity of ÊR.
A larger λ corresponds to a sparser solution. Further, we only regularize the terms in Θij

corresponding to the edges that need to be estimated, that is, the edges in H ′R. Finally,
Equation (9) also accounts for the edges H by computing the marginal graph over R. In
general, Hm

[
R
]

can be replaced by any graph that is superset of Hm
[
R
]
.

B.2 Neighborhood Selection (nLasso)

Using the local Markov property of undirected graphical models (see Definition 1), we
know that if PX is Markov on G∗, then P

(
Xi |XV \i

)
= P

(
Xi |XneG∗ (i)

)
. This motivates

an algorithm for estimating the neighborhood of each node and then combining all these
estimates to estimate G∗. For Gaussian graphical models, this can be achieved by solving a
Lasso problem (Tibshirani, 1996) at each node (Meinshausen and Bühlmann, 2006). Recall
that we are interested in estimating all edges in H ′R by applying a UGMS algorithm to R.
The neighborhood selection using Lasso (nLasso) algorithm is given as follows:

H ′′ = KR\Hm
[
R
]
,

β̂k = arg min
βi=0,i∈neH′′ (k)∪k∪V \A

‖Xnk − Xnβ‖22 + λ

∑

i∈neH′
R

(k)

|βi|

, (10)

n̂ek =
{
i : β̂ki 6= 0

}
,

ÊR =
⋃

k∈R

{
(k, i) : i ∈ n̂ek

}
.

182

A Junction Tree Framework for Undirected Graphical Model Selection

Notice that in the above algorithm if i is estimated to be a neighbor of j, then we include the
edge (i, j) even if j is not estimated to be a neighbor of i. This is called the union rule for
combining neighborhood estimates. In our numerical simulations, we use the intersection
rule to combine neighborhood estimates, that is, (i, j) is estimated only if i is estimated to
be a neighbor of j and j is estimated to be a neighbor of i. Theoretical analysis of nLasso
has been carried out in Meinshausen and Bühlmann (2006) and Wainwright (2009). Note
that, when estimating the neighbors of a node k, we only penalize the neighbors in H ′R.
Further, we use prior knowledge about some of the edges by using the graph H in (10).
References Bresler et al. (2008), Netrapalli et al. (2010) and Ravikumar et al. (2010) extend
the neighborhood selection based method to discrete valued graphical models.

Appendix C. Proof of Proposition 8

We first prove the following result.

Lemma 25 For any (i, j) ∈ H ′R, there either exists no non-direct path from i to j in H or
all non-direct paths in H pass through a subset of R.

Proof We first show the result for R ∈ R1. This means that R is one of the clusters in
the junction tree used to construct the region graph and ch(R) is the set of all separators of
cardinality greater than one connected to the cluster R in the junction tree. Subsequently,
R = R. If ch(R) = ∅, the claim trivially holds. Let ch(R) 6= ∅ and suppose there exists a
non-direct path from i to j that passes through a set of vertices S̄ not in R. Then, there will
exist a separator S in the junction tree such that S separates {i, j} and S̄. Thus, all paths
in H from i and j to S̄ pass through S. This implies that either there is no non-direct path
from i to j in H or else we have reached a contradiction about the existence of a non-direct
path from i to j that passes through the set S̄ not in R.

Now, suppose R ∈ Rl for l > 1. The set an(R) contains all the clusters in the junction
tree than contain R. From the running intersection property of junction trees, all these
clusters must form a subtree in the original junction tree. Merge R into one cluster and
find a new junction tree J ′ by keeping the rest of the clusters the same. It is clear R will
be in the first row of the updated region graph. The arguments used above can be repeated
to prove the claim.

We now prove Proposition 8.

Case 1: Let (i, j) ∈ H ′R and (i, j) /∈ G∗. If there exists no non-direct path from i to j in
H, then the edge (i, j) can be estimated by solving a UGMS problem over i and j. By the
definition of R, i, j ∈ R. Suppose there does exist non-direct paths from i to j in H. From
Lemma 25, all such paths pass through R. Thus, the conditional independence of Xi and
Xj can be determined from XR\{i,j}.

Case 2: Let (i, j) ∈ H ′R and (i, j) ∈ G∗. From Lemma 25 and using the fact that
E(G∗) ⊆ E(H), we know that all paths from i to j pass through R. This means that if
Xi 6⊥⊥ Xj |XR\{i,j}, then Xi 6⊥⊥ Xj |XV \{i,j}.

183

Vats and Nowak

Appendix D. Analysis of the PC-Algorithm in Algorithm 4

In this section, we present the analysis of Algorithm 4 using results from Anandkumar
et al. (2012a) and Kalisch and Bühlmann (2007). The analysis presented here is for the
non-junction tree based algorithm. Throughout this section, assume

Ĝ = PC(η,Xn,KV ,KV) ,

where KV is the complete graph over the vertices V . Further, let the threshold for the
conditional independence test in (4) be λn. We are interested in finding conditions under
which Ĝ = G∗ with high probability.

Theorem 26 Under Assumptions (A1)-(A5), there exists a conditional independence test
such that if

n = Ω(ρ−2
minη log(p)) or ρmin = Ω(

√
η log(p)/n),

then P (Ĝ 6= G)→ 0 as n→∞.

We now prove Theorem 26. Define the set Bη as follows:

Bη = {(i, j, S) : i, j ∈ V, i 6= j, S ⊆ V \{i, j}, |S| ≤ η} .

The following concentration inequality follows from Anandkumar et al. (2012a).

Lemma 27 Under Assumption (A4), there exists constants c1 and c2 such that for ε < M ,

sup
(i,j,S)∈Bη

P
(
||ρij|S | − |ρ̂ij|S || > ξ

)
≤ c1 exp

(
−c2(n− η)ξ2

)
,

where n is the number of vector valued measurements made of Xi, Xj, and XS.

Let Pe = P (Ĝ 6= G), where the probability measure P is with respect to PX . Recall
that we threshold the empirical conditional partial correlation ρ̂ij|S to test for conditional
independence, that is, ρ̂ij|S ≤ λn =⇒ Xi ⊥⊥ Xj |XS . An error may occur if there exists
two distinct vertices i and j such that either ρij|S = 0 and |ρ̂ij|S | > λn or |ρij|S | > 0 and
|ρ̂ij|S | ≤ λn. Thus, we have

Pe ≤ P (E1) + P (E2) ,

P (E1) = P

 ⋃

(i,j)/∈G

{∃ S s.t. |ρ̂ij|S | > λn}

 ,

P (E2) = P

 ⋃

(i,j)∈G

{∃ S s.t. |ρ̂ij|S | ≤ λn}

 .

We will find conditions under which P (E1) → 0 and P (E2) → 0 which will imply that
Pe → 0. The term P (E1), the probability of including an edge in Ĝ that does not belong to

184

A Junction Tree Framework for Undirected Graphical Model Selection

the true graph, can be upper bounded as follows:

P (E1) ≤ P

 ⋃

(i,j)/∈G

{∃ S s.t. |ρ̂ij|S | > λn}

 ≤ P

 ⋃

(i,j)/∈G,S⊂V \{i,j}

{|ρ̂ij|S | > λn}

 ,

≤ pη+2 sup
(i,j,S)∈Bη

P
(
|ρ̂ij|S | > λn

)
,

≤ c1p
η+2 exp

(
−c2(n− η)λ2

n

)
= c1 exp

(
(η + 2) log(p)− c2(n− η)λ2

n

)
.

The terms pη+2 comes from the fact that there are at most p2 number of edges and the
algorithm searches over at most pη number of separators for each edge. Choosing λn such
that

lim
n,p→∞

(n− η)λ2
n

(η + 2) log(p)
=∞ , (11)

ensures that P (E1)→ 0 as n, p→∞. Further, choose λn such that for c3 < 1

λn < c3ρmin . (12)

The term P (E2), the probability of not including an edge in Ĝ that does belong to the true
graph, can be upper bounded as follows:

P (E2) ≤ P

 ⋃

(i,j)∈G

{∃ S s.t. |ρ̂ij|S | ≤ λn}

 ,

≤ P

 ⋃

(i,j)∈G,S⊂V \{i,j}

|ρij|S | − |ρ̂ij|S | > |ρij|S | − λn

 ,

≤ pη+2 sup
(i,j,S)∈Bη

P
(
|ρij|S | − |ρ̂ij|S | > |ρij|S | − λn

)
,

≤ pη+2 sup
(i,j,S)∈Bη

P
(
||ρij|S | − |ρ̂ij|S || > ρmin − λn

)
,

≤ c1p
η+2 exp

(
−c2(n− η)(ρmin − λn)2

)
= c1 exp

(
(η + 2) log(p)− c4(n− η)ρ2

min

)
.

(13)

To get (13), we use (12) so that (ρmin − λn) > (1 − c3)ρmin. For some constant c5 > 0,
suppose that for all n > n′ and p > p′,

c4(n− η)ρ2
min > (η + 2 + c5) log(p) . (14)

Given (14), P (E2)→ 0 as n, p→∞. In asymptotic notation, we can write (14) as

n = Ω(ρ−2
minη log(p)) ,

which proves the Theorem. The conditional independence test is such that λn is chosen
to satisfy (11) and (12). In asymptotic notation, we can show that λn = O(ρmin) and
λ2
n = Ω (η log(p)/n) satisfies (11) and (12).

185

Vats and Nowak

Appendix E. Proof of Theorem 9

To prove the theorem, it is sufficient to establish that

ρ0 = Ω
(√

ηT log(p)/n
)
, (15)

ρ1 = Ω
(√

η log(p1)/n
)
, (16)

ρ2 = Ω
(√

η log(p2)/n
)
, (17)

ρT = Ω
(√

η log(pT)/n
)
. (18)

Let H be the graph estimated in Step 1. An error occurs if for an edge (i, j) ∈ G∗

there exists a subset of vertices S such that |S| ≤ ηT and |ρ̂ij|S | ≤ λ0
n. Using the proof of

Theorem 26 (see analysis of P (E2)), it is easy to see that n = Ω(ρ−2
0 ηT log(p)) is sufficient

for P (E(G∗) 6⊂ E(H))→ 0 as n→ 0. Further, the threshold is chosen such that λ0
n = O(ρ0)

and (λ0
n)2 = Ω (ηT log(p)/n). This proves (15).

In Step 2, we estimate the graphs Ĝ1 and Ĝ2 by applying the PC-Algorithm to the
vertices V1 ∪ T and V2 ∪ T , respectively. For Ĝ1, given that all edges that have a separator
of size ηT have been removed, we can again use the analysis in the proof of Theorem 26 to
show that for λ1

n = O(ρ1) and (λ1
n)2 = Ω (η log(p1)/n), n = Ω(ρ−2

1 η log(p1)) is sufficient for

P (Ĝ1 6= G∗[V1∪T]\KT)|G∗ ⊂ H)→ 0 as n→∞. This proves (16). Using similar analysis,
we can prove (17) and (18).

The probability of error can be written as

Pe ≤ P (G∗ 6⊂ H) +

2∑

k=1

P (Ĝk 6= G∗[Vk ∪ T]\KT |G∗ ⊂ H)

+ P (ĜT 6= G∗[T]|G∗ ⊂ H, Ĝ = G[V1 ∪ T]∗\KT , G
∗[V2 ∪ T] = G[V2 ∪ T]\KT) .

Given (15)-(18), each term on the right goes to 0 as n→∞, so Pe → 0 as n→∞.

References

A. Anandkumar, V. Y. F. Tan, F. Huang, and A. S. Willsky. High-dimensional Gaussian
graphical model selection: Walk summability and local separation criterion. Journal of
Machine Learning Research, 13:2293–2337, 2012a.

A. Anandkumar, V. Y. F. Tan, F. Huang, and A. S. Willsky. High-dimensional structure
learning of Ising models: Local separation criterion. Annals of Statistics, 40(3):1346–1375,
2012b.

S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in
ak-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.

S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted
to partial k-trees. Discrete Applied Mathematics, 23(1):11–24, April 1989.

186

A Junction Tree Framework for Undirected Graphical Model Selection

F. R. Bach and M. I. Jordan. Thin junction trees. In Advances in Neural Information
Processing Systems (NIPS), pages 569–576. MIT Press, 2001.

O. Banerjee, L. E. Ghaoui, and A. d’Aspremont. Model selection through sparse maxi-
mum likelihood estimation for multivariate Gaussian or binary data. Journal of Machine
Learning Research, 9:485–516, June 2008.

A. Berry, P. Heggernes, and G. Simonet. The minimum degree heuristic and the minimal
triangulation process. In Graph-Theoretic Concepts in Computer Science, pages 58–70.
Springer, 2003.

G. Bresler, E. Mossel, and A. Sly. Reconstruction of Markov random fields from sam-
ples: Some observations and algorithms. In Ashish Goel, Klaus Jansen, Jos Rolim, and
Ronitt Rubinfeld, editors, Approximation, Randomization and Combinatorial Optimiza-
tion. Algorithms and Techniques, volume 5171 of Lecture Notes in Computer Science,
pages 343–356. Springer Berlin, 2008.

F. Bromberg, D. Margaritis, and V. Honavar. Efficient Markov network structure discovery
using independence tests. Journal of Artificial Intelligence Research (JAIR), 35:449–484,
2009.

T. Cai, W. Liu, and X. Luo. A constrained `1 minimization approach to sparse precision
matrix estimation. Journal of the American Statistical Association, 106(494):594–607,
2011.

V. Chandrasekaran, P.A. Parrilo, and A.S. Willsky. Latent variable graphical model selec-
tion via convex optimization. Annals of Statistics, 40(4):1935–1967, 2012.

A. Chechetka and C. Guestrin. Efficient principled learning of thin junction trees. In
Advances in Neural Information Processing Systems (NIPS), pages 273–280, December
2007.

J. Chen and Z. Chen. Extended Bayesian information criteria for model selection with large
model spaces. Biometrika, 95(3):759–771, 2008.

M. J. Choi, V. Y. F. Tan, A. Anandkumar, and A. S. Willsky. Learning latent tree graphical
models. Journal of Machine Learning Research, 12:1771–1812, May 2011.

C. Chow and C. Liu. Approximating discrete probability distributions with dependence
trees. IEEE Transactions on Information Theory, 14(3):462–467, May 1968.

J. Fan and J. Lv. Sure independence screening for ultrahigh dimensional feature space.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(5):849–
911, 2008.

R. Foygel and M. Drton. Extended Bayesian information criteria for Gaussian graphical
models. In Advances in Neural Information Processing Systems (NIPS), pages 604–612,
2010.

187

Vats and Nowak

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the
graphical Lasso. Biostatistics, 9(3):432–441, July 2008.

P. Giudici and P. J. Green. Decomposable graphical gaussian model determination.
Biometrika, 86(4):785–801, 1999.

W. Hoeffding. A non-parametric test of independence. The Annals of Mathematical Statis-
tics, 19(4):546–557, 1948.

C. Hsieh, M. A. Sustik, I. S. Dhillon, and P. Ravikumar. Sparse inverse covariance matrix
estimation using quadratic approximation. In Advances in Neural Information Processing
Systems 24, pages 2330–2338, 2011.

A. Jalali, C. Johnson, and P. Ravikumar. On learning discrete graphical models using
greedy methods. In Advances in Neural Information Processing Systems (NIPS), pages
1935–1943, 2011.

C. C. Johnson, A. Jalali, and P. Ravikumar. High-dimensional sparse inverse covariance
estimation using greedy methods. Journal of Machine Learning Research - Proceedings
Track, 22:574–582, 2012.

M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs with
the PC algorithm. Journal of Machine Learning Research, 8:613–636, 2007.

D. Karger and N. Srebro. Learning Markov networks: Maximum bounded tree-width
graphs. In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 392–401, 2001.

U. B. Kjaerulff. Triangulation of graphs - algorithms giving small total state space. Technical
Report Research Report R-90-09, Department of Mathematics and Computer Science,
Aalborg University, Denmark, 1990.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. The
MIT Press, 2009.

K. S. S. Kumar and F. Bach. Convex relaxations for learning bounded-treewidth decom-
posable graphs. In Proceedings of the International Conference on Machine Learning
(ICML), 2013.

J. Lafferty, H. Liu, and L. Wasserman. Sparse nonparametric graphical models. Statistical
Science, 27(4):519–537, 2012.

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society.
Series B (Methodological), 50(2):157–224, 1988.

S. L. Lauritzen. Graphical Models. Oxford University Press, USA, 1996.

L. Li and K. C. Toh. An inexact interior point method for `1-regularized sparse covariance
selection. Mathematical Programming Computation, 2(3):291–315, 2010.

188

A Junction Tree Framework for Undirected Graphical Model Selection

H. Liu, K. Roeder, and L. Wasserman. Stability approach to regularization selection (stars)
for high dimensional graphical models. In Advances in Neural Information Processing
Systems (NIPS), 2010.

H. Liu, F. Han, M. Yuan, J. Lafferty, and L. Wasserman. High dimensional semiparametric
Gaussian copula graphical models. Annals of Statistics, 40(4):2293–2326, 2012a.

H. Liu, J. Lafferty, and L. Wasserman. The nonparanormal: Semiparametric estimation
of high dimensional undirected graphs. The Journal of Machine Learning Research, 10:
2295–2328, 2009.

H. Liu, F. Han, and C. Zhang. Transelliptical graphical models. In Advances in Neural
Information Processing Systems (NIPS), pages 809–817, 2012b.

P. Loh and M. J. Wainwright. Structure estimation for discrete graphical models: General-
ized covariance matrices and their inverses. In Advances in Neural Information Processing
Systems (NIPS), pages 2096–2104, 2012.

Z. Ma, X. Xie, and Z. Geng. Structural learning of chain graphs via decomposition. Journal
of Machine Learning Research, 9:2847–2880, December 2008.

D. M. Malioutov, J. K. Johnson, and A. S. Willsky. Walk-sums and belief propagation
in gaussian graphical models. The Journal of Machine Learning Research, 7:2031–2064,
2006.

F. M. Malvestuto. Approximating discrete probability distributions with decomposable
models. IEEE Transactions on Systems, Man and Cybernetics, 21(5):1287–1294, 1991.

R. Mazumder and T. Hastie. Exact covariance thresholding into connected components for
large-scale graphical lasso. Journal of Machine Learning Research, 13:781–794, March
2012. ISSN 1532-4435.

N. Meinshausen and P. Bühlmann. Stability selection. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 72(4):417–473, 2010.

N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the
lasso. Annals of Statistics, 34(3):1436–1462, 2006.

P. Netrapalli, S. Banerjee, S. Sanghavi, and S. Shakkottai. Greedy learning of Markov
network structure. In 2010 48th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pages 1295–1302, 2010.

A. Dobra, C. Hans, B. Jones, J. R. Nevins, and G. Yao, and M. West. Sparse graphical
models for exploring gene expression data. Journal of Multivariate Analysis, 90:196–212,
2004.

M. J Rasch, A. Gretton, Y. Murayama, W. Maass, N. K Logothetis, L. Wiskott, G. Kem-
permann, L. Wiskott, G. Kempermann, B. Schölkopf, et al. A kernel two-sample test.
Journal of Machine Learning Research, 2:299, 2012.

189

Vats and Nowak

P. Ravikumar, M. J. Wainwright, and J. Lafferty. High-dimensional Ising model selection
using `1-regularized logistic regression. Annals of Statistics, 38(3):1287–1319, 2010.

P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu. High-dimensional covariance
estimation by minimizing `1-penalized log-determinant divergence. Electronic Journal of
Statistics, 5:935–980, 2011.

N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms, 7(3):309 – 322, 1986.

K. Scheinberg, S. Ma, and D. Goldfarb. Sparse inverse covariance selection via alternating
linearization methods. In Advances in Neural Information Processing Systems (NIPS),
pages 2101–2109, 2010.

T. P. Speed and H. T. Kiiveri. Gaussian Markov distributions over finite graphs. The
Annals of Statistics, 14(1):138–150, 1986.

P. Spirtes and C. Glymour. An algorithm for fast recovery of sparse causal graphs. Social
Science Computer Review, 9:62–72, 1991.

P. Spirtes, C. Glymour, and R. Scheines. Causality from probability. In Advanced Computing
for the Social Sciences, 1990.

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal
Statistical Society, Series B, 58(1):267–288, 1996.

S. van de Geer, P. Bühlmann, and S. Zhou. The adaptive and the thresholded Lasso for
potentially misspecified models (and a lower bound for the lasso). Electronic Journal of
Statistics, 5:688–749, 2011.

D. Vats. High-dimensional screening using multiple grouping of variables. IEEE Transac-
tions On Signal Processing, to appear.

D. Vats and J. M. F. Moura. Finding non-overlapping clusters for generalized inference
over graphical models. IEEE Transactions on Signal Processing, 60(12):6368 –6381, Dec.
2012.

M. J. Wainwright. Stochastic Processes on Graphs: Geometric and Variational Approaches.
PhD thesis, Department of EECS, Massachusetts Institute of Technology, 2002.

M. J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery us-
ing `1-constrained quadratic programming (Lasso). IEEE Transactions on Information
Theory, 55(5):2183–2202, 2009. ISSN 0018-9448.

W. Wang, M. J. Wainwright, and K. Ramchandran. Information-theoretic bounds on model
selection for Gaussian Markov random fields. In IEEE International Symposium on In-
formation Theory (ISIT), 2010.

A. Wille, P. Zimmermann, E. Vranová, A. Fürholz, O. Laule, S. Bleuler, L. Hennig,
A. Prelic, P. Von Rohr, L. Thiele, et al. Sparse graphical Gaussian modeling of the
isoprenoid gene network in arabidopsis thaliana. Genome Biol, 5(11):R92, 2004.

190

A Junction Tree Framework for Undirected Graphical Model Selection

D. M. Witten, J. H. Friedman, and N. Simon. New insights and faster computations for the
graphical lasso. Journal of Computational and Graphical Statistics, 20(4):892–900, 2011.

X. Xie and Z. Geng. A recursive method for structural learning of directed acyclic graphs.
Journal of Machine Learning Research, 9:459–483, 2008.

L. Xue and H. Zou. Regularized rank-based estimation of high-dimensional nonparanormal
graphical models. The Annals of Statistics, 40(5):2541–2571, 2012.

E. Yang, G. Allen, Z. Liu, and P. Ravikumar. Graphical models via generalized linear
models. In Advances in Neural Information Processing Systems, pages 1367–1375, 2012.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free-energy approximations and
generalized belief propagation algorithms. IEEE Transactions on Information Theory,
51(7):2282–2312, 2005.

M. Yuan and Yi Lin. Model selection and estimation in the Gaussian graphical model.
Biometrika, 94(1):19–35, 2007.

K. Zhang, J. Peters, D. Janzing, and B. Schölkopf. Kernel-based conditional independence
test and application in causal discovery. Arxiv preprint arXiv:1202.3775, 2012.

H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical
Association, 101(476):1418–1429, 2006.

191

Journal of Machine Learning Research 15 (2014) 193-215 Submitted 7/13; Revised 11/13; Published 1/14

Axioms for Graph Clustering Quality Functions

Twan van Laarhoven tvanlaarhoven@cs.ru.nl

Elena Marchiori elenam@cs.ru.nl

Institute for Computing and Information Sciences

Radboud University Nijmegen

Postbus 9010

6500 GL Nijmegen, The Netherlands

Editor: Vahab Mirrokni

Abstract

We investigate properties that intuitively ought to be satisfied by graph clustering quality
functions, that is, functions that assign a score to a clustering of a graph. Graph clustering,
also known as network community detection, is often performed by optimizing such a
function. Two axioms tailored for graph clustering quality functions are introduced, and the
four axioms introduced in previous work on distance based clustering are reformulated and
generalized for the graph setting. We show that modularity, a standard quality function for
graph clustering, does not satisfy all of these six properties. This motivates the derivation of
a new family of quality functions, adaptive scale modularity, which does satisfy the proposed
axioms. Adaptive scale modularity has two parameters, which give greater flexibility in the
kinds of clusterings that can be found. Standard graph clustering quality functions, such
as normalized cut and unnormalized cut, are obtained as special cases of adaptive scale
modularity.

In general, the results of our investigation indicate that the considered axiomatic frame-
work covers existing ‘good’ quality functions for graph clustering, and can be used to derive
an interesting new family of quality functions.

Keywords: graph clustering, modularity, axiomatic framework

1. Introduction

Following the work by Kleinberg (2002) there have been various contributions to the the-
oretical foundation and analysis of clustering, such as axiomatic frameworks for quality
functions (Ackerman and Ben-David, 2008), for criteria to compare clusterings (Meila,
2005), uniqueness theorems for specific types of clustering (Zadeh and Ben-David, 2009;
Ackerman and Ben-David, 2013; Carlsson, Mémoli, Ribeiro, and Segarra, 2013), taxonomy
of clustering paradigms (Ackerman et al., 2010a), and characterization of diversification
systems (Gollapudi and Sharma, 2009).

Kleinberg focused on clustering functions, which are functions from a distance function
to a clustering. He showed that there are no clustering functions that simultaneously satisfy
three intuitive properties: scale invariance, consistency and richness. Ackerman and Ben-
David (2008) continued on this work, and showed that the impossibility result does not
apply when formulating these properties in terms of quality functions instead of clustering
functions, where consistency is replaced with a weaker property called monotonicity.

c©2014 Twan van Laarhoven and Elena Marchiori.

van Laarhoven and Marchiori

Both of these previous works are formulated in terms of distance functions over a fixed
domain. In this paper we focus on weighted graphs, where the weight of an edge indicates
the strength of a connection. The clustering problem on graphs is also known as network
community detection.

Graphs provide additional freedoms over distance functions. In particular, it is possible
for two points to be unrelated, indicated by a weight of 0. These zero-weight edges in turn
make it natural to consider graphs over different sets of nodes as part of a larger graph.
Secondly, we can allow for self loops. Self loops can indicate internal edges in a node. This
notation is used for instance by Blondel et al. (2008), where a graph is contracted based on
a fine-grained clustering.

In this setting, where edges with weight 0 are possible, Kleinberg’s impossibility result
does not apply. This can be seen by considering the connected components of a graph. This
is a graph clustering function that satisfies all three of Kleinberg’s axioms: scale invariance,
consistency and richness (see Section 4.2).

Our focus is on the investigation of graph clustering quality functions, which are func-
tions from a graph and a clustering to a real number ‘quality’. A notable example is
modularity (Newman and Girvan, 2004). In particular we ask which properties of quality
functions intuitively ought to hold, and which are often assumed to hold when reason-
ing informally about graph clustering. Such properties might be called axioms for graph
clustering.

The rest of this paper is organized as follows: Section 2 gives basic definitions. Next,
section 3 discusses different ways in which properties could be formulated.

In Section 4 of this paper we propose an axiomatic framework that consists of six
properties of graph clustering quality functions: the (adaption of) the four axioms from
Kleinberg (2002) and Ackerman and Ben-David (2008) (permutation invariance, scale in-
variance, richness and monotonicity); and two additional properties specific for the graph
setting (continuity and the locality).

Then, in Section 5, we show that modularity does not satisfy the monotonicity and
locality properties.

This result motivates the analysis of variants of modularity, leading to the derivation of
a new parametric quality function in Section 6, that satisfies all properties. This quality
function, which we call adaptive scale modularity, has two parameters, M and γ which can
be tuned to control the resolution of the clustering. We show that quality functions similar
to normalized cut and unnormalized cut are obtained in the limit when M goes to zero and
to infinity, respectively. Furthermore, setting γ to 0 yields a parametric quality function
similar to that proposed by Reichardt and Bornholdt (2004).

1.1 Related Work

Previous axiomatic studies of clustering quality functions have focused mainly on hierar-
chical clustering and on weakest and strongest link style quality functions (Kleinberg, 2002;
Ackerman and Ben-David, 2008; Zadeh and Ben-David, 2009; Carlsson et al., 2013). Pa-
pers in this line of work that focussed also on the partitional setting include Puzicha et al.
(1999), Ackerman et al. (2012) and Ackerman et al. (2013). Puzicha et al. (1999) investi-
gated a particular class of clustering quality functions obtained by requiring the function to

194

Axioms for Graph Clustering Quality Functions

decompose into a certain additive form. Ackerman et al. (2012) considered clustering in the
weighted setting, in which every data point is assigned a real valued weight. They performed
a theoretical analysis on the influence of weighted data on standard clustering algorithms.
Ackerman et al. (2013) analyzed robustness of clustering algorithms to the addition of a
small set of points, and investigated the robustness of popular clustering methods.

All these studies are framed in terms of distance (or similarity and dissimilarity) func-
tions.

Bubeck and Luxburg (2009) studied statistical consistency of clustering methods. They
introduced the so-called nearest neighbor clustering and showed its consistency also for
standard graph based quality functions, such as normalized cut, ratio cut, and modularity.
Here we do not focus on properties of methods to optimize clustering quality, but on natural
properties that quality functions for graph clustering should satisfy.

Related works on graph clustering quality functions mainly focus on the so-called resolu-
tion limit, that is, the tendency of a quality function to prefer either small or large clusters.
In particular, Fortunato and Barthélemy (2007) proved that modularity may not detect
clusters smaller than a scale which depends on the total size of the network and on the
degree of interconnectedness of the clusters. van Laarhoven and Marchiori (2013) showed
that the resolution limit is the most important difference between quality functions in graph
clustering optimized using local search optimization.

To mitigate the resolution limit phenomenon, the quality function may be extended with
a so-called resolution parameter. For example, Reichardt and Bornholdt (2006) proposed
a formulation of graph clustering (therein called network community detection) based on
principles from statistical mechanics. This interpretation leads to the introduction of a
family of quality functions with a parameter that allows to control the clustering resolution.
In Section 6.1 we will show that this extension is a special case of adaptive scale modularity.

Traag, Van Dooren, and Nesterov (2011) formalized the notion of resolution-free quality
functions, that is, not suffering from the resolution limit, and provided a characterization
of this class of quality functions. Their notion is essentially an axiom, and we will discuss
the relation to our axioms in Section 4.1.1.

2. Definitions and Notation

A symmetric weighted graph is a pair (V,E) of a finite set V of nodes and a function
E : V ×V → R≥0 of edge weights, where E(i, j) = E(j, i) for all i, j ∈ V . Edges with larger
weights represent stronger connections, so missing edges can get weight 0. Note that this
is the opposite of the convention used in distance based clustering. We explicitly allow for
self loops, that is, nodes for which E(i, i) > 0.

A clustering C of a graph G = (V,E) is a partition of its nodes. That is,
⋃
C = V and

for all c1, c2 ∈ C, c1 ∩ c2 6= ∅ if and only if c1 = c2. When two nodes i and j are in the
same cluster in clustering C, that is, when i, j ∈ c for some c ∈ C, then we write i ∼C j.
Otherwise we write i 6∼C j.

A clustering C is a refinement of a clustering D, written C v D, when for every cluster
c ∈ C there is a cluster d ∈ D such that c ⊆ d.

A graph clustering quality function (or objective function) Q is a function from graphs
G and clusterings of G to real numbers. We adopt the convention that a higher quality

195

van Laarhoven and Marchiori

indicates a ‘better’ clustering. As a generalization, we will sometimes work with parame-
terized families of quality functions. A single quality function can be seen as a family with
no parameters.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs and let Va ⊆ V1 ∩ V2 be a subset
of the common nodes. We say that the graphs agree on Va if E1(i, j) = E2(i, j) for all
i, j ∈ Va. We say that the graphs also agree on the neighborhood of Va If

• E1(i, j) = E2(i, j) for all i ∈ Va and j ∈ V1 ∩ V2,

• E1(i, j) = 0 for all i ∈ Va and j ∈ V1 \ V2, and

• E2(i, j) = 0 for all i ∈ Va and j ∈ V2 \ V1.

This means that for nodes in Va the weights and endpoints of incident edges are exactly the
same in the two graphs.

3. On the Form of Axioms

There are three different ways to state potential axioms for clustering:

1. As a property of clustering functions, as in Kleinberg (2002). For example, scale
invariance of a clustering function Ĉ would be written as “Ĉ(G) = Ĉ(αG), for all
graphs G, α > 0”. I.e. the optimal clustering is invariant under scaling of edge
weights.

2. As a property of the values of a quality function Q, as in Ackerman and Ben-David
(2008). For example “Q(G,C) = Q(αG,C), for all graphs G, all clustering C of G,
and α > 0”. I.e. the quality is invariant under scaling of edge weights.

3. As a property of the relation between qualities of different clustering, or equivalently,
as a property of an ordering of clusterings for a particular graph. For example
“Q(G,C) ≥ Q(G,D) ⇒ Q(αG,C) ≥ Q(αG,D)”.I.e. the ‘better than’ relation for
clusterings is invariant under scaling of edge weights.

The third form is slightly more flexible than the other two. Any quality function that
satisfies a property in the second style will also satisfy the corresponding property in the
third style, but the converse is not true. Note also that if D is not restricted in a property in
the third style, then one can take Ĉ(G) = argmaxC Q(G,C) to obtain a clustering function
and an axiom in the first style.

Most properties are more easily stated and proved in the second, absolute, style. There-
fore, we adopt the second style unless doing so requires us to make specific choices.

4. Axioms for Graph Clustering Quality Functions

Kleinberg defined three axioms for distance based clustering functions. In Ackerman and
Ben-David (2008) the authors reformulated these into four axioms for clustering quality
functions. These axioms can easily be adapted to the graph setting.

The first property that one expects for graph clustering is that the quality of a clustering
depends only on the graph, that is, only on the weight of edges between nodes, not on the
identity of nodes. We formalize this in the permutation invariance axiom,

196

Axioms for Graph Clustering Quality Functions

Definition 1 (Permutation invariance) A graph clustering quality function Q is per-
mutation invariant if for all graphs G = (V,E) and all isomorphisms f : V → V ′, it is
the case that Q(G,C) = Q(f(G), f(C)); where f is extended to graphs and clusterings by
f(C) = {{f(i) | i ∈ c} | c ∈ C} and f((V,E)) = (V ′, (i, j) 7→ E(f−1(i), f−1(j))).

The second property, scale invariance, requires that the quality doesn’t change when
edge weights are scaled uniformly. This is an intuitive axiom when one thinks in terms of
units: a graph with edges in “m/s” can be scaled to a graph with edges in “km/h”. The
quality should not be affected by such a transformation, perhaps up to a change in units.

Ackerman and Ben-David (2008) defined scale invariance by insisting that the quality
stays equal when distances are scaled. In contrast, in Puzicha et al. (1999) the quality
should scale proportional with the scaling of distances. We generalize both of these previous
definitions by only considering the relations between the quality of two clusterings.

Definition 2 (Scale invariance) A graph clustering quality function Q is scale invariant
if for all graphs G = (V,E), all clusterings C1, C2 of G and all constants α > 0, Q(G,C1) ≤
Q(G,C2) if and only if Q(αG,C1) ≤ Q(αG,C2). Where αG = (V, (i, j) 7→ αE(i, j)) is a
graph with edge weights scaled by a factor α.

This formulation is flexible enough for single quality functions. However, families of
quality functions could have parameters that are also scale dependent. For such families we
therefore propose to use as an axiom a more flexible property that also allows the parameters
to be scaled,

Definition 3 (Scale invariant family) A family of quality function QP parameterized by
P ∈ P is scale invariant if for all constants P ∈ P and α > 0 there is a P ′ ∈ P such that
for all graphs G = (V,E), and all clusterings C1, C2 of G, QP (G,C1) ≤ QP (G,C2) if and
only if QP ′(αG,C1) ≤ QP ′(αG,C2).

Thirdly, we want to rule out trivial quality functions. This is done by requiring richness,
that is, that by changing the edge weights any clustering can be made optimal for that
quality function.

Definition 4 (Richness) A graph clustering quality function Q is rich if for all sets V
and all non-trivial partitions C∗ of V , there is a graph G = (V,E) such that C∗ is the
Q-optimal clustering of V , that is, argmaxC Q(G,C) = C∗.

The last axiom that Ackerman and Ben-David consider is by far the most interesting.
Intuitively, we expect that when the edges within a cluster are strengthened, or when edges
between clusters are weakened, that this does not decrease the quality. Formally we call
such a change of a graph a consistent improvement,

Definition 5 (Consistent improvement) Let G = (V,E) be a graph and C a clustering
of G. A graph G′ = (V,E′) is a C-consistent improvement of G if for all nodes i and j,
E′(i, j) ≥ E(i, j) whenever i ∼C j and E′(i, j) ≤ E(i, j) whenever i 6∼C j.

We say that a quality function that does not decrease under consistent improvement is
monotonic. In previous work this axiom is often called consistency.

197

van Laarhoven and Marchiori

Definition 6 (Monotonicity) A graph clustering quality function Q is monotonic if for
all graphs G, all clusterings C of G and all C-consistent improvements G′ of G it is the
case that Q(G′, C) ≥ Q(G,C).

4.1 Locality

In the graph setting it also becomes natural to look at combining different graphs. With
distance functions this is impossible, since it is not clear what the distance between nodes
from the two different sets should be. But for graphs we can take the edge weight between
nodes not in both graphs to be zero, which is the case when the graphs agree on the
neighborhood of some set.

Consider adding nodes to one side of a large network, then we would not want the
clustering on the other side of the network to change if there is no direct connection. For
example, if a new protein is discovered in yeast, then the clustering of unrelated proteins in
humans should remain the same. Similarly, we can consider any two graphs with disjoint
node sets as one larger graph. Then the quality of clusterings of the two original graphs
should relate directly to quality on the combined graph.

In general, local changes to a graph should have only local consequences to a clustering.
Or in other words, the contribution of a single cluster to the total quality should only
depend on nodes in the neighborhood of that cluster.

Definition 7 (Locality) A graph clustering quality function Q is local if for all graphs
G1 = (V1, E1) and G2 = (V2, E2) that agree on a set Va and its neighborhood, and for all
clusterings Ca, Da of Va, C1 of V1\Va and C2 of V2\Va, if Q(G1, Ca∪C1) ≥ Q(G1, Da∪C1)
then Q(G2, Ca ∪ C2) ≥ Q(G2, Da ∪ C2).

Any quality function that has a preference for a fixed number of clusters will not be
local. On the other hand, a quality function that is written as a sum over clusters, where
each summand depends only on properties of nodes and edges in one cluster and not on
global properties, is local.

Ackerman et al. (2010b) defined a similar locality property for clustering functions.
Their definition differs from ours in three ways. First of all, they looked at k-clustering,
where the number of clusters is given and fixed. Secondly, their locality property only
implies a consistent clustering when the rest of the graph is removed, corresponding to
V2 = V1 ∩ Va. They do not consider the other direction, where more nodes and edges are
added. Finally, their locality property requires only agreement of the overlapping set Va,
not on its neighborhood. That means that clustering functions should also give the same
results if edges with one endpoint in Va are removed.

4.1.1 Relation to Resolution-Limit-Free Quality Functions

Traag et al. (2011) introduced the notion of resolution-limit-free quality functions, which
is similar to locality. They then showed that resolution-limit-free quality functions do not
suffer from the resolution limit as described by Fortunato and Barthélemy (2007). Their
definition is as follows.

198

Axioms for Graph Clustering Quality Functions

Definition 8 (Resolution-limit-free) Call a clustering C of a graph G Q-optimal if for
all clustering C ′ of G we have that Q(G,C) ≥ Q(G,C ′). Let C be a Q-optimal clustering of
a graph G1. Then the quality function Q is called resolution-limit-free if for each subgraph
G2 induced by D ⊂ C, the partition D is also Q-optimal.

There are three differences compared to our locality property. First of all, Definition 8
refers only to the optimal clustering, not to the quality, that is, it is a property in the style
of Kleinberg. Secondly, locality does not require that G2 be a subgraph of G1. Locality is
stronger in that sense. Thirdly, and perhaps most importantly, in the subgraph G2 induced
by D ⊂ C, edges from a node in D to nodes not in D will be removed. That means
that while G1 and G2 agree on the set of common nodes, they do not also agree on their
neighborhood. So in this sense locality is weaker than resolution-limit-freedom.

The notion of resolution-limit-free quality functions was born out of the need to avoid
the resolution limit of graph clustering. And indeed locality is not enough to guarantee
that a quality function is free from this resolution limit.

We could look at a stronger version of locality, which replaces agreement on the neigh-
borhood of a set Va by plain agreement on that set. Such a strong locality property would
imply resolution-limit-freedom. However, it is a very strong property in that it rules out
many sensible quality functions. In particular, a strongly local quality function can not
depend on the weight of edges entering or leaving a cluster, because that weight can be
different in another graph that agrees only on that cluster.

The solution used by Traag et al. is to use the number of nodes instead of the volume
of a cluster. In this way they obtain a resolution-limit-free variant of the Potts model by
Reichardt and Bornholdt (2004), which they call the constant Potts model. But this comes
at the cost of scale invariance.

4.2 Continuity

In the context of graphs, perhaps the most intuitive clustering function is finding the con-
nected components of a graph. As a quality function, we could write

Qcoco(G,C) = 1[C = Ĉcoco(G)],

where the function Ĉcoco yields the connected components of a graph.
This quality function is clearly permutation invariant, scale invariant, rich, and local.

Since a consistent change can only remove edges between clusters and add edges within
clusters, the coco quality function is also monotonic.

In fact, all of Kleinberg’s axioms (reformulated in terms of graphs) also hold for Ĉcoco,
which seems to refute their impossibility result. However, the impossibility proof can not
be directly transfered to graphs, because it involves a multiplication and division by a
maximum distance. In the graph setting this would be multiplication and division by a
minimum edge weight, which can be zero.

Still, despite connected components satisfying all previously defined properties (except
for strong locality), it is not a very useful quality function. In many real-world graphs, most
nodes are part of one giant connected component (Bollobás, 2001). We would also like the
clustering to be influenced by the weight of edges, not just by their existence. A natural
way to rule out such degenerate quality functions is to require continuity.

199

van Laarhoven and Marchiori

Definition 9 (Continuity) A quality function Q is continuous if a small change in the
graph leads to a small change in the quality. Formally, Q is continuous if for every ε > 0
and every graph G = (V,E) there exists a δ > 0 such that for all graphs G′ = (V,E′), if
E(i, j) − δ < E′(i, j) < E(i, j) + δ for all nodes i and j, then Q(G′, C) − ε < Q(G,C) <
Q(G′, C) + ε for all clusterings C of G.

Connected components clustering is not continuous, because adding an edge with a
small weight δ between clusters changes the connected components, and hence dramatically
changes the quality.

Continuous quality functions have an important property in practice, in that they pro-
vide a degree of robustness to noise. A clustering that is optimal with regard to a continuous
quality function will still be close to optimal after a small change to the graph.

4.3 Summary of Axioms

We propose to consider the following six properties as axioms for graph clustering quality
functions,

1. Permutation invariance (definition 1),

2. Scale invariance (definition 2),

3. Richness (definition 4),

4. Monotonicity (definition 6),

5. Locality (definition 7), and

6. Continuity (definition 9).

As mentioned previously, for families of quality functions we replace scale invariance by
scale invariance for families (definition 3).

In the next section we will show that this set of axioms is consistent by defining a quality
function and a family of quality functions that satisfies all of them. Additionally, the fact
that there are quality functions that satisfy only some of the axioms shows that they are
(at least partially) independent.

5. Modularity

For graph clustering one of the most popular quality functions is modularity (Newman and
Girvan, 2004), despite its limitations (Good et al., 2010; Traag et al., 2011),

Qmodularity(G,C) =
∑
c∈C

(
wc
vV
−
(vc
vV

)2
)
. (1)

In this expression vc(G) =
∑

i∈c
∑

j∈V E(i, j) is the volume of a cluster, while wc(G) =∑
i,j∈cE(i, j) is the within cluster weight. vV is the volume of the entire graph. We leave

the argument G implicit for readability.
It is easy to see that modularity is permutation invariant, scale invariant and continuous.

200

Axioms for Graph Clustering Quality Functions

Theorem 1 Modularity is rich.

The proof of Theorem 1 is in appendix A.
An important aspect of modularity is that volume and within weight are normalized

with respect to the total volume of the graph. This ensures that the quality function is
scale invariant, but it also means that the quality can change in unexpected ways when the
total volume of the graph changes. This leads us to Theorem 2.

Theorem 2 Modularity is not local.

Proof Consider the graphs

G1 =
a b

1

1

2 2

G2 =
a b c

1

1

2 2 4

,

which agree on the set Va = {a, b}. Note that we draw the graphs as directed graphs, to
make it clear that each undirected edge is counted twice for the purposes of volume and
within cluster weight. Now take the clusterings Ca = {{a}, {b}} and Da = {{a, b}} of Va;
C1 = {} of V1 \ Va; and C2 = {{c}} of V2 \ Va. Then

Qmodularity(G1, Ca ∪ C1) = 1/6 > 0 = Qmodularity(G1, Da ∪ C1),

while
Qmodularity(G2, Ca ∪ C2) = 23/50 < 24/50 = Qmodularity(G2, Da ∪ C2).

This counterexample shows that modularity is not local.

Even without changing the node set, changes in the total volume can be problematic,
as shown by the following theorem.

Theorem 3 Modularity is not monotonic.

Proof Consider the graphs

G = a b
c

1

1

2

G′ = a b
c

0

0

2

,

and the clustering C = {{a}, {b}, {c}}. G′ is a C-consistent improvement of G, be-
cause the weight of a between-cluster edge is decreased. The modularity of C in G is
Qmodularity(G,C) = 1/8, while the modularity of C in G′ is Qmodularity(G′, C) = 0. So mod-
ularity can decrease with a consistent change of a graph, and hence it is not a monotonic
quality function.

201

van Laarhoven and Marchiori

Monotonicity might be too strong a condition. When the goal is to find a clustering of
a single graph, we are not actually interested in the absolute value of a quality function.
Rather, what is of interest is the optimal clustering, and which changes to the graph preserve
this optimum. At a smaller scaler, we can look at the relation between two clusterings. If
C is better then D on a graph G, then on what other graphs is C better then D?

We therefore define a relative version of monotonicity, in the hopes that modularity does
satisfy this weaker version.

Definition 10 (Relative monotonicity) A quality function Q is relatively monotonic if
for all graphs G and G′ and clusterings C and D, if G′ is a C-consistent improvement of
G and G is a D-consistent improvement of G′ and Q(G,C) ≥ Q(G,D) then Q(G′, C) ≥
Q(G′, D).

Theorem 4 Modularity is not relatively monotonic.

Proof Take the graphs

G = a b
c d

1

1

8 1

G′ = a b
c d

2

2

8 1

,

and the clusterings C = {{a, b, c}, {d}} and D = {{a}, {b}, {c, d}}. G′ is a C-consistent im-
provement of G, because the weight of a within cluster edge is increased. G is a D-consistent
improvement of G′, because the weight of a between cluster edge is decreased. How-
ever Qmodularity(G,C) = 20/121 > 16/121 = Qmodularity(G,D) while Qmodularity(G′, C) =
24/169 < 28/121 = Qmodularity(G′, D). This counterexample shows that modularity is not
relatively monotonic.

6. Adaptive Scale Modularity

The problems with modularity stem from the fact that the total volume can change when
changes are made to the graph. It is therefore natural to look at a variant of modularity
where the total volume is replaced by a constant M ,

QM -fixed(G,C) =
∑
c∈C

(
wc
M
−
(vc
M

)2
)
.

This quality function is obviously local. It is also a scale invariant family parameterized by
M . However, this fixed scale modularity quality function is not scale invariant for any fixed
scale M > 0.

We might hope that fixed scale modularity would be monotonic, because it doesn’t suffer
from the problem where changes in the edge weights affect the total volume. Unfortunately,
fixed scale modularity has problems when the volume of a cluster starts to exceed M/2.

202

Axioms for Graph Clustering Quality Functions

In that case, increasing the weight of within cluster edges starts to decrease the fixed scale
modularity. Looking at a cluster c with volume vc = wc + bc,

∂QM -fixed(G,C)

∂wc
=

1

M
− 2vc
M2

.

This derivative is negative when 2vc > M , so in that case increasing the weight of a within-
cluster edge will decrease the quality. Hence fixed scale modularity is not monotonic.

The above argument also suggests a possible solution: add 2vc to the normalization
factor M . Or more generally, add γvc with γ ≥ 2, which leads to the quality function

QM ,γ(G,C) =
∑
c∈C

(
wc

M + γvc
−
(vc
M + γvc

)2
)
.

This adaptive scale modularity quality function is clearly still permutation invariant,
continuous and local. For M = 0 it is also scale invariant. Since the value of M should
scale along with the edge weights, adaptive scale modularity is a scale invariant family
parameterized by M . Additionally, we have the following two theorems:

Theorem 5 Adaptive scale modularity is rich for all M ≥ 0 and γ ≥ 1.

Theorem 6 Adaptive scale modularity is monotonic for all M ≥ 0 and γ ≥ 2.

The proofs of these theorems can be found in appendices B and C.

This shows that adaptive scale modularity satisfies all six axioms we have defined for
families of graph clustering quality functions, and the six axioms for single quality functions
when M = 0. This shows that our extended set of axioms is consistent.

6.1 Relation to Other Quality Functions

Interestingly, in the limit as M goes to 0, the adaptive-scale quality function becomes similar
to normalized cut (Shi and Malik, 2000) with an added constant,

Q0,γ(G,C) =
1

γ

∑
c∈C

(wc
vc
− 1

γ

)
.

This 0-adaptive modularity is also scale invariant as a single quality function.

Conversely, when M goes to infinity the quality goes to 0. However, the quality function
approaches unnormalized cut in behavior:

lim
M→∞

M ·QM ,γ(G,C) =
∑
c∈C

wc.

This expression is similar to the Constant Potts model (CPM) by Traag et al. (2011),

Qcpm(G,C) =
∑
c∈C

(
wc − γn2

c

)
.

203

van Laarhoven and Marchiori

In contrast to the quality functions discussed thus far, CPM uses the number of nodes
instead of volume to control the size of clusters. Like adaptive scale modularity, the constant
Potts model satisfies all six axioms (as a family).

As stated before, the fixed scale and adaptive scale modularity quality functions are a
scale invariant family; they are not scale invariant for a fixed value of M (except for M = 0).
This is not a large problem in practice, since scale invariance is often sacrificed to overcome
the resolution limit of modularity (Fortunato and Barthélemy, 2007). In fact, fixed scale
modularity is proportional to the quality function introduced by Reichardt and Bornholdt
(2004),

QRB(G,C) =
∑
c∈C

(
wc − γRB

v2
c

vV

)
= M ·QM -fixed(G,C),

with M = vV /γRB.

6.2 Parameter Dependence Analysis

There has been a lot of interest in the so called resolution limit of modularity.
This problem can be illustrated with a simple graph that consists of a ring of cliques,

where each clique is connected to the next one with a single edge. We would like the
clusters in the optimal clustering to correspond to the cliques in the ring. It was observed
by Fortunato and Barthélemy (2007) that, as the number of cliques in the ring increases, at
some point the clustering with the highest modularity will have multiple cliques per cluster.

This resolution problem stems from the fact that the behavior of modularity depends on
the total volume of the graph. Both the fixed scale and adaptive scale modularity quality
functions instead have a parameter M , and hence do not suffer from this problem. In
fact, any local quality function will not have a resolution limit in the sense of Fortunato
and Barthélemy. A similar observation was made by Traag et al. (2011) in the context of
modularity like quality functions.

In real situations graphs are not uniform as in the ring-of-cliques model. But we can still
take simple uniform problems as a building block for larger and more complex graphs, since
for local quality functions the rest of the network doesn’t matter. Therefore we will look
at a simple problem with two subgraphs of varying sizes connected by a varying number of
edges. More precisely, we take two cliques each with within weight w, connected by edges
with weight b. The total volume of this (sub)graph is then 2w + 2b.

There are three possible outcomes when clustering such a two-clique network: (1) the
optimal solution has a single cluster; (2) the optimal solution has two clusters, corresponding
to the two cliques; (3) the optimal solution has more than two clusters, splitting the cliques
apart. See Figure 1 for an illustration. Which of these outcomes is desirable depends on
the circumstances.

Another heterogeneous resolution limit model was proposed by Lancichinetti and Fortu-
nato (2011). In this situation there are two cliques of equal size connected by a single edge,
and a random subgraph. Now the ideal solution would be to find three clusters, one for
each clique and one for the random subgraph. The optimal split of the random subgraph
will roughly cut it in half, with a fixed fraction of the volume being between the two clusters
(Reichardt and Bornholdt, 2007). So this model can be considered as a combination of two

204

Axioms for Graph Clustering Quality Functions

x, y

2w + 2b
1

x y
b

b

w w
2 3

x2

x1

y2

y1

Figure 1: An illustration of the possible outcomes when clustering a two-clique network.
Clusters are indicated by circles. In outcome (3), the vertical edges each have
weight w/4, while the horizontal and diagonal ones have weight b/4.

instances of our simpler problem, one for the two cliques and one for the random subgraph.1

Hence, we want outcome (2) for the cliques, and outcome (1) for the random subgraph.

In Figure 2 we show which graphs give which outcomes for adaptive scale modularity
with various parameter settings. The first column, γ = 0, is of particular interest, since it
corresponds to fixed scale modularity and hence also to QRB and to modularity in certain
graphs. In the third row we can see that when 2v = 2w + 2b > M = 100 the cliques are
split apart. This is precisely the region in which monotonicity no longer holds. Overall,
the parameter M has the effect of determining the scale; each row in this figure is merely
the previous row magnified by a factor 10. Increasing M has the effect of merging small
clusters. On the other hand, the γ parameter controls the slope of the boundary between
outcomes (1) and (2), that is, the fraction of edges that should be within a cluster. This is
most clearly seen when M = 0, while otherwise the effect of M dominates for small clusters.

7. Conclusion and Open Questions

In this paper we presented an axiomatic framework for graph clustering quality functions
consisting of six properties. We showed that modularity does not satisfy the monotonicity
property. This motivated the derivation of a new family of quality functions, adaptive scale
modularity, that satisfies all properties and has standard graph clustering quality functions
as special cases. Results of an experimental parameter dependence analysis showed the high
flexibility of adaptive scale modularity. However, adaptive scale modularity should not be
considered the solution to all the problems of modularity, but rather an example of how
axioms can be used in practice.

An overview of the discussed axioms and quality functions can be found in table 1.
Many more quality functions have been proposed in the literature, so this list is by no
means exhaustive. An interesting topic for future research is to make a survey of which
existing quality functions satisfy which of the proposed properties.

We also investigated resolution-limit-free quality functions as defined by Traag et al.
(2011). As illustrated in section 6.2, adaptive scale modularity allows to perform clustering
at various resolutions, by varying the values of its two parameters. However it is not
resolution-limit-free.

1. Lancichinetti and Fortunato include edges between the cliques and the random subgraph to ensure that
the entire network is connected, these edges are not relevant to the problem.

205

van Laarhoven and Marchiori

M
=

0
3

0 10 20 30 40 50
0

10

20

30

40

50

b 1

0 10 20 30 40 50
0

10

20

30

40

50

1

2

0 10 20 30 40 50
0

10

20

30

40

50

1

2

0 10 20 30 40 50
0

10

20

30

40

50

M
=

10

3

0 10 20 30 40 50
0

10

20

30

40

50

b 1

2

0 10 20 30 40 50
0

10

20

30

40

50

1

2

0 10 20 30 40 50
0

10

20

30

40

50

1

2

0 10 20 30 40 50
0

10

20

30

40

50

M
=

10
0

1

2

3

0 10 20 30 40 50
0

10

20

30

40

50

b

1

2

0 10 20 30 40 50
0

10

20

30

40

50

1

2

0 10 20 30 40 50
0

10

20

30

40

50

1

2

0 10 20 30 40 50
0

10

20

30

40

50

M
=

10
00 1

0 10 20 30 40 50
0

10

20

30

40

50

w

b 1

0 10 20 30 40 50
0

10

20

30

40

50

w

1

0 10 20 30 40 50
0

10

20

30

40

50

w

1

2

0 10 20 30 40 50
0

10

20

30

40

50

w

Γ =0 Γ =1 Γ =2 Γ =10

Figure 2: The behavior of QM ,γ for varying parameter values. The graph consists of two
subgraphs with w internal weight each, connected by an edge with weigh b. Hence
the volume of the total graph is 2w + 2b. In region (1) the optimal clustering
has a single cluster, In region (2) (light blue) the optimal clustering separates the
subgraphs. In region (3) (red, hatched) the subgraphs themselves will be split
apart.

Our paper did not address questions such as finding a best quality function (Almeida,
Guedes, Jr., and Zaki, 2011), or selecting a significant resolution scale (Traag et al., 2013).
The aim was to provide necessary conditions about what a good quality function is, in order
to rule out and/or to improve quality functions. The proposed axioms and the introduction
of adaptive scale modularity are an effort in this direction.

We also did not address the question of finding a clustering with the highest quality.
Finding the optimal value of quality functions such as modularity is NP-hard (Brandes et al.,
2008), but several heuristic and approximation algorithms have been developed. One class
of algorithms uses a divisive approach, see for instance Newman (2006) and Ruan and Zhang
(2008). For such a tactic to be valid, an optimal or close to optimal clustering of a subgraph

206

Axioms for Graph Clustering Quality Functions

P
er

m
u

ta
ti

o
n

in
va

ri
an

ce

S
ca

le
in

va
ri

an
ce

S
ca

le
in

va
ri

an
ce

(f
am

il
y
)

R
ic

h
n

es
s

M
o
n

o
to

n
ic

it
y

L
o
ca

li
ty

C
on

ti
n
u

it
y

Connected components X X n.a. X X X −
Modularity X X n.a. X − − X
Reichardt and Bornholdt (2004) X X X X − − X
Fixed scale modularity X M = 0 X X − X X
Adaptive scale modularity X M = 0 X γ ≥ 1 γ ≥ 2 X X
Constant Potts Model (Traag et al., 2011) X − X γ > 0 X X X
Normalized cut X X n.a. − X X X

Table 1: Overview of quality functions discussed in this paper and the properties they
satisfy.

should also be a near optimal clustering of the entire graph. This is ensured by locality.
Recently Dinh and Thai (2013) proposed polynomial-time approximation algorithms for the
modularity maximization in the context of scale free networks. It would be interesting to
investigate the suitability of these algorithms for adaptive scale modularity maximization.

In this work we have only looked at non-negative weights, undirected graphs, and only
at hard partitioning. An extension to graphs with negative weights, to directed graphs and
to overlapping clusters remains to be investigated. Another open problem is how to use
these axioms for reasoning about quality functions and clustering algorithms.

Acknowledgments

We thank the reviewers for their comments. This work has been partially funded by
the Netherlands Organization for Scientific Research (NWO) within the NWO project
612.066.927.

Appendix A. Proof of Theorem 1 (Modularity is Rich)

The proofs of richness rely on clique graphs,

Definition 11 (Clique graph) Let V be a set of nodes, C be a partition of V , and k be a
positive constant. The clique graph of C with edge weight k is defined as G = (V,E) where
E(i, j) = k if i ∼C j and E(i, j) = 0 otherwise.

Proof

207

van Laarhoven and Marchiori

Let V be a set of nodes and C 6= {V } be a clustering of V . Let G = (V,E) be a clique
graph of C with edge weight 1. Note that E(i, i) = 1, so any possible cluster will have a
positive volume. Let D be a clustering of G with maximal modularity.

Suppose that there is a cluster d ∈ D that contains i, j ∈ d with i 6∼C j. Then we can
split the cluster into d1 = {k ∈ d | k ∼C i} and d2 = {k ∈ d | k 6∼C i}. Because there
are no edges between nodes in d1 and nodes in d2, it is the case that wd = wd1 + wd2 .
Both d1 and d2 are non-empty and have a positive volume, so v2

d = (vd1 + vd2)2 < v2
d1

+ v2
d2

.
Therefore Qmodularity(G,D) < Qmodularity(G,D\{d}∪{d1, d2}). SoD does not have maximal
modularity, which is a contradiction.

Suppose, on the other hand that all clusters d ∈ D are a subset of some cluster in C,
that is, D is a refinement of C. Then either D = C, or there are two clusters d1, d2 ∈ D
that are both a subset of the same cluster c ∈ C. In the latter case we can combine
the two clusters into d = d1 ∪ d2. The within weight of this combined cluster is wd =
|d|2 = wd1 + wd2 + 2|d1||d2|. The squared volume of the combined cluster is v2

d = |d|2|c|2 =
v2
d1

+ v2
d2

+ 2|d1||d2||c|2. So this changes increases the modularity by

Qmodularity(G,D \ {d1, d2} ∪ {d})−Qmodularity(G,D)

= 2|d1||d2|/vV − 2|d1||d2||c|2/v2
V

= 2|d1||d2|(vV − |c|2)/v2
V > 0,

which contradicts the assumption that D has maximal modularity. Therefore the only
optimal clustering of G is C. Note that the above inequality only holds when |c|2 = vc < vV ,
which is the case because C 6= {V }.

When C = {V }, a clique graph will not work; because both {V } and the clustering that
assigns half the nodes to one cluster, and half to another have modularity equal to 0. In this
case, instead define G = (V,E) by E(i, j) = 1 if i 6= j and 0 if i = j. Then the modularity
for C is q(G, {V }) = 0. Any cluster d in a clustering D will have vd = |d|(|V | − 1)
and wd = |d|(|d| − 1). Therefore the contribution of this cluster to the total quality is
−|d|(|V | − |d|)/(|V |2(|V | − 1)), which is negative when |d| < |V |. So the modularity of any
clustering other than {V } will be negative, hence {V } is the only optimal clustering.

Since for every C we can construct a graph where C is the only optimal clustering,
modularity is rich.

Appendix B. Proof of Theorem 5 (Adaptive Scale Modularity is Rich)

Denote by fC(d) the largest fraction of any cluster from C that is contained in a cluster d.

fC(d) = max
c∈C

|c ∩ d|
|c|

.

For any clustering D we have that∑
d∈D

fC(d) =
∑
d∈D

max
c∈C

|c ∩ d|
|c|

≤
∑
d∈D

∑
c∈C

|c ∩ d|
|c|

= |C|.

208

Axioms for Graph Clustering Quality Functions

And since fC(d) ≤ 1 for all clusters d, we also have that∑
d∈D

fC(d) ≤ |D|.

Lemma 7 For a clique graph of C it is the case that wd/vd ≤ fC(d).

Proof Given a cluster d and a clique graph G of C with weight k > 0, the volume of d is

vd =
∑
c∈C

k|c ∩ d||c|,

and the within cluster weight is

wd =
∑
c∈C

k|c ∩ d|2.

Therefore

wd ≤
∑
c∈C

k|c ∩ d||c|fC(d) = vdfC(d).

And hence wd/vd ≤ fC(d).

Lemma 8 Let G be the clique graph of a clustering C with weight k, and let 0 < β < 1
be a constant. Then

∑
d∈D(wd/vd − β) = (1 − β)|C| if D = C, while

∑
d∈D(wd/vd − β) <

(1− β)|C| − ε if D 6= C, where ε = min(β, 1− β, 1/|V |)/2.

Proof Suppose that D = C, then for every cluster c ∈ C, wc = vc = k|c|2, and so∑
c∈C

(wd
vd
− β

)
= (1− β)|C|.

Otherwise, D 6= C. Assume that
∑

d∈D(wd/vd − β) ≥ (1− β)|C| −min(β, 1/|V |)/2. By
Lemma 7,

|C| − β(|C|+ 1)

<|C| − β|C| − ε

≤
∑
d∈D

(
wd
vd
− β)

≤
∑
d∈D

(fC(d)− β)

≤|C| − β|D|.

Since β > 0, this implies that |D| < |C|+ 1.

209

van Laarhoven and Marchiori

Additionally, since fC(d) ≤ 1 for all clusters d ∈ D,

(1− β)(|C| − 1)

<(1− β)|C| − ε

≤
∑
d∈D

(fC(d)− β)

≤(1− β)|D|

Since β < 1, this implies that |D| > |C| − 1. Hence |D| = |C|.
Suppose that fC(d) < 1 for some d ∈ D, which implies that |c ∩ d| < |c|. Because edges

are discrete, this can only happen when |c ∩ d| ≤ |c| − 1 for all clusters c. And the size of
clusters is bounded by |c| ≤ |V |. Hence fC(d) ≤ (|V | − 1)/|V | = 1 − 1/|V |. And since for
all other clusters d′, fC(d′) ≤ 1, we then have

∑
d∈D

(fC(d)− β)

≤(1− β)|D| − 1/|V |
<(1− β)|C| − ε

≤
∑
d∈D

(wd/vd − β)

≤
∑
d∈D

(fC(d)− β),

which is a contradiction. Hence, it must be the case that fC(d) = 1 for all clusters d ∈ D.
By the definition of fC this means that for every d there is a cluster c ∈ C such that
|c ∩ d| = |c|, and therefore c ⊆ d. Since the clusters are disjoint and |D| = |C|, this implies
that D = C. Which is a contradiction, so

∑
d∈D(wd/vd − β) < (1− β)|C| − ε.

When M = 0, the adaptive scale modularity reduces to wd/(γvd) − |D|/γ2, and the
above lemma is enough to prove richness. For non-zero values of M , we can get ‘close
enough’ by choosing large enough edge weights. This is formalized in the following lemma.

Lemma 9 Let d be a cluster in a clustering of a clique graph of C with weight k. Then

wd
vd
− β − βM/k ≤ q(d)/β ≤ wd

vd
− β + 2β2M/k,

where

q(d) =
wd

M + vd/β
−
(vd
M + vd/β

)2

denotes the contribution of d to the M -adaptive modularity.

210

Axioms for Graph Clustering Quality Functions

Proof Since clusters are non-empty, and in a clique graph E(i, i) = k, it follows that
vd ≥ wd ≥ k. So

q(d)/β

=
βMwd + vdwd − βv2

d

(βM + vd)2

=
wd
vd
− β +

β2M(βM + 2vd)− β2M2wd/vd − βMwd
(βM + vd)2

≤wd
vd
− β +

β2M(βM + 2vd)

(βM + vd)2

≤wd
vd
− β +

2β2M(βM + 2vd)

(βM + vd)(βM + 2vd)

=
wd
vd
− β +

2β2M

βM + vd

≤wd
vd
− β +

2β2M

k
.

And since wd ≤ vd,

q(d)/β

=
wd
vd
− β +

β2M(βM + 2vd)− β2M2wd/vd − βMwd
(βM + vd)2

≥wd
vd
− β − β2M2 + βMvd

(βM + vd)2

=
wd
vd
− β − βM

βM + vd

≥wd
vd
− β − βM

k
.

Combining these lemmas yields the proof of the general theorem:

Proof Given a clustering C. Define β = 1/γ. If γ > 1 then 0 < β < 1. Pick k > 3|V |β2M/ε
where ε is defined as in Lemma 8.

211

van Laarhoven and Marchiori

Let G be the clique graph of C with weight k. Let D 6= C be a clustering of G. Then
by Lemmas 8 and 9,

QM ,γ(G,D)/β

=
∑
d∈D

q(d)

≤
∑
d∈D

(wd/vd − β + 2β3M/k)

≤(1− β)|C|+ 2|D|β3M/k − ε
≤(1− β)|C|+ 2|V |β2M/k − ε
<(1− β)|C| − |V |β2M/k

≤(1− β)|C| − |C|β2M/k

=
∑
c∈C

(wc/vc − β + β2M/k)

≤QM ,γ(C)/β.

Hence the quality is maximal for C. Since there is a clique graph and k for every clustering,
adaptive scale modularity is rich.

Appendix C. Proof of Theorem 6 (Adaptive Scale Modularity is
Monotonic)

Proof
Given a constants M > 0 and γ ≥ 2, a graph G and a clustering C of G. Let c ∈ C be

any cluster. Writing the volume of c as vc = wc + bc, the contribution of this cluster to the
quality of G is q(wc, bc) where

q(w, b) =
w

M + γw + γb
−
(w + b

M + γw + γb

)2
.

The partial derivatives of q are

∂q(w, b)

∂w
=
M2 + (γ − 2)M(w + b) + γb(M + γw + γb)

(M + γw + γb)3
≥ 0

∂q(w, b)

∂b
= −γwM + (w + b)(M + γ2w)

(M + γw + γb)3
≤ 0.

This means that q is a monotonically non-decreasing function in w and a non-increasing
function in b.

For any graph G′ that is a C-consistent change of G, it holds that w′c ≥ wc and b′c ≤ bc.
So q(w′c, b

′
c) ≥ q(wc, bc). And therefore QM ,γ(G′, C) ≥ QM ,γ(G,C). So adaptive scale mod-

ularity is monotonic.

212

Axioms for Graph Clustering Quality Functions

References

Margareta Ackerman and Shai Ben-David. Measures of clustering quality: A working set
of axioms for clustering. In Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Léon
Bottou, editors, NIPS, pages 121–128. Curran Associates, Inc., 2008.

Margareta Ackerman and Shai Ben-David. A characterization of linkage-based hierarchical
clustering. Journal of Machine Learning Research, 2013.

Margareta Ackerman, Shai Ben-David, and David Loker. Towards property-based classi-
fication of clustering paradigms. In John D. Lafferty, Christopher K. I. Williams, John
Shawe-Taylor, Richard S. Zemel, and Aron Culotta, editors, NIPS, pages 10–18. Curran
Associates, Inc., 2010a.

Margareta Ackerman, Shai Ben-David, and David Loker. Characterization of linkage-based
clustering. In Adam Tauman Kalai and Mehryar Mohri, editors, COLT, pages 270–281.
Omnipress, 2010b. ISBN 978-0-9822529-2-5.

Margareta Ackerman, Shai Ben-David, Simina Brânzei, and David Loker. Weighted clus-
tering. In Jörg Hoffmann and Bart Selman, editors, AAAI. AAAI Press, 2012.

Margareta Ackerman, Shai Ben-David, David Loker, and Sivan Sabato. Clustering oli-
garchies. In Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS), volume 31 of JMLR Workshop and Conference Proceedings, pages
66–74, 2013.

Helio Almeida, Dorgival Guedes, Wagner Meira Jr., and Mohammed J. Zaki. Is there a best
quality metric for graph clusters? In Dimitrios Gunopulos, Thomas Hofmann, Donato
Malerba, and Michalis Vazirgiannis, editors, Machine Learning and Knowledge Discovery
in Databases, volume 6911 of Lecture Notes in Computer Science, pages 44–59. Springer
Berlin Heidelberg, 2011. ISBN 978-3-642-23779-9.

Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. J. Stat. Mech. Theory Exp., 2008(10):P10008,
2008. ISSN 1742-5468. doi: 10.1088/1742-5468/2008/10/P10008. URL http://dx.doi.

org/10.1088/1742-5468/2008/10/P10008.

Béla Bollobás. The Evolution of Random Graphs – the Giant Component, pages 130–159.
Cambridge University Press, 2001. ISBN 9780521797221.

Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer, Zoran
Nikoloski, and Dorothea Wagner. On modularity clustering. IEEE Transactions
on Knowledge and Data Engineering, 20(2):172–188, 2008. ISSN 1041-4347. doi:
10.1109/TKDE.2007.190689.

Sébastien Bubeck and Ulrike von Luxburg. Nearest neighbor clustering: A baseline method
for consistent clustering with arbitrary objective functions. J. Mach. Learn. Res., 10:
657–698, June 2009. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=

1577069.1577092.

213

http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dl.acm.org/citation.cfm?id=1577069.1577092
http://dl.acm.org/citation.cfm?id=1577069.1577092

van Laarhoven and Marchiori

Gunnar Carlsson, Facundo Mémoli, Alejandro Ribeiro, and Santiago Segarra. Axiomatic
construction of hierarchical clustering in asymmetric networks. CoRR, abs/1301.7724,
2013.

Thang N. Dinh and My T. Thai. Community detection in scale-free networks: Approxima-
tion algorithms for maximizing modularity. IEEE Journal on Selected Areas in Commu-
nications, 31(6):997–1006, 2013.

Santo Fortunato and Marc Barthélemy. Resolution limit in community detection. Proc.
Natl. Acad. Sci. USA, 104(1):36–41, 2007. doi: 10.1073/pnas.0605965104.

Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for result diversification.
In Proceedings of the 18th International Conference on World Wide Web, pages 381–390,
2009.

Benjamin H. Good, Yves A. de Montjoye, and Aaron Clauset. Performance of modularity
maximization in practical contexts. Phys. Rev. E, 81(4):046106, April 2010. doi: 10.
1103/PhysRevE.81.046106. URL http://dx.doi.org/10.1103/PhysRevE.81.046106.

Jon M. Kleinberg. An impossibility theorem for clustering. In Suzanna Becker, Sebastian
Thrun, and Klaus Obermayer, editors, NIPS, pages 446–453. MIT Press, 2002. ISBN
0-262-02550-7.

Andrea Lancichinetti and Santo Fortunato. Limits of modularity maximization in commu-
nity detection. Phys. Rev. E, 84:066122, December 2011. doi: 10.1103/PhysRevE.84.
066122. URL http://dx.doi.org/10.1103/PhysRevE.84.066122.

Marina Meila. Comparing clusterings: an axiomatic view. In Proceedings of the 22nd
International Conference on Machine Learning, pages 577–584. ACM, 2005.

Mark E. J. Newman. Finding community structure in networks using the eigenvectors of
matrices. Phys. Rev. E, 74(3):036104, July 2006. doi: 10.1103/PhysRevE.74.036104.
URL http://dx.doi.org/10.1103/PhysRevE.74.036104.

Mark E. J. Newman and Michelle Girvan. Finding and evaluating community structure in
networks. Phys. Rev. E, 69:026113, Feb 2004. doi: 10.1103/PhysRevE.69.026113. URL
http://pre.aps.org/abstract/PRE/v69/i2/e026113.

Jan Puzicha, Thomas Hofmann, and Joachim M. Buhmann. A theory of proximity based
clustering: Structure detection by optimization. Pattern Recognition, 33:617–634, 1999.

Jörg Reichardt and Stefan Bornholdt. Detecting fuzzy community structures in complex net-
works with a Potts model. Phys. Rev. Lett., 93:218701, 2004. doi: 10.1103/PhysRevLett.
93.218701.

Jörg Reichardt and Stefan Bornholdt. Statistical mechanics of community detection. Phys-
ical Review E, 74(1):016110, 2006.

Jörg Reichardt and Stefan Bornholdt. Partitioning and modularity of graphs with arbitrary
degree distribution. Phys. Rev. E, 76:015102, Jul 2007. doi: 10.1103/PhysRevE.76.
015102. URL http://link.aps.org/doi/10.1103/PhysRevE.76.015102.

214

http://dx.doi.org/10.1103/PhysRevE.81.046106
http://dx.doi.org/10.1103/PhysRevE.84.066122
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://pre.aps.org/abstract/PRE/v69/i2/e026113
http://link.aps.org/doi/10.1103/PhysRevE.76.015102

Axioms for Graph Clustering Quality Functions

Jianhua Ruan and Weixiong Zhang. Identifying network communities with a high resolution.
Phys. Rev. E, 77:016104, Jan 2008. doi: 10.1103/PhysRevE.77.016104. URL http:

//link.aps.org/doi/10.1103/PhysRevE.77.016104.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. volume 22, pages
888–905, Washington, DC, USA, August 2000. IEEE Computer Society. doi: 10.1109/
34.868688. URL http://dx.doi.org/10.1109/34.868688.

Vincent A. Traag, Paul Van Dooren, and Yurii E. Nesterov. Narrow scope for resolution-
limit-free community detection. Phys. Rev. E, 84:016114, Jul 2011. doi: 10.1103/
PhysRevE.84.016114. URL http://link.aps.org/doi/10.1103/PhysRevE.84.016114.

Vincent A. Traag, Gautier Krings, and Paul Van Dooren. Significant scales in community
structure. Submitted, Jun 2013. URL http://arxiv.org/abs/1306.3398.

Twan van Laarhoven and Elena Marchiori. Graph clustering with local search optimization:
The resolution bias of the objective function matters most. Phys. Rev. E, 87:012812, Jan
2013. doi: 10.1103/PhysRevE.87.012812. URL http://link.aps.org/doi/10.1103/

PhysRevE.87.012812.

Reza Bosagh Zadeh and Shai Ben-David. A uniqueness theorem for clustering. In Pro-
ceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI
’09, pages 639–646, Arlington, Virginia, United States, 2009. AUAI Press. ISBN 978-0-
9749039-5-8. URL http://dl.acm.org/citation.cfm?id=1795114.1795189.

215

http://link.aps.org/doi/10.1103/PhysRevE.77.016104
http://link.aps.org/doi/10.1103/PhysRevE.77.016104
http://dx.doi.org/10.1109/34.868688
http://link.aps.org/doi/10.1103/PhysRevE.84.016114
http://arxiv.org/abs/1306.3398
http://link.aps.org/doi/10.1103/PhysRevE.87.012812
http://link.aps.org/doi/10.1103/PhysRevE.87.012812
http://dl.acm.org/citation.cfm?id=1795114.1795189

Journal of Machine Learning Research 15 (2014) 217-252 Submitted 10/11; Revised 5/13; Published 1/13

Convex vs Non-Convex Estimators for Regression and
Sparse Estimation: the Mean Squared Error Properties of

ARD and GLasso

Aleksandr Aravkin saravkin@us.ibm.com
IBM T.J. Watson Research Center
1101 Kitchawan Rd, 10598
Yorktown Heights, NY, USA

James V. Burke burke@math.washington.edu
Department of Mathematics, Box 354350
University of Washington
Seattle, WA, 98195-4350 USA

Alessandro Chiuso chiuso@dei.unipd.it

Gianluigi Pillonetto giapi@dei.unipd.it

Department of Information Engineering

Via Gradenigo 6/A

University of Padova

Padova, Italy

Editor: Francis Bach

Abstract

We study a simple linear regression problem for grouped variables; we are interested in
methods which jointly perform estimation and variable selection, that is, that automatically
set to zero groups of variables in the regression vector. The Group Lasso (GLasso), a well
known approach used to tackle this problem which is also a special case of Multiple Kernel
Learning (MKL), boils down to solving convex optimization problems. On the other hand,
a Bayesian approach commonly known as Sparse Bayesian Learning (SBL), a version of
which is the well known Automatic Relevance Determination (ARD), lead to non-convex
problems. In this paper we discuss the relation between ARD (and a penalized version
which we call PARD) and Glasso, and study their asymptotic properties in terms of the
Mean Squared Error in estimating the unknown parameter. The theoretical arguments
developed here are independent of the correctness of the prior models and clarify the
advantages of PARD over GLasso.

Keywords: Lasso, Group Lasso, Multiple Kernel Learning, Bayesian regularization,
marginal likelihood

1. Introduction

We consider sparse estimation in a linear regression model where the explanatory factors

θ ∈ Rm are naturally grouped so that θ is partitioned as θ = [θ(1)> θ(2)> . . . θ(p)>]>.
In this setting we assume that θ is group (or block) sparse in the sense that many of the
constituent vectors θ(i) are zero or have a negligible influence on the output y ∈ Rn. In

c©2014 Aleksander Aravkin, James V. Burke, Alessandro Chiuso and Gianluigi Pillonetto.

Aravkin, Burke, Chiuso and Pillonetto

addition, we assume that the number of unknowns m is large, possibly larger than the
size of the available data n. Interest in general sparsity estimation and optimization has
attracted the interest of many researchers in statistics, machine learning, and signal pro-
cessing with numerous applications in feature selection, compressed sensing, and selective
shrinkage (Hastie and Tibshirani, 1990; Tibshirani, 1996; Donoho, 2006; Candes and Tao,
2007). The motivation for our study of the group sparsity problem comes from the “dynamic
Bayesian network” scenario identification problem (Chiuso and Pillonetto, 2012, 2010b,a).
In a dynamic network scenario, the explanatory variables are the past histories of different
input signals, with the groups θ(i) representing the impulse responses1 describing the re-
lationship between the i-th input and the output y. This application informs our view of
the group sparsity problem as well as our measures of success for a particular estimation
procedure.

Several approaches have been put forward in the literature for joint estimation and
variable selection problems. We cite the well known Lasso (Tibshirani, 1996), Least Angle
Regression (LAR) (Efron et al., 2004), their group versions Group Lasso (GLasso) and
Group Least Angle Regression (GLAR) (Yuan and Lin, 2006), Multiple Kernel Learning
(MKL) (Bach et al., 2004; Evgeniou et al., 2005; Pillonetto et al.). Methods based on
hierarchical Bayesian models have also been considered, including Automatic Relevance
Determination (ARD) (Mackay, 1994), the Relevance Vector Machine (RVM) (Tipping,
2001), and the exponential hyperprior (Chiuso and Pillonetto, 2010b, 2012). The Bayesian
approach considered by Chiuso and Pillonetto (2010b, 2012) is intimately related to that of
Mackay (1994) and Tipping (2001); in fact the exponential hyperprior algorithm proposed
by Chiuso and Pillonetto (2010b, 2012) is a penalized version of ARD (PARD) in which
the prior on the groups θ(i) is adapted to the structural properties of dynamical systems.
A variational approach based on the golden standard spike and slab prior, also called two-
groups prior (Efron, 2008), has been also recently proposed by Titsias and Lzaro-Gredilla
(2011).

An interesting series of papers (Wipf and Rao, 2007; Wipf and Nagarajan, 2007; Wipf
et al., 2011) provide a nice link between penalized regression problems like Lasso, also called
type-I methods, and Bayesian methods (like RVM, Tipping, 2001 and ARD, Mackay, 1994)
with hierarchical hyperpriors where the hyperparameters are estimated via maximizing the
marginal likelihood and then inserted in the Bayesian model following the Empirical Bayes
paradigm (Maritz and Lwin, 1989); these latter methods are also known as type-II methods
(Berger, 1985). Note that this Empirical Bayes paradigm has also been recently used in the
context of System Identification (Pillonetto and De Nicolao, 2010; Pillonetto et al., 2011;
Chen et al., 2011).

Wipf and Nagarajan (2007) and Wipf et al. (2011) argue that type-II methods have
advantages over type-I methods; some of these advantages are related to the fact that, under
suitable assumptions, the former can be written in the form of type-I with the addition of a
non-separable penalty term (a function g(x1, .., xn) is non-separable if it cannot be written
as g(x1, .., xn) =

∑n
i=1 h(xi)). The analysis of Wipf et al. (2011) also suggests that in the low

noise regime the type-II approach results in a “tighter” approximation to the `0 norm. This
is supported by experimental evidence showing that these Bayesian approaches perform

1. Impulse responses may, in principle, be infinite dimensional.

218

Hyperparameter Group Lasso

well in practice. Our experience is that the approach based on the marginal likelihood is
particularly robust w.r.t. noise regardless of the “correctness” of the Bayesian prior.

Motivated by the strong performance of the exponential hyperprior approach introduced
in the dynamic network identification scenario (Chiuso and Pillonetto, 2010b, 2012), we
provide some new insights clarifying the above issues. The main contributions are as follows:

(i) We first provide some motivating examples which illustrate the superiority of PARD
(and also of ARD) over GLasso both in terms of selection (i.e., detecting block of
zeros in θ) as well as in estimation (i.e., reconstructing the non zero blocks).

(ii) Theoretical findings explaining the reasons underlying the superiority of PARD over
GLasso are then provided. In particular, all the methods are compared in terms
of optimality (KKT) conditions, and tradeoffs between sparsity and shrinkage are
studied.

(iii) We then consider a non-Bayesian point of view, in which the estimation error is
measured in terms of the Mean Squared Error, in the vein of Stein-estimators (James
and Stein, 1961; Efron and Morris, 1973; Stein, 1981). The properties of Empirical
Bayes estimators, which form the basis of the computational schemes, are studied in
terms of their Mean Square Error properties; this is first established in the simplest
case of orthogonal regressors and then extended to more general cases allowing for the
regressors to be realizations from (possibly correlated) stochastic processes. This, of
course, is of paramount importance for the system identification scenario studied by
Chiuso and Pillonetto (2010b, 2012).

Our analysis avoids assumptions on the correctness of the priors which define the
stochastic model and clarifies why PARD is likely to provide sparser and more accurate
estimates in comparison with GLasso (MKL). As a consequence of this analysis, our
study clarifies the asymptotic properties of ARD.

Before we proceed with these results, we need to establish a common framework for
these estimators (GLasso/MKL and PARD); this mostly uses results from the literature,
which are recalled without proof in order to make the paper as self contained as possible.

The paper is organized as follows. In Section 2 we provide the problem statement while
in Section 3 PARD and GLasso (MKL) are introduced in a Bayesian framework. Section
4 illustrates the advantages of PARD over GLasso using a simple example and two Monte
Carlo studies. In Section 5 the Mean Squared Error properties of the Empirical Bayes
estimators are studied, including their asymptotic behavior. Some conclusions end the
paper while the Appendix gathers the proofs of the main results.

2. Problem Statement

We consider a linear model y = Gθ+v where the explanatory factors G used to predict y are
grouped (and non-overlapping). As such we partition θ into p sub-vectors θ(i), i = 1, . . . , p,
so that

θ = [θ(1)> θ(2)> . . . θ(p)>]>.

219

Aravkin, Burke, Chiuso and Pillonetto

…

…

!

y
!

"
1

!

"
2

!

"
m

…

!

y
!

"
1

!

"
m

…

!

"
k
1

…

…

…

!

"
1

!

"
1

!

"
m

!

"
2

!

"

!

"

!

"

!

m +1" kp

…

!

"p

a) b)

!

v

!

v

Figure 1: Bayesian networks describing the stochastic model for group sparse estimation

For i = 1, . . . , p, assume that the sub-vector θ(i) has dimension ki so that m =
∑p

i=1 ki.
Next, conformally partition the matrix G = [G(1), . . . , G(p)] to obtain the measurement
model

y = Gθ + v =

p∑
i=1

G(i)θ(i) + v. (1)

In what follows, we assume that θ is block sparse in the sense that many of the blocks θ(i)

are zero, that is, with all of their components equal to zero, or have a negligible effect on y.
Our problem is to estimate θ from y while also detecting the null blocks of θ(i).

3. Estimators Considered

The purpose of this Section is to place the estimators we consider (GLasso/MKL and PARD)
in a common framework that unifies the analysis. The content of the section is a collection
of results taken from the literature which are stated without proof; the readers are referred
to previous works for details which are not relevant to our paper’s goal.

3.1 Bayesian Model for Sparse Estimation

Figure 1 provides a hierarchical representation of a probability density function useful for
establishing a connection between the various estimators considered in this paper. In par-
ticular, in the Bayesian network of Figure 1, nodes and arrows are either dotted or solid
depending on whether the quantities/relationships are deterministic or stochastic, respec-
tively. Here, λ denotes a vector whose components {λi}pi=1 are independent and identically
distributed exponential random variables with probability density

pγ(λi) = γe−γλiχ(λi)

220

Hyperparameter Group Lasso

where γ is a positive scalar and

χ(t) =

{
1, t ≥ 0
0, elsewhere.

In addition, let N (µ,Σ) be the Gaussian density of mean µ and covariance Σ while, given a
generic k, we use Ik to denote the k×k identity matrix. Then, conditional on λ, the blocks
θ(i) of the vector θ are all mutually independent and each block is zero-mean Gaussian with
covariance λiIki , i = 1, .., p, that is,

θ(i)|λi ∼ N (0, λiIki).

The measurement noise is also Gaussian, that is,

v ∼ N (0, σ2In).

3.2 Penalized ARD (PARD)

We introduce a sparse estimator, denoted by PARD in the sequel, cast in the framework
of the Type II Bayesian estimators and consisting of a penalized version of ARD (Mackay,
1994; Tipping, 2001; Wipf and Nagarajan, 2007). It is derived from the Bayesian network
depicted in Figure 1 as follows. First, the marginal density of λ is optimized, that is, we
compute

λ̂ = arg max
λ∈Rp+

∫
Rm

p(θ, λ|y)dθ.

Then, using an empirical Bayes approach, we obtain E[θ|y, λ = λ̂], that is, the minimum
variance estimate of θ with λ taken as known and set to its estimate. The structure of
the estimator is detailed in the following proposition (whose proof is straightforward and
therefore omitted).

Proposition 1 (PARD) Define

Σy(λ) := GΛG> + σ2I, (2)

Λ := blockdiag({λiIki}). (3)

Then, the estimator θ̂PA of θ obtained from PARD is given by

λ̂ = arg min
λ∈Rp+

1

2
log det(Σy(λ)) +

1

2
y>Σ−1

y (λ)y + γ

p∑
i=1

λi, (4)

θ̂PA = Λ̂G>(Σy(λ̂))−1y. (5)

where Λ̂ is defined as in (3) with each λi replaced by the i-th component of λ̂ in (4).

�

221

Aravkin, Burke, Chiuso and Pillonetto

One can see from (4) and (5) that the proposed estimator reduces to ARD if γ = 0.2 In
this case, the special notation θ̂A is used to denote the resulting estimator, that is,

λ̂ = arg min
λ∈Rp+

1

2
log det(Σy(λ)) +

1

2
y>Σ−1

y (λ)y, (6)

θ̂A = Λ̂G>(Σy(λ̂))−1y (7)

where Σy is defined in (2), and Λ̂ is defined as in (3) with each λi replaced by the i-th

component of the λ̂ in (6).
Observe that the objective in (4) is not convex in λ. Letting the vector µ denote the

dual vector for the constraint λ ≥ 0, the Lagrangian is given by

L(λ, µ) := 1
2 log det(Σy(λ)) + 1

2y
>Σy(λ)−1y + γ1>λ− µ>λ.

Using the fact that

∂λiL(λ, µ) =
1

2
tr
(
G(i)>Σy(λ)−1G(i)

)
− 1

2
y>Σy(λ)−1G(i)G(i)>Σy(λ)−1y + γ − µi,

we obtain the following KKT conditions for (4).

Proposition 2 (KKT for PARD) The necessary conditions for λ to be a solution of (4)
are

Σy = σ2I +
∑p

i=1 λiG
(i)G(i)>,

WΣy = I,

tr
(
G(i)>WG(i)

)
− ‖G(i)>Wy‖22 + 2γ − 2µi = 0, i = 1, . . . , p,

µiλi = 0, i = 1, . . . , p,
0 ≤ µ, λ.

(8)

3.3 Group Lasso (GLasso) and Multiple Kernel Learning (MKL)

A leading approach for the block sparsity problem is the Group Lasso (GLasso) (Yuan
and Lin, 2006) which determines the estimate of θ as the solution of the following convex
problem

θ̂GL = arg min
θ∈Rm

(y −Gθ)>(y −Gθ)
2σ2

+ γGL

p∑
i=1

‖θ(i)‖ , (9)

where ‖ · ‖ denotes the classical Euclidean norm. Now, let φ be the Gaussian vector with
independent components of unit variance such that

θi =
√
λi φi. (10)

We partition φ conformally with θ, that is,

φ =
[
φ(1)> φ(2)> . . . φ(p)>

]>
. (11)

2. Strictly speaking, what is called ARD in this paper corresponds to a group version of the original
estimator discussed in Mackay (1994). A perfect correspondence is obtained when the dimension of each
block is equal to one, that is, ki = 1 ∀i.

222

Hyperparameter Group Lasso

Then, interestingly, GLasso can be derived from the same Bayesian model in Figure 1
underlying PARD considering φ and λ as unknown variables and computing their maximum
a posteriori (MAP) estimates. This is illustrated in the following proposition which is just
a particular instance of the known relationship between regularization on kernel weights
and block-norm based regularization. In particular, it establishes the known equivalence
between GLasso and Multiple Kernel Learning (MKL) when linear models of the form (1)
are considered, see the more general Theorem 1 of Tomioka and Suzuki (2011) for other
details.

Proposition 3 (GLasso and its equivalence with MKL) Consider the joint density
of φ and λ conditional on y induced by the Bayesian network in Figure 1. Let λ̂ and φ̂ denote,
respectively, the maximum a posteriori estimates of λ and φ (obtained by optimizing their
joint density). Then, for every γGL in (9) there exists γ such that the following equalities
hold

λ̂ = arg min
λ∈Rp+

y>(Σy(λ))−1y

2
+ γ

p∑
i=1

λi, (12)

φ̂(i) =

√
λ̂iG

(i)>(Σy(λ̂))−1y,

θ̂
(i)
GL =

√
λ̂iφ̂

(i). (13)

We warn the reader that MKL is more general than GLasso since it also embodies estimation
in infinite dimensional models; yet in this paper we use interchangeably the nomenclature
GLasso and MKL since they are equivalent for the considered model class.

Comparing Propositions 1 and 3, one can see that the sole difference between PARD
and GLasso relies on the estimator for λ. In particular, notice that the objectives (12) and
(4) differ only in the term 1

2 log det(Σy) appearing in the PARD objective (4). This is the
component that makes problem (4) non-convex but also the term that forces PARD to favor
sparser solutions than GLasso (MKL), making the marginal density of λ more concentrated
around zero. On the other hand, (12) is a convex optimization problem whose associated
KKT conditions are reported in the following proposition.

Proposition 4 (KKT for GLasso and MKL) The necessary and sufficient conditions
for λ to be a solution of (12) are

K(λ) =
∑p

i=1 λiG
(i)G(i)>,

Σy = K(λ) + σ2I,
WΣy = I,

−‖G(i)>Wy‖22 + 2γ − 2µi = 0, i = 1, . . . , p,
µiλi = 0, i = 1, . . . , p,
0 ≤ µ, λ.

(14)

�

223

Aravkin, Burke, Chiuso and Pillonetto

Remark 5 (The LASSO case) When all the blocks are one-dimensional, the estimator
(9) reduces to Lasso and we denote the regularization parameter and the estimate by γL and
θ̂L, respectively. In this case, it is possible to obtain a derivation through marginalization.
In fact, given the Bayesian network in Figure 1 with all the ki = 1 and letting

θ̂ = arg max
θ∈Rm

∫
Rm+

p(θ, λ|y)dλ,

it follows from Section 2 in Park and Casella (2008) that θ̂ = θ̂L provided that γL =
√

2γ.

4. Comparing PARD And GLasso (MKL): Motivating Examples

In this section, we present a sparsity vs. shrinkage example, and a Monte Carlo simulation
to demonstrate advantages of the PARD estimator over GLasso.

4.1 Sparsity vs. Shrinkage: A Simple Experiment

It is well known that the `1 penalty in Lasso tends to induce an excessive shrinkage of
“large” coefficients in order to obtain sparsity. Several variations have been proposed in
the literature in order to overcome this problem, including the so called Smoothly-Clipped-
Absolute-Deviation (SCAD) estimator (Fan and Li, 2001) and re-weighted versions of `1 like
the adaptive Lasso (Zou, 2006). We now study the tradeoffs between sparsity and shrinking
for PARD. By way of introduction to the more general analysis in the next section, we first
compare the sparsity conditions for PARD and GLasso (or, equivalently, MKL) in a simple,
yet instructive, two group example. In this example, it is straightforward to show that
PARD guarantees a more favorable tradeoff between sparsity and shrinkage, in the sense
that it induces greater sparsity with the same shrinkage (or, equivalently, for a given level
of sparsity it guarantees less shrinkage).

Consider two groups of dimension 1, that is,

y = G(1)θ(1) +G(2)θ(2) + v y ∈ R2, θ(1), θ(2) ∈ R,

where G(1) = [1 δ]>, G(2) = [0 1]>, v ∼ N (0, σ2). Assume that the true parameter θ̄
satisfies: θ̄(1) = 0, θ̄(2) = 1. Our goal is to understand how the hyperparameter γ influences
sparsity and the estimates of θ(1) and θ(2) using PARD and GLasso. In particular, we
would like to determine which values of γ guarantee that θ̂(1) = 0 and how the estimator
θ̂(2) varies with γ. These questions can be answered by using the KKT conditions obtained
in Propositions 2 and 4.

Let y := [y1 y2]>. By (8), the necessary conditions for λ̂PA1 = 0 and λ̂PA2 ≥ 0 to be the
hyperparameter estimators for the PARD estimator (for fixed γ = γPA) are

2γPA ≥
[
y1

σ2 + δy2

σ2+λ̂PA2

]2
−
[

1
σ2 + δ

σ2+λ̂PA2

]
and

λ̂PA2 = max

{
−1+
√

1+8γPAy
2
2

4γPA
− σ2, 0

}
.

(15)

224

Hyperparameter Group Lasso

Similarly, by (14), the same conditions for λ̂GL1 = 0 and λ̂GL2 ≥ 0 to be the estimators
obtained using GLasso read as (for fixed γ = γGL):

2γGL ≥
[
y1

σ2 + δy2

σ2+λ̂GL2

]2
and

λ̂GL2 = max
{
|y2|√
2γGL

− σ2, 0
}
.

(16)

Note that it is always the case that the lower bound for γGL is strictly greater than the
lower bound for γPA and that λ̂PA2 ≤ λ̂GL2 when γPA = γGL, where the inequality is strict
whenever λ̂GL2 > 0. The corresponding estimators for θ̂(1) and θ̂(2) are

θ̂
(1)
PA = θ̂

(1)
GL = 0,

θ̂
(2)
PA =

λ̂PA2 y2

σ2+λ̂PA2

and θ̂
(2)
GL =

λ̂GL2 y2

σ2+λ̂GL2

.

Hence, |θ̂(2)
PA| < |θ̂

(2)
GL| whenever y2 6= 0 and λ̂GL2 > 0. However, it is clear that the lower

bounds on γ in (15) and (16) indicate that γGL needs to be larger than γPA in order to set

λ̂GL1 = 0 (and hence θ̂
(1)
GL = 0). Of course, having a larger γ tends to yield smaller λ̂2 and

hence more shrinking on θ̂(2). This is illustrated in Figure 2 where we report the estimators

θ̂
(2)
PA (solid) and θ̂

(2)
GL (dotted) for σ2 = 0.005, δ = 0.5. The estimators are arbitrarily set to

zero for the values of γ which do not yield θ̂(1) = 0. In particular from (15) and (16) we find

that PARD sets θ̂
(1)
PA = 0 for γPA > 5 while GLasso sets θ̂

(1)
GL = 0 for γGL > 20. In addition,

it is clear that MKL tends to yield greater shrinkage on θ̂
(2)
GL (recall that θ̄(2) = 1).

4.2 Monte Carlo Studies

We consider two Monte Carlo studies of 1000 runs. For each run a data set of size n = 100
is generated using the linear model (1) with p = 10 groups, each composed of ki = 4
parameters. For each run, 5 of the groups θ(i) are set to zero, one is always taken different
from zero while each of the remaining 4 groups θ(i) are set to zero with probability 0.5. The
components of every block θ(i) not set to zero are independent realizations from a uniform
distribution on [−ai, ai] where ai is an independent realization (one for each block) from
a uniform distribution on [0, 100]. The value of σ2 is the variance of the noiseless output
divided by 25. The noise variance is estimated at each run as the sum of the residuals from
the least squares estimate divided by n − m. The two experiments differ in the way the
columns of G are generated at each run.

1. In the first experiment, the entries of G are independent realizations of zero mean
unit variance Gaussian noise.

2. In the second experiment the columns of G are correlated, being defined at every run
by

Gi,j = Gi,j−1 + 0.2vi,j−1, i = 1, .., n, j = 2, ..,m,

vi,j ∼ N (0, 1)

225

Aravkin, Burke, Chiuso and Pillonetto

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

γ

θ̂
2

PARD
GLASSO

Figure 2: Estimators θ̂(2) as a function of γ. The curves are plotted only for the values of γ
which yield also θ̂(1) = 0 (different for PARD (γPA > 5) and MKL (γGL > 20)).

ARD PARD GLasso
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Relative errors − experiment #1

ARD PARD GLasso
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Relative errors − experiment #2

Figure 3: Boxplot of the relative errors in the reconstruction of θ obtained by the 2 non-
convex estimators ARD and PARD and by the convex estimator GLasso (MKL)
after the 1000 Monte Carlo runs in Experiment #1 (left panel) and #2 (right
panel).

226

Hyperparameter Group Lasso

where vi,j are i.i.d. (as i and j vary) zero mean unit variance Gaussian and Gi,1 are
i.i.d. zero mean unit variance Gaussian random variables. Note that correlated inputs
renders the estimation problem more challenging.

Define κ̂ ∈ R as the optimizer of the ARD objective (6) under the constraint κ = λ1 =
. . . = λp. Then, we define the following 3 estimators.

• ARD. The estimate θA is obtained by (6,7) using λ1 = . . . = λp = κ̂ as starting point
to solve (7) .

• PARD. The estimate θPA is obtained by (4,5) using cross validation to determine the
regularization parameter γ. In particular, data are split into a training and validation
set of equal size and the grid used by the cross validation procedure to select γ contains
30 elements logarithmically distributed between 10−2 × κ̂−1 and 104 × κ̂−1. For each
value of γ, (6) is solved using λ1 = λ2 = . . . = λp = κ̂ as starting point. Finally, θPA
is obtained using the full data set fixing the regularization parameter to its estimate.

• GLasso (MKL). The estimate θGL is obtained by (12-13) using the same cross
validation strategy adopted by PARD to determine γ.

The three estimators described above are compared using the two performance indexes
listed below:

1. Relative error: this is computed at each run as

‖θ̂ − θ‖
‖θ‖

where θ̂ is the estimator of θ.

2. Percentage of the blocks equal to zero correctly set to zero by the estimator after the
1000 runs.

The left and right panel of Figure 3 displays the boxplots of the 1000 relative errors obtained
by the three estimators in the first and second experiment, respectively. The average relative
error is also reported in Table 1. It is apparent that the performance of PARD and ARD
is similar and that both of these non convex estimators outperform GLasso. Interestingy,
in both of the experiments ARD and PARD return a reconstruction error smaller that that
achieved by GLasso in more than 900 out of the 1000 runs.

In Table 2 we report the sparsity index. One can see that PARD exhibits the best
performance, setting almost 75% of the blocks correctly to zero in the first and second
experiment, respectively, while the performance of ARD is close to 67%. In contrast, GLasso
(MKL) correctly set to zero no more than 40% of the blocks in each experiment.

Remark 6 (Projected Quasi-Newton Method) We now comment on the optimiza-
tion of (4). The same arguments reported below also apply to the objectives (6) and (12)
which are just simplified versions of (4).

227

Aravkin, Burke, Chiuso and Pillonetto

ARD PARD GLasso

Experiment #1 0.097 0.090 0.138
Experiment #2 0.151 0.144 0.197

Table 1: Comparison with MKL/GLasso (section 4.2). Average relative errors obtained by
the three estimators.

ARD PARD GLasso

Experiment #1 66.7% 74.5% 35.5%
Experiment #2 66.6% 74.6% 39.7%

Table 2: Comparison with MKL/GLasso (section 4.2). Percentage of the θ(i) equal to zero
correctly set to zero by the four estimators.

We notice that (4) is a differentiable function of λ. The computation of its derivative

requires a one time evaluation of the matrices G(i)G(i)> , i = 1, . . . , p. However, for each new
value of λ, the inverse of the matrix Σy(λ) also needs to be computed. Hence, the evaluation
of the objective and its derivative may be costly since it requires computing the inverse of
a possibly large matrix as well as large matrix products. On the other hand, the dimension
of the parameter vector λ can be small, and projection onto the feasible set is trivial. We
experimented with several methods available in the Matlab package minConf to optimize (4).
In these experiments, the fastest method was the limited memory projected quasi-Newton
algorithm detailed in Schmidt et al. (2009). It uses L-BFGS updates to build a diagonal
plus low-rank quadratic approximation to the function, and then uses the Projected Quasi-
Newton Method to minimize a quadratic approximation subject to the original constraints to
obtain a search direction. A backtracking line search is applied to this direction terminating
at a step-size satisfying a Armijo-like sufficient decrease condition. The efficiency of the
method derives in part from the simplicity of the projections onto the feasible region. We
have also implemented the re-weighted method described by Wipf and Nagarajan (2007).
In all the numerical experiments described above, we have assessed that it returns results
virtually identical to those achieved by our method, with a similar computational effort. It
is worth recalling that both the projected quasi-Newton method and the re-weighted approach
guarantee convergence only to a stationary point of the objective.

4.3 Concluding Remarks

The results in this section suggest that, when using GLasso, a suitable regularization pa-
rameter γ which does not induce oversmoothing (large bias) in θ̂ is not sufficiently large
to induce “enough” sparsity. This drawback does not affect the nonconvex estimators. In
addition, PARD and ARD seem to have the additional advantage of selecting the regular-
ization parameters leading to more favorable Mean Squared Error (MSE) properties for the

228

Hyperparameter Group Lasso

reconstruction of the non zero blocks. The rest of the paper will be devoted to derivation
of theoretical arguments supporting the intuition gained from these examples.

5. Mean Squared Error Properties of PARD and GLasso (MKL)

In this Section we evaluate the performance of an estimator θ̂ using its MSE, that is, the
expected quadratic loss

tr

[
E
[(
θ̂ − θ

)(
θ̂ − θ

)> ∣∣∣∣ λ, θ = θ̄

]]
,

where θ̄ is the true but unknown value of θ. When we speak about “Bayes estimators” we
think of estimators of the form θ̂(λ) := E [θ | y, λ] computed using the probabilistic model
Figure 1 with γ fixed.

5.1 Properties Using “Orthogonal” Regressors

We first derive the MSE formulas under the simplifying assumption of orthogonal regressors
(G>G = nI) and show that the Empirical Bayes estimator converges to an optimal estimator
in terms of its MSE. This fact has close connections to the so called Stein estimators (James
and Stein, 1961; Stein, 1981; Efron and Morris, 1973). The same optimality properties are
attained, asymptotically, when the columns of G are realizations of uncorrelated processes
having the same variance. This is of interest in the system identification scenario considered
by Chiuso and Pillonetto (2010a,b, 2012) since it arises when one performs identification
with i.i.d. white noises as inputs. We then consider the more general case of correlated
regressors (see Section 5.2) and show that essentially the same result holds for a weighted
version of the MSE.

In this section, it is convenient to introduce the following notation:

Ev[·] := E[· |λ, θ = θ̄] and Varv[·] := E[· |λ, θ = θ̄].

We now report an expression for the MSE of the Bayes estimators θ̂(λ) := E [θ | y, λ] (the
proof follows from standard calculations and is therefore omitted).

Proposition 7 Consider the model (1) under the probabilistic model described in Fig-
ure 1(b). The Mean Squared Error of the Bayes estimator θ̂(λ) := E [θ|y, λ] given λ and
θ = θ̄ is

MSE(λ) = tr
[
Ev
[
(θ̂(λ)− θ)(θ̂(λ)− θ)>

]]
= tr

[
σ2
(
G>G+ σ2Λ−1

)−1 (
G>G+ σ2Λ−1θ̄θ̄>Λ−1

)(
G>G+ σ2Λ−1

)−1
]
(17)

= tr

[
σ2
(

ΛG>G+ σ2
)−1 (

ΛG>GΛ + σ2θ̄θ̄>
)(

G>GΛ + σ2
)−1

]
.

We can now minimize the expression for MSE(λ) given in (17) with respect to λ to
obtain the optimal minimum mean squared error estimator. In the case where G>G = nI
this computation is straightforward and is recorded in the following proposition.

229

Aravkin, Burke, Chiuso and Pillonetto

Corollary 8 Assume that G>G = nI in Proposition 7. Then MSE(λ) is globally minimized
by choosing

λi = λopti :=
‖θ̄(i)‖2

ki
, i = 1, . . . , p.

Next consider the Maximum a Posteriori estimator of λ again under the simplifying
assumption G>G = nI. Note that, under the noninformative prior (γ = 0), this Maximum
a Posteriori estimator reduces to the standard Maximum (marginal) Likelihood approach
to estimating the prior distribution of θ. Consequently, we continue to call the resulting
procedure Empirical Bayes (a.k.a. Type-II Maximum Likelihood (Berger, 1985)).

Proposition 9 Consider model (1) under the probabilistic model described in Figure 1(b),
and assume that G>G = nI. Then the estimator of λi obtained by maximizing the marginal
posterior p(λ|y),

{λ̂1(γ), ..., λ̂p(γ)} := arg max
λ∈Rp+

p(λ|y) = arg max
λ∈Rp+

∫
p(y, θ|λ)pγ(λ) dθ,

is given by

λ̂i(γ) = max

(
0,

1

4γ

[√
k2
i + 8γ‖θ̂(i)

LS‖2 −
(
ki +

4σ2γ

n

)])
, (18)

where

θ̂
(i)
LS =

1

n

(
G(i)

)>
y

is the Least Squares estimator of the i−th block θ(i). As γ → 0 (γ = 0 corresponds to an
improper flat prior) the expression (18) yields:

lim
γ→0

λ̂i(γ) = max

(
0,
‖θ̂(i)
LS‖2

ki
− σ2

n

)
.

In addition, the probability P[λ̂i(γ) = 0 | θ = θ̄] of setting λ̂i = 0 is given by

P[λ̂i(γ) = 0 | θ = θ̄] = P
[
χ2
(
ki, ‖θ̄(i)‖2 n

σ2

)
≤
(
ki + 2γ

σ2

n

)]
, (19)

where χ2(d, µ) denotes a noncentral χ2 random variable with d degrees of freedom and
noncentrality parameter µ.

Note that the expression of λ̂i(γ) in Proposition 9 has the form of a “saturation”. In
particular, for γ = 0, we have

λ̂i(0) = max(0, λ̂∗i), where λ̂∗i :=
‖θ̂(i)
LS‖2

ki
− σ2

n
. (20)

The following proposition shows that the “unsaturated” estimator λ̂∗i is an unbiased and
consistent estimator of λopti which minimizes the Mean Squared Error while λ̂i(0) is only
asymptotically unbiased and consistent.

230

Hyperparameter Group Lasso

Corollary 10 Under the assumption G>G = nI, the estimator of λ̂∗ := {λ∗1, .., λ∗p} in (20)
is an unbiased and mean square consistent estimator of λopt which minimizes the Mean
Squared Error, while λ̂(0) := {λ1(0), .., λp(0)} is asymptotically unbiased and consistent,
that is:

E[λ̂∗i | θ = θ̄] = λopti lim
n→∞

E[λ̂i(0) | θ = θ̄] = λopti

and

lim
n→∞

λ̂∗i
m.s.
= λopti lim

n→∞
λ̂i(0)

m.s.
= λopti (21)

where
m.s.
= denotes convergence in mean square.

Remark 11 Note that if θ̄(i) = 0, the optimal value λopti is zero. Hence (21) shows that

asymptotically λ̂i(0) converges to zero. However, in this case, it is easy to see from (19)
that

lim
n→∞

P[λ̂i(0) = 0 | θ = θ̄] < 1.

There is in fact no contradiction between these two statements because one can easily show
that for all ε > 0,

P[λ̂i(0) ∈ [0, ε) | θ = θ̄]
n→∞−→ 1.

In order to guarantee that limn→∞ P[λ̂i(γ) = 0 | θ = θ̄] = 1 one must chose γ = γn so that

2σ
2

n γn →∞, with γn growing faster than n. This is in line with the well known requirements
for Lasso to be model selection consistent. In fact, recalling remark 5, the link between γ and
the regularization parameter γL for Lasso is given by γL =

√
2γ. The condition n−1γn →∞

translates into n−1/2γLn → ∞, a well known condition for Lasso to be model selection
consistent (Zhao and Yu, 2006; Bach, 2008).

The results obtained so far suggest that the Empirical Bayes resulting from PARD has
desirable properties with respect to the MSE of the estimators. One wonders whether
the same favorable properties are inherited by MKL or, equivalently, by GLasso. The
next proposition shows that this is not the case. In fact, for θ̄(i) 6= 0, MKL does not yield
consistent estimators for λopti ; in addition, for θ(i) = 0, the probability of setting λ̂i(γ) to zero
(see Equation (24)) is much smaller than that obtained using PARD (see Equation (19));
this is illustrated in Figure 4 (top). Also note that, as illustrated in Figure 4 (bottom),
when the true θ̄ is equal to zero, MKL tends to give much larger values of λ̂ than those
given by PARD. This results in larger values of ‖θ̂‖ (see Figure 4).

Proposition 12 Consider model (1) under the probabilistic model described in Figure 1(b),
and assume G>G = nI. Then the estimator of λi obtained by maximizing the joint posterior
p(λ, φ|y) (see Equations (10) and (11)),

{λ̂(γ), ..., λ̂p(γ)} := arg max
λ∈Rp+,φ∈Rm+

p(λ, φ|y),

is given by

λ̂i(γ) = max

(
0,
‖θ̂(i)
LS‖√
2γ
− σ2

n

)
, (22)

231

Aravkin, Burke, Chiuso and Pillonetto

where

θ̂
(i)
LS =

1

n

(
G(i)

)>
y

is the Least Squares estimator of the i−th block θ(i) for i = 1, . . . , p. For n → ∞ the
estimator λ̂i(γ) satisfies

lim
n→∞

λ̂i(γ)
m.s.
=
‖θ̄(i)‖√

2γ
. (23)

In addition, the probability P[λ̂i(γ) = 0 | θ = θ̄] of setting λ̂i(γ) = 0 is given by

Pθ[λ̂i(γ) = 0 | θ = θ̄] = P
[
χ2
(
ki, ‖θ̄(i)‖2 n

σ2

)
≤ 2γ

σ2

n

]
. (24)

Note that the limit of the MKL estimators λ̂i(γ) as n → ∞ depends on γ. Therefore,
using MKL (GLasso), one cannot hope to get consistent estimators of λopti . Indeed, for

‖θ̄(i)‖2 6= 0, consistency of λ̂i(γ) requires γ → k2
i

2‖θ̄(i)‖2 , which is a circular requirement.

5.2 Asymptotic Properties Using General Regressors

In this subsection, we replace the deterministic matrix G with Gn(ω), where Gn(ω) repre-
sents an n×m matrix defined on the complete probability space (Ω,B,P) with ω a generic
element of Ω and B the sigma field of Borel regular measures. In particular, the rows of
Gn are independent3 realizations from a zero-mean random vector with positive definite
covariance Ψ.

As in the previous part of this section, λ and θ are seen as parameters, and the true
value of θ is θ̄. Hence, all the randomness present in the next formulas comes only from Gn
and the measurement noise.

We make the following (mild) assumptions on Gn. Recalling model (1), assume that
G>G/n is bounded and bounded away from zero in probability, so that there exist constants
∞ > cmax ≥ cmin > 0 with

lim
n→∞

P [cminI ≤ G>G/n ≤ cmaxI] = 1 , (25)

so, as n increases, the probability that a particular realization G satisfies

cminI ≤ G>G/n ≤ cmaxI (26)

increases to 1.
In the following lemma, whose proof is in the Appendix, we introduce a change of

variables that is key for our understanding of the asymptotic properties of PARD under
these more general regressors.

Lemma 13 Fix i ∈ {1, . . . , p} and consider the decomposition

y = G(i)θ(i) +
∑p

j=1,j 6=iG
(j)θ(j) + v

= G(i)θ(i) + v̄
(27)

3. The independence assumption can be removed and replaced by mixing conditions.

232

Hyperparameter Group Lasso

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Sparsity vs. Bias (Shrinking)

MSE θ̂(2)(γ)

IP
γ
[θ̂

(1
)
=

0|
θ̄
(1

)
=

0]

PARD
GLASSOγ → ∞

γ → 0

0.4 0.45 0.5 0.55 0.6 0.650

0.05

0.1

0.15

0.2

0.25
Tradeoff between Mean Squared Errors

MSE θ̂(2)(γ)

M
S
E

θ̂
(1

)(
γ
)

PARD
GLASSO

γ → ∞

γ → 0

10−2 10−1 100 101 102

100
Total MSE vs. γ

γ

M
S
E

θ̂

PARD
GLASSO

Figure 4: In this example we have two blocks (p = 2) of dimension k1 = k2 = 10 with
θ̄(1) = 0 and all the components of the true θ̄(2) ∈ R10 set to one. The matrix
G is the identity, so that the output dimension (y ∈ Rn) is n = 20; the noise
variance equals 0.5. Top: probability of setting θ̂(1) to zero vs Mean Squared
Error in θ̂(2). Center: Mean Squared Error in θ̂(1) vs. Mean Squared Error in
θ̂(2); both curves are parametrized in γ ∈ [0,+∞). Bottom: Total Mean Squared
Error (on θ̂) as a function of γ.

233

Aravkin, Burke, Chiuso and Pillonetto

of the linear measurement model (1) and assume (26) holds. Define

Σ
(i)
v̄ :=

p∑
j=1,j 6=i

G(j)
(
G(j)

)>
λj + σ2I.

Consider now the singular value decomposition

Σ
(i)
v̄

−1/2
G(i)

√
n

= U (i)
n D(i)

n

(
V (i)
n

)>
, (28)

where each D
(i)
n = diag(d

(i)
k,n) is ki × ki diagonal matrix. Then (27) can be transformed into

the equivalent linear model

z
(i)
n = D

(i)
n β

(i)
n + ε

(i)
n , (29)

where

z
(i)
n :=

(
U

(i)
n

)> Σ
(i)
v̄

−1/2
y√

n
= (z

(i)
k,n), β

(i)
n :=

(
V

(i)
n

)>
θ(i) = (β

(i)
k,n),

ε
(i)
n :=

(
U

(i)
n

)> Σ
(i)
v̄

−1/2
v̄√

n
= (ε

(i)
k,n),

(30)

and D
(i)
n is uniformly (in n) bounded and bounded away from zero.

Below, the dependence of Σy(λ) on Gn, and hence on n, is omitted to simplify the
notation. Furthermore, −→p denotes convergence in probability.

Theorem 14 For known γ and conditional on θ = θ̄, define

λ̂n = arg min
λ∈C

⋂
Rp+

1

2
log det(Σy(λ)) +

1

2
y>Σ−1

y (λ)y + γ

p∑
i=1

λi, (31)

where C is any p-dimensional ball with radius strictly larger than maxi
‖θ̄(i)‖2
ki

. Suppose that
the hypotheses of Lemma 13 hold. Consider the estimator (31) along its i − th component
λi that, in view of (29), is given by:

λ̂ni = arg min
λ∈R+

1

2

ki∑
k=1

[
η2
k,n + vk,n

λ+ wk,n
+ log(λ+ wk,n)

]
+ γλ , (32)

where ηk,n := β
(i)
k,n, wk,n := 1/(n(d

(i)
k,n)2) and vk,n = 2

ε
(i)
k,n

d
(i)
k,n

β
(i)
k,n +

(
ε
(i)
k,n

d
(i)
k,n

)2

. Let

λ̄γi :=
−ki +

√
k2
i + 8γ‖θ̄(i)‖2

4γ
, λ̄i =

‖θ̄(i)‖2

ki
.

We have the following results:

1. λ̄γi ≤ λ̄i for all γ > 0, and limγ→0+ λ̄γi = λ̄i .

234

Hyperparameter Group Lasso

2. If ‖θ̄(i)‖ > 0 and γ > 0, we have λ̂ni −→p λ̄
γ
i .

3. If ‖θ̄(i)‖ > 0 and γ = 0, we have λ̂ni −→p λ̄i .

4. if θ̄(i) = 0, we have λ̂γi −→p 0 for any value γ ≥ 0.

We now show that, when γ = 0, the above result relates to the problem of minimizing
the MSE of the i-th block with respect to λi, with all the other components of λ coming
from λ̂n. For any index i, we define

I
(i)
1 :=

{
j : j 6= i and θ̄(j) 6= 0

}
, I

(i)
0 :=

{
j : j 6= i and θ̄(j) = 0

}
. (33)

If θ̂
(i)
n (λ) denotes the i-th component of the PARD estimate of θ defined in (5), our aim

is to optimize the objective

MSEn(λi) := tr
[
Ev
[
(θ̂(i)
n (λ)− θ̄(i))(θ̂(i)

n (λ)− θ̄(i))>
]]

with λj = λ̄nj for j 6= i

where is λ̄nj is any sequence satisfying condition

lim
n→∞

fn = +∞ where fn := min
j∈I(i)

1

nλnj , (34)

(condition (34) appears again in the Appendix as (47)). Note that, in particular, λ̄nj = λ̂nj
in (31) satisfy (34) in probability.

Lemma 13 shows that we can consider the transformed linear model associated with the
i-th block, that is,

z
(i)
k,n = d

(i)
k,nβ

(i)
k,n + ε

(i)
k,n, k = 1, . . . , ki, (35)

where all the three variables on the RHS depend on λ̄nj for j 6= i. In particular, the vector

β
(i)
n consists of an orthonormal transformation of θ(i) while the d

(i)
k,n are all bounded below

in probability. In addition, by letting

Ev
[
ε
(i)
k,n

]
= mk,n, Ev

[
(ε

(i)
k,n −mk,n)2

]
= σ2

k,n,

we also know from Lemma 20 (see Equations (48) and (49)) that, provided λ̄nj (j 6= i)

satisfy condition (34), both mk,n and σ2
k,n tend to zero (in probability) as n goes to ∞.

Then, after simple computations, one finds that the MSE relative to β
(i)
n is the following

random variable whose statistics depend on n:

MSEn(λi) =

ki∑
k=1

β2
k,n + nλ2

i d
2
k,n(m2

k,n + σ2
k,n)− 2λidk,nmk,nβk,n

(1 + nλid2
k,n)2

with λj = λ̄nj for j 6= i.

Above, except for λi, the dependence on the block number i was omitted to improve read-
ability.

Now, let λ̆ni denote the minimizer of the following weighted version of the MSEn(λi):

λ̆ni = arg min
λ∈R+

ki∑
k=1

d4
k,n

β2
k,n + nλ2

i d
2
k,n(m2

k,n + σ2
k,n)− 2λidk,nmk,nβk,n

(1 + nλid2
k,n)2

.

Then, the following result holds.

235

Aravkin, Burke, Chiuso and Pillonetto

Proposition 15 For γ = 0 and conditional on θ = θ̄, the following convergences in proba-
bility hold

lim
n→∞

λ̆ni =
‖θ̄(i)‖2

ki
= lim

n→∞
λ̂ni , i = 1, 2, . . . , p. (36)

The proof follows arguments similar to those used in last part of the proof of Theorem
14, see also proof of Theorem 6 in Aravkin et al. (2012), and is therefore omitted.

We can summarize the two main findings reported in this subsection as follows. As the
number of measurements go to infinity:

1. regardless of the value of γ (provided γ does not depend on n; in such a case suitable
conditions on the rate are necessary, see also Remark 11), the proposed estimator will
correctly set to zero only those λi associated with null blocks;

2. when γ = 0, results 2 and 3 of Theorem 14 provide the asymptotic properties of ARD,
showing that the estimate of λi will converge to the energy of the i-th block (divided
by its dimension).

This same value also represents the asymptotic minimizer of a weighted version of
the MSE relative to the i-th block. In particular, the weights change with n, as they

are defined by the singular values d
(i)
k,n (raised at fourth power) that depend on the

trajectories of the other components of λ (see (28)). This roughly corresponds to
giving more emphasis to components of θ which excite directions in the output space
where the signal to noise ratio is high; this indicates some connection with reduced
rank regression where one only seeks to approximate the most important (relative to
noise level) directions in output space.

Remark 16 (Consistency of θ̂PA) It is a simple check to show that, under the assump-
tions of Theorem 14, the empirical Bayes estimator θ̂PA(λ̂n) in (5) is a consistent estimator
of θ̄. Indeed, Theorem 14 shows much more than this, implying that for γ = 0, θ̂PA(λ̂n)
possesses some desirable asymptotic properties in terms on Mean Squared Error, see also
Remark 17.

5.3 Marginal Likelihood and Weighted MSE: Perturbation Analysis

We now provide some additional insights on point 2 above, investigating why the weights
d4
k,n may lead to an effective strategy for hyperparameter estimation.

For our purposes, just to simplify the notation, let us consider the case of a single m-
dimensional block. In this way, λ becomes a scalar and the noise εk,n in (35) is zero-mean
of variance 1/n.

Under the stated assumptions, the MSE weighted by dαk,n, with α an integer, becomes

m∑
k=1

dαk,n
n−1β2

k,n + λ2d2
k,n

(n−1 + λd2
k,n)2

,

whose partial derivative with respect to λ, apart from the scale factor 2/n, is

Fα(λ) =
m∑
k=1

dα+2
k,n

λ− β2
k,n

(n−1 + λd2
k,n)3

.

236

Hyperparameter Group Lasso

Let βk = limn→∞ βk,n and dk = limn→∞ dk,n.4 When n tends to infinity, arguments similar
to those introduced in the last part of the proof of Theorem 14 show that, in probability,
the zero of Fα becomes

λ̆(α) =

∑m
k=1 d

α−4
k β2

k∑m
k=1 d

α−4
k

.

Notice that the formula above is a generalization of the first equality in (36) that was
obtained by setting α = 4. However, for practical purposes, the above expressions are not
useful since the true values of βk,n and βk depend on the unknown θ̄. One can then consider
a noisy version of Fα obtained by replacing βk,n with its least squares estimate, that is,

F̃α(λ) =
m∑
k=1

dα+2
k,n

λ−
(
βk,n +

vk,n√
ndk,n

)2

(n−1 + λd2
k,n)3

,

where the random variable vk,n is of unit variance. For large n, considering small additive
perturbations around the model zk = dkβk, it is easy to show that the minimizer tends to
the following perturbed version of λ̆:

λ̆(α) + 2

∑m
k=1 d

α−5
k βkvk,n√

n
∑m

k=1 d
α−4
k

. (37)

We must now choose the value of α that should enter the above formula. This is far
from trivial since the optimal value (minimizing MSE) depends on the unknown βk. On one
hand, it would seem advantageous to have α close to zero. In fact, α = 0 relates λ̆ to the
minimization of the MSE on θ while α = 2 minimizes the MSE on the output prediction,
see the discussion in Section 4 of Aravkin et al. (2012). On the other hand, a larger value
for α could help in controlling the additive perturbation term in (37) possibly reducing its
sensitivity to small values of dk. For instance, the choice α = 0 introduces in the numerator
of (37) the term βk/d

5
k. This can destabilize the convergence towards λ̆, leading to poor

estimates of the regularization parameters, as, for example, described via simulation studies
in Section 5 of Aravkin et al. (2012). In this regard, the choice α = 4 appears interesting: it
sets λ̆ to the energy of the block divided by m, removing the dependence of the denominator
in (37) on dk. In particular, it reduces (37) to

‖β‖2

m
+

2

m

m∑
k=1

βkvk,n√
ndk

=
m∑
k=1

β2
k

m

(
1 + 2

vk,n
βk
√
ndk

)
. (38)

It is thus apparent that α = 4 makes the perturbation on
β2
k
m dependent on

vk,n
βk
√
ndk

, that

is, on the relative reconstruction error on βk. This appears a reasonable choice to account
for the ill-conditioning possibly affecting least-squares.

Interestingly, for large n, this same philosophy is followed by the marginal likelihood
procedure for hyperparameter estimation up to first-order approximations. In fact, under

4. We are assuming that both of the limits exist. This holds under conditions ensuring that the SVD
decomposition leading to (35) is unique, for example, see the discussion in Section 4 of Bauer (2005),
and combining the convergence of sample covariances with a perturbation result for the Singular Value
Decomposition of symmetric matrices (such as Theorem 1 in Bauer, 2005, see also Chatelin, 1983).

237

Aravkin, Burke, Chiuso and Pillonetto

the stated assumptions, apart from constants, the expression for twice the negative log of
the marginal likelihood is

m∑
k=1

log(n−1 + λd2
k,n) +

z2
k,n

n−1 + λd2
k,n

,

whose partial derivative w.r.t. λ is

m∑
k=1

λd4
k,n + n−1d2

k,n − z2
k,nd

2
k,n

(n−1 + λd2
k,n)2

.

As before, we consider small perturbations around zk = dkβk to find that a critical point
occurs at

m∑
k=1

β2
k

m

(
1 + 2

vk,n
βk
√
ndk

)
,

which is exactly the same minimizer reported in (38).

5.4 Concluding Remarks and Connections to Subsection 4.2

We can now give an interpretation of the results depicted in Figure 3 in view of the theo-
retical analyses developed in this section.

When the regressors are orthogonal, which corresponds, asymptotically, to the case of
white noise defining the entries of G, the results in subsection 5.1 (e.g., Corollary 10) show
that ARD has a clear advantage over GLasso (MKL) in terms of MSE. This explains the
outcomes from the first numerical experiment of Section 4.2 which are depicted in the left
panel of Figure 3.

For the case of general regressors, subsection 5.2 provides insights regarding the proper-
ties of ARD, including its consistency. Ideally, a regularized estimator should adopt those
hyperparameters contained in λ that minimize the MSE objective, but this objective de-
pends on θ̄, which is what we aim to estimate. One could then consider a noisy version
of the MSE function, for example, obtained replacing θ̄ with its least squares estimate.
The problem is that this new objective can be very sensitive to the noise, leading to poor
regularizers as, for example, described by simulation studies in Section 5 of Aravkin et al.
(2012). On an asymptotic basis, ARD circumvents this problem using particular weights
which introduce a bias in the MSE objective but make it more stable, that is, less sensi-
tive to noise. This results in a form of regularization introduced through hyperparameter
estimation. We believe that this peculiarity is key to understanding not only the results in
Figure 3 but also the success of ARD in several applications documented in the literature.

Remark 17 [PARD: penalized version of ARD] Note that, when one considers spar-
sity inducing performance, the use of a penalized version of ARD, for example, given by
PARD, clearly may help in setting more blocks to zero, see Figure 4 (top). In compari-
son with GLasso, the important point here is that the non convex nature of PARD permits
sparsity promotion without adopting too large a value of γ. This makes PARD a slightly
perturbed version of ARD. Hence, PARD is able to induce more sparsity than ARD while

238

Hyperparameter Group Lasso

maintaining similar performance in the reconstruction of the non null blocks. This is illus-
trated by the Monte Carlo results in Section 4.2. To better understand the role of γ, consider
the orthogonal case discussed in Section 5.1, for sake of clarity. Recall the observation in
Remark 11 that model selection consistency requires γ = γn. It is easy to show that the or-
acle property (Zou, 2006) holds provided γn

n →∞ and γn
n2 → 0. However, large γ’s tend to

introduce excessive shrinkage, for example, see Figure 4 (center). It is well known (Leeb and
Pötscher, 2005) that shrinkage estimators that possess the oracle property have unbounded
normalized risk (normalized Mean Squared Error for quadratic loss), meaning that they are
certainly not optimal in terms of Mean Squared Error. To summarize, the asymptotic prop-
erties suggest that to obtain the oracle properties γn should go to infinity at a suitable rate
with n while γ should be set equal to zero to optimize the mean squared error. However, for
finite data length n, the optimal mean squared error properties as a function of γ are found
for a finite but nonzero γ. This fact, also illustrated in Figure 4 (bottom), is not in contrast
w.r.t. Corollary 10: γ may induce a useful bias in the marginal likelihood estimator of the
λi which can reduce the variance. This also explains the experimental results showing that
PARD performs slightly better than ARD.

6. Conclusions

We have presented a comparative study of some methods for sparse estimation: GLasso
(equivalently, MKL), ARD and its penalized version PARD, which is cast in the framework
of the Type II Bayesian estimators. They derive from the same Bayesian model, yet in a
different way. The peculiarities of PARD can be summarized as follows:

• in comparison with GLasso, PARD derives from a marginalized joint density with the
resulting estimator involving optimization of a non-convex objective;

• the non-convex nature allows PARD to achieve higher levels of sparsity than GLasso
without introducing too much regularization in the estimation process, thus providing
a better tradeoff between sparsity and shrinking.

• the MSE analysis reported in this paper reveals the superior performance of PARD
in the reconstruction of the parameter groups different from zero. Remarkably, our
analysis elucidates this issue showing the robustness of the empirical Bayes procedure,
based on marginal likelihood optimization, independently of the correctness of the
priors which define the stochastic model underlying PARD. As a consequence of our
analysis, the asymptotic properties of ARD have also been illuminated.

Many variations of PARD are possible, adopting different prior models for λ. In this paper,
the exponential prior is used to compare different estimators that can be derived from the
same Bayesian model underlying GLasso. In this way, it is shown that the same stochastic
framework can give rise to an estimator derived from a posterior marginalization that has
significant advantages over another estimator derived from posterior optimization.

Acknowledgements

The research leading to these results has received funding from the European Union Sev-
enth Framework Programme FP7/2007-2013 under grant agreement no 257462 HYCON2

239

Aravkin, Burke, Chiuso and Pillonetto

Network of excellence, by the MIUR FIRB project RBFR12M3AC - Learning meets time:
a new computational approach to learning in dynamic systems.

Appendix A. Proofs

In this Appendix, we present proofs of the main results in the paper.

A.1 Proof of Proposition 9

Under the simplifying assumption G>G = nI, one can use

Σy(λ)−1 = σ−2
[
I −G(σ2Λ−1 +GTG)−1G>

]
which derives from the matrix inversion lemma to obtain

G(i)>Σy(λ)−1 =
1

nλi + σ2
G(i)>,

and so

tr
(
G(i)>Σ−1

y G(i)
)

=
nki

nλi + σ2
and ‖G(i)>Σ−1

y y‖22 =

(
n

nλi + σ2

)2

‖θ̂(i)
LS‖

2 .

Inserting these expressions into (8) with µi = 0 yields a quadratic equation in λi which
always has two real solutions. One is always negative while the other, given by

1

4γ

[√
k2
i + 8γ‖θ̂(i)

LS‖2 −
(
ki +

4σ2γ

n

)]
is non-negative provided

‖θ̂(i)
LS‖2

ki
≥ σ2

n

[
1 +

2γσ2

nki

]
. (39)

This concludes the proof of (18). The limiting behavior for γ → 0 can be easily verified,
yielding

λ̂i(0) = max

(
0,
‖θ̂(i)
LS‖2

ki
− σ2

n

)
i = 1, .., p.

Also note that θ̂
(i)
LS = 1

n

(
G(i)

)>
y and

(
G(i)

)>
G(i) = nIki while

(
G(i)

)>
G(j) = 0, ∀j 6= i.

This implies that θ̂
(i)
LS ∼ N (θ̄(i), σ

2

n Iki). Therefore

‖θ̂(i)
LS‖

2 n

σ2
∼ χ2(d, µ) d = ki, µ = ‖θ̄(i)‖2 n

σ2
.

This, together with (39), proves also (19).

240

Hyperparameter Group Lasso

A.2 Proof of Proposition 10

In the proof of Proposition 9 it was shown that ‖θ̂(i)
LS‖2

n
σ2 follows a noncentral χ2 distribution

with ki degrees of freedom and noncentrality parameter ‖θ̄(i)‖2 n
σ2 . Hence, it is a simple

calculation to show that

E[λ̂∗i | θ = θ̄] =
‖θ̄(i)‖2

ki
Var[λ̂∗i | θ = θ̄] =

2σ4

kin2
+

4‖θ̄(i)‖2σ2

k2
i n

.

By Corollary 8, the first of these equations shows that E[λ̂∗i | θ = θ̄] = λopti . In addition, since

Var{λ̂∗i } goes to zero as n→∞, λ̂∗i converges in mean square (and hence in probability) to
λopti .

As for the analysis of λ̂i(0), observe that

E[λ̂i(0) | θ = θ̄] = E[λ̂∗i | θ = θ̄]−
∫ ki

σ2

n

0

(
‖θ̂(i)
LS‖2

ki
− σ2

n

)
dP (‖θ̂(i)

LS‖
2 | θ = θ̄)

where dP (‖θ̂(i)
LS‖2 | θ = θ̄) is the measure induced by ‖θ̂(i)

LS‖2. The second term in this
expression can be bounded by

−
∫ ki

σ2

n

0

(
‖θ̂(i)
LS‖2

ki
− σ2

n

)
dP (‖θ̂(i)

LS‖
2 | θ = θ̄) ≤ σ2

n

∫ ki
σ2

n

0
dP (‖θ̂(i)

LS‖
2 | θ = θ̄),

where the last term on the right hand side goes to zero as n → ∞. This proves that λ̂i(0)
is asymptotically unbiased. As for consistency, it is sufficient to observe that Var[λ̂i(0) | θ =
θ̄] ≤ Var[λ̂∗i | θ = θ̄] since “saturation” reduces variance. Consequently, λ̂i(0) converges in
mean square to its mean, which asymptotically is λopti as shown above. This concludes the
proof.

A.3 Proof of Proposition 12

Following the same arguments as in the proof of Proposition 9, under the assumption
G>G = nI we have that

‖G(i)>Σ−1
y y‖22 =

(
n

nλi + σ2

)2

‖θ̂(i)
LS‖

2.

Inserting this expression into (14) with µi = 0, one obtains a quadratic equation in λi which
has always two real solutions. One is always negative while the other, given by

‖θ̂(i)
LS‖√
2γ
− σ2

n
.

is non-negative provided

‖θ̂(i)
LS‖

2 ≥ 2γσ4

n2
. (40)

This concludes the proof of (22).

241

Aravkin, Burke, Chiuso and Pillonetto

The limiting behavior for n → ∞ in Equation (23) is easily verified with arguments

similar to those in the proof of Proposition 10. As in the proof of Proposition 9, ‖θ̂(i)
LS‖2

n
σ2

follows a noncentral χ2(d, µ) distribution with d = ki and µ = ‖θ̄(i)‖2 n
σ2 , so that from (40)

the probability of setting λ̂i(γ) to zero is as given in (24).

A.4 Proof of Lemma 13:

Let us consider the Singular Value Decomposition (SVD)∑p
j=1,j 6=iG

(j)
(
G(j)

)>
λj

n
= PSP>, (41)

where, by the assumption (26), using
∑p
j=1,j 6=iG

(j)(G(j))
>
λj

n ≥
∑p
j=1,j 6=i,λj 6=0 G

(j)(G(j))
>

n min{λj , j :
λj 6= 0} and Lemma 19 the minimum singular value σmin(S) of S in (41) satisfies

σmin(S) ≥ cminmin{λj , j : λj 6= 0}. (42)

Then the SVD of Σ
(i)
v̄ =

∑p
j=1,j 6=iG

(j)
(
G(j)

)>
λj + σ2I satisfies

Σ
(i)
v̄

−1
=
[
P P⊥

] [(nS + σ2)−1 0
0 σ−2I

] [
P>

P>⊥

]

so that

∥∥∥∥Σ
(i)
v̄

−1
∥∥∥∥ = σ−2.

Note now that

D(i)
n =

(
U (i)
n

)> Σ
(i)
v̄

−1/2
G(i)

√
n

V (i)
n

and therefore, using Lemma 19,

‖D(i)
n ‖ ≤

∥∥∥∥Σ
(i)
v̄

−1/2
∥∥∥∥√cmax = σ−1√cmax

proving thatD
(i)
n is bounded. In addition, again using Lemma 19, condition (26) implies that

∀a, b (of suitable dimensions) s.t. ‖a‖ = ‖b‖ = 1, a>
P>⊥G

(i)

√
n

b ≥ k, k =
√

1− cos2(θmin) ≥
cmin
cmax

> 0. This, using (28), guarantees that

D
(i)
n =

(
U

(i)
n

)> Σ
(i)
v̄

−1/2
G(i)

√
n

V
(i)
n =

(
U

(i)
n

)> (
P (nS + σ2)−1/2P> + P⊥σ

−1P>⊥
)
G(i)
√
n

≥
(
U

(i)
n

)> (
P⊥σ

−1P>⊥
)
G(i)
√
n

≥ kσ−1I

and therefore D
(i)
n is bounded away from zero. It is then a matter of simple calculations to

show that with the definitions (30) then (27) can be rewritten in the equivalent form (29).
�

242

Hyperparameter Group Lasso

A.5 Preliminary Lemmas

This part of the Appendix contains some preliminary lemmas which will be used in the proof
of Theorem 14. This first focuses on the estimator (31). We show that when the hypotheses
of Lemma 13 hold, the estimate (31) satisfies the key assumptions of the forthcoming
Lemma 20. We begin with a detailed study of the objective (4).

Let
I1 :=

{
j : θ̄(j) 6= 0

}
, I0 :=

{
j : θ̄(j) = 0

}
.

Note that these are analogous to I
(i)
1 and I

(i)
0 defined in (33), but do not depend on any

specific index i. We now state the following lemma.

Lemma 18 Writing the objective in (4) in expanded form gives

gn(λ) = log σ2+
1

2n
log det(σ−2Σy(λ))︸ ︷︷ ︸

S1

+
1

2n

∑
j∈I1

‖θ̂(j)(λ)‖2

kjλj︸ ︷︷ ︸
S2

+
1

2n

∑
j∈I0

‖θ̂(j)(λ)‖2

kjλj︸ ︷︷ ︸
S3

+
1

n
γ‖λ‖1︸ ︷︷ ︸
S4

+
1

2nσ2
‖y −

∑
j

Gj θ̂(j)(λ)‖2︸ ︷︷ ︸
S5

,

where θ̂(λ) = ΛGTΣ−1
y y (see (5)), kj is the size of the jth block, and dependence on n has

been suppressed. For any minimizing sequence λn, we have the following results:

1. θ̂n →p θ̄.

2. S1, S2, S3, S4 →p 0.

3. S5 →p
1
2 .

4. nλnj →p ∞ for all j ∈ I1.

Proof First, note that 0 ≤ Si for i ∈ {1, 2, 3, 4}. Next,

S5 =
1

2nσ2
‖y −

∑
j

Gj θ̄(j)(λ) +
∑
j

Gj
(
θ̄(j)(λ)− θ̂(j)(λ)

)
‖2

=
1

2nσ2
‖ν +

∑
j

Gj
(
θ̄(j)(λ)− θ̂(j)(λ)

)
‖2

=
1

2nσ2
‖ν‖2 +

1

2nσ2
νT
∑
j

Gj
(
θ̄(j)(λ)− θ̂(j)(λ)

)
+

1

2nσ2
‖
∑
j

Gj
(
θ̄(j)(λ)− θ̂(j)(λ)

)
‖2.

(43)
The first term converges in probability to 1

2 . Since ν is independent of all Gj , the middle

term converges in probability to 0. The third term is the bias incurred unless θ̂ = θ̄. These
facts imply that, ∀ε > 0,

lim
n→∞

P

[
S5(λ(n)) >

1

2
− ε
]

= 1 . (44)

243

Aravkin, Burke, Chiuso and Pillonetto

Next, consider the particular sequence λ̄nj =
‖θ̄j‖2
kj

. For this sequence, it is immediately clear

that Si →p 0 for i ∈ {2, 3, 4}. To show S1 →p 0, note that
∑
λiGiG

T
i ≤ max{λi}

∑
GiG

T
i ,

and that the nonzero eigenvalues of GGT are the same as those of GTG. Therefore, we have

S1 ≤
1

2n

m∑
i=1

log(1 + nσ−2 max{λ}cmax) = OP

(
log(n)

n

)
→p 0 .

Finally S5 →p
1
2 by (43), so in fact, ∀ε > 0,

lim
n→∞

P

[∣∣∣∣gn(λ̄(n))− 1

2
− log(σ2)

∣∣∣∣ < ε

]
= 1 . (45)

Since (45) holds for the deterministic sequence λ̄n, any minimizing sequence λ̂n must satisfy,
∀ε > 0,

lim
n→∞

P

[
gn(λ̂(n)) <

1

2
+ log(σ2) + ε

]
= 1

which, together with (44), implies (45)

Claims 1, 2, 3 follow immediately. To prove claim 4, suppose that for a particular mini-
mizing sequence λ̌(n), we have nλ̌nj 6→p ∞ for j ∈ I1. We can therefore find a subsequence

where nλ̌nj ≤ K, and since S2(λ̌(n)) →p 0, we must have ‖θ̂(j)(λ̌)‖ →p 0. But then there

is a nonzero bias term in (43), since in particular θ̄(j)(λ) − θ̂(j)(λ) = θ̄(j)(λ) 6= 0, which
contradicts the fact that λ̌(n) was a minimizing sequence.

We now state and prove a technical Lemma which will be needed in the proof of Lemma
20.

Lemma 19 Assume (26) holds; then the following conditions hold

(i) Consider I = [I(1), . . . , I(pI)] of size pI to be any subset of the indices [1, . . . , p], so
p ≥ pI and define

G(I) =
[
G(I(1)) . . . G(I(pI))

]
,

obtained by taking the subset of blocks of columns of G indexed by I. Then

cminI ≤
(G(I))TG(I)

n
≤ cmaxI . (46)

(ii) Let Ic be the complementary set of I in [1, . . . , p], so that Ic ∩ I = ∅ and I ∪ Ic =
[1, . . . , p]. Then the minimal angle θmin between the spaces

GI := col span{G(i)/
√
n, i ∈ I} and GIc := col span{G(j)/

√
n : j ∈ Ic}

satisfies:

θmin ≥ acos

(√
1− cmin

cmax

)
> 0.

244

Hyperparameter Group Lasso

Proof Result (46) is a direct consequence of Horn and Johnson (1994), see Corollary
3.1.3. As far as condition (ii) is concerned we can proceed as follows: let UI and UIc be
orthonormal matrices whose columns span GI and GIc , so that there exist matrices TI and
TIc so that

G(I)/
√
n = UITI ,

G(Ic)/
√
n = UIcTIc

where G(Ic) is defined analogously to G(I). The minimal angle between GI and GIc satisfies

cos(θmin) =
∥∥∥U>I UIc∥∥∥ .

Now observe that, up to a permutation of the columns which is irrelevant, G/
√
n =

[UITI UIcTIc], so that

U>I G/
√
n = [TI U>I UIc TIc] = [I U>I UIc]

[
TI 0
0 TIc

]
.

Denoting with σmin(A) and σmax(A) the minimum and maximum singular values of a matrix
A, it is a straightforward calculation to verify that the following chain of inequalities holds:

cmin = σmin(G>G/n) ≤ σ2
min

(
U>
I G/

√
n
)

= σ2
min

(
[I U>

I UIc]

[
TI 0
0 TIc

])
≤ σ2

min

(
[I U>

I UIc]
)
σ2
max

([
TI 0
0 TIc

])
= σ2

min

(
[I U>

I UIc]
)

max
(
σ2
max(TI), σ2

max(TIc)
)

≤ σ2
min

(
[I U>

I UIc]
)
cmax.

Observe now that σ2
min

(
[I U>I UIc]

)
= 1− cos2(θmin) so that

cmin ≤ (1− cos2(θmin))cmax

and, therefore,

cos2(θmin) ≤ 1− cmin
cmax

from which the thesis follows.

Lemma 20 Assume that the spectrum of G satisfies (25). For any index i, let I
(i)
1 and I

(i)
0

be as in (33). Finally, assume aλnj , which may depend on n, are bounded and satisfy:

lim
n→∞

fn = +∞ where fn := min
j∈I(i)

1

nλnj . (47)

Then, conditioned on θ, ε
(i)
n in (30) and (29) can be decomposed as

ε(i)n = mεn(θ) + vεn .

The following conditions hold:

Ev
[
ε(i)n

]
= mεn(θ) = OP

(
1√
fn

)
vεn = OP

(
1√
n

)
(48)

245

Aravkin, Burke, Chiuso and Pillonetto

so that ε
(i)
n |θ converges to zero in probability (as n→∞). In addition

V arv{ε(i)n } = Ev
[
vεnv

>
εn

]
= OP

(
1

n

)
. (49)

If in addition5

n1/2

(
G(i)

)>
G(j)

n
= OP (1) ; j ∈ I(i)

1 (50)

then

mεn(θ) = OP

(
1√
nfn

)
. (51)

Proof Consider the Singular Value Decomposition

P̄1S̄1P̄
>
1 :=

1

n

∑
j∈I1

G(j)
(
G(j)

)>
λnj . (52)

Using (47), there exist n̄ so that, ∀ n > n̄ we have 0 < λnj ≤ M < ∞, j ∈ I
(i)
1 . Oth-

erwise, we could find a subsequence nk so that λnkj = 0 and hence nkλ
nk
j = 0, con-

tradicting (47). Therefore, the matrix P̄1 in (52) is an orthonormal basis for the space

G1 := col span{G(j)/
√
n : j ∈ I(i)

1 }. Let also T (j) be such that G(j)/
√
n = P̄1T

(j), j ∈ I(i)
1 .

Note that by assumption (25) and lemma 19

‖T (j)‖ = OP (1) ∀ j ∈ I(i)
1 . (53)

Consider now the Singular Value Decomposition

[
P1 P0

] [S1 0
0 S0

] [
P>1
P>0

]
:=

1

n

∑
j∈I1

G(j)
(
G(j)

)>
λnj︸ ︷︷ ︸ +

1

n

∑
j∈I0

G(j)
(
G(j)

)>
λnj︸ ︷︷ ︸

= P̄1S̄1P̄
>
1 + ∆.

(54)
For future reference note that ∃TP̄1

: P̄1 =
[
P1 P0

]
TP̄1

. Now, from (28) we have that

Σ
(i)
v̄

−1
G(i)

√
n

V (i)
n

(
D(i)
n

)−1
= Σ

(i)
v̄

−1/2
U (i)
n . (55)

Using (55) and defining

P :=
[
P1 P0

]
S :=

[
S1 0
0 S0

]
,

5. This is equivalent to say that the columns of G(j), j = 1, .., k, j 6= i are asymptotically orthogonal to the
columns of G(i).

246

Hyperparameter Group Lasso

Equation (30) can be rewritten as:

ε
(i)
n =

(
U

(i)
n

)> Σ
(i)
v̄

−1/2
v̄√

n

=
(
D

(i)
n

)−1 (
V

(i)
n

)> (G(i))
>

√
n

Σ
(i)
v̄

−1
v̄√
n

=
(
D

(i)
n

)−1 (
V

(i)
n

)> (G(i))
>

√
n

[
P P⊥

] [(nS + σ2I)−1 0
0 σ−2I

] [
P>

P>⊥

]
v̄√
n

=
(
D

(i)
n

)−1 (
V

(i)
n

)> (G(i))
>

√
n

[
P P⊥

] [(nS + σ2I)−1 0
0 σ−2I

] [
P>

P>⊥

]
×

[∑
j∈I(i)

1

G(j)
√
n
θ(j) + v√

n

]
=

(
D(i)
n

)−1 (
V (i)
n

)> (G(i)
)>

√
n

P (nS + σ2I)−1

[
P>1 P1

P>0 P1

]∑
j∈I1

T (j)θ(j)

︸ ︷︷ ︸
mεn (θ)

+

+
(
D(i)
n

)−1 (
V (i)
n

)> (G(i)
)>

√
n

[
P P⊥

] [(nS + σ2I)−1 0
0 σ−2I

]
vp̄√
n︸ ︷︷ ︸

vεn

where the last equation defines mεn(θ) and vεn , the noise

vP̄ :=

[
P>

P>⊥

]
v

is still a zero mean Gaussian noise with variance σ2I and G(j)
√
n

= P̄1T
(j) provided j 6= i.

Note that mεn does not depend on v and that Evvεn = 0. Therefore mεn(θ) is the mean
(when only noise v is averaged out) of εn. As far as the asymptotic behavior of mεn(θ) is
concerned, it is convenient to first observe that

(nS + σ2I)−1

[
P>1 P̄1

P>0 P̄1

]
=

[
(nS1 + σ2I)−1P>1 P̄1

(nS0 + σ2I)−1P>0 P̄1

]
and that the second term on the right hand side can be rewritten as

(nS0 + σ2I)−1P>0 P̄1 =

(n[S0]1,1 + σ2)−1P>0,1P̄1

(n[S0]22 + σ2)−1P>0,2P̄1

...
(n[S0]m−k,m−k + σ2)−1P>0,m−kP̄1

 (56)

where [S0]ii is the i − th diagonal element of S0 and P0,i is the i − th column of P0. Now,
using Equation (54) one obtains that

n[S0]ii = P>0,iPnSP
>P0,i = P>0,i

(
P̄1nS̄1P̄

>
1 + n∆

)
P0,i

≥ P>0,iP̄1nS̄1P̄
>
1 P0,i

≥ σmin(nS̄1)P>0,iP̄1P̄
>
1 P0,i

= σmin(nS̄1)‖P>0,iP̄1‖2.

247

Aravkin, Burke, Chiuso and Pillonetto

An argument similar to that used in (42) shows that

σmin(nS̄1) ≥ cminmin{nλnj , j ∈ I
(i)
1 } = cminfn (57)

also holds true; denoting ‖P>0,iP̄1‖ = gn, the generic term on the right hand side of (56)
satisfies

‖(n[S0]ii + σ2)−1P>0,iP̄1‖ ≤
‖P>0,iP̄1‖

nσmin(S̄1)‖P>0,iP̄1‖2+σ2

≤ k min(gn, (fngn)−1)

= k√
fn

min(
√
fngn, (

√
fngn)−1)

≤ k√
fn

(58)

for some positive constant k. Now, using Lemma 13, D
(i)
n is bounded and bounded away

from zero in probability, so that ‖D(i)
n ‖ = OP (1) and ‖

(
D

(i)
n

)−1
‖ = OP (1). In addition,

V
(i)
n is an orthonormal matrix and ‖G(i)

√
n
‖ = OP (1). Last, using (57) and (25), we have

‖(nS1 + σ2I)−1‖ = OP (1/n). Combining these conditions with (53) and (58), we obtain
the first expression in (48). As far as the asymptotics on vεn are concerned, it suffices to
observe that

w>n vP̄ /
√
n = OP (1/

√
n) if : ‖wn‖ = OP (1).

The variance (w.r.t. noise v) V arv{εn} = Ev
[
vεnv

>
εn

]
satisfies

V arv{εn} =
σ2

n

(
U (i)
n

)>
Σ

(i)
v̄

−1 (
U (i)
n

)
so that, using the condition

∥∥∥∥Σ
(i)
v̄

−1
∥∥∥∥ = σ−2 derived in Lemma 13, and the fact that U

(i)
n

has orthonormal columns, the condition V arv{εn} = OP
(

1
n

)
in (49) follows immediately.

If, in addition, (50) holds then (53) becomes

‖T (j)‖ = OP (1/
√
n) j = 1, ..., k; j 6= k

so that an extra
√
n appears in the denominator in the expression of mε(θ) yielding (51).

This concludes the proof.

Before we proceed, we review a useful characterization of convergence. While it can be
stated for many types of convergence, we present it specifically for convergence in probabil-
ity, since this is the version we will use.

Lemma 21 The sequence an converges in probability to a (written an →p a) if and only if
every subsequence an(j) of an has a further subsequence an(j(k)) with an(j(k)) →p a.

Proof If an →p a, this means that for any ε > 0, δ > 0 there exists some nε,δ such that
for all n ≥ nε,δ, we have P (|an − a| > ε) ≤ δ. Clearly, if an →p a, then an(j) →p a for every
subsequence an(j) of an. We prove the other direction by contrapositive.

Assume that an 6→p a. That means precisely that there exist some ε > 0, δ > 0 and a
subsequence an(j) so that P (|a − an(j)| > ε) ≥ δ. Therefore the subsequence an(j) cannot
have further subsequences that converge to a in probability, since every term of an(j) stays
ε-far away from a with positive probability δ.

Lemma 21 plays a major role in the proof of the main result.

248

Hyperparameter Group Lasso

A.6 Proof of Theorem 14

Since the hypotheses of Lemma 13 hold, we know wk,n → 0 in (32). Then Lemma 18
guarantees that condition (47) holds true (in probability) so that Lemma 20 applies, and
therefore vk,n →p 0 in (32). We now give the proofs of results 1-4 in Theorem 14.

1. The reader can quickly check that d
dγ λ̄

γ
1 < 0, so λ̄γ1 is decreasing in γ. The limit

calculation follows immediately from L’Hopital’s rule yielding limγ→0+ λγ1 = λ̄1.

2. We use the convergence characterization given in Lemma 21. Pick any subsequence

λ̂
n(j)
1 of λ̂n1 . Since {Vn(j)} is bounded, by Bolzano-Weierstrass it must have a con-

vergent subsequence Vn(j(k)) → V , where V satisfies V TV = I by continuity of the

2-norm. The first-order optimality conditions for λ̂n1 > 0 are given by

0 = f1(λ,w, v, η) =
1

2

k1∑
k=1

−η2
k − vk

(λ+ wk)2
+

1

λ+ wk
+ γ , (59)

and we have f1(λ, 0, 0, V T θ̄(1)) = 0 if and only if λ = λ̄γ1 . Taking the derivative we
find

d

dλ
f1(λ, 0, 0, V T θ̄(1)) =

‖θ̄(1)‖2

λ3
− k1

2λ2
,

which is nonzero at λγ1 for any γ, since the only zero is at 2‖θ̄
(1)‖2
k1

= 2λ̄1 ≥ 2λ̄γ1 .

Applying the Implicit Function Theorem to f at
(
λγ1 , 0, 0, V

>θ̄(1)
)

yields the existence

of neighborhoods U of (0, 0, V >θ̄(1)) and W of λγ1 such that

f(φ(w, v, η), w, v, η) = 0 ∀ (w, v, η) ∈ U .

In particular, φ(0, 0, V >θ̄(1)) = λγ1 . Since (wn(j(k)), vn(j(k)), ηn(j(k)))→p (0, 0, V >θ̄(1)),
we have that for any δ > 0 there exist some kδ so that for all n(j(k)) > n(j(kδ)) we
have P ((wn(j(k), vn(j(k)), ηn(j(k))) 6∈ U) ≤ δ. For anything in U , by continuity of φ we
have

λ̂
n(j(k))
1 = φ(wn(j(k)), vn(j(k)), ηn(j(k)))→p φ(0, 0, V >θ̄(1)) = λγ1 .

These two facts imply that λ̂
n(j(k))
1 →p λ

γ
1 . We have shown that every subsequence

λ̂
n(j)
1 has a further subsequence λ̂

n(j(k))
1 →p λ

γ
1 , and therefore λ̂n1 →p λ

γ
1 by Lemma 21.

3. In this case, the only zero of (59) with γ = 0 is found at λ̄1, and the derivative of the
optimality conditions is nonzero at this estimate, by the computations already given.
The result follows by the implicit function theorem and subsequence argument, just
as in the previous case.

4. Rewriting the derivative (59)

1

2

k1∑
k=1

λ− vk − η2
k + wk

(λ+ wk)2
+ γ ,

we observe that for any positive λ, the probability that the derivative is positive tends
to one. Therefore the minimizer λγ1 converges to 0 in probability, regardless of the
value of γ.

249

Aravkin, Burke, Chiuso and Pillonetto

References

A. Aravkin, J. Burke, A. Chiuso, and G. Pillonetto. On the estimation of hyperparameters
for empirical bayes estimators: Maximum marginal likelihood vs minimum MSE. In Proc.
IFAC Symposium on System Identification (SysId 2012), 2012.

F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality, and the SMO
algorithm. In Proceedings of the 21st International Conference on Machine Learning, page
4148, 2004.

F.R. Bach. Consistency of the group lasso and multiple kernel learning. Journal of Machine
Learning Research, 9:1179–1225, 2008.

D. Bauer. Asymptotic properties of subspace estimators. Automatica, 41:359–376, 2005.

J.O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer Series in Statistics.
Springer, second edition, 1985.

E. Candes and T. Tao. The Dantzig selector: statistical estimation when p is much larger
than n. Annals of Statistics, 35:2313–2351, 2007.

F. Chatelin. Spectral Approximation of Linear Operators. Academic Press, NewYork, 1983.

T. Chen, H. Ohlsson, and L. Ljung. On the estimation of transfer functions, regularization
and gaussian processes - revisited. In IFAC World Congress 2011, Milano, 2011.

A. Chiuso and G. Pillonetto. Nonparametric sparse estimators for identification of large
scale linear systems. In Proceedings of IEEE Conf. on Dec. and Control, Atlanta, 2010a.

A. Chiuso and G. Pillonetto. Learning sparse dynamic linear systems using stable spline
kernels and exponential hyperpriors. In Proceedings of Neural Information Processing
Symposium, Vancouver, 2010b.

A. Chiuso and G. Pillonetto. A Bayesian approach to sparse dynamic network identification.
Automatica, 48:1553–1565, 2012.

D. Donoho. Compressed sensing. IEEE Trans. on Information Theory, 52(4):1289–1306,
2006.

B. Efron. Microarrays, empirical Bayes and the two-groups model. Statistical Science, 23:
122, 2008.

B. Efron and C. Morris. Stein’s estimation rule and its competitors–an empirical bayes
approach. Journal of the American Statistical Association, 68(341):117–130, 1973.

B. Efron, T. Hastie, L. Johnstone, and R. Tibshirani. Least angle regression. Annals of
Statistics, 32:407–499, 2004.

T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with kernel methods.
Journal of Machine Learning Research, 6:615–637, 2005.

250

Hyperparameter Group Lasso

J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96(456):1348–1360, december
2001.

T. J. Hastie and R. J. Tibshirani. Generalized additive models. In Monographs on Statistics
and Applied Probability, volume 43. Chapman and Hall, London, UK, 1990.

Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge University
Press, 1994.

W. James and C. Stein. Estimation with quadratic loss. In Proc. 4th Berkeley Sympos.
Math. Statist. and Prob., Vol. I, pages 361–379. Univ. California Press, Berkeley, Calif.,
1961.

H. Leeb and B. Pötscher. Model selection and inference: Facts and fiction. Econometric
Theory, 21:2159, 2005.

D.J.C. Mackay. Bayesian non-linear modelling for the prediction competition. ASHRAE
Trans., 100(2):3704–3716, 1994.

J. S. Maritz and T. Lwin. Empirical Bayes Method. Chapman and Hall, 1989.

T. Park and G. Casella. The Bayesian Lasso. Journal of the American Statistical Associa-
tion, 103(482):681–686, June 2008.

G. Pillonetto and G. De Nicolao. A new kernel-based approach for linear system identifi-
cation. Automatica, 46(1):81–93, 2010.

G. Pillonetto, F. Dinuzzo, and G. De Nicolao. Bayesian online multitask learning of Gaussian
processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(2).

G. Pillonetto, A. Chiuso, and G. De Nicolao. Prediction error identification of linear systems:
a nonparametric Gaussian regression approach. Automatica, 45(2):291–305, 2011.

M. Schmidt, E. Van Den Berg, M. P. Friedlander, and Kevin Murphy. Optimizing costly
functions with simple constraints: A limited-memory projected quasi-newton algorithm.
In Proc. of Conf. on Artificial Intelligence and Statistics, pages 456–463, 2009.

C.M. Stein. Estimation of the mean of a multivariate normal distribution. The Annals of
Statistics, 9(6):1135–1151, 1981.

R. Tibshirani. Regression shrinkage and selection via the LASSO. Journal of the Royal
Statistical Society, Series B., 58, 1996.

M. Tipping. Sparse bayesian learning and the relevance vector machine. Journal of Machine
Learning Research, 1:211–244, 2001.

M.K. Titsias and M. Lzaro-Gredilla. Spike and slab variational inference for multi-task and
multiple kernel learning. Advances in Neural Information Processing Systems 25 (NIPS
2011), 2011.

251

Aravkin, Burke, Chiuso and Pillonetto

R. Tomioka and T. Suzuki. Regularization strategies and empirical bayesian learning for
MKL. Journal of Machine Learning Research, 2011.

D.P. Wipf and S. Nagarajan. A new view of automatic relevance determination. In Proc.
of NIPS, 2007.

D.P. Wipf and B.D. Rao. An empirical bayesian strategy for solving the simultaneous sparse
approximation problem. IEEE Transactions on Signal Processing, 55(7):3704–3716, 2007.

D.P. Wipf, B.D. Rao, and S. Nagarajan. Latent variable Bayesian models for promoting
sparsity. IEEE Transactions on Information Theory, 57(9):6236–6255, 2011.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society, Series B, 68:49–67, 2006.

P. Zhao and B. Yu. On model selection consistency of lasso. Journal of Machine Learning
Research, 7:2541–2563, Nov. 2006.

H. Zou. The adaptive Lasso and it oracle properties. Journal of the American Statistical
Association, 101(476):1418–1429, 2006.

252

Journal of Machine Learning Research 15 (2014) 253-282 Submitted 1/12; Revised 6/13; Published 1/14

Using Trajectory Data to Improve Bayesian Optimization for
Reinforcement Learning

Aaron Wilson∗ aaron.wilson@parc.com
PARC, a Xerox company
3333 Coyote Hill Road
Palo Alto, CA 94304 USA

Alan Fern afern@eecs.oregonstate.edu

Prasad Tadepalli tadepall@eecs.oregonstate.edu

School of Electrical Engineering and Computer Science

Oregon State University

Corvallis, OR 97331-5501, USA

Editor: Joelle Pineau

Abstract

Recently, Bayesian Optimization (BO) has been used to successfully optimize parametric
policies in several challenging Reinforcement Learning (RL) applications. BO is attrac-
tive for this problem because it exploits Bayesian prior information about the expected
return and exploits this knowledge to select new policies to execute. Effectively, the BO
framework for policy search addresses the exploration-exploitation tradeoff. In this work,
we show how to more effectively apply BO to RL by exploiting the sequential trajectory
information generated by RL agents. Our contributions can be broken into two distinct,
but mutually beneficial, parts. The first is a new Gaussian process (GP) kernel for measur-
ing the similarity between policies using trajectory data generated from policy executions.
This kernel can be used in order to improve posterior estimates of the expected return
thereby improving the quality of exploration. The second contribution, is a new GP mean
function which uses learned transition and reward functions to approximate the surface of
the objective. We show that the model-based approach we develop can recover from model
inaccuracies when good transition and reward models cannot be learned. We give empir-
ical results in a standard set of RL benchmarks showing that both our model-based and
model-free approaches can speed up learning compared to competing methods. Further,
we show that our contributions can be combined to yield synergistic improvement in some
domains.

Keywords: reinforcement learning, Bayesian, optimization, policy search, Markov deci-
sion process, MDP

1. Introduction

In the policy search setting, RL agents seek an optimal policy within a fixed set. The
agent iteratively selects new policies, executes selected policies, and estimates each individ-
ual policy performance. Naturally, future policy selection decisions should benefit from the

∗. Work was performed at Oregon State University.

c©2014 Aaron Wilson, Alan Fern and Prasad Tadepalli.

Wilson, Fern and Tadepalli

information generated by previous selections. A question arises regarding how the perfor-
mance of untried policies can be estimated using this data, and how to use the estimates to
direct the selection of a new policy. Ideally, the process of selecting new policies accounts for
the agent’s uncertainty in the performance estimates, and directs the agent to explore new
parts of the policy space where uncertainty is high. Bayesian Optimization (BO) tackles
this problem. It is a method of planning a sequence of queries from an unknown objective
function for the purpose of seeking the maximum. In BO uncertainty in the objective func-
tion is encoded in a Bayesian prior distribution that estimates the performance of policies.
Because the method is Bayesian uncertainty in the estimated values is explicitly encoded.
After policy executions a posterior distribution over the objective is computed, and this
posterior is used to guide the exploration process.

Success of BO relies on the quality of the objective function model. In this work, similar
to past efforts applying BO to RL, we focus on GP models of the expected return (Rasmussen
and Williams, 2005). The generalization performance of Gaussian process (GP) models, and
hence the performance of the BO technique, is strongly impacted by the definition of both
the GP mean function, and the kernel function encoding relatedness between points in the
function space.

Prior work applying BO to the RL problem tackled difficult problems of gait optimization
and vehicle control, but ignored the sequential nature of the decision process (Lizotte et al.,
2007; Lizotte, 2008). Execution of a policy generates a trajectory represented by a sequence
of action/observation/reward tuples. Previously, this information was reduced to a Monte-
Carlo estimate of the expected return and all other information present in the observed
trajectories was discarded. By taking advantage of the sequential process, we argue, and
empirically demonstrate, that our methods dramatically improve the data efficiency of BO
methods for RL. To take advantage of trajectory information we propose two complementary
methods. First, we discuss a new kernel function which uses trajectory information to
measure the relatedness of policies. Second, we discuss the incorporation of approximate
domain models into the basic BO framework.

Our first contribution, is a notion of relatedness tailored for the RL context. Past work
has used simple kernels to relate policy parameters. For instance, squared exponential ker-
nels were used by Lizotte et al. (2007), Lizotte (2008) and Brochu et al. (2009). These
kernels relate policies by differences in policy parameter values. We propose that policies
are better related by their behavior rather than their parameters. We use a simple defini-
tion of policy behavior, and motivate an information-theoretic measure of policy similarity.
Additionally, we show that the measure of similarity can be estimated without learning the
transition and reward functions.

Our second contribution incorporates learned domain models (the transition and reward
function) into the BO framework. Learned domain models are used to simulate Monte-Carlo
policy roll-outs for the purpose of estimating policy returns. Crucially, we consider the
setting where the simulator is not an accurate model of the true domain. The domain model
class may have significant bias that prevents close approximation of the true transition and
reward functions. Consequently, Monte-Carlo simulations of the environment, using the
learned functions, can produce substantial errors that prevent the direct application of
standard model-based RL algorithms. To overcome this problem, we propose using the GP
model to correct for errors introduced by the poor domain model approximations, and show

254

Using Trajectory Data to Improve Bayesian Optimization for Reinforcement Learning

empirically that our algorithm successfully uses the learned transition and reward models
to quickly identify high quality policies.

In the following sections we discuss the general problem of BO, motivate our modeling
efforts, and discuss how to incorporate our changes into BO algorithms. We conclude with
a discussion of empirical evaluation of the new algorithms on five benchmark RL domains.

2. Reinforcement Learning and Bayesian Optimization

We study the reinforcement learning problem in the context of Markov decision processes
(MDPs). MDPs are described by a tuple (S,A, P, P0, R). We consider processes with
continuous state spaces and discrete action spaces. Each state s ∈ S is a vector of real values.
Each action a ∈ A represents a discrete choice available to the agent. The transition function
P is a probability distribution P (st|st−1, at−1) that defines the probability of transitioning
to state st, conditioned on the selected action at−1, and the current state st−1. Distribution
P0(s0) is the distribution over initial states. It defines the probability of the agent starting in
state s0. The reward function R(s, a, s′) returns a numeric value representing the immediate
reward for the state, action, next state triplet. Finally, the agent selects actions according to
a parametric policy πθ. The policy is a stochastic mapping from states to actions Pπ(a|s, θ)
as a function of a vector of parameters θ ∈ <k.

We study episodic average reward RL. We define a trajectory to be a sequence of states
and actions ξ = (s0, a0, ..., aT−1, sT). Trajectories begin in an initial state s0, and terminate
after at most T steps. It follows that the probability of a trajectory is,

P (ξ|θ) = P0(s0)
T∏
t=1

P (st|st−1, at−1)Pπ(at−1|st−1, θ).

This is the probability of observing a trajectory ξ given that the agent executes a policy
with parameters θ. The value of a trajectory,

R̄(ξ) =

T∑
t=0

R(st, at, st+1),

is simply the sum of rewards received. The variable T is assumed to have a maximum value
ensuring that all trajectories have finite length.

We define our objective function to be the expected return,

η(θ) =

∫
R̄(ξ)P (ξ|θ)dξ.

The basic policy search problem is to identify the policy parameters that maximize this
expectation,

θ∗ = arg max
θ
η(θ).

In the RL problem setting the values of the expected return are not known to the agent.
Likewise, the transition function, initial state distribution, and reward function are also
unknown. This complicates the search for the maximum value.

255

Wilson, Fern and Tadepalli

3. Policy Search Using Bayesian Optimization

Bayesian optimization addresses the general problem of identifying the maximum of a real
valued objective function,

θ∗ = arg max
θ
η(θ).

This problem could be solved by optimizing the objective function directly. For instance,
the Covariance Matrix Adaptation algorithm by Hansen (2006), which has already shown
some promise in RL, directly searches the objective function by executing thousands of
queries to identify the maximum. If each evaluation of the objective has a small cost, then
thousands of evaluations could easily be performed. However, when individual evaluations of
the objective incur high costs, algorithms which rely on many evaluations are inappropriate.
Examples of domains with this property are easy to find. For example, the evaluation of
airfoil design and engine components rely on running expensive finite element simulations
of gas flow. These simulations have extreme time costs; evaluations of each design can take
upwards of 24 hours. Other domains, familiar to RL researchers, include robot control.
Running robots is time-consuming and increases the likelihood of physical failures. In cases
like these it is best to minimize the number of objective function evaluations. This is
the ideal setting for the application of BO. To reduce the number of function evaluations
the BO approach uses a Bayesian prior model of the objective function and exploits this
model to plan a sequence of objective function queries. Essentially, BO algorithms trade
computational resources, expended to determine query points, for a reduced number of
objective function evaluations.

Modeling the objective is a standard strategy in learning problems where the true func-
tion may be approximated by, for example, regression trees, neural networks, polynomials,
and other structures that match properties of the target function. Using the parlance of RL,
the Bayesian prior model of the objective function, sometimes called the surrogate func-
tion, can be viewed as a function approximator that supports Bayesian methods of analysis.
However, where standard function approximators generalize across states the model of the
objective function used in BO algorithms generalizes across policies. This is necessary to
support intelligently querying the surrogate representation of the objective function.

The BO method plans a sequence of queries. The process proceeds as follows: (1) A
query is selected. Queries are selected by optimizing a measure of improvement (to be
defined below). Typically, the improvement measure incorporates an exploration strategy
that directs search to poorly modeled regions of the solution space. (2) The query is
evaluated by the true objective function. Real data is gathered from the system being
optimized. Ideally, the computational resources expended in the previous step improves
the quality of the observed data. (3) The system observes the performance at the query
point and updates the posterior model of the objective function. (4) The process returns to
step 1. Below we discuss the key components of BO algorithms including the improvement
function and the prior model of the objective function (the central object of study in this
paper).

256

Using Trajectory Data to Improve Bayesian Optimization for Reinforcement Learning

3.1 Measure of Improvement

The selection criteria plays an important role in the quality of the exploration, and conse-
quently the speed of identifying the optimal point. The basic problem of selection can be
framed as identifying the point that minimizes the agent’s expected risk,

min
θ

∫
‖ η(θ)− η(θ∗) ‖ dP (η|D1:n),

with respect to the posterior distribution (By minimizing the expected difference between
η(θ) and the maximum η(θ∗) = arg maxθ η(θ) we maximize the value of η(θ)). The data D1:n

is a collection of pairs D1:n = {〈θi, η(θi)〉}|ni=1. Each pair is a previously selected policy point
θi and the evaluated performance at that point η(θi). The posterior distribution P (η|D1:n)
encodes all of the agent’s knowledge of the objective function. This risk functional is a
natural foundation for a myopic iterative selection criteria,

θn+1 = arg min
θ

∫
‖ η(θ)− η(θ∗) ‖ dP (η|D1:n).

Unfortunately, this selection criteria requires solving a computationally demanding minimax
problem. A heuristic method of selection must be used.

A common heuristic called Maximum Expected Improvement (MEI) (Mockus, 1994) is
the method of selection used in this work. The MEI heuristic compares new points to the
point with highest observed return in the data set. We denote the value at this empirically
maximal point to be ηmax. Using this maximal value one can construct an improvement
function,

I(θ) = max{0, η(θ)− ηmax},

which is positive when η(θ) exceeds the current maximum and zero at all other points. The
MEI criteria searches for the maximum of the expected improvement,

θn+1 = arg max
θ
EP (η|D1:n) [I(θ)] .

Crucially, the expected improvement function exploits the posterior uncertainty. If the
mean value at a new point is less than ηmax the value of the Expected Improvement may
still be greater than zero. Consider the case where the posterior distribution, P (η(θ)|D1:n),
has probability mass on values exceeding ηmax. In this case, the expected improvement will
be positive. Therefore, the agent will explore until it is sufficiently certain that no other
policy will improve on the best policy in the data set. Due to the empirical success of the
MEI criterion it has become the standard choice in most work on BO.

When the posterior distribution is Gaussian then the expected improvement function
has a convenient solution,

EP (η(θ)|D1:n) [I(θ)] = σ(θ)[
µ(θ)− ηmax

σ(θ)
Φ(
µ(θ)− ηmax

σ(θ)
) + φ(

µ(θ)− ηmax
σ(θ)

)].

The functions µ(θ) and σ(θ) are the mean and standard deviation of the Gaussian dis-
tribution. Function Φ(.) is the cumulative distribution function of the standard Gaussian
distribution, and φ(.) is the probability distribution function. Please note that the expected
improvement function is zero when the standard deviation is zero.

257

Wilson, Fern and Tadepalli

Figure 1: The expected improvement heuristic. The heuristic assesses the value of observing
new points. On the left we consider the point circled (in black) at θ = −.86. On
the right we illustrate the expected improvement assuming that P (η(θ)|θ = −.86)
is Gaussian. To be considered an improvement the value of η(θ) must exceed the
value of the current maximum fmax. The probability mass associated with the
expected improvement is shaded. The expected improvement is proportional to
the expected value of the indicated mass.

3.2 Objective Function Model

As a Bayesian method the performance of BO depends profoundly on the quality of the
modeling effort. The specification of the prior distribution determines the nature of the
posterior and hence the generalization performance of the surrogate representation. We
elect to model the objective function using a Gaussian process (Rasmussen and Williams,
2005),

η(θ) ∼ GP (m(θ), k(θ, θ′)).

GP models are defined by a mean function m(θ) and a covariance function k(θ, θ′). The
mean function specifies the expected value at a given point m(θ) = E[η(θ)]. Likewise, the
covariance function estimates the covariance k(θ, θ′) = E[(η(θ)−m(θ))(η(θ′)−m(θ′))] The
kernel function encodes how correlated values of the objective are at points θ and θ′. Both
of these functions encode knowledge of the underlying class of functions.

For the purpose of computing the improvement function described above, the posterior
distribution at new points must be computed. In the GP model, this posterior has a simple
form. Given the data D1:n the conditional posterior distribution is Gaussian with mean,

µ(η(θn+1)|D1:n) = m(θn+1)− k(θn+1, θ)K(θ, θ)−1(y −m),

where m is a vector of size n with elements m(θ1), ...,m(θn) and variance,

σ2(η(θn+1)|D1:n) = k(θn+1, θn+1)− k(θn+1, θ)
tK(θ, θ)−1k(θ, θn+1).

Define y to be the column vector of observed performances such that yi = η(θi). Define
K(θ, θ) to be the covariance matrix with elements Ki,j = k(θi, θj). Define k(θn+1, θ) to be

258

Using Trajectory Data to Improve Bayesian Optimization for Reinforcement Learning

Algorithm 1 Bayesian Optimization Algorithm (BOA)

1: Let D1:n = {(θi, η̂(θi), ξi)}|ni=1.
2: repeat
3: Compute the matrix of covariances K.
4: Select the next policy to evaluate: θn+1 = arg maxθ EP (η(θ)|D) [I(θ)].
5: Execute the policy θn+1 for E episodes.
6: Compute Monte-Carlo estimate of expected return η̂(θn+1) = 1

E

∑
ξ∈ξn+1

R̄(ξ)

7: Update D1:n+1 = D1:n ∪ (θn+1, η̂(θn+1))
8: until Convergence

the column vector of correlations such that the ith element is k(θn+1, θi) (k(θn+1, θ)
t is the

transpose of this vector).

3.3 Bayesian Optimization for RL

Algorithm 1 outlines the basic loop of the BO routine discussed above. Line 1 assumes a
batch of data of the form, D1:n = {(θi, η(θi), ξi)}|ni=1. Hereafter, we will write D to indicate
the collection of n data tuples. The Monte-Carlo estimate for policy θi is computed using
a set of trajectories ξi sampled from the target system. Given data D, the surface of the
expected return is modeled using the GP. The kernel matrix K is pre-computed in line 3
for reuse during maximization of the EI. Line 4 maximizes the EI. For this purpose, any
appropriate optimization package can be used. To compute the expected improvement the
GP posterior distribution P (η(θn+1|D)) must be computed. This entails computing the
mean function m(θn+1), the vector of covariances k(θn+1, θ), and performing the required
multiplications. Additional computational costs introduced into the mean and kernel func-
tions will impact the computational cost of the optimization. Our modifications to the
underlying model will increase these costs, but lead to more efficient search of the objective
function space. The additional costs must be balanced against the cost of evaluating the
objective function. Once selection is completed, new trajectories are generated from the
selected policy (line 5), and an estimate of the expected return is recorded (lines 6 and 7).

4. Incorporating Trajectory Information into Bayesian Optimization for
RL

We propose two complementary changes to the GP model of the expected return aimed at
improving performance in RL. We define new covariance and mean functions specifically
designed to exploit trajectory data. Section 4.1 details a new kernel function designed to
compare policies in the RL context. The kernel uses a behavior-based measure of policy
correlation. We motivate the use of this kernel and suggest a simple method for its estima-
tion. Section 4.2 details our method of using a learned approximate Monte-Carlo simulator
of policy performance. We detail how the outputs of this simulator are used to define a GP
mean function and define a method for dealing with errors generated by the simulator.

259

Wilson, Fern and Tadepalli

Figure 2: An illustration of Bayesian Optimization. The agent observes the objective func-
tion (dashed line) at a finite set of points (blue circles). Conditioned on the
observations the agent maintains a model of the underlying objective function.
The solid blue line depicts the mean of this model and the shaded regions illustrate
the model uncertainty (2 standard deviations). Uncertainty is lower near densely
sampled regions of θ space. The agent selects new data points for purposes of
identifying the true maximum. As new observations are added the quality of the
model improves and observations are focused near the maximal value.

260

Using Trajectory Data to Improve Bayesian Optimization for Reinforcement Learning

4.1 Model-Free RL via Bayesian Optimization: A Behavior-Based Kernel
(BBK)

In this section we design a kernel for the RL setting that leverages trajectory data to com-
pute a domain independent measure of policy relatedness. Consider BO algorithms as a
kind of space filling algorithm. Wherever sufficient uncertainty exists, the algorithm will
aim to select a point to fill that space thereby reducing uncertainty in the vicinity of the
selected point. The kernel function defines the volume to be filled. It is important for the
development of BO algorithms for RL that kernel functions are robust to the parametriza-
tion of the policy space. Most kernel functions do not have this property. For instance,
squared exponential kernels require that policies have a finite and fixed number of param-
eters. The kernel cannot compare non-parametric policies. In this case, individual policies
can have distinct structures preventing their comparison using this form of kernel function.
We seek a kernel function which is useful for comparing policies with distinct structural
forms.

To construct an appropriate representation of uncertainty for the RL problem we propose
relating policies by their behaviors. We define the behavior of a policy to be the associated
trajectory density P (ξ|θ). Below, we discuss how to use the definition to construct a kernel
function and how to estimate the kernel values without learning transition and reward
functions.

To develop our kernel and demonstrate its relationship to the expected return we prove
the following theorem:

Theorem 1 For any θi, and θj, Rmax ≥ 0

|η(θi)− η(θj)| ≤ Rmax
√

2
[√

KL(P (ξ|θi)||P (ξ|θj)) +
√
KL(P (ξ|θj)||P (ξ|θi))

]
.

Proof: Below we establish the upper bound stated above. To begin we rewrite the
absolute value of the difference in expected returns,

|η(θi)− η(θj)| =
∣∣∣∣∫ R̄(ξ)P (ξ|θi)dξ −

∫
R̄(ξ)P (ξ|θj) dξ

∣∣∣∣ =

∣∣∣∣∫ R̄(ξ)(P (ξ|θi)− P (ξ|θj)) dξ
∣∣∣∣ .

By moving the absolute value into the integrand we upper bound the difference,∣∣∣∣∫ R̄(ξ)(P (ξ|θi)− P (ξ|θj)) dξ
∣∣∣∣ ≤ ∫ |R̄(ξ)(P (ξ|θi)− P (ξ|θj))| dξ.

We define a new quantity Rmax bounding the trajectory reward from above. The trajectory
reward is simply the sum of rewards at each trajectory step. Rmax is defined to be the
maximal trajectory value. Using the Rmax quantity we construct a new bound,∫

|R̄(ξ)(P (ξ|θi)− P (ξ|θj))| dξ ≤ Rmax
∫
|P (ξ|θi)− P (ξ|θj)| dξ,

expressing the difference in returns as the product of a constant and a term depend-
ing only on the variational difference in the trajectory densities. An upper bound for
the variational distance was developed by Pinsker (1964). The inequality states that

261

Wilson, Fern and Tadepalli

1
2(V (P,Q))2 ≤ KL(P ||Q) where V is the variational distance,

∫
|(P (x) − Q(x))|dx, and

KL(P,Q) is the Kullback Leibler divergence,

KL(P (ξ|θi)||P (ξ|θj)) =

∫
P (ξ|θi) log

(
P (ξ|θi)
P (ξ|θj)

)
dξ.

We can use Pinsker’s inequality to upper bound the variational distance,

Rmax

∫
|P (ξ|θi)− P (ξ|θj)| dξ ≤ Rmax

√
2
√
KL(P (ξ|θi)||P (ξ|θj)).

Finally, we use the fact that the variational distance is symmetric
∫
|(P (x) − Q(x))|dx =∫

|(Q(x)− P (x))|,

|η(θi)− η(θj)| ≤ Rmax
√

2
√
KL(P (ξ|θi)||P (ξ|θj))

≤ Rmax
√

2
[√

KL(P (ξ|θi)||P (ξ|θj)) +
√
KL(P (ξ|θj)||P (ξ|θi))

]
.

Hence, this simple bound relates the difference in returns of two policies to the trajectory
density �.

Importantly, the bound is a symmetric positive measure of the distance between poli-
cies. It bounds, from above, the absolute difference in expected value, and reaches zero
only when the divergence is zero (the policies are the same). Additionally, computing the
tighter variational bound, Rmax

∫
|P (ξ|θi)− P (ξ|θj)| dξ, inherently requires knowledge of

the domain transition models. Alternatively, the log term of the KL-divergence is a ratio
of path probabilities. Given a sample of trajectories the ratio can be computed with no
knowledge of the domain model. This characteristic is important when learned transition
and reward functions are not available. Our goal is to incorporate the final measure of pol-
icy relatedness into the surrogate representation of the expected return. Unfortunately, the
divergence function does not meet the standard requirements for a kernel (Moreno et al.,
2004). To transform the bound into a valid kernel we first define a function,

D(θi, θj) =
√
KL(P (ξ|θi)||P (ξ|θj)) +

√
KL(P (ξ|θj)||P (ξ|θi)),

and define the covariance function to be the negative exponential of D,

K(θi, θj) = exp(−α ·D(θi, θj)).

The kernel has a single scalar parameter α controlling its width. This is precisely what we
sought, a measure of policy similarity which depends on the action selection decisions. The
kernel compares behaviors rather than parameters, making the measure robust to changes
in policy parameterization.

4.2 Estimation of the Kernel Function Values

Below we discuss using estimates of the divergence values in place of the exact values for
D(θi, θj). Computing the exact KL-divergence requires access to a model of the decision
process and is a computationally demanding process. No closed form solution is available.

262

Using Trajectory Data to Improve Bayesian Optimization for Reinforcement Learning

The divergence must be estimated. In this work we elect to use a simple Monte-Carlo
estimate of the divergence. The divergence between policy θi and θj is approximated by,

D̂(θi, θj) =
∑
ξ∈ξi

log

(
P (ξ|θi)
P (ξ|θj)

)
+
∑
ξ∈ξj

log

(
P (ξ|θj)
P (ξ|θi)

)
,

using a sparse sample of trajectories generated by each policy respectively (ξi represents
the set of trajectories generated by policy θi). Because of the definition of the trajectory
density, the term within the logarithm reduces to a ratio of action selection probabilities,

log

(
P (ξ|θi)
P (ξ|θj)

)
= log

(
P0(s0)

∏T
t=1 P (st|st−1, at−1)Pπ(at−1|φ(st−1), θi)

P0(s0)
∏T
t=1 P (st|st−1, at−1)Pπ(at−1|φ(st−1), θj)

)

=

T∑
t=1

log

(
Pπ(at|st, θi)
Pπ(at|st, θj)

)
,

and is easily estimated using trajectory data.
A problem arises when computing the Expected Improvement (Line 4 of the BOA).

Computing the conditional mean and covariance for new points requires the evaluation of
the kernel for policies which have no trajectories present in the data set. We elect to use an
importance sampled estimate of the divergence, because we do not have access to learned
transition and reward functions,

D̂(θnew, θj) =
∑
ξ∈ξj

P (ξ|θnew)

P (ξ|θj)
log

(
P (ξ|θnew)

P (ξ|θj)

)
+ log

(
P (ξ|θj)
P (ξ|θnew)

)
.

Though the variance of this estimate can be large, our empirical results show that errors
in the divergence estimates, including the importance sampled estimates, do not negatively
impact performance. Alternative methods of estimating f-divergences (KL-divergence being
a specific case) have been proposed in the literature (Nguyen et al., 2007), and can be used
for future implementations.

4.3 Model-Based RL via Bayesian Optimization

The behavior based kernel has some important limitations. First, due to the definition of
the BBK the kernel can only compare stochastic policies. The KL divergence is meaningful
when the conditional trajectory densities share the same support. Second, the upper bound
used to construct the kernel function is loose. This can lead to excessive exploration when
the kernel exaggerates the differences between policies. In this section, we introduce a
distinct method of leveraging trajectory data that does not require stochastic policies and
can leverage any appropriate kernel function (including the BBK).

Specifically, our Model-Based Bayesian Optimization Algorithm (MBOA) learns the ini-
tial state distribution, the transition function, and the reward function from the observed
trajectory data. These learned functions are used to generate Monte-Carlo estimates of
policy performance. To compute estimates of the expected return for policy θ we gen-
erate trajectory roll-outs. A roll-out is performed by sampling an initial state from the
learned initial state distribution and then executing policy θ until termination. Simulated

263

Wilson, Fern and Tadepalli

trajectories are sampled from the approximate trajectory density,

P̂ (ξ|θ) = P̂0(s0)
T∏
t=1

P̂ (st|st−1, at−1)Pπ(at−1|φ(st−1), θ).

We write P̂ to indicate that the transition function and initial state distribution have been
learned from the observed trajectory data. From a fixed sample of E simulated trajectories
we compute a model-based Monte-Carlo estimate of the expected return,

m(θ,D) = η̂(θi) =
1

E

E∑
j=1

R̂(ξj).

The function R̂ indicates the learned reward function.
If the agent has learned accurate domain models an optimal policy can be learned by

maximizing θ∗ = arg maxθm(θ,D). Unfortunately, in many domains it is difficult to specify
and to learn accurate domain models. In the worst case, the domain model classes selected
by the designer may not contain the true domain models. Moreover, the cost of sampling
trajectories may become prohibitive as the complexity of the domain models increases.
Therefore, we wish to allow the designer the flexibility of selecting a class of domain models
that is simple, efficient, and possibly an inaccurate representation of the target system. In
our work we propose a means of accurately estimating the expected return despite domain
model errors.

To overcome problems stemming from the predictive errors we propose using m(θ,D) as
the prior mean function for the GP model thereby modeling the deviations from this mean
as a GP. The predictive distribution of the GP changes to be Gaussian with mean,

µ(η(θn+1)|D) = m(θn+1, D) + kt(θn+1, θ)K(θ, θ)−1(η −m(θ,D)),

where m(θ,D) = (m(θ1, D), ...,m(θn, D)) is a column vector of Monte-Carlo estimates with
an element for each policy in D (This vector must be recomputed when new trajectories
are added to the data). The variance remains unchanged. The new predictive mean is a
sum of the Monte-Carlo approximation of the expected return and the GP’s prediction of
the residual. We illustrate the advantage of this model in Figure 3. As shown in the figure
the model of the residuals directly compensates for errors introduced by the learned domain
models.

In the case where the domain models cannot be effectively approximated, the model-
based estimates of the expected return may badly skew the predictions. Consider the
following degenerate case: m(θ,D1:n) underestimates the true mean for all policies resulting
in zero expected improvement in the region of the optimal policy. In this case, the pessimistic
estimates stifle the exploration of the policy space thereby preventing the discovery of the
optimal solution. Our goal is to account for the domain model bias in a principled way.

We propose a new model of the expected return,

η(θ) = (1− β)η1(θ) + βη2(θ).

The new model is a convex combination of two functions governed by the parameter β.
We model the function η1(θ) ∼ GP (0, k(θ, θ)) with a zero mean GP, and we model the

264

Using Trajectory Data to Improve Bayesian Optimization for Reinforcement Learning

(a)

(b)

Figure 3: (a) The relationship between the surface of m(θ,D) and the objective function.
Both surfaces are observed at a fixed set of points. The values of the surfaces at
these points compose the vectors η and m(θ,D) respectively. The magnitude of
the residuals are depicted as vertical bars. We build a GP model of these residual
values. (b) The complete model combines the function m(θ,D) (as depicted
above) with the GP model of the residuals. The solid blue line corresponds to the
corrected mean of the model. The shaded area depicts two standard deviations
from the mean.

265

Wilson, Fern and Tadepalli

function η2(θ) ∼ GP (m(θ,D1:n), k(θ, θ)) with a GP distribution that uses the model-based
mean m(θ,D) introduced above. The kernel of both GP priors is identical. The resulting
distribution for η(θ) ∼ GP (βm(θ,D), c(β)k(θ, θ)) is a GP with prior mean βm(θ,D) and
covariance computed using the kernel function. This change impacts the predicted mean
which now weights the model estimate by β,

µ(θn+1|D) = βm(θn+1, D) + k(θn+1, θ)K(θ, θ)−1(η(θ)− βm(θ,D)).

The variance changes to incorporate a factor c(β).
We choose to optimize the β parameter using evidence maximization (Rasmussen and

Williams, 2005). For a GP with mean βm and covariance matrix K the log likelihood of
the data is,

P (η(θ)|D) = −1

2
(η(θ)− βm(θ,D))tK−1(η(θ)− βm(θ,D))− 1

2
log |K| − n

2
log(2π).

Taking the gradient of the log likelihood and solving for β results in a closed form solution,

β =
η(θ)tK−1m(θ,D))

m(θ,D))tK−1m(θ,D))
.

Optimizing the value of β, prior to maximizing the expected improvement, allows the model
to control the impact of the mean function on the predictions. This tradeoff is illustrated in
Figure 4. Intuitively, the algorithm can return to the performance of the unmodified BOA
when the domain models are poor (by setting β to zero).

Algorithm 2 outlines the steps necessary to incorporate the new model into the BOA.
MBOA takes advantage of trajectory data by building an approximate simulator of the
expected return. Like the BBK the prior mean function used by the MBOA only requires
policies to output actions. It is oblivious to the internal structure of policies. Additionally,
by contrast to the BBK, MBOA can compare stochastic and deterministic policies.

Most work in model-based RL assumes the learned transition and reward functions are
unbiased estimators of the true functions. This is difficult to guarantee in real-world tasks.
Due to our limited knowledge transition and reward models frequently exhibit considerable
model bias. MBOA aims to overcome sources of bias by combining a weighted mean function
with a residual model. By construction MBOA can ignore the mean function if it produces
systematic errors, due to model bias, and can benefit from the mean function where the
estimates are accurate. In the results section we provide examples where MBOA benefits
from the use of simple (biased) transition and reward models.

5. Experiment Results

We examine the performance of MBOA and BOA with the behavior based kernel (BBK) in
5 benchmark RL tasks including a mountain car task, a Cart-pole balancing task, a 3-link
planar arm task, an acrobot swing up task, and a bicycle balancing task. Additional details
about the Cart-pole, mountain car, and acrobot domains can be found in Sutton and Barto
(1998). We use the bicycle simulator originally introduced by Randlov and Alstrom (1998).

Comparisons are made between MBOA, BOA with the BBK, the DYNA-Q algorithm,
PILCO (Deisenroth and Rasmussen, 2011), BOA with a squared exponential kernel (Lizotte,
2008), OLPOMDP (Baxter et al., 2001), Q-Learning with CMAC function approximation
(Sutton and Barto, 1998), and LSPI (Lagoudakis et al., 2003).

266

Using Trajectory Data to Improve Bayesian Optimization for Reinforcement Learning

(a) An illustration of the degenerate case where the mean function systematically under-
estimates the objective function (objective function marked by dashed line).

(b) The corrected model with control parameter β = 1. After correction the model un-
derestimates the objective function.

(c) The corrected model with control parameter β = .1. By reducing the influence of the
mean function the model more accurately estimates the true function.

Figure 4: Illustration of the impact of optimizing β.

267

Wilson, Fern and Tadepalli

Algorithm 2 Model-based Bayesian Optimization Algorithm (MBOA)

1: Let D1:n = {θi, η(θi), ξ}|ni=1.
2: repeat
3: Learn the transition function, reward function, and initial state distribution from trajectory

data.
4: Compute the vector m(θ,D1:n) using the approximate simulator.
5: Optimize β by maximizing the log likelihood.
6: Select the next point in the policy space to evaluate: θn+1 = arg maxθ E(I(θ)|D1:n).
7: Execute the policy with parameters θn+1 in the MDP.
8: Update D1:n+1 = D1:n ∪ (θn+1, η(θn+1), ξn+1)
9: until Convergence.

5.1 Experiment Setup

We detail the special requirements necessary to implement each algorithm in this section.
For all experiments, except Cart-pole, the policy search algorithms search for parametric

soft-max action selection policies,

P (a|s) =
exp(θa · f(s))∑
y∈A exp(θy · f(s))

.

The parameters θy are the set of policy parameters associated with action y. The function
f(s) computes features of the state.

In the Cart-pole experiments, a linear policy maps directly to the action,

a = θ · f(s) + ε.

Epsilon is a small noise parameter used in algorithms requiring stochastic policies.
Below we discuss the implementations of each algorithm.

• MBOA and BOA. The GP model used in MBOA and BOA can accept any kernel
function (including the BBK). Below we show results comparing these kernels. Unless
stated otherwise the squared exponential kernel,

k(θi, θj) = exp(−1

2
ρ(θi − θj)t(θi − θj)),

is used in our experiments. The width of this kernel is controlled by the scaling
parameter ρ. The ρ parameter was tuned for each experiment, and the same value
was used in both MBOA and BOA. The prior mean function of BOA is the zero
function, and MBOA employs the model-based mean function discussed above.

It is necessary to optimize the expected improvement for all of the BO algorithms.
For this purpose we make use of two simple gradient-free black box optimization
algorithms. The DIRECT algorithm detailed by Jones et al. (1993) is used for all tasks
except bicycle. DIRECT is poorly suited for problems with more than 15 dimensions.
In the bicycle riding domain the policy has 100 dimensions. In this case we use
the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm detailed
by Hansen (2006). Both DIRECT and CMA-ES require specifying upper and lower

268

Using Trajectory Data to Improve Bayesian Optimization for Reinforcement Learning

bounds on the policy parameters. We specify an upper bound of 1 and a lower bound
of -1 for each dimension of the policy. These bounds hold for all experiments reported
below.

To implement the MBOA the designer must define a class of domain models. For the
experiments reported below linear models were used. The models are of the form,

sti = wi · φ(st−1, at−1)
t, rt = wr · φ(st−1, at−1, st)

′,

where st,i is the ith state variable at time t, wi is the weight vector for the ith state
variable, and φ(st−1, at−1, st)′ is a column vector of features computed from the states
and actions (and next states in the case of the reward model). The features used in
our experiments are found in Table 1. Parameters wi and wr are estimated from data
using standard linear regression.

• PILCO. We use an implementation of PILCO provided by the authors Deisenroth
and Rasmussen (2011). This implementation uses sparse GPs to learn the transition
and reward functions of the MDP.

• DYNA-Q. We make two slight modifications to the DYNA-Q algorithm. First, we
provide the algorithm with the same linear models employed by MBOA. These are
models of continuous transition functions which DYNA-Q is not normally suited to
handle. The problem arises during the sampling of previously visited states during
internal reasoning. To perform this sampling we maintain a dictionary of past observa-
tions and sample visited states from it. These continuous states are discretized using
a CMAC function approximator. The second change we make is to disallow inter-
nal reasoning until a trial is completed. To reduce the computational cost reasoning
between steps is not allowed. After each trial DYNA-Q is allowed 200000 internal
samples to update its Q-function. This was to ensure that during policy selection
DYNA-Q was allowed computational resources comparable to the resources used by
MBOA and BOA with the BBK.

• Q-Learning with CMAC function approximation. ε-Greedy exploration is used
in the experiments (ε is annealed after each step). The discretization of the CMAC
approximator was chosen to give robust convergence to good solutions.

• OLPOMDP OLPOMDP is a simple gradient based policy search algorithm (Baxter
et al., 2001). The OLPOMDP implementations use the same policy space optimized
by the BO algorithms.

• LSPI. LSPI results are reported in the cart-pole, acrobot, and bicycle tasks. We
do not report mountain car or arm results because no tested combinations of basis
functions and exploration strategies yielded good performance. We attempted radial
basis, polynomial basis, and hybrid basis, but none of these achieved good results.
Our exploration strategies used policies returned from the LSPI optimization with
added noise (including fully random exploration).

269

Wilson, Fern and Tadepalli

Domain/Features Transition Function Reward Function Policy Description
Mountain Car quadratic expansion:

(l, u, cos(l), cos(u),
action)

quadratic expansion:
(l, u, cos(l), cos(u),
action)

cubic expansion:
l, u

Variable l denotes the location and
u denotes the velocity of the car.

Acrobot quadratic expansion:
(θ1, θ2, θ̇1, θ̇2, action)

quadratic expansion:
(θ1, θ2, θ̇1, θ̇2, cos(θ1),
cos(θ2), action)

(θ1, θ2, θ̇1, θ̇2) (θ1, θ2) are the angles between the

links and (θ̇1, θ̇2) are the angular
velocities.

Cart Pole (v, v̇, ω, ω̇, action,
sin(ω), cos(ω), sin(ω),
1/cos(ω))

(v, v̇, ω, ω̇, action,
sin(ω), cos(ω), sin(ω),
1/cos(ω), v > 4, v <
−4, ω > π

4
, ω < −π

4
)

(v, v′, ω, ω̇) (v, v′) is the velocity and change in
velocity of the cart, (ω, ω′), is the
angle of the pole, and angular ve-
locity of the pole.

3-link Planar Arm (θ1, θ2, θ3, xt, yt,
action)

(θ1, θ2, θ3, (xt−xg)2,
(yt − yg)2, action)

(xt−xg, yt−yg) (θ1, θ2, θ3) are the link angles,
(xt, yt) is the location of the arm
tip, and (xg, yg) is the goal loca-
tion.

Bicycle (ω, ω̇, ν, ν̇, xf , xr, yf ,
yr, action)

(ω, ω̇, ν, ν̇, xf , xr, yf ,
yr, action, |ω| > π

15
))

See Lagoudakis
et al. (2003) for
policy features.

Variables (xf , xr, yf , yr) represent
the locations of the front and rear
tires respectively.

Table 1: Features for the transition function, reward function, and policy function.

Figure 5: Mountain Car Task: We report the total return per episode averaged over 40 runs
of each algorithm.

5.2 Mountain Car Task

In the mountain car domain the goal is to accelerate a car from a fixed position at the base
of a hill to the hill’s apex. Our implementation of the mountain car task uses eight features
derived from the standard state variables (velocity and location of the car). The control
policy selects from two actions (applying acceleration forward or to the rear). The policy
has sixteen dimensions. The reward function penalizes the agent -1 for each step taken to
reach the goal. Agents are allowed a maximum of 400 actions for each episode. Results for
the Mountain Car task are shown in Figure 5.

270

Using Trajectory Data to Improve Bayesian Optimization for Reinforcement Learning

The sparse reward signal makes Mountain Car an ideal experiment for illustrating the
importance of directed exploration based on differences in policy behavior. Approaches
based on random exploration and exploration weighted by returns are poorly suited to this
kind of domain (we have excluded the other model-free methods from the graph because
they fail to improve within 200 episodes). Visual inspection of the performance of BOA
shows that many of the selected policies, which are unrelated according to the squared
exponential kernel, produce similar action sequences when started from the initial state.
This redundant search is completely avoided when generalization is controlled by the BBK.

Note that the performance of all kernel methods depends on the settings of the pa-
rameters. Optimization of the hyper parameters is not the focus of this work. However,
the parameters of the BBK (and any other kernel used with MBOA) can be automati-
cally optimized using any standard method of model selection for GP models (Rasmussen
and Williams, 2005). We elect to simply set the parameter of the BBK, α, to 1 for all
experiments.

When accurate domain models can be learned, the Monte-Carlo estimates of the ex-
pected return computed by the MBOA will accurately reflect the true objective. Therefore,
if the domain models can be accurately estimated with few data points MBOA will rapidly
identify the optimal policy. To illustrate this we hand-constructed a set of features for the
linear domain models used in the mountain car task. Depicted in Figure 5 are the results
for MBOA with high quality hand-constructed features. Once the domain models are es-
timated, only four episodes are needed to yield accurate domain models. Once accurate
domain models are available MBOA immediately finds an optimal policy. Typically, the in-
sight used to construct model features is not available in complex domains. To understand
the performance of MBOA in settings with poor insight into the correct domain model
class, we remove the hand constructed features from the linear models and examine the
resulting performance. With poor models, the performance of the MBOA degrades. As
shown in the figure, the performance of MBOA is no longer better than the performance of
standard BOA with the model-free BBK. The BBK can be combined with the model-based
mean function used in MBOA. We show the performance of this combination, using the
BBK as the kernel function for the MBOA, labeled Combined, in Figure 5. The results
are comparable to the case where MBOA has access to high quality domain models. The
performance of PILCO is comparable to the combined algorithm. After 20 episodes the
PILCO algorithm has identified a high quality policy for the task. However, PILCO uses
all available transition data to train the sparse GP models of the transition and reward
function. After 30 episodes the kernel matrices consume all available memory and force the
algorithm to page to disk. Due to this problem we terminated the PILCO experiments after
30 episodes, and we report the value of the optimal policy found by PILCO after this point.
By contrast, the cost of GP prediction for MBOA grows with the number of episodes, and
MBOA exploits a less complex (linear) class of domain models. Consequently, it discovers
the optimal policy using less experience and less computational resources.

The performance of MBOA should be contrasted with the performance of DYNA-Q.
During DYNA-Q’s internal simulations errors in the estimated domain models negatively
impact the accuracy of the Q-value estimates. This leads to poor performance in the actual
task. In contrast, MBOA is specifically constructed to mitigate the impact of inaccurate
domain models. Eventually, even if the domain models have significant errors MBOA can

271

Wilson, Fern and Tadepalli

Figure 6: Acrobot Task: We report the total return per episode averaged over 40 runs of
each algorithm.

still identify the optimal policy. Standard model-based RL algorithms, such as DYNA-Q,
cannot learn optimal policies when confronted with systematic domain model errors.

5.3 Acrobot Task

In the acrobot domain, the goal is to swing the foot of the acrobot over a specified threshold
by applying torque at the hip. Details of the implementation can be found in Sutton and
Barto (1998). Four features are used for the soft-max policy resulting in twelve policy
parameters. The acrobot results are shown in Figure 6.

We were unable to construct accurate linear domain models for this task. Consequently,
the DYNA-Q algorithm is unable to find a good policy. MBOA is able to compensate for
the domain model errors and exhibits the best performance (some policies are accurately
simulated by the poor models). The performance of the BBK is less pronounced in this
domain. The policy class generates a varied set of behaviors such that small changes in
the policy parameters lead to very different action sequences. Therefore, more behaviors
must be searched before good policies are identified. Even so, the behavior based kernel does
outperform BOA with squared exponential kernel and it is competitive with the performance
of MBOA. In contrast to the mountain car task, combining the BBK with MBOA does not
yield improved performance. The performance is comparable to MBOA. The performance
of PILCO is similar to the model-based BOAs. However, PILCO suffered from the same
problems discussed above. Due to these memory issues we were forced to terminate the

272

Using Trajectory Data to Improve Bayesian Optimization for Reinforcement Learning

Figure 7: Cart Pole Task: We report the total return per episode averaged over 40 runs of
each algorithm.

PILCO results after 50 episodes. Thereafter we report the performance of the best policy
found by PILCO.

5.4 Cart-pole Task

In the Cart-pole domain, the agent attempts to balance a pole fixed to a movable cart. The
policy selects the magnitude of the change in velocity (positive or negative) applied to the
base of the cart. The policy is a function of four features (v, v′, ω, ω′), the velocity, change
in velocity, angle of the pole, and angular velocity of the pole. The reward function gives a
positive reward for each successful step. A penalty is added to this reward when pole angles
deviate from vertical, and when the location of the cart deviates from the center. A large
positive reward is received after 1000 steps if the pole has been kept upright and the cart
has remained within a fixed boundary. Episodes terminate early if the pole falls or the cart
leaves its specified boundary.

Figure 7 shows the results for the Cart Pole task. Clearly, the BBK outperforms all
of the model-free competitors including BOA with the squared exponential kernel. Its
performance is comparable to MBOA despite being fully model-free. In this task, the
linear domain models are highly accurate. MBOA effectively employs the models to rapidly
identify the optimal policy. By comparison, all other methods, except BOA(BBK), must
accumulate more data to identify a good policy. BOA consistently identifies a policy which
balances the pole for the full 1000 steps. Q-Learning and OLPOMDP require at least 1250

273

Wilson, Fern and Tadepalli

Figure 8: Planar Arm Task: We report the total return per episode averaged over 40 runs
of each algorithm.

episodes before similar performance is achieved. LSPI converges faster but cannot match
the performance of either the BOA or MBOA. Please note that our problem is distinct from
the original LSPI balancing task in the following ways: 1. The force applied by the agent
is more restricted. 2. The cart is constrained to move within a fixed boundary. 3. The
reward function penalizes unstable policies. After 30 episodes the DYNA-Q algorithm has
found a solution comparable to that of MBOA. This performance is unsurprising given the
accuracy of the estimated domain models. PILCO learns a high quality model given two
episodes of experience and finds an optimal policy by the third episode. In the cart-pole
task learning a local model around the balance point is sufficient to perform well and this
contributes to PILCO’s exceptional performance.

5.5 3-Link Planar Arm Domain

In the 3-link Planar Arm task the goal is to direct the arm tip to a target region on a
2 dimensional plane. Each of the three controllers independently outputs a torque (-1,1)
for one arm joint. Each controller is a soft-max action selection policy. Only two features
are needed for each controller resulting in 12 total policy parameters (policy parameters
are jointly optimized). The features are composed of x and y displacements from the
center of the target location to the arm tip location. The reward function penalizes the
agent proportional to the distance between the arm tip and the target location. A positive
reward is received when the arm tip is placed within the goal space.

274

Using Trajectory Data to Improve Bayesian Optimization for Reinforcement Learning

The performance of each algorithm is shown in Figure 8. The generalization of the
divergence-based kernel, BOA(BBK), is particularly powerful in this case. Much of the
policy space is quickly identified to be redundant and is excluded from the search. The
agent fixes on an optimal policy almost immediately. Like the Cart-pole task, the transition
and reward function of the arm task are linear functions. Once the functions are estimated
MBOA quickly identifies the optimal policy (the mean function accurately reflects the true
surface). Additional data is needed before the BOA identifies policies with similar quality.
The other model-free alternatives require 1000 episodes before converging to the same result.
DYNA-Q found a policy comparable to the MBOA, but required more experience. In the
three tasks discussed above the MBOA makes better use of the available computational
resources and remains robust to model bias. PILCO very quickly finds an optimal policy
in this task. After ten episodes PILCO has learned an accurate GP model of the transition
dynamics. Thereafter, PILCO finds a near optimal policy. We have extrapolated PILCO’s
performance beyond the 20th episode. Each PILCO run required 3 weeks to generate the
first 20 episodes.

5.6 Bicycle Balancing

Agents in the bicycle balancing task must keep the bicycle balanced for ten minutes of
simulated time. For our experiments we use the simulator originally introduced in Randlov
and Alstrom (1998). The state of the bicycle is defined by four variables (ω, ω̇, ν, ν̇). The
variable ω is the angle of the bicycle with respect to vertical, and ω̇ is its angular velocity.
The variable ν is the angle of the handlebars with respect to neutral, and ν̇ is the angular
velocity. The goal of the agent is to keep the bicycle from falling. Falling occurs when
|ω| > π/15. The same discrete action set used in Lagoudakis et al. (2003) is used in
our implementations. Actions have two components. The first component is the torque
applied to the handlebars T ∈ (−1, 0, 1), and the second component is the displacement
of the rider in the saddle p ∈ (−.02, 0, .02). Five actions are composed from these values
(T, p) ∈ ((−1, 0), (1, 0), (0,−.02), (0, .02), (0, 0)). The reward function is defined to be the
squared change in ω, (ωt − ωt+1)

2, at each time step. An additional -10 penalty is imposed
if the bicycle falls before time expires. Rewards are discounted in time insuring that longer
runs result in smaller penalties. In our implementation the set of 20 features introduced
in Lagoudakis et al. (2003) were used. The softmax policy has 100 parameters. Please
note that our LSPI implementation of bicycle does not benefit from the design decisions
introduced in Lagoudakis et al. (2003).

In Figure 9 we report the performance of MBOA and LSPI. All other implementations,
including MBOA combined with the BBK, show no improvement in 300 episodes. In this
case the BBK performs poorly. It overestimates the distance between policies with dissimilar
action selection distributions. In the bicycle riding task individual sequences of oscillating
actions can produce similar state trajectories. A policy executing right,left,right,left,....
behaves much like a policy executing left,right,left,right,... even though the action selection
distributions may be arbitrarily dissimilar. This is a problem with the BBK that must be
addressed in future work. By contrast, after 300 episodes MBOA has found a balancing
policy. For this experiment we used a linear kernel function with automatic relevance
determination. The parameters of the linear kernel function were optimized by maximum

275

Wilson, Fern and Tadepalli

Figure 9: Bicycle Balancing Task: We report the total return per episode averaged over
multiple runs of each algorithm (15 runs of MBOA and 30 runs of LSPI).

likelihood after each policy execution. Before optimization of the hyper-parameters the
algorithm was made to choose 20 policies with the uninformed values. MBOA uses very
simple and highly inaccurate linear models in this task. Errors in the linear models are
significant enough to cause DYNA-Q to fail. MBOA exhibits robust performance despite
the predictive errors caused by model bias. It converges to a near optimal policy and
exhibits excellent data efficiency.

We allowed the PILCO algorithm to run for three weeks. After this period each run
had completed only 24 episodes. This was due to the size of the kernel covariance matri-
ces. Taken together these matrices consumed several gigabytes of memory and forced the
algorithm to access the hard disk. This is a serious problem with using (sparse) GP mod-
els to represent the transition and reward function in MDPs. Unfortunately, the PILCO
algorithm had not found a high quality policy given the available experience. We elected
to exclude these results from the depicted experiments.

6. Related Work

By extending the work on BO we place our research squarely within the growing body of
literature on Bayesian RL. Most closely related is extensive work adapting BO methods to
the RL problem (Lizotte et al., 2007; Lizotte, 2008). Like our work, these authors propose
modeling the surface of the expected return, that maps policy parameters to returns, with
a GP model. We have extended this work by designing new GP models of the expected
return that leverage trajectory data and we have empirically demonstrated the performance
benefits of these new models.

276

Using Trajectory Data to Improve Bayesian Optimization for Reinforcement Learning

Gaussian processes have been used to model functions of interest in the RL setting.
Related work employing Gaussian processes in RL includes Engel et al. (2003, 2005) in which
the value function is modeled as a Gaussian Process, Ghavamzadeh and Engel (2007a,b)
wherein GPs were used to model the gradient of the expected return, and the work of
Deisenroth and Rasmussen (2011) and Rasmussen and Kuss (2004) where GPs were used
to model the transition and reward functions.

Work by Engel et al. (2003, 2005) focuses on the problem of estimating the value function
given a fixed action selection policy. GP models are used to approximate the value function;
The GP model introduces a smoothness prior on the space of value functions. Similarly,
Ghavamzadeh and Engel (2007a,b) focus on the problem of estimating the gradient of the
value function for a fixed action selection policy. It should be noted that the kernel described
by Ghavamzadeh and Engel (2007b) exploit trajectory information; the authors propose a
Fisher kernel for relating sampled trajectories. This facilitates generalization across sampled
trajectories and leads to improved estimates of the gradient of the value function. The
results of their experiments show consistent improvement, in a set of benchmark problems,
over standard Monte-Carlo methods for estimating the gradient of the expected return.
However, their kernel cannot be used to compare policies as is done in our work. During
the process of policy improvement their approach re-samples trajectory data for each new
policy. In contrast, the GP models discussed in this article perform off-policy estimation of
the expected return and re-use sampled trajectory data to approximate the returns of new
policies.

Numerous model-based Bayesian RL algorithms exploit Bayesian priors on the domain
model parameters (Dearden et al., 1999; Strens, 2000; Duff, 2003; Deisenroth and Ras-
mussen, 2011; Rasmussen and Kuss, 2004). The priors encode the agents uncertainty of the
world it lives within. Like our algorithm, these methods actively explore to reduce uncer-
tainty. For instance, work by Dearden et al. (1999) introduced a method for representing
Bayesian belief states and proposed an action selection policy based on Value of Information
(this policy was first introduced in Dearden et al. 1998). Related work by Strens (2000) and
Duff (2003) introduced new approaches for approximately solving the Bayesian belief state
MDP. An approximate solution of the belief state MDP can be used to derive an action
selection policy that approximates Bayes optimal action selection. Our work explores the
problem of Bayesian parametric policy search and exploits a heuristic for directed explo-
ration of the parametric policy space. However, we avoid Bayesian modeling of the domain
models. Instead, our approach directly represents uncertainty of the expected return. Our
empirical results demonstrate how this impacts practical application.

To understand the consequences of this decision consider the recent work by Deisenroth
and Rasmussen (2011) whom developed the PILCO algorithm. PILCO learns GP models of
the transition and reward functions. The learned transition and reward functions are used
to approximate the expected return via prediction of state-reward sequences. The policy is
optimized by analytic gradient ascent on the approximated expected return. To represent
a GP model of the transition and reward function it is necessary to represent a matrix with
T 2 elements (where T is the total number of observed state transitions). This is problematic
in the RL setting where agents may take many thousands of steps during their lifetimes.
Our approach to BO uses GPs to model the mapping from policies to expected returns.
Using GP models to directly model the expected return prevents the kernel matrices from

277

Wilson, Fern and Tadepalli

exploding in size. For instance, in the experiments above our kernel matrices include at
most 3002 elements whereas PILCO’s kernel matrices quickly explode to more than 400002

elements. Sparse GP inference can help to reduce the costs of dealing with these large
matrices. However, as is demonstrated in our experiments we found that sparse inference
was not sufficient to overcome the performance problems. The advantage of the approach
can be further improved by introducing heuristic local search techniques for discovering the
maximum of the expected improvement function.

Work by Kakade (2001) presented a metric based on the Fisher information to derive the
natural policy gradient update. Kakade (2001) demonstrated that natural policy gradient
methods outperform standard gradient methods in a difficult Tetris domain. Follow up
work by Bagnell and Schneider (2003) proposed pursuing a related idea within the path
integral framework for RL (the same framework of this paper). Their work considered
metrics defined as functions on the distribution over trajectories generated by a fixed policy
P (ξ|θ). In contrast to our goals both works focus on iteratively improving a policy via
gradient descent. Furthermore, no explicit attention is paid to using the metric information
to guide the exploratory process. However, the insight that policy relationships should be
expressed as functions of the trajectory density has played a key role in the development of
our behavior based kernel.

Work by Peters et al. (2010) and Kober and Peters (2010) is related to our proposed
kernel function. Peters et al. (2010) used a divergence-based bound to control exploration.
Specifically, they attempt to maximize the expected reward subject to a bound proportional
to the KL-divergence between the empirically observed state-action distribution and the
state-action distribution of the new policy. The search for a new policy is necessarily local,
restricted by the bound to be close to the current policy. By contrast, our work uses the
divergence as a measure of similarity and performs a global, aggressive, search of the policy
space. Work by Kober and Peters (2010) derives a lower bound on the importance sampled
estimate of the expected return, as was done in Dayan and Hinton (1997), and observes the
relationship to the KL-divergence of the reward weighted behavior policy and the target
policy. They derive from this relationship an EM-based update for the policy parameters.
An explicit effort is made to construct the update such that exploration is accounted for.
However, their method of state-dependent exploration is based on random perturbations
of the action selection policy. Our method of exploration is instead determined by the
posterior uncertainty and does not depend on a behavior policy.

The BBK leverages a generative model of the trajectory distribution (estimated from
a finite set of samples) to compute a measure of policy similarity that is robust to policy
reformulation (it only depends on the allocation of probability mass). By contrast, most
work on kernel methods can be considered model-free in that they do not make distribu-
tional assumptions regarding the data generating process. Recent work has explored the
advantages of incorporating generative assumptions into the kernel function (Lafferty and
Lebanon, 2005; Belkin and Niyogi, 2002; Moreno et al., 2004). In particular, our work is
closely related to work by Moreno et al. (2004) which introduces a kernel based on the
symmetric KL-divergence. Our BBK is a modification of this kernel for the purpose of GP
modeling of the expected return. In addition, we describe a method of estimating the kernel
values given off-policy trajectory samples whereas previous work typically assumes access
to a generative model.

278

Using Trajectory Data to Improve Bayesian Optimization for Reinforcement Learning

7. Conclusions

General black box Bayesian optimization algorithms have been adapted to the RL policy
search problem, and have shown promise in difficult domains. We show how to improve
these algorithms by exploiting trajectory data generated by agents.

For model-free RL, we presented a new kernel function for GP models of the expected
return. The kernel compares sequences of action selection decisions from pairs of policies.
We motivated our kernel by examining a simple upper bound on the absolute difference of
expected returns for two arbitrary policies. We used this upper bound as the basis for our
kernel function, argued that the properties of the bound ensure a more reasonable measure
of policy relatedness, and demonstrated empirically that this kernel can substantially speed
up exploration. The empirical results show that the derived kernel is competitive with
the model-based RL algorithms MBOA and Dyna-Q, and converge more quickly than the
model-free algorithms tested. Additionally, we showed that in certain circumstances BBK
can be combined with the MBOA to improve the quality of exploration.

For model-based RL we presented MBOA for model-based RL. MBOA improves on
the standard BOA algorithm by using collections of trajectories to learn an approximate
simulator of the decision process. The simulator is used to define an approximation of the
underlying objective function. Potentially, such a function provides useful information about
the performance of unseen policies which are distant (according to a measure of similarity)
from previous data points. Empirically, we show that the MBOA has exceptional data
efficiency. Its performance exceeds LSPI, OLPOMDP, Q-Learning with CMAC function
approximation, BOA, and DYNA-Q in all but one of our tasks. MBOA performs well even
when the learned domain models have serious errors. Overall, MBOA appears to be a useful
step toward combining model-based methods with Bayesian optimization for the purposes
of handling approximate models and improving data efficiency.

The penalty for taking this approach is straightforward. A substantial increase in com-
putational cost is incurred during optimization of the surrogate function. This occurs when
evaluating MBOA’s approximate simulator, or when estimating the values of the behavior
based kernel. In both cases the cost of evaluating the kernel function grows linearly in
the length of the trajectories. However, the cost is compounded during optimization and
will make these approaches infeasible when trajectory lengths become huge. Overcoming
this barrier is an important step towards taking advantage of trajectory data generated in
complex domains.

Acknowledgments

We gratefully acknowledge the support of the Office of Naval Research under grant number
N00014-11-1-0106, the Army Research Office under grant number W911NF-09-1-0153, and
the National Science Foundation under grant number IIS-0905678.

References

J. Andrew Bagnell and Jeff Schneider. Covariant policy search. In Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence, pages 1019–1024,

279

Wilson, Fern and Tadepalli

San Francisco, CA, USA, 2003.

J. Baxter, P. Bartlett, and L. Weaver. Experiments with infinite-horizon, policy-gradient
estimation. Journal of Artificial Intelligence Research, 15(1):351–381, 2001.

M. Belkin and P. Niyogi. Using manifold structure for partially labelled classification. In
Advances in Neural Information Processing Systems, pages 929–937, Vancouver, B.C.,
CA, 2002.

E. Brochu, V. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement
learning. Technical Report TR-2009-023, 2009.

P. Dayan and G. Hinton. Using expectation-maximization for reinforcement learning. Neural
Computation, 9:271–278, 1997.

R. Dearden, N. Friedman, and S. Russell. Bayesian q-learning. In Proceedings of the
Fifteenth National Conference on Artificial Intelligence, pages 761–768, 1998.

R. Dearden, N. Friedman, and D. Andre. Model-based bayesian exploration. In Uncertainty
in Artificial Intelligence, pages 150–159, Stockholm, Sweden, 1999.

M. Deisenroth and C. Rasmussen. PILCO: A model-based and data-efficient approach to
policy search. In Proceedings of the Twenty-Eigth International Conference on Machine
Learning, pages 465–472, Bellevue, Washington, USA, 2011.

M. Duff. Design for an optimal probe. In Proceedings of the Twentieth International
Conference on Machine Learning, pages 131–138, Washington, DC, USA, 2003.

Y. Engel, S. Mannor, and R. Meir. Bayes meets bellman:the Gaussian process approach to
temporal difference learning. In Proceedings of the Twentieth International Conference
on Machine Learning, pages 154–161, Washington, DC, USA, 2003.

Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with Gaussian processes. In
Proceedings of the Twenty-Second International Conference on Machine Learning, pages
201–208, University of Bonn, Germany, 2005.

M. Ghavamzadeh and Y. Engel. Bayesian actor-critic algorithms. In Proceedings of the
Twenty-Fourth International Conference on Machine Learning, pages 297–304, Oregon
State University, Corvallis, USA, 2007a.

M. Ghavamzadeh and Y. Engel. Bayesian policy gradient algorithms. In Proceedings of the
Twentieth Annual Conference on Neural Information Processing Systems, pages 457–464,
Vancouver, B.C., CA, 2007b.

N. Hansen. The CMA evolution strategy: A comparing review. In J.A. Lozano, P. Lar-
ranaga, I. Inza, and E. Bengoetxea, editors, Towards a New Evolutionary Computation.
Advances on Estimation of Distribution Algorithms, pages 75–102. Springer, 2006.

D. Jones, C. Perttunen, and B. Stuckman. Lipschitzian optimization without the Lipschitz
constant. Journal of Optimization Theory and Applications, 79(1):157–181, 1993.

280

Using Trajectory Data to Improve Bayesian Optimization for Reinforcement Learning

S. Kakade. A natural policy gradient. In Advances in Neural Information Processing
Systems, pages 1531–1538, Vancouver, B.C., CA, 2001.

J. Kober and J. Peters. Policy search for motor primitives in robotics. Machine Learning,
84(1-2):1–33, 2010.

J. Lafferty and G. Lebanon. Diffusion kernels on statistical manifolds. Journal of Machine
Learning Research, 6:129–163, 2005.

M. Lagoudakis, R. Parr, and L. Bartlett. Least-squares policy iteration. Journal of Machine
Learning Research, 4:1107–1149, 2003.

D. Lizotte. Practical Bayesian Optimization. PhD thesis, University of Alberta, Edmonton,
Canada, 2008.

D. Lizotte, T. Wang, M. Bowling, and D. Schuurmans. Automatic gait optimization with
Gaussian process regression. In Proceedings of the Twentieth International Joint Confer-
ence on Artificial Intelligence, pages 944–949, Hyderabad, India, 2007.

J. Mockus. Application of Bayesian approach to numerical methods of global and stochastic
optimization. Global Optimization, 4(4):347–365, 1994.

P. Moreno, P. Ho, and N. Vasconcelos. A Kullback-Leibler divergence based kernel for SVM
classification in multimedia applications. In Advances in Neural Information Processing
Systems, Vancouver, B.C., CA, 2004.

X. Nguyen, M. Wainwright, and M. Jordan. Estimating divergence functionals and the
likelihood ratio by penalized convex risk minimization. In Advances in Neural Information
Processing Systems, pages 1089–1096, Vancouver, B.C., CA, 2007.

J. Peters, K. Mülling, and Y. Altün. Relative entropy policy search. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, pages 1607–1612, Atlanta,
Georgia, USA, 2010.

M. Pinsker. Information and Information Stability of Random Variables and Processes.
Holden-Day Inc, San Francisco, CA, USA, 1964. Translated by Amiel Feinstein.

J. Randlov and P. Alstrom. Learning to drive a bicycle using reinforcement learning and
shaping. In Proceedings of the Fifteenth International Conference on Machine Learning,
pages 463–471, San Francisco, CA, 1998.

C. Rasmussen and M. Kuss. Gaussian processes in reinforcement learning. In Advances in
Neural Information Processing Systems, pages 751–759, Vancouver, B.C., CA, 2004.

C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning (Adaptive Com-
putation and Machine Learning). The MIT Press, Cambridge, MA, USA, 2005.

M. J. A. Strens. A Bayesian framework for reinforcement learning. In Proceedings of the
Seventeenth International Conference on Machine Learning, pages 943–950, Stanford,
CA, USA, 2000.

281

Wilson, Fern and Tadepalli

R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, USA, 1998.

282

Journal of Machine Learning Research 15 (2014) 283-287 Submitted 10/12; Revised 9/13; Published 1/14

Information Theoretical Estimators Toolbox

Zoltán Szabó∗ zoltan.szabo@gatsby.ucl.ac.uk
Gatsby Computational Neuroscience Unit
Centre for Computational Statistics and Machine Learning
University College London
Alexandra House, 17 Queen Square, London - WC1N 3AR

Editor: Balázs Kégl

Abstract
We present ITE (information theoretical estimators) a free and open source, multi-platform,
Matlab/Octave toolbox that is capable of estimating many different variants of entropy,
mutual information, divergence, association measures, cross quantities, and kernels on dis-
tributions. Thanks to its highly modular design, ITE supports additionally (i) the com-
binations of the estimation techniques, (ii) the easy construction and embedding of novel
information theoretical estimators, and (iii) their immediate application in information
theoretical optimization problems. ITE also includes a prototype application in a central
problem class of signal processing, independent subspace analysis and its extensions.
Keywords: entropy-, mutual information-, association-, divergence-, distribution kernel
estimation, independent subspace analysis and its extensions, modularity, Matlab/Octave,
multi-platform, GNU GPLv3 (≥)

1. Introduction

Since the pioneering work of Shannon (1948), entropy, mutual information,1 association,
divergence measures and kernels on distributions have found a broad range of applications in
many areas of machine learning (Beirlant et al., 1997; Wang et al., 2009; Villmann and Haase,
2010; Basseville, 2013; Póczos et al., 2012; Sriperumbudur et al., 2012). Entropies provide
a natural notion to quantify the uncertainty of random variables, mutual information and
association indices measure the dependence among its arguments, divergences and kernels
offer efficient tools to define the ‘distance’ and the inner product of probability measures,
respectively.

A central problem based on information theoretical objectives in signal processing is
independent subspace analysis (ISA; Cardoso 1998), a cocktail party problem with inde-
pendent groups. One of the most relevant and fundamental hypotheses of the ISA research

∗. The authors would like to thank the anonymous reviewers for their valuable suggestions. This work
was supported by the Gatsby Charitable Foundation. The research was carried out as part of the
EITKIC_12-1-2012-0001 project, which is supported by the Hungarian Government, managed by the
National Development Agency, financed by the Research and Technology Innovation Fund and was
performed in cooperation with the EIT ICT Labs Budapest Associate Partner Group. (www.ictlabs.
elte.hu). The Project was supported by the European Union and co-financed by the European Social
Fund (grant agreement no. TÁMOP 4.2.1/B-09/1/KMR-2010-0003).

1. The Shannon mutual information is also known in the literature as the special case of total correlation
or multi-information when two variables are considered.

c©2014 Zoltán Szabó.

www.ictlabs.elte.hu
www.ictlabs.elte.hu

Zoltán Szabó

is the ISA separation principle (Cardoso, 1998): the ISA task can be solved by ICA (ISA
with one-dimensional sources, Hyvärinen et al. 2001; Cichocki and Amari 2002; Choi et al.
2005) followed by clustering of the ICA elements. This principle (i) forms the basis of the
state-of-the-art ISA algorithms, (ii) can be used to design algorithms that scale well and ef-
ficiently estimate the dimensions of the hidden sources, (iii) has been recently proved (Szabó
et al., 2007) and (iv) can be extended to different linear-, controlled-, post nonlinear-, com-
plex valued-, partially observed systems, as well as to systems with nonparametric source
dynamics. For a recent review on the topic and ISA applications, see Szabó et al. (2012).

Although there exist many exciting applications of information theoretical measures, to
the best of our knowledge, available packages in this domain focus on (i) discrete variables,
or (ii) quite specialized applications/information theoretical estimation methods. Our goal
is to fill this serious gap by coming up with a (i) highly modular, (ii) free and open source,
(iii) multi-platform toolbox, the ITE (information theoretical estimators) package, which
focuses on continuous variables and

1. is capable of estimating many different kind of entropy, mutual information, associa-
tion, divergence measures, distribution kernels based on nonparametric methods.2

2. offers a simple and unified framework to (i) easily construct new estimators from
existing ones or from scratch, and (ii) transparently use the obtained estimators in
information theoretical optimization problems,

3. with a prototype application in ISA and its extensions.

2. Library Overview

Below we provide a brief overview of the ITE package:
Information Theoretical Measures: The ITE toolbox is capable of estimating numerous

important information theoretical quantities including
Entropy: Shannon-, Rényi-, Tsallis-, complex-, Φ-, Sharma-Mittal entropy,
Mutual information: generalized variance, kernel canonical correlation analysis, ker-

nel generalized variance, Hilbert-Schmidt independence criterion, Shannon-, L2-,
Rényi-, Tsallis-, Cauchy-Schwartz quadratic-, Euclidean distance based quadratic-,
complex-, χ2 mutual information; copula-based kernel dependency, multivariate
version of Hoeffding’s Φ, Schweizer-Wolff’s σ and κ, distance covariance and cor-
relation, approximate correntropy independence measure,

Divergence: Kullback-Leibler-, L2-, Rényi-, Tsallis-, Cauchy-Schwartz-, Euclidean
distance based-, Jensen-Shannon-, Jensen-Rényi-, Jensen-Tsallis-, K-, L-, Pearson
χ2-, f-divergences; Hellinger-, Bhattacharyya-, energy-, (non-)symmetric Bregman-
, J-distance; maximum mean discrepancy,

Association measure: multivariate (conditional) extensions of Spearman’s ρ, (cen-
tered) correntropy, correntropy induced metric, correntropy coefficient, centered
correntropy induced metric, multivariate extension of Blomqvist’s β, lower and
upper tail dependence via conditional Spearman’s ρ,

Cross quantity: cross-entropy,

2. It is highly advantageous to apply nonparametric approaches: the ‘opposite’ plug-in type methods—
estimating the underlying densities—scale poorly as the dimension is increasing.

284

Information Theoretical Estimators (ITE) Toolbox

Distribution kernel: expected-, Bhattacharyya-, probability product-, (exponenti-
ated) Jensen-Shannon-, (exponentiated) Jensen-Tsallis-, exponentiated Jensen-
Rényi kernel.

Independent Process Analysis (IPA): ITE offers solution methods for independent sub-
space analysis (ISA) and its extensions to different linear-, controlled-, post nonlinear-,
complex valued-, partially observed systems, as well as to systems with nonparametric
source dynamics; combinations are also possible. The solutions are based on the ISA
separation principle and its generalizations (Szabó et al., 2012).

Quick Tests: Beyond IPA, ITE provides quick tests to study the efficiency of the estima-
tors. These tests cover (i) analytical value vs. estimation, (ii) positive semi-definiteness
of Gram matrices defined by distribution kernels and (iii) image registration problems.

Modularity: The core idea behind the design of ITE is modularity. The modularity is
based on the following four pillars:
1. The estimation of many information theoretical quantities can be reduced to

k-nearest neighbor-, minimum spanning tree computation, random projection,
ensemble technique, copula estimation, kernel methods.

2. The ISA separation principle and its extensions make it possible to decompose the
solutions of the IPA problem family to ICA, clustering, ISA, AR (autoregressive)-,
ARX- (AR with exogenous input) and mAR (AR with missing values) identifi-
cation, gaussianization and nonparametric regression subtasks.

3. Information theoretical identities can relate numerous entropy, mutual informa-
tion, association, cross- and divergence measures, distribution kernels (Cover and
Thomas, 1991).

4. ISA can be formulated via information theoretical objectives (Szabó et al., 2007):

JI(P) = I
(
y1, . . . ,yM

)
, JIrecursive(P) =

M−1∑
m=1

I
(
ym,

[
ym+1, ...,yM

])
,

JsumH(P) =
M∑

m=1

H (ym) , Jsum-I(P) = −
M∑

m=1

I
(
ym1 , ..., y

M
dm

)
,

JIpairwise(P) =
∑

m1 6=m2

I (ym1 ,ym2) , JIpairwise1d(P) =

M∑
m1 6=m2

dm1∑
i1=1

dm2∑
i2=1

I
(
ym1
i1
, ym2

i2

)
,

where the minimizations are w.r.t. the optimal clustering (P) of the ICA elements.
Dedicated Subtask Solvers, Extension: The ITE package offers dedicated solvers for

the obtained subproblems detailed in ‘Modularity :1-2’. Thanks to this flexibility, ex-
tension of ITE can be done effortlessly: it is sufficient to add a new switch entry in
the subtask solver.

Base and Meta Estimators: One can derive new, meta (entropy, mutual information,
association, divergence, cross quantity, distribution kernel) estimators in ITE from
existing base or meta ones by ‘Modularity :3’. The calling syntax of base and meta
methods are completely identical thanks to the underlying unified template structure

285

Zoltán Szabó

followed by the estimators. The ITE package also supports an indicator for the im-
portance of multiplicative constants.3

We illustrate how easily one can estimate information theoretical quantities in ITE:
>Y1 = rand(3,1000); Y2 = rand(3,2000); %data of interest
>mult = 1; %multiplicative constant is important
>co = D_initialization(’Jdistance’,mult);%initialize the estimator
>D = D_estimation(Y1,Y2,co); %estimation

Next, we demonstrate how one can construct meta estimators in ITE. We consider
the definitions of the initialization and the estimation of the J-distance. The KL-
divergence, which is symmetrised in J-distance, is estimated based on the existing
k-nearest neighbor technique.

function [co] = DJdistance_initialization(mult)
co.name = ’Jdistance’; %name of the estimator
co.mult = mult; %importance of multiplicative const.
co.member_name = ’KL_kNN_k’; %method used for KL estimation
co.member_co = D_initialization(co.member_name,mult); %initialization

function [D_J] = DJdistance_estimation(X,Y,co)
D_J = D_estimation(X,Y,co.member_co) + D_estimation(Y,X,co.member_co);

ISA Objectives and Optimization: Due to the unified syntax of the estimators, one
can formulate and solve information theoretical optimization problems in ITE in a
high-level view. Our example included in ITE is ISA (and its extensions) whose ob-
jective can be expressed by entropy and mutual information terms, see ‘Modularity :4’.
The unified template structure in ITE makes it possible to use any of the estimators
(base/meta) in these cost functions.
A further attractive aspect of ITE is that even in case of unknown subspace dimensions,
it offers well-scaling approximation schemes based on spectral clustering methods.
Such methods are (i) robust and (ii) scale excellently, a single general desktop computer
can handle about a million observations—in our case estimated ICA elements—within
several minutes (Yan et al., 2009).

3. Availability and Requirements

The ITE package is self-contained, it only needs a Matlab or an Octave environment4 with
standard toolboxes. ITE is multi-platform, it has been extensively tested on Windows and
Linux; since it is made of standard Matlab/Octave and C++ files, it is expected to work on
alternative platforms as well.5 ITE is released under the free and open source GNU GPLv3
(≥) license. The accompanying source code and the documentation of the toolbox has
been enriched with numerous comments, examples, detailed instructions for extensions, and
pointers where the interested user can find further mathematical details about the embodied
techniques. The ITE package is available at https://bitbucket.org/szzoli/ite/.

3. In many applications, it is completely irrelevant whether we estimate, for example, H(y) or cH(y), where
c = c(d) is a constant depending only on the dimension of y ∈ Rd (d), but not on the distribution of y.
Such ‘up to proportional factor’ estimations can often be carried out more efficiently.

4. See http://www.mathworks.com/products/matlab/ and http://www.gnu.org/software/octave/.
5. On Windows (Linux) we suggest using the Visual C++ (GCC) compiler.

286

https://bitbucket.org/szzoli/ite/
http://www.mathworks.com/products/matlab/
http://www.gnu.org/software/octave/

Information Theoretical Estimators (ITE) Toolbox

References

Michéle Basseville. Divergence measures for statistical data processing - an annotated bib-
liography. Signal Processing, 93:621–633, 2013.

Jan Beirlant, Edward J. Dudewicz, László Győrfi, and Edward C. van der Meulen. Non-
parametric entropy estimation: An overview. International Journal of Mathematical and
Statistical Sciences, 6:17–39, 1997.

Jean-François Cardoso. Multidimensional independent component analysis. In International
Conference on Acoustics, Speech, and Signal Processing, pages 1941–1944, 1998.

Seungjin Choi, Andrzej Cichocki, Hyung-Min Park, and Soo-Yound Lee. Blind source sepa-
ration and independent component analysis. Neural Information Processing - Letters and
Reviews, 6:1–57, 2005.

Andrzej Cichocki and Shun-ichi Amari. Adaptive Blind Signal and Image Processing. John
Wiley & Sons, 2002.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley and
Sons, New York, USA, 1991.

Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent Component Analysis. John
Wiley & Sons, 2001.

Barnabás Póczos, Zoubin Ghahramani, and Jeff Schneider. Copula-based kernel dependency
measures. In International Conference on Machine Learning, pages 775–782, 2012.

Claude E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27(3):379–423, 1948.

Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf, and Gert
R. G. Lanckriet. On the empirical estimation of integral probability metrics. Electronic
Journal of Statistics, 6:1550–1599, 2012.

Zoltán Szabó, Barnabás Póczos, and András Lőrincz. Undercomplete blind subspace decon-
volution. Journal of Machine Learning Research, 8:1063–1095, 2007.

Zoltán Szabó, Barnabás Póczos, and András Lőrincz. Separation theorem for independent
subspace analysis and its consequences. Pattern Recognition, 45:1782–1791, 2012.

Thomas Villmann and Sven Haase. Mathematical aspects of divergence based vector quan-
tization using Fréchet-derivatives. Technical report, University of Applied Sciences Mit-
tweida, 2010.

Quing Wang, Sanjeev R. Kulkarni, and Sergio Verdú. Divergence estimation for multidi-
mensional densities via k-nearest-neighbor distances. IEEE Transactions on Information
Theory, 55:2392–2405, 2009.

Donghui Yan, Ling Huang, and Michael I. Jordan. Fast approximate spectral clustering.
In International Conference on Knowledge Discovery and Data Mining, pages 907–916,
2009.

287

Journal of Machine Learning Research 15 (2014) 289-333 Submitted 9/11; Revised 4/13; Published 1/14

Off-policy Learning With Eligibility Traces: A Survey

Matthieu Geist matthieu.geist@supelec.fr
IMS-MaLIS Research Group & UMI 2958 (GeorgiaTech-CNRS)
Supélec
2 rue Edouard Belin
57070 Metz, France

Bruno Scherrer bruno.scherrer@inria.fr
MAIA project-team
INRIA Lorraine
615 rue du Jardin Botanique
54600 Villers-lès-Nancy, France

Editor: Ronald Parr

Abstract

In the framework of Markov Decision Processes, we consider linear off-policy learning,
that is the problem of learning a linear approximation of the value function of some fixed
policy from one trajectory possibly generated by some other policy. We briefly review
on-policy learning algorithms of the literature (gradient-based and least-squares-based),
adopting a unified algorithmic view. Then, we highlight a systematic approach for adapting
them to off-policy learning with eligibility traces. This leads to some known algorithms—
off-policy LSTD(λ), LSPE(λ), TD(λ), TDC/GQ(λ)—and suggests new extensions—off-
policy FPKF(λ), BRM(λ), gBRM(λ), GTD2(λ). We describe a comprehensive algorith-
mic derivation of all algorithms in a recursive and memory-efficent form, discuss their
known convergence properties and illustrate their relative empirical behavior on Garnet
problems. Our experiments suggest that the most standard algorithms on and off-policy
LSTD(λ)/LSPE(λ)—and TD(λ) if the feature space dimension is too large for a least-
squares approach—perform the best.

Keywords: reinforcement learning, value function estimation, off-policy learning, eligi-
bility traces

1. Introduction

We consider the problem of learning a linear approximation of the value function of some
fixed policy in a Markov Decision Process (MDP) framework. This study is performed in
the most general situation where learning must be done from a single trajectory possibly
generated by some other policy, also known as off-policy learning. Given samples, well-known
methods for estimating a value function are temporal difference (TD) learning and Monte
Carlo (Sutton and Barto, 1998). TD learning with eligibility traces (Sutton and Barto,
1998), known as TD(λ), constitutes a nice bridge between both approaches; by controlling
the bias/variance trade-off (Kearns and Singh, 2000), their use can significantly speed up
learning. When the value function is approximated through a linear architecture, the depth

c©2014 Matthieu Geist and Bruno Scherrer.

Geist and Scherrer

λ of the eligibility traces is also known to control the quality of approximation (Tsitsiklis
and Van Roy, 1997). Overall, the use of these traces often plays an important practical role.

gradient-based least-squares-based
bootstrapping TD FPKF

(Sutton and Barto, 1998) (Choi and Van Roy, 2006)
residual gBRM BRM (Engel, 2005)

(Baird, 1995) (Geist and Pietquin, 2010b)
projected fixed point TDC/GTD2 LSTD (Bradtke and Barto, 1996)

(Sutton et al., 2009) LSPE (Nedić and Bertsekas, 2003)

Table 1: Taxonomy of linearly parameterized estimators for value function approximation
(Geist and Pietquin, 2013).

There has been a significant amount of research on parametric linear approximation of
the value function, without eligibility traces (in the on- or off-policy case). We follow the
taxonomy proposed by Geist and Pietquin (2013), briefly recalled in Table 1 and further
developed in Section 2. Value function approximators can be categorized depending on the
cost function they minimize (based on bootstrapping, on a Bellman residual minimization or
on a projected fixed point approach) and on how it is minimized (gradient descent or linear
least-squares). Most of these algorithms have been extended to take into account eligibility
traces, in the on-policy case. Works on extending these eligibility-trace approaches to off-
policy learning are scarcer. They are summarized in Table 2 (algorithms in black). The
first motivation of this article is to argue that it is conceptually simple to extend all the
algorithms of Table 1 so that they can be applied to the off-policy setting and use eligibility
traces. If this allows re-deriving existing algorithms (in black in Table 2), it also leads to
new candidate algorithms (in red in Table 2). The second motivation of this work is to
discuss the subtle differences between these intimately-related algorithms, and to provide
some comparative insights on their empirical behavior (a topic that has to our knowledge
not been considered in the literature, even in the simplest on-policy and no-trace situation).

gradient-based least-squares-based
bootstrapping off-policy TD(λ) off-policy FPKF(λ)

(Bertsekas and Yu, 2009)
residual off-policy gBRM(λ) off-policy BRM(λ)

projected fixed point GQ(λ) a.k.a. off-policy TDC(λ) off-policy LSTD(λ)
(Maei and Sutton, 2010) off-policy LSPE(λ)

off-policy GTD2(λ) (Yu, 2010a)

Table 2: Surveyed off-policy and eligibility-traces approaches. Algorithms in black have
been published before (provided references), algorithms in red are new.

290

Off-policy Learning with Traces

The rest of this article is organized as follows. Section 2 introduces the background
of Markov Decision Processes, describes the state-of-the-art algorithms for learning without
eligibility traces, and gives the fundamental idea to extend the methods to the off-policy situ-
ation with eligibility traces. Section 3 details this extension for the least-squares approaches:
the resulting algorithms are formalized, and we derive recursive and memory-efficient for-
mula for their implementation (this allows online learning without loss of generality, all the
more that half of these algorithms are recursive by their very definition), and we discuss
their convergence properties. Section 4 does the same job for stochastic gradient approaches,
which offers a smaller computational cost (linear per update, instead of quadratic). Last
but not least, Section 5 describes an empirical comparison and Section 6 concludes.

2. Background

We consider a Markov Decision Process (MDP), that is a tuple {S,A, P,R, γ} in which S
is a finite state space identified with {1, 2, . . . , N}, A a finite action space, P ∈ P(S)S×A

the set of transition probabilities, R ∈ RS×A the reward function and γ the discount factor.
A mapping π ∈ P(A)S is called a policy. For any policy π, let P π be the corresponding
stochastic transition matrix, and Rπ the vector of mean reward when following π, that is
of components Ea|π,s[R(s, a)]. The value V π(s) of state s for a policy π is the expected
discounted cumulative reward starting in state s and then following the policy π:

V π(s) = Eπ

[∞∑
i=0

γiri|s0 = s

]
,

where Eπ denotes the expectation over trajectories induced by policy π. The value function
satisfies the (linear) Bellman equation:

∀s, V π(s) = Es′,a|s,π[R(s, a) + γV π(s′)].

It can be rewritten as the fixed-point of the Bellman evaluation operator: V π = T πV π where
for all V, T πV = Rπ + γP πV .

In this article, we are interested in learning an approximation of this value function V π

under some constraints. First, we assume our approximation to be linearly parameterized:

∀s, V̂θ(s) = θTφ(s)

with θ ∈ Rp being the parameter vector and φ(s) ∈ Rp the feature vector in state s. This
encompasses notably the tabular case (exact representation of the value function). Also, we
want to estimate the value function V π (or equivalently the associated parameter θ) from a
single finite trajectory generated using a possibly different behavioral policy π0.1 Let µ0 be
the stationary distribution of the stochastic matrix P0 = P π0 of the behavior policy π0 (we
assume it exists and is unique). Let D0 be the diagonal matrix of which the elements are
(µ0(si))1≤i≤N . Let Φ be the matrix of feature vectors:

Φ = [φ(1) . . . φ(N)]T .

1. This can be easily extended to multiple finite trajectories.

291

Geist and Scherrer

As we consider a linear approximation, the considered value functions belong to the space
spanned by Φ. The projection Π0 onto this hypothesis space with respect to the µ0-quadratic
norm, which will be central for the understanding of the algorithms, has the following closed-
form:

Π0 = Φ(ΦTD0Φ)−1ΦTD0.

If π0 is different from π, it is called an off-policy setting. Notice that all algorithms consid-
ered in this paper use this Π0 projection operator, that is the projection according to the
observed data.2 It would certainly be interesting to consider the projection according to
the stationary distribution of π, the (unobserved) target policy: this would reduce off-policy
learning to on-policy learning. However, this would require re-weighting samples according
to the stationary distribution of the target policy π, which is unknown and probably as
difficult to estimate as the value function itself.

2.1 Standard Algorithms For On-policy Learning Without Traces

We now review existing on-policy linearly parameterized temporal difference learning algo-
rithms (see Table 1). In this case, the behavior and target policies are the same, so we
omit the subscript 0 for the policy (π) and the projection (Π). We assume that a trajectory
(s1, a1, r1, s2, . . . , si, ai, ri, si+1, . . . , sn, an, rn, sn+1) sampled according to the policy π is
available, and will explain how to compute the ith iterate for several algorithms. For all
j ≤ i, let us introduce the empirical Bellman operator at step j:

T̂j : RS → R
V 7→ rj + γV (sj+1)

so that T̂jV is an unbiased estimate of TV (sj).
Projected fixed point approaches aim at finding the fixed-point of the operator being

the composition of the projection onto the hypothesis space and the Bellman operator.
In other words, they search for the fixed-point V̂θ = ΠT V̂θ, Π being the just introduced
projection operator. Solving the following fixed-point problem,

θi = argmin
ω∈Rp

i∑
j=1

(
T̂j V̂θi − V̂ω(sj)

)2
,

with a least-squares approach corresponds to the Least-Squares Temporal Differences (LSTD)
algorithm of Bradtke and Barto (1996). Recently, Sutton et al. (2009) proposed two algo-
rithms reaching the same objective, Temporal Difference with gradient Correction (TDC)
and Gradient Temporal Difference 2 (GTD2), by performing a stochastic gradient descent
of the function θ 7→ ‖V̂θ −ΠT V̂θ‖2 which is minimal (and equal to 0) when V̂θ = ΠT V̂θ.

2. As far as we know, there are two notable exceptions. Precup et al. (2001) propose an algorithm that
updates parameters according to full trajectories (not according to transitions, as all approaches to be
reviewed next). Therefore, the distribution weighting the projection operator is the one of the starting
states of these trajectories instead of the one involved by the behavioral policy. Another work to move
in a different direction is the off-policy approach of Kolter (2011): samples are weighted such that the
projection operator composed with the Bellman operator is non-expansive: this is weaker than finding
the projection of the stationary distribution, but offers some guarantees. In this article, we consider only
the Π0 projection.

292

Off-policy Learning with Traces

A related approach consists in building a recursive algorithm that repeatedly mimics the
iteration V̂θi ' ΠT V̂θi−1

. In practice, we aim at minimizing

ω 7→
i∑

j=1

(
T̂j V̂θi−1

− V̂ω(sj)
)2
.

Performing the minimization exactly through a least-squares method leads to the Least-
Squares Policy Evaluation (LSPE) algorithm of Bertsekas and Ioffe (1996). If this minimiza-
tion is approximated by a stochastic gradient descent, this leads to the classical Temporal
Difference (TD) algorithm (Sutton and Barto, 1998).

Bootstrapping approaches consist in treating value function approximation after see-
ing the ith transition as a supervised learning problem, by replacing the unobserved values
V π(sj) at states sj by some estimate computed from the trajectory until the transition
(sj , sj+1), the best such estimate being T̂j V̂θj−1

. This amounts to minimizing the following
function:

ω 7→
i∑

j=1

(
T̂j V̂θj−1

− V̂ω(sj)
)2
. (1)

Choi and Van Roy (2006) proposed the Fixed-Point Kalman Filter (FPKF), a least-squares
variation of TD that minimizes exactly the function of Equation (1). If the minimization
is approximated by a stochastic gradient descent, this gives—again—the classical TD algo-
rithm (Sutton and Barto, 1998).

Finally, residual approaches aim at minimizing the distance between the value function
and its image through the Bellman operator, ‖V − TV ‖2µ0 . Based on a trajectory, this
suggests the following function to minimize

ω 7→
i∑

j=1

(
T̂j V̂ω − V̂ω(sj)

)2
,

which is a surrogate of the objective ‖V −TV ‖2µ0 that is biased (Antos et al., 2006). This cost
function has originally been proposed by Baird (1995) who minimized it using a stochastic
gradient approach (this algorithm being referred here as gBRM for gradient-based Bell-
man Residual Minimization). Both the parametric Gaussian Process Temporal Differences
(GPTD) algorithm of Engel (2005) and the linear Kalman Temporal Differences (KTD)
algorithm of Geist and Pietquin (2010b) can be shown to minimize the above cost using a
least-squares approach, and are thus the very same algorithm, that we will refer to as BRM
(for Bellman Residual Minimization) in the remaining of this paper.3

To sum up, it thus appears that after the ith transition has been observed, the above
mentioned algorithms behave according to the following pattern:

move from θi−1 to θi towards the minimum of ω 7→
i∑

j=1

(
T̂j V̂ξ − V̂ω(sj)

)2
, (2)

either through a least-squares approach or a stochastic gradient descent. Each of the algo-
rithms mentioned above is obtained by substituting θi, θi−1, θj−1 or ω for ξ.

3. Note that this is only true in the linear case. GPTD and KTD were both introduced in a more general
setting: GPTD is non-parametric and KTD is motivated by the goal of handling nonlinearities.

293

Geist and Scherrer

2.2 Towards Off-policy Learning With Traces

It is now easy to preview, at least at a high level, how one may extend the previously
described algorithms so that they can deal with eligibility traces and off-policy learning.

Eligibility Traces. The idea of eligibility traces amounts to looking for the fixed-point of
the following variation of the Bellman operator (Bertsekas and Tsitsiklis, 1996)

∀V ∈ RS , T λV = (1− λ)
∞∑
k=0

λkT k+1V

that makes a geometric average with parameter λ ∈ (0, 1) of the powers of the original
Bellman operator T . Clearly, any fixed-point of T is a fixed-point of T λ and vice-versa.
After some simple algebra, one can see that:

T λV = (I − λγP)−1(R+ (1− λ)γPV) (3)

= V + (I − λγP)−1(R+ γPV − V).

This leads to the following well-known temporal difference expression in some state s

T λV (s) = V (s) + Eπ

[∞∑
k=i

(γλ)k−i
(
rk + γV (sk+1)− V (sk)

)∣∣∣si = s

]

= V (s) +

∞∑
k=i

(γλ)k−iδik(s)

where we recall that Eπ means that the expectation is done according to the tar-
get policy π, and where δik(s) = Eπ

[
rk + γV (sk+1)− V (sk)

∣∣∣si = s
]
is the expected

temporal-difference (Sutton and Barto, 1998). With λ = 0, we recover the Bellman
evaluation equation. With λ = 1, this is the definition of the value function as the
expected and discounted cumulative reward: T 1V (s) = Eπ[

∑∞
k=i γ

k−irk|si = s].

Off-policy Learning. As before, we assume that we are given a trajectory (s1, a1, r1, s2, . . . ,
sj , aj , rj , sj+1 . . . , sn, an, rn, sn+1), except now that it may be generated from some be-
havior policy possibly different from the target policy π of which we want to estimate
the value. We are going to describe how to compute the ith iterate for several algo-
rithms. For any i ≤ k, unbiased estimates of the temporal difference terms δik(sk) can
be computed through importance sampling (Ripley, 1987). Indeed, for all s, a, let us
introduce the following weight:

ρ(s, a) =
π(a|s)
π0(a|s)

.

In our trajectory context, for any j and k, write

ρkj =
k∏
l=j

ρl with ρl = ρ(sl, al)

294

Off-policy Learning with Traces

with the convention that if k < j, ρkj = 1. With these notations,

δ̂ik = ρki T̂kV − ρk−1
i V (sk)

is an unbiased estimate of δik(si), from which we may build an estimate T̂ λj,iV of
T λV (sj) (we will describe this very construction separately for the least-squares and
the stochastic gradient as they slightly differ).

Then, by replacing the empirical operator T̂j in Equation (2) by T̂ λj,i, we get the general
pattern for off-policy trace-based algorithms:

move from θi−1 to θi towards the minimum of ω 7→
i∑

j=1

(
T̂ λj,iV̂ξ − V̂ω(sj)

)2
, (4)

either through a least-squares approach or a stochastic gradient descent after having instan-
tiated ξ = θi, θi−1, θj−1 or ω. This process, including in particular the precise definition
of the empirical operator T̂ λj,i, will be further developed in the next two sections.4 Since
they are easier to derive, we begin by focusing on least-squares algorithms (right column of
Table 2) in Section 3. Then, Section 4 focuses on stochastic gradient-based algorithms (left
column of Table 2).

3. Least-squares Extensions To Eligibility Traces And Off-policy Learning

First, we consider the least-squares solution to the problem described in Equation (4). At
their ith step, the algorithms that we are about to describe will compute the parameter θi
by exactly solving the following problem:

θi = argmin
ω∈Rp

i∑
j=1

(
T̂ λj,iV̂ξ − V̂ω(sj)

)2

where we define the following empirical truncated approximation of Tλ:

T̂ λj,i : RS → R

V 7→ V (sj) +

i∑
k=j

(γλ)k−j δ̂jk = V (sj) +

i∑
k=j

(γλ)k−j
(
ρkj T̂kV − ρk−1

j V (sk)
)
.

Though different definitions of this operator may lead to practical implementations, note
that T̂ λj,i only uses samples seen before time i: this very feature—considered by all existing
works in the literature—will enable us to derive recursive and low-memory algorithms.

Recall that a linear parameterization is chosen here, V̂ξ(si) = ξTφ(si). We adopt the
following notations:

φi = φ(si), ∆φi = φi − γρiφi+1 and ρ̃k−1
j = (γλ)k−jρk−1

j .

4. Note that we let the empirical operator T̂λj,i depends on the index j of the sample (as before) but also
on the step i of the algorithm. This will be particularly useful for the derivation of the recursive and
memory-efficient least-squares algorithms that we present in the next section.

295

Geist and Scherrer

The generic cost function to be solved is therefore:

θi = argmin
ω∈Rp

J(ω; ξ) with J(ω; ξ) =
i∑

j=1

(φTj ξ +
i∑

k=j

ρ̃k−1
j (ρkrk −∆φTk ξ)− φTj ω)2. (5)

Before deriving existing and new least-squares algorithms, as announced, some technical
lemmas are required.

The first lemma allows computing directly the inverse of a rank-one perturbed matrix.

Lemma 1 (Sherman-Morrison) Assume that A is an invertible n × n matrix and that
u, v ∈ Rn are two vectors satisfying 1 + vTA−1u 6= 0. Then:

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

The next lemma is simply a rewriting of imbricated sums. However, it is quite important here
as it will allow stepping from the operator T̂ λj,i (operator which depends on future of sj , so
acasual)—forward view of eligibility traces—to the recursion over parameters using eligibility
traces (dependence on only past samples)—backward view of eligibility traces. In other
words, the forward view is a theoretical way of mixing backups that shifts parametrically
(through the choice of λ) from the standard Bellman operator to the Monte Carlo one.
However, it cannot be implemented easily, as it requires knowing the future states. On the
other hand, the backward view, which is equivalent (see notably Lemma 2 and Proposition 6),
is a more mechanistic and convenient viewpoint that allows performing the same updates
using solely information gathered in the states encountered in the past. See Sutton and
Barto (1998, Chapter 7) for further discussion on backward/forward views.

Lemma 2 Let f ∈ RN×N and n ∈ N. We have:

n∑
i=1

n∑
j=i

f(i, j) =

n∑
i=1

i∑
j=1

f(j, i)

We are now ready to mechanically derive the off-policy algorithms LSTD(λ), LSPE(λ),
FPKF(λ) and BRM(λ). This is what we do in the following subsections.

3.1 Off-policy LSTD(λ)

The Least-Squares Temporal Difference algorithm, that computes directly a fixed-point of
the projected Bellman operator, has originally been introduced in the no-trace and on-policy
case by Bradtke and Barto (1996). It has been extended to eligibility traces by Boyan (1999),
to off-policy (through state-action value function approximation) learning (without traces)
by Lagoudakis and Parr (2003), and to off-policy learning with traces by Yu (2010a).

The off-policy LSTD(λ) algorithm actually corresponds to instantiating Problem (5)
with ξ = θi:

θi = argmin
ω∈Rp

i∑
j=1

(φTj θi +
i∑

k=j

ρ̃k−1
j (ρkrk −∆φTk θi)− φTj ω)2.

296

Off-policy Learning with Traces

This can be solved by zeroing the gradient respectively to ω:

θi = (
i∑

j=1

φjφ
T
j)−1

i∑
j=1

φj(φ
T
j θi +

i∑
k=j

ρ̃k−1
j (ρkrk −∆φTk θi))

⇔ 0 =
i∑

j=1

i∑
k=j

φj ρ̃
k−1
j (ρkrk −∆φTk θi),

which, through Lemma 2, is equivalent to:

0 =
i∑

j=1

(

j∑
k=1

φkρ̃
j−1
k)(ρjrj −∆φTj θi).

Introducing the (importance-based) eligibility vector zj :

zj =

j∑
k=1

φkρ̃
j−1
k =

j∑
k=1

φk(γλ)j−k
j−1∏
m=k

ρm = γλρj−1zj−1 + φj , (6)

one obtains the following batch estimate:

θi = (
i∑

j=1

zj∆φ
T
j)−1

i∑
j=1

zjρjrj = (Ai)
−1bi (7)

where

Ai =

i∑
j=1

zj∆φ
T
j and bi =

i∑
j=1

zjρjrj . (8)

Thanks to Lemma 1, the inverse Mi = (Ai)
−1 can be computed recursively:

Mi = (
i∑

j=1

zj∆φ
T
j)−1 = Mi−1 −

Mi−1zi∆φ
T
i Mi−1

1 + ∆φTi Mi−1zi
.

This can be used to derive a recursive estimate:

θi = (
i∑

j=1

zj∆φ
T
j)−1

i∑
j=1

zjρjrj = (Mi−1 −
Mi−1zi∆φ

T
i Mi−1

1 + ∆φTi Mi−1zi
)(
i−1∑
j=1

zjrjρj + ziρiri)

= θi−1 +
Mi−1zi

1 + ∆φTi Mi−1zi
(ρiri −∆φTi θi−1).

Writing the gain Ki = Mi−1zi
1+∆φTi Mi−1zi

, this gives Algorithm 1.
This algorithm has been proposed and analyzed by Yu (2010a). The author proves the

following result: if the behavior policy π0 induces an irreducible Markov chain and chooses
with positive probability any action that may be chosen by the target policy π, and if
the compound (linear) operator Π0T

λ has a unique fixed-point, then off-policy LSTD(λ)

297

Geist and Scherrer

Algorithm 1: Off-policy LSTD(λ)

Initialization;
Initialize vector θ0 and matrix M0 ;
Set z0 = 0;

for i = 1, 2, . . . do

Observe φi, ri, φi+1 ;

Update traces ;
zi = γλρi−1zi−1 + φi ;

Update parameters ;
Ki = Mi−1zi

1+∆φTi Mi−1zi
;

θi = θi−1 +Ki(ρiri −∆φTi θi−1) ;
Mi = Mi−1 −Ki(M

T
i−1∆φi)

T ;

converges to it almost surely.5 Formally, it converges to the solution θ∗ of the so-called
projected fixed-point equation:

Vθ∗ = Π0T
λVθ∗ . (9)

Using the expression of the projection Π0 and the form of the Bellman operator in Equa-
tion (3), it can be seen that θ∗ satisfies (see Yu, 2010a for details)

θ∗ = A−1b

where
A = ΦTD0(I − γP)(I − λγP)−1Φ and b = ΦTD0(I − λγP)−1R. (10)

The core of the analysis of Yu (2010a) consists in showing that 1
iAi and 1

i bi defined in
Equation (8) respectively converge to A and b almost surely. Through Equation (7), this
implies the convergence of θi to θ∗.

3.2 Off-policy LSPE(λ)

The Least-Squares Policy Evaluation algorithm, that computes iteratively the fixed point
of the projected Bellman operator, was originally introduced by Bertsekas and Ioffe (1996)
and first analyzed in an on-policy context by Nedić and Bertsekas (2003). Its extension to
off-policy learning with traces was briefly mentioned by Yu (2010a).

The off-policy LSPE(λ) algorithm corresponds to instantiate ξ = θi−1 in Problem (5):

θi = argmin
ω∈Rp

i∑
j=1

(φTj θi−1 +

i∑
k=j

ρ̃k−1
j (ρkrk −∆φTk θi−1)− φTj ω)2.

5. It is not always the case that Π0T
λ has a unique fixed-point, see Tsitsiklis and Van Roy (1997) for a

counter-example.

298

Off-policy Learning with Traces

This can be solved by zeroing the gradient respectively to ω:

θi = (
i∑

j=1

φjφ
T
j)−1

i∑
j=1

φj(φ
T
j θi−1 +

i∑
k=j

ρ̃k−1
j (ρkrk −∆φTk θi−1))

= θi−1 + (
i∑

j=1

φjφ
T
j)−1

i∑
j=1

i∑
k=j

φj ρ̃
k−1
j (ρkrk −∆φTk θi−1).

Using Lemma 2 and the definition of the eligibility vector zj in Equation (6), we get:

θi = θi−1 + (

i∑
j=1

φjφ
T
j)−1

i∑
j=1

j∑
k=1

φkρ̃
j−1
k (ρjrj −∆φTj θi−1)

= θi−1 + (

i∑
j=1

φjφ
T
j)−1

i∑
j=1

zj(ρjrj −∆φTj θi−1).

Define the matrix Ni as follows:

Ni = (
i∑

j=1

φjφ
T
j)−1 = Ni−1 −

Ni−1φiφ
T
i Ni−1

1 + φTi Ni−1φi
, (11)

where the second equality follows from Lemma 1. Let Ai and bi be defined as in the LSTD
description in Equation (8). For clarity, we restate their definition along with their recursive
writing:

Ai =
i∑

j=1

zj∆φ
T
j = Ai−1 + zi∆φ

T
i+1

bi =
i∑

j=1

zjρjrj = bi−1 + ziρiri.

Then, it can be seen that the LSPE(λ) update is:

θi = θi−1 +Ni(bi −Aiθi−1).

The overall computation is provided in Algorithm 2.
This algorithm, (briefly) mentioned by Yu (2010a), generalizes the LSPE(λ) algorithm of

Bertsekas and Ioffe (1996) to off-policy learning. With respect to LSTD(λ), which computes
θi = (Ai)

−1bi at each iteration as stated in Equation (7), LSPE(λ) is fundamentally recursive
(as it is based on an iterated fixed-point relation). Along with the almost sure convergence
of 1

iAi and
1
i bi to A and b defined in Equation (10), it can be shown that iNi converges

to N = (ΦTD0Φ)−1—see for instance Nedić and Bertsekas (2003)—so that, asymptotically,
LSPE(λ) behaves as:

θi = θi−1 +N(b−Aθi−1) = Nb+ (I −NA)θi−1

299

Geist and Scherrer

Algorithm 2: Off-policy LSPE(λ)

Initialization;
Initialize vector θ0 and matrix N0 ;
Set z0 = 0, A0 = 0 and b0 = 0;

for i = 1, 2, . . . do

Observe φi, ri, φi+1;

Update traces ;
zi = γλρi−1zi−1 + φi ;

Update parameters ;

Ni = Ni−1 −
Ni−1φiφ

T
i Ni−1

1+φTi Ni−1φi
;

Ai = Ai−1 + zi∆φ
T
i ;

bi = bi−1 + ρiziri;
θi = θi−1 +Ni(bi −Aiθi−1) ;

or using the definition of Π0, A, b from Equation (10) and T λ from Equation (3):

Vθi = Φθi = ΦNb+ Φ(I −NA)θi−1 = Π0T
λVθi−1

. (12)

The behavior of this sequence depends on whether the spectral radius of Π0T
λ is smaller

than 1 or not. Thus, the analyses of Yu (2010a) and Nedić and Bertsekas (2003) (for the
convergence of Ni) imply the following convergence result: under the assumptions required
for the convergence of off-policy LSTD(λ), and the additional assumption that the operator
Π0T

λ has a spectral radius smaller than 1 (so that it is contracting), LSPE(λ) also converges
almost surely to the fixed-point of the compound Π0T

λ operator.
There are two sufficient conditions that can ensure such a desired contraction property.

The first one is when one considers on-policy learning, as Nedić and Bertsekas (2003) did
when they derived the first convergence proof of (on-policy) LSPE(λ). When the behavior
policy π0 is different from the target policy π, a sufficient condition for contraction is that λ
be close enough to 1; indeed, when λ tends to 1, the spectral radius of T λ tends to zero and
can potentially balance an expansion of the projection Π0. In the off-policy case, when γ
is sufficiently big, a small value of λ can make Π0T

λ expansive (see Tsitsiklis and Van Roy
1997 for an example in the case λ = 0) and off-policy LSPE(λ) will then diverge. Eventually,
Equations (9) and (12) show that when λ = 1, both LSTD(λ) and LSPE(λ) asymptotically
coincide (as T 1V does not depend on V).

3.3 Off-policy FPKF(λ)

The Fixed Point Kalman Filter algorithm is a bootstrapped recursive least-squares approach
to value function approximation originally introduced by Choi and Van Roy (2006). Its
extensions to eligibility traces and to off-policy learning are new.

300

Off-policy Learning with Traces

The off-policy FPKF(λ) algorithm corresponds to instantiate ξ = θj−1 in Problem (5):

θi = argmin
ω∈Rp

i∑
j=1

(φTj θj−1 +
i∑

k=j

ρ̃k−1
j (ρkrk −∆φTk θj−1)− φTj ω)2.

This can be solved by zeroing the gradient respectively to ω:

θi = Ni

i∑
j=1

φj(φ
T
j θj−1 +

i∑
k=j

ρ̃k−1
j (ρkrk −∆φTk θj−1)),

where Ni is the matrix introduced for LSPE(λ) in Equation (11). For clarity, we restate its
definition here and its recursive writing:

Ni = (

i∑
j=1

φjφ
T
j)−1 = Ni−1 −

Ni−1φiφ
T
i Ni−1

1 + φTi Ni−1φi
. (13)

Using Lemma 2, one obtains:

θi = Ni(
i∑

j=1

φjφ
T
j θj−1 +

i∑
j=1

j∑
k=1

φkρ̃
j−1
k (ρjrj −∆φTj θk−1)).

With respect to the previously described algorithms, the difficulty here is that on the right
side there is a dependence with all the previous terms θk−1 for 1 ≤ k ≤ i. Using the symmetry
of the dot product ∆φTj θk−1 = θTk−1∆φj , it is possible to write a recursive algorithm by
introducing the trace matrix Zj that integrates the subsequent values of θk as follows:

Zj =

j∑
k=1

ρ̃j−1
k φkθ

T
k−1 = Zj−1 + γλρj−1φjθ

T
j−1.

With this notation we obtain:

θi = Ni(

i∑
j=1

φjφ
T
j θj−1 +

i∑
j=1

(zjρjrj − Zj∆φj)).

Using Equation (13) and a few algebraic manipulations, we end up with:

θi = θi−1 +Ni(ziρiri − Zi∆φi).

This is the parameter update as provided in Algorithm 3.
As LSPE(λ), this algorithm is fundamentally recursive. However, its overall behavior is

quite different. As we discussed for LSPE(λ), iNi can be shown to tend asymptotically to
N = (ΦTD0Φ)−1 and FPKF(λ) iterates eventually resemble:

θi = θi−1 +
1

i
N(ziρiri − Zi∆φi).

301

Geist and Scherrer

Algorithm 3: Off-policy FPKF(λ)

Initialization;
Initialize vector θ0 and matrix N0 ;
Set z0 = 0 and Z0 = 0;

for i = 1, 2, . . . do

Observe φi, ri, φi+1;

Update traces ;
zi = γλρi−1zi−1 + φi ;
Zi = γλρi−1Zi−1 + φiθ

T
i−1;

Update parameters ;

Ni = Ni−1 −
Ni−1φiφ

T
i Ni−1

1+φTi Ni−1φi
;

θi = θi−1 +Ni(ziρiri − Zi∆φi) ;

The term in brackets is a random component (that only depends on the previous transitions)
and 1

i acts as a learning coefficient that asymptotically tends to 0. In other words, FPKF(λ)
has a stochastic approximation flavor. In particular, one can see FPKF(0) as a stochastic
approximation of LSPE(0). Indeed, asymptotically, FPKF(0) does the following update

θi = θi−1 +
1

i
N(ρiφiri − φi∆φTi θi−1),

and one can notice that ρiφiri and φi∆φTi are samples of A and b to which Ai and bi converge
through LSPE(0). When λ > 0, the situation is less clear—up to the fact that since T 1V
does not depend on V , we expect FPKF to asymptotically behave like LSTD and LSPE
when λ tends to 1.

Due to its much more involved form (notably the matrix trace Zj integrating the values
of all the values θk from the start), it does not seem easy to provide a guarantee for FPKF(λ),
even in the on-policy case. To our knowledge, there does not exist any proof of convergence
for stochastic approximation algorithms in the off-policy case with traces, and a related
result for FPKF(λ) thus seems difficult.6 Based on the above-mentioned relation between
FPKF(0) and LSPE(0) and the experiments we have run (see Section 5), we conjecture that
off-policy FPKF(λ) has the same asymptotic behavior as LSPE(λ). We leave the formal
study of this algorithm for future work.

3.4 Off-policy BRM(λ)

The Bellman Residual Minimization algorithm is a least-squares approach that minimizes
directly the Bellman residual. The off-policy BRM(λ) algorithm corresponds to instantiate
ξ = ω in Problem (5):

6. An analysis of TD(λ), with a simplifying assumption that forces the algorithm to stay bounded is given
by Yu (2010a). An analysis of GQ(λ) is provided by Maei and Sutton (2010), with an assumption on
the second moment of the traces, which—as explained in Proposition 2 of Yu (2010a)—does not hold in
general. A full analysis of these algorithms thus remains to be done. See also Sections 4.1 and 4.2.

302

Off-policy Learning with Traces

θi = argmin
ω∈Rp

i∑
j=1

(φTj ω +
i∑

k=j

ρ̃k−1
j (ρkrk −∆φTk ω)− φTj ω)2

= argmin
ω∈Rp

i∑
j=1

(
i∑

k=j

ρ̃k−1
j (ρkrk −∆φTk ω))2.

Define

ψj→i =

i∑
k=j

ρ̃k−1
j ∆φk and zj→i =

i∑
k=j

ρ̃k−1
j ρkrk.

This yields the following batch estimate:

θi = argmin
ω∈Rp

i∑
j=1

(zj→i − ψTj→iω)2 = (Ãi)
−1b̃i (14)

where

Ãi =
i∑

j=1

ψj→iψ
T
j→i and b̃i =

i∑
j=1

ψj→izj→i.

The transformation of this batch estimate into a recursive update rule is somewhat tedious
(it involves three “trace” variables), and the details are deferred to Appendix A for clarity.
The resulting BRM(λ) method is provided in Algorithm 4. Note that at each step, this
algorithm involves the inversion of a 2 × 2 matrix (involving the 2 × 2 identity matrix I2),
inversion that admits a straightforward analytical solution. The computational complexity
of an iteration of BRM(λ) is thus O(p2) (as for the preceding least-squares algorithms).

GPTD and KTD, which are close to BRM, have also been extended with some trace
mechanism; however, GPTD(λ) (Engel, 2005), KTD(λ) (Geist and Pietquin, 2010a) and
the just described BRM(λ) are different algorithms.7 Briefly, GPTD(λ) is very close to
LSTD(λ) and KTD(λ) uses a different Bellman operator.8 As BRM(λ) builds a linear
system whose solution is updated recursively, it resembles LSTD(λ). However, the system
it builds is different. The following theorem, proved in Appendix B, partially characterizes
the behavior of BRM(λ) and its potential limit.9

Theorem 3 Assume that the stochastic matrix P0 of the behavior policy is irreducible and
has stationary distribution µ0. Further assume that there exists a coefficient β < 1 such that

∀(s, a), λγρ(s, a) ≤ β. (15)

7. GPTD(λ) is not exactly a generalization of GPTD as it does not reduce to it when λ = 0. It is rather a
technical variation that bridges a gap with the Monte Carlo approach.

8. The corresponding loss is (T̂ 0
j,iV̂ (ω) − V̂ω(sj) + γλ(T̂ 1

j+1,iV̂ (ω) − V̂ω(sj+1)))2. With λ = 0 it gives T̂ 0
j,i

and with λ = 1 it provides T̂ 1
j,i.

9. Our proof is similar to that of Proposition 4 of Bertsekas and Yu (2009). The overall arguments are the
following: Equation (15) implies that the traces can be truncated at some depth l, whose influence on
the potential limit of the algorithm vanishes when l tends to ∞. For all l, the l-truncated version of the
algorithm can easily be analyzed through the ergodic theorem for Markov chains. Making l tend to ∞
allows tying the convergence of the original arguments to that of the truncated version. Eventually, the
formula for the limit of the truncated algorithm is computed and one derives the limit.

303

Geist and Scherrer

Algorithm 4: Off-policy BRM(λ)

Initialization;
Initialize vector θ0 and matrix C0 ;
Set y0 = 0, D0 = 0 and z0 = 0;

for i = 1, 2, . . . do

Observe φi, ri, φi+1;

Pre-update traces ;
yi = (γλρi−1)2yi−1 + 1 ;

Compute ;

Ui =
(√

yi∆φi + γλρi−1√
yi

Di−1
γλρi−1√

yi
Di−1

)T
;

Vi =
(√

yi∆φi + γλρi−1√
yi

Di−1 −γλρi−1√
yi

Di−1

)T
;

Wi =
(√

yiρri + γλρi−1√
yi

zi−1 −γλρi−1√
yi

zi−1

)T
;

Update parameters ;
θi = θi−1 + Ci−1Ui (I2 + ViCi−1Ui)

−1 (Wi − Viθi−1) ;
Ci = Ci−1 − Ci−1Ui (I2 + ViCi−1Ui)

−1 ViCi−1 ;

Post-update traces ;
Di = (γλρi−1)Di−1 + ∆φiyi ;
zi = (γλρi−1)zi−1 + riρiyi ;

Then 1
i Ãi and

1
i b̃i respectively converge almost surely to

Ã = ΦT
[
D − γDP − γP TD + γ2D′ + S(I − γP) + (I − γP T)ST

]
Φ

b̃ = ΦT
[
(I − γP T)QTD + S

]
Rπ

where we wrote:

D = diag
(

(I − (λγ)2P̃ T)−1µ0

)
, Q = (I − λγP)−1,

D′ = diag
(
P̃ T (I − (λγ)2P̃ T)−1µ0

)
, S = λγ(DP − γD′)Q,

and where P̃ is the matrix whose coordinates are p̃ss′ =
∑

a π(a|s)ρ(s, a)P (s′|s, a). Then,
the BRM(λ) algorithm converges with probability 1 to Ã−1b̃.

The assumption given by Equation (15) trivially holds in the on-policy case (in which
ρ(s, a) = 1 for all (s, a)) and in the off-policy case when λγ is sufficiently small with respect
to the mismatch between policies. Note in particular that this result implies the almost sure
convergence of the GPTD/KTD algorithms in the on-policy and no-trace case, a question
that was still open in the literature.10 The matrix P̃ , which is in general not a stochastic

10. See for instance the conclusion of Engel (2005).

304

Off-policy Learning with Traces

matrix, can have a spectral radius bigger than 1; Equation (15) ensures that (λγ)2P̃ has a
spectral radius smaller than β so that D and D′ are well defined. Removing assumption
of Equation (15) does not seem easy, since by tuning λγ maliciously, one may force the
spectral radius of (λγ)2P̃ to be as close to 1 as one may want, which would make Ã and
b̃ diverge. Though the quantity Ã−1b̃ may compensate for these divergences, our current
proof technique cannot account for this situation and a related analysis constitutes possible
future work.

The fundamental idea behind the Bellman Residual approach is to address the compu-
tation of the fixed-point of T λ differently from the previous methods. Instead of computing
the projected fixed-point as in Equation (9), one considers the following over-determined
system

Φθ ' T λΦθ

⇔ Φθ ' (I − λγP)−1(R+ (1− λ)γPΦθ) by Equation (3)
⇔ Φθ ' QR+ (1− λ)γPQΦθ

⇔ Ψθ ' QR

with Ψ = Φ − (1 − λ)γPQΦ, and solves it in a least-squares sense, that is by computing
θ∗ = Ā−1b̄ with Ā = ΨTΨ and b̄ = ΨTQR. One of the motivations for this approach is that,
as opposed to the matrix A of LSTD/LSPE/FPKF, Ā is invertible for all values of λ, and one
can always guarantee a finite error bound with respect to the best projection (Schoknecht,
2002; Yu and Bertsekas, 2008; Scherrer, 2010). If the goal of BRM(λ) is to compute Ā and
b̄ from samples, what it actually computes (Ã and b̃ as characterized in Theorem 3) will in
general be biased because the estimation is based on a single trajectory.11 Such a bias adds
an uncontrolled variance term (Antos et al., 2006) to Ā and b̄; an interesting consequence
is that Ã is always non-singular.12 More precisely, there are two sources of bias in the
estimation: one results from the non Monte-Carlo evaluation (the fact that λ < 1) and the
other from the use of the correlated importance sampling factors (as soon as one considers
off-policy learning). The interested reader may check that in the on-policy case, and when
λ tends to 1, Ã and b̃ coincide with Ā and b̄. However, in the strictly off-policy case, taking
λ = 1 does not prevent the bias due to the correlated importance sampling factors. If we
have argued that LSTD/LSPE/FPKF should asymptotically coincide when λ = 1, we see
here that BRM should generally differ in an off-policy situation.

4. Stochastic Gradient Extensions To Eligibility Traces And Off-policy
Learning

We have just provided a systematic derivation of all least-squares algorithms for learning
with eligibility traces in an off-policy manner. When the number of features p is very large,
the O(p2) complexity involved by a least-squares approach may be prohibitive. In such a
situation, a natural alternative is to consider an approach based on a stochastic gradient

11. It is possible to remove the bias when λ = 0 by using double samples. However, in the case where λ > 0,
the possibility to remove the bias seems much more difficult.

12. Ā is by construction positive definite, and Ã equals Ā plus a positive term (the variance term), and is
thus also positive definite.

305

Geist and Scherrer

descent of the objective function of interest (Bottou and Bousquet, 2011; Sutton et al., 2009;
Maei and Sutton, 2010).

In this section, we will describe a systematic derivation of stochastic gradient algorithms
for learning in an off-policy manner with eligibility traces. The principle followed is the
same as for the least-squares approaches: we shall instantiate the algorithmic pattern of
Equation (4) by choosing the value of ξ and update the parameter so as move towards the
minimum of J(θi, ξ) using a stochastic gradient descent. To make the pattern of Equation (4)
precise, we need to define the empirical approximate operator we use. We will consider the
untruncated T̂ λi,n operators (written in the followings T̂ λi , with a slight abuse of notation):

T̂ λi V = V (si) +
n∑
j=i

(γλ)j−i
(
ρji T̂jV − ρ

j−1
i V (sj)

)
(16)

where n is the total length of the trajectory.
It should be noted that algorithmic derivations in this section will be a little bit more

involved than in the least-squares case. First, by instantiating ξ = θi, the pattern given
in Equation (4) is actually a fixed-point problem onto which one cannot directly perform a
stochastic gradient descent; this issue will be addressed in Section 4.2 through the introduc-
tion of an auxiliary objective function, following the approach originally proposed by Sutton
et al. (2009). A second difficulty is the following: the just introduced empirical operator
T̂ λi depends on the full trajectory after step i (on the future of the process), and is for this
reason usually coined a forward view estimate. Though it would be possible, in principle,
to implement a gradient descent based on this forward view, it would not be very memory
nor time efficient. Thus, we will follow a usual trick of the literature by deriving recursive
algorithms based on a backward view estimate that is equivalent to the forward view in
expectation. To do so, we will repeatedly use the following identity that highlights the fact
that the estimate T̂ λi V can be written as a forward recursion:

Lemma 4 Let T̂ λi be the operator defined in Equation (16) and let V ∈ RS. We have

T̂ λi V = ρiri + γρi(1− λ)V (si+1) + γλρiT̂
λ
i+1V.

Proof Using notably the identity ρji = ρiρ
j
i+1, we have:

T̂ λi V = V (si) +
n∑
j=i

(γλ)j−i
(
ρji T̂jV − ρ

j−1
i V (sj)

)
= V (si) + ρiT̂iV − V (si) + γλρi

n∑
j=i+1

(ρji T̂jV − ρ
j−1
i V (sj))

= ρiT̂iV + γλρi

(
T̂ λi+1V − V (si+1)

)
.

To sum up, the “recipe” that we are about to use to derive off-policy gradient learning
algorithms based on eligibility traces will consist of the following steps:

1. write the empirical generic cost function of Equation (4) with the untruncated Bellman
operator of Equation (16) ;

306

Off-policy Learning with Traces

2. instantiate ξ and derive the gradient-based update rule (with some additional work
for ξ = θi, see Section 4.2);

3. turn the forward view into an equivalent (in expectation) backward view.

The next subsection details the precise derivation of the algorithms.

4.1 Off-policy TD(λ)

The Temporal-Difference algorithm (Sutton and Barto, 1998) is a gradient-based bootstrap
approach for value function approximation. Because it is the simplest, we begin by consid-
ering this bootstrap approach, that is by instantiating ξ = θj−1. The cost function to be
minimized is therefore:

i∑
j=1

(
T̂ λj V̂θj−1

− V̂ω(sj)
)2
.

Minimized with a stochastic gradient descent, the related update rule is (αi being a standard
learning rate and recalling that V̂ω(si) = ωTφ(si) = ωTφi):

θi = θi−1 −
αi
2
∇ω
(
T̂ λi V̂θi−1

− V̂ω(si)
)2 ∣∣∣

ω=θi−1

= θi−1 + αiφi

(
T̂ λi V̂θi−1

− V̂θi−1
(si)
)
. (17)

At this point, one could notice that the exact same update rule would have been obtained
by instantiating ξ = θi−1. This was to be expected: as only the last term of the sum is
considered for the update, we have j = i, and therefore ξ = θi−1 = θj−1.

Equation (17) makes use of a λ-TD error defined as

δλi (ω) = T̂ λi V̂ω − V̂ω(si).

For convenience, let also δi be the standard (off-policy) TD error defined as

δi(ω) = δλ=0
i (ω) = ρiT̂iV̂ω − V̂ω(si) = ρi

(
ri + γV̂ω(si+1)

)
− V̂ω(si).

The λ-TD error can be expressed as a forward recursion:

Lemma 5 Let δλi be the λ-TD error and δi be the standard TD error. Then for all ω,

δλi (ω) = δi(ω) + γλρiδ
λ
i+1(ω).

Proof This is a corollary of Lemma 4:

T̂ λi Vω = ρiri + γρi(1− λ)Vω(si+1) + γλρiT̂
λ
i+1Vω

⇔ T̂ λi Vω − Vω(si) = ρiri + γρiVω(si+1)− Vω(si) + γλρi(T̂
λ
i+1Vω − Vω(si+1))

⇔ δλi (ω) = δi(ω) + γλρiδ
λ
i+1(ω).

307

Geist and Scherrer

Therefore, we get the following update rule

θi = θi−1 + αiφiδ
λ
i (θi−1)

with δλi (θi−1) = δi(θi−1)+γλδλi+1(θi−1). The key idea here is to find some backward recursion
such that in expectation, when the Markov chain has reached its steady state distribution
µ0, it provides the same result as the forward recursion. Such a backward recursion is given
by the following lemma.

Proposition 6 Let zi be the eligibility vector, defined by the following recursion:

zi = φi + γλρi−1zi−1.

For all ω, we have
Eµ0 [φiδ

λ
i (ω)] = Eµ0 [ziδi(ω)].

Proof For clarity, we omit the dependence with respect to ω and write below δi (resp. δλi)
for δi(ω) (resp. δλi (ω)). The result relies on successive applications of Lemma 5. We have:

Eµ0 [φiδ
λ
i] = Eµ0 [φi(δi + γλρiδ

λ
i+1)]

= Eµ0 [φiδi] + Eµ0 [φiγλρiδ
λ
i+1].

Moreover, we have that Eµ0 [φiρiδ
λ
i+1] = Eµ0 [φi−1ρi−1δ

λ
i], as expectation is done according

to the stationary distribution, therefore:

Eµ0 [φiδ
λ
i] = Eµ0 [φiδi] + γλEµ0 [φi−1ρi−1δ

λ
i]

= Eµ0 [φiδi] + γλEµ0 [φi−1ρi−1(δi + γλρiδ
λ
i+1)]

= Eµ0 [δi(φi + γλρi−1φi−1 + (γλ)2ρi−1ρi−2φi−2 + . . .)]

= Eµ0 [δizi].

This suggests to replace Equation (17) by the following update rule,

θi = θi−1 + αiziδi(θi−1),

which is equivalent in expectation when the Markov chain has reached its steady state. This
is summarized in Algorithm 5.

This algorithm was first proposed in the tabular case by Precup et al. (2000) (who
call it per-decision importance sampling). An off-policy TD(λ) algorithm (with function
approximation) was proposed by Precup et al. (2001), but it differs significantly from the
algorithm just described, since it updates parameters based on full episodic trajectories
rather than based on the current transition. Algorithm 5 was actually first proposed much
more recently by Bertsekas and Yu (2009).

An important issue for the analysis of this algorithm is the fact that the trace zi may have
an infinite variance, due to importance sampling (Yu, 2010b, Section 3.1). As far as we know,
the only existing analysis of off-policy TD(λ) (as provided in Algorithm 5) uses an additional
constraint which forces the parameters to be bounded: after each parameter update, the

308

Off-policy Learning with Traces

Algorithm 5: Off-policy TD(λ)

Initialization;
Initialize vector θ0;
Set z0 = 0;

for i = 1, 2, . . . do

Observe φi, ri, φi+1 ;

Update traces ;
zi = γλρi−1zi−1 + φi ;

Update parameters ;
θi = θi−1 + αizi(ρiri −∆φTi θi−1) ;

resulting parameter vector is projected onto some predefined compact set. This analysis
is performed by Yu (2010b, Section 4.1). Under the standard assumptions of stochastic
approximations and most of the assumptions required for the on-policy TD(λ) algorithm,
assuming moreover that Π0T

λ is a contraction (which we recall to hold for a big enough λ)
and that the predefined compact set used to project the parameter vector is a large enough
ball containing the fixed point of Π0T

λ, the constrained version of off-policy TD(λ) converges
to this fixed-point —therefore, the same solution as off-policy LSTD(λ)—, LSPE(λ) and
FPKF(λ). We refer to Yu (2010b, Section 4.1) for further details. An analysis of the
unconstrained version of off-policy TD(λ) described in Algorithm 5 is an interesting topic
for future research.

4.2 Off-policy TDC(λ) And Off-policy GTD2(λ)

The Temporal Difference with gradient Correction and Gradient Temporal Differences 2
algorithms have been introduced by Sutton et al. (2009) as gradient descent approaches
to minimize the norm of the difference between the value function and its image through
the projected Bellman operator (they are therefore projected fixed-point approaches). Maei
and Sutton (2010) extended TDC to off-policy learning with traces, calling the resulting
algorithm GQ(λ).

This corresponds (for all algorithms and extensions) to the case ξ = θi, considered in
this section. Following the general pattern, at step i, we would like to come up with a new
parameter θi that moves (from θi−1) closer to the minimum of the function

ω 7→ J(ω, θi) =
(
T̂ λj V̂θi − V̂ω(sj)

)2
.

This problem is tricky since the function to minimize contains what we want to compute—-
θi—as a parameter. For this reason we cannot directly perform a stochastic gradient descent
of the right hand side. Instead, we will consider an alternative (but equivalent) formulation
of the projected fixed-point minimization θ = arg minω ‖Vω−Π0T

λVω‖2, and will move from
θi−1 to θi by making one step of gradient descent of an estimate of the function

θ 7→ ‖Vθ −Π0T
λVθ‖2.

309

Geist and Scherrer

With the following vectorial notations:

V̂ω =
(
V̂ω(s1) . . . V̂ω(si)

)T
,

T̂λV̂ω =
(
T̂ λ1 V̂ω . . . T̂ λi V̂ω

)T
,

Φ̃ =
[
φ(s1) . . . φ(si)

]T
,

Π̃0 = Φ̃(Φ̃T Φ̃)−1Φ̃T ,

we consider the following objective function:

J(θ) =
∥∥∥V̂θ − Π̃0T̂

λV̂θ

∥∥∥2

=
(
V̂θ − T̂λV̂θ

)T
Π̃0

(
V̂θ − T̂λV̂θ

)
=

 i∑
j=1

δλj (θ)φj

T i∑
j=1

φjφ
T
j

−1 i∑
j=1

δλj (θ)φj

 .

This is the derivation followed by Sutton et al. (2009) in the case λ = 0 and by Maei and
Sutton (2010) in the case λ > 0 (and off-policy learning). Let us introduce the following
notation:

gλj = ∇T̂ λj V̂θ. (18)

Note that since we consider a linear approximation this quantity does not depend on θ.
Noticing that ∇δλj (θ) = φj − gλj , we can compute ∇J(θ):

−1

2
∇J(θ) = −1

2
∇

 i∑
j=1

δλj (θ)φj

T i∑
j=1

φjφ
T
j

−1 i∑
j=1

δλj (θ)φj

= −

∇ i∑
j=1

δλj (θ)φj

T i∑
j=1

φjφ
T
j

−1 i∑
j=1

δλj (θ)φj

=

 i∑
j=1

(φj − gλj)φTj

 i∑
j=1

φjφ
T
j

−1 i∑
j=1

δλj (θ)φj

 (19)

=

 i∑
j=1

δλj (θ)φj

−
 i∑
j=1

gλj φ
T
j

 i∑
j=1

φjφ
T
j

−1 i∑
j=1

δλj (θ)φj

 .

Let wi(θ) be a quasi-stationary estimate of the last part, that can be recognized as the
solution of a least-squares problem (regression of λ-TD errors δλj on features φj):

wi(θ) ≈

 i∑
j=1

φjφ
T
j

−1 i∑
j=1

δλj (θ)φj

 = argmin
ω

i∑
j=1

(
φTj ω − δλj (θ)

)2
.

310

Off-policy Learning with Traces

The identification with the above least-squares solution suggests to use the following stochas-
tic gradient descent to form the quasi-stationary estimate:

wi = wi−1 + βiφi

(
δλi (θi−1)− φTi wi−1

)
.

This update rule makes use of the λ-TD error, defined through a forward view. As for the
previous algorithm, we can use Proposition 6 to obtain the following backward view update
rule that is equivalent (in expectation when the Markov chain reaches its steady state):

wi = wi−1 + βi
(
ziδi(θi−1)− φi(φTi wi−1)

)
. (20)

Using this quasi-stationary estimate, the gradient can be approximated as:

−1

2
∇J(θ) ≈

 i∑
j=1

δλj (θ)φj

−
 i∑
j=1

gλj φ
T
j

wi.

Therefore, a stochastic gradient descent gives the following update rule for the parameter
vector θ:

θi = θi−1 + αi

(
δλi (θi−1)φi − gλi φTi wi

)
. (21)

Once again the forward view term δλi (θi−1)φi can be turned into a backward view by using
Proposition 6. There remains to work on the term gλi φ

T
i .

First, one can notice that the term gλi satisfies a forward recursion.

Lemma 7 We have
gλi = γρi(1− λ)φi+1 + γλρig

λ
i+1.

Proof This result is simply obtained by applying the gradient to the forward recursion of
T̂ λi Vθ provided in Lemma 4 (according to θ).

Using this, the term gλi φ
T
i can be worked out similarly to the term δλi (θi−1)φi.

Proposition 8 Let zi be the eligibility vector defined in Proposition 6. We have

Eµ0 [gλi φ
T
i] = Eµ0 [γρi(1− λ)φi+1z

T
i].

Proof The proof is similar to that of Proposition 6. Writing bi = γρi(1 − λ)φi+1 and
ηi = γλρi, we have

Eµ0 [gλi φ
T
i] = Eµ0 [(bi + ηig

λ
i+1)φTi]

= Eµ0 [biφ
T
i] + Eµ0 [ηi−1(bi + ηig

λ
i+1)φTi−1]

= Eµ0 [biz
T
i].

Using this result and Proposition 6, it is natural to replace Equation (21) by an update
based on a backward recursion:

θi = θi−1 + αi
(
ziδi − γρi(1− λ)φi+1(zTi wi−1)

)
. (22)

311

Geist and Scherrer

Last but not least, for the estimate wi to be indeed quasi-stationary, the learning rates
should satisfy the following condition (in addition to the classical conditions):

lim
i→∞

αi
βi

= 0.

Equations. (22) and (20) define the off-policy TDC(λ) algorithm, summarized in Algo-
rithm 6. It was originally proposed by Maei and Sutton (2010) under the name GQ(λ). We
call it off-policy TDC(λ) to highlight the fact that it is the extension of the original TDC
algorithm of Sutton et al. (2009) to off-policy learning with traces. One can observe—to our
knowledge, this was never mentioned in the literature before—that when λ = 1, the learning
rule of TDC(1) reduces to that of TD(1).

Maei and Sutton (2010) show that the algorithm converges with probability 1 to the
same solution as the LSTD(λ) algorithm (that is, to θ∗ = A−1b) under some technical
assumptions. Contrary to off-policy TD(λ), this algorithm does not requires Π0T

λ to be a
contraction in order to be convergent. Unfortunately, one of the assumptions made in the
analysis, requiring that the traces zi have uniformly bounded second moments, is restrictive
since in an off-policy setting the traces zi may easily have an infinite variance (unless the
behavior policy is really close to the target policy), as noted by Yu (2010a).13 A full proof
of convergence thus still remains to be done.

Algorithm 6: Off-policy TDC(λ), also known as GQ(λ)

Initialization;
Initialize vector θ0 and w0;
Set z0 = 0;

for i = 1, 2, . . . do

Observe φi, ri, φi+1 ;

Update traces ;
zi = γλρi−1zi−1 + φi ;

Update parameters ;
θi = θi−1 + αi

(
zi(ρiri −∆φTi θi−1)− γρi(1− λ)φi+1(zTi wi−1)

)
;

wi = wi−1 + βi
(
zi(ρiri −∆φTi θi)− φi(φTi wi−1)

)
;

Using the same principle—performing a stochastic gradient descent to minimize J(θ))—
, an alternative to TDC, the GTD2 algorithm, was derived by Sutton et al. (2009) in the
λ = 0 case. As far as we know, it has never been extended to off-policy learning with traces;
we do it now. Notice that, given the derivation of GQ(λ), obtaining this algorithm is pretty
straightforward.

13. See also Randhawa and Juneja (2004).

312

Off-policy Learning with Traces

To do so, we can start back from Equation (19):

−1

2
∇J(θ) =

 i∑
j=1

(φj − gλj)φTj

 i∑
j=1

φjφ
T
j

−1 i∑
j=1

δλj (θ)φj

≈

 i∑
j=1

(φj − gλj)φTj

wi.

This suggests the following alternative update rule (based on forward recursion):

θi = θi−1 + αi(φi − gλi)φTi wi.

Using Proposition 8, it is natural to use the following alternative update rule, based on a
backward recursion:

θi = θi−1 + αi
(
φi(φ

T
i wi−1)− γρi(1− λ)φi+1(zTi wi−1)

)
.

The update of wi remains the same, and put together it gives off-policy GTD2(λ), summa-
rized in Algorithm 7. The analysis of this new algorithm constitutes a potential topic for
future research.

Algorithm 7: Off-policy GTD2(λ)

Initialization;
Initialize vector θ0 and w0;
Set z0 = 0;

for i = 1, 2, . . . do

Observe φi, ri, φi+1 ;

Update traces ;
zi = γλρi−1zi−1 + φi ;

Update parameters ;
θi = θi−1 + αi

(
φi(φ

T
i wi−1)− γρi(1− λ)φi+1(zTi wi−1)

)
;

wi = wi−1 + βi
(
zi(ρiri −∆φTi θi)− φi(φTi wi−1)

)
;

4.3 Off-policy gBRM(λ)

The algorithm proposed by Baird (1995) minimizes the Bellman residual using a gradient-
based approach, in the no-trace and on-policy case. We extend it to eligibility traces and
to off-policy learning, which corresponds to instantiate ξ = ω. The cost function to be
minimized is then:

i∑
j=1

(
T̂ λj V̂ω − V̂ω(sj)

)2
.

313

Geist and Scherrer

Following the negative of the gradient of the last term leads to the following update rule:

θi = θi−1 − αi∇ω
(
T̂ λi V̂ω − V̂ω(si)

)2 ∣∣∣
ω=θi−1

= θi−1 − αi∇ω
(
T̂ λi V̂ω − V̂ω(si)

) ∣∣∣
ω=θi−1

(
T̂ λi V̂θi−1

− V̂θi−1
(si)
)

= θi−1 + αi

(
φi − gλi

)
δλi (θi−1),

recalling the notation gλi = ∇T̂ λi V̂ω first defined in Equation (18).
As usual, this update involves a forward view, which we are going to turn into a backward

view. The term φiδ
λ
i can be worked thanks to Proposition 6. The term gλi δ

λ
i is more difficult

to handle, as it is the product of two forward views (until now, we only considered the
product of a forward view with a non-recursive term). This can be done thanks to the
following original relation (the proof being somewhat tedious, it is deferred to Appendix C):

Proposition 9 Write gλi = ∇ωT̂ λi and define

ci = 1 + (γλρi−1)2ci−1,

ζi = γρi(1− λ)φi+1ci + γλρi−1ζi−1

and di = δici + γλρi−1di−1.

We have that

Eµ0 [δλi g
λ
i] = Eµ0 [δiζi + diγρi(1− λ)φi+1 − δiγρi(1− λ)φi+1ci].

This result (together with Proposition 6) suggests to update parameters as follows:

θi = θi−1 + αi (δi(zi + γρi(1− λ)φi+1ci − ζi)− diγρi(1− λ)φi+1) .

This gives the off-policy gBRM(λ) algorithm, depicted in Algorithm 8. One can observe
that gBRM(1) is equivalent to TD(1) (and thus also TDC(1), cf. the comment before the
description of Algorithm 6). The analysis of this new algorithm is left for future research.

5. Empirical Study

This section aims at empirically comparing the surveyed algorithms. As they only address
the policy evaluation problem, we compare the algorithms in their ability to perform policy
evaluation (no control, no policy optimization); however, they may straightforwardly be
used in an approximate policy iteration approach (Bertsekas and Tsitsiklis, 1996; Munos,
2003). In order to assess their quality, we consider finite problems where the exact value
function can be computed.

More precisely, we consider Garnet problems (Archibald et al., 1995), which are a class
of randomly constructed finite MDPs. They do not correspond to any specific application,
but are totally abstract while remaining representative of the kind of MDP that might be
encountered in practice. In our experiments, a Garnet is parameterized by 4 parameters
and is written G(nS , nA, b, p): nS is the number of states, nA is the number of actions, b

314

Off-policy Learning with Traces

Algorithm 8: Off-policy gBRM(λ)

Initialization;
Initialize vector θ0;
Set z0 = 0, d0 = 0, c0 = 0, ζ0 = 0;

for i = 1, 2, . . . do

Observe φi, ri, φi+1 ;

Update traces ;
zi = φi + γλρi−1zi−1 ;
ci = 1 + (γλρi−1)2ci−1 ;
ζi = γρi(1− λ)φi+1ci + γλρi−1ζi−1 ;
di = (ρiri −∆φTi θi−1)ci + γλρi−1di−1 ;

Update parameters ;
θi = θi−1 + αi

(
(ρiri −∆φTi θi−1)(zi + γρi(1− λ)φi+1ci − ζi)− diγρi(1− λ)φi+1

)
;

is a branching factor specifying how many possible next states are possible for each state-
action pair (b states are chosen uniformly at random and transition probabilities are set
by sampling uniform random b − 1 cut points between 0 and 1) and p is the number of
features (for function approximation). The reward is state-dependent: for a given randomly
generated Garnet problem, the reward for each state is uniformly sampled between 0 and
1. Features are chosen randomly: Φ is a nS × p feature matrix of which each component is
randomly and uniformly sampled between 0 and 1. The discount factor γ is set to 0.95 in
all experiments.

We consider two types of problems, “small” and “big”, respectively corresponding to
instances G(30, 2, 2, 8) and G(100, 4, 3, 20). We also consider two types of learning: on-
policy and off-policy. In the on-policy setting, for each Garnet a policy π to be evaluated
is randomly generated (by sampling randomly nA − 1 cut points between 0 and 1 for each
state), and trajectories (to be used for learning) are sampled according to this same policy.
In the off-policy setting, the policy π to be evaluated is randomly generated the same way,
but trajectories are sampled according to a different (similarly randomly generated) behavior
policy π0.

For all algorithms, we choose θ0 = 0. For least-squares algorithms (LSTD, LSPE, FPKF
and BRM), we set the initial matrices (M0, N0, C0) to 103I (the higher this value, the more
negligible its effect on estimates; we observed that this parameter did not play a crucial role
in practice). We run a first set of experiments in order to set all other parameters (eligibility
factor and learning rates). We use the following schedule for the learning rates:

αi = α0
αc

αc + i
and βi = β0

βc

βc + i
2
3

.

More precisely, we generate 30 problems (MDPs and policies) for each possible combination
small/big on-policy/off-policy (leading to four cases). For each problem, we generate one
trajectory of length 104 using the behavioral policy (which is the randomly generated target

315

Geist and Scherrer

policy in the on-policy case and the behavior policy in the off-policy case), to be used by
all algorithms. For each meta-parameter, we consider the following ranges of values: λ ∈
{0, 0.4, 0.7, 0.9, 1}, α0 ∈ {10−2, 10−1, 100}, αc ∈ {101, 102, 103}, β0 ∈ {10−2, 10−1, 100} and
βc ∈ {101, 102, 103}. Then, we compute the parameter estimates considering all algorithms
instantiated with each possible combination of the meta-parameters. This gives for each
combination a family θi,d with i the number of transitions encountered in the trajectory of
the dth problem. Finally, for each case, for all problems and each algorithm, we choose the
combination of meta-parameters which minimizes the average error on the last one-tenth
of the averaged (over all problems) learning curves (we do this to reduce the sensitivity to
the initialization and the transient behavior). Formally, we pick the set of parameters that
minimizes the following quantity:

err =
1

30

30∑
d=1

1

103

104∑
i=9.103

‖Φθi,d − V πd‖2.

We provide the empirical results of this first set of experiments in Tables 3 to 6. As a
complement, we detail in Figure 1 the sensitivity of all algorithms with respect to the main
parameter λ that controls the eligibility traces (averaged over the 30 problems, with the
best global meta-parameters for each choice of λ). We comment these results below.

λ α0 αc β0 βc err
LSTD 1.0 2.07
LSPE 1.0 2.07
FPKF 1.0 2.07
BRM 1.0 2.07
TD 1.0 10−2 103 2.06
gBRM 1.0 10−2 103 2.06
TDC 1.0 10−2 103 10−2 101 2.06
GTD2 1.0 10−2 103 10−1 102 2.05

Table 3: Small problem (G(30, 2, 2, 8)), on-policy learning (π = π0).

Table 3 shows the best global meta-parameters over the 30 considered instances (one
trajectory per instance) of a small Garnet problem in an on-policy setting, as well as related
efficiency. Numerically, all methods provide equivalent performance (the slight difference of
error is not statistically significant, provided the variance of the estimates). All methods use
the same eligibility factor (λ = 1), leading to a Monte Carlo estimate, to reach their best
performance. Figure 1 (top, left) shows that this choice of λ does matter and that BRM,
gBRM and FPKF are more sensitive to a good choice of the eligibility factor.

Table 4 shows the best global meta-parameters over the 30 considered instances (one
trajectory per instance) of a big Garnet problem in an on-policy setting, as well as related
performance. These results are consistent with those of the small problem, in the on-policy
setting (with rather different meta-parameters, apart from the eligibility factor). Here again,
the algorithms need the highest value of λ to perform the best, except TDC and GTD2 that

316

Off-policy Learning with Traces

λ α0 αc β0 βc err
LSTD 1.0 1.20
LSPE 1.0 1.20
FPKF 1.0 1.20
BRM 1.0 1.20
TD 1.0 10−1 101 1.25
gBRM 1.0 10−1 101 1.25
TDC 0.9 10−1 102 10−1 102 1.21
GTD2 0.9 10−1 102 10−2 103 1.22

Table 4: Big problem (G(100, 4, 3, 20)), on-policy learning (π = π0).

take nevertheless a high value of λ. Figure 1 (top, right) suggests that as the problem’s size
grows, the role of the eligibility factor gets more prominent (but with a similar behavior).

λ α0 αc β0 βc err
LSTD 0.4 3.69
LSPE 0.4 3.69
FPKF 0.7 4.74
BRM 0.0 4.42
TD 0.4 10−1 102 3.85
gBRM 0.0 10−2 101 10.42
TDC 0.4 10−1 101 10−2 101 7.81
GTD2 0.4 10−1 103 10−2 101 4.53

Table 5: Small problem (G(30, 2, 2, 8)), off-policy learning (π 6= π0).

Table 5 reports the best meta-parameters in an off-policy setting for a small problem
(still for 30 instances). Regarding the least-squares methods, LSTD and LSPE get the
best results, whereas FPKF and BRM suffer more from the off-policy aspect. Regarding
gradient methods, TD’s performance is good (it is close to that of LSTD/LSPE and better
than BRM/FPKF), followed closely by GTD2. TDC and gBRM lead to the worse results.
All algorithms use a small or intermediate value of the eligibility factor. Increasing λ would
reduce the bias, but the performance would suffer from the variance due to importance
sampling, as shown also in Figure 1 (bottom, left).

Eventually, Table 6 shows the meta-parameters and performance in the most difficult
situation: the off-policy setting of the big problem. These results are consistent with the
off-policy results of the small problem, summarized in Table 5. LSTD and LSPE are the
most efficient least-squares algorithms and choose the smallest possible value λ = 0. FPKF
and BRM’s performance deteriorate (significantly for the latter). TD behaves very well and
GTD2 follows closely. The performance of TDC and gBRM are the worse. Figure 1 (bottom,
right) is similar to that of the small problem. It shows that TD (with a good learning rate)
is quite stable, in particular more than LSTD/LSPE.

317

Geist and Scherrer

0.0 0.2 0.4 0.6 0.8 1.0
Lambda

10-1

100

Av
er

ag
e

er
ro

r
on-policy, small problem

LSTD
LSPE
FPKF
BRM
TD
gBRM
TDC
GTD2

0.0 0.2 0.4 0.6 0.8 1.0
Lambda

10-1

100

Av
er

ag
e

er
ro

r

on-policy, big problem

LSTD
LSPE
FPKF
BRM
TD
gBRM
TDC
GTD2

0.0 0.2 0.4 0.6 0.8 1.0
Lambda

10-1

100

Av
er

ag
e

er
ro

r

off-policy, small problem

LSTD
LSPE
FPKF
BRM
TD
gBRM
TDC
GTD2

0.0 0.2 0.4 0.6 0.8 1.0
Lambda

10-1

100

Av
er

ag
e

er
ro

r

off-policy, big problem

LSTD
LSPE
FPKF
BRM
TD
gBRM
TDC
GTD2

Figure 1: Sensitivity of performance of the algorithms (y-axis, in logarithmic scale) with
respect to the eligibility trace parameter λ (x-axis). Left: Small problem
(G(30, 2, 2, 8)), right: Big problem (G(100, 4, 3, 20)). Top: on-policy learning
(π = π0), bottom: off-policy learning (π 6= π0).

The main goal of the series of experiments we have just described was to choose rea-
sonable values for the meta-parameters. We have also used these experiments to quickly
comment the relative performance of the algorithms, but this is not statistically significant
as this was based on a few (random) problems, onto which meta-parameters have been opti-
mized. Though we will see that the general behavior of the algorithm is globally consistent
with what we have seen so far, the series of experiments that we are about to describe aims
at providing such a statistically significant performance comparison. For each situation
(small and big problems, on- and off-policy), we fix the meta-parameters to the previously
reported values and we compare the algorithms on several new instances of the problems.
These results are reported on Figures 2 to 5. For each of the 4 problems, we randomly gen-
erate 100 instances (MDP and policy to be evaluated). For each such problem, we generate
a trajectory of length 105. Then, all algorithms learn using this very trajectory. On each
figure, we report the average performance (left), measured as the difference between the true

318

Off-policy Learning with Traces

λ α0 αc β0 βc err
LSTD 0 3.76
LSPE 0 3.86
FPKF 0.7 4.80
BRM 1.0 10.05
TD 0.4 10−1 101 2.96
gBRM 0.0 10−2 101 10.50
TDC 0.0 10−1 101 10−2 101 8.65
GTD2 0.0 10−1 103 10−2 101 4.41

Table 6: Big problem (G(100, 4, 3, 20)), off-policy learning (π 6= π0).

value function (computed from the model) and the currently estimated one, ‖V π −Φθ‖2, as
well as the associated standard deviation (right).

102 103 104 105

Iterations

10-1

100

Av
er

ag
e

er
ro

r

on-policy, small problem

LSTD
LSPE
FPKF
BRM
TD
TDC
GTD2
gBRM

102 103 104 105

Iterations

10-3

10-2

10-1

100

101

102

St
an

da
rd

 D
ev

ia
tio

n
of

 th
e

er
ro

r

on-policy, small problem

LSTD
LSPE
FPKF
BRM
TD
TDC
GTD2
gBRM

Figure 2: Performance for small problems (G(30, 2, 2, 8)), on-policy learning (π = π0) (left:
average error, right: standard deviation).

We begin by discussing the results in the on-policy setting. Figure 2 compares all algo-
rithms for 100 randomly generated small problems (that is, each run corresponds to different
dynamics, reward function, features and evaluated policy), the meta-parameters being those
provided in Table 3. All least-squares approaches provide the best results and are bunched
together; this was to be expected, as all algorithms use λ equal to 1. The gBRM, TD and
TDC algorithms provide the same results (being equivalent with the choice λ = 1), they are
slower than GTD2, which is slower than the least-squares algorithms. Figure 3 compares
the algorithms for 100 randomly generated big problems, the meta-parameters being those
provided in Table 4. These result are similar to those of the small problem in an off-policy
setting, except that TDC has now a different (and slower) behavior, due to the different
choice of the eligibility factor (λ = 0.9). GTD2 is still the better gradient-based algorithm.

319

Geist and Scherrer

102 103 104 105

Iterations

10-1

100
Av

er
ag

e
er

ro
r

on-policy, big problem

LSTD
LSPE
FPKF
BRM
TD
TDC
GTD2
gBRM

102 103 104 105

Iterations

10-3

10-2

10-1

100

101

102

St
an

da
rd

 D
ev

ia
tio

n
of

 th
e

er
ro

r

on-policy, big problem

LSTD
LSPE
FPKF
BRM
TD
TDC
GTD2
gBRM

Figure 3: Performance for big problems (G(100, 4, 3, 20)), on-policy learning (π = π0) (left:
average error, right: standard deviation).

102 103 104 105

Iterations

10-1

100

Av
er

ag
e

er
ro

r

off-policy, small problem

LSTD
LSPE
FPKF
BRM
TD
TDC
GTD2
gBRM

102 103 104 105

Iterations

10-3

10-2

10-1

100

101

102

St
an

da
rd

 D
ev

ia
tio

n
of

 th
e

er
ro

r
off-policy, small problem

LSTD
LSPE
FPKF
BRM
TD
TDC
GTD2
gBRM

Figure 4: Performance for small problems (G(30, 2, 2, 8)), off-policy learning (π 6= π0) (left:
average error, right: standard deviation).

We now consider the off-policy setting. Figure 4 provides the average performance and
standard deviation of the algorithms (meta-parameters being those of Table 5) on 100 small
problems. Once again, we can see that LSTD/LSPE provide the best results. The two
other least-squares methods (FPKF and BRM) are overtaken by the gradient-based TD
algorithm, that follows closely LSTD/LSPE. GTD2 is a little bit slower and TDC is the
slowest algorithm. Figure 5 provides the same data for the big problems (with the meta-
parameters of Table 6). These results are similar to those of the small problems in an
off-policy setting, except that TD is even closer to LSTD/LSPE (but requires the choice of
a learning rate).

Summary. Overall, our experiments suggest that the two best algorithms are LSTD and
LSPE, since they converge much faster in all situations with less parameter tuning. The
gradient-based TD algorithm globally displays a good behavior and constitutes a good alter-

320

Off-policy Learning with Traces

102 103 104 105

Iterations

10-1

100
Av

er
ag

e
er

ro
r

off-policy, big problem

LSTD
LSPE
FPKF
BRM
TD
TDC
GTD2
gBRM

102 103 104 105

Iterations

10-3

10-2

10-1

100

101

102

St
an

da
rd

 D
ev

ia
tio

n
of

 th
e

er
ro

r

off-policy, big problem

LSTD
LSPE
FPKF
BRM
TD
TDC
GTD2
gBRM

Figure 5: Performance for big problems (G(100, 4, 3, 20)), on-policy learning (π 6= π0) (left:
average error, right: standard deviation).

native when the number p of features is too big for least-squares methods to be implemented.
Though some new algorithms/extensions show interesting results (FPKF(λ) is consistently
better that the state-of-the-art FPKF by Choi and Van Roy 2006, gBRM works well in the
on-policy setting) most of the other algorithms do not seem to be empirically competitive
with the trio LSTD/LSPE/TD, especially in off-policy situations. In particular, the algo-
rithm introduced specifically for the off-policy setting (TDC/GTD2) are much slower than
TD in the off-policy case (but GTD2 is faster in the on-policy experiments, yet with more
parameter tuning). Moreover, the condition required for the good behavior of LSPE, FPKF
and TD—the contraction of Π0T

λ—does not seem to be very restrictive in practice (at least
for the Garnet problems we considered): though it is possible to build specific pathological
examples where these algorithms diverge, this never happened in our experiments.14

6. Conclusion And Future Work

We have considered least-squares and gradient-based algorithms for value estimation in an
MDP context. Starting from the on-policy case with no trace, we have recalled that several
algorithms (LSTD, LSPE, FPKF and BRM for least-squares approaches, TD, gBRM and
TDC/GTD2 for gradient-based approaches) fall in a common algorithmic pattern: Equa-
tion (2). Substituting the original Bellman operator by an operator that deals with traces
and off-policy samples naturally leads to the state-of-the-art off-policy trace-based versions
of LSTD, LSPE, TD and TDC, and suggests natural extensions of FPKF, BRM, gBRM
and GTD2. This way, we surveyed many known and new off-policy eligibility trace-based
algorithms for policy evaluation.

We have explained how to derive recursive (memory and time-efficient) implementations
of all these algorithms and discussed their known convergence properties, including an origi-
nal analysis of BRM(λ) for sufficiently small λ, that implies the so far not known convergence

14. A preliminary version of this article (Scherrer and Geist, 2011) contains such examples, and also an
example where an adversarial choice of λ leads to the divergence of LSTD(λ).

321

Geist and Scherrer

of GPTD/KTD. Interestingly, it appears that the analysis of off-policy trace-based stochas-
tic gradient algorithms under mild assumptions is still an open problem: the only currently
known analysis of TD (Yu, 2010a) only applies to a constrained version of the algorithm,
and that of TDC (Maei and Sutton, 2010) relies on an assumption on the boundedness of
the second moment traces that is restrictive (Yu, 2010a). Filling this theoretical gap, as well
as providing complete analyses for the other gradient algorithms and FPFK(λ) and BRM(λ)
constitute important future work.

Finally, we have illustrated and compared the behavior of these algorithms; this con-
stitutes the first exhaustive empirical comparison of linear methods.15 Overall, our study
suggests that even if the use of eligibility traces generally improves the efficiency of all al-
gorithms, LSTD and LSPE consistently provide the best estimates; and in situations where
the computational cost is prohibitive for a least-squares approach (when the number p of
features is large), TD probably constitutes the best alternative.

Appendix A. Derivation Of The Recursive Formulas For BRM(λ)

We here detail the derivation of off-policy BRM(λ). We will need two technical lemmas. The
first one is the Woodbury matrix identity which generalizes the Sherman-Morrison formula
(given in Lemma 1).

Lemma 10 (Woodbury) Let A, U , C and V be matrices of correct sizes, then:

(A+ UCV)−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

The second lemma is a rewriting of imbricated sums:

Lemma 11 Let f ∈ RN×N×N and n ∈ N. We have:

n∑
i=1

n∑
j=i

n∑
k=i

f(i, j, k) =
n∑
i=1

i∑
j=1

j∑
k=1

f(k, i, j) +
n∑
i=2

i−1∑
j=1

j∑
k=1

f(k, j, i).

As stated in Equation (14), we have the following batch estimate for BRM(λ):

θi = argmin
ω∈Rp

i∑
j=1

(zj→i − ψTj→iω)2 = (Ãi)
−1b̃i,

where

ψj→i =
i∑

k=j

ρ̃k−1
j ∆φk and zj→i =

i∑
k=j

ρ̃k−1
j ρkrk

and

Ãi =
i∑

j=1

ψj→iψ
T
j→i and b̃i =

i∑
j=1

ψj→izj→i.

15. To our knowledge, there does not even exist any work reporting and comparing empirical results of
LSTD(0) and FPKF(0).

322

Off-policy Learning with Traces

To obtain a recursive formula, these two sums have to be reworked through Lemma 11.
Let us first focus on the latter:

i∑
j=1

ψj→izj→i =

i∑
j=1

i∑
k=j

i∑
m=j

ρ̃k−1
j ∆φkρ̃

m−1
j ρmrm

=

i∑
j=1

j∑
k=1

k∑
m=1

ρ̃j−1
m ∆φj ρ̃

k−1
m ρkrk +

i∑
j=2

j−1∑
k=1

k∑
m=1

ρ̃k−1
m ∆φkρ̃

j−1
m ρjrj .

Writing

yk =

k∑
m=1

(ρ̃k−1
m)2 = 1 + (γλρk−1)2yk−1,

we have that:
k∑

m=1

ρ̃j−1
m ρ̃k−1

m = ρ̃j−1
k yk.

Therefore:

i∑
j=1

ψj→izj→i =
i∑

j=1

j∑
k=1

ρ̃j−1
k yk∆φjρkrk +

i∑
j=2

j−1∑
k=1

ρ̃j−1
k yk∆φkρjrj .

With the following notations:

zj =

j∑
k=1

ρ̃j−1
k ykρkrk = γλρj−1zj−1 + ρjrjyj

and Dj =

j∑
k=1

ρ̃j−1
k yk∆φk = γλρj−1Dj−1 + yj∆φj ,

and with the convention that z0 = 0 and D0 = 0, one can write:

i∑
j=1

ψj→izj→i =
i∑

j=1

(∆φjρjrjyj + γλρj−1(∆φjzj−1 + ρjrjDj−1)).

Similarly, on can show that:

i∑
j=1

ψj→iψ
T
j→i =

i∑
j=1

(∆φj∆φ
T
j yj + γλρj−1(∆φjD

T
j−1 + Dj−1∆φTj)).

Denoting

uj =
√
yj∆φj ,

vj =
γλρj−1√

yj
Dj−1,

323

Geist and Scherrer

and I2 the 2× 2 identity matrix, we have:

i∑
j=1

ψj→iψ
T
j→i =

i∑
j=1

((uj + vj)(uj + vj)
T − vjvTj)

=

i−1∑
j=1

ψj→iψ
T
j→i +

(
ui + vi vi

)︸ ︷︷ ︸
=Ui

I2

(
(ui + vi)

T

−vTi

)
︸ ︷︷ ︸

=Vi

.

We can apply the Woodbury identity given in Lemma 10:

Ci =

 i∑
j=1

ψj→iψ
T
j→i

−1

=

 i−1∑
j=1

ψj→izj→i + UiI2Vi

−1

= Ci−1 − Ci−1Ui (I2 + ViCi−1Ui)
−1 ViCi−1.

The other sum can also be reworked:

b̃i =

i∑
j=1

ψj→izj→i =

i∑
j=1

∆φjrjyj + γλ (Dj−1rj + ∆φjzj−1)

= b̃i−1 + ∆φiriyi + γλ (Di−1ri + ∆φizi−1) = b̃i−1 + Ui

(√
yiri + γλ√

yi
zi−1

− γλ√
yi
zi−1

)
︸ ︷︷ ︸

=Wi

.

Finally, the recursive BRM(λ) estimate can be computed as follows:

θi = Cib̃i = θi−1 + Ci−1Ui (I2 + ViCi−1Ui)
−1 (Wi − Viθi−1) .

This gives BRM(λ) as provided in Algorithm 4.

Appendix B. Proof Of Theorem 3: Convergence Of BRM(λ)

The proof of Theorem 3 follows the general idea of that of Proposition 4 of Bertsekas and
Yu (2009). It is done in 2 steps. First we argue that the limit of the sequence is linked to
that of an alternative algorithm for which one cuts the traces at a certain depth l. Then, we
show that for all depth l, this alternative algorithm converges almost surely, we explicitly
compute its limit and make l tend to infinity to obtain the limit of BRM(λ).

We will only show that 1
i Ãi tends to Ã. The argument is similar for 1

i bi → b̃. Consider
the following l-truncated version of the algorithm based on the following alternative traces
(we here limit the “memory” of the traces to a size l):

yk,l =

k∑
m=max(1,k−l+1)

(ρ̃k−1
m)2,

Dj,l =

j∑
k=max(1,j−l+1)

ρ̃j−1
k yk,l∆φk,

324

Off-policy Learning with Traces

and update the following matrix:

Ãi,l = Ãi−1,l + ∆φi∆φ
T
i yi,l + ρ̃i−1(∆φiD

T
i−1,l + Di−1,l∆φ

T
i).

The assumption in Equation (15) implies that ρ̃j−1
i ≤ βj−i, therefore it can be seen that for

all k,

|yk,l − yk| =
max(0,k−l)∑

m=1

(ρ̃k−1
m)2 ≤

max(0,k−l)∑
m=1

β2(k−m) ≤ β2l

1− β2
= ε1(l)

where ε1(l) tends to 0 when l tends to infinity. Similarly, using the fact that yk ≤ 1
1−β2 and

writing K = maxs,s′ ‖φ(s)− γφ(s′)‖∞, one has for all j,

‖Dj,l −Dj‖∞ ≤
max(0,j−l)∑

k=1

ρ̃j−1
k ‖yk∆φk‖∞ +

j∑
k=max(1,j−l+1)

ρ̃j−1
k |yk,l − yk|‖∆φk‖∞

≤
max(0,j−l)∑

k=1

ρ̃j−1
k

1

1− β2
K +

j∑
k=max(1,j−l+1)

ρ̃j−1
k

β2l

1− β2
K

≤ βl

1− β
1

1− β2
K +

1

1− β
β2l

1− β2
K = ε2(l)

where ε2(l) also tends to 0. Then, it can be seen that:

‖Ãi,l − Ãi‖∞ =
∥∥∥Ãi−1,l − Ãi−1 + ∆φi∆φ

T
i (yi,l − yi)

+ ρ̃i−1(∆φi(D
T
i−1,l −DT

i−1) + (Di−1,l −Di−1)∆φTi)
∥∥
∞

≤ ‖Ãi−1,l − Ãi−1‖∞ + ‖∆φi∆φTi ‖∞|yk,l − yk|+ 2β‖∆φi‖∞‖Di−1,l −Di‖∞
≤ ‖Ãi−1,l − Ãi−1‖∞ +K2ε1(l) + 2βKε2(l)

and, by a recurrence on i, one obtains∥∥∥∥∥Ãi,li − Ãi
i

∥∥∥∥∥
∞

≤ ε(l)

where ε(l) tends to 0 when l tends to infinity. This implies that:

lim inf
l→∞

Ãi,l
i
− ε(l) ≤ lim inf

l→∞

Ãi
i
≤ lim sup

l→∞

Ãi
i
≤ lim sup

l→∞

Ãi,l
i

+ ε(l).

In other words, one can see that limi→∞
Ãi
i and liml→∞ limi→∞

Ãi,l
i are equal if the latter

exists. In the remaining of the proof, we show that the latter limit indeed exists and we
compute it explicitly.

Let us fix some l and let us consider the sequence (
Ãi,l
i). At some index i, yi,l depends

only on the last l samples, while Di,l depends on the same samples and the last l values of
yj,l, thus on the last 2l samples. It is then natural to view the computation of Ãi,l, which is

325

Geist and Scherrer

based on yi,l, Di−1,l and ∆φi = φi − γρiφi+1, as being related to a Markov chain of which
the states are the 2l + 1 consecutive states of the original chain (si−2l, . . . , si, si+1). Write
E0 the expectation with respect to its stationary distribution. By the Markov chain Ergodic
Theorem, we have with probability 1:

lim
i→∞

Ãi,l
i

= E0

[
∆φ2l∆φ

T
2ly2l,l + λγρ2l−1(∆φ2lD

T
2l−1,l + D2l−1,l∆φ

T
2l)
]
. (23)

Let us now explicitly compute this expectation. Write xi the indicator vector (of which the
kth coordinate equals 1 when the state at time i is k and 0 otherwise). One has the following
relations: φi = ΦTxi. Let us first look at the left part of the above limit:

E0

[
∆φ2l∆φ

T
2ly2l,l

]
= E0

[
(φ2l − γρ2lφ2l+1)(φ2l − γρ2lφ2l+1)T y2l,l

]
= E0

[
ΦT (x2l − γρ2lx2l+1)(x2l − γρ2lx2l+1)TΦ

(
2l∑

m=l+1

(λγ)2(2l−m)(ρ2l−1
m)2

)]

= ΦT

{
2l∑

m=l+1

(λγ)2(2l−m)E0

[
(ρ2l−1
m)2(x2l − γρ2lx2l+1)(x2l − γρ2lx2l+1)T

]}
Φ

= ΦT

{
2l∑

m=l+1

(λγ)2(2l−m)E0

[
(Xm,2l,2l − γXm,2l,2l+1 − γXm,2l+1,2l + γ2Xm,2l+1,2l+1)

]}
Φ

where we used the definition ρ̃k−1
j = (λγ)k−jρk−1

j and the notation Xm,i,j = ρi−1
m ρj−1

m xix
T
j .

To finish the computation, we will mainly rely on the following Lemma:

Lemma 12 (Some Identities) Let P̃ be the matrix of which the coordinates are p̃ss′ =∑
a π(s, a)ρ(s, a)T (s, a, s′), which is in general not a stochastic matrix. Let µ0 be the sta-

tionary distribution of the behavior policy π0. Write D̃i = diag
(

(P̃ T)iµ0

)
. Then

∀m ≤ i, E0[Xm,i,i] = D̃i−m,

∀m ≤ i ≤ j, E0[Xm,i,j] = D̃i−mP
j−i,

∀m ≤ j ≤ i, E0[Xm,i,j] = (P T)j−iD̃i−m.

Proof We first observe that:

E0[Xm,i,i] = E0[(ρi−1
m)2xix

T
i]

= E0[(ρi−1
m)2 diag(xi)]

= diag
(
E0[(ρi−1

m)2xi
)
.

To provide the identity, we will thus simply provide a proof by recurrence that E0[(ρi−1
m)2xi] =

(P̃ T)m−iµ0. For i = m, we have E0[xm] = µ0. Now suppose the relation holds for i and let
us prove it for i+ 1.

E0[(ρim)2xi+1] = E0

[
E0[(ρim)2xi+1|Fi]

]
= E0

[
E0[(ρi−1

m)2(ρi)
2xi+1|Fi]

]
= E0

[
(ρi−1
m)2E0[(ρi)

2xi+1|Fi]
]
.

326

Off-policy Learning with Traces

Write Fi the realization of the process until time i. Recalling that si is the state at time i
and xi is the indicator vector corresponding to si, one has for all s′:

E0[(ρi)
2xi+1(s′)|Fi] =

∑
a

π0(si, a)ρ(si, a)2T (si, a, s
′)

=
∑
a

π(si, a)ρ(si, a)T (si, a, s
′)

= p̃si,s′

= [P̃ Txi](s
′).

As this is true for all s′, we deduce that E0[(ρi)
2xi+1|Fi] = P̃ Txi and

E0[(ρim)2xi+1] = E0[(ρi−1
m)2P̃ Txi]

= P̃ TE0[(ρi−1
m)2P̃ Txi]

= P̃ T (P̃ T)iµ0

= (P̃ T)i+1µ0

which concludes the proof by recurrence.
Let us consider the next identity. For i ≤ j,

E0[ρi−1
m ρj−1

m xix
T
j] = E0[E0[ρi−1

m ρj−1
m xix

T
j |Fi]]

= E0[(ρi−1
m)2xiE0[ρj−1

i xTj |Fi]]
= E0[(ρi−1

m)2xix
T
i P

j−i]

= diag
(

(P̃ T)m−iµ0

)
P j−i.

Eventually, the last identity is obtained by considering Ym,i,j = XT
m,j,i.

Thus, coming back to our calculus,

E0

[
∆φ2l∆φ

T
2ly2l,l

]
= ΦT

{
2l∑

m=l+1

(λγ)2(2l−m)
(
D̃2l−m − γD̃2l−mP − γPT D̃2l−m + γ2D̃2l+1−m

)}
Φ

= ΦT (Dl − γDlP − γPTDl + γ2D′l)Φ (24)

with Dl =
l−1∑
j=0

(λγ)2jD̃j , and D′l =
l−1∑
j=0

(λγ)2jD̃j+1.

327

Geist and Scherrer

Similarly, the second term on the right side of Equation (23) satisfies:

E0

[
ρ2l−1D2l−1,l∆φ

T
2l

]
= E0

[
ρ2l−1

2l−1∑
k=l

ρ̃2l−2
k yk,l∆φk∆φ

T
2l

]

= E0

[
2l−1∑
k=l

(λγ)2l−1−kρ2l−1
k

(
k∑

m=k−l+1

(ρ̃k−1
m)2

)
ΦT (xk − γρkxk+1)(x2l − γρ2lx2l+1)TΦ∆φT2l

]

= ΦT

(
2l−1∑
k=l

(λγ)2l−1−k

k∑
m=k−l+1

(λγ)2(k−m)E0

[
ρ2l−1
m ρk−1

m (xk − γρkxk+1)(x2l − γρ2lx2l+1)T
])

Φ

= ΦT

(
2l−1∑
k=l

(λγ)2l−1−k
k∑

m=k−l+1

(λγ)2(k−m)

E0

[
Xm,k,2l − γXm,k+1,2l − γXm,k,2l+1 + γ2Xm,k+1,2l+1

])
Φ

= ΦT

(
2l−1∑
k=l

(λγ)2l−1−k
k∑

m=k−l+1

(λγ)2(k−m)

(
D̃k−mP

2l−k − γD̃k+1−mP
2l−k−1 − γD̃k−mP

2l+1−k + γ2D̃k+1−mP
2l−k

))
Φ

= ΦT

(
2l−1∑
k=l

(λγ)2l−1−k
k∑

m=k−l+1

(λγ)2(k−m)

(
D̃k−mP

2l−k(I − γP)− γD̃k+1−mP
2l−1−k(I − γP)

))
Φ

= ΦT

(
2l−1∑
k=l

(λγ)2l−1−k
k∑

m=k−l+1

(λγ)2(k−m)
(
D̃k−mP − γD̃k+1−m

)
P 2l−1−k(I − γP)

)
Φ

= ΦT

(
2l−1∑
k=l

(λγ)2l−1−k (DlP − γD′l
)
P 2l−1−k(I − γP)

)
Φ

= ΦT
(
DlP − γD′l

)
Ql(I − γP)Φ

with Ql =
∑l−1

j=0(λγP)j .

328

Off-policy Learning with Traces

Gathering this and Equation (24), we see that the limit of Ai,li expressed in Equation (23)
equals:

ΦT
[
Dl − γDlP − γP TDl + γ2D′l

+λγ
(
(DlP − γD′l)Ql(I − γP) + (I − γP T)QTl (P TDl − γD′l)

)]
Φ.

When l tends to infinity, Ql tends to Q = (I − λγP)−1. The assumption of Equation (15)
ensures that (λγ)P̃ has spectral radius smaller than 1, and thus when l tends to infinity, Dl

tends to D = diag
(

(I − (λγ)2P̃ T)−1µ0

)
and D′l to D

′ = diag
(
P̃ T (I − (λγ)2P̃ T)−1µ0

)
. In

other words, liml→∞ limi→∞
Ãi,l
i exists with probability 1 and equals:

ΦT
[
D − γDP − γP TD + γ2D′

+λγ
(
(DP − γD′)Q(I − γP) + (I − γP T)QT (P TD − γD′)

)]
Φ.

Eventually, this shows that limi→∞
Ãi
i exists with probability 1 and shares the same value.

A similar reasoning allows to show that limi→∞
b̃i
i exists and equals

ΦT
[
(I − γP T)QTD + λγ(DP − γD′)Q

]
Rπ.

Appendix C. Proof Of Proposition 9

To prove Proposition 9, we need the following technical lemma.

Lemma 13 Let αi and βi be two forward recursions defined as

αi = ai + ηiαi+1

and βi = bi + ηiβi+1.

Assume that for any function f we have that (this is typically true if the index i refers to a
state sampled according to some stationary distribution, which is the case we are interested
in)

E[f(ai, bi, ηi)] = E[f(ai−1, bi−1, ηi−1)].

Let also ui, vi and wi be the backward recursions defined as

wi = 1 + η2
i−1wi−1,

ui = aiwi + ηi−1ui−1,

vi = biwi + ηi−1vi−1.

Then, we have
E[αiβi] = E[aivi + biui − aibiwi].

Proof The proof looks like the one of Proposition 6, but is a little bit more complicated.
A key equality, to be applied repeatedly, is:

αiβi = (ai + ηiαi+1)(bi + ηiβi+1)

= aiβi + biαi + η2
i αi+1βi+1 − aibi.

329

Geist and Scherrer

Another equality to be used repeatedly makes use of the “stationarity” assumption. For any
k ≥ 0 we have:

E[(

k∏
j=0

η2
i−j)αi+1βi+1] = E[(

k+1∏
j=1

η2
i−j)αiβi].

These two identities can be used to work the term of interest:

E[αiβi] = E[(ai + ηiαi+1)(bi + ηiβi+1)]

= E[aiβi] + E[biαi] + E[η2
i αi+1βi+1]− E[aibi]

= E[aiβi] + E[biαi]− E[aibi] + E[η2
i−1(ai + ηiαi+1)(bi + ηiβi+1)]

= E[ai(1 + η2
i−1)βi] + E[bi(1 + η2

i−1)αi]− E[aibi(1 + η2
i−1)] + E[(ηi−1ηi)

2αi+1βi+1].

This process can be repeated, giving

E[αiβi] = E[(aiβi + biαi − aibi)(1 + η2
i−1 + (ηi−1ηi−2)2 + . . .)].

We have that
wi = 1 + η2

i−1wi−1 = 1 + η2
i−1 + (ηi−1ηi−2)2 + . . . ,

therefore
E[αiβi] = E[aiwiβi] + E[biwiαi]− E[aibiwi].

We can work on the first term:

E[aiwiβi] = E[aiwi(bi + ηiβi+1)]

= E[aiwibi] + E[ai−1wi−1ηi−1(bi + ηiβi+1)]

= E[bi(aiwi + ηi−1(ai−1wi−1) + ηi−1ηi−2(ai−2wi−2) + . . .)]

= E[biui].

The work on the second term is symmetric:

E[biwiαi] = E[aivi].

This finishes proving the result.

The proof of Proposition 9 is a simple application of the preceding technical lemma. By
lemma 5, we have that

δλi︸︷︷︸
.
=αi

= δi︸︷︷︸
.
=ai

+ γλρi︸︷︷︸
.
=ηi

δλi+1︸︷︷︸
.
=αi+1

.

By lemma 7, we have that

gλi︸︷︷︸
.
=βi

= γρi(1− λ)φi+1︸ ︷︷ ︸
.
=bi

+ γλρi︸︷︷︸
.
=ηi

gλi+1︸︷︷︸
.
=βi+1

.

The result is then a direct application of Lemma 13.

330

Off-policy Learning with Traces

References

A. Antos, Cs. Szepesvári, and R. Munos. Learning near-optimal policies with Bellman-
residual minimization based fitted policy iteration and a single sample path. In Conference
on Learning Theory (COLT), 2006.

T. Archibald, K. McKinnon, and L. Thomas. On the generation of Markov decision pro-
cesses. Journal of the Operational Research Society, 46:354–361, 1995.

L.C. Baird. Residual algorithms: Reinforcement learning with function approximation. In
International Conference on Machine Learning (ICML), 1995.

D.P. Bertsekas and S. Ioffe. Temporal differences-based policy iteration and applications in
neuro-dynamic programming. Technical report, MIT, 1996.

D.P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
1996.

D.P. Bertsekas and H. Yu. Projected equation methods for approximate solution of large
linear systems. Journal of Computational and Applied Mathematics, 227:27–50, 2009.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In S. Sra, S. Nowozin,
and S.J. Wright, editors, Optimization for Machine Learning, pages 351–368. MIT Press,
2011.

J.A. Boyan. Technical update: Least-squares temporal difference learning. Machine Learn-
ing, 49(2-3):233–246, 1999.

S.J. Bradtke and A.G. Barto. Linear least-squares algorithms for temporal difference learn-
ing. Machine Learning, 22(1-3):33–57, 1996.

D. Choi and B. Van Roy. A generalized Kalman filter for fixed point approximation and
efficient temporal-difference learning. Discrete Event Dynamic Systems, 16:207–239, 2006.

Y. Engel. Algorithms and Representations for Reinforcement Learning. PhD thesis, Hebrew
University, 2005.

M. Geist and O. Pietquin. Eligibility traces through colored noises. In IEEE International
Conference on Ultra Modern Control Systems (ICUMT), 2010a.

M. Geist and O. Pietquin. Kalman temporal differences. Journal of Artifical Intelligence
Research (JAIR), 39:483–532, 2010b.

M. Geist and O. Pietquin. Algorithmic survey of parametric value function approximation.
IEEE Transactions on Neural Networks and Learning Systems, 24(6):845 – 867, 2013.

M. Kearns and S. Singh. Bias-variance error bounds for temporal difference updates. In
Conference on Learning Theory (COLT), 2000.

J.Z. Kolter. The fixed points of off-policy TD. In Advances in Neural Information Processing
Systems (NIPS), 2011.

331

Geist and Scherrer

M.G. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine Learning
Research, 4:1107–1149, 2003. ISSN 1533-7928.

H.R. Maei and R.S. Sutton. GQ(λ): A general gradient algorithm for temporal-difference
prediction learning with eligibility traces. In Conference on Artificial General Intelligence
(AGI), 2010.

R. Munos. Error bounds for approximate policy iteration. In International Conference on
Machine Learning (ICML), 2003.

A. Nedić and D.P. Bertsekas. Least squares policy evaluation algorithms with linear function
approximation. Discrete Event Dynamic Systems, 13:79–110, 2003.

D. Precup, R.S. Sutton, and S.P. Singh. Eligibility traces for off-policy policy evaluation.
In International Conference on Machine Learning (ICML), 2000.

D. Precup, R.S. Sutton, and S. Dasgupta. Off-policy temporal-difference learning with
function approximation. In International Conference on Machine Learning (ICML), 2001.

R.S. Randhawa and S. Juneja. Combining importance sampling and temporal difference
control variates to simulate Markov chains. ACM Transactions on Modeling and Computer
Simulation, 14(1):1–30, 2004.

B.D. Ripley. Stochastic Simulation. Wiley & Sons, 1987.

B. Scherrer. Should one compute the temporal difference fix point or minimize the Bellman
residual? The unified oblique projection view. In International Conference on Machine
Learning (ICML), 2010.

B. Scherrer and M. Geist. Recursive least-squares learning with eligibility traces. In European
Workshop on Reinforcement Learning (EWRL), 2011.

R. Schoknecht. Optimality of reinforcement learning algorithms with linear function ap-
proximation. In Advances in Neural Information Processing Systems (NIPS), 2002.

R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction (Adaptive Compu-
tation and Machine Learning). MIT Press, 3rd edition, 1998.

R.S. Sutton, H.R. Maei, D. Precup, S. Bhatnagar, D. Silver, Cs. Szepesvári, and E. Wiewiora.
Fast gradient-descent methods for temporal-difference learning with linear function ap-
proximation. In International Conference on Machine Learning (ICML), 2009.

J.N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function
approximation. IEEE Transactions on Automatic Control, 42(5):674–690, 1997.

H. Yu. Convergence of least-squares temporal difference methods under general conditions.
In International Conference on Machine Learning (ICML), 2010a.

H. Yu. Least squares temporal difference methods: An analysis under general condtions.
Technical Report C-2010-39, University of Helsinki, September 2010b.

332

Off-policy Learning with Traces

H. Yu and D.P. Bertsekas. New error bounds for approximations from projected linear
equations. Technical Report C-2008-43, Dept. Computer Science, Univ. of Helsinki, July
2008.

333

Journal of Machine Learning Research 15 (2014) 335-366 Submitted 8/13; Revised 12/13; Published 1/14

Early Stopping and Non-parametric Regression:
An Optimal Data-dependent Stopping Rule

Garvesh Raskutti raskutti@stat.wisc.edu
Department of Statistics
University of Wisconsin-Madison
Madison, WI 53706-1799, USA

Martin J. Wainwright wainwrig@berkeley.edu

Bin Yu binyu@stat.berkeley.edu

Department of Statistics∗

University of California

Berkeley, CA 94720-1776, USA

Editor: Sara van de Geer

Abstract

Early stopping is a form of regularization based on choosing when to stop running an
iterative algorithm. Focusing on non-parametric regression in a reproducing kernel Hilbert
space, we analyze the early stopping strategy for a form of gradient-descent applied to
the least-squares loss function. We propose a data-dependent stopping rule that does not
involve hold-out or cross-validation data, and we prove upper bounds on the squared error
of the resulting function estimate, measured in either the L2(P) and L2(Pn) norm. These
upper bounds lead to minimax-optimal rates for various kernel classes, including Sobolev
smoothness classes and other forms of reproducing kernel Hilbert spaces. We show through
simulation that our stopping rule compares favorably to two other stopping rules, one based
on hold-out data and the other based on Stein’s unbiased risk estimate. We also establish
a tight connection between our early stopping strategy and the solution path of a kernel
ridge regression estimator.

Keywords: early stopping, non-parametric regression, kernel ridge regression, stopping
rule, reproducing kernel hilbert space, rademacher complexity, empirical processes

1. Introduction

The phenomenon of overfitting is ubiquitous throughout statistics. It is especially problem-
atic in nonparametric problems, where some form of regularization is essential in order to
prevent it. In the non-parametric setting, the most classical form of regularization is that
of Tikhonov regularization, where a quadratic smoothness penalty is added to the least-
squares loss. An alternative and algorithmic approach to regularization is based on early
stopping of an iterative algorithm, such as gradient descent applied to the unregularized
loss function. The main advantage of early stopping for regularization, as compared to
penalized forms, is lower computational complexity.

∗. Also in the Department of Electrical Engineering and Computer Science.

c©2014 Garvesh Raskutti, Martin J. Wainwright and Bin Yu.

Raskutti, Wainwright and Yu

The idea of early stopping has a fairly lengthy history, dating back to the 1970’s in
the context of the Landweber iteration. For instance, see the paper by Strand (1974) as
well as the subsequent papers (Anderssen and Prenter, 1981; Wahba, 1987). Early stopping
has also been widely used in neural networks (Morgan and Bourlard, 1990), for which
stochastic gradient descent is used to estimate the network parameters. Past work has
provided intuitive arguments for the benefits of early stopping. Roughly speaking, it is
clear that each step of an iterative algorithm will reduce bias but increase variance, so
early stopping ensures the variance of the estimator is not too high. However, prior to
the 1990s, there had been little theoretical justification for these claims. A more recent
line of work has developed a theory for various forms of early stopping, including boosting
algorithms (Bartlett and Traskin, 2007; Buhlmann and Yu, 2003; Freund and Schapire, 1997;
Jiang, 2004; Mason et al., 1999; Yao et al., 2007; Zhang and Yu, 2005), greedy methods
(Barron et al., 2008), gradient descent over reproducing kernel Hilbert spaces (Caponneto,
2006; Caponetto and Yao, 2006; Vito et al., 2010; Yao et al., 2007), the conjugate gradient
algorithm (Blanchard and Kramer, 2010), and the power method for eigenvalue computation
(Orecchia and Mahoney, 2011). Most relevant to our work is the paper of Buhlmann and Yu
(2003), who derived optimal mean-squared error bounds for L2-boosting with early stopping
in the case of fixed design regression. However, these optimal rates are based on an “oracle”
stopping rule, one that cannot be computed based on the data. Thus, their work left open
the following natural question: is there a data-dependent and easily computable stopping
rule that produces a minimax-optimal estimator?

The main contribution of this paper is to answer this question in the affirmative for
a certain class of non-parametric regression problems, in which the underlying regression
function belongs to a reproducing kernel Hilbert space (RKHS). In this setting, a stan-
dard estimator is the method of kernel ridge regression (Wahba, 1990), which minimizes a
weighted sum of the least-squares loss with a squared Hilbert norm penalty as a regularizer.
Instead of a penalized form of regression, we analyze early stopping of an iterative update
that is equivalent to gradient descent on the least-squares loss in an appropriately chosen
coordinate system. By analyzing the mean-squared error of our iterative update, we derive
a data-dependent stopping rule that provides the optimal trade-off between the estimated
bias and variance at each iteration. In particular, our stopping rule is based on the first time
that a running sum of step-sizes after t steps increases above the critical trade-off between
bias and variance. For Sobolev spaces and other types of kernel classes, we show that the
function estimate obtained by this stopping rule achieves minimax-optimal estimation rates
in both the empirical and generalization norms. Importantly, our stopping rule does not
require the use of cross-validation or hold-out data.

In more detail, our first main result (Theorem 1) provides bounds on the squared pre-
diction error for all iterates prior to the stopping time, and a lower bound on the squared
error for all iterations after the stopping time. These bounds are applicable to the case of
fixed design, where as our second main result (Theorem 2) provides similar types of upper
bounds for randomly sampled covariates. These bounds are stated in terms of the squared
L2(P) norm or generalization error, as opposed to the in-sample prediction error, or equiv-
alently, the L2(Pn) seminorm defined by the data. Both of these theorems apply to any
reproducing kernel, and lead to specific predictions for different kernel classes, depending on
their eigendecay. For the case of low rank kernel classes and Sobolev spaces, we prove that

336

Early Stopping and Non-parametric Regression

our stopping rule yields a function estimate that achieves the minimax optimal rate (up
to a constant pre-factor), so that the bounds from our analysis are essentially unimprov-
able. Our proof is based on a combination of analytic techniques (Buhlmann and Yu, 2003)
with techniques from empirical process theory (van de Geer, 2000). We complement these
theoretical results with simulation studies that compare its performance to other rules, in
particular a method using hold-out data to estimate the risk, as well as a second method
based on Stein’s Unbiased Risk Estimate (SURE). In our experiments for first-order Sobolev
kernels, we find that our stopping rule performs favorably compared to these alternatives,
especially as the sample size grows. In Section 3.4, we provide an explicit link between our
early stopping strategy and the kernel ridge regression estimator.

2. Background and Problem Formulation

We begin by introducing some background on non-parametric regression and reproducing
kernel Hilbert spaces, before turning to a precise formulation of the problem studied in this
paper.

2.1 Non-parametric Regression and Kernel Classes

Suppose that our goal is to use a covariate X ∈ X to predict a real-valued response Y ∈ R.
We do so by using a function f : X → R, where the value f(x) represents our prediction
of Y based on the realization X = x. In terms of mean-squared error, the optimal choice
is the regression function defined by f∗(x) : = E[Y | x]. In the problem of non-parametric
regression with random design, we observe n samples of the form {(xi, yi), i = 1, . . . , n},
each drawn independently from some joint distribution on the Cartesian product X × R,
and our goal is to estimate the regression function f∗. Equivalently, we observe samples of
the form

yi = f∗(xi) + wi, for i = 1, 2, . . . , n,

where wi : = yi − f∗(xi) are independent zero-mean noise random variables. Throughout
this paper, we assume that the random variables wi are sub-Gaussian with parameter σ,
meaning that

E[etwi] ≤ et2σ2/2 for all t ∈ R.

For instance, this sub-Gaussian condition is satisfied for normal variates wi ∼ N(0, σ2), but
it also holds for various non-Gaussian random variables. Parts of our analysis also apply
to the fixed design setting, in which we condition on a particular realization {xi}ni=1 of the
covariates.

In order to estimate the regression function, we make use of the machinery of reproducing
kernel Hilbert spaces (Aronszajn, 1950; Wahba, 1990; Gu and Zhu, 2001). Using P to denote
the marginal distribution of the covariates, we consider a Hilbert space H ⊂ L2(P), meaning
a family of functions g : X → R, with ‖g‖L2(P) <∞, and an associated inner product 〈·, ·〉H
under which H is complete. The space H is a reproducing kernel Hilbert space (RKHS)
if there exists a symmetric function K : X × X → R+ such that: (a) for each x ∈ X , the
function K(·, x) belongs to the Hilbert space H, and (b) we have the reproducing relation

337

Raskutti, Wainwright and Yu

f(x) = 〈f, K(·, x)〉H for all f ∈ H. Any such kernel function must be positive semidefinite.
Moreover, under suitable regularity conditions, Mercer’s theorem (1909) guarantees that
the kernel has an eigen-expansion of the form

K(x, x′) =
∞∑
k=1

λkφk(x)φk(x
′),

where λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ 0 are a non-negative sequence of eigenvalues, and {φk}∞k=1

are the associated eigenfunctions, taken to be orthonormal in L2(P). The decay rate of the
eigenvalues will play a crucial role in our analysis.

Since the eigenfunctions {φk}∞k=1 form an orthonormal basis, any function f ∈ H has
an expansion of the form f(x) =

∑∞
k=1

√
λkakφk(x), where for all k such that λk > 0, the

coefficients

ak : =
1√
λk
〈f, φk〉L2(P) =

∫
X
f(x)φk(x) dP(x)

are rescaled versions of the generalized Fourier coefficients.1 Associated with any two
functions in H—where f =

∑∞
k=1

√
λkakφk and g =

∑∞
k=1

√
λkbkφk—are two distinct inner

products. The first is the usual inner product in the space L2(P)—namely,
〈f, g〉L2(P) : =

∫
X f(x)g(x) dP(x). By Parseval’s theorem, it has an equivalent representation

in terms of the rescaled expansion coefficients and kernel eigenvalues—that is,

〈f, g〉L2(P) =

∞∑
k=1

λkakbk.

The second inner product, denoted by 〈f, g〉H, is the one that defines the Hilbert space; it
can be written in terms of the rescaled expansion coefficients as

〈f, g〉H =

∞∑
k=1

akbk.

Using this definition, the unit ball for the Hilbert space H with eigenvalues {λk}∞k=1 and
eigenfunctions {φk}∞k=1 takes the form

BH(1) : =
{
f =

∞∑
k=1

√
λkbkφk for some

∞∑
k=1

b2k ≤ 1
}
.

The class of reproducing kernel Hilbert spaces contains many interesting classes that are
widely used in practice, including polynomials of degree d, Sobolev spaces of varying smooth-
ness, and Gaussian kernels. For more background and examples on reproducing kernel
Hilbert spaces, we refer the reader to various standard references (Aronszajn, 1950; Saitoh,
1988; Schölkopf and Smola, 2002; Wahba, 1990; Weinert, 1982).

Throughout this paper, we assume that any function f in the unit ball of the Hilbert
space is uniformly bounded, meaning that there is some constant B <∞ such that

‖f‖∞ : = sup
x∈X
|f(x)| ≤ B for all f ∈ BH(1). (1)

1. We have chosen this particular rescaling for later theoretical convenience.

338

Early Stopping and Non-parametric Regression

This boundedness condition (1) is satisfied for any RKHS with a kernel such that
supx∈X K(x, x) ≤ B. Kernels of this type include the Gaussian and Laplacian kernels,
the kernels underlying Sobolev and other spline classes, as well as as well as any trace
class kernel with trignometric eigenfunctions. The boundedness condition (1) is quite stan-
dard in non-asymptotic analysis of non-parametric regression procedures (e.g., van de Geer,
2000). We study non-parametric regression when the unknown function f∗ is viewed as
fixed, meaning that no prior is imposed on the function space.

2.2 Gradient Update Equation

We now turn to the form of the gradient update that we study in this paper. Given the
samples {(xi, yi)}ni=1, consider minimizing the least-squares loss function

L(f) : =
1

2n

n∑
i=1

(
yi − f(xi)

)2
over some subset of the Hilbert space H. By the representer theorem (Kimeldorf and
Wahba, 1971), it suffices to restrict attention to functions f belonging to the span of the
kernel functions defined on the data points—namely, the span of {K(·, xi), i = 1, . . . , n}.
Accordingly, we adopt the parameterization

f(·) =
1√
n

n∑
i=1

ωiK(·, xi), (2)

for some coefficient vector ω ∈ Rn. Here the rescaling by 1/
√
n is for later theoretical

convenience.

Our gradient descent procedure is based on a parameterization of the least-squares loss
that involves the empirical kernel matrix K ∈ Rn×n with entries

[K]ij =
1

n
K(xi, xj) for i, j = 1, 2, . . . , n.

For any positive semidefinite kernel function, this matrix must be positive semidefinite, and
so has a unique symmetric square root denoted by

√
K. By first introducing the convenient

shorthand yn1 : =
(
y1 y2 · · · yn

)
∈ Rn, we can write the least-squares loss in the form

L(ω) =
1

2n
‖yn1 −

√
nKω‖22.

A direct approach would be to perform gradient descent on this form of the least-squares
loss. For our purposes, it turns out to be more natural to perform gradient descent in
the transformed co-ordinate system θ =

√
K ω. Some straightforward calculations (see

Appendix A for details) yield that the gradient descent algorithm in this new co-ordinate
system generates a sequence of vectors {θt}∞t=0 via the recursion

θt+1 = θt − αt
(
K θt −

1√
n

√
K yn1

)
, (3)

339

Raskutti, Wainwright and Yu

where {αt}∞t=0 is a sequence of positive step sizes (to be chosen by the user). We assume
throughout that the gradient descent procedure is initialized with θ0 = 0.

The parameter estimate θt at iteration t defines a function estimate ft in the following
way. We first compute2 the weight vector ωt =

√
K−1 θt, which then defines the function

estimate ft(·) = 1√
n

∑n
i=1 ω

t
iK(·, xi) as before. In this paper, our goal is to study how

the sequence {ft}∞t=0 evolves as an approximation to the true regression function f∗. We
measure the error in two different ways: the L2(Pn) norm

‖ft − f∗‖2n : =
1

n

n∑
i=1

(
ft(xi)− f∗(xi)

)2
compares the functions only at the observed design points, whereas the L2(P)-norm

‖ft − f∗‖22 : = E
[(
ft(X)− f∗(X)

)2]
corresponds to the usual mean-squared error.

2.3 Overfitting and Early Stopping

In order to illustrate the phenomenon of interest in this paper, we performed some sim-
ulations on a simple problem. In particular, we formed n = 100 i.i.d. observations of
the form y = f∗(xi) + wi, where wi ∼ N(0, 1), and using the fixed design xi = i/n for
i = 1, . . . , n. We then implemented the gradient descent update (3) with initialization
θ0 = 0 and constant step sizes αt = 0.25. We performed this experiment with the regression
function f∗(x) = |x− 1/2| − 1/2, and two different choices of kernel functions. The kernel
K(x, x′) = min{x, x′} on the unit square [0, 1]× [0, 1] generates an RKHS of Lipschitz func-
tions, whereas the Gaussian kernel K(x, x′) = exp(−1

2(x− x′)2) generates a smoother class
of infinitely differentiable functions.

Figure 1 provides plots of the squared prediction error ‖ft − f∗‖2n as a function of the
iteration number t. For both kernels, the prediction error decreases fairly rapidly, reaching
a minimum before or around T ≈ 20 iterations, before then beginning to increase. As the
analysis of this paper will clarify, too many iterations lead to fitting the noise in the data
(i.e., the additive perturbations wi), as opposed to the underlying function f∗. In a nutshell,
the goal of this paper is to quantify precisely the meaning of “too many” iterations, and in
a data-dependent and easily computable manner.

3. Main Results and Consequences

In more detail, our main contribution is to formulate a data-dependent stopping rule, mean-
ing a mapping from the data {(xi, yi)}ni=1 to a positive integer T̂ , such that the two forms
of prediction error ‖f

T̂
− f∗‖n and ‖f

T̂
− f∗‖2 are minimal. In our formulation of such a

2. If the empirical matrix K is not invertible, then we use the pseudoinverse. Note that it may appear
as though a matrix inversion is required to estimate ωt for each t which is computationally intensive.

However, the weights ωt may be computed directly via the iteration ωt+1 = ωt−αtK(ωt− yn1√
n
). However,

the equivalent update (3) is more convenient for our analysis.

340

Early Stopping and Non-parametric Regression

0 20 40 60 80 100

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

Iteration

P
re

d
ic

ti
o
n
 e

rr
o
r

Prediction error for first−order Sobolev kernel

0 20 40 60 80 100
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

Iteration

P
re

d
ic

ti
o
n
 e

rr
o
r

Prediction error for Gaussian kernel

(a) (b)

Figure 1: Behavior of gradient descent update (3) with constant step size α = 0.25 applied
to least-squares loss with n = 100 with equi-distant design points xi = i/n for
i = 1, . . . , n, and regression function f∗(x) = |x−1/2|−1/2. Each panel gives plots
the L2(Pn) error ‖ft−f∗‖2n as a function of the iteration number t = 1, 2, . . . , 100.
(a) For the first-order Sobolev kernel K(x, x′) = min{x, x′}. (b) For the Gaussian
kernel K(x, x′) = exp(−1

2(x− x′)2).

stopping rule, two quantities play an important role: first, the running sum of the step sizes

ηt : =
t−1∑
τ=0

ατ ,

and secondly, the eigenvalues λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n ≥ 0 of the empirical kernel matrix K
previously defined (2.2). The kernel matrix and hence these eigenvalues are computable
from the data. We also note that there is a large body of work on fast computation of
kernel eigenvalues (e.g., see Drineas and Mahoney, 2005 and references therein).

3.1 Stopping Rules and General Error Bounds

Our stopping rule involves the use of a model complexity measure, familiar from past work
on uniform laws over kernel classes (Bartlett et al., 2005; Koltchinskii, 2006; Mendelson,
2002), known as the local empirical Rademacher complexity. For the kernel classes studied
in this paper, it takes the form

R̂K(ε) : =

[
1

n

n∑
i=1

min
{
λ̂i, ε

2
}]1/2

. (4)

For a given noise variance σ > 0, a closely related quantity—one of central importance to
our analysis—is the critical empirical radius ε̂n > 0, defined to be the smallest positive

341

Raskutti, Wainwright and Yu

solution to the inequality

R̂K(ε) ≤ ε2/(2eσ). (5)

The existence and uniqueness of ε̂n is guaranteed for any reproducing kernel Hilbert space;
see Appendix D for details. As clarified in our proof, this inequality plays a key role in
trading off the bias and variance in a kernel regression estimate.

Our stopping rule is defined in terms of an analogous inequality that involves the running
sum ηt =

∑t−1
τ=0 ατ of the step sizes. Throughout this paper, we assume that the step sizes

are chosen to satisfy the following properties:

• Boundedness: 0 ≤ ατ ≤ min{1, 1/λ̂1} for all τ = 0, 1, 2,

• Non-increasing: ατ+1 ≤ ατ for all τ = 0, 1, 2,

• Infinite travel: the running sum ηt =
∑t−1

τ=0 ατ diverges as t→ +∞.

We refer to any sequence {ατ}∞τ=0 that satisfies these conditions as a valid stepsize sequence.
We then define the stopping time

T̂ : = arg min

{
t ∈ N | R̂K

(
1/
√
ηt
)
> (2eσηt)

−1
}
− 1. (6)

As discussed in Appendix D, the integer T̂ belongs to the interval [0,∞) and is unique
for any valid stepsize sequence. As will be clarified in our proof, the intuition underlying
the stopping rule (6) is that the sum of the step-sizes ηt acts as a tuning parameter that
controls the bias-variance tradeoff. The minimizing value is specified by a fixed point of the
local Rademacher complexity, in a manner analogous to certain calculations in empirical
process theory (van de Geer, 2000; Mendelson, 2002). The stated choice of T̂ optimizes the
bias-variance trade-off.

The following result applies to any sequence {ft}∞t=0 of function estimates generated by
the gradient iteration (3) with a valid stepsize sequence.

Theorem 1 Given the stopping time T̂ defined by the rule (6) and critical radius ε̂n defined
in Equation (5), there are universal positive constants (c1, c2) such that the following events
hold with probability at least 1− c1 exp(−c2nε̂2n):

(a) For all iterations t = 1, 2, ..., T̂ :

‖ft − f∗‖2n ≤
4

e ηt
.

(b) At the iteration T̂ chosen according to the stopping rule (6), we have

‖f
T̂
− f∗‖2n ≤ 12 ε̂2n.

(c) Moreover, for all t > T̂ ,

E[‖ft − f∗‖2n] ≥ σ2

4
ηtR̂2

K(η
−1/2
t).

342

Early Stopping and Non-parametric Regression

3.1.1 Remarks

Although the bounds (a) and (b) are stated as high probability claims, a simple integra-
tion argument can be used to show that the expected mean-squared error (over the noise
variables, with the design fixed) satisfies a bound of the form

E
[
‖ft − f∗‖2n

]
≤ 4

e ηt
for all t ≤ T̂ .

To be clear, note that the critical radius ε̂n cannot be made arbitrarily small, since it
must satisfy the defining inequality (5). But as will be clarified in corollaries to follow,
this critical radius is essentially optimal: we show how the bounds in Theorem 1 lead to
minimax-optimal rates for various function classes. The interpretation of Theorem 1 is as
follows: if the sum of the step-sizes ηt remains below the threshold defined by (6), applying
the gradient update (3) reduces the prediction error. Moreover, note that for Hilbert spaces
with a larger kernel complexity, the stopping time T̂ is smaller, since fitting functions in a
larger class incurs a greater risk of overfitting.

Finally, the lower bound (c) shows that for large t, running the iterative algorithm
beyond the optimal stopping point leads to inconsistent estimators for infinite rank kernels.
More concretely, let us suppose that λ̂i > 0 for all 1 ≤ i ≤ n. In this case, we have

ηtR̂2
K(η

−1/2
t) =

1

n

n∑
i=1

min(λ̂iηt, 1),

which converges to 1 as t→. Consequently, part (c) implies that lim inft→∞ E[‖ft−f∗‖2n] ≥
σ2

4 as t→∞, thereby showing the inconsistency of the method.

The statement of Theorem 1 is for the case of fixed design points {xi}ni=1, so that the
probability is taken only over the sub-Gaussian noise variables {wi}ni=1 In the case of random
design point xi ∼ P i.i.d. , we can also provide bounds on generalization error in the form
the L2(P)-norm ‖ft−f∗‖2. In this setting, for the purposes of comparing to minimax lower
bounds, it is also useful to state some results in terms of the population analog of the local
empirical Rademacher complexity (4), namely the quantity

RK(ε) : =

[
1

n

∞∑
j=1

min
{
λj , ε

2
}]1/2

, (7)

where λj correspond to the eigenvalues of the population kernel K defined in (3). Using
this complexity measure, we define the critical population rate εn to be the smallest positive
solution to the inequality

40RK(ε) ≤ ε2

σ
. (8)

(Our choice of the pre-factor 40 is for later theoretical convenience.) In contrast to the
critical empirical rate ε̂n, this quantity is not data-dependent, since it is specified by the
population eigenvalues of kernel operator underlying the RKHS.

343

Raskutti, Wainwright and Yu

Theorem 2 (Random design) Suppose that in addition to the conditions of Theorem 1,
the design variables {xi}ni=1 are sampled i.i.d. according to P and that the population critical
radius εn satisfies inequality (8). Then there are universal constants cj , j = 1, 2, 3 such that

‖f
T̂
− f∗‖22 ≤ c3ε2n

with probability at least 1− c1 exp(−c2nε2n).

Theorems 1 and 2 are general results that apply to any reproducing kernel Hilbert space.
Their proofs involve combination of direct analysis of our iterative update (3), combined
with techniques from empirical process theory and concentration of measure (van de Geer,
2000; Ledoux, 2001); see Section 4 for the details.

It is worthwhile to compare with the past work of Buhlmann and Yu (2003) (hereafter
BY), who also provide some theory for gradient descent, referred to as L2-boosting in their
paper, but focusing exclusively on the fixed design case. Our theory applies to random as
well as fixed design, and a broader set of stepsize choices. The most significant difference
between Theorem 1 in our paper and Theorem 3 of BY is that we provide a data-dependent
stopping rule, whereas their analysis does not lead to a stopping rule that can be computed
from the data.

3.2 Consequences for Specific Kernel Classes

Let us now illustrate some consequences of our general theory for special choices of kernels
that are of interest in practice.

3.2.1 Kernels with Polynomial Eigendecay

We begin with the class of RKHSs whose eigenvalues satisfy a polynomial decay condition,
meaning that

λk ≤ C
(1

k

)2β
for some β > 1/2 and constant C. (9)

Among other examples, this type of scaling covers various types of Sobolev spaces, consisting
of functions with β derivatives (Birman and Solomjak, 1967; Gu, 2002). As a very special
case, the first-order Sobolev kernel K(x, x′) = min{x, x′} on the unit square [0, 1]× [0, 1]
generates an RKHS of functions that are differentiable almost everywhere, given by

H : =
{
f : [0, 1]→ R | f(0) = 0,

∫ 1

0
(f ′(x))2dx <∞

}
, (10)

For the uniform measure on [0, 1], this class exhibits polynomial eigendecay (9) with β = 1.
For any class that satisfies the polynomial decay condition, we have the following corollary:

Corollary 3 Suppose that in addition to the assumptions of Theorem 2, the kernel class
H satisfies the polynomial eigenvalue decay (9) for some parameter β > 1/2. Then there is
a universal constant c5 such that

E
[
‖f
T̂
− f∗‖22] ≤ c5

(σ2
n

) 2β
2β+1 . (11)

344

Early Stopping and Non-parametric Regression

Moreover, if λk ≥ c (1/k)2β for all k = 1, 2, . . ., then

E
[
‖ft − f∗‖22

]
≥ 1

4
min

{
1, σ2

(ηt)
1
2β

n

}
for all iterations t = 1, 2,

The proof, provided in Section 4.3, involves showing that the population critical rate (7)

is of the order O(n
− 2β

2β+1). By known results on non-parametric regression (Stone, 1985;
Yang and Barron, 1999), the error bound (11) is minimax-optimal.

In the special case of the first-order spline family (10), Corollary 3 guarantees that

E[‖f
T̂
− f∗‖22] -

(σ2
n

)2/3
. (12)

In order to test the accuracy of this prediction, we performed the following set of simulations.
First, we generated samples from the observation model

yi = f∗(xi) + wi, for i = 1, 2, . . . , n, (13)

where xi = i/n, and wi ∼ N(0, σ2) are i.i.d. noise terms. We present results for the
function f∗(x) = |x − 1/2| − 1/2, a piecewise linear function belonging to the first-order
Sobelev class. For all our experiments, the noise variance σ2 was set to one, but so as to
have a data-dependent method, this knowledge was not provided to the estimator. There
is a large body of work on estimating the noise variance σ2 in non-parametric regression.
For our simulations, we use a simple method due to Hall and Marron (1990). They proved
that their estimator is ratio consistent, which is sufficient for our purposes.

For a range of sample sizes n between 10 and 300, we performed the updates (3) with
constant stepsize α = 0.25, stopping at the specified time T̂ . For each sample size, we per-
formed 10, 000 independent trials, and averaged the resulting prediction errors. In panel (a)
of Figure 2, we plot the mean-squared error versus the sample size, which shows consistency
of the method. The bound (12) makes a more specific prediction: the mean-squared error
raised to the power −3/2 should scale linearly with the sample size. As shown in panel (b) of
Figure 2, the simulation results do indeed reveal this predicted linear relationship. We also
performed the same experiments for the case of randomly drawn designs xi ∼ Unif(0, 1).
In this case, we observed similar results, but with more trials required to average out the
additional randomness in the design.

3.2.2 Finite Rank Kernels

We now turn to the class of RKHSs based on finite-rank kernels, meaning that there is some
finite integer m <∞ such that λj = 0 for all j ≥ m+ 1. For instance, the kernel function
K(x, x′) = (1 + xx′)2 is a finite rank kernel with m = 2, and it generates the RKHS of all
quadratic functions. More generally, for any integer d ≥ 2, the kernel K(x, x′) = (1 + xx′)d

generates the RKHS of all polynomials with degree at most d. For any such kernel, we have
the following corollary:

Corollary 4 If, in addition to the conditions of Theorem 2, the kernel has finite rank m,
then

E
[
‖f̂
T̂
− f∗‖22

]
≤ c5 σ2

m

n
.

345

Raskutti, Wainwright and Yu

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Sample size (n)

P
re

d
ic

it
o

n
 e

rr
o

r

Prediction error using our stopping rule

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

Sample size (n)

(P
re

d
ic

ti
o

n
 e

rr
o

r)
−

3
/2

Transformed prediction error using our rule

(a) (b)

Figure 2: Prediction error obtained from the stopping rule (6) applied to a regression model
with n samples of the form f∗(xi) + wi at equidistant design points xi = i/n for
i = 0, 1, . . . 99, and i.i.d. Gaussian noise wi ∼ N(0, 1). For these simulations, the
true regression function is given by f∗(x) = |x− 1

2 | −
1
2 . (a) Mean-squared error

(MSE) using the stopping rule (6) versus the sample size n. Each point is based
on 10, 000 independent realizations of the noise variables {wi}ni=1. (b) Plots of
the quantity MSE−3/2 versus sample size n. As predicted by the theory, this
form of plotting yields a straight line.

For any rank m-kernel, the rate m
n is minimax optimal in terms of squared L2(P) error; this

fact follows as a consequence of more general lower bounds due to Raskutti et al. (2012).

3.3 Comparison with Other Stopping Rules

In this section, we provide a comparison of our stopping rule to two other stopping rules,
as well as a oracle method that involves knowledge of f∗, and so cannot be computed in
practice.

3.3.1 Hold-out Method

We begin by comparing to a simple hold-out method that performs gradient descent using
50% of the data, and uses the other 50% of the data to estimate the risk. In more detail,
assuming that the sample size is even for simplicity, we split the full data set {xi}ni=1 into two
equally sized subsets Str and Ste. The data indexed by the training set Str is used to estimate
the function ftr,t using the gradient descent update (3). At each iteration t = 0, 1, 2, . . .,

the data indexed by Ste is used to estimate the risk via RHO(ft) = 1
n

∑
i∈Ste

(
yi− ftr,t(xi)

)2
,

which defines the stopping rule

T̂HO : = arg min

{
t ∈ N | RHO(ftr, t+1) > RHO(ftr,t)

}
− 1. (14)

346

Early Stopping and Non-parametric Regression

A line of past work (Yao et al., 2007; Bauer et al., 2007; Caponneto, 2006; Caponetto and
Yao, 2006, 2010; Vito et al., 2010) has analyzed stopping rules based on this type of hold-out
rule. For instance, Caponneto (2006) analyzes a hold-out method, and shows that it yields
rates that are optimal for Sobolev spaces with β ≤ 1 but not in general. A major drawback
of using a hold-out rule is that it “wastes” a constant fraction of the data, thereby leading
to inflated mean-squared error.

3.3.2 SURE Method

Alternatively, we can use Stein’s Unbiased Risk estimate (SURE) to define another stopping
rule. Gradient descent is based on the shrinkage matrix S̃t =

∏t−1
τ=0 (I − ατK). Based on

this fact, it can be shown that the SURE estimator (Stein, 1981) takes the form

RSU(ft) =
1

n
{nσ2 + (yn1)T (S̃t)

2yn1 − 2σ2 trace(S̃t)}.

This risk estimate can be used to define the associated stopping rule

T̂SU : = arg min

{
t ∈ N | RSU(ft+1) > RSU(ft)

}
− 1. (15)

In contrast with hold-out, the SURE stopping rule (15) makes use of all the data. However,
we are not aware of any theoretical guarantees for early stopping based on the SURE rule.

For any valid sequence of stepsizes, it can be shown that both stopping rules (14) and
(15) define a unique stopping time. Note that our stopping rule T̂ based on (6) requires
estimation of both the empirical eigenvalues, and the noise variance σ2. In contrast, the
SURE-based rule requires estimation of σ2 but not the empirical eigenvalues, whereas the
hold-out rule requires no parameters to be estimated, but a percentage of the data is used
to estimate the risk.

3.3.3 Oracle Method

As a third point of reference, we also plot the mean-squared error for an “oracle” method.
It is allowed to base its stopping time on the exact in-sample prediction error ROR(ft) =
‖ft − f∗‖2n, which defines the oracle stopping rule

T̂OR : = arg min

{
t ∈ N | ROR(ft+1) > ROR(ft)

}
− 1. (16)

Note that this stopping rule is not computable from the data, since it assumes exact knowl-
edge of the function f∗ that we are trying to estimate.

In order to compare our stopping rule (6) with these alternatives, we generated i.i.d.
samples from the previously described model (see Equation (13) and the following discus-
sion). We varied the sample size n from 10 to 300, and for each sample size, we performed
M = 10, 000 independent trials (randomizations of the noise variables {wi}ni=1), and com-
puted the average of squared prediction error over these M trials.

Figure 3 compares the resulting mean-squared errors of our stopping rule (6), the hold-
out stopping rule (14), the SURE-based stopping rule (15), and the oracle stopping rule (16).
Panel (a) shows the mean-squared error versus sample size, whereas panel (b) shows the

347

Raskutti, Wainwright and Yu

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Sample size (n)

P
re

d
ic

ti
o

n
 e

rr
o

r

Prediction error comparison of stopping rules

Our rule

Hold−out

SURE

Oracle

10
1

10
2

10
−3

10
−2

10
−1

Sample size (n)

P
re

d
ic

ti
o

n
 e

rr
o

r

Comparison of stopping rules on log−log scale

Our Rule

Hold−out

SURE

Oracle

(a) (b)

Figure 3: Illustration of the performance of different stopping rules for kernel gradient de-
scent with the kernel K(x, x) = min{|x|, |x′|} and noisy samples of the function
f∗(x) = |x − 1

2 | −
1
2 . In each case, we applied the gradient update (3) with con-

stant stepsizes αt = 1 for all t. Each curve corresponds to the mean-squared error,
estimated by averaging over M = 10, 000 independent trials, versus the sample
size for n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300}. Each panel shows MSE
curves for four different stopping rules: (i) the stopping rule (6); (ii) holding out
50% of the data and using (14); (iii) the SURE stopping rule (15); and (iv) the
oracle stopping rule (14). (a) MSE versus sample size on a standard scale. (b)
MSE versus sample size on a log-log scale.

same curves in terms of logarithm of mean-squared error. Our proposed rule exhibits better
performance than the hold-out and SURE-based rules for sample sizes n larger than 50. On
the flip side, since the construction of our stopping rule is based on the assumption that f∗

belongs to a known RKHS, it is unclear how robust it would be to model mis-specification.
In contrast, the hold-out and SURE-based stopping rules are generic methods, not based
directly on the RKHS structure, so might be more robust to model mis-specification. Thus,
one interesting direction is to explore the robustness of our stopping rule. On the theoret-
ical front, it would be interesting to determine whether the hold-out and/or SURE-based
stopping rules can be proven to achieve minimax optimal rates for general kernels, as we
have established for our stopping rule.

3.4 Connections to Kernel Ridge Regression

We conclude by presenting an interesting link between our early stopping procedure and
kernel ridge regression. The kernel ridge regression (KRR) estimate is defined as

f̂ν : = arg min
f∈H

{ 1

2n

n∑
i=1

(yi − f(xi))
2 +

1

2ν
‖f‖2H

}
, (17)

348

Early Stopping and Non-parametric Regression

where ν is the (inverse) regularization parameter. For any ν <∞, the objective is strongly
convex, so that the KRR solution is unique.

Friedman and Popescu (2004) observed through simulations that the regularization
paths for early stopping of gradient descent and ridge regression are similar, but did not
provide any theoretical explanation of this fact. As an illustration of this empirical phe-
nomenon, Figure 4 compares the prediction error ‖f̂ν − f∗‖2n of the kernel ridge regression
estimate over the interval ν ∈ [1, 100] versus that of the gradient update (3) over the first
100 iterations. Note that the curves, while not identical, are qualitatively very similar.

0 20 40 60 80 100
0.05

0.1

0.15

0.2

0.25

0.3

Inverse penalty parameter

P
re

d
ic

ti
o
n
 e

rr
o
r

Prediction error for first−order Sobolev kernel

Kernel ridge

Gradient

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

Inverse penalty parameter

P
re

d
ic

ti
o
n
 e

rr
o
r

Prediction error for first−order Sobolev kernel

Kernel ridge

Gradient

(a) (b)

Figure 4: Comparison of the prediction error of the path of kernel ridge regression esti-
mates (17) obtained by varying ν ∈ [1, 100] to those of the gradient updates (3)
over 100 iterations with constant step size. All simulations were performed with
the kernel K(x, x′) = min{|x|, |x′|} based on n = 100 samples at the design points
xi = i/n with f∗(x) = |x− 1

2 | −
1
2 . (a) Noise variance σ2 = 1. (b) Noise variance

σ2 = 2.

From past theoretical work (van de Geer, 2000; Mendelson, 2002), kernel ridge regression
with the appropriate setting of the penalty parameter ν is known to achieve minimax-
optimal error for various kernel classes. These classes include the Sobolev and finite-rank
kernels for which we have previously established that our stopping rule (6) yields optimal
rates. In this section, we provide a theoretical basis for these connections. More precisely,
we prove that if the inverse penalty parameter ν is chosen using the same criterion as
our stopping rule, then the prediction error satisfies the same type of bounds, with ν now
playing the role of the running sum ηt.

Define ν̂ > 0 to be the smallest positive solution to the inequality(
4σν

)−1
< R̂K(1/

√
ν
)
. (18)

Note that this criterion is identical to the one underlying our stopping rule, except that the
continuous parameter ν replaces the discrete parameter ηt =

∑t−1
τ=0 ατ .

349

Raskutti, Wainwright and Yu

Proposition 5 Consider the kernel ridge regression estimator (17) applied to n i.i.d. sam-
ples {(xi, yi)} with σ-sub Gaussian noise. Then there are universal constants (c1, c2, c3) such
that with probability at least 1− c1 exp(−c2 n ε̂2n):

(a) For all 0 < ν ≤ ν̂, we have

‖f̂ν − f∗‖2n ≤
2

ν

(b) With ν̂ chosen according to the rule (18), we have

‖f̂ν̂ − f∗‖2n ≤ c3 ε̂2n.

(c) Moreover, for all ν > ν̂, we have

E[‖f̂ν − f∗‖2n] ≥ σ2

4
νR̂2

K(ν−1/2).

Note that apart from a slightly different leading constant, the upper bound (a) is iden-
tical to the upper bound in Theorem 1 part (a). The only difference is that the inverse
regularization parameter ν replaces the running sum ηt =

∑t−1
τ=0 ατ . Similarly, part (b) of

Proposition 5 guarantees that the kernel ridge regression (17) has prediction error that is
upper bounded by the empirical critical rate ε̂2n, as in part (b) of Theorem 1. Let us em-
phasize that bounds of this type on kernel ridge regression have been derived in past work
(Mendelson, 2002; Zhang, 2005; van de Geer, 2000). The novelty here is that the structure
of our result reveals the intimate connection to early stopping, and in fact, the proofs follow
a parallel thread.

In conjunction, Proposition 5 and Theorem 1 provide a theoretical explanation for why,
as shown in Figure 4, the paths of the gradient descent update (3) and kernel ridge re-
gression estimate (17) are so similar. However, it is important to emphasize that from a
computational point of view, early stopping has certain advantages over kernel ridge re-
gression. In general, solving a quadratic program of the form (17) requires on the order
of O(n3) basic operations, and this must be done repeatedly for each new choice of ν. On
the other hand, by its very construction, the iterates of the gradient algorithm correspond
to the desired path of solutions, and each gradient update involves multiplication by the
kernel matrix, incurring O(n2) operations.

4. Proofs

We now turn to the proofs of our main results. The main steps in each proof are provided
in the main text, with some of the more technical results deferred to the appendix.

4.1 Proof of Theorem 1

In order to derive upper bounds on the L2(Pn)-error in Theorem 1, we first rewrite the
gradient update (3) in an alternative form. For each iteration t = 0, 1, 2, . . ., let us introduce
the shorthand

ft(x
n
1) : =

[
ft(x1) ft(x2) · · · ft(xn)

]
∈ Rn,

350

Early Stopping and Non-parametric Regression

corresponding to the n-vector obtained by evaluating the function f t at all design points,
and the short-hand

w : =
[
w1, w2, ..., wn

]
∈ Rn,

corresponding to the vector of zero mean sub-Gaussian noise random variables. From
Equation (2), we have the relation

f t(xn1) =
1√
n
K ωt =

1√
n

√
K θt.

Consequently, by multiplying both sides of the gradient update (3) by
√
K, we find that

the sequence {ft(xn1)}∞t=0 evolves according to the recursion

ft+1(x
n
1) = ft(x

n
1)− αtK (ft(x

n
1)− yn1) =

(
In×n − αtK

)
ft(x

n
1) + αtK yn1 . (19)

Since θ0 = 0, the sequence is initialized with f0(x
n
1) = 0. The recursion (19) lies at the

heart of our analysis.
Letting r = rank(K), the empirical kernel matrix has the eigendecomposition K =

UΛUT , where U ∈ Rn×n is an orthonormal matrix (satisfying UUT = UTU = In×n) and

Λ : = diag(λ̂1, λ̂2, . . . , λ̂r, 0, 0, · · · , 0)

is the diagonal matrix of eigenvalues, augmented with n− r zero eigenvalues as needed. We
then define a sequence of diagonal shrinkage matrices St as follows:

St : =

t−1∏
τ=0

(In×n − ατΛ) ∈ Rn×n.

The matrix St indicates the extent of shrinkage towards the origin; since 0 ≤ αt ≤
min{1, 1/λ̂1} for all iterations t, in the positive semodefinite ordering, we have the sandwich
relation

0 � St+1 � St � In×n.

Moreover, the following lemma shows that the L2(Pn)-error at each iteration can be bounded
in terms of the eigendecomposition and these shrinkage matrices:

Lemma 6 (Bias/variance decomposition) At each iteration t = 0, 1, 2, . . .,

‖ft − f∗‖2n ≤
2

n

r∑
j=1

(St)2jj [U
T f∗(xn1)]2j +

2

n

n∑
j=r+1

[UT f∗(xn1)]2j︸ ︷︷ ︸
Squared Bias B2

t

+
2

n

r∑
j=1

(1− Stjj)2[UTw]2j︸ ︷︷ ︸
Variance Vt

.

(20)

Moreover, we have the lower bound E[‖ft − f∗‖2n] ≥ E[Vt].

351

Raskutti, Wainwright and Yu

See Appendix B.1 for the proof of this intermediate claim.
In order to complete the proof of the upper bound in Theorem 1, our next step is to

obtain high probability upper bounds on these two terms. We summarize our conclusions
in an additional lemma, and use it to complete the proof of Theorem 1(a) before returning
to prove it.

Lemma 7 (Bounds on the bias and variance) For all iterations t = 1, 2, . . ., the squared
bias is upper bounded as

B2
t ≤

1

e ηt
, (21)

Moreover, there is a universal constant c1 > 0 such that, for any iteration t = 1, 2, . . . , T̂ ,

Vt ≤ 5σ2 ηtR2
K

(
1/
√
ηt
)

(22)

with probability at least 1− exp
(
− c1 nε̂2n

)
. Moreover we have E[Vt] ≥ σ2

4 ηtR
2
K

(
1/
√
ηt
)
.

We can now complete the proof of Theorem 1(a). Conditioned on the event Vt ≤
5σ2ηtR2

K

(
1/
√
ηt
)
, we have

‖ft − f∗‖2n
(i)

≤ B2
t + Vt

(ii)

≤ 1

e ηt
+ 5σ2 ηtR2

K

(
1/
√
ηt
) (iii)

≤ 4

e ηt
,

where inequality (i) follows from (20) in Lemma 6, and inequality (ii) follows from the
bounds in Lemma 7 and (iii) follows since t ≤ T̂ . The lower bound (c) follows from (22).

Turning to the proof of part (b), using the upper bound from (a)

‖f
T̂
− f∗‖2n ≤

1

e η
T̂

+
5

η
T̂

≤ 4

eη
T̂

.

Based on the definition of T̂ and ε̂n, we are guaranteed that 1
η
T̂+1
≤ ε̂2n, Moreover, by the

non-decreasing nature of our step sizes, we have α
T̂+1
≤ α

T̂
, which implies that η

T̂+1
≤ 2η

T̂
,

and hence

1

η
T̂

≤ 2

η
T̂+1

≤ 2ε̂2n.

Putting together the pieces establishes the bound claimed in part (b).
It remains to establish the bias and variance bounds stated in Lemma 7, and we do so

in the following subsections. The following auxiliary lemma plays a role in both proofs:

Lemma 8 (Properties of shrinkage matrices) For all indices j ∈ {1, 2, . . . , r}, the
shrinkage matrices St satisfy the bounds

0 ≤ (St)2jj ≤
1

2eηtλ̂j
, and (23)

1

2
min{1, ηtλ̂j} ≤ 1− Stjj ≤ min{1, ηtλ̂j}. (24)

See Appendix B.2 for the proof of this result.

352

Early Stopping and Non-parametric Regression

4.1.1 Bounding the Squared Bias

Let us now prove the upper bound (21) on the squared bias. We bound each of the two
terms in the definition (20) of B2

t in term. Applying the upper bound (23) from Lemma 8,
we see that

2

n

r∑
j=1

(St)2jj [U
T f∗(xn1)]2j ≤

1

e n ηt

r∑
j=1

[UT f∗(xn1)]2j

λ̂j
.

Now consider the linear operator ΦX : `2(N)→ Rn defined element-wise via [ΦX]jk = φj(xk).
Similarly, we define a (diagonal) linear operator D : `2(N)→ `2(N) with entries [D]jj = λj
and [D]jk = 0 for j 6= k. With these definitions, the vector f (xn1) ∈ Rn can be expressed in
terms of some sequence a ∈ `2(N) in the form

f (xn1) = ΦXD
1/2a.

In terms of these quantities, we can write K = 1
nΦXDΦT

X . Moreover, as previously noted,

we also have K = UΛUT where Λ = diag{λ̂1, λ̂2, . . . , λ̂n}, and U ∈ Rn×n is orthonormal.
Combining the two representations, we conclude that

ΦXD
1/2

√
n

= UΛ1/2Ψ∗,

for some linear operator Ψ : Rn → `2(N) (with adjoint Ψ∗) such that Ψ∗Ψ = In×n. Using
this equality, we have

1

e ηt n

r∑
j=1

[UT f∗(X)]2j

λ̂j
=

1

e ηt n

r∑
j=1

[UTΦXD
1/2a]2j

λ̂j

=
1

e ηt

r∑
j=1

[UTUΛ1/2V ∗a]2j

λ̂j

=
1

e ηt

r∑
j=1

λ̂j [Ψ∗a]2j

λ̂j

≤ 1

e ηt
‖Ψ∗a‖22

≤ 1

e ηt
, (25)

Here the final step follows from the fact that Ψ is a unitary operator, so that
‖Ψ∗a‖22 ≤ ‖a‖22 = ‖f∗‖2H ≤ 1.

353

Raskutti, Wainwright and Yu

Turning to the second term in the definition (20), we have

n∑
j=r+1

[UT f∗(xn1)]2j =
2

n

n∑
j=r+1

[UTΦXD
1/2a]2j

=

n∑
j=r+1

[UTUΛ1/2Ψ∗a]2j

=
n∑

j=r+1

[Λ1/2Ψ∗a]2j

= 0, (26)

where the final step uses the fact that Λ
1/2
jj = 0 for all j ∈ {r + 1, . . . , n} by construc-

tion. Combining the upper bounds (25) and (26) with the definition (20) of B2
t yields the

claim (21).

4.1.2 Controlling the Variance

Let us now prove the bounds (22) on the variance term Vt. (To simplify the proof, we
assume throughout that σ = 1; the general case can be recovered by a simple rescaling
argument). By the definition of Vt, we have

Vt =
2

n

r∑
j=1

(1− Stjj)2[UTw]2j =
2

n
trace(UQUT wwT),

where Q = diag{(1 − Stjj)2, j = 1, . . . , n} is a diagonal matrix. Since E[wwT] ≤ In×n by

assumption, we have E[Vt] = 2
n trace(Q). Using the upper bound in Equation (24) from

Lemma 8, we have

1

n
trace(Q) ≤ 1

n

r∑
j=1

min{1, (ηtλ̂j)2} = ηt

(
RK(1/

√
ηt)

)2

,

where the final equality uses the definition of RK . Putting together the pieces, we see that

E[Vt] ≤ 2 ηt

(
RK(1/

√
ηt)

)2

.

Similarly, using the lower bound in Equation (24), we can show that

E[Vt] ≥
σ2

4
ηt

(
RK(1/

√
ηt)

)2

.

Our next step is to obtain a bound on the two-sided tail probability P[|Vt−E[Vt]| ≥ δ], for
which we make use of a result on two-sided deviations for quadratic forms in sub-Gaussian
variables. In particular, consider a random variable of the form Qn =

∑n
i,j=1 aij(ZiZj −

354

Early Stopping and Non-parametric Regression

E[ZiZj]) where {Zi}ni=1 are i.i.d. zero-mean and sub-Gaussian variables (with parameter
1). Wright (1973) proves that there is a constant c such that

P
[
|Q− E[Q]| ≥ δ

]
≤ exp

(
− c min

{ δ

|||A|||op
,
δ2

|||A|||2F

})
for all u > 0, (27)

where (|||A|||op, |||A|||F) are (respectively) the operator and Frobenius norms of the matrix
A = {aij}ni,j=1.

If we apply this result with A = 2
nUQU

T and Zi = wi, then we have Q = Vt, and
moreover

|||A|||op ≤
2

n
, and

|||A|||2F =
4

n2
trace(UTQUTUQUT) =

4

n2
trace(Q2) ≤ 4

n2
trace(Q) ≤ 4

n
ηt

(
RK(1/

√
ηt)

)
.

Consequently, the bound (27) implies that

P
[
|Vt − E[Vt]| ≥ δ

]
≤ exp

(
− 4c n δmin{1, δ

(
ηtRK(1/

√
ηt)

)−1
}
)
.

Since t ≤ T̂ setting δ = 3σ2ηt

(
RK(1/

√
ηt)

)
, the claim (22) follows.

4.2 Proof of Theorem 2

This proof is based on the following two steps:

• first, proving that the error ‖f
T̂
− f∗‖2 in the L2(P) norm is, with high probability,

close to the error in the L2(Pn) norm, and

• second, showing the empirical critical radius ε̂n defined in Equation (5) is upper
bounded by the population critical radius εn defined in Equation (8).

Our proof is based on a number of more technical auxiliary lemmas, proved in the
appendices. The first lemma provides a high probability bound on the Hilbert norm of the
estimate f

T̂
.

Lemma 9 There exist universal constants c1 and c2 > 0 such that ‖ft‖H ≤ 2 for all t ≤ T̂
with probability greater than or equal to 1− c1 exp(−c2nε̂2n).

See Appendix E.1 for the proof of this claim. Our second lemma shows in any bounded
RKHS, the L2(P) and L2(Pn) norms are uniformly close up to the population critical radius
εn over a Hilbert ball of constant radius:

Lemma 10 Consider a Hilbert space such that ‖g‖∞ ≤ B for all g ∈ BH(3). Then there
exist universal constants (c1, c2, c3) such that for any t ≥ εn, we have

|‖g‖2n − ‖g‖22| ≤ c1t
2,

with probability at least 1− c2 exp(−c3nt2).

355

Raskutti, Wainwright and Yu

This claim follows from known results on reproducing kernel Hilbert spaces (e.g., Lemma
5.16 in the paper van de Geer, 2000 and Theorem 2.1 in the paper Bartlett et al., 2005).
Our final lemma, proved in Appendix E.2, relates the critical empirical radius ε̂n to the
population radius εn:

Lemma 11 There exist constants c1 and c2 such that ε̂n ≤ εn holds with probability at least
1− c1 exp(−c2nε2n).

With these lemmas in hand, the proof of the theorem is straightforward. First, from
Lemma 9, we have ‖f

T̂
‖H ≤ 2 and hence by triangle inequality, ‖f

T̂
− f∗‖H ≤ 3 with high

probability as well. Next, applying Lemma 10 with t = εn, we find that

‖f
T̂
− f∗‖22 ≤ ‖fT̂ − f

∗‖2n + c1ε
2
n ≤ c4(ε̂2n + ε2n),

with probability greater than 1 − c2 exp(−c3nε2n). Finally, applying Lemma 11 yields that
the bound ‖f

T̂
− f∗‖22 ≤ cε2n holds with the claimed probability.

4.3 Proof of Corollaries

In each case, it suffices to upper bound the generalization rate ε2n previously defined.

4.3.1 Proof of Corollary 4

In this case, we have

RK(ε) =
1√
n

√√√√ m∑
j=1

min{λj , ε2} ≤
√
m

n
ε

so that ε2n = c′σ2mn .

4.3.2 Proof of Corollary 3

For any M ≥ 1, we have

RK(ε) =
1√
n

√√√√ ∞∑
j=1

min{C j−2β, ε2} ≤
√
M

n
ε+

√
C

n

√√√√ ∞∑
j=dMe

j−2β

≤
√
M

n
ε+

√
C ′

n

√∫ ∞
M

t−2βdt

≤
√
M

n
ε+ C ′′

1√
n

(1/M)β−
1
2 .

Setting M = ε−1/β yields RK(ε) ≤ C∗ε1−
1
2β . Consequently, the critical inequality

RK(ε) ≤ 40ε2/σ is satisfied for εn � (σ2/n)
2β

2β+1 , as claimed.

356

Early Stopping and Non-parametric Regression

4.4 Proof of Proposition 5

We now turn to the proof of our results on the kernel ridge regression estimate (17). The
proof follows a very similar structure to that of Theorem 1. Recall the eigendecomposition
K = UΛUT of the empirical kernel matrix, and that we use r to denote its rank. For each
ν > 0, we define the ridge shrinkage matrix

Rν : =
(
In×n + νΛ

)−1
. (28)

We then have the following analog of Lemma 7 from the proof of Theorem 1:

Lemma 12 (Bias/variance decomposition for kernel ridge regression) For any ν >
0, the prediction error for the estimate f̂ν is bounded as

‖f̂ν − f∗‖2n ≤
2

n

r∑
j=1

[Rν]2jj [U
T f∗(xn1)]2j +

2

n

n∑
j=r+1

[UT f∗(xn1)]2j +
2

n

r∑
j=1

(
1−Rνjj

)2
[UTw]2j .

Note that Lemma 12 is identical to Lemma 7 with the shrinkage matrices St replaced by
their analogues Rν . See Appendix C.1 for the proof of this claim.

Our next step is to show that the diagonal elements of the shrinkage matrices Rν are
bounded:

Lemma 13 (Properties of kernel ridge shrinkage) For all indices j ∈ {1, 2, . . . , r},
the diagonal entries Rν satisfy the bounds

0 ≤ (Rνjj)
2 ≤ 1

4νλ̂j
, and (29)

1

2
min

{
1, νλ̂j

}
≤ 1−Rνjj ≤ min

{
1, νλ̂j

}
.

Note that this is the analog of Lemma 8 from Theorem 1, albeit with the constant 1
4 in the

bound (29) instead of 1
2e . See Appendix C.2 for the proof of this claim. With these lemmas

in place, the remainder of the proof follows as in the proof of Theorem 1.

5. Discussion

In this paper, we have analyzed the early stopping strategy as applied to gradient descent
on the non-parametric least squares loss. Our main contribution was to propose an easily
computable and data-dependent stopping rule, and to provide upper bounds on the empir-
ical L2(Pn) error (Theorem 1) and generlization L2(P) error (Theorem 2). We demonstrate
in Corollaries 3 and 4 that our stopping rule yields minimax optimal rates for both low
rank kernel classes and Sobolev spaces. Our simulation results confirm that our stopping
rule yields theoretically optimal rates of convergence for Lipschitz kernels, and performs fa-
vorably in comparison to stopping rules based on hold-out data and Stein’s Unbiased Risk
Estimate. We also showed that early stopping with sum of step-sizes ηt =

∑t−1
k=0 αk has

a regularization path that satisfies almost identical mean-squared error bounds as kernel
ridge regression indexed by penalty parameter ν.

357

Raskutti, Wainwright and Yu

Our analysis and stopping rule may be improved and extended in a number of ways.
First, it would interesting to see how our stopping rule can be adapted to mis-specified
models. As specified, our method relies on computation of the eigenvalues of the kernel
matrix. A stopping rule based on approximate eigenvalue computations, for instance via
some form of sub-sampling (Drineas and Mahoney, 2005), would be interesting to study as
well.

Acknowledgments

This work was partially supported by NSF grant DMS-1107000 to MJW and BY. In addi-
tion, BY was partially supported by the NSF grant SES-0835531 (CDI), ARO-W911NF-11-
1-0114 and the Center for Science of Information (CSoI), an US NSF Science and Technol-
ogy Center, under grant agreement CCF-0939370, and MJW was also partially supported
ONR MURI grant N00014-11-1-086. During this work, GR received partial support from a
Berkeley Graduate Fellowship.

Appendix A. Derivation of Gradient Descent Updates

In this appendix, we provide the details of how the gradient descent updates (3) are obtained.
In terms of the transformed vector θ =

√
K ω, the least-squares objective takes the form

L̃(θ) : =
1

2n
‖yn1 −

√
n
√
K θ‖22 =

1

2n
‖yn1 ‖22 −

1√
n
〈yn1 ,

√
K θ〉+

1

2
(θ)TKθ.

Given a sequence {αt}∞t=0, the gradient descent algorithm operates via the recursion θt+1 =

θt − αt∇L̃(θt). Taking the gradient of L̃ yields

∇L̃(θ) = K θ − 1√
n

√
K yn1 .

Substituting into the gradient descent update yields the claim (3).

Appendix B. Auxiliary Lemmas for Theorem 1

In this appendix, we collect together the proofs of the lemmas for Theorem 1.

B.1 Proof of Lemma 6

We prove this lemma by analyzing the gradient descent iteration in an alternative co-
ordinate system. In particular, given a vector f t(xn1) ∈ Rn and the SVD K = UΛUT of
the empirical kernel matrix, we define the vector γt = 1√

n
UT f t(xn1). In this new-coordinate

system, our goal is to estimate the vector γ∗ = 1√
n
UT f∗(xn1). Recalling the alternative

form (19) of the gradient recursion, some simple algebra yields that the sequence {γt}∞t=0

evolves as

γt+1 = γt + αtΛ
w̃√
n
− αtΛ(γt − γ∗),

358

Early Stopping and Non-parametric Regression

where w̃ : = UTw is a rotated noise vector. Since γ0 = 0, unwrapping this recursion then
yields γt − γ∗ =

(
I − St

)
w̃√
n
− Stγ∗, where we have made use of the previously defined

shrinkage matrices St. Using the inequality ‖a+ b‖22 ≤ 2(‖a‖22 + ‖b‖22), we find that

‖γt − γ∗‖22 ≤ 2

n
‖(I − St)w̃‖22 + 2‖Stγ∗‖22

=
2

n
‖(I − St)w̃‖22 + 2

r∑
j=1

[St]2jj(γ
∗
jj)

2 + 2
n∑

j=r+1

(γ∗jj)
2.

where the equality uses the fact that λ̂j = 0 for all j ∈ {r + 1, . . . , n}. Finally, the
orthogonality of U implies that ‖γt − γ∗‖22 = 1

n‖f
t(xn1) − f∗(xn1)‖22, from which the upper

bound (20) follows.

B.2 Proof of Lemma 8

Using the definition of St and the elementary inequality 1− u ≤ exp(−u), we have

[St]2jj =

(t−1∏
τ=0

(1− ατ λ̂j)
)2

≤ exp(−2ηtλ̂j)
(i)

≤ 1

2eηtλ̂j
,

where inequality (i) follows from the fact that sup
u∈R

{
u exp(−u)

}
= 1/e.

Turning to the second set of inequalities, we have 1− [St]jj = 1−
∏t−1
τ=0 (1− ατ λ̂j). By

induction, it can be shown that

1− [St]jj ≤ 1−max{0, 1− ηtλ̂j} = min{1, ηtλ̂j}.

As for the remaining claim, we have

1−
t−1∏
τ=0

(1− ατ λ̂j)
(i)

≥ 1− exp(−ηtλ̂i)

(ii)

≥ 1− (1 + ηtλ̂i)
−1

=
ηtλ̂i

1 + ηtλ̂i

≥ 1

2
min{1, ηtλ̂i},

where step (i) follows from the inequality 1 − u ≤ exp(−u); and step (ii) follows from the
inequality exp(−u) ≤ (1 + u)−1, valid for u > 0.

Appendix C. Auxiliary Results for Proposition 5

In this appendix, we prove the auxiliary lemmas used in the proof of Proposition 5 on kernel
ridge regression.

359

Raskutti, Wainwright and Yu

C.1 Proof of Lemma 12

By definition of the KRR estimate, we have

(
K + 1

ν I

)
fν(xn1) = Kyn1 . Consequently, some

straightforward algebra yields the relation

UT fν(xn1) = (I −Rν)UT yn1 ,

where the shrinkage matrix Rν was previously defined (28). The remainder of the proof
follows using identical steps to the proof of Lemma 6 with St replaced by Rν .

C.2 Proof of Lemma 13

By definition (28) of the shrinkage matrix, we have [Rν]2jj = (1 + νλ̂j)
−2 ≤ 1

4νλ̂j
. Moreover,

we also have

1− [Rν]jj = 1− (1 + νλ̂j)
−1 =

νλ̂j

1 + νλ̂j
≤ min{1, νλ̂j}, and

1− [Rν]jj =
νλ̂j

1 + νλ̂j
≥ 1

2
min{1, νλ̂j}.

Appendix D. Properties of the Empirical Rademacher Complexity

In this section, we prove that the ε̂n lies in the interval (0,∞), and is unique. Recall that the

stopping point T̂ is defined as ε̂n : = arg min

{
ε > 0 | R̂K

(
ε
)
> ε2/(2eσ)

}
. Re-arranging

and substituting for R̂K
(
ε
)

yields the equivalent expression

ε̂n : = arg min

{
ε > 0 |

n∑
i=1

min
{
ε−2λ̂i, 1

}
> nε2/(4e2σ2)

}
.

Note that
∑n

i=1 min
{
ε−2λ̂i, 1

}
is non-increasing in ε while nε2 is increasing in ε. Further-

more when ε = 0, 0 = nε2 <
∑n

i=1 min
{
ε−2λ̂i, 1

}
> 0 while for ε =∞,

∑n
i=1 min

{
ηtλ̂i, 1

}
<

nε2, recalling that ηt =
∑t−1

τ=0 ατ . Hence ε̂n exists. Further, R̂K(ε) is a continuous function
of ε since it is the sum of n continuous functions, Therefore, the critical radius ε̂n exists, is
unique and satisfies the fixed point equation

R̂K
(
ε̂n
)

= ε̂2n/(2eσ).

Finally, we show that the integer T̂ belongs to the interval [0,∞) and is unique for any
valid sequence of step-sizes. Be the definition of T̂ given by the stopping rule (6) and ε̂n,
we have 1

η
T̂+1
≤ ε̂2n ≤ 1

η
T̂

. Since η0 = 0 and ηt →∞ as t→∞ and ε̂n ∈ (0,∞), there exists

a unique stopping point T̂ in the interval [0,∞).

Appendix E. Auxiliary Results for Theorem 2

This appendix is devoted to the proofs of auxiliary lemmas used in the proof for Theorem 2.

360

Early Stopping and Non-parametric Regression

E.1 Proof of Lemma 9

Let us write ft =
∑∞

k=0

√
λkakφk, so that ‖ft‖2H =

∑∞
k=0 a

2
k. Recall the linear opera-

tor ΦX : `2(N)→ Rn defined element-wise via [ΦX]jk = φj(xk) and the diagonal operator
D : `2(N)→ `2(N) with entries [D]jj = λj and [D]jk = 0 for j 6= k. By the definition of the
gradient update (3), we have the relation a = 1

nD
1/2ΦT

XK
−1ft(x

n
1). Since 1

nΦXDΦT
X = K,

‖ft‖2H = ‖a‖22 =
1

n
ft(x

n
1)TK−1ft(x

n
1). (30)

Recall the eigendecomposition K = UΛUT with Λ = diag(λ̂1, λ̂2, . . . λ̂r), and the relation
UT f t(xn1) = (I − St)UT yn1 . Substituting into Equation (30) yields

‖ft‖2H =
1

n
(yn1)TU(I − St)2Λ−1UT yn1

(i)
=

1

n
(f∗(xn1) + w)TU(I − St)2Λ−1UT (f∗(xn1) + w)

=
2

n
wTU(I − St)2Λ−1UT f∗(xn1)︸ ︷︷ ︸

At

+
1

n
wTU(I − St)2Λ−1UTw︸ ︷︷ ︸

Bt

+
1

n
f∗(xn1)TU(I − St)2Λ−1UT f∗(xn1)︸ ︷︷ ︸

Ct

where equality (i) follows from the observation equation yn1 = f∗(xn1) +w. From Lemma 8,

we have 1 − Stjj ≤ 1, and hence Ct ≤ 1
nf
∗(xn1)TUΛ−1UT f∗(xn1)

(i)

≤ 1, where the last step
follows from the analysis in Section 4.1.1.

It remains to derive upper bounds on the random variables At and Bt.

E.1.1 Bounding At

Since the elements of w are i.i.d, zero-mean and sub-Gaussian with parameter σ, we have
P[|At| ≥ 1] ≤ 2 exp(− n

2σ2ν2
), where ν2 : = 4

n [f∗(xn1)]TU(I − St)4Λ−2UT f∗(xn1). Since (1 −
(St)jj) ≤ 1, we have

ν2 ≤ 4

n
f∗(xn1)TU(I − St)Λ−2UT f∗(xn1) ≤ 4

n

r∑
j=1

[UT f∗(xn1)]2j

λ̂2j
min(1, ηtλ̂j)

≤ 4
ηt
n

r∑
j=1

[UT f∗(xn1)]2j

λ̂j

≤ 4ηt,

where the final inequality follows from the analysis in Section 4.1.1.

E.1.2 Bounding Bt

We begin by noting that

Bt =
1

n

r∑
j=1

(1− Stjj)2

λ̂j
[UTw]2j =

1

n
trace(UQUT , wwT),

361

Raskutti, Wainwright and Yu

where Q = diag{ (1−S
t
jj)

2

λ̂j
, j = 1, 2, . . . r}. Consequently, Bt is a quadratic form in zero-mean

sub-Gaussian variables, and using the tail bound (27), we have

P
[
|Bt − E[Bt]| ≥ 1

[
] ≤ exp(−cmin{n|||UQUT |||−1op , n

2|||UQUT |||−2F })

for a universal constant c. It remains to bound E[Bt], |||UQUT |||op and |||UQUT |||F.
We first bound the mean. Since E[wwT] � σ2In×n by assumption, we have

E[Bt] ≤
σ2

n
trace(Q)

1

n

r∑
j=1

= (
(1− Stjj)2

λ̂j
) ≤ ηt

n

r∑
j=1

min((ηtλ̂j)
−1, ηtλ̂j)

But by the definition (6) of the stopping rule and the fact that t ≤ T̂ , we have

ηt
n

r∑
j=1

min((ηtλ̂j)
−1, ηtλ̂j) ≤ η2tR2

K(1/
√
ηt) ≤

1

σ2
,

showing that E[Bt] ≤ 1.
Turning to the operator norm, we have

|||UQUT |||op = max
j=1,...,r

(
(1− Stjj)2

λ̂j
) ≤ max

j=1,...,r
min(λ̂j

−1
, η2t λ̂j) ≤ ηt.

As for the Frobenius norm, we have

1

n
|||UQUT |||2F =

r∑
j=1

(
(1− Stjj)4

λ̂j
2) ≤ 1

n

r∑
j=1

min(λ̂j
−2
, η4t λ̂j

2
) ≤ η3t

n

r∑
j=1

min(η−3t λ̂j
−2
, ηtλ̂j

2
)

Using the definition of the empirical kernel complexity, we have

1

n
|||UQUT |||2F ≤ η3tR2

K(1/
√
ηt) ≤

ηt
σ2
,

where the final inequality holds for t ≤ T̂ , using the definition of the stopping rule.
Putting together the pieces, we have shown that

P[|Bt| ≥ 2 or |At| ≥ 1] ≤ exp(−cn/ηt)

for all t ≤ T̂ . Since 1
ηt
≥ ε̂2n for any t ≤ T̂ , the claim follows.

E.2 Proof of Lemma 11

In this section, we need to show that ε̂n ≤ εn. Recall that ε̂n and εn satisfy

R̂K(ε̂n) =
ε̂2n

2eσ
and RK(εn) =

ε2n
40σ

.

It suffices to prove that R̂K(εn) ≤ ε2n
2eσ using the definition of ε̂n.

362

Early Stopping and Non-parametric Regression

In order to prove the claim, we define the random variables

Ẑn(w, t) : = sup
‖g‖H≤1
‖g‖n≤t

∣∣ 1
n

n∑
i=1

wig(xi)
∣∣, and Zn(w, t) : = Ex

[
sup
‖g‖H≤1
‖g‖2≤t

∣∣ 1
n

n∑
i=1

wig(xi)
∣∣],

where wi ∼ N(0, 1) are i.i.d. standard normal, as well as the associated (deterministic)
functions

Q̂n(t) : = Ew
[
Ẑn(w; t)

]
and Qn(t) : = Ew

[
Zn(w; t)

]
.

By results of Mendelson (2002), there are universal constants 0 < c` ≤ cu such that for all
t2 ≥ 1/n, we have

c`RK(t) ≤ Qn(t) ≤ cuRK(t), and c`R̂K(t) ≤ Q̂n(t) ≤ cuR̂K(t).

We first appeal to the concentration of Lipschitz functions for Gaussian random variables
to show that Ẑn(w, t) and Zn(w, t) are concentrated around their respective means. For
any t > 0 and vectors w,w′ ∈ Rn, we have

|Ẑn(w, t)− Ẑn(w′, t)| ≤ sup
‖g‖n≤t
‖g‖H≤1

1

n
|
n∑
i=1

(wi − w′i)g(xi)| ≤
t√
n
‖w − w′‖2,

showing that w 7→ Ẑn(w, t) is t√
n

-Lipschitz with respect to the `2 norm. A similar calcula-

tion for w 7→ Zn(w, t) shows that

|Ex[Ẑn(w, t)]− Ex[Ẑn(w′, t)]| ≤ Ex[sup
‖g‖2≤t
‖g‖H≤1

1

n
|
n∑
i=1

(wi − w′i)g(xi)|] ≤
t√
n
‖w − w′‖2,

so that it is also Lipschitz t√
n

. Consequently, standard concentration results (Ledoux, 2001)

imply that

P
[
|Ẑn(w, t)− Q̂n(t)| ≥ t0

]
≤ 2 exp

(
− nt20

2t2

)
, and

P
[
|Zn(w, t)−Qn(t)| ≥ t0

]
≤ 2 exp

(
− nt20

2t2

)
. (31)

Now let us condition on the two events

A(t, t0) : = {|Ẑn(w, t)− Q̂n(t)| ≤ t0}, and A′(t, t0) : = {|Zn(w, t)−Qn(t)| ≤ t0}.

We then have

R̂K(εn)
(a)

≤ Ẑn(w, εn) +
ε2n

4eσ

(b)

≤ Zn(w, 2εn) +
ε2n

4eσ

(c)

≤ 2RK(εn) +
3ε2n
8eσ

(d)

≤ ε2n
2eσ

,

where inequality (a) follows the first bound in Equation (31) with t0 = ε2n
4eσ and t = ε2n,

inequality (b) follows from Lemma 10 with t = εn, inequality (c) follows from the second

bound (31) with t0 = ε2n
8eσ and t = ε2n, and inequality (d) follows from the definition of εn.

Since the events A(t, t0) and A′(t, t0) hold with the stated probability, the claim follows.

363

Raskutti, Wainwright and Yu

References

R. S. Anderssen and P. M. Prenter. A formal comparison of methods proposed for the
numerical solution of first kind integral equations. Jour. Australian Math. Soc. (Ser. B),
22:488–500, 1981.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical
Society, 68:337–404, 1950.

A. R. Barron, A. Cohen, W. Dahmen, and R. A. DeVore. Approximation and learning by
greedy algorithms. Annals of Statistics, 36(1):64–94, 2008.

P. Bartlett and M. Traskin. Adaboost is consistent. Journal of Machine Learning Research,
8:2347–2368, 2007.

P. Bartlett, O. Bousquet, and S. Mendelson. Local Rademacher complexities. Annals of
Statistics, 33(4):1497–1537, 2005.

F. Bauer, S. Pereverzev, and L. Rosasco. On regularization algorithms in learning theory.
J. Complexity, 23:52–72, 2007.

M. S. Birman and M. Z. Solomjak. Piecewise-polynomial approximations of functions of
the classes Wα

p . Math. USSR-Sbornik, 2(3):295–317, 1967.

G. Blanchard and M. Kramer. Optimal learning rates for kernel conjugate gradient regres-
sion. In Proceedings of the NIPS Conference, 2010.

P. Buhlmann and B. Yu. Boosting with L2 loss: Regression and classification. Journal of
American Statistical Association, 98:324–340, 2003.

A. Caponetto and Y. Yao. Adaptation for regularization operators in learning theory.
Technical Report CBCL Paper #265/AI Technical Report #063, Massachusetts Institute
of Technology, September 2006.

A. Caponetto and Y. Yao. Cross-validation based adaptation for regularization operators
in learning theory. Analysis and Applications, 8(2):161–183, 2010.

A. Caponneto. Optimal rates for regularization operators in learning theory. Technical
Report CBCL Paper #264/AI Technical Report #062, Massachusetts Institute of Tech-
nology, September 2006.

P. Drineas and M. W. Mahoney. On the Nyström method for approximating a Gram matrix
for improved kernel-based learning. Journal of Machine Learning Research, 6:2153–2175,
2005.

Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

J.H. Friedman and B. Popescu. Gradient directed regularization. Technical report, Stanford
University, 2004.

364

Early Stopping and Non-parametric Regression

C. Gu. Smoothing Spline ANOVA Models. Springer Series in Statistics. Springer, New York,
NY, 2002.

M. G. Gu and H. T. Zhu. Maximum likelihood estimation by markov chain monte carlo
approximation. J. R. Statist. Soc. B, 63:339–355, 2001.

P. Hall and J.S. Marron. On variance estimation in nonparametric regression. Biometrika,
77:415–419, 1990.

W. Jiang. Process consistency for adaboost. Annals of Statistics, 32:13–29, 2004.

G. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. Jour. Math.
Anal. Appl., 33:82–95, 1971.

V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk minimization.
Annals of Statistics, 34(6):2593–2656, 2006.

M. Ledoux. The Concentration of Measure Phenomenon. Mathematical Surveys and Mono-
graphs. American Mathematical Society, Providence, RI, 2001.

L. Mason, J. Baxter, P., and M. Frean. Boosting algorithms as gradient descent. In Neural
Information Processing Systems (NIPS), December 1999.

S. Mendelson. Geometric parameters of kernel machines. In Proceedings of COLT, pages
29–43, 2002.

J. Mercer. Functions of positive and negative type and their connection with the theory of
integral equations. Philosophical Transactions of the Royal Society A, 209:415–446, 1909.

N. Morgan and H. Bourlard. Generalization and parameter estimation in feedforward nets:
Some experiments. In Proceedings of Neural Information Processing Systems, 1990.

L. Orecchia and M. W. Mahoney. Implementing regularization implicitly via approximate
eigenvector computation. In ICML ’11, 2011.

G. Raskutti, M. J. Wainwright, and B. Yu. Minimax-optimal rates for sparse additive models
over kernel classes via convex programming. Journal of Machine Learning Research, 12:
389–427, March 2012.

S. Saitoh. Theory of Reproducing Kernels and its Applications. Longman Scientific &
Technical, Harlow, UK, 1988.

B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

C. M. Stein. Estimation of the mean of a multivariate normal distribution. Annals of
Statistics, 9(6):1135–1151, 1981.

C. J. Stone. Additive regression and other nonparametric models. Annals of Statistics, 13
(2):689–705, 1985.

O. N. Strand. Theory and methods related to the singular value expansion and Landweber’s
iteration for integral equations of the first kind. SIAM J. Numer. Anal., 11:798–825, 1974.

365

Raskutti, Wainwright and Yu

S. van de Geer. Empirical Processes in M-Estimation. Cambridge University Press, 2000.

E. De Vito, S. Pereverzyev, and L. Rosasco. Adaptive kernel methods using the balancing
principle. Foundations of Computational Mathematics, 10(4):455–479, 2010.

G. Wahba. Three topics in ill-posed problems. In M. Engl and G. Groetsch, editors, Inverse
and ill-posed problems, pages 37–50. Academic Press, 1987.

G. Wahba. Spline Models for Observational Data. CBMS-NSF Regional Conference Series
in Applied Mathematics. SIAM, Philadelphia, PN, 1990.

H. L. Weinert, editor. Reproducing Kernel Hilbert Spaces : Applications in Statistical Signal
Processing. Hutchinson Ross Publishing Co., Stroudsburg, PA, 1982.

F. T. Wright. A bound on tail probabilities for quadratic forms in independent random
variables whose distributions are not necessarily symmetric. Annals of Probability, 1(6):
1068–1070, 1973.

Y. Yang and A. Barron. Information-theoretic determination of minimax rates of conver-
gence. Annals of Statistics, 27(5):1564–1599, 1999.

Y. Yao, L. Rosasco, and A. Caponnetto. On early stopping in gradient descent learning.
Constructive Approximation, 26:289–315, 2007.

T. Zhang. Learning bounds for kernel regression using effective data dimensionality. Neural
Computation, 17(9):2077–2098, 2005.

T. Zhang and B. Yu. Boosting with early stopping: Convergence and consistency. Annal
of Statistics, 33:1538–1579, 2005.

366

Journal of Machine Learning Research 15 (2014) 367-443 Submitted 1/13; Revised 9/13; Published 2/14

Unbiased Generative Semi-Supervised Learning

Patrick Fox-Roberts∗ pfoxroberts@gmail.com
Cambridge University Engineering Department
Trumpington Street
Cambridge, CB2 1PZ, UK

Edward Rosten ed@computervisionconsulting.com

Computer Vision Consulting

7th floor

14 Bonhill Street

London, EC2A 4BX, UK

Editor: William Cohen

Abstract

Reliable semi-supervised learning, where a small amount of labelled data is complemented
by a large body of unlabelled data, has been a long-standing goal of the machine learning
community. However, while it seems intuitively obvious that unlabelled data can aid the
learning process, in practise its performance has often been disappointing. We investigate
this by examining generative maximum likelihood semi-supervised learning and derive novel
upper and lower bounds on the degree of bias introduced by the unlabelled data. These
bounds improve upon those provided in previous work, and are specifically applicable to
the challenging case where the model is unable to exactly fit to the underlying distribution
a situation which is common in practise, but for which fewer guarantees of semi-supervised
performance have been found. Inspired by this new framework for analysing bounds, we
propose a new, simple reweighing scheme which provides a provably unbiased estimator for
arbitrary model/distribution pairs—an unusual property for a semi-supervised algorithm.
This reweighing introduces no additional computational complexity and can be applied to
very many models. Additionally, we provide specific conditions demonstrating the circum-
stance under which the unlabelled data will lower the estimator variance, thereby improving
convergence.

Keywords: Kullback-Leibler, semi-supervised, asymptotic bounds, bias, generative model

1. Introduction

Reliable semi-supervised learning has been a long standing goal of the machine learning
community. Its desirability is motivated by the observation that when collecting data
sets, often each sample has two distinct parts: some feature X, collected from some real
world population, often consisting of one or more basic measurements; and some label Y ,
assigned by the experimenter, representing a higher level concept. Furthermore the act of
assigning this higher level label very often constitutes a major bottleneck in the data set
creation process. It is perhaps expensive (requiring an expert’s opinion), slow (requiring

∗. PFR is currently affiliated with The Randal Division, Guy’s Campus, King’s College London, SE1 1UL

c©2014 Patrick Fox-Roberts and Edward Rosten.

Fox-Roberts and Rosten

an investment of time or staff), or in some way destructive (requiring a component to be
tested to destruction, or the death of a patient).

If we wish to fit a model parametrised by some set of parameters θ to this distribution,
we will need some data set DL consisting of NL labelled samples, DL = (xi, yi)i=1,...,NL

, to
train our model with; for example, if we are training using maximum likelihood, we must
find the parameters which maximise P (DL|θ), which for iid data is equivalent to finding

θ? = arg max
θ

NL∑
i=1

log (P (xi, yi|θ)) . (1)

In order to get a solution which generalises well to unseen data NL may have to be quite
large, especially if the model is rich or the feature space X high dimensional.

A far preferable situation would be to be able to utilise a smaller labelled data set DL,
augmented with an additional data set DU consisting of NU unlabelled samples, DU =
(xi)i=NL+1,...,NL+NU

, which consist only of their observed feature rather than a feature -
label pair. In essence the unlabelled data is used to ‘bootstrap’ the labelled. Unlabelled
samples tell us the shape of our distribution in the feature space, while labelled samples
give us the classification information.

At first glance, utilising unlabelled data to aid in fitting the parameters of some model
appears trivial. Inspired by the likelihood principal (Jaynes, 2003), it is tempting to simply
augment the likelihood function of the parameters, P (DL|θ), with the additional unlabelled
data, P (DL, DU |θ), and proceed with training exactly as before, that is, find the parameters

θ?S = arg max
θ

NL∑
i=1

log (P (xi, yi|θ)) +

NL+NU∑
i=NL

log (P (xi|θ)) . (2)

In practice however this has proven to give mixed results, sometime improving model fitting,
other times worsening it. This unpredictable of performance has formed a very major barrier
to more widespread adoption of semi-supervised techniques. Many alternative algorithms
have been developed to counter this. However, there still exists a need to better understand
and quantify why more standard methods fail.

This paper examines the effect of including unlabelled data in a training set when per-
forming maximum likelihood fitting of generative models. In particular, it is well known
(see, for example, Bishop, 2006) that maximising the parameter likelihood for labelled data
approximately minimises the Kullback Leibler divergence between the parametric distribu-
tion P (X,Y |θ) and the underlying distribution the data is sampled from, P (X,Y). We
show that maximising the likelihood of a data set containing unlabelled samples minimises
a different divergence. We then show that the possible error between this and the cor-
rect divergence may grow rapidly with the proportion of unlabelled data, and will do so
monotonically.

Out of necessity, the analysis presented shall only concern itself with generative models.
This follows in the footsteps of numerous other pieces of work which have shed light on
the generative semi-supervised learning problem, for example Castelli and Cover (1995),
Castelli and Cover (1996), Dillon et al. (2010), Cozman et al. (2003) and Yang and Priebe
(2011). Moreover, generative models are of interest in and of themselves. For example, they

368

Unbiased Generative Semi-Supervised Learning

are used in the fields of computer vision and text analysis, both of which could potentially
benefit from better semi-supervised algorithms; recent examples of such work include that
of Rauschert and Collins (2012), Beecks et al. (2011), Lücke and Eggert (2010), Kang et al.
(2012) and Zhuang et al. (2012). In the general case there is also evidence that generative
models can converge faster than discriminative, as shown by Ng and Jordan (2002), and so
are valuable when dealing with small data sets.

2. Previous Work

A great deal of work has been done proposing algorithms designed to take advantage of
semi-supervised data. Here we shall concern ourselves instead with examining the work
done on finding general bounds on performance.

We begin by considering the highly influential work by Castelli and Cover (1995, 1996).
This looks not at a particular semi-supervised algorithm, but rather at a slightly more
general question of when unlabelled samples can be of value. They conclude that for an
identifiable (as defined in the paper) binary decision problem, using a generative model, the
misclassification risk decreases exponentially fast towards the Bayes error as the number
of labelled samples increases. This result is encouraging. However, the requirement of
identifiability is a strict one. In practise it cannot often be guaranteed, and may even be
flatly contradicted.

The work of Dillon et al. (2010) builds upon this. Amongst other things they confirm
that provided a data set is generated from P (X,Y |θ0) where θ0 ∈ Ω, the estimator

θ̂N = arg max
θ∈Ω

NL∑
i=1

log(P (xi, yi|θ)) +
N∑

i=NL+1

log(P (xi|θ))

is consistent. As such, in cases where there is good reason to believe the true distribution is
drawn from the same family as our parametric model, we can expect consistent convergence.
They also provide one of few examinations of the associated variance of an estimator, though
again under the assumption of an identifiable model.

In a similar vein Zhang (2000) examines the fisher information matrix when learning
parameters for semi-supervised learning, and conclude that even when their true distribution
can not be expressed by the model parameters being fitted, unlabelled samples always aid
in learning in that they reduce the variance of the estimator. From this work we can
conclude that adding unlabelled samples is not preventing consistent convergence. As such,
if performance is observed to often worsen instead of improve as the number of unlabelled
samples increases, the fault must lie elsewhere.

The asymptotic behaviours of semi-supervised learning where the model is mis-specified
has been further studied by Cozman et al. (2003); Cozman and Cohen (2006, 2002), where
no assumptions are made about the parametric model being close to the underlying dis-
tribution. In particular, they show that the limiting value of the optimum parameters θ?

when performing ML semi-supervised learning in such a scenario is

arg max
θ

(
(1− λ)EP (X,Y) (logP (x, y|θ)) + λEP (x) (log(P (x|θ)))

)
where λ is the probability of a sample being unlabelled. If λ varies (say by adding unlabelled
samples) then this will likely change the optimal parameters θ?, and so the associated error

369

Fox-Roberts and Rosten

rate. In the limit, as λ → 1, we will tend towards the solution found training entirely on
unlabelled data. They argue that with a few assumptions on the modelling densities, θ?

is a continuous function of λ. They also show that an instance where the asymptotically
optimal parameters are not changed by λ comes, as might be expected, when the model is
“correct” and can be fitted exactly to the underlying distribution (i.e., the true distribution
P (x, y) is a member of the family of distributions that can be modelled by P (x, y|θ)).

The relative value of labelled/unlabelled samples was also investigated in Ratsaby and
Venkatesh (1995) for the case of classifying between two multivariate gaussian distributions
of unknown class prior and position parameters. As in the work by Castelli and Cover,
an exponential decrease in error rate with the number of labelled samples is shown, and
an only polynomial decrease in the same with the number of unlabelled samples. However
they also demonstrate a deleterious effect in the dimensionality of the space, indicating
unlabelled samples are likely to be less useful in high dimensional spaces. Separately, the
work of Shahshahani and Landgrebe (1994) examines learning the parameters of both a
single gaussian and a GMM when labels are missing. They too note an interesting effect
of dimensionality on semi-supervised learning, in particular from the point of view of the
Hughes phenomenon (Hughes, 1968). This is the observation that, in theory, increasing the
dimensionality of a classification problem by taking new measurements should never increase
the Bayes error; yet in practise, if we are learning from sampled data we find performance
will after a while degrade due to the larger number of parameters that must be estimated
(this is very closely linked to the perhaps more familiar Curse of Dimensionality, see Bishop,
2006). They propose that semi-supervised learning can help mitigate this, but only if the
rate of introduction of bias due to the unlabelled samples is lower than the decrease in
variance of the estimator.

Recently, Yang and Priebe (2011) has provided an investigation of semi-supervised gen-
erative learning that builds upon these conclusions. The key parameters they identify are
the asymptotic optima achieved when performing fully supervised learning, θ∗sup, and those
achieved from entirely un-supervised learning, θ∗unsup. Provided that the ratio of NL to N
tends towards 0 as N tends towards infinity (where N = NL + NU) we have the scenario
where we are moving from a high-variance, unbiased estimate, towards a low variance, bi-
ased estimate. Interestingly, the KL divergences between the distributions defined by θ∗sup
and θ∗unsup, and between these distributions and a given estimate based on a data set (either
fully labelled or a mixture of labelled and unlabelled), are identified as providing bounds
on the probability that classification performance will improve/worsen as unlabelled data
is added. Intuitively, if the divergence between the models specified by θ∗sup and θ∗unsup is
small, then adding unlabelled data is less likely to significantly worsen results. They also
show for a particular model that the point at which this occurs can be quite sharp. How-
ever, as it is likely to be different for different models and distributions, it still remains an
open question how it can be best estimated.

Additionally, theoretic examinations of expected performance for other semi supervised
learning situations, such as transductive learning (for example, Wang et al., 2007; Vapnik,
1998), PAC learning (Balcan and Blum, 2005; Blum and Balcan, 2010), and for generic loss
functions (Syed and Taskar, 2010), have also been carried out. However, as our purpose
here is to examine what can be said about generative semi-supervised learning we shall not
discuss these further.

370

Unbiased Generative Semi-Supervised Learning

2.1 Non-ML Algorithms

Given the problems associated with standard ML semi-supervised learning, as well as the
desire to utilise unlabelled samples in non-generative models, a large number of alternative
objective functions have been proposed to take advantage of unlabelled data. Notable exam-
ples include Multi Conditional Learning (introduced by McCallum et al. 2006 and applied
to semi-supervised learning by Druck et al. 2007) and the hybrid Bayesian approach of
Lasserre et al. (2006), both of which utilise mixtures of generative and discriminative mod-
els; information theory based approaches, which consider the similarity of class predictions
across the kNN graph such as Subramanya and Bilmes (2009, 2008), the mutual information
of samples within local clusters (Szummer and Jaakkola, 2002), or the conditional entropy
of class predictions across the unlabelled samples (Grandvalet and Bengio, 2006); Expecta-
tion Regularisation (Mann and McCallum, 2007), which seeks to enforce class proportion
constraints; Co-training, (Blum and Mitchell, 1998), which makes use of situations where
data is known to be separable in two different ‘views’; transduction, (Vapnik, 1998), and
the transductive support vector machine; kernel methods, such as those investigated by
Krishnapuram et al. (2005) and Jaakkola and Haussler (1999), which seek to use unlabelled
samples to build better kernel functions; and many others. A thorough literature review
was carried out by Zhu (2005).

3. Local And Global Bounds On Semi-Supervised Divergences

We now present a number of theorems, showing the asymptotic limits of the performance of
models trained on semi-supervised data using the standard technique Equation (2). While
it has been previously noted in the literature that ML semi-supervised learning introduces
bias when the model and underlying distributions do not match, we provide new bounds
on the degree of this bias as a function of the proportion of unlabelled data, and the best
case performance of our model if it were to be trained on a large labelled data set, giving
new insight into the reason behind these bounds.

3.1 Notation And Conditions

A semi-supervised data set consists of two types of data - labelled samples drawn from
P (X,Y), and unlabelled drawn from P (X). To allow us to deal with both of these within
a single framework we shall introduce a new variable Z, and consider our entire data set to
be drawn from P (X,Z), {xi, zi}i=1,...N in the space X × Z. We shall allow the ‘labelling’
Z to take on the same set of values as Y , plus one extra, U , and therefore Z = Y ∪ U . For
every “labelled” sample, zi = yi, and for every “unlabelled” sample zi = U . As such we now
have the data set {xi, zi}i=1,...N . Similarly, we shall consider our parameters θ to specify a
distribution P (X,Z|θ) rather than P (X,Y |θ), in a manner which will become clear as we
proceed.

We shall now apply several conditions to P (X,Z|θ) and P (X,Z) to allow them to
reflect what we consider the typical maximum likelihood generative semi-supervised learning
problem.

371

Fox-Roberts and Rosten

Condition 1 X is conditionally independent of Z given Y — if we know the class y of
sample x, z gives us no more information, that is,

P (x|y, z, θ) = P (x|y, θ), P (x|y, z) = P (x|y)

This first condition represents the fact that zi can be considered a noisy estimate of yi
- in as much as it will either be equal to yi, or it will take on the value U to indicate yi is
unknown. In either case, if we had access to the true value of yi, then zi would be irrelevant
as it can give us no useful information. This condition is similar to the “missing at random”
assumption discussed by Grandvalet and Bengio (2006).

Condition 2 The labelled samples have been drawn randomly and labelled correctly. The
unlabelled samples are similarly drawn randomly, with no class bias. As such,

P (z|y, θ) =

{
P (U |θ), z = U

δk(z, y)P (Ū |θ), z 6= U
P (z|y) =

{
P (U), z = U

δk(z, y)P (Ū), z 6= U

where δk indicates the Kronecker delta function, and we have denoted 1−P (U |θ) as P (Ū |θ)
and 1− P (U) as P (Ū)

This second condition specifies our labelling process. It is imagined that a ‘bag’ full
of unlabelled samples initially exists, and individual ones are then drawn from it and the
correct label associated with them by some expensive labelling process1 to form the labelled
set.

In practise truly drawing samples completely at random runs with risk of certain classes
having zero labelled samples, which is likely to cause highly undesirable behaviour of the
algorithm. We do not foresee this as a problem for two reasons. Firstly, in the asymptotic
limit (which is what most of our work will be concerned with in this section) we will almost
surely achieve labelled samples being drawn from all classes. Secondly, in practise, the indi-
viduals running the experiment are likely to ensure that all classes have some representative
samples. This breaks the assumption of iid data; however, provided the class priors are re-
spected when choosing how many samples to label from each class (or suitable weighting
applied) we can still attain an asymptotically unbiased estimate of the expectation term in
the divergence.

Condition 3 The proportion of labelled data is known, letting us set P (Ū |θ) = P (Ū) =
1− P (U)

We assume this as matching labels to samples is a process controlled entirely by the
user, and that they use this knowledge to set P (U |θ) rather than having to infer it from
the data.

1. This can be considered a somewhat simpler model to that proposed by Rosset et al. (2005), where the
labelling also depended on the feature vector x. This work however is interested in the case of biased
semi-supervised learning, which we assume here to not be the case.

372

Unbiased Generative Semi-Supervised Learning

3.1.1 Divergences

The KL divergence is a widely used method of measuring the similarity between two dis-
tributions, and one which shall be made extensive use of in this article. For distributions
P (X,Y) and P (X,Y |θ) where X is a continuous random variable and Y is discrete, it is
defined as

KL(P (X,Y)||P (X,Y |θ)) =

∫
x∈X

∑
y∈Y

P (x, y) log

(
P (x, y)

P (x, y|θ)

)
It is perhaps most widely used as a justification of maximum likelihood methods, as it

is a standard proof that the parameters

θ? = arg max
θ

NL∑
i=1

log (p (xi, yi|θ))

are an asymptotically unbiased minimiser of KL(P (X,Y)||P (X,Y |θ)), for example, see
Bishop (2006).

For brevity and to make subsequent equations more readable we shall introduce a more
concise notation to refer to the KL divergence. For random variables A and B and param-
eters θ, the full divergence shall be denoted as

D(P (A,B), θ) ≡ KL(P (A,B)||P (A,B|θ))

and the conditional divergence as

D(P (A|B), θ) ≡ KL(P (A|B)||P (A|B, θ)).

3.2 Standard ML Semi-Supervised Learning Expressed As A Divergence

Our first step is to demonstrate that when a proportion of a data set whose likelihood we are
maximising is lacking labels, in the asymptotic limit we will minimise a different divergence
to that we might wish - specifically, we minimise D(P (X,Z)|θ) rather than D(P (X,Y)|θ).

Theorem 4 Subject to the conditions in 3.1, maximising

NL∏
i=1

P (xi, yi|θ)
NL+NU∏
i=nL+1

P (xi|θ) (3)

w.r.t. θ minimises an asymptotically unbiased estimate of a term directly proportional to
D(P (X,Z), θ), not D(P (X,Y), θ)

Proof Given a set of N samples {xi, zi}i=1,...N drawn from P (X,Z), we can approximate
the expectation term in D(P (X,Z)|θ) with an arithmetic mean over our samples (for ex-
ample, see MacKay, 2003). Ignoring terms which are not a function of θ, and taking the
antilog, we attain

arg min
θ

D(P (X,Z), θ) ≈ arg max
θ

N∏
i=1

P (xi, zi|θ). (4)

373

Fox-Roberts and Rosten

Examining the above, and making use of Condition 1 to simplify P (xi|zi, y, θ) into
P (xi|y, θ), we can rewrite the likelihood contribution of a single sample i, P (xi, zi|θ) as
follows

P (xi, zi|θ) =
∑
y∈Y

P (xi, zi, y|θ)

=
∑
y∈Y

P (xi|zi, y, θ)P (zi|y, θ)P (y|θ)

=
∑
y∈Y

P (xi|y, θ)P (zi|y, θ)P (y|θ)

=
∑
y∈Y

P (xi, y|θ)P (zi|y, θ).

This can be simplified further using Conditions 2 and 3, depending on the value of zi. First
consider the case where zi = U

P (xi, zi|θ)|zi=U =
∑
y∈Y

P (xi, y|θ)P (U |θ) = P (xi|θ)P (U). (5)

Thus, a sample whose labelling zi indicates it is unlabelled contributes a quantity propor-
tional to P (xi|θ) to our likelihood expression. Now consider a single labelled example (i.e.,
where zi 6= U),

P (xi, zi|θ)|zi 6=U =
∑
y∈Y

P (xi, y|θ)δk(y, zi)P (Ū |θ)

= P (xi, y|θ)|y=ziP (Ū)

= P (xi, yi|θ)P (Ū) (6)

where we have made a slight change of notation in the last term to represent that if zi 6= U ,
then yi is known. This contributes a term proportional to P (xi, yi|θ) to the likelihood. If
we substitute these results back into Equation (4), our final likelihood expression is

arg max
θ

∏
i,zi 6=U

P (Ū)P (xi, yi|θ)
∏

j,zj=U

P (U)P (xj |θ)

which is equivalent to maximising Equation (3).

The form of our final likelihood function is the same as that found by Cozman and
Cohen (2006). The difference is in the interpretation of this. While Cozman and Cohen
(2006) considers it simply as a biased approximate minimiser of D(P (X,Y), θ), we con-
sider it an unbiased minimiser of a new divergence D(P (X,Z), θ). The utility of this is
that we can investigate the ‘bias’ introduced by considering the relationship between this
semi-supervised divergence and the original fully supervised one, and the properties of KL
divergences.

374

Unbiased Generative Semi-Supervised Learning

3.3 Bounding D
(
P (X,Y), θ

)
With D

(
P (X,Z), θ

)
Maximising the likelihood of a partially labelled data set corresponds to approximately min-
imising D (P (X,Z), θ). We now examine how D (P (X,Z), θ) is related to D (P (X,Y), θ),
and show that a set of upper and lower bounds can be formed using it.

Theorem 5 Subject to the conditions in 3.1, for a given set of parameters θ, D
(
P (X,Z), θ

)
defines an upper and lower set of bounds on D

(
P (X,Y), θ

)
as follows:

D
(
P (X,Z), θ

)
≤ D

(
P (X,Y), θ

)
≤
D
(
P (X,Z), θ

)
P (Ū)

. (7)

Remark 6 These bounds imply that, for a given D
(
P (X,Z), θ

)
that we are optimising, the

divergence of interest D
(
P (X,Y), θ

)
could vary by up to a factor P (Ū)−1. In situations

where P (Ū)−1 is large, this uncertainty may become the dominant factor in determining the
quality of our result.

Proof Consider the KL divergence D(P (X,Z), θ). We shall take the summation over Z
and split out the term z = U , noting that Z − U = Y

D(P (X,Z), θ) =

∫
x∈X

∑
z∈Y

P (x, z) log
(P (x, z)

P (x, z|θ)

)
dx

+

∫
x∈X

P (x, z)|z=U log
(P (x, z)|z=U
P (x, z|θ)|z=U

)
dx.

Using Equation (5) and Equation (6), and their corresponding counterparts when not con-
ditioned on θ, we can simplify the terms within our logarithms

P (x, z)|z=U
P (x, z|θ)|z=U

=
P (x)P (U)

P (x|θ)P (U)
=

P (x)

P (x|θ)
,

P (x, z)|z 6=U
P (x, z|θ)|z 6=U

=
P (x, y)|y=z

P (x, y|θ)|y=z
.

Using these identities, and Equation (5) and Equation (6) this allows us to rewrite the
divergence D(P (X,Z), θ)

D(P (X,Z), θ) = P (Ū)

∫
x∈X

∑
z∈Y

P (x, y)|y=z log
(P (x, y)|y=z

P (x, y|θ)|y=z

)
dx

+P (U)

∫
x∈X

P (x) log
(P (x)

P (x|θ)

)
dx.

which is exactly equivalent to

D(P (X,Z), θ) = P (Ū)D
(
P (X,Y), θ

)
+ P (U)D

(
P (X), θ

)
. (8)

375

Fox-Roberts and Rosten

From this we can find a set of upper and lower bounds on D(P (X,Y), θ) in terms of
D(P (X,Z), θ) alone. The upper bound can be found by noting D(P (X), θ) ≥ 0, which
given Equation (8) implies

D(P (X,Z), θ) ≥ P (Ū)D
(
P (X,Y), θ

)
(9)

which when rearranged gives the upper bound in Equation (7). The lower bound follows
similarly, by noting that D(P (X,Y), θ) = D(P (Y |X), θ) + D(P (X), θ) ≥ D(P (X), θ).
Again using Equation (8) this gives

D(P (X,Z), θ) ≤ P (Ū)D
(
P (X,Y), θ

)
+ P (U)D

(
P (X,Y), θ

)
=

(
P (Ū) + P (U)

)
D
(
P (X,Y), θ

)
= D

(
P (X,Y), θ

)
(10)

which gives us our lower bound. Combining Equation (10) and Equation (9) gives us Equa-
tion (7).

It is notable that in deriving these bounds we have treated D(P (X), θ)) (or, equivalently,
D(P (Y |X), θ))) simply as a value in the range 0 to D(P (X,Y), θ). As we wished to find
general bounds that would hold for any combination of P (X,Y) and P (X,Y |θ) we feel that
this is an entirely justifiable method of proceeding.

In practice, however, we will not be dealing with arbitrary distributions for P (X,Y) and
P (X,Y |θ); rather, P (X,Y) will usually represent some measurements of a real world phe-
nomenon that we believe to be learnable in (hopefully) some well chosen space. Similarly our
model may have been selected from a pool of potential models are that which is considered
most likely (according to some prior beliefs) to be able to fit to the distribution of interest
acceptably well, and will also often be smoothly varying with non-negligible correlations
between P (Y |X, θ) and P (X|θ). As such, with additional problem specific knowledge, we
suspect that tighter bounds on D(P (X,Y), θ) will tend to exist.

Another question one might raise is whether the lower bound can become tight even in
instances where there is a mismatch between the model and true distribution - that is, given
minθD(P (X,Y), θ) > 0, can we have the situation where D(P (X,Z), θ) = D(P (X,Y), θ)?
To answer this, consider D(P (X,Z), θ) as written in Equation (8). This can be re-written
as follows

D(P (X,Z), θ) = D
(
P (X,Y), θ

)
− P (U)D

(
P (Y |X), θ

)
.

As such, in order to achieve the situation where D(P (X,Z), θ) = D
(
P (X,Y), θ

)
, it must

be the case that P (U)D
(
P (Y |X), θ

)
= 0. Assuming P (U) > 0 (as otherwise we are dealing

with the trivial case of utilising no labelled data) then this must mean D(P (Y |X), θ) =
0, that is, the conditional distribution specified by the model perfectly matches the true
distribution. This observation seems to match intuition - if the model can correctly predict
the class of unlabelled data, then its divergence estimate will not be biased by utilising
these samples.

3.4 Global Bounds

The results in 3.3 give us bounds on D(P (X,Y), θ) in terms of D(P (X,Z), θ) for a given θ.
It is of more interest however to characterise the global minimisers of these two expressions.

376

Unbiased Generative Semi-Supervised Learning

That is, if we make use of our unlabelled data to minimise D(P (X,Z), θ) with respect to
θ, what can be inferred about the value of D(P (X,Y), θ) evaluated at this minimum?

Theorem 7 Define the optimum parameters for the supervised and ML semi-supervised
learning problems as

θ? = arg min
θ

D(P (X,Y), θ),

θ?S = arg min
θ

D(P (X,Z), θ).

Subject to the conditions in 3.1, it can be shown that

D(P (X,Y), θ?) ≤ D(P (X,Y), θ?S) ≤ D(P (X,Y), θ?)

P (Ū)
. (11)

That is, the divergence minimised by supervised learning, D(P (X,Y), θ), evaluated at the
parameters which minimise the semi-supervised divergence, θ?S, can be upper and lower
bounded as a function of said divergence evaluated at its own optima, θ?.

Proof The lower bound

D(P (X,Y), θ?) ≤ D(P (X,Y), θ?S)

is true by the definition of θ∗ - it is the minimiser of D(P (X,Y), θ), and so any other value
of θ must result in a greater than or equal divergence.

The upper bound can be derived as follows. Consider the term D(P (X,Y), θ?S)P (Ū).
Using Equation (9) evaluated at θ = θ?S we can see the following,

D(P (X,Y), θ?S)P (Ū) ≤ D(P (X,Z), θ?S).

Given the definition of θ∗S we can further see that

D(P (X,Z), θ?S) ≤ D(P (X,Z), θ?).

And using Equation (10) evaluated at θ = θ?,

D(P (X,Z), θ?) ≤ D(P (X,Y), θ?).

Hence, utilising all three of these inequalities in that order,

D(P (X,Y), θ?S)P (Ū) ≤ D(P (X,Z), θ?S)

≤ D(P (X,Z), θ?)

≤ D(P (X,Y), θ?)

we see that
D(P (X,Y), θ?S)P (Ū) ≤ D(P (X,Y), θ?).

By dividing through by P (Ū) we achieve our upper bound in Equation (11), that is,

D(P (X,Y), θ?S) ≤ D(P (X,Y), θ?)

P (Ū)
.

377

Fox-Roberts and Rosten

Thus, we can place bounds on divergence D(P (X,Y), θ) evaluated at θ∗S in terms
of the proportion of P (Ū), and D(P (X,Y), θ∗). One immediate observation is that if
D
(
P (X,Y, θ?

)
= 0, then D

(
P (X,Y), θ?S

)
= 0. Thus, if the true distribution lies within

the family of distributions expressible by our model, then the optima intersect regardless
of P (U), as confirmed by Cozman et al. (2003). Conversely, if D

(
P (X,Y), θ?

)
> 0 then

our bounds loosen as P (U) grows, and the rate of this depends on how well matched our
model is to the data - if they are very similar then the bound grows slowly, whereas if they
are different it may grow much faster. This confirms earlier results (see Section 2.2 in Zhu,
2005, for a summary), and builds on them by providing explicit bounds on how rapidly
performance may degrade.

The overall conclusion is that performing ML semi-supervised learning in the manner of
Equation (3) forces us to make a trade off. We can rarely evaluate KL divergences directly,
and must use estimators whose variance is inversely proportional to N (MacKay, 2003). By
including unlabelled data we can decrease this source of uncertainty. However in doing so
we weaken our bounds, introducing a new source of error. This provides a complementary
reinterpretation of the results noted by Cozman et al. (2003).

As our bounds weaken then, how does our solution degrade? We now show that the
supervised divergence, evaluated at the ML semi-supervised optima, grows monotonically
with the proportion of unlabelled samples.

Theorem 8 Subject to the conditions in 3.1, let us define two distributions P1(X,Z) and
P2(X,Z), and corresponding models P1(X,Z|θ) and P2(X,Z|θ). These distributions shall
differ from one another only in terms of the probability that Z = U ; that is, P1(X,Y) =
P2(X,Y) and P1(X,Y |θ) = P2(X,Y |θ) (which in turn implies P1(X) = P2(X) and P1(X|θ) =
P2(X|θ)). We shall assume that distribution P2(X,Z) has a greater chance of an unlabelled
sample, and so P2(U) > P1(U).

Define the optima θ?S1 and θ?S2 as

θ?S1 = arg min
θ

D(P1(X,Z), θ), θ?S2 = arg min
θ

D(P2(X,Z), θ). (12)

It follows that

D(P (X,Y), θ?S1) ≤ D(P (X,Y), θ?S2) (13)

and

D(P (Y |X), θ?S1) ≤ D(P (Y |X), θ?S2). (14)

Proof By definition,

D(P1(X,Z), θ∗S1) ≤ D(P1(X,Z), θ∗S2).

We can expand both these divergences to rewrite this expression as follows;

P1(Ū)D(P (X,Y), θ?S1) + P1(U)D(P (X), θ?S1)

≤ P1(Ū)D(P (X,Y), θ?S2) + P1(U)D(P (X), θ?S2)

378

Unbiased Generative Semi-Supervised Learning

Rearranging this expression to isolate D(P (X), θ?S1)−D(P (X), θ?S2) gives us

D(P (X), θ?S1)−D(P (X), θ?S2) ≤ P1(Ū)

P1(U)
(D(P (X,Y), θ?S2)−D(P (X,Y), θ?S1)) . (15)

We shall utilise this term later.
Now examining the divergences associated with the distribution P2(X,Z), by the defi-

nition given in Equation (12) we see that

D(P2(X,Z), θ∗S2) ≤ D(P2(X,Z), θ∗S1).

This can be expanded as before,

P2(Ū)D(P (X,Y), θ?S2) + P2(U)D(P (X), θ?S2)

≤ P2(Ū)D(P (X,Y), θ?S1) + P2(U)D(P (X), θ?S1),

and D(P (X), θ?S1)−D(P (X), θ?S2) once again isolated,

P2(Ū)

P2(U)
(D(P (X,Y), θ?S2)−D(P (X,Y), θ?S1)) ≤ D(P (X), θ?S1)−D(P (X), θ?S2). (16)

Combining Equation (15) and Equation (16) to eliminate D(P (X), θ?S1) − D(P (X), θ?S2)
gives us

P2(Ū)

P2(U)
(D(P (X,Y), θ?S2)−D(P (X,Y), θ?S1))

≤ P1(Ū)

P1(U)
(D(P (X,Y), θ?S2)−D(P (X,Y), θ?S1)) .

Gathering together similar divergences, this implies that(
P1(Ū)

P1(U)
− P2(Ū)

P2(U)

)
D(P (X,Y), θ?S1) ≤

(
P1(Ū)

P1(U)
− P2(Ū)

P2(U)

)
D(P (X,Y), θ?S2)

As we know that P2(U) > P1(U), and so P2(Ū) < P1(Ū), it follows that P2(U)P1(Ū) >
P1(U)P2(Ū), which in turn implies

P1(Ū)

P1(U)
− P2(Ū)

P2(U)
> 0.

As it is positive we may cancel this term out without altering the inequality, indicating that

D(P (X,Y), θ?S1) ≤ D(P (X,Y), θ?S2)

proving Equation (13).
To prove Equation (14), note that if we take Equation (15), multiply though by P1(U),

and then use some simple algebra to gather all terms relating to the marginal divergence
together, it is equivalent to stating

D(P (X), θ?S1)−D(P (X), θ?S2) ≤ P1(Ū) (D(P (Y |X), θ?S2)−D(P (Y |X), θ?S1)) .

379

Fox-Roberts and Rosten

Similarly, Equation (16) can be rearranged as

P2(Ū) (D(P (Y |X), θ?S2)−D(P (Y |X), θ?S1)) ≤ D(P (X), θ?S1)−D(P (X), θ?S2).

Combining these two, we see that

P2(Ū) (D(P (Y |X), θ?S2)−D(P (Y |X), θ?S1))

≤ P1(Ū) (D(P (Y |X), θ?S2)−D(P (Y |X), θ?S1)) .

Gathering together terms, this rearranges to(
P1(Ū)− P2(Ū)

)
D(P (Y |X), θ?S1) ≤

(
P1(Ū)− P2(Ū)

)
D(P (Y |X), θ?S2)

which, given P2(U) > P1(U), and hence P2(Ū) < P1(Ū), implies

D(P (Y |X), θ?S2) ≥ D(P (Y |X), θ?S1)

proving Equation (14).

This observation seems intuitively reasonable. As P (U) grows the model is increasingly
penalised by large values of D(P (X), θ), and so seeks to minimise this at the expense of
letting D(P (Y |X), θ) get larger. However, if our end goal is to create a classifier then this
result may give us cause to reconsider - adding unlabelled data not only weakens our bounds
on the joint divergence, but asymptotically can only worsen (or at best leave unchanged)
the conditional divergence.

Thus, we can now conclude several things about the asymptotic optimum of the ML
semi-supervised learning problem. Firstly, due to the observation of monotonicity, the di-
vergence D(P (X,Y), θ∗S) is upper bounded by D(P (X,Y), θ∗U), confirming Yang and Priebe
(2011). Secondly, that if we were to increase the quantity of unlabelled data, it will tend
towards this approaching equality as P (U) tends towards 1. Finally, it will do so mono-
tonically - raising the proportion of unlabelled data will never decrease D(P (X,Y), θ∗S) or
D(P (Y |X), θ∗S).

This result initially seems to contradict that of Cozman and Cohen (2006), where they
gave an example of a ML semi-supervised learning process where despite the model not
fitting the underlying distribution, adding unlabelled data asymptotically improved the
decision boundary. We point out though that their measure of how well the boundary fits
is based on the error rate, not the KL divergence. while it is true that minimising the
conditional KL divergence will typically reduce the error rate this is not an absolute rule
(and indeed forms a set of bounds). We would postulate that this is an example of a case
where the divergence rises but the classification rate improves.

Finally, it makes sense to more closely examine the final solution arrived at as P (U)→ 1,
in a similar manner to that discussed by Yang and Priebe (2011). In particular, we wish to
confirm that their result extend beyond identifiable models, and shall show that where there
is a choice between multiple sets of parameters which minimise the unsupervised divergence
D(P (X), θ), the semi-supervised divergence minimised by ML learning is upper bounded by
the one set of these parameters which best minimises D(P (Y |X), θ). This proof is largely
similar to that showing monotonicity but is included here for completeness.

380

Unbiased Generative Semi-Supervised Learning

Theorem 9 Subject to the conditions in 3.1, define the optimum unsupervised parameters
θ?U to be any parameters which meet these requirements:

θ?U = arg min
θ

D(P (Y |X), θ) subject to D(P (X), θ?U) = min
θ′

D(P (X), θ′)

It can be shown that provided P (Ū) 6= 0,

D(P (X,Y), θ?S) ≤ D(P (X,Y), θ?U) (17)

and
D(P (Y |X), θ?S) ≤ D(P (Y |X), θ?U) (18)

Proof By definition,
D(P (X,Z), θ?S) ≤ D(P (X,Z), θ?U). (19)

The standard semi-supervised divergence can be expanded as follows,

D(P (X,Z)|θ) = P (Ū)D
(
P (X,Y), θ

)
+ P (U)D

(
P (X), θ

)
.

As such, we can rewrite Equation (19) as follows

P (Ū)D(P (X,Y), θ?S) + P (U)D(P (X), θ?S)

≤ P (Ū)D(P (X,Y), θ?U) + P (U)D(P (X), θ?U).

If we subtract P (U)D(P (X), θ?U) from both sides this becomes

P (Ū)D(P (X,Y), θ?S) + P (U) (D(P (X), θ?S)−D(P (X), θ?U))

≤ P (Ū)D(P (X,Y), θ?U).

However, by definition, D(P (X), θ?S) ≥ D(P (X), θ?U), implying

P (Ū)D(P (X,Y), θ?S) ≤ P (Ū)D(P (X,Y), θ?U)

and hence Equation (17) directly follows by dividing through by P (Ū). Equation (18)
follows similarly by noting that Equation (17) implies

D(P (Y |X), θ?S) +D(P (X), θ?S) ≤ D(P (Y |X), θ?U) +D(P (X), θ?U).

If we subtract D(P (X), θ?U) from both sides we find that

D(P (Y |X), θ?S) +D(P (X), θ?S)−D(P (X), θ?U) ≤ D(P (Y |X), θ?U)

and again note that by definition, D(P (X), θ?S) ≥ D(P (X), θ?U), and hence

D(P (Y |X), θ?S) ≤ D(P (Y |X), θ?U)

directly follows, proving Equation (18).

381

Fox-Roberts and Rosten

Note that the above derivation could have proceeded in exactly the same manner with
θ?U chosen to be any parameters for which D(P (X), θ?U) = minθ′ D(P (X), θ′). However, by
choosing θ?U to be the parameters which also minimised D(P (Y |X), θ?U) we attain as tight
a bound as possible.

For many models there will be only one set of parameters which minimise D(P (X), θ),
and so this is not an issue. However for others this will not be the case. For example, many
mixture models contain mixture components which are identical save for the class they
are assigned to. In these cases, specifying that θ?U have the lowest conditional divergence
amongst those set of parameters which have the minimum marginal divergence allows us
to choose the best combination of class assignment for each mixture component given their
other parameters, strengthening slightly the conclusions of Yang and Priebe (2011).

We can now rewrite our global bounds as follows:

D(P (X,Y), θ?) ≤ D(P (X,Y), θ?S) ≤ min

(
D(P (X,Y), θ?)

P (Ū)
, D(P (X,Y), θ?U)

)
.

Assuming that D(P (Y |X), θ?U) <∞, which will be the case provided P (Y |X, θ?U) does not
assign zero probability to any Y given any X, this gives tighter performance bounds as
P (Ū)→ 0.

3.5 Summary

This ends our theoretical examination of performing ML learning on a partially labelled
data set. Overall we can conclude the following;

• When we introduce unlabelled data into our likelihood expression, we change the
divergence being minimised, from D(P (X,Y), θ) to D(P (X,Z), θ).

• We can form a set of upper and lower bounds on D(P (X,Y), θ) using D(P (X,Z), θ)
for a given θ, namely

D(P (X,Z), θ) ≤ D(P (X,Y), θ) ≤ D(P (X,Z), θ)

P (Ū)
.

The lower bound becomes tight if D(P (Y |X), θ) is equal to 0, that is, if our model is
fits to the conditional distribution well.

• If we find the parameters θ?S which minimise the standard semi-supervised diver-
gence D(P (X,Z), θ), then these are linked to the parameters θ? which minimise
D(P (X,Y), θ) using the expression

D(P (X,Y), θ?) ≤ D(P (X,Y), θ?S) ≤ D(P (X,Y), θ?)

P (Ū)
,

that is, our supervised divergence evaluated at the standard semi-supervised minima
may exceed the supervised minima by a factor of 1/(P (Ū)). Where there is a large
quantity of unlabelled data this factor may be very high.

• D(P (X,Y), θ?S) grows monotonically with the proportion of unlabelled data P (U).
Moreover, it is the term D(P (Y |X), θ?S) which grows, indicating that we can expect
classification results to remain steady or worsen.

382

Unbiased Generative Semi-Supervised Learning

Taken together, this gives a clear indication of the problem we face conducting genera-
tive semi-supervised ML learning, and gives novel bounds on the asymptotic performance
achievable.

4. Unbiased Generative Semi-Supervised Learning

Having investigated the properties of D(P (X,Z), θ), it is clear that if we wish to minimise
D(P (X,Y), θ), it is better we find an unbiased likelihood estimator. From examination of
the form of the supervised divergence, we propose the following.

Theorem 10 Subject to the conditions in 3.1, and provided P (Ū) > 0, the expression

arg max
θ

NL∏
i=1

P (yi|xi, θ)
(N∏
i=1

P (xi|θ)
)NL/N

(20)

returns a set of parameters which minimise an asymptotically unbiased estimator of the
divergence D(P (X,Y), θ).

Proof The divergence D(P (X,Y), θ) is exactly equivalent to the following:

D(P (Y |X), θ) +D(P (X), θ). (21)

We draw samples (xi, yi)i=1,...,NL
and (xi)i=NL+1,...,N . Assuming that as N →∞, NL/N →

P (Ū), we can use these to construct an asymptotically unbiased estimator of the divergence
Equation (21), (

1

NL

NL∑
i=1

log

(
P (yi|xi)
P (yi|xi, θ)

)
+

1

N

N∑
i=1

log

(
P (xi)

P (xi|θ)

))
. (22)

Disregarding all terms which are not a function of θ gives the expression(
−1

NL

NL∑
i=1

log (P (yi|xi, θ)) +
−1

N

N∑
i=1

log (P (xi|θ))

)
. (23)

Multiplying this by −NL and taking the antilog yields

NL∏
i=1

P (yi|xi, θ)
N∏
i=1

P (xi|θ)NL/N .

This is the quantity which is maximised in Equation (20). As the log function is monotonic,
the parameters which maximise this will minimise Equation (23) (due to the multiplication
by −NL). Minimising Equation (23) is equivalent to minimising Equation (22) as they only
differ by terms that are constant with respect to the parameters. And Equation (22) is an
unbiased estimator of Equation (21). Hence, the parameters returned by Equation (20) are
equivalent to those which minimise an unbiased estimator of D(P (X,Y), θ).

383

Fox-Roberts and Rosten

A special case occurs when P (Ū) = 0. This corresponds to Equation (22) where NL is
fixed while NU →∞,

arg min
θ

1

NL

NL∑
i=1

log

(
P (yi|xi)
P (yi|xi, θ)

)
+D(P (X), θ) (24)

which estimates the marginal component of the divergence exactly while using the available
labelled data to estimate the conditional component as best possible.

Our term Equation (20) is somewhat similar to the form of Equation 3 presented by
McCallum et al. (2006), which was further investigated by Druck et al. (2007), but with the
exponents of the conditional and generative components of the equation set by the ratio
of labelled to unlabelled data, rather than being found by cross validation. Moreover, our
purpose in using an equation of this form is different; we wish to fit a generative model,
not a classifier. Rosset et al. (2005) has also previously noted that performance can be
improved by requiring certain expectations in the labelled and unlabelled data set match.
However, they enforced this as a strict requirement, rather than using it to find an unbiased
likelihood estimate as we do. Nigam et al. (2000) implement down-weighting of the log
likelihood of all unlabelled elements, by a factor which is set using cross validation. As the
marginal likelihood of the labelled samples is not re-weighed this also produces a biased
estimator of the joint likelihood.

An argument might be made that a biased estimator which is tuned using cross validation
has the potential to outperform the proposed unbiased objective function. While there is
certainly merit to this, we would respond that the parameter tuning inherent in cross
validation can increase the amount of time spent training dramatically, and that it requires
a large enough corpus of labelled data that a holdout set can be safely put aside to validate
with. Our objective function provides a simple, principled alternative, applicable in cases
where such restrictions prevent cross validation, as well as others.

4.1 Estimator Variance

Note that we can already generate an asymptotically unbiased estimate by using the labelled
data alone. Unlabelled samples are only of value if they make this process more reliable,
so it is worth investigating the uncertainty of this estimator. Consider the variance V of
Equation (22), where the variance is taken w.r.t. the probability of the possible data sets
we may have observed

V = Var

(
1

NL

NL∑
i=1

log

(
P (yi|xi)
P (yi|xi, θ)

)
+

1

N

N∑
i=1

log

(
P (xi)

P (xi|θ)

))
. (25)

We can expand Equation (25) as

V = Var

(
1

NL

NL∑
i=1

Ly|x(i)

)
+ Var

(
1

N

N∑
i=1

Lx(i)

)

+2 Cov

(
1

NL

NL∑
i=1

Ly|x(i),
1

N

N∑
i=1

Lx(i)

)
(26)

384

Unbiased Generative Semi-Supervised Learning

where for ease of notation we have defined

Ly|x(i) ≡ log

(
P (yi|xi)
P (yi|xi, θ)

)
, Lx(i) ≡ log

(
P (xi)

P (xi|θ)

)
.

Using standard identities for variances and covariances,2 and taking advantage of our sam-
ples being iid, we can expand Equation (26) as follows

V =
1

NL
Var

(
LY |X

)
+

1

N
Var (LX) +

2

N
Cov

(
LY |X , LX

)
(27)

where we have now defined

LY |X ≡ log

(
P (Y |X)

P (Y |X, θ)

)
, LX ≡ log

(
P (X)

P (X|θ)

)
.

As such Equation (27) gives us the variance of Equation (22) in terms of a relationship
between the distributions P (X,Y), P (X,Y |θ), NL and NU . Clearly V → 0 as NL → ∞.
However we are also interested in the case where we increase NU while holding NL steady,
corresponding to P (Ū) = 0. By inspection, as NU →∞, V → 1

NL
Var

(
LY |X

)
(as one might

expect from examination of Equation (24)), so the question becomes whether this reduces
V . Remembering that N = NL + NU , the derivative3 of Equation (27) with respect to N
(and hence NU since NL is fixed) is

dV

dN
=
−1

N2
Var (LX)− 2

N2
Cov

(
LY |X , LX

)
.

2. The simplification of the variance terms is intuitively obvious and a standard result - for any random
variable, we expect the variance of the arithmetic mean of a set of observations to be the variance of the
variable itself, divided by the number of observations made (see MacKay, 2003). However the covariance
term is perhaps a little more surprising, as it has no dependence on NL. This is due to the iid nature
of the data, which implies a covariance of zero between different samples. As such we can derive the
following:

Cov

(
1

NL

NL∑
i=1

Ly|x(i),
1

N

N∑
i=1

Lx(i)

)

=
1

NNL

NL∑
i=1

N∑
j=1

Cov
(
Ly|x(i), Lx(j)

)
=

1

NNL

NL∑
i=1

N∑
j=1
j 6=i

Cov
(
Ly|x(i), Lx(j)

)
+

1

NNL

NL∑
i=1

Cov
(
Ly|x(i), Lx(i)

)

= 0 +
1

NNL

NL∑
i=1

Cov
(
Ly|x(i), Lx(i)

)
=

1

NNL

NL∑
i=1

Cov
(
LY |X , LX

)
=

1

N
Cov

(
LY |X , LX

)
which eliminates NL and so gives us the stated form of the covariance.

3. Strictly NU is discrete, and does not have a derivative. However the expression is monotonic in NU , and
so the overall trend will be the same if this constraint is relaxed.

385

Fox-Roberts and Rosten

For Equation (25) to decrease as NU increases this quantity must be negative. This is the
case iff

Cov
(
LY |X , LX

)
≥ −Var (LX)

2
.

The conclusion is that even if NL is fixed our method of including unlabelled data reduces
the variance of our estimator provided Cov

(
LY |X , LX

)
is above a lower bound, proportional

to Var (LX). Perhaps surprisingly this bound is negative, indicating they may be slightly
anti-correlated. We feel this is a sufficiently weak criteria for our scheme to find application
across a variety of data sets.

5. Empirical Demonstration

We now examine the performance of the objective function given in Section 4 on real world
data sets, compared to the standard semi-supervised learning, supervised learning, and
several other alternative semi-supervised techniques. To maximally highlight the effect of
mismatch between the model and true distribution, a simple marginal distribution consisting
of a single axis aligned Gaussian was chosen to model each class.

The following six learning schemes were tested with this model: our unbiased semi-
supervised expression (SSunb), that is, the natural log of Equation (20); the log likelihood
of the labelled data (LL), that is, Equation (1); the log likelihood of the standard (bi-
ased) semi-supervised expression (SSb), that is, the natural log of Equation (3); the log
likelihood of the standard semi-supervised expression plus an Entropy Regularisation term
(Grandvalet and Bengio, 2006) with the parameter λ set by 5 fold cross validation, select-
ing the λ with the lowest holdout set error rate (ERer); Entropy Regularisation as before,
except cross validation is carried out on the log likelihood of the holdout set (ERnll); the
semi-supervised equivalent of Multi Conditional learning (as investigated in Druck et al.,
2007), again cross validating hyper parameters once on error rate (MCer) and once on log
likelihood (MCnll); and the log likelihood of the standard semi-supervised expression plus
an Expectation Regularisation (Mann and McCallum, 2007) term (XR), with the trade off
parameter set (after some experimentation) as in the original paper to the equivalent of 10
times the number of labelled samples; Additionally, for the position parameter µ of each
Gaussian a penalty term −C||µ||2 was added onto each objective function with C set to a
small constant (≈ 10−5).

We would point out that many of these learning schemes were originally designed for use
with a discriminative model. Here we are using them in a different manner, to augment the
objective function during the learning of a generative model. They have been selected due
to their reported good performance in improving discriminative learning, in the hope that
this will counteract the bias introduced by the missing class information in the likelihood
of the unlabelled samples.

We chose 7 data sets from the UCI repository (Frank and Asuncion, 2010); Diabetes,
Wine, glass identification (Glass), blood transfusion (Blood) (Yeh et al., 2009), Ecoli,
Haberman survival (Haber), and Pima Indian diabetes (Pima); and 2 from libsvm: SVM
guide 1 (SVMg) (Hsu et al., 2003) and fourclass (Four) (Ho and Kleinberg, 1996). Due
to computational constraints, data sets with > 3 classes had one or more merged to create
3 approximately equally sized groupings. Each axis of the data was transformed to lie in

386

Unbiased Generative Semi-Supervised Learning

data SSunb LL SSb MCer MCnll ERer ERnll XR

Diabetes 3.36 4.12 3.90 144 3.58 3.90 3.97 3.74
SVMg 0.379 0.417 1.18 99.4 0.376 1.23 1.19 1.16
Wine 19.4 58.4 23.0 67.2 21.4 24.7 24.7 12.5
Glass 23.7 40.9 23.5 213 26.3 22.7 21.5 21.5
Blood 1.78 2.27 3.01 77.2 2.08 3.06 3.06 2.65
ecoli 8.80 13.7 10.0 68.6 10.3 9.97 10.0 9.63
Haber 4.75 7.30 5.02 79.8 5.10 4.98 4.90 4.59
Pima 3.60 4.30 4.24 136 3.80 4.26 4.25 3.87
Four 2.17 2.22 2.25 37.3 2.19 2.33 2.32 2.23

Table 1: Overall mean negative log likelihood - best result for each data set shown in bold,
second best underlined

the range [−1, 1]. Samples with missing attributes were excluded. Where a data set had a
dedicated test set, this was used; otherwise, one fifth of the data was randomly separated a
priori for this purpose.

A range of values ofNL andNU were trialled. As a proportion of the total available train-
ing data, NL varied from [0.025, 0.05, 0.1, 0.2], and NU from [0.025, 0.05, 0.1, 0.2, 0.4, 0.8],
with NU being formed by discarding labels prior to training (for example, a test where
NL = 0.05 and NU = 0.4 would indicate 0.45 of the available data was used for training,
of which one ninth was labelled). For each repetition a random set of parameters was gen-
erated and used as the starting point for each of the above learning schemes. Each model
was optimised by repeatedly alternating between a small number of iterations of downhill
simplex search (Lagarias et al., 1998), followed by a large numbers of iterations of BFGS
search (Nocedal and Wright, 1999), until convergence. This process was repeated 100 times
for each combination of NL and NU values. The error rate and negative log likelihood of
the test set was found for each solution. A selection of these results are shown here. Full
results over all test sets are included in the appendix.

Note that we have purposefully used the same optimisation scheme for all objective
functions - including LL, which has a closed form solution, and SSb, which can be op-
timised using expectation maximisation. Also note that for each repetition a single set
of starting parameters was randomly generated, and then used to initialise every learning
scheme investigated. The intent of this was to ensure that all variability encountered was
solely due to the choice of objective function.

Table 1 shows the mean negative log likelihood for each data set, that is, the negative
log likelihood averaged over all all repetitions of all values of NL and NU . For each data set,
the minimum negative log likelihood is shown in bold, and the second smallest underlined.
Our method SSunb achieved the lowest mean for 5 of the 9 data sets, and the second lowest
for a further 3. XR proved the best for two data sets, and MCnll and ERnll for one each.

Mean error rates are shown in in Table 2. Our method performed best for 3 data sets
and second best in a further 4, roughly equivalent to LL or MCer (without the need for the

387

Fox-Roberts and Rosten

data SSunb LL SSb MCer MCnll ERer ERnll XR

Diabetes 0.283 0.284 0.332 0.299 0.294 0.337 0.346 0.312
SVMg 0.0597 0.0597 0.189 0.0572 0.0678 0.193 0.175 0.171
Wine 0.144 0.163 0.190 0.238 0.162 0.230 0.259 0.218
Glass 0.483 0.459 0.539 0.470 0.501 0.545 0.555 0.525
Blood 0.277 0.277 0.367 0.273 0.292 0.372 0.369 0.309
ecoli 0.121 0.104 0.266 0.140 0.147 0.276 0.280 0.184
Haber 0.298 0.298 0.371 0.337 0.319 0.379 0.369 0.301
Pima 0.296 0.292 0.348 0.302 0.306 0.355 0.358 0.327
Four 0.249 0.250 0.260 0.245 0.250 0.281 0.274 0.259

Table 2: Overall mean error rate - best result for each data set shown in bold, second best
underlined

latter’s expensive cross validation). We point out that we are training a simple generative
model, and so error rates reported are not directly comparable to previous work using more
powerful / conditional models.

Figure 1 consists of four plots, showing how the mean negative log likelihood of the
Blood data set varies as NU is increased, for all four values of NL tested. Error bars
indicate a single standard deviation. Note how for small values of NU all methods perform
similarly, with some benefit from using unlabelled data. As NU increases and the upper
bound weakens, the methods begin to diverge - the ER methods, along with SSb and XR
worsen consistently. LL remains approximately constant (as expected) and slightly larger
than SSunb. MCnll sits somewhere between LL and SSunb, worsening a little as the
proportion of unlabelled data grows. This qualitative description of the observed behaviour
applies to a significant proportion of the results. The main exceptions to this trend were in
the Glass, Wine and Haber data sets for small values of NL, where competing methods
(noticeably XR) performed better though this advantage tended to tail off as NL grew -
for example see Figure 3, which shows the Haberman data set performing very well under
XR training.

Figure 2 shows how the mean error rate of the same data set varies. For small quantities
of labelled data SSunb tends to tie with LL. However as the quantity of labelled data grows
competing methods begin to out perform it. In general we found that the proposed unbi-
ased method was not always best (most commonly being out performed by XR), but often
very competitive. It also rarely showed degradation in behaviour as the quantity of unla-
belled data was increased - as we would expect, given the manner in which it automatically
downgrades the influence of additional unlabelled samples.

As well as looking at the mean log likelihood and error rates though, we believe another
informative measure of the success of a semi-supervised algorithm is the raw frequency
with which it out performs alternate methods. This gives an estimate of the probability
that, should you include unlabelled data in your training data set, the performance of the
algorithm will improve.

388

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Blood Transfusion, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Blood Transfusion, NL =0.05

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Blood Transfusion, NL =0.1

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Blood Transfusion, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SSb XR

Figure 1: Four sample plots of the mean negative log likelihood of the Blood data set
for a variety of values of NL, as NU grows. Note that MCer is excluded, as it
significantly underperformed and caused unfavourable axis scaling.

An example of this is shown in Figure 4, which shows the proportion of occasions each
semi-supervised algorithm out performs supervised learning, where performance is measured
in terms of the negative log likelihood of the test set. For this particular case our proposed
unbiased estimator is consistently the superior one - on only one occasion does another
algorithm (MCnll) outperform supervised learning with greater frequency. In general it
was found that only when NU is small that we typically saw other methods performing

389

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Blood Transfusion, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Blood Transfusion, NL =0.05

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Blood Transfusion, NL =0.1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Blood Transfusion, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SSb XR

Figure 2: Four sample plots of the mean error rate of the Blood data set for a variety of
values of NL, as NU grows.

better. What is also notable is how, while several other methods initially provide a bonus
when NU is small (where the proportion rises above 0.5, indicating that they were more
likely than not to improve learning), they tend to degrade quite rapidly as unlabelled data
is added, often making it more probable that they will worsen performance by the time
NU = 0.8. It was much rarer that our algorithm did this (one example occurring in the
Ecoli data set with NL = 0.2).

390

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

NU

m
e
a
n
e
rr
o
r
ra
te

Haberman Survival, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Haberman Survival, NL =0.05

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Haberman Survival, NL =0.1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Haberman Survival, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SSb XR

Figure 3: Four sample plots of the proportion of tests in which each semi-supervised learning
scheme outperformed learning on the labelled data alone as measured by the
negative log likelihood on the Haberman data set for a variety of values of NL,
as NU grows.

Finally, Figure 5 shows the proportion of repetitions for which each semi-supervised
algorithm reduced the error compared to supervised learning alone. Here our algorithm
behaves much less impressively. With NL set to its lowest value 0.025 it tends to be the
better of the algorithms as NU grows, but the proportion of occasions it provides a benefit
is barely above 0.5. As the number of labelled data samples grows the two multi conditional

391

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro

p
o
rt
io

n
(n

e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d
)

Blood Transfusion, NL =0.025

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro

p
o
rt
io

n
(n

e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d
)

Blood Transfusion, NL =0.05

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro

p
o
rt
io

n
(n

e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d
)

Blood Transfusion, NL =0.1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro

p
o
rt
io

n
(n

e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d
)

Blood Transfusion, NL =0.2

SSunb ERnll ERer MCnll
MCer SSb XR

Figure 4: Four sample plots of the proportion of tests in which each semi-supervised learning
scheme outperformed learning on the labelled data alone as measured by the
negative log likelihood on the Blood data set for a variety of values of NL, as
NU grows.

learning algorithms begin to out perform all others, especially when cross validated to reduce
error.

392

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Blood Transfusion, NL =0.025

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Blood Transfusion, NL =0.05

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Blood Transfusion, NL =0.1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Blood Transfusion, NL =0.2

SSunb ERnll ERer MCnll
MCer SSb XR

Figure 5: Four sample plots of the proportion of tests in which each semi-supervised learning
scheme outperformed learning on the labelled data alone as measured by the error
rate on the Blood data set for a variety of values of NL, as NU grows.

6. Conclusions

We have presented tighter bounds on the bias introduced when performing semi-supervised
(as opposed to full supervised) maximum likelihood learning with a generative model using
the standard technique. We also provide a new interpretation which gives an intuitive
explanation for why the results are often poor with large amounts of unlabelled data.

393

Fox-Roberts and Rosten

Additionally, we have demonstrated a simple example of a new unbiased objective func-
tion which approximately minimises KL (P (X,Y)||P (X,Y |θ)). This method is no more
computationally complex than simply augmenting the likelihood, demonstrates very good
behaviour with even very large quantities of unlabelled data, and requires quite weak condi-
tions on the correlation between the conditional and generative components of the likelihood
to reduce the variance of our estimator.

Although not covered, much of the analysis presented here likely to be applicable to
regression problems as well as classification ones. We leave this as an avenue for possible
future work.

Acknowledgments

This work was supported by the EPSRC.

Appendix A. Supplementary Results Of Unbiased Semi-Supervised
Training

There are two measures of performance we examine, evaluated over a holdout set:

• The error rate

• The negative log likelihood

For each of these measures two statistics are calculated:

• The mean performance over all repetitions, and the associated variance.

• The proportion of repetitions in which the performance was better than that achieved
using the labelled data alone.

The former gives an approximate measure of ‘average risk’, according to whether we consider
risk in terms of misclassification rate (for example when designing a classification algorithm)
or negative log likelihood (such as when building a compression algorithm, say). The latter
tells us, for each measure of ‘risk’, whether or not including unlabelled data has improved
or worsened our performance.

Multi conditional learning, when cross validated according to error rate, often gave
extremely bad negative log likelihood results. This caused unfavourable scaling of the axis,
making other results indistinguishable. As such, the mean negative log likelihood results of
MCer have been separated out and plotted alone.

See the main body of the text for such as abbreviations and data sets.

A.1 Mean Errors And Negative Log Likelihood

This section shows the mean error and negative log likelihood results.

394

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Diabetes, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n

e
rr

o
r

ra
te

Diabetes, NL =0.05

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Diabetes, NL =0.1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Diabetes, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 6: Mean error results of Diabetes data set

A.2 Proportion In Which Performance Improves

This section shows the proportion of test in which the error / negative log likelihood was
improved by the addition of unlabelled data. That is, for every data set, the performance of
the model was evaluated for each training scheme, and compared to the performance when
only the labelled data was used. The frequency with which each semi-supervised scheme
outperforms supervised learning was recorded and normalised. This gives an estimate of the
probability that including unlabelled data will improve performance compared to supervised
learning alone. A value close to 1 indicates reliable improvement when unlabelled data is
added, whereas one close to 0 shows reliable worsening of results.

395

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Diabetes, NL =0.025

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Diabetes, NL =0.05

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Diabetes, NL =0.1

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

5

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Diabetes, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 7: Mean log likelihood results of Diabetes data set

396

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8 1
50

100

150

200

250

300

350

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Diabetes, NL =0.025

0 0.2 0.4 0.6 0.8 1
50

100

150

200

250

300

350

400

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Diabetes, NL =0.05

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Diabetes, NL =0.1

0 0.2 0.4 0.6 0.8 1
−20

0

20

40

60

80

100

120

140

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Diabetes, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 8: Mean log likelihood results of Diabetes data set

397

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

SVMguide1, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

SVMguide1, NL =0.05

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

SVMguide1, NL =0.1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

SVMguide1, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 9: Mean error results of the SVMguide data set

398

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

SVMguide1, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

SVMguide1, NL =0.05

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

SVMguide1, NL =0.1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

SVMguide1, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 10: Mean log likelihood results of the SVMguide data set

399

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8 1
−100

0

100

200

300

400

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

SVMguide1, NL =0.025

0 0.2 0.4 0.6 0.8 1
−50

0

50

100

150

200

250

300

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

SVMguide1, NL =0.05

0 0.2 0.4 0.6 0.8 1
−50

0

50

100

150

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

SVMguide1, NL =0.1

0 0.2 0.4 0.6 0.8 1
−40

−20

0

20

40

60

80

100

120

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

SVMguide1, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 11: Mean log likelihood results of the SVMguide data set

400

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

NU

m
e
a
n
e
rr
o
r
ra
te

Wine, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Wine, NL =0.05

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Wine, NL =0.1

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Wine, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 12: Mean error results of the Wine data set

401

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Wine, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Wine, NL =0.05

0 0.2 0.4 0.6 0.8 1
−10

0

10

20

30

40

50

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Wine, NL =0.1

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Wine, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 13: Mean log likelihood results of the Wine data set

402

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8 1
20

30

40

50

60

70

80

90

100

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Wine, NL =0.025

0 0.2 0.4 0.6 0.8 1
20

30

40

50

60

70

80

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Wine, NL =0.05

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

120

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Wine, NL =0.1

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

120

140

160

180

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Wine, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 14: Mean log likelihood results of the Wine data set

403

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

NU

m
e
a
n

e
rr

o
r

ra
te

Glass Identification, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

NU

m
e
a
n
e
rr
o
r
ra
te

Glass Identification, NL =0.05

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

NU

m
e
a
n
e
rr
o
r
ra
te

Glass Identification, NL =0.1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

NU

m
e
a
n
e
rr
o
r
ra
te

Glass Identification, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 15: Mean error results of the Glass data set

404

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Glass Identification, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Glass Identification, NL =0.05

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Glass Identification, NL =0.1

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Glass Identification, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 16: Mean log likelihood results of the Glass data set

405

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Glass Identification, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Glass Identification, NL =0.05

0 0.2 0.4 0.6 0.8 1
100

150

200

250

300

350

400

450

500

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Glass Identification, NL =0.1

0 0.2 0.4 0.6 0.8 1
100

150

200

250

300

350

400

450

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Glass Identification, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 17: Mean log likelihood results of the Glass data set

406

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Blood Transfusion, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Blood Transfusion, NL =0.05

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Blood Transfusion, NL =0.1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Blood Transfusion, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 18: Mean error results of the Blood data set

407

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Blood Transfusion, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Blood Transfusion, NL =0.05

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Blood Transfusion, NL =0.1

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Blood Transfusion, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 19: Mean log likelihood results of the Blood data set

408

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8 1
−50

0

50

100

150

200

250

300

NU

m
e
a
n

n
e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d

Blood Transfusion, NL =0.025

0 0.2 0.4 0.6 0.8 1
−50

0

50

100

150

200

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Blood Transfusion, NL =0.05

0 0.2 0.4 0.6 0.8 1
−50

0

50

100

150

200

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Blood Transfusion, NL =0.1

0 0.2 0.4 0.6 0.8 1
−50

0

50

100

150

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Blood Transfusion, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 20: Mean log likelihood results of the Blood data set

409

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Ecoli, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Ecoli, NL =0.05

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Ecoli, NL =0.1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Ecoli, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 21: Mean error results of the Ecoil data set

410

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Ecoli, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Ecoli, NL =0.05

0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

30

40

50

60

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Ecoli, NL =0.1

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Ecoli, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 22: Mean log likelihood results of the Ecoil data set

411

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8 1
−20

0

20

40

60

80

100

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Ecoli, NL =0.025

0 0.2 0.4 0.6 0.8 1
−50

0

50

100

150

200

250

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Ecoli, NL =0.05

0 0.2 0.4 0.6 0.8 1
−50

0

50

100

150

200

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Ecoli, NL =0.1

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Ecoli, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 23: Mean log likelihood results of the Ecoli data set

412

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

NU

m
e
a
n
e
rr
o
r
ra
te

Haberman Survival, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Haberman Survival, NL =0.05

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Haberman Survival, NL =0.1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Haberman Survival, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 24: Mean error results of the Haberman data set

413

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Haberman Survival, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Haberman Survival, NL =0.05

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Haberman Survival, NL =0.1

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Haberman Survival, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 25: Mean log likelihood results of the Haberman data set

414

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8 1
−50

0

50

100

150

200

250

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Haberman Survival, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Haberman Survival, NL =0.05

0 0.2 0.4 0.6 0.8 1
−50

0

50

100

150

200

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Haberman Survival, NL =0.1

0 0.2 0.4 0.6 0.8 1
−20

0

20

40

60

80

100

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Haberman Survival, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 26: Mean log likelihood results of the Haberman data set

415

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Pima IndianDiabetes, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Pima IndianDiabetes, NL =0.05

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Pima IndianDiabetes, NL =0.1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Pima IndianDiabetes, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 27: Mean error results of the Pima Indian data set

416

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Pima IndianDiabetes, NL =0.025

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Pima IndianDiabetes, NL =0.05

0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

30

40

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Pima IndianDiabetes, NL =0.1

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

5

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Pima IndianDiabetes, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 28: Mean log likelihood results of the Pima Indian data set

417

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8 1
50

100

150

200

250

300

350

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Pima IndianDiabetes, NL =0.025

0 0.2 0.4 0.6 0.8 1
50

100

150

200

250

300

350

400

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Pima IndianDiabetes, NL =0.05

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Pima IndianDiabetes, NL =0.1

0 0.2 0.4 0.6 0.8 1
−20

0

20

40

60

80

100

120

140

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Pima IndianDiabetes, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 29: Mean log likelihood results of the Pima Indian data set

418

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Fourclass, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Fourclass, NL =0.05

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Fourclass, NL =0.1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NU

m
e
a
n
e
rr
o
r
ra
te

Fourclass, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 30: Mean error results of the Fourclass data set

419

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

5

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Fourclass, NL =0.025

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Fourclass, NL =0.05

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Fourclass, NL =0.1

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Fourclass, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 31: Mean log likelihood results of the Fourclass data set

420

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8 1
−20

0

20

40

60

80

100

120

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Fourclass, NL =0.025

0 0.2 0.4 0.6 0.8 1
−20

0

20

40

60

80

100

120

140

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Fourclass, NL =0.05

0 0.2 0.4 0.6 0.8 1
−20

0

20

40

60

80

100

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Fourclass, NL =0.1

0 0.2 0.4 0.6 0.8 1
−20

0

20

40

60

80

100

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Fourclass, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 32: Mean log likelihood results of the Fourclass data set

421

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Diabetes, NL =0.025

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Diabetes, NL =0.05

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Diabetes, NL =0.1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Diabetes, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 33: Chance of error rate improvement VS labelled data alone - Diabetes data set

422

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d
)

Diabetes, NL =0.025

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d
)

Diabetes, NL =0.05

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d
)

Diabetes, NL =0.1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d
)

Diabetes, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 34: Chance of log likelihood improvement VS labelled data alone - Diabetes data
set

423

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

SVMguide1, NL =0.025

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

SVMguide1, NL =0.05

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

SVMguide1, NL =0.1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

SVMguide1, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 35: Chance of error rate improvement VS labelled data alone - SVMguide data set

424

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d
)

SVMguide1, NL =0.025

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d
)

SVMguide1, NL =0.05

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d
)

SVMguide1, NL =0.1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d
)

SVMguide1, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 36: Chance of log likelihood improvement VS labelled data alone - SVMguide data
set

425

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Wine, NL =0.025

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Wine, NL =0.05

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Wine, NL =0.1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Wine, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 37: Chance of error rate improvement VS labelled data alone - Wine data set

426

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

NU

P
ro
p
o
rt
io
n
(n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d
)

Wine, NL =0.025

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

NU

P
ro
p
o
rt
io
n
(n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d
)

Wine, NL =0.05

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

NU

P
ro
p
o
rt
io
n
(n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d
)

Wine, NL =0.1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d
)

Wine, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 38: Chance of log likelihood improvement VS labelled data alone - Wine data set

427

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Glass Identification, NL =0.025

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Glass Identification, NL =0.05

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Glass Identification, NL =0.1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Glass Identification, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 39: Chance of error rate improvement VS labelled data alone - Glass data set

428

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

NU

P
ro

p
o
rt
io

n
(n

e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d
)

Glass Identification, NL =0.025

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro

p
o
rt
io

n
(n

e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d
)

Glass Identification, NL =0.05

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro

p
o
rt
io

n
(n

e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d
)

Glass Identification, NL =0.1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro

p
o
rt
io

n
(n

e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d
)

Glass Identification, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 40: Chance of log likelihood improvement VS labelled data alone - Glass data set

429

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Blood Transfusion, NL =0.025

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Blood Transfusion, NL =0.05

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Blood Transfusion, NL =0.1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Blood Transfusion, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 41: Chance of error rate improvement VS labelled data alone - Blood data set

430

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro

p
o
rt
io

n
(n

e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d
)

Blood Transfusion, NL =0.025

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro

p
o
rt
io

n
(n

e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d
)

Blood Transfusion, NL =0.05

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro

p
o
rt
io

n
(n

e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d
)

Blood Transfusion, NL =0.1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro

p
o
rt
io

n
(n

e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d
)

Blood Transfusion, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 42: Chance of log likelihood improvement VS labelled data alone - Blood data set

431

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Ecoli, NL =0.025

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Ecoli, NL =0.05

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Ecoli, NL =0.1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Ecoli, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 43: Chance of error rate improvement VS labelled data alone - Ecoli data set

432

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d
)

Ecoli, NL =0.025

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d
)

Ecoli, NL =0.05

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d
)

Ecoli, NL =0.1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d
)

Ecoli, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 44: Chance of log likelihood improvement VS labelled data alone - Ecoli data set

433

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Haberman Survival, NL =0.025

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Haberman Survival, NL =0.05

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Haberman Survival, NL =0.1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Haberman Survival, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 45: Chance of error rate improvement VS labelled data alone - Haberman data set

434

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro

p
o
rt
io

n
(n

e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d
)

Haberman Survival, NL =0.025

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro

p
o
rt
io

n
(n

e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d
)

Haberman Survival, NL =0.05

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro

p
o
rt
io

n
(n

e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d
)

Haberman Survival, NL =0.1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro

p
o
rt
io

n
(n

e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d
)

Haberman Survival, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 46: Chance of log likelihood improvement VS labelled data alone - Haberman data
set

435

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Pima IndianDiabetes, NL =0.025

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Pima IndianDiabetes, NL =0.05

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Pima IndianDiabetes, NL =0.1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Pima IndianDiabetes, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 47: Chance of error rate improvement VS labelled data alone - Pima Indian data
set

436

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro

p
o
rt
io

n
(n

e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d
)

Pima Indian Diabetes, NL =0.025

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro

p
o
rt
io

n
(n

e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d
)

Pima Indian Diabetes, NL =0.05

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro

p
o
rt
io

n
(n

e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d
)

Pima Indian Diabetes, NL =0.1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro

p
o
rt
io

n
(n

e
g
a
ti
v
e

lo
g

lik
e
lih

o
o
d
)

Pima Indian Diabetes, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 48: Chance of log likelihood improvement VS labelled data alone - Pima Indian data
set

437

Fox-Roberts and Rosten

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Fourclass, NL =0.025

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Fourclass, NL =0.05

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Fourclass, NL =0.1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(e
rr
o
r)

Fourclass, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 49: Chance of error rate improvement VS labelled data alone - Fourclass data set

438

Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d
)

Fourclass, NL =0.025

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d
)

Fourclass, NL =0.05

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d
)

Fourclass, NL =0.1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

NU

P
ro
p
o
rt
io
n
(n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d
)

Fourclass, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 50: Chance of log likelihood improvement VS labelled data alone - Fourclass data
set

439

Fox-Roberts and Rosten

References

M. Balcan and A. Blum. An augmented PAC model for semi-supervised learning. In Oliver
Chapelle, B. Schölkopf, and A. Zien, editors, Semi-Supervised Learning, pages 383–404.
MIT Press, 2005.

C. Beecks, A. Ivanescu, S. Kirchhoff, and T. Seidl. Modeling image similarity by gaussian
mixture models and the signature quadratic form distance. In Computer Vision (ICCV),
2011 IEEE International Conference On, pages 1754–1761, 2011.

C. Bishop. Pattern Recognition And Machine Learning. Springer, 2006.

A. Blum and N. Balcan. A discriminative model for semi-supervised learning. In Journal
Of The ACM (JACM), volume 57, pages 19:1–19:46, 2010.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In
Proceedings Of The Workshop On Computational Learning Theory, pages 92–100, 1998.

V. Castelli and T. Cover. On the exponential value of labeled samples. Pattern Recognition
Letters, 16(1):105 – 111, 1995.

V. Castelli and T. Cover. The relative value of labeled and unlabeled samples in pattern
recognition with an unknown mixing parameter. Information Theory, IEEE Transactions
on, 42(6):2102 – 2117, 1996.

F. Cozman and I. Cohen. Unlabeled data can degrade classification performance of gener-
ative classifiers. In Fifteenth International Florida Artificial Intelligence Society Confer-
ence, pages 327–331, 2002.

F. Cozman and I. Cohen. Risks of semi-supervised learning: How unlabelled data can
degrade performance of generative classifiers. In O. Chapelle, B. Schölkopf, and A. Zien,
editors, Semi-Supervised Learning, pages 57–72. MIT press, 2006.

F. Cozman, I. Cohen, M. Cirelo, and E. Politécnica. Semi-supervised learning of mixture
models. In Proceedings Of The 20th International Conference On Machine Learning
(ICML), pages 99–106, 2003.

J. Dillon, K. Balasubramanian, and G. Lebanon. Asymptotic analysis of generative semi-
supervised learning. In Proceedings Of The 27th International Conference On Machine
Learning (ICML), 2010.

G. Druck, C. Pal, A. McCallum, and X. Zhu. Semi-supervised classification with hybrid
generative/discriminative methods. In KDD ’07: Proceedings Of The 13th ACM SIGKDD
International Conference On Knowledge Discovery And Data Mining, pages 280–289,
2007.

A. Frank and A. Asuncion. UCI machine learning repository, 2010. URL http://archive.

ics.uci.edu/ml.

Y. Grandvalet and Y. Bengio. Entropy Regularization. In Semi-Supervised Learning, pages
151–168. MIT Press, 2006.

440

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Unbiased Generative Semi-Supervised Learning

T. Ho and E. Kleinberg. Building projectable classifiers of arbitrary complexity. In Inter-
national Conference On Pattern Recognition (ICPR), volume 2, pages 880–885, 1996.

C. Hsu, C. Chang, and C. Lin. A practical guide to support vector classification. Technical
report, Department of Computer Science, National Taiwan University, 2003.

G. Hughes. On the mean accuracy of statistical pattern recognizers. Information Theory,
IEEE Transactions On, 14(1):55 – 63, 1968.

T. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers.
In Proceedings Of The 1998 Conference On Advances In Neural Information Processing
Systems II, pages 487–493, 1999.

E. Jaynes. Probability Theory. Cambridge University Press, 2003.

H. Kang, S. Yoo, and D. Han. Senti-lexicon and improved näıve bayes algorithms for
sentiment analysis of restaurant reviews. Expert Systems With Applications, 39(5):6000
– 6010, 2012.

B. Krishnapuram, D. Williams, Y. Xue, A. Hartemink, L. Carin, and M. Figueiredo. On
semi-supervised classification. In Advances In Neural Information Processing Systems
(NIPS), pages 721–728, 2005.

J. Lagarias, J. Reeds, M. Wright, and P. Wright. Convergence properties of the Nelder-
Mead simplex method in low dimensions. SIAM Journal Of Optimization, 9(1):112–147,
1998.

J. Lasserre, C. Bishop, and T. Minka. Principled hybrids of generative and discriminative
models. In Computer Vision And Pattern Recognition (CVPR), volume 1, pages 87 – 94,
2006.

J. Lücke and J. Eggert. Expectation truncation and the benefits of preselection in training
generative models. In Journal Of Machine Learning Research (JMLR), pages 2855–2900,
October 2010.

D. MacKay. Information Theory, Inference, And Learning Algorithms. Cambridge Univer-
sity Press, 2003.

G. Mann and A. McCallum. Simple, robust, scalable semi-supervised learning via Expec-
tation Regularization. In Proceedings Of The 24th International Conference On Machine
Learning (ICML), pages 593–600, 2007.

A. McCallum, C. Pal, G. Druck, and X. Wang. Multi-conditional learning: Genera-
tive/discriminative training for clustering and classification. In National Conference On
Artificial Intelligence, pages 433–439, 2006.

A. Ng and M. Jordan. On discriminative vs. generative classifiers: A comparison of logistic
regression and Naive Bayes. Advances In Neural Information Processing Systems (NIPS),
2:841–848, 2002.

441

Fox-Roberts and Rosten

K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and
unlabeled documents using EM. Machine Learning, 39:103–134, 2000.

J. Nocedal and S. Wright. Numerical Optimization, Springer Series In Operations Research.
Springer-Verlag, 1999.

J. Ratsaby and S. Venkatesh. Learning from a mixture of labeled and unlabeled examples
with parametric side information. In Conference On Learning Theory (COLT), pages
412–417, 1995.

I. Rauschert and R. Collins. A generative model for simultaneous estimation of human body
shape and pixel-level segmentation. In Proceedings Of The 12th European Conference On
Computer Vision - Volume Part V, European Conference On Computer Vision (ECCV),
pages 704–717. Springer-Verlag, 2012.

S. Rosset, J. Zhu, H. Zou, and T. Hastie. A method for inferring label sampling mecha-
nisms in semi-supervised learning. In Advances In Neural Information Processing Systems
(NIPS), volume 17, pages 1161 – 1168, 2005.

B. Shahshahani and D. Landgrebe. The effect of unlabeled samples in reducing the small
sample size problem and mitigating the Hughes phenomenon. Geoscience And Remote
Sensing, IEEE Transactions on, 32(5):1087 –1095, 1994.

A. Subramanya and J. Bilmes. Soft-supervised learning for text classification. In Proceedings
Of The Conference On Empirical Methods In Natural Language Processing, pages 1090–
1099, 2008.

A. Subramanya and J. Bilmes. Entropic graph regularization in non-parametric semi-
supervised classification. In Advances In Neural Information Processing Systems (NIPS),
December 2009.

U. Syed and B. Taskar. Semi-supervised learning with adversarially missing label informa-
tion. In Advances In Neural Information Processing Systems (NIPS), pages 2244–2252,
2010.

M. Szummer and T. Jaakkola. Information Regularization with partially labeled data. In
Advances In Neural Information Processing Systems (NIPS), 2002.

V. Vapnik. Statistical Learning Theory. John Wiley & Sons, Inc, 1998.

J. Wang, X. Shen, and W. Pan. On transductive support vector machines. In Prediction
And Discovery. American Mathematical Society, 2007.

T. Yang and C. Priebe. The effect of model misspecification on semi-supervised classifica-
tion. Pattern Analysis And Machine Intelligence (PAMI), 33:2093–2103, 2011.

I. Yeh, K. Yang, and T. Ting. Knowledge discovery on RFM model using Bernoulli sequence.
Expert Systems With Applications, 36(3, Part 2):5866 – 5871, 2009.

T. Zhang. The value of unlabeled data for classification problems. In International Con-
ference On Machine Learning (ICML), pages 1191–1198, 2000.

442

Unbiased Generative Semi-Supervised Learning

X. Zhu. Semi-supervised learning literature survey. Technical report, Department of Com-
puter Sciences, University of Wisconsin, Madison, 2005.

F. Zhuang, P. Luo, Z. Shen, Q. He, Y. Xiong, Z. Shi, and H. Xiong. Mining distinction
and commonality across multiple domains using generative model for text classification.
Knowledge And Data Engineering, IEEE Transactions On, 24(11):2025–2039, 2012.

443

Journal of Machine Learning Research 15 (2014) 445-488 Submitted 3/13; Revised 8/13; Published 2/14

Node-Based Learning of
Multiple Gaussian Graphical Models

Karthik Mohan karna@uw.edu
Palma London palondon@uw.edu
Maryam Fazel mfazel@uw.edu
Department of Electrical Engineering
University of Washington
Seattle WA, 98195

Daniela Witten dwitten@uw.edu
Department of Biostatistics
University of Washington
Seattle WA, 98195

Su-In Lee suinlee@cs.washington.edu

Departments of Computer Science and Engineering, Genome Sciences

University of Washington

Seattle WA, 98195

Editor: Saharon Rosset

Abstract

We consider the problem of estimating high-dimensional Gaussian graphical models cor-
responding to a single set of variables under several distinct conditions. This problem is
motivated by the task of recovering transcriptional regulatory networks on the basis of gene
expression data containing heterogeneous samples, such as different disease states, multiple
species, or different developmental stages. We assume that most aspects of the conditional
dependence networks are shared, but that there are some structured differences between
them. Rather than assuming that similarities and differences between networks are driven
by individual edges, we take a node-based approach, which in many cases provides a more
intuitive interpretation of the network differences. We consider estimation under two dis-
tinct assumptions: (1) differences between the K networks are due to individual nodes
that are perturbed across conditions, or (2) similarities among the K networks are due to
the presence of common hub nodes that are shared across all K networks. Using a row-
column overlap norm penalty function, we formulate two convex optimization problems
that correspond to these two assumptions. We solve these problems using an alternating
direction method of multipliers algorithm, and we derive a set of necessary and sufficient
conditions that allows us to decompose the problem into independent subproblems so that
our algorithm can be scaled to high-dimensional settings. Our proposal is illustrated on
synthetic data, a webpage data set, and a brain cancer gene expression data set.

Keywords: graphical model, structured sparsity, alternating direction method of multi-
pliers, gene regulatory network, lasso, multivariate normal

c©2014 Karthik Mohan, Palma London, Maryam Fazel, Daniela Witten and Su-In Lee.

Mohan, London, Fazel, Witten and Lee

1. Introduction

Graphical models encode the conditional dependence relationships among a set of p variables
(Lauritzen, 1996). They are a tool of growing importance in a number of fields, including
finance, biology, and computer vision. A graphical model is often referred to as a conditional
dependence network, or simply as a network. Motivated by network terminology, we can
refer to the p variables in a graphical model as nodes. If a pair of variables are conditionally
dependent, then there is an edge between the corresponding pair of nodes; otherwise, no
edge is present.

Suppose that we have n observations that are independently drawn from a multivariate
normal distribution with covariance matrix Σ. Then the corresponding Gaussian graphical
model (GGM) that describes the conditional dependence relationships among the variables
is encoded by the sparsity pattern of the inverse covariance matrix, Σ−1 (see, e.g., Mardia
et al., 1979; Lauritzen, 1996). That is, the jth and j′th variables are conditionally inde-
pendent if and only if (Σ−1)jj′ = 0. Unfortunately, when p > n, obtaining an accurate
estimate of Σ−1 is challenging. In such a scenario, we can use prior information—such as
the knowledge that many of the pairs of variables are conditionally independent—in order
to more accurately estimate Σ−1 (see, e.g., Yuan and Lin, 2007a; Friedman et al., 2007;
Banerjee et al., 2008).

In this paper, we consider the task of estimating K GGMs on a single set of p variables
under the assumption that the GGMs are similar, with certain structured differences. As
a motivating example, suppose that we have access to gene expression measurements for
n1 lung cancer samples and n2 normal lung samples, and that we would like to estimate
the gene regulatory networks underlying the normal and cancer lung tissue. We can model
each of these regulatory networks using a GGM. We have two obvious options.

1. We can estimate a single network on the basis of all n1 + n2 tissue samples. But this
approach overlooks fundamental differences between the true lung cancer and normal
gene regulatory networks.

2. We can estimate separate networks based on the n1 cancer and n2 normal samples.
However, this approach fails to exploit substantial commonality of the two networks,
such as lung-specific pathways.

In order to effectively make use of the available data, we need a principled approach for
jointly estimating the two networks in such a way that the two estimates are encouraged
to be quite similar to each other, while allowing for certain structured differences. In fact,
these differences may be of scientific interest.

Another example of estimating multiple GGMs arises in the analysis of the conditional
dependence relationships among p stocks at two distinct points in time. We might be
interested in detecting stocks that have differential connectivity with all other stocks across
the two time points, as these likely correspond to companies that have undergone significant
changes. Yet another example occurs in the field of neuroscience, in which it is of interest
to learn how the connectivity of neurons changes over time.

Past work on joint estimation of multiple GGMs has assumed that individual edges
are shared or differ across conditions (see, e.g., Kolar et al., 2010; Zhang and Wang, 2010;
Guo et al., 2011; Danaher et al., 2013); here we refer to such approaches as edge-based. In

446

Node-based Learning of Multiple GGMs

this paper, we instead take a node-based approach: we seek to estimate K GGMs under the
assumption that similarities and differences between networks are driven by individual nodes
whose patterns of connectivity to other nodes are shared across networks, or differ between
networks. As we will see, node-based learning is more powerful than edge-based learning,
since it more fully exploits our prior assumptions about the similarities and differences
between networks.

More specifically, in this paper we consider two types of shared network structure.

1. Certain nodes serve as highly-connected hub nodes. We assume that the same nodes
serve as hubs in each of the K networks. Figure 1 illustrates a toy example of this
setting, with p = 5 nodes and K = 2 networks. In this example, the second variable,
X2, serves as a hub node in each network. In the context of transcriptional regulatory
networks, X2 might represent a gene that encodes a transcription factor that regulates
a large number of downstream genes in all K contexts. We propose the common
hub (co-hub) node joint graphical lasso (CNJGL), a convex optimization problem for
estimating GGMs in this setting.

2. The networks differ due to particular nodes that are perturbed across conditions, and
therefore have a completely different connectivity pattern to other nodes in the K
networks. Figure 2 displays a toy example, with p = 5 nodes and K = 2 networks;
here we see that all of the network differences are driven by perturbation in the
second variable, X2. In the context of transcriptional regulatory networks, X2 might
represent a gene that is mutated in a particular condition, effectively disrupting its
conditional dependence relationships with other genes. We propose the perturbed-node
joint graphical lasso (PNJGL), a convex optimization problem for estimating GGMs
in this context.

Node-based learning of multiple GGMs is challenging, due to complications resulting from
symmetry of the precision matrices. In this paper, we overcome this problem through the
use of a new convex regularizer.

X
1

X
2

X
3

X
4

X
5

X
5

X
3

X
4

X
2

X
1

X
1

X
2

X
3

X
4

X
5

(a)

X
1

X
2

X
3

X
4

X
5

X
5

X
3

X
4

X
2

X
1

X
1

X
2

X
3

X
4

X
5

(b)

Figure 1: Two networks share a common hub (co-hub) node. X2 serves as a hub node in
both networks. (a): Network 1 and its adjacency matrix. (b): Network 2 and its
adjacency matrix.

The rest of this paper is organized as follows. We introduce some relevant background
material in Section 2. In Section 3, we present the row-column overlap norm (RCON), a
regularizer that encourages a matrix to have a support that is the union of a set of rows
and columns. We apply the RCON penalty to a pair of inverse covariance matrices, or to
the difference between a pair of inverse covariance matrices, in order to obtain the CNJGL

447

Mohan, London, Fazel, Witten and Lee

X1

X2

X3

X4

X5
X5

X3

X4

X2

X1 X2 X3 X4 X5

X1

(a)

X1

X2

X3

X4

X5
X5

X3

X4

X2X1

X1 X2 X3 X4 X5

(b)

X1

X2

X3

X4

X5
X5

X3

X4

X2X1

X1 X2 X3 X4 X5

(c)
Figure 2: Two networks that differ due to node perturbation of X2. (a): Network 1 and

its adjacency matrix. (b): Network 2 and its adjacency matrix. (c): Left: Edges
that differ between the two networks. Right: Shaded cells indicate edges that
differ between Networks 1 and 2.

and PNJGL formulations just described. In Section 4, we propose an alternating direction
method of multipliers (ADMM) algorithm in order to solve these two convex formulations.
In order to scale this algorithm to problems with many variables, in Section 5 we introduce
a set of simple conditions on the regularization parameters that indicate that the problem
can be broken down into many independent subproblems, leading to substantial algorithm
speed-ups. In Section 6, we apply CNJGL and PNJGL to synthetic data, and in Section 7
we apply them to gene expression data and to webpage data. The Discussion is in Section
8. Proofs are in the Appendix.

A preliminary version of some of the ideas in this paper appear in Mohan et al. (2012).
There the PNJGL formulation was proposed, along with an ADMM algorithm. Here we
expand upon that formulation and present the CNJGL formulation, an ADMM algorithm
for solving it, as well as comprehensive results on both real and simulated data. Further-
more, in this paper we discuss theoretical conditions for computational speed-ups, which
are critical to application of both PNJGL and CNJGL to data sets with many variables.

2. Background on High-Dimensional GGM Estimation

In this section, we review the literature on learning Gaussian graphical models.

2.1 The Graphical Lasso for Estimating a Single GGM

As was mentioned in Section 1, estimating a single GGM on the basis of n independent
and identically distributed observations from a Np(0,Σ) distribution amounts to learning
the sparsity structure of Σ−1 (Mardia et al., 1979; Lauritzen, 1996). When n > p, one can
estimate Σ−1 by maximum likelihood. But in high dimensions when p is large relative to
n, this is not possible because the empirical covariance matrix is singular. Consequently, a
number of authors (among others, Yuan and Lin, 2007a; Friedman et al., 2007; Ravikumar
et al., 2008; Banerjee et al., 2008; Scheinberg et al., 2010; Hsieh et al., 2011) have considered
maximizing the penalized log likelihood

maximize
Θ∈Sp++

{log det Θ− trace(SΘ)− λ‖Θ‖1} , (1)

where S is the empirical covariance matrix, λ is a nonnegative tuning parameter, Sp++

denotes the set of positive definite matrices of size p, and ‖Θ‖1 =
∑

i,j |Θij |. The solution

448

Node-based Learning of Multiple GGMs

to (1) serves as an estimate of Σ−1, and a zero element in the solution corresponds to a
pair of variables that are estimated to be conditionally independent. Due to the `1 penalty
(Tibshirani, 1996) in (1), this estimate will be positive definite for any λ > 0, and sparse
when λ is sufficiently large. We refer to (1) as the graphical lasso. Problem (1) is convex,
and efficient algorithms for solving it are available (among others, Friedman et al., 2007;
Banerjee et al., 2008; Rothman et al., 2008; D’Aspremont et al., 2008; Scheinberg et al.,
2010; Witten et al., 2011).

2.2 The Joint Graphical Lasso for Estimating Multiple GGMs

Several formulations have recently been proposed for extending the graphical lasso (1) to the
setting in which one has access to a number of observations from K distinct conditions, each
with measurements on the same set of p variables. The goal is to estimate a graphical model
for each condition under the assumption that the K networks share certain characteristics
but are allowed to differ in certain structured ways. Guo et al. (2011) take a non-convex
approach to solving this problem. Zhang and Wang (2010) take a convex approach, but
use a least squares loss function rather than the negative Gaussian log likelihood. Here we
review the convex formulation of Danaher et al. (2013), which forms the starting point for
the proposal in this paper.

Suppose that Xk
1 , . . . , X

k
nk
∈ Rp are independent and identically distributed from a

Np(0,Σ
k) distribution, for k = 1, . . . ,K. Here nk is the number of observations in the kth

condition, or class. Letting Sk denote the empirical covariance matrix for the kth class, we
can maximize the penalized log likelihood

maximize
Θ1∈Sp++,...,Θ

K∈Sp++

L(Θ1, . . . ,ΘK)− λ1

K∑
k=1

‖Θk‖1 − λ2

∑
i 6=j

P (Θ1
ij , . . . ,Θ

K
ij)

 , (2)

where L(Θ1, . . . ,ΘK) =
∑K

k=1 nk
(
log det Θk − trace(SkΘk)

)
, λ1 and λ2 are nonnegative

tuning parameters, and P (Θ1
ij , . . . ,Θ

K
ij) is a convex penalty function applied to each off-

diagonal element of Θ1, . . . ,ΘK in order to encourage similarity among them. Then the
Θ̂1, . . . , Θ̂K that solve (2) serve as estimates for (Σ1)−1, . . . , (ΣK)−1. Danaher et al. (2013)
refer to (2) as the joint graphical lasso (JGL). In particular, they consider the use of a fused
lasso penalty (Tibshirani et al., 2005),

P (Θ1
ij , . . . ,Θ

K
ij) =

∑
k<k′

|Θk
ij −Θk′

ij |, (3)

on the differences between pairs of network edges, as well as a group lasso penalty (Yuan
and Lin, 2007b),

P (Θ1
ij ,Θ

2
ij , . . . ,Θ

K
ij) =

√√√√ K∑
k=1

(Θk
ij)

2, (4)

on the edges themselves. Danaher et al. (2013) refer to problem (2) combined with (3) as
the fused graphical lasso (FGL), and to (2) combined with (4) as the group graphical lasso
(GGL).

449

Mohan, London, Fazel, Witten and Lee

FGL encourages the K network estimates to have identical edge values, whereas GGL
encourages the K network estimates to have a shared pattern of sparsity. Both the FGL
and GGL optimization problems are convex. An approach related to FGL and GGL is
proposed in Hara and Washio (2013).

Because FGL and GGL borrow strength across all available observations in estimating
each network, they can lead to much more accurate inference than simply learning each of
the K networks separately.

But both FGL and GGL take an edge-based approach: they assume that differences
between and similarities among the networks arise from individual edges. In this paper,
we propose a node-based formulation that allows for more powerful estimation of multiple
GGMs, under the assumption that network similarities and differences arise from nodes
whose connectivity patterns to other nodes are shared or disrupted across conditions.

3. Node-Based Joint Graphical Lasso

In this section, we first discuss the failure of a naive approach for node-based learning of
multiple GGMs. We then present a norm that will play a critical role in our formulations
for this task. Finally, we discuss two approaches for node-based learning of multiple GGMs.

3.1 Why is Node-Based Learning Challenging?

At first glance, node-based learning of multiple GGMs seems straightforward. For instance,
consider the task of estimating K = 2 networks under the assumption that the connectivity
patterns of individual nodes differ across the networks. It seems that we could simply
modify (2) combined with (3) as follows,

maximize
Θ1∈Sp++,Θ

2∈Sp++

L(Θ1,Θ2)− λ1‖Θ1‖1 − λ1‖Θ2‖1 − λ2

p∑
j=1

‖Θ1
j −Θ2

j‖2

 , (5)

where Θk
j is the jth column of the matrix Θk. This amounts to applying a group lasso (Yuan

and Lin, 2007b) penalty to the columns of Θ1 −Θ2. Equation (5) seems to accomplish our
goal of encouraging Θ1

j = Θ2
j . We will refer to this as the naive group lasso approach.

In (5), we have applied the group lasso using p groups; the jth group is the jth column
of Θ1 − Θ2. Due to the symmetry of Θ1 and Θ2, there is substantial overlap among the p
groups: the (i, j)th element of Θ1 −Θ2 is contained in both the ith and jth groups. In the
presence of overlapping groups, the group lasso penalty yields estimates whose support is the
complement of the union of groups (Jacob et al., 2009; Obozinski et al., 2011). Figure 3(a)
displays a simple example of the results obtained if we attempt to estimate (Σ1)−1− (Σ2)−1

using (5). The figure reveals that (5) cannot be used to detect node perturbation.
A naive approach to co-hub detection is challenging for a similar reason. Recall that the

jth node is a co-hub if the jth columns of both Θ1 and Θ2 contain predominantly non-zero
elements, and let diag(Θ) denote a matrix consisting of the diagonal elements of Θ. It is
tempting to formulate the optimization problem

maximize
Θ1∈Sp++,Θ

2∈Sp++

L(Θ1,Θ2)− λ1‖Θ1‖1 − λ1‖Θ2‖1 − λ2

p∑
j=1

∥∥∥∥∥
[

Θ1 − diag(Θ1)
Θ2 − diag(Θ2)

]
j

∥∥∥∥∥
2

 ,

450

Node-based Learning of Multiple GGMs

X1 X2 X3 X4 X5

X1

X2

X3

X4

X5

(a) Naive group lasso

X1 X2 X3 X4 X5

X1

X2

X3

X4

X5

(b) RCON: `1/`1

X1 X2 X3 X4 X5

X1

X2

X3

X4

X5

(c) RCON: `1/`2

X1 X2 X3 X4 X5

X1

X2

X3

X4

X5

(d) RCON: `1/`∞

Figure 3: Toy example of the results from applying various penalties in order to estimate a
5×5 matrix, under a symmetry constraint. Zero elements are shown in white; non-
zero elements are shown in shades of red (positive elements) and blue (negative
elements). (a): The naive group lasso applied to the columns of the matrix
yields non-zero elements that are the intersection, rather than the union, of a set
of rows and columns. (b): The RCON penalty using an `1/`1 norm results in
unstructured sparsity in the estimated matrix. (c): The RCON penalty using
an `1/`2 norm results in entire rows and columns of non-zero elements. (d):
The RCON penalty using an `1/`∞ norm results in entire rows and columns of
non-zero elements; many take on a single maximal (absolute) value.

where the group lasso penalty encourages the off-diagonal elements of many of the columns
to be simultaneously zero in Θ1 and Θ2. Unfortunately, once again, the presence of over-
lapping groups encourages the support of the matrices Θ1 and Θ2 to be the intersection of
a set of rows and columns, as in Figure 3(a), rather than the union of a set of rows and
columns.

3.2 Row-Column Overlap Norm

Detection of perturbed nodes or co-hub nodes requires a penalty function that, when applied
to a matrix, yields a support given by the union of a set of rows and columns. We now
propose the row-column overlap norm (RCON) for this task.

Definition 1 The row-column overlap norm (RCON) induced by a matrix norm ‖.‖ is de-
fined as

Ω(Θ1,Θ2, . . . ,ΘK) = min
V 1,V 2,...,V K

∥∥∥∥∥∥∥∥∥

V 1

V 2

...
V K

∥∥∥∥∥∥∥∥∥

subject to Θk = V k + (V k)T for k = 1, . . . ,K.

451

Mohan, London, Fazel, Witten and Lee

It is easy to check that Ω is indeed a norm for all matrix norms ‖.‖. Also, when ‖.‖ is
symmetric in its argument, that is, ‖V ‖ = ‖V T ‖, then

Ω(Θ1,Θ2, . . . ,ΘK) =
1

2

∥∥∥∥∥∥∥∥∥

Θ1

Θ2

...
ΘK

∥∥∥∥∥∥∥∥∥.

Thus if ‖ · ‖ is an `1/`1 norm, then Ω(Θ1,Θ2, . . . ,ΘK) = 1
2

∑K
k=1

∑
i,j |Θk

ij |.
We now discuss the motivation behind Definition 1. Any symmetric matrix Θk can be

(non-uniquely) decomposed as V k + (V k)T ; note that V k need not be symmetric. This
amounts to interpreting Θk as a set of columns (the columns of V k) plus a set of rows
(the columns of V k, transposed). In this paper, we are interested in the particular case of
RCON penalties where ‖.‖ is an `1/`q norm, given by ‖V ‖ =

∑p
j=1 ‖Vj‖q, where 1 ≤ q ≤ ∞.

With a little abuse of notation, we will let Ωq denote Ω when ‖.‖ is given by the `1/`q norm.
Then Ωq encourages Θ1,Θ2, . . . ,ΘK to decompose into V k and (V k)T such that the summed
`q norms of all of the columns (concatenated over V 1, . . . , V K) is small. This encourages
structures of interest on the columns and rows of Θ1,Θ2, . . . ,ΘK .

To illustrate this point, in Figure 3 we display schematic results obtained from estimating
a 5×5 matrix subject to the RCON penalty Ωq, for q = 1, 2, and∞. We see from Figure 3(b)
that when q = 1, the RCON penalty yields a matrix estimate with unstructured sparsity;
recall that Ω1 amounts to an `1 penalty applied to the matrix entries. When q = 2 or q =∞,
we see from Figures 3(c)-(d) that the RCON penalty yields a sparse matrix estimate for
which the non-zero elements are a set of rows plus a set of columns—that is, the union of
a set of rows and columns.

We note that Ω2 can be derived from the overlap norm (Obozinski et al., 2011; Jacob
et al., 2009) applied to groups given by rows and columns of Θ1, . . . ,ΘK . Details are
described in Appendix E. Additional properties of RCON are discussed in Appendix A.

3.3 Node-Based Approaches for Learning GGMs

We discuss two approaches for node-based learning of GGMs. The first promotes networks
whose differences are attributable to perturbed nodes. The second encourages the networks
to share co-hub nodes.

3.3.1 Perturbed-node Joint Graphical Lasso

Consider the task of jointly estimating K precision matrices by solving

maximize
Θ1,Θ2,...,ΘK∈Sp++

{
L(Θ1,Θ2, . . . ,ΘK)− λ1

K∑
k=1

‖Θk‖1 − λ2

∑
k<k′

Ωq(Θ
k −Θk′)

}
. (6)

We refer to the convex optimization problem (6) as the perturbed-node joint graphical
lasso (PNJGL). Let Θ̂1, Θ̂2, . . . , Θ̂K denote the solution to (6); these serve as estimates
for (Σ1)−1, . . . , (ΣK)−1. In (6), λ1 and λ2 are nonnegative tuning parameters, and q ≥ 1.
When λ2 = 0, (6) amounts simply to applying the graphical lasso optimization problem (1)

452

Node-based Learning of Multiple GGMs

to each condition separately in order to separately estimate K networks. When λ2 > 0,
we are encouraging similarity among the K network estimates. When q = 1, we have the
following observation.

Remark 2 The FGL formulation (Equations 2 and 3) is a special case of PNJGL (6) with
q = 1.

In other words, when q = 1, (6) amounts to the edge-based approach of Danaher et al.
(2013) that encourages many entries of Θ̂k − Θ̂k′ to equal zero.

However, when q = 2 or q =∞, then (6) amounts to a node-based approach: the support
of Θ̂k−Θ̂k′ is encouraged to be a union of a few rows and the corresponding columns. These
can be interpreted as a set of nodes that are perturbed across the conditions. An example
of the sparsity structure detected by PNJGL with q = 2 or q =∞ is shown in Figure 2.

3.3.2 Co-hub Node Joint Graphical Lasso

We now consider jointly estimating K precision matrices by solving the convex optimization
problem

maximize
Θ1,Θ2,...,ΘK∈Sp++

{
L(Θ1,Θ2, . . . ,ΘK)− λ1

K∑
k=1

‖Θk‖1 − λ2Ωq(Θ
1 − diag(Θ1), . . . ,ΘK − diag(ΘK))

}
. (7)

We refer to (7) as the co-hub node joint graphical lasso (CNJGL) formulation. In (7), λ1

and λ2 are nonnegative tuning parameters, and q ≥ 1. When λ2 = 0 then this amounts
to a graphical lasso optimization problem applied to each network separately; however,
when λ2 > 0, a shared structure is encouraged among the K networks. In particular, (7)
encourages network estimates that have a common set of hub nodes—that is, it encourages
the supports of Θ1,Θ2, . . . ,ΘK to be the same, and the union of a set of rows and columns.

CNJGL can be interpreted as a node-based extension of the GGL proposal (given in
Equations 2 and 4, and originally proposed by Danaher et al., 2013). While GGL encourages
the K networks to share a common edge support, CNJGL instead encourages the networks
to share a common node support.

We now remark on an additional connection between CNJGL and the graphical lasso.

Remark 3 If q = 1, then CNJGL amounts to a modified graphical lasso on each network
separately, with a penalty of λ1 applied to the diagonal elements, and a penalty of λ1 +λ2/2
applied to the off-diagonal elements.

4. Algorithms

The PNJGL and CNJGL optimization problems (6, 7) are convex, and so can be directly
solved in the modeling environment cvx (Grant and Boyd, 2010), which calls conic interior-
point solvers such as SeDuMi or SDPT3. However, when applied to solve semi-definite pro-
grams, second-order methods such as the interior-point algorithm do not scale well with the
problem size.

We next examine the use of existing first-order methods to solve (6) and (7). Several
first-order algorithms have been proposed for minimizing a least squares objective with

453

Mohan, London, Fazel, Witten and Lee

a group lasso penalty (as in Yuan and Lin, 2007b) in the presence of overlapping groups
(Argyriou et al., 2011; Chen et al., 2011; Mosci et al., 2010). Unfortunately, those algorithms
cannot be applied to the PNJGL and CNJGL formulations, which involve the RCON penalty
rather than simply a standard group lasso with overlapping groups. The RCON penalty is
a variant of the overlap norm proposed in Obozinski et al. (2011), and indeed those authors
propose an algorithm for minimizing a least squares objective subject to the overlap norm.
However, in the context of CNJGL and PNJGL, the objective of interest is a Gaussian log
likelihood, and the algorithm of Obozinski et al. (2011) cannot be easily applied.

Another possible approach for solving (6) and (7) involves the use of a standard first-
order method, such as a projected subgradient approach. Unfortunately, such an approach is
not straightforward, since computing the subgradients of the RCON penalty involves solving
a non-trivial optimization problem (to be discussed in detail in Appendix A). Similarly, a
proximal gradient approach for solving (6) and (7) is challenging because the proximal
operator of the combination of the overlap norm and the `1 norm has no closed form.

To overcome the challenges outlined above, we propose to solve the PNJGL and CNJGL
problems using an alternating direction method of multipliers algorithm (ADMM; see, e.g.,
Boyd et al., 2010).

4.1 The ADMM Approach

Here we briefly outline the standard ADMM approach for a general optimization problem,

minimize
X

g(X) + h(X)

subject to X ∈ X .
(8)

ADMM is attractive in cases where the proximal operator of g(X) + h(X) cannot be easily
computed, but where the proximal operator of g(X) and the proximal operator of h(X)
are easily obtained. The approach is as follows (Boyd et al., 2010; Eckstein and Bertsekas,
1992; Gabay and Mercier, 1976):

1. Rewrite the optimization problem (8) as

minimize
X,Y

g(X) + h(Y)

subject to X ∈ X , X = Y,
(9)

where here we have decoupled g and h by introducing a new optimization variable,
Y .

2. Form the augmented Lagrangian to (9) by first forming the Lagrangian,

L(X,Y,Λ) = g(X) + h(Y) + 〈Λ, X − Y 〉,

and then augmenting it by a quadratic function of X − Y ,

Lρ(X,Y,Λ) = L(X,Y,Λ) +
ρ

2
‖X − Y ‖2F ,

where ρ is a positive constant.

454

Node-based Learning of Multiple GGMs

3. Iterate until convergence:

(a) Update each primal variable in turn by minimizing the augmented Lagrangian
with respect to that variable, while keeping all other variables fixed. The updates
in the kth iteration are as follows:

Xk+1 ← arg min
X∈X

Lρ(X,Y
k,Λk),

Y k+1 ← arg min
Y

Lρ(X
k+1, Y,Λk).

(b) Update the dual variable using a dual-ascent update,

Λk+1 ← Λk + ρ(Xk+1 − Y k+1).

The standard ADMM presented here involves minimization over two primal variables,
X and Y . For our problems, we will use a similar algorithm but with more than two primal
variables. More details about the algorithm and its convergence are discussed in Section
4.2.4.

4.2 ADMM Algorithms for PNJGL and CNJGL

Here we outline the ADMM algorithms for the PNJGL and CNJGL optimization problems;
we refer the reader to Appendix F for detailed derivations of the update rules.

4.2.1 ADMM Algorithm for PNJGL

Here we consider solving PNJGL with K = 2; the extension for K > 2 is slightly more
complicated. To begin, we note that (6) can be rewritten as

maximize
Θ1,Θ2∈Sp++,V ∈Rp×p

L(Θ1,Θ2)− λ1‖Θ1‖1 − λ1‖Θ2‖1 − λ2

p∑
j=1

‖Vj‖q

subject to Θ1 −Θ2 = V + V T .

(10)

We now reformulate (10) by introducing new variables, so as to decouple some of the terms
in the objective function that are difficult to optimize jointly:

minimize
Θ1∈Sp++,Θ

2∈Sp++,Z
1,Z2,V,W

−L(Θ1,Θ2) + λ1‖Z1‖1 + λ1‖Z2‖1 + λ2

p∑
j=1

‖Vj‖q

subject to Θ1 −Θ2 = V +W,V = W T ,Θ1 = Z1,Θ2 = Z2.

(11)

The augmented Lagrangian to (11) is given by

− L(Θ1,Θ2) + λ1‖Z1‖1 + λ1‖Z2‖1 + λ2

p∑
j=1

‖Vj‖q + 〈F,Θ1 −Θ2 − (V +W)〉

+ 〈G,V −W T 〉+ 〈Q1,Θ1 − Z1〉+ 〈Q2,Θ2 − Z2〉+ ρ
2‖Θ

1 −Θ2 − (V +W)‖2F
+ ρ

2‖V −W
T ‖2F + ρ

2‖Θ
1 − Z1‖2F + ρ

2‖Θ
2 − Z2‖2F .

(12)

455

Mohan, London, Fazel, Witten and Lee

In (12) there are six primal variables and four dual variables. Based on this augmented
Lagrangian, the complete ADMM algorithm for (6) is given in Algorithm 1, in which the
operator Expand is given by

Expand(A, ρ, nk) = argmin
Θ∈Sp++

{
−nk log det(Θ) + ρ‖Θ−A‖2F

}
=

1

2
U

(
D +

√
D2 +

2nk
ρ
I

)
UT ,

where UDUT is the eigenvalue decomposition of a symmetric matrix A, and as mentioned
earlier, nk is the number of observations in the kth class. The operator Tq is given by

Tq(A, λ) = argmin
X

1

2
‖X −A‖2F + λ

p∑
j=1

‖Xj‖q

 ,

and is also known as the proximal operator corresponding to the `1/`q norm. For q = 1, 2,∞,
Tq takes a simple form (see, e.g., Section 5 of Duchi and Singer, 2009).

Algorithm 1: ADMM algorithm for the PNJGL optimization problem (6)

input: ρ > 0, µ > 1, tmax > 0;
Initialize: Primal variables to the identity matrix and dual variables to the zero
matrix;
for t = 1:tmax do

ρ← µρ;
while Not converged do

Θ1 ← Expand
(

1
2(Θ2 + V +W + Z1)− 1

2ρ(Q1 + n1S
1 + F), ρ, n1

)
;

Θ2 ← Expand
(

1
2(Θ1 − (V +W) + Z2)− 1

2ρ(Q2 + n2S
2 − F), ρ, n2

)
;

Zi ← T1

(
Θi + Qi

ρ ,
λ1
ρ

)
for i = 1, 2;

V ← Tq
(

1
2(W T −W + (Θ1 −Θ2)) + 1

2ρ(F −G), λ2
2ρ

)
;

W ← 1
2(V T − V + (Θ1 −Θ2)) + 1

2ρ(F +GT);

F ← F + ρ(Θ1 −Θ2 − (V +W));
G← G+ ρ(V −W T);
Qi ← Qi + ρ(Θi − Zi) for i = 1, 2

4.2.2 ADMM Algorithm for CNJGL

The CNJGL formulation in (7) is equivalent to

minimize
Θi∈Sp++,V

i∈Rp×p,i=1...K
−L(Θ1,Θ2, . . . ,ΘK) + λ1

K∑
i=1

‖Θi‖1 + λ2

p∑
j=1

∥∥∥∥∥∥∥∥∥∥

V 1

V 2

...
V K

j

∥∥∥∥∥∥∥∥∥∥
q

subject to Θi − diag(Θi) = V i + (V i)T for i = 1, . . . ,K.

(13)

456

Node-based Learning of Multiple GGMs

One can easily see that the problem (13) is equivalent to the problem

minimize
Θi∈Sp++,Ṽ

i∈Rp×p,i=1...K
−L(Θ1,Θ2, . . . ,ΘK) + λ1

K∑
i=1

‖Θi‖1 + λ2

p∑
j=1

∥∥∥∥∥∥∥∥∥∥

Ṽ 1 − diag(Ṽ 1)

Ṽ 2 − diag(Ṽ 2)
...

Ṽ K − diag(Ṽ K)

j

∥∥∥∥∥∥∥∥∥∥
q

subject to Θi = Ṽ i + (Ṽ i)T for i = 1, 2, . . . ,K,

(14)

in the sense that the optimal solution {V i} to (13) and the optimal solution {Ṽ i} to (14)

have the following relationship: V i = Ṽ i − diag(Ṽ i) for i = 1, 2, . . . ,K. We now present an
ADMM algorithm for solving (14). We reformulate (14) by introducing additional variables
in order to decouple some terms of the objective that are difficult to optimize jointly:

minimize
Θi∈Sp++,Z

i,Ṽ i,W i∈Rp×p
−L(Θ1,Θ2, . . . ,ΘK) + λ1

K∑
i=1

‖Zi‖1 + λ2

p∑
j=1

∥∥∥∥∥∥∥∥∥∥

Ṽ 1 − diag(Ṽ 1)

Ṽ 2 − diag(Ṽ 2)
...

Ṽ K − diag(Ṽ K)

j

∥∥∥∥∥∥∥∥∥∥
q

subject to Θi = Ṽ i +W i, Ṽ i = (W i)T ,Θi = Zi for i = 1, 2, . . . ,K.

(15)

The augmented Lagrangian to (15) is given by

K∑
i=1

ni(− log det(Θi) + trace(SiΘi)) + λ1

K∑
i=1

‖Zi‖1 + λ2

p∑
j=1

∥∥∥∥∥∥∥∥∥∥

Ṽ 1 − diag(Ṽ 1)

Ṽ 2 − diag(Ṽ 2)
...

Ṽ K − diag(Ṽ K)

j

∥∥∥∥∥∥∥∥∥∥
q

+

K∑
i=1

{
〈F i,Θi − (Ṽ i +W i)〉+ 〈Gi, Ṽ i − (W i)T 〉+ 〈Qi,Θi − Zi〉

}
+

ρ
2

K∑
i=1

{
‖Θi − (Ṽ i +W i)‖2F + ‖Ṽ i − (W i)T ‖2F + ‖Θi − Zi‖2F

}
.

(16)

457

Mohan, London, Fazel, Witten and Lee

The corresponding ADMM algorithm is given in Algorithm 2.

Algorithm 2: ADMM algorithm for the CNJGL optimization problem (7)

input: ρ > 0, µ > 1, tmax > 0;
Initialize: Primal variables to the identity matrix and dual variables to the zero
matrix;
for t = 1:tmax do

ρ← µρ;
while Not converged do

Θi ← Expand
(

1
2(Ṽ i +W i + Zi)− 1

2ρ(Qi + niS
i + F i), ρ, ni

)
for i =

1, . . . ,K;

Zi ← T1

(
Θi + Qi

ρ ,
λ1
ρ

)
for i = 1, . . . ,K;

Let Ci = 1
2((W i)T −W i + Θi) + 1

2ρ(F i −Gi) for i = 1, . . . ,K;
Ṽ 1

Ṽ 2

...

Ṽ K

← Tq

C1 − diag(C1)
C2 − diag(C2)

...
CK − diag(CK)

 , λ2
2ρ

+

diag(C1)
diag(C2)

...
diag(CK)

;

W i ← 1
2((Ṽ i)T − Ṽ i + Θi) + 1

2ρ(F i + (Gi)T) for i = 1, . . . ,K;

F i ← F i + ρ(Θi − (Ṽ i +W i)) for i = 1, . . . ,K;

Gi ← Gi + ρ(Ṽ i − (W i)
T

) for i = 1, . . . ,K;
Qi ← Qi + ρ(Θi − Zi) for i = 1, . . . ,K

4.2.3 Numerical Issues and Run-Time of the ADMM Algorithms

We set µ = 5, ρ = 0.5 and tmax = 1000 in the PNJGL and CNJGL algorithms. In our
implementation of these algorithms, the stopping criterion for the inner loop (corresponding
to a fixed ρ) is

max
i∈{1,2,...,K}

{
‖(Θi)(k+1) − (Θi)

(k)‖F
‖(Θi)(k)‖F

}
≤ ε,

where (Θi)(k) denotes the estimate of Θi in the kth iteration of the ADMM algorithm, and
ε is a tolerance that is chosen in our experiments to equal 10−4.

The per-iteration complexity of the ADMM algorithms for CNJGL and PNJGL (with
K = 2) is O(p3); this is the complexity of computing the SVD. On the other hand, the
complexity of a general interior point method is O(p6). In a small example with p = 30,
run on an Intel Xeon X3430 2.4Ghz CPU, the interior point method (using cvx, which calls
Sedumi) takes 7 minutes to run, while the ADMM algorithm for PNJGL, coded in Matlab,
takes only 0.58 seconds. When p = 50, the times are 3.5 hours and 2.1 seconds, respectively.
Let Θ̂1, Θ̂2 and Θ̄1, Θ̄2 denote the solutions obtained by ADMM and cvx, respectively. We

observe that on average, the error max
i∈{1,2}

{
‖Θ̂i − Θ̄i‖F /‖Θ̄i‖F

}
is on the order of 10−4.

Thus, the algorithm has good empirical accuracy in recovering the optimal solution.

458

Node-based Learning of Multiple GGMs

We now present a more extensive runtime study for the ADMM algorithms for PNJGL
and CNJGL. We ran experiments with p = 100, 200, 500 and with n1 = n2 = p/2. We
generated synthetic data as described in Section 6. Results are displayed in Figures 4(a)-(d),
where the panels depict the run-time and number of iterations required for the algorithm to
terminate, as a function of λ1, and with λ2 fixed. The number of iterations required for the
algorithm to terminate is computed as the total number of inner loop iterations performed
in Algorithms 1 and 2. From Figures 4(b) and (d), we observe that as p increases from 100
to 500, the run-times increase substantially, but never exceed several minutes.

Figure 4(a) indicates that for CNJGL, the total number of iterations required for algo-
rithm termination is small when λ1 is small. In contrast, for PNJGL, Figure 4(c) indicates
that the total number of iterations is large when λ1 is small. This phenomenon results from
the use of the identity matrix to initialize the network estimates in the ADMM algorithms:
when λ1 is small, the identity is a poor initialization for PNJGL, but a good initialization
for CNJGL (since for CNJGL, λ2 induces sparsity even when λ1 = 0).

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

50

100

150

200

250

300

350

λ
1

T
o
ta

l
n
u
m

.
it
e
ra

ti
o
n
s

p = 100

p = 200

p = 500

(a) CNJGL

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

50

100

150

200

250

λ
1

R
u
n
 t
im

e

p = 100

p = 200

p = 500

(b) CNJGL

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

200

400

600

800

λ
1

T
o
ta

l
n
u
m

.
it
e
ra

ti
o
n
s

p = 100

p = 200

p = 500

(c) PNJGL

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

100

200

300

400

500

λ
1

R
u
n
 t
im

e

p = 100

p = 200

p = 500

(d) PNJGL

Figure 4: (a): The total number of iterations for the CNJGL algorithm, as a function of
λ1. (b): Run-time (in seconds) of the CNJGL algorithm, as a function of λ1.
(c)-(d): As in (a)-(b), but for the PNJGL algorithm. All results are averaged
over 20 random generations of synthetic data.

459

Mohan, London, Fazel, Witten and Lee

4.2.4 Convergence of the ADMM Algorithm

Problem (9) involves two (groups of) primal variables, X and Y ; in this setting, convergence
of ADMM has been established (see, e.g., Boyd et al., 2010; Mota et al., 2011). However,
the PNJGL and CNJGL optimization problems involve more than two groups of primal
variables, and convergence of ADMM in this setting is an ongoing area of research. Indeed,
as mentioned in Eckstein (2012), the standard analysis for ADMM with two groups does not
extend in a straightforward way to ADMM with more than two groups of variables. Han
and Yuan (2012) and Hong and Luo (2012) show convergence of ADMM with more than
two groups of variables under assumptions that do not hold for CNJGL and PNJGL. Under
very minimal assumptions, He et al. (2012) proved that a modified ADMM algorithm (with
Gauss-Seidel updates) converges to the optimal solution for problems with any number of
groups. More general conditions for convergence of the ADMM algorithm with more than
two groups is left as a topic for future work. We also leave for future work a reformulation of
the CNJGL and PNJGL problems as consensus problems, for which an ADMM algorithm
involving two groups of primal variables can be obtained, and for which convergence would
be guaranteed. Finally, note that despite the lack of convergence theory, ADMM with more
than two groups has been used in practice and often observed to converge faster than other
variants. As an example see Tao and Yuan (2011), where their ASALM algorithm (which is
the same as ADMM with more than two groups) is reported to be significantly faster than
a variant with theoretical convergence.

5. Algorithm-Independent Computational Speed-Ups

The ADMM algorithms presented in the previous section work well on problems of moder-
ate size. In order to solve the PNJGL or CNJGL optimization problems when the number
of variables is large, a faster approach is needed. We now describe conditions under which
any algorithm for solving the PNJGL or CNJGL problems can be sped up substantially, for
an appropriate range of tuning parameter values. Our approach mirrors previous results for
the graphical lasso (Witten et al., 2011; Mazumder and Hastie, 2012), and FGL and GGL
(Danaher et al., 2013). The idea is simple: if the solutions to the PNJGL or CNJGL opti-
mization problem are block-diagonal (up to some permutation of the variables) with shared
support, then we can obtain the global solution to the PNJGL or CNJGL optimization
problem by solving the PNJGL or CNJGL problem separately on the variables within each
block. This can lead to massive speed-ups. For instance, if the solutions are block-diagonal
with L blocks of equal size, then the complexity of our ADMM algorithm reduces from
O(p3) per iteration, to O((p/L)3) per iteration in each of L independent subproblems. Of
course, this hinges upon knowing that the PNJGL or CNJGL solutions are block-diagonal,
and knowing the partition of the variables into blocks.

In Sections 5.1-5.3 we derive necessary and sufficient conditions for the solutions to
the PNJGL and CNJGL problems to be block-diagonal. Our conditions depend only on
the sample covariance matrices S1, . . . , Sk and regularization parameters λ1, λ2. These
conditions can be applied in at most O(p2) operations. In Section 5.4, we demonstrate the
speed-ups that can result from applying these sufficient conditions.

Related results for the graphical lasso (Witten et al., 2011; Mazumder and Hastie, 2012)
and FGL and GGL (Danaher et al., 2013) involve a single condition that is both necessary

460

Node-based Learning of Multiple GGMs

Figure 5: A p× p matrix is displayed, for which I1, I2, I3 denote a partition of the index set
{1, 2, . . . , p}. T =

⋃L
i=1{Ii × Ii} is shown in red, and T c is shown in gray.

and sufficient for the solution to be block diagonal. In contrast, in the results derived
below, there is a gap between the necessary and sufficient conditions. Though only the
sufficient conditions are required in order to obtain the computational speed-ups discussed
in Section 5.4, knowing the necessary conditions allows us to get a handle on the tightness
(and, consequently, the practical utility) of the sufficient conditions, for a particular value
of the tuning parameters.

We now introduce some notation that will be used throughout this section. Let
(I1, I2, . . . , IL) be a partition of the index set {1, 2, . . . , p}, and let T =

⋃L
i=1{Ii × Ii}.

Define the support of a matrix Θ, denoted by supp(Θ), as the set of indices of the non-zero
entries in Θ. We say Θ is supported on T if supp(Θ) ⊆ T . Note that any matrix supported
on T is block-diagonal subject to some permutation of its rows and columns. Let |T | de-
note the cardinality of the set T , and let T c denote the complement of T . The scheme is
displayed in Figure 5. In what follows we use an `1/`q norm in the RCON penalty, with
q ≥ 1, and let 1

s + 1
q = 1.

5.1 Conditions for PNJGL Formulation to Have Block-Diagonal Solutions

In this section, we give necessary conditions and sufficient conditions on the regularization
parameters λ1, λ2 in the PNJGL problem (6) so that the resulting precision matrix estimates
Θ̂1, . . . , Θ̂K have a shared block-diagonal structure (up to a permutation of the variables).

We first present a necessary condition for Θ̂1 and Θ̂2 that minimize (6) with K = 2 to
be block-diagonal.

Theorem 4 Suppose that the matrices Θ̂1 and Θ̂2 that minimize (6) with K = 2 have
support T . Then, if q ≥ 1, it must hold that

nk|Skij | ≤ λ1 + λ2/2 ∀(i, j) ∈ T c, for k = 1, 2, and (17)

|n1S
1
ij + n2S

2
ij | ≤ 2λ1 ∀(i, j) ∈ T c. (18)

Furthermore, if q > 1, then it must additionally hold that

nk
|T c|

∑
(i,j)∈T c

|Skij | ≤ λ1 +
λ2

2

(
p

|T c|

)1/s

, for k = 1, 2. (19)

Remark 5 If |T c| = O(pr) with r > 1, then as p→∞, (19) simplifies to nk
|T c|

∑
(i,j)∈T c |Skij |

≤ λ1.

461

Mohan, London, Fazel, Witten and Lee

We now present a sufficient condition for Θ̂1, . . . , Θ̂K that minimize (6) to be block-
diagonal.

Theorem 6 For q ≥ 1, a sufficient condition for the matrices Θ̂1, . . . , Θ̂K that minimize
(6) to each have support T is that

nk|Skij | ≤ λ1 ∀(i, j) ∈ T c, for k = 1, . . . ,K.

Furthermore, if q = 1 and K = 2, then the necessary conditions (17) and (18) are also
sufficient.

When q = 1 and K = 2, then the necessary and sufficient conditions in Theorems 4 and 6
are identical, as was previously reported in Danaher et al. (2013). In contrast, there is a
gap between the necessary and sufficient conditions in Theorems 4 and 6 when q > 1 and
λ2 > 0. When λ2 = 0, the necessary and sufficient conditions in Theorems 4 and 6 reduce
to the results laid out in Witten et al. (2011) for the graphical lasso.

5.2 Conditions for CNJGL Formulation to Have Block-Diagonal Solutions

In this section, we give necessary and sufficient conditions on the regularization parame-
ters λ1, λ2 in the CNJGL optimization problem (7) so that the resulting precision matrix
estimates Θ̂1, . . . , Θ̂K have a shared block-diagonal structure (up to a permutation of the
variables).

Theorem 7 Suppose that the matrices Θ̂1, Θ̂2, . . . , Θ̂K that minimize (7) have support T .
Then, if q ≥ 1, it must hold that

nk|Skij | ≤ λ1 + λ2/2 ∀(i, j) ∈ T c, for k = 1, . . . ,K.

Furthermore, if q > 1, then it must additionally hold that

nk
|T c|

∑
(i,j)∈T c

|Skij | ≤ λ1 +
λ2

2

(
p

|T c|

)1/s

, for k = 1, . . . ,K. (20)

Remark 8 If |T c| = O(pr) with r > 1, then as p→∞, (20) simplifies to nk
|T c|

∑
(i,j)∈T c |Skij |

≤ λ1.

We now present a sufficient condition for Θ̂1, Θ̂2, . . . , Θ̂K that minimize (7) to be block-
diagonal.

Theorem 9 A sufficient condition for Θ̂1, Θ̂2, . . . , Θ̂K that minimize (7) to have support
T is that

nk|Skij | ≤ λ1 ∀(i, j) ∈ T c, for k = 1, . . . ,K.

As was the case for the PNJGL formulation, there is a gap between the necessary and
sufficient conditions for the estimated precision matrices from the CNJGL formulation to
have a common block-diagonal support.

462

Node-based Learning of Multiple GGMs

5.3 General Sufficient Conditions

In this section, we give sufficient conditions for the solution to a general class of optimization
problems that include FGL, PNJGL, and CNJGL as special cases to be block-diagonal.
Consider the optimization problem

minimize
Θ1,...,ΘK∈Sp++

{
K∑
k=1

nk(− log det(Θk) + 〈Θk, Sk〉) +

K∑
k=1

λ1‖Θk‖1 + λ2h(Θ1, . . . ,ΘK)

}
.

(21)
Once again, let T be the support of a p × p block-diagonal matrix. Let ΘT denote the

restriction of any p× p matrix Θ to T ; that is, (ΘT)ij =

{
Θij if (i, j) ∈ T
0 else

. Assume that

the function h satisfies
h(Θ1, . . . ,ΘK) > h(Θ1

U , . . . ,Θ
K
U)

for any matrices Θ1, . . . ,ΘK whose support strictly contains U .

Theorem 10 A sufficient condition for the matrices Θ̂1, . . . , Θ̂K that solve (21) to have
support T is that

nk|Skij | ≤ λ1 ∀(i, j) ∈ T c, for k = 1, . . . ,K.

Note that this sufficient condition applies to a broad class of regularizers h; indeed, the
sufficient conditions for PNJGL and CNJGL given in Theorems 6 and 9 are special cases of
Theorem 10. In contrast, the necessary conditions for PNJGL and CNJGL in Theorems 4
and 7 exploit the specific structure of the RCON penalty.

5.4 Evaluation of Speed-Ups on Synthetic Data

Theorems 6 and 9 provide sufficient conditions for the precision matrix estimates from
PNJGL or CNJGL to be block-diagonal with a given support. How can these be used in
order to obtain computational speed-ups? We construct a p× p matrix A with elements

Aij =

1 if i = j

1 if nk|Skij | > λ1 for any k = 1, . . . ,K

0 else

.

We can then check, in O(p2) operations, whether A is (subject to some permutation of
the rows and columns) block-diagonal, and can also determine the partition of the rows
and columns corresponding to the blocks (see, e.g., Tarjan, 1972). Then, by Theorems 6
and 9, we can conclude that the PNJGL or CNJGL estimates are block-diagonal, with
the same partition of the variables into blocks. Inspection of the PNJGL and CNJGL
optimization problems reveals that we can then solve the problems on the variables within
each block separately, in order to obtain the global solution to the original PNJGL or
CNJGL optimization problems.

We now investigate the speed-ups that result from applying this approach. We consider
the problem of estimating two networks of size p = 500. We create two inverse covariance
matrices that are block diagonal with two equally-sized blocks, and sparse within each

463

Mohan, London, Fazel, Witten and Lee

block. We then generate n1 = 250 observations from a multivariate normal distribution
with the first covariance matrix, and n2 = 250 observations from a multivariate normal
distribution with the second covariance matrix. These observations are used to generate
sample covariance matrices S1 and S2. We then performed CNJGL and PNJGL with λ2 = 1
and a range of λ1 values, with and without the computational speed-ups just described.

Figure 6 displays the performance of the CNJGL and PNJGL formulations, averaged
over 20 data sets generated in this way. In each panel, the x-axis shows the number of blocks
into which the optimization problems were decomposed using the sufficient conditions; note
that this is a surrogate for the value of λ1 in the CNJGL or PNJGL optimization problems.
Figure 6(a) displays the ratio of the run-time taken by the ADMM algorithm when exploiting
the sufficient conditions to the run-time when not using the sufficient conditions. Figure
6(b) displays the true-positive ratio—that is, the ratio of the number of true positive edges
in the precision matrix estimates to the total number of edges in the precision matrix
estimates. Figure 6(c) displays the total number of true positives for the CNJGL and
PNJGL estimates. Figure 6 indicates that the sufficient conditions detailed in this section
lead to substantial computational improvements.

1 10 50 100200400
0

0.2

0.4

0.6

0.8

1

Number of blocks

R
a

ti
o

 o
f

ru
n

 t
im

e
s

CNJGL

PNJGL

(a)

1 10 50 100200400
0

0.2

0.4

0.6

0.8

1

Number of blocks

T
ru

e
 p

o
s
it
iv

e
 r

a
ti
o

CNJGL
PNJGL

(b)

1 10 50 100200400

10
1

10
2

10
3

10
4

Number of blocks

N
u

m
.

tr
u

e
 p

o
s
it
iv

e
s

CNJGL
PNJGL

(c)

Figure 6: Speed-ups for CNJGL and PNJGL on a simulation set-up with p = 500 and
n1 = n2 = 250. The true inverse covariance matrices are block-diagonal with
two equally-sized sparse blocks. The x-axis in each panel displays the number
of blocks into which the CNJGL or PNJGL problems are decomposed using the
sufficient conditions; this is a surrogate for λ1. The y-axes display (a): the ratio
of run-times with and without the sufficient conditions; (b): the true positive
ratio of the edges estimated; and (c): the total number of true positive edges
estimated.

6. Simulation Study

In this section, we present the results of a simulation study demonstrating the empirical
performance of PNJGL and CNJGL.

6.1 Data Generation

In the simulation study, we generated two synthetic networks (either Erdos-Renyi, scale-
free, or community), each of which contains a common set of p nodes. Four of the p nodes

464

Node-based Learning of Multiple GGMs

were then modified in order to create two perturbed nodes and two co-hub nodes. Details
are provided in Sections 6.1.1-6.1.3.

6.1.1 Data Generation for Erdos-Renyi Network

We generated the data as follows, for p = 100, and n ∈ {25, 50, 100, 200}:

Step 1: To generate an Erdos-Renyi network, we created a p × p symmetric matrix
A with elements

Aij ∼i.i.d.

{
0 with probability 0.98,

Unif([−0.6,−0.3] ∪ [0.3, 0.6]) otherwise.

Step 2: We duplicated A into two matrices, A1 and A2. We selected two nodes at
random, and for each node, we set the elements of the corresponding row and column
of either A1 or A2 (chosen at random) to be i.i.d. draws from a Unif([−0.6,−0.3] ∪
[0.3, 0.6]) distribution. This results in two perturbed nodes.

Step 3: We randomly selected two nodes to serve as co-hub nodes, and set each
element of the corresponding rows and columns in each network to be i.i.d. draws
from a Unif([−0.6,−0.3] ∪ [0.3, 0.6]) distribution. In other words, these co-hub nodes
are identical across the two networks.

Step 4: In order to make the matrices positive definite, we let c =
min(λmin(A1), λmin(A2)), where λmin(·) indicates the smallest eigenvalue of the matrix.
We then set (Σ1)−1 equal to A1 +(0.1+ |c|)I and set (Σ2)−1 equal to A2 +(0.1+ |c|)I,
where I is the p× p identity matrix.

Step 5: We generated n independent observations each from a N(0,Σ1) and a
N(0,Σ2) distribution, and used them to compute the sample covariance matrices
S1 and S2.

6.1.2 Data Generation for Scale-free Network

The data generation proceeded as in Section 6.1.1, except that Step 1 was modified:

Step 1: We used the SFNG functions in Matlab (George, 2007) with parameters
mlinks=2 and seed=1 to generate a scale-free network with p nodes. We then created
a p×p symmetric matrix A that has non-zero elements only for the edges in the scale-
free network. These non-zero elements were generated i.i.d. from a Unif([−0.6,−0.3]∪
[0.3, 0.6]) distribution.

Steps 2-5 proceeded as in Section 6.1.1.

6.1.3 Data Generation for Community Network

We generated data as in Section 6.1.1, except for one modification: at the end of Step 3,
we set the [1:40, 61:100] and [61:100, 1:40] submatrices of A1 and A2 equal to zero.

465

Mohan, London, Fazel, Witten and Lee

Then A1 and A2 have non-zero entries concentrated in the top and bottom 60 × 60
principal submatrices. These two submatrices correspond to two communities. Twenty
nodes overlap between the two communities.

6.2 Results

We now define several metrics used to measure algorithm performance. We wish to quantify
each algorithm’s (1) recovery of the support of the true inverse covariance matrices, (2)
successful detection of co-hub and perturbed nodes, and (3) error in estimation of Θ1 =
(Σ1)−1 and Θ2 = (Σ2)−1. Details are given in Table 1. These metrics are discussed further
in Appendix G.

We compared the performance of PNJGL to its edge-based counterpart FGL, as well
as to graphical lasso (GL). We compared the performance of CNJGL to GGL and GL. We
expect CNJGL to be able to detect co-hub nodes (and, to a lesser extent, perturbed nodes),
and we expect PNJGL to be able to detect perturbed nodes. (The co-hub nodes will not
be detected by PNJGL, since they are identical across the networks.)

The simulation results for the set-up of Section 6.1.1 are displayed in Figures 7 and 8.
Each row corresponds to a sample size while each column corresponds to a performance
metric. In Figure 7, PNJGL, FGL, and GL are compared, and in Figure 8, CNJGL, GGL,
and GL are compared. Within each plot, each colored line corresponds to the results
obtained using a fixed value of λ2 (for either PNJGL, FGL, CNJGL, or GGL), as λ1 is
varied. Recall that GL corresponds to any of these four approaches with λ2 = 0. Note that
the number of positive edges (defined in Table 1) decreases approximately monotonically
with the regularization parameter λ1, and so on the x-axis we plot the number of positive
edges, rather than λ1, for ease of interpretation.

In Figure 7, we observe that PNJGL outperforms FGL and GL for a suitable range of
the regularization parameter λ2, in the sense that for a fixed number of edges estimated,
PNJGL identifies more true positives, correctly identifies a greater ratio of perturbed nodes,
and yields a lower Frobenius error in the estimates of Θ1 and Θ2. In particular, PNJGL
performs best relative to FGL and GL when the number of samples is the smallest, that
is, in the high-dimensional data setting. Unlike FGL, PNJGL fully exploits the fact that
differences between Θ1 and Θ2 are due to node perturbation. Not surprisingly, GL performs
worst among the three algorithms, since it does not borrow strength across the conditions
in estimating Θ1 and Θ2.

In Figure 8, we note that CNJGL outperforms GGL and GL for a suitable range of the
regularization parameter λ2. In particular, CNJGL outperforms GGL and GL by a larger
margin when the number of samples is the smallest. Once again, GL performs the worst
since it does not borrow strength across the two networks; CNJGL performs the best since
it fully exploits the presence of hub nodes in the data.

We note one interesting feature of Figure 8: the colored lines corresponding to CNJGL
with very large values of λ2 do not extend beyond around 400 positive edges. This is because
for CNJGL, a large value of λ2 induces sparsity in the network estimates, even if λ1 is small
or zero. Consequently, it is not possible to obtain a dense estimate of Θ1 and Θ2 if CNJGL
is performed with a large value of λ2. In contrast, in the case of PNJGL, sparsity is induced
only by λ1, and not at all by λ2. We note that a similar situation occurs for the edge-based

466

Node-based Learning of Multiple GGMs

(1) Positive edges:∑
i<j

(
1{|Θ̂1

ij | > t0}+ 1{|Θ̂2
ij | > t0}

)
True positive edges:∑

i<j

(
1{|Θ1

ij | > t0 and |Θ̂1
ij | > t0}+ 1{|Θ2

ij | > t0 and |Θ̂2
ij | > t0}

)

(2) Positive perturbed columns (PPC):

PNJGL:
∑p

i=1 1
{
‖V̂−i,i‖2 > ts

}
;

FGL/GL:
∑p

i=1 1{‖(Θ̂1 − Θ̂2)−i,i‖2 > ts}

True positive perturbed columns (TPPC):

PNJGL:
∑

i∈Ip 1{‖V̂−i,i‖2 > ts};
FGL/GL:

∑
i∈Ip 1{‖(Θ̂

1 − Θ̂2)−i,i‖2 > ts},
where IP is the set of perturbed column indices.

Positive co-hub columns (PCC):

CNJGL:
∑p

i=1 1
{
‖V̂ 1
−i,i‖2 > tsand‖V̂ 2

−i,i‖2 > ts

}
;

GGL/GL:
∑p

i=1 1
{
‖Θ̂1
−i,i‖2 > tsand‖Θ̂2

−i,i‖2 > ts

}
True positive co-hub columns (TPCC):

CNJGL:
∑

i∈Ic 1
{
‖V̂ 1
−i,i‖2 > tsand‖V̂ 2

−i,i‖2 > ts

}
;

GGL/GL:
∑

i∈Ic 1
{
‖Θ̂1
−i,i‖2 > tsand‖Θ̂2

−i,i‖2 > ts

}
,

where IC is the set of co-hub column indices.

(3) Error:
√∑

i<j(Θ
1
ij − Θ̂1

ij)
2 +

√∑
i<j(Θ

2
ij − Θ̂2

ij)
2

Table 1: Metrics used to quantify algorithm performance. Here Θ1 and Θ2 denote the
true inverse covariance matrices, and Θ̂1 and Θ̂2 denote the two estimated inverse
covariance matrices. Here 1{A} is an indicator variable that equals one if the
event A holds, and equals zero otherwise. (1) Metrics based on recovery of the
support of Θ1 and Θ2. Here t0 = 10−6. (2) Metrics based on identification of
perturbed nodes and co-hub nodes. The metrics PPC and TPPC quantify node
perturbation, and are applied to PNJGL, FGL, and GL. The metrics PCC and
TPCC relate to co-hub detection, and are applied to CNJGL, GGL, and GL.
We let ts = µ + 5.5σ, where µ is the mean and σ is the standard deviation of
{‖V̂−i,i‖2}pi=1 (PPC or TPPC for PNJGL), {‖(Θ̂1− Θ̂2)−i,i‖2}pi=1 (PPC or TPPC

for FGL/GL), {‖V̂ 1
−i,i‖2}

p
i=1 and {‖V̂ 2

−i,i‖2}
p
i=1 (PPC or TPPC for CNJGL), or

{‖Θ̂1
−i,i‖2}

p
i=1 and {‖Θ̂2

−i,i‖2}
p
i=1 (PPC or TPPC for GGL/GL). However, results

are very insensitive to the value of ts, as is shown in Appendix G. (3) Frobenius
error of estimation of Θ1 and Θ2.

467

Mohan, London, Fazel, Witten and Lee

counterparts of CNJGL and PNJGL: when GGL is performed with a large value of λ2 then
the network estimates are necessarily sparse, regardless of the value of λ1. But the same is
not true for FGL.

The simulation results for the set-ups of Sections 6.1.2 and 6.1.3 are displayed in Figures
9 and 10, respectively, for the case n = 50. The results show that once again, PNJGL and
CNJGL substantially outperform the edge-based approaches on the three metrics defined
earlier.

7. Real Data Analysis

In this section, we present the results of PNJGL and CNJGL applied to two real data sets:
gene expression data set and university webpage data set.

7.1 Gene Expression Data

In this experiment, we aim to reconstruct the gene regulatory networks of two subtypes of
glioblastoma multiforme (GBM), as well as to identify genes that can improve our under-
standing of the disease. Cancer is caused by somatic (cancer-specific) mutations in the genes
involved in various cellular processes including cell cycle, cell growth, and DNA repair; such
mutations can lead to uncontrolled cell growth. We will show that PNJGL and CNJGL
can be used to identify genes that play central roles in the development and progression of
cancer. PNJGL tries to identify genes whose interactions with other genes vary significantly
between the subtypes. Such genes are likely to have deleterious somatic mutations. CNJGL
tries to identify genes that have interactions with many other genes in all subtypes. Such
genes are likely to play an important role in controlling other genes’ expression, and are
typically called regulators.

We applied the proposed methods to a publicly available gene expression data set that
measures mRNA expression levels of 11,861 genes in 220 tissue samples from patients with
GBM (Verhaak et al., 2010). The raw gene expression data were generated using the
Affymetrix GeneChips technology. We downloaded the raw data in .CEL format from the
The Caner Genome Atlas (TCGA) website. The raw data were normalized by using the
Affymetrix MAS5 algorithm, which has been shown to perform well in many studies (Lim
et al., 2007). The data were then log2 transformed and batch-effected corrected using the
software ComBat (Johnson and Li, 2006). Each patient has one of four subtypes of GBM—
Proneural, Neural, Classical, or Mesenchymal. We selected two subtypes, Proneural (53
tissue samples) and Mesenchymal (56 tissue samples), that have the largest sample sizes.
All analyses were restricted to the corresponding set of 109 tissue samples.

To evaluate PNJGL’s ability to identify genes with somatic mutations, we focused on the
following 10 genes that have been suggested to be frequently mutated across the four GBM
subtypes (Verhaak et al., 2010): TP53, PTEN, NF1, EGFR, IDH1, PIK3R1, RB1, ERBB2,
PIK3CA, PDGFRA. We then considered inferring the regulatory network of a set of genes
that is known to be involved in a single biological process, based on the Reactome database
(Matthews et al., 2008). In particular, we focused our analysis on the “TCR signaling” gene
set, which contains the largest number of mutated genes. This gene set contains 34 genes,
of which three (PTEN, PIK3R1, and PIK3CA) are in the list of 10 genes suggested to be
mutated in GBM. We applied PNJGL with q = 2 to the resulting 53 × 34 and 56 × 34 gene

468

Node-based Learning of Multiple GGMs

- - × - - PNJGL λ2 = 0.3n - - 4 - - PNJGL λ2 = 1.0n · - × - · FGL λ2 = 0.01n · - 4 - · FGL λ2 = 0.05n · - 5 - · GL

- - + - - PNJGL λ2 = 0.5n - - ∗ - - PNJGL λ2 = 2.0n · - + - · FGL λ2 = 0.03n · - ∗ - · FGL λ2 = 0.1n

(a) n = 25

0 500 1000 1500

200

400

Positive Edges

T
ru

e
 P

o
s
it
iv

e
 E

d
g

e
s

0 500 1000 1500

0.2

0.4

0.6

0.8

Positive Edges
 T

P
P

C
 /

 P
P

C
0 500 1000 1500

16

16.5

17

17.5

18

Positive Edges

E
rr

o
r

(b) n = 50

0 500 1000 1500

200

400

Positive Edges

T
ru

e
 P

o
s
it
iv

e
 E

d
g

e
s

0 500 1000 1500

0.2

0.4

0.6

0.8

Positive Edges

 T
P

P
C

 /
 P

P
C

0 500 1000 1500
15

15.5

16

16.5

17

Positive Edges

E
rr

o
r

(c) n = 100

0 500 1000 1500

200

400

Positive Edges

T
ru

e
 P

o
s
it
iv

e
 E

d
g

e
s

0 500 1000 1500

0.2

0.4

0.6

0.8

1

Positive Edges

 T
P

P
C

 /
 P

P
C

0 500 1000 1500
14

15

16

17

Positive Edges

E
rr

o
r

(d) n = 200

0 500 1000 1500

200

400

600

Positive Edges

T
ru

e
 P

o
s
it
iv

e
 E

d
g

e
s

0 500 1000 1500

0.2

0.4

0.6

0.8

1

Positive Edges

 T
P

P
C

 /
 P

P
C

0 500 1000 1500
13

14

15

16

17

Positive Edges

E
rr

o
r

Figure 7: Simulation results on Erdos-Renyi network (Section 6.1.1) for PNJGL with q = 2,
FGL, and GL, for (a): n = 25, (b): n = 50, (c): n = 100, (d): n = 200, when
p = 100. Each colored line corresponds to a fixed value of λ2, as λ1 is varied.
Axes are described in detail in Table 1. Results are averaged over 100 random
generations of the data.

469

Mohan, London, Fazel, Witten and Lee

- - × - - CNJGL λ2 = 0.3n - - 4 - - CNJGL λ2 = 1.0n · - × - · GGL λ2 = 0.01n · - 4 - · GGL λ2 = 0.05n · - 5 - · GL

- - + - - CNJGL λ2 = 0.6n - - ∗ - - CNJGL λ2 = 1.5n · - + - · GGL λ2 = 0.03n · - ∗ - · GGL λ2 = 0.1n

a) n = 25

0 500 1000 1500

200

400

600

Positive Edges

T
ru

e
 P

o
s
it
iv

e
 E

d
g

e
s

0 500 1000 1500

0.2

0.4

0.6

0.8

Positive Edges
 T

P
C

C
 /

 P
C

C
0 500 1000 1500

14

16

18

20

Positive Edges

E
rr

o
r

(b) n = 50

0 500 1000 1500

200

400

600

Positive Edges

T
ru

e
 P

o
s
it
iv

e
 E

d
g

e
s

0 500 1000 1500

0.2

0.4

0.6

0.8

1

Positive Edges

 T
P

C
C

 /
 P

C
C

0 500 1000 1500

14

16

18

20

Positive Edges

E
rr

o
r

(c) n = 100

0 500 1000 1500

200

400

600

Positive Edges

T
ru

e
 P

o
s
it
iv

e
 E

d
g

e
s

0 500 1000 1500

0.2

0.4

0.6

0.8

1

Positive Edges

 T
P

C
C

 /
 P

C
C

0 500 1000 1500
12

14

16

18

Positive Edges

E
rr

o
r

(d) n = 200

0 500 1000 1500

200

400

600

Positive Edges

T
ru

e
 P

o
s
it
iv

e
 E

d
g

e
s

0 500 1000 1500

0.2

0.4

0.6

0.8

1

Positive Edges

 T
P

C
C

 /
 P

C
C

0 500 1000 1500
12

14

16

Positive Edges

E
rr

o
r

Figure 8: Simulation results on Erdos-Renyi network (Section 6.1.1) for CNJGL with q = 2,
GGL, and GL, for (a): n = 25, (b): n = 50, (c): n = 100, (d): n = 200, when
p = 100. Each colored line corresponds to a fixed value of λ2, as λ1 is varied.
Axes are described in detail in Table 1. Results are averaged over 100 random
generations of the data.

470

Node-based Learning of Multiple GGMs

(a) PNJGL/FGL/GL:

- - × - - PNJGL λ2 = 0.3n - - + - - PNJGL λ2 = 0.5n - - 4 - - PNJGL λ2 = 1.0n - - ∗ - - PNJGL λ2 = 2.0n · - 5 - · GL

· - × - · FGL λ2 = 0.01n · - × - · FGL λ2 = 0.02 · - + - · FGL λ2 = 0.03n · - 4 - · FGL λ2 = 0.05n · - ∗ - · FGL λ2 = 0.2n

0 500 1000 1500 2000
0

200

400

Positive Edges

T
ru

e
P

os
iti

ve
 E

dg
es

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Positive Edges

 T
P

P
C

 /
P

P
C

0 500 1000 1500 2000
18

19

20

21

22

23

Positive Edges

E
rr

or

(b) CNJGL/GGL/GL:

- - × - - CNJGL λ2 = 0.3n - - + - - CNJGL λ2 = 0.6n - - 4 - - CNJGL λ2 = 1.0n - - ∗ - - CNJGL λ2 = 1.5n

· - 5 - · GGL λ2 = 0.01n · - × - · GGL λ2 = 0.05n · - ∗ - · GGL λ2 = 0.005n · - 5 - · GL

0 500 1000 1500 2000
0

200

400

Positive Edges

T
ru

e
P

os
iti

ve
 E

dg
es

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Positive Edges

 T
P

C
C

 /
P

C
C

0 500 1000 1500 2000
18

20

22

Positive Edges

E
rr

or

Figure 9: Simulation results on scale-free network (Section 6.1.2) for (a): PNJGL with
q = 2, FGL, and GL, and (b): CNJGL with q = 2, GGL, and GL, with p = 100
and n = 50. Each colored line corresponds to a fixed value of λ2, as λ1 is varied.
Axes are described in detail in Table 1. Results are averaged over 50 random
generations of the data.

471

Mohan, London, Fazel, Witten and Lee

(a) PNJGL/FGL/GL:

- - × - - PNJGL λ2 = 0.3n - - + - - PNJGL λ2 = 0.5n - - 4 - - PNJGL λ2 = 1.0n - - ∗ - - PNJGL λ2 = 2.0n · - 5 - · GL

· - × - · FGL λ2 = 0.01n · - + - · FGL λ2 = 0.03 · - 4 - · FGL λ2 = 0.05n · - ∗ - · FGL λ2 = 0.2n · - 5 - · FGL λ2 = 0.5n

0 500 1000 1500 2000
0

200

400

Positive Edges

T
ru

e
P

os
iti

ve
 E

dg
es

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Positive Edges

 T
P

P
C

 /
P

P
C

0 500 1000 1500 2000
19

20

21

22

23

Positive Edges

E
rr

or

(b) CNJGL/GGL/GL:

- - × - - CNJGL λ2 = 0.3n - - + - - CNJGL λ2 = 0.6n - - 4 - - CNJGL λ2 = 1.0n - - ∗ - - CNJGL λ2 = 1.5n

· - × - · GGL λ2 = 0.01n · - + - · GGL λ2 = 0.03n · - 4 - · GGL λ2 = 0.05n · - 5 - · GL

0 500 1000 1500 2000
0

200

400

Positive Edges

T
ru

e
P

os
iti

ve
 E

dg
es

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Positive Edges

 T
P

C
C

 /
P

C
C

0 500 1000 1500 2000
19

21

23

Positive Edges

E
rr

or

Figure 10: Simulation results on community network (Section 6.1.3) for (a): PNJGL with
q = 2, FGL, and GL, and (b): CNJGL with q = 2, GGL, and GL, with p = 100
and n = 50. Each colored line corresponds to a fixed value of λ2, as λ1 is varied.
Axes are described in detail in Table 1. Results are averaged over 50 random
generations of the data.

472

Node-based Learning of Multiple GGMs

expression data sets, after standardizing each gene to have variance one. As can be seen in
Figure 11, the pattern of network differences indicates that one of the three highly-mutated
genes is in fact perturbed across the two GBM subtypes. The perturbed gene is PTEN, a
tumor suppressor gene, and it is known that mutations in this gene are associated with the
development and progression of many cancers (see, e.g., Chalhoub and Baker, 2009).

To evaluate the performance of CNJGL in identifying genes known to be regulators, we
used a manually curated list of genes that have been identified as regulators in a previous
study (Gentles et al., 2009); this list includes genes annotated as transcription factors,
chromatin modifiers, or translation initiation genes. We then selected a gene set from
Reactome, called “G2/M checkpoints,” which is relevant to cancer and contains a large
number of regulators. This gene set contains 38 genes of which 15 are regulators. We
applied CNJGL to the resulting 53 × 38 and 56 × 38 gene expression data sets, to see if
the 15 regulators tend to be identified as co-hub genes. Figure 12 indicates that all four
co-hub genes (CDC6, MCM6, CCNB1 and CCNB2) detected by CNJGL are known to be
regulators.

5 10 15 20 25 30

5

10

15

20

25

30

−5

−4

−3

−2

−1

0

1

2

5 10 15 20 25 30

5

10

15

20

25

30

−5

−4

−3

−2

−1

0

1

2

5 10 15 20 25 30

5

10

15

20

25

30

−1

−0.5

0

0.5

1

1.5

x 10
−3

(a) (b) (c)

Figure 11: GBM data analysis for PNJGL with q = 2. The sample covariance matrices
S1 and S2 were generated from samples with two cancer subtypes, with sizes
n1 = 53 and n2 = 56. Only the 34 genes contained in the Reactome “TCR
Signaling” pathway were included in this analysis. Of these genes, three are
frequently mutated in GBM: PTEN, PIK3R1, and PIK3CA. These three genes
correspond to the last three columns in the matrices displayed (columns 32
through 34). PNJGL was performed with λ1 = 0 and λ2 = 2. We display (a):
the estimated matrix Θ̂1; (b): the estimated matrix Θ̂2; and (c): the difference
matrix Θ̂1 − Θ̂2. The gene PTEN is identified as perturbed.

7.2 University Webpage Data

We applied PNJGL and CNJGL to the university webpages data set from the “World Wide
Knowledge Base” project at Carnegie Mellon University. This data set was pre-processed
by Cardoso-Cachopo (2009). The data set describes the number of appearances of various
terms, or words, on webpages from the computer science departments of Cornell, Texas,
Washington and Wisconsin. We consider the 544 student webpages, and the 374 faculty
webpages. We standardize the student webpage data so that each term has mean zero and
standard deviation one, and we also standardize the faculty webpage data so that each term

473

Mohan, London, Fazel, Witten and Lee

5 10 15 20 25 30 35

5

10

15

20

25

30

35

−0.04

−0.03

−0.02

−0.01

0

5 10 15 20 25 30 35

5

10

15

20

25

30

35

−0.04

−0.03

−0.02

−0.01

0

(a) (b)

Figure 12: GBM data analysis for CNJGL with q = 2. The sample covariance matrices
S1 and S2 were generated from samples with two cancer subtypes, with sizes
n1 = 53 and n2 = 56. Only the 38 genes contained in the Reactome “G2/M
checkpoints” pathway were included in this analysis. Of these genes, 15 have
been previously identified as regulators. These 15 genes correspond to the last
15 columns in the matrices (columns 24 through 38). CNJGL was performed
with λ1 = 13 and λ2 = 410. We display (a): the estimated matrix Θ̂1; (b):
the estimated matrix Θ̂2. Four of the regulator genes are identified by CNJGL.
These genes are CDC6, MCM6, CCNB1, and CCNB2.

has mean zero and standard deviation one. Our goal is to identify terms that are perturbed
or co-hub between the student and faculty webpage networks. We restrict our analysis to
the 100 terms with the largest entropy.

We performed 5-fold cross-validation of the log-likelihood, computed as

log det Θ1 − trace(S1Θ1) + log det Θ2 − trace(S2Θ2),

for PNJGL, FGL, CNJGL, GGL, and GL, using a range of tuning parameters. The results
for PNJGL, FGL and GL are found in Figure 13(a). PNJGL and FGL achieve comparable
log-likelihood values. However, for a fixed number of non-zero edges, PNJGL outperforms
FGL, suggesting that PNJGL can achieve a comparable model fit for a more interpretable
model. Figure 13(b) displays the results for CNJGL, GGL and GL. It appears that PNJGL
and FGL provide the best fit to the data.

Given that PNJGL fits the data well, we highlight a particular solution, found in Figure
14. PNJGL is performed with λ1 = 27, λ2 = 381; these values were chosen because they
result in a high log-likelihood in Figure 13(a), and yield an interpretable pair of network
estimates. Several perturbed nodes are identified: advisor, high, construct, email, applic,
fax, and receiv. The student and faculty webpage precision matrices, Θ̂S and Θ̂F , are
overlaid in Figure 14.

For example, the perturbed node receiv is connected to the terms advis, inform, and
student among the student webpages. In contrast, among faculty webpages, the phrase
receiv is connected to associate and faculty.

474

Node-based Learning of Multiple GGMs

1000 2000 3000

−174

−172

−170

Positive Edges

L
o
g
 L

ik
e
lih

o
o
d

1000 2000 3000
−176

−175

−174

−173

−172

Positive Edges

L
o
g
 L

ik
e
lih

o
o
d

- � - PNJGL λ2 = 221 · - × - · FGL λ2 = 883

- × - PNJGL λ2 = 258 · - + - · FGL λ2 = 1178

- + - PNJGL λ2 = 295 · - 4 - · FGL λ2 = 1325

- 4 - PNJGL λ2 = 331 · - ∗ - · FGL λ2 = 1472

- ∗ - PNJGL λ2 = 405 · - � - · FGL λ2 = 1619

- 5 - GL

- � - CNJGL λ2 = 37 · - × - · GGL λ2 = 18

- × - CNJGL λ2 = 74 · - + - · GGL λ2 = 22

- + - CNJGL λ2 = 110 · - 4 - · GGL λ2 = 26

- 4 - CNJGL λ2 = 147 · - ∗ - · GGL λ2 = 29

- ∗ - CNJGL λ2 = 184 · - � - · GGL λ2 = 33

- 5 - GL

(a) (b)

Figure 13: On the webpage data, five-fold cross-validation was performed for (a): PNJGL,
FGL, and GL; and (b): CNJGL, GGL, and GL. Each colored line corresponds
to a fixed value of λ2, as λ1 is varied. Positive edges are defined in Table 1. The
cross-validated log likelihood is displayed.

8. Discussion

We have proposed node-based learning of multiple Gaussian graphical models through the
use of two convex formulations, perturbed-node joint graphical lasso and cohub node joint
graphical lasso. These techniques are well-motivated by many real-world applications, such
as learning transcriptional regulatory networks in multiple contexts from gene expression
data. Both of these formulations rely on the use of the row-column overlap norm penalty,
which when applied to a matrix encourages a support that can be expressed as the union
of a few rows and columns. We solve the convex optimization problems that correspond to
PNJGL and CNJGL using the ADMM algorithm, which is more efficient and scalable than
standard interior point methods and also first-order methods such as projected subgradient.
We also provide necessary and sufficient conditions on the regularization parameters in
CNJGL and PNJGL so that the optimal solutions to these formulations are block diagonal,
up to a permutation of the rows and columns. When the sufficient conditions are met,
any algorithm that is applicable to these two formulations can be sped up by breaking
down the optimization problem into smaller subproblems. Our proposed approaches lead
to better performance than two alternative approaches: learning Gaussian graphical models

475

Mohan, London, Fazel, Witten and Lee

advisor

applic
architectur

construct

email

fax

high

receiv

Θ̂Sij 6= 0, Θ̂Fij 6= 0

Θ̂Sij 6= 0, Θ̂Fij = 0

Θ̂Sij = 0, Θ̂Fij 6= 0

Θ̂Sij = 0, Θ̂Fij = 0 �

Figure 14: Student and faculty webpage precision matrices, Θ̂S and Θ̂F , for PNJGL per-
formed with λ1 = 27, λ2 = 381. Eight perturbed nodes are labeled. The color of
each square in the figure indicates whether the corresponding edge is present in
both networks, absent in both networks, or present in only the student or only
the faculty network.

under the assumption of edge perturbation or shared edges, or simply learning each model
separately.

We next discuss possible directions for future work.

• We have focused on promoting a row-column structure in either the difference of
the networks or in the networks themselves. However, the RCON penalty can be
generalized to other forms of structured sparsity. For instance, we might believe that
particular sets of genes in the same pathway tend to be simultaneously activated or
perturbed across multiple distinct conditions; a modification of the RCON penalty
can be used in this setting.

• Convergence of the ADMM algorithm in the presence of more than two sets of variable
updates has only been addressed partially in the literature. However, the PNJGL and
CNJGL formulations can be rewritten along the lines of an approach given in Ma et al.
(2013), so that only two sets of primal variables are involved, so that convergence is

476

Node-based Learning of Multiple GGMs

guaranteed. We leave for future study an investigation of whether this alternative
approach leads to better performance in practice.

• Transcriptional regulatory networks involve tens of thousands of genes. Hence it is
imperative that our algorithms scale up to large problem sizes. In future work, speed-
ups of our ADMM algorithm as well as adaptations of other fast algorithms such as
the accelerated proximal gradient method or second-order methods can be considered.

• In Section 5, we presented a set of conditions that allow us to break up the CNJGL and
PNJGL optimization problems into many independent subproblems. However, there
is a gap between the necessary and sufficient conditions that we presented. Making
this gap tighter could potentially lead to greater computational improvements.

• Tuning parameter selection in high-dimensional unsupervised settings remains an
open problem. An existing approach such as stability selection (Meinshausen and
Buhlmann, 2010) could be applied in order to select the tuning parameters λ1 and λ2

for CNJGL and PNJGL.

• The CNJGL and PNJGL formulations are aimed at jointly learning several high-
dimensional Gaussian graphical models. These approaches could be modified in order
to learn other types of probabilistic graphical models (see, e.g., Ravikumar et al.,
2010; Yang et al., 2012).

• It is well-known that adaptive weights can improve the performance of penalized
estimation approaches in other contexts (e.g., the adaptive lasso of Zou, 2006 improves
over the lasso of Tibshirani, 1996). In a similar manner, the use of adaptive weights
may provide improvement over the PNJGL and CNJGL proposals in this paper. Other
options include reweighted `1 norm approaches that adjust the weights iteratively: one
example is the algorithm proposed in Lobo et al. (2007) and further studied in Candes
et al. (2007). This algorithm uses a weight for each variable that is proportional to
the inverse of its value in the previous iteration, yielding improvements over the use of
an `1 norm. This method can be seen as locally minimizing the sum of the logarithms
of the entries, solved by iterative linearization. In general, any of these approaches
can be explored for the problems in this paper.

Matlab code implementing CNJGL and PNJGL is available at http://faculty.washington.
edu/mfazel/, http://www.biostat.washington.edu/~dwitten/software.html, and
http://suinlee.cs.washington.edu/software.

477

http://faculty.washington.edu/mfazel/
http://faculty.washington.edu/mfazel/
http://www.biostat.washington.edu/~dwitten/software.html
http://suinlee.cs.washington.edu/software

Mohan, London, Fazel, Witten and Lee

Acknowledgments

The authors acknowledge funding from the following sources: NIH DP5OD009145 and
NSF CAREER DMS-1252624 to DW, NSF CAREER ECCS-0847077 to MF, and Univ.
Washington Royalty Research Fund to DW, MF, and SL.

Appendix A. Dual Characterization of RCON

Lemma 11 The dual representation of Ω is given by

Ω(Θ1, . . . ,ΘK) = max
Λ1,...,ΛK∈Rp×p

K∑
i=1

〈Λi,Θi〉

subject to

∥∥∥∥∥∥∥
 Λ1 + (Λ1)T

...
ΛK + (ΛK)T

j

∥∥∥∥∥∥∥
∗

≤ 1 for j = 1, 2, . . . , p,

(22)

where ‖ · ‖ denotes any norm, and ‖ · ‖∗ its corresponding dual norm.

Proof Recall that Ω is given by

Ω(Θ1, . . . ,ΘK) = min
V 1,...,V K∈Rp×p

∥∥∥∥∥∥∥
 V 1

...
V K

∥∥∥∥∥∥∥

subject to Θi = V i + (V i)T , i = 1, 2, . . . ,K.

(23)

Let Z =

 Z1

...
ZK

 where Zk ∈ Rp×p. Then (23) is equivalent to

Ω(Θ1, . . . ,ΘK) = min
V i: Θi=V i+(V i)T , i=1,...,K

max
Z:‖Z‖∗≤1

K∑
i=1

〈Zi, V i〉, (24)

where ‖.‖∗ is the dual norm to ‖.‖. Since in (24) the cost function is bilinear in the two sets
of variables and the constraints are compact convex sets, by the minimax theorem, we can
swap max and min to get

Ω(Θ1, . . . ,ΘK) = max
Z:‖Z‖∗≤1

min
V i: Θi=V i+(V i)T , i=1,...,K

K∑
i=1

〈Zi, V i〉 . (25)

Now, note that the dual to the inner minimization problem with respect to V 1, . . . , V K in
(25) is given by

maximize
Λ1,...,ΛK

K∑
i=1

〈Λi,Θi〉

subject to Zi = Λi + (Λi)T , i = 1, 2, . . . ,K.

(26)

478

Node-based Learning of Multiple GGMs

Plugging (26) into (25), the lemma follows.

By definition, the subdifferential of Ω is given by the set of all K-tuples (Λ1, . . . ,ΛK) that
are optimal solutions to problem (22). Note that if (Λ1, . . . ,ΛK) is an optimal solution to
(22), then any (Λ1 + Y 1, . . . ,ΛK + Y K) with skew-symmetric matrices Y 1, . . . , Y K is also
an optimal solution.

Appendix B. Proof of Theorem 4

The optimality conditions for the PNJGL optimization problem (6) with K = 2 are given
by

−n1(Θ1)−1 + n1S
1 + λ1Γ1 + λ2Λ = 0, (27)

−n2(Θ2)−1 + n2S
2 + λ1Γ2 − λ2Λ = 0, (28)

where Γ1 and Γ2 are subgradients of ‖Θ1‖1 and ‖Θ2‖1, and (Λ,−Λ) is a subgradient of
Ωq(Θ

1 − Θ2). (Note that Ωq(Θ
1 − Θ2) is a composition of Ωq with the linear function

Θ1 − Θ2, and apply the chain rule.) Also note that the right-hand side of the above
equations is a zero matrix of size p× p.

Now suppose that Θ1 and Θ2 that solve (6) are supported on T . Then since (Θ1)−1, (Θ2)−1

are supported on T , we have that

n1S
1
T c + λ1Γ1

T c + λ2ΛT c = 0,

n2S
2
T c + λ1Γ2

T c − λ2ΛT c = 0. (29)

Summing the two equations in (29) yields

(n1S
1
T c + n2S

2
T c) + λ1(Γ1

T c + Γ2
T c) = 0. (30)

It thus follows from (30) that

‖n1S
1
T c + n2S

2
T c‖∞ ≤ λ1‖Γ1

T c + Γ2
T c‖∞ ≤ 2λ1, (31)

where here ‖ ·‖∞ indicates the maximal absolute element of a matrix, and where the second
inequality in (31) follows from the fact that the subgradient of the `1 norm is bounded in
absolute value by one.

We now assume, without loss of generality, that the Λ that solves (27) and (28) is
symmetric. (In fact, one can easily show that there exist symmetric subgradients Γ1, Γ2,
and Λ that satisfy (27) and (28).) Moreover, recall from Lemma 11 that ‖(Λ + ΛT)j‖s ≤ 1.
Therefore, ‖Λj‖s ≤ 1

2 . Using Holder’s inequality and noting that ‖y‖1 = 〈y, sgn(y)〉 for a
vector y, we obtain

‖ΛT c‖1 = 〈ΛT c , sgn(ΛT c)〉
≤ ‖ sgn(ΛT c)‖q‖ΛT c‖s
≤ |T c|

1
q ‖ΛT c‖s

≤ |T c|
1
q ‖Λ‖s

≤ 1
2 |T

c|
1
q p

1
s ,

(32)

479

Mohan, London, Fazel, Witten and Lee

where the last inequality follows from the fact that ‖Λ‖ss =
∑p

j=1 ‖Λj‖ss ≤ p(
1
2)s, and where

in (32), ‖A‖q and ‖A‖s indicate the `q and `s norms of vec(A) respectively.
From (29), we have for each k ∈ {1, 2} that

nk‖SkT c‖1 ≤ ‖λ1ΓkT c + λ2ΛT c‖1
≤ λ1‖ΓkT c‖1 + λ2‖ΛT c‖1
≤ λ1|T c|+ λ2

|T c|
1
q p

1
s

2 ,

where the last inequality follows from the fact that the elements of Γk are bounded in
absolute value by one, and (32). The theorem now follows by noting from (29) that for each
k ∈ {1, 2},

nk‖SkT c‖∞ ≤ λ1‖ΓkT c‖∞ + λ2‖ΛT c‖∞ ≤ λ1 +
λ2

2
.

Appendix C. Proof of Theorem 7

Proof The optimality conditions for the CNJGL problem (7) are given by

−nk(Θk)−1 + nkS
k + λ1Γk + λ2Λk = 0, k = 1, . . . ,K, (33)

where Γk is a subgradient of ‖Θk‖1. Also, the K-tuple (Λ1, . . . ,ΛK) is a subgradient of
Ωq(Θ

1 − diag(Θ1), . . . ,ΘK − diag(ΘK)), and the right-hand side is a p× p matrix of zeros.
We can assume, without loss of generality, that the subgradients Γk and Λk that satisfy
(33) are symmetric, since Lemma 11 indicates that if (Λ1, . . . ,ΛK) is a subgradient of
Ωq(Θ

1 − diag(Θ1), . . . ,Θk − diag(Θk)), then ((Λ1 + (Λ1)T)/2, . . . , (ΛK + (ΛK)T)/2) is a
subgradient as well.

Now suppose that Θ1, . . . ,ΘK that solve (7) are supported on T . Since (Θk)−1 is
supported on T for all k, we have

nkS
k
T c + λ1ΓkT c + λ2ΛkT c = 0. (34)

We use the triangle inequality for the `1 norm (applied elementwise to the matrix) to get

nk‖SkT c‖1 ≤ λ1‖ΓkT c‖1 + λ2‖ΛkT c‖1. (35)

We have ‖Γk‖∞ ≤ 1 since Γk is a subgradient of the `1 norm, which gives ‖ΓkT c‖1 ≤ |T c|.
Also Λk is a part of a subgradient to Ωq, so by Lemma 11, ‖(Λk +(Λk)T)j‖s ≤ 1 for j ∈

{1, 2, . . . , p}. Since Λk is symmetric, we have that ‖Λkj ‖s ≤ 1
2 . Using the same reasoning as

in (32) of Appendix B, we obtain

‖ΛkT c‖1 ≤
1

2
|T c|

1
q p

1
s . (36)

Combining (35) and (36) yields

nk‖SkT c‖1 ≤ λ1|T c|+ λ2
2 |T

c|
1
q p

1
s .

The theorem follows by noting from (34) that

nk‖SkT c‖∞ ≤ λ1‖ΓkT c‖∞ + λ2‖ΛkT c‖∞ ≤ λ1 + λ2
2 .

480

Node-based Learning of Multiple GGMs

Appendix D. Proof of Theorem 10

Assume that the sufficient condition holds. In order to prove the theorem, we must show
that

K∑
k=1

nk(− log det(Θk) + 〈Θk, Sk〉)) + λ1

k∑
k=1

‖Θk‖1 + λ2h(Θ1, . . . ,ΘK)

>
K∑
k=1

nk(− log det(Θk
T) + 〈Θk

T , S
k〉)) + λ1

k∑
k=1

‖Θk
T ‖1 + λ2h(Θ1

T , . . . ,Θ
K
T).

By assumption,
h(Θ1, . . . ,ΘK) > h(Θ1

T , . . . ,Θ
K
T). (37)

We will now show that

nk〈Θk, Sk〉+ λ1‖Θk‖1 ≥ nk〈Θk
T , S

k〉+ λ1‖Θk
T ‖1, (38)

or equivalently, that
− nk〈Θk

T c , S
k〉 ≤ λ1‖Θk

T c‖1. (39)

Note that 〈Θk
T c , S

k〉 = 〈Θk
T c , S

k
T c〉. By the sufficient condition, nk‖SkT c‖∞ ≤ λ1. So

−nk〈Θk
T c , S

k〉 = −nk〈Θk
T c , S

k
T c〉

≤ ‖nkSkT c‖∞‖Θk
T c‖1

≤ λ1‖Θk
T c‖1.

So (39) holds, and hence (38) holds.
Finally, we apply Fischer’s inequality, which states that det(Θk) ≤ det(Θk

T), and so

− log det(Θk) ≥ − log det(Θk
T). (40)

Combining (37), (38), and (40), the theorem holds.

Appendix E. Connection Between RCON and Obozinski et al. (2011)

We now show that the RCON penalty with q = 2 can be derived from the overlap norm of
Obozinski et al. (2011). For simplicity, here we restrict ourselves to the RCON with K = 1.
The general case of K ≥ 1 can be shown via a simple extension of this argument.

Given any symmetric p× p matrix Θ, let Θ4 be the p× p upper-triangular matrix such
that Θ = Θ4 + ΘT

4. That is,

(Θ4)kl =

Θkl if k < l

Θkk/2 if k = l
0 if k > l.

(41)

Now define p groups, g1, . . . , gp, each of which contains p variables, as displayed in Figure
15. Note that these groups overlap: if k ≤ l, then the (k, l) element of a matrix is contained
in both the kth and lth groups.

481

Mohan, London, Fazel, Witten and Lee

1 2 3 4 5

1

2

3

4

5

(a) g1

1 2 3 4 5

1

2

3

4

5

(b) g2

1 2 3 4 5

1

2

3

4

5

(c) g3

1 2 3 4 5

1

2

3

4

5

(d) g4

1 2 3 4 5

1

2

3

4

5

(e) g5

Figure 15: Depiction of groups g1, . . . , g5 for a 5 × 5 matrix. Each group’s elements are
shown in blue.

The overlap norm corresponding to these groups is given by

ΩO(Θ) = min
V 1,...,V p∈Rp×p

p∑
j=1

‖V j‖F

subject to Θ4 =

p∑
j=1

V j , supp(V j) ⊆ gj ,

where the relation between Θ and Θ4 is as in Equation (41). We can rewrite this as

ΩO(Θ) = min
V 1,...,V p∈Rp×p

p∑
j=1

‖V j‖F

subject to Θ =

p∑
j=1

V j + (

p∑
j=1

V j)T , supp(V j) ⊆ gj .
(42)

Now, define a p× p matrix A such that

Aij =

(V j)ij if i < j

(V j)ji if i > j

(V j)jj if i = j

.

Note that A+ AT =

p∑
j=1

V j + (

p∑
j=1

V j)T . Furthermore, ‖V j‖F = ‖Aj‖2, where Aj denotes

the jth column of A. So we can rewrite (42) as

ΩO(Θ) = min
V 1,...,V p∈Rp×p

p∑
j=1

‖Aj‖2

subject to Θ = A+AT .

This is exactly the RCON penalty with K = 1 and q = 2. Thus, with a bit of work, we have
derived the RCON from the overlap norm (Obozinski et al., 2011). Our penalty is useful
because it accommodates groups given by the rows and columns of a symmetric matrix in
an elegant and convenient way.

482

Node-based Learning of Multiple GGMs

Appendix F. Derivation of Updates for ADMM Algorithms

We derive the updates for ADMM algorithm when applied to PNJGL and CNJGL formu-
lations respectively. We first begin with the PNJGL formulation.

F.1 Updates for ADMM Algorithm for PNJGL

Let Lρ(Θ1,Θ2, Z1, Z2, V,W, F,G,Q1, Q2) denote the augmented Lagrangian (12). In each
iteration of the ADMM algorithm, each primal variable is updated while holding the other
variables fixed. The dual variables are updated using a simple dual-ascent update rule.
Below, we derive the update rules for the primal variables.

F.1.1 Θ1 Update

Note that

Θ1 = argmin
Θ

Lρ(Θ,Θ2, Z1, Z2, V,W, F,G,Q1, Q2)

= argmin
Θ

n1(− log det Θ) + ρ
∥∥∥Θ− 1

2

(
(Θ2 + V +W + Z1)− 1

ρ (F +Q1 + n1S
1)
)∥∥∥2

F
.

Now it follows from the definition of the Expand operator that

Θ1 ← Expand

(
1

2
(Θ2 + V +W + Z1)− 1

2ρ
(Q1 + n1S

1 + F), ρ, n1

)
.

The update for Θ2 can be derived in a similar fashion.

F.1.2 Z1 Update

Z1 = argmin
Z

Lρ(Θ1,Θ2, Z, Z2, V,W, F,G,Q1, Q2)

= argmin
Z

1
2

∥∥∥Z1 − (Θ1 + Q1

ρ)
∥∥∥2

F
+ λ1

ρ ‖Z
1‖1.

By the definition of the soft-thresholding operator T1, it follows that

Z1 = T1

(
Θ1 +

Q1

ρ
,
λ1

ρ

)
.

The update for Z2 is similarly derived.

F.1.3 V Update

V = argmin
X

Lρ(Θ1,Θ2, Z1, Z2, X,W,F,G,Q1, Q2)

= argmin
X

λ2
2ρ

p∑
j=1

‖Xj‖q +
1

2

∥∥∥∥X − 1

2

(
(W T + Θ1 −Θ2 −W) +

1

ρ
(F −G)

)∥∥∥∥2

F

.

By the definition of the soft-scaling operator T2, it follows that

V = T2

(
1

2
(W T −W + Θ1 −Θ2) +

1

2ρ
(F −G),

λ2

2ρ

)
.

The update for W is easy to derive and we therefore skip it.

483

Mohan, London, Fazel, Witten and Lee

F.2 Updates for ADMM Algorithm for CNJGL

Let Lρ({Θi}, {Zi}, {Ṽ i}, {W i}, {F i}, {Gi}, {Qi}) denote the augmented Lagrangian (16).
Below, we derive the update rules for the primal variables {Ṽ i}. The update rules for the
other primal variables are similar to the derivations discussed for PNJGL, and hence we
omit their derivations.

The update rules for Ṽ 1, Ṽ 2, . . . , Ṽ K are coupled, so we derive them simultaneously.
Note that

{Ṽ i}Ki=1 = argmin
A1,...,AK

Lρ
(
{Θi}Ki=1, {Zi}Ki=1, {Ai}Ki=1, {W i}Ki=1, {F i}Ki=1, {Gi}Ki=1, {Qi}Ki=1

)
= argmin

A1,...,AK
λ2

p∑
j=1

∥∥∥∥∥∥∥
 A1 − diag(A1)

...
AK − diag(AK)

j

∥∥∥∥∥∥∥
q

+

ρ

K∑
i=1

∥∥∥∥Ai − 1

2

(
(W i)T + Θi −W i +

1

ρ
(F i −Gi)

)∥∥∥∥2

F

.

Let Ci = 1
2((W i)T + Θi −W i + 1

ρ(F i −Gi)). Then the update Ṽ 1

...

Ṽ K

← Tq

 C1 − diag(C1)

...
CK − diag(CK)

 , λ2

2ρ

+

 diag(C1)
...

diag(CK)

follows by inspection.

Appendix G. Additional Simulation Results

Here we present more detailed results for an instance of the simulation study described in
Section 6, for the case n = 25. Figure 16 illustrates how the PPC, TPPC, PCC and TPCC
metrics are computed. As described in Table 1, for PNJGL, PPC is given by the number of
columns of V̂ whose `2 norms exceed the threshold ts. Figure 16(a) indicates that the two
perturbed nodes in the data are identified as perturbed by PNJGL. Furthermore, given the
large gap between the perturbed and non-perturbed columns, PPC is relatively insensitive
to the choice of ts. Similar results apply to the TPPC, PCC and TPCC metrics.

In order to generate Figure 16, PNJGL, FGL, CNJGL, GGL, and GL were performed
using tuning parameter values that led to the best identification of perturbed and cohub
nodes. However, the results displayed in Figure 16 were quite robust to the choice of tuning
parameter.

References

A. Argyriou, C.A. Micchelli, and M. Pontil. Efficient first order methods for linear composite
regularizers. arXiv:1104.1436 [cs.LG], 2011.

O. Banerjee, L. E. El Ghaoui, and A. d’Aspremont. Model selection through sparse maxi-
mum likelihood estimation for multivariate Gaussian or binary data. JMLR, 9:485–516,
2008.

484

Node-based Learning of Multiple GGMs

0 50 100

1

2

3

0 50 100

1

2

3

0 50 100

1

2

3

(a) V̂ : PNJGL (b) (Θ̂1 − Θ̂2): FGL (c) (Θ̂1 − Θ̂2): GL

0 50 100

1

2

3

0 50 100

1

2

3

0 50 100

1

2

3

(d) V̂ 1: CNJGL (e) Θ̂1: GGL (f) Θ̂1: GL

0 50 100

1

2

3

0 50 100

1

2

3

0 50 100

1

2

3

(g) V̂ 2: CNJGL (h) Θ̂2: GGL (i) Θ̂2: GL

Figure 16: In all plots, the x-axis indexes the columns of the indicated matrix, and the y-
axis displays the `2 norms of the columns of the indicated matrix, with diagonal
elements removed. The sample size is n = 25. Perturbed nodes are indicated in
red (with square markers), and cohub nodes are indicated in blue (with circle
markers). (a)-(c): Detection of perturbed nodes by PNJGL with q = 2, FGL,
and GL. (d)-(i): Detection of cohub nodes by CNJGL with q = 2, GGL, and
GL. (a): PNJGL with q = 2 was performed with λ1 = 2.5 and λ2 = 12.5. (b):
FGL was performed with λ1 = 2.5 and λ2 = 0.75. (c): GL was performed with
λ = 1.5. (d), (g): CNJGL was performed with q = 2 and λ1 = 0.5, λ2 = 37.5.
(e), (h): GGL was performed with λ1 = 0.5 and λ2 = 2.5. (f), (i): GL was
performed with λ = 0.75.

S.P. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and
Trends in ML, 3(1):1–122, 2010.

E.J. Candes, M. Wakin, and S. Boyd. Enhancing sparsity by reweighted l1 minimization.
Journal of Fourier Analysis and Applications, 14:877–905, 2007.

A. Cardoso-Cachopo, 2009. URL http://web.ist.utl.pt/acardoso/datasets/.

N. Chalhoub and S.J. Baker. PTEN and the PI3-kinase pathway in cancer. Annual Review
of Pathology, 4:127–150, 2009.

485

http://web.ist.utl.pt/acardoso/datasets/

Mohan, London, Fazel, Witten and Lee

X. Chen, Q. Lin, S. Kim, J.G. Carbonell, and E.P. Xing. Smoothing proximal gradient
method for general structured sparse learning. Proceedings of the Conference on Uncer-
tainty in Artificial Intelligence, 2011.

P. Danaher, P. Wang, and D. Witten. The joint graphical lasso for inverse covariance
estimation across multiple classes. Journal of the Royal Statistical Society, Series B,
2013.

A. D’Aspremont, O. Banerjee, and L. El Ghaoui. First-order methods for sparse covariance
selection. SIAM Journal on Matrix Analysis and Applications, 30(1):56–66, 2008.

J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting.
Journal of Machine Learning Research, pages 2899 – 2934, 2009.

J. Eckstein. Augmented lagrangian and alternating direction methods for convex optimiza-
tion: A tutorial and some illustrative computational results. Technical Report RUTCOR
Research Report RRR 32-2012, Rutgers University, 2012.

J. Eckstein and D.P. Bertsekas. On the douglas-rachford splitting method and the proximal
point algorithm for maximal monotone operators. Mathematical Programing: Series A
and B, 55(3):293 – 318, 1992.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9:432–441, 2007.

D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems
via finite element approximation. Computers and Mathematics with Applications, 2(1):
17–40, 1976.

A.J. Gentles, A.A. Alizadeh, S.-I. Lee, J.H. Myklebust, C.M. Shachaf, R. Levy, D. Koller,
and S.K. Plevritis. A pluripotency signature predicts histologic transformation and in-
fluences survival in follicular lymphoma patients. Blood, 114(15):3158–66, 2009.

M. George. B-a scale-free network generation and visualization, 2007. Matlab code.

M. Grant and S. Boyd. cvx version 1.21. “http://cvxr.com/cvx”, October 2010.

J. Guo, E. Levina, G. Michailidis, and J. Zhu. Joint estimation of multiple graphical models.
Biometrika, 98(1):1–15, 2011.

D. Han and Z. Yuan. A note on the alternating direction method of multipliers. Journal of
Optimization Theory and Applications, 155(1):227–238, 2012.

S. Hara and T. Washio. Learning a common substructure of multiple graphical gaussian
models. Neural Networks, 38:23–38, 2013.

B. He, M. Tao, and X. Yuan. Alternating direction method with gaussian back substitution
for separable convex programming. SIAM Journal of Optimization, pages 313 – 340,
2012.

486

Node-based Learning of Multiple GGMs

M. Hong and Z. Luo. On the linear convergence of the alternating direction method of
multipliers. arXiv:1208:3922 [math.OC], 2012.

C.J. Hsieh, M. Sustik, I. Dhillon, and P. Ravikumar. Sparse inverse covariance estimation
using quadratic approximation. Advances in Neural Information Processing Systems,
2011.

L. Jacob, G. Obozinski, and J.P. Vert. Group lasso with overlap and graph lasso. Proceedings
of the 26th International Conference on Machine Learning, 2009.

W. Evan Johnson and C. Li. Adjusting batch effects in microarray expression data using
empirical bayes methods. Biostatistics, 8(1):118–27, 2006.

M. Kolar, L. Song, A. Ahmed, and E.P. Xing. Estimating time-varying networks. Annals
of Applied Statistics, 4 (1):94–123, 2010.

S.L. Lauritzen. Graphical Models. Oxford Science Publications, 1996.

W. K. Lim, J. Wang, C. Lefebvre, and A.. Clifano. Comparative analysis of microarray
normalization procedures: effects on reverse engineering gene networks. Bioinformatics,
23(13):282–288, 2007.

M. Lobo, M. Fazel, and S. Boyd. Portfolio optimization with linear and fixed transaction
costs. Annals of Operations Research, 152(1):376 – 394, 2007.

S. Ma, L. Xue, and H. Zou. Alternating direction methods for latent variable Gaussian
graphical model selection. Neural Computation, 2013.

K.V. Mardia, J. Kent, and J.M. Bibby. Multivariate Analysis. Academic Press, 1979.

L. Matthews, G. Gopinath, M. Gillespie, M. Caudy, D. Croft, B. de Bono, P. Garap-
ati, J. Hemish, H. Hermjakob, B. Jassal, A. Kanapin, S. Lewis, S. Mahajan, B. May,
E. Schmidt, I. Vastrik, G. Wu, E. Birney, L. Stein, and P. D’Eustachio. Reactome knowl-
edgebase of biological pathways and processes. Nucleic Acids Research, 37:D619–22, 2008.

R. Mazumder and T. Hastie. Exact covariance-thresholding into connected components for
large-scale graphical lasso. Journal of Machine learning Research, 13:723 – 736, 2012.

M. Meinshausen and P. Buhlmann. Stability selection (with discussion). Journal of the
Royal Statistical Society, Series B, 72:417–473, 2010.

K. Mohan, M. Chung, S. Han, D. Witten, S. Lee, and M. Fazel. Structured learning of
gaussian graphical models. Advances in Neural Information Processing Systems, 2012.

S. Mosci, S. Villa, A. Verri, and L. Rosasco. A primal-dual algorithm for group sparse regu-
larization with overlapping groups. Advances in Neural Information Processing Systems,
pages 2604 – 2612, 2010.

J.F.C Mota, J.M.F Xavier, P.M.Q Aguiar, and M. Puschel. A proof of convergence for the
alternating direction method of multipliers applied to polyhedral-constrained functions.
arXiv:1112.2295 [math.OC], 2011.

487

Mohan, London, Fazel, Witten and Lee

G. Obozinski, L. Jacob, and J.P. Vert. Group lasso with overlaps: the latent group lasso
approach. arXiv preprint arXiv:1110.0413, 2011.

P. Ravikumar, M.J. Wainwright, G. Raskutti, and B. Yu. Model selection in gaussian
graphical models: high-dimensional consistency of l1-regularized MLE. Advances in Neu-
ral Information Processing Systems, 2008.

P. Ravikumar, M.J. Wainwright, and J.D. Lafferty. High-dimensional Ising model selection
using l1-regularized logistic regression. Annals of Statisitcs, 38(3):1287–1319, 2010.

A. Rothman, E. Levina, and J. Zhu. Sparse permutation invariant covariance estimation.
Electronic Journal of Statistics, 2:494–515, 2008.

K. Scheinberg, S. Ma, and D. Goldfarb. Sparse inverse covariance selection via alternating
linearization methods. Advances in Neural Information Processing Systems, 2010.

M. Tao and X. Yuan. Recovering low-rank and sparse components of matrices from incom-
plete and noisy observations. SIAM J. Optimization, 21(1):57–81, 2011.

R.E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58:267–288, 1996.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via
the fused lasso. Journal of the Royal Statistical Society, Series B, 67:91–108, 2005.

R.G.W. Verhaak et al. Integrated genomic analysis identifies clinically relevant subtypes
of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1.
Cancer Cell, 17(1):98–110, 2010.

D.M. Witten, J.H. Friedman, and N. Simon. New insights and faster computations for the
graphical lasso. Journal of Computational and Graphical Statistics, 20(4):892–900, 2011.

E. Yang, P. Ravikumar, G.I. Allen, and Z. Liu. Graphical models via generalized linear
models. Advances in Neural Information Processing Systems, 2012.

M. Yuan and Y. Lin. Model selection and estimation in the Gaussian graphical model.
Biometrika, 94(10):19–35, 2007a.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society, Series B, 68:49–67, 2007b.

B. Zhang and Y. Wang. Learning structural changes of Gaussian graphical models in
controlled experiments. Proc. 26th Conference on Uncertainty in Artifical Intelligence,
2010.

H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical
Association, 101:1418–1429, 2006.

488

Journal of Machine Learning Research 15 (2014) 489-493 Submitted 3/13; Revised 8/13; Published 2/14

The fastclime Package for Linear Programming and
Large-Scale Precision Matrix Estimation in R

Haotian Pang hpang@princeton.edu
Department of Electrical Engineering
Princeton University
Olden St
Princeton, NJ 08540, USA

Han Liu hanliu@princeton.edu

Robert Vanderbei rvdb@princeton.edu

Department of Operations Research and Financial Engineering

Princeton University

98 Charlton St

Princeton, NJ 08540, USA

Editor: Antti Honkela

Abstract

We develop an R package fastclime for solving a family of regularized linear program-
ming (LP) problems. Our package efficiently implements the parametric simplex algorithm,
which provides a scalable and sophisticated tool for solving large-scale linear programs. As
an illustrative example, one use of our LP solver is to implement an important sparse pre-
cision matrix estimation method called CLIME (Constrained L1 Minimization Estimator).
Compared with existing packages for this problem such as clime and flare, our package
has three advantages: (1) it efficiently calculates the full piecewise-linear regularization
path; (2) it provides an accurate dual certificate as stopping criterion; (3) it is completely
coded in C and is highly portable. This package is designed to be useful to statisticians
and machine learning researchers for solving a wide range of problems.

Keywords: high dimensional data, sparse precision matrix, linear programming, para-
metric simplex method, undirected graphical model

1. Introduction and Parametric Simplex Method

We introduce an R package, fastclime, that efficiently solves a family of regularized LP
problems. Our package has two major components. First, we provide an interface function
that implements the parametric simplex method (PSM). This algorithm can efficiently solve
large-scale LPs. Second, we apply the PSM to implement an important sparse precision ma-
trix estimation method called CLIME (Cai et al., 2011), which is useful in high-dimensional
graphical models. In the rest of this section, we describe briefly the main idea of the PSM.
We refer readers who are unfamiliar with simplex methods in general to Vanderbei (2008).
Consider the LP problem

max cTβ subject to: Aβ ≤ b, β ≥ 0,

c©2014 Haotian Pang, Han Liu and Robert Vanderbei.

Pang, Liu and Vanderbei

where A ∈ Rn×d, c ∈ Rd and b ∈ Rn are given and, “≥” and “≤” are defined component-
wise. Simplex methods expect problems in “equality form”. Therefore, the first task is to
introduce new variables which we tack onto the end of β and make it a longer vector β̂. We
rewrite the constraints with the new variables on the left and the old ones on the right:

max cTβN subject to: βB = b−AβN , βB ≥ 0, βN ≥ 0.

Here, N = {1, 2, . . . , d}, B = {d+1, d+2, . . . , d+n}, and βB and βN denote subvectors of β̂
associated with the indices in the set. In each iteration, one variable on the left is swapped
with one on the right. In general, the variables on the left are called basic variables and
the variables on the right are called nonbasic variables. As the algorithm progresses, the
set of nonbasic variables changes and the objective function is re-expressed purely in terms
of the current nonbasic variables and therefore the coefficients for the objective function
change. In a similar manner, the coefficients in the linear equality constraints also change.
We denote these changed quantities by Â, b̂, and ĉ. Associated with each of these updated
representations of the equations of the problem is a particular candidate “solution” obtained
by setting βN = 0 and reading off the corresponding values for basic variables βB = b̂. If
b̂ ≥ 0, then the candidate solution is feasible (that is, satisfies all constraints). If in addition
ĉ ≤ 0, then the solution is optimal.

Each variant of the simplex method is defined by the rule for choosing the pair of
variables to swap at each iteration. The PSM’s rule is described as follows (Vanderbei,
2008). Before the algorithm starts, it parametrically perturbs b and c:

max(c+ λc∗)Tβ subject to: Aβ ≤ b+ λb∗, β ≥ 0. (1)

Here b∗ ≥ 0 and c∗ ≤ 0; they are called perturbation vectors. With this choice, the perturbed
problem is optimal for large λ. The method then uses pivots to systematically reduce λ
to smaller values while maintaining optimality as it goes. Once the interval of optimal λ
values covers zero, we simply set λ = 0 and read off the solution to the original problem.
Sometimes there is a natural choice of the perturbation vectors b∗ and c∗ suggested by the
underlying problem for which it is known that the initial solution to the perturbed problem
is optimal for some value of λ. Otherwise, the solver generates perturbations on its own.

If we are only interested in solving generic LPs, the PSM is comparable to any other
variant of the simplex method. However, as we will see in the next section, the parametric
simplex method is particularly well-suited to machine learning problems since the relaxation
parameter λ in (1) is naturally related to the regularization parameter in sparse learning
problems. This connection allows us to solve a full range of learning problems corresponding
to all the regularization parameters. If a regularized learning problem can be formulated as
(1), then the entire solution path can be obtained by solving one LP with the PSM. More
precisely, at each iteration of the PSM, the current “solution” is the optimal solution for
some interval of λ values. If these solutions are stored, then when λ reaches 0, we have the
optimal solution to every λ-perturbed problem for all λ between 0 and the starting value.

We describe the application of the PSM to sparse precision matrix estimation in Section
2. Numerical benchmark and comparisons with other implementations of the precision
matrix estimation are provided in Section 3. For details of examples and how to use the
package, we refer the user to the companion vignette and package references.

490

The fastclime Package for Large-Scale Precision Matrix Estimation in R

2. Application to Sparse Precision Matrix Estimation

Estimating large covariance and precision matrices is a fundamental problem which has
many applications in modern statistics and machine learning. We denote Ω = Σ−1, where
Σ is the population covariance matrix. Under Gaussian model, the sparse precision ma-
trix Ω encodes the conditional independence relationships among the variables and that
is why sparse precision matrices are closely related to undirected graphs. Recently, sev-
eral sparse precision matrix estimation methods have been proposed, including penalized
maximum-likelihood estimation (MLE) (Banerjee et al., 2008; Friedman et al., 2007b,a,
2010), neighborhood selection method (Meinshausen and Bühlmann, 2006) and LP based
methods (Cai et al., 2011; Yuan, 2011). In general, solvers based on penalized MLE meth-
ods, such as QUIC (Hsieh et al., 2011) and HUGE (Zhao and Liu, 2012), are faster than the
others. However, these MLE methods aim to find an approximate solution quickly whereas
the linear programming methods are designed to find solutions that are correct essentially
to machine precision. The comparison of classification performance can be found in Cai
et al. (2011) and it is shown that CLIME uniformly outperforms the MLE methods. Be-
cause of the good theoretical properties shown by CLIME, we would like to develop a fast
algorithm for implementing this method which serves as an important building block for
more sophisticated learning algorithms.

The CLIME solves the following optimization problem

min ‖Ω‖1 subject to: ‖ΣnΩ− Id‖max ≤ λ and Ω ∈ Rd×d,

where Id is the d-dimensional identity matrix, Σn is the sample covariance matrix, and
λ > 0 is a tuning parameter. Here ‖Ω‖1 =

∑
j,k |Ω|j,k and ‖ · ‖max is the elementwise

sup-norm. This minimization problem can be further decomposed into d smaller problems,
which allows us to recover the precision matrix in a column by column fashion. For the i-th
subproblem, we get the i-th column of Ω, denoted as β̂, by solving

min ‖β‖1 subject to: ‖Σnβ − ei‖∞ ≤ λ and β ∈ Rd, (2)

where ‖β‖1 =
∑d

j=1 |βj | and ei ∈ Rd is the i-th basis vector.

The original clime package manually sets a default path for λ and solves the LP problem
for each different value of λ. In this paper, we propose to use the PSM to solve this problem
more efficiently. CLIME can be easily formulated in parametric simplex LP form. Let β+

and β− be the positive and negative parts of β. Since β = β+ − β− and ‖β‖1 = β+ + β−,
Equation (2) becomes:

minβ+ + β− subject to:

(
Σn −Σn

−Σn Σn

)(
β+

β−

)
≤
(
λ+ ei
λ− ei

)
. (3)

Comparing (1) and (3), we can give the following identification:

A =

(
Σn −Σn

−Σn Σn

)
, b =

(
ei
−ei

)
, c =

−1
...
−1

 , b∗ =

1
...
1

 , c∗ =

0
...
0

 .

491

Pang, Liu and Vanderbei

The path of λ defined by the PSM corresponds to the path of λ as described in CLIME.
Therefore, CLIME can be solved efficiently by the PSM; furthermore, when the optimal
solution is sparse, the parametric simplex is able to find the optimal solution after very few
iterations.

3. Performance Benchmark

For our experiments we focused solely on CLIME. We compare the timing performance of
our package with the packages flare and clime. Flare uses the Alternating Direction
Method of Multipliers (ADMM) algorithm to evaluate CLIME (Li et al., 2012), whereas
clime solves a sequence of LP problems for a certain specific set of values of λ. As explained
in Section 1, our method calculates the solution for all λ, while flare and clime use a dis-
crete set of λ values as specified in the function. We fix the sample size n to be 200 and vary
the data dimension d from 50 to 800. We generate our data using fastclime.generator,
without any particular data structures. Clime and fastclime are based on algorithms
that solve problems to machine precision (10−5). Flare, on the other hand, is an ADMM-
based algorithm that stops when the change from one iteration to the next drops below the
same threshold. As shown in Table 1, fastclime performances significantly faster than
clime when d equals 50 and 100. When d becomes large, we are not able to obtain re-
sults from clime in one hour. We also notice that, in most cases, fastclime performances
consistently better than flare, and it has a smaller deviation compared with flare. The
reason fastclime outperforms the other methods is primarily because the PSM only solves
one LP problem to get the entire solution path for all λ quickly and without using much
memory. The code is implemented on a i5-3320 2.6GHz computer with 8G RAM, and the
R version used is 2.15.0.

Method d=50 d=100 d=200 d=400 d=800

clime 103.52(9.11) 937.37(6.77) N/A N/A N/A
flare 0.632(0.335) 1.886(0.755) 10.770(0.184) 74.106(33.940) 763.632(135.724)
fastclime 0.248(0.0148) 0.928(0.0268) 9.928(3.702) 53.038(1.488) 386.880(58.210)

Table 1: Average Timing Performance of Three Solvers in Seconds

4. Summary and Acknowledgements

We developed a new package named fastclime, for solving linear programming problems
with a relaxation parameter and high dimensional sparse precision matrix estimation. We
plan to maintain and support this package in the future. Han Liu is supported by NSF
Grants III-1116730 and NSF III-1332109, NIH R01MH102339, NIH R01GM083084, and
NIH R01HG06841, and FDA HHSF223201000072C. Robert Vanderbei is supported by ONR
Grant N000141310093.

492

The fastclime Package for Large-Scale Precision Matrix Estimation in R

References

O. Banerjee, L. E. Ghaoui, and A. d’Aspremont. Model selection through sparse maximum
likelihood estimation. Journal of Machine Learning Research, 9:485–516, 2008.

T. Cai, W. Liu, and X. Luo. A constrained l1 minimization approach to sparse precision
matrix estimation. J. American Statistical Association, 106:594–607, 2011.

J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate optimization.
Annals of Applied Statistics, 1(2):302–332, 2007a.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9(3):432–441, 2007b.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33(1), 2010.

C-J. Hsieh, M. A. Sustik, I. S. Dhillon, and P. Ravikumar. Sparse inverse covariance matrix
estimation using quadratic approximation. Advances in Neural Information Processing
Systems, 24, 2011.

X. Li, T. Zhao, X. Yuan, and H. Liu. An R package flare for high dimensional linear
regression and precision matrix estimator. R Package Vigette, 2012.

N. Meinshausen and P. Bühlmann. High dimensional graphs and variable selection with the
lasso. Annals of Statistics, 34(3):1436–1462, 2006.

R. Vanderbei. Linear Programming, Fundations and Extensions. Springer, 2008.

M. Yuan. High dimensional inverse covariance matrix estimation via linear programming.
Journal of Machine Learning Research, 11:2261–2286, 2011.

T. Zhao and H. Liu. The huge package for high-dimensional undirected graph estimation
in R. Journal of Machine Learning Research, 13:1059–1062, 2012.

493

Journal of Machine Learning Research 15 (2014) 495-499 Submitted 9/13; Revised 12/13; Published 2/14

LIBOL: A Library for Online Learning Algorithms

Steven C.H. Hoi chhoi@ntu.edu.sg

Jialei Wang JL.Wang@ntu.edu.sg

Peilin Zhao zhao0106@ntu.edu.sg

School of Computer Engineering

Nanyang Technological University

Singapore 639798

Editor: Mark Reid

Abstract

LIBOL is an open-source library for large-scale online learning, which consists of a large
family of efficient and scalable state-of-the-art online learning algorithms for large-scale
online classification tasks. We have offered easy-to-use command-line tools and examples
for users and developers, and also have made comprehensive documents available for both
beginners and advanced users. LIBOL is not only a machine learning toolbox, but also a
comprehensive experimental platform for conducting online learning research.

Keywords: online learning, massive-scale classification, big data analytics

1. Introduction

Online learning represents an important family of efficient and scalable machine learning
algorithms for large-scale applications. In general, online learning algorithms are fast, sim-
ple, and often make few statistical assumptions, making them applicable to a wide range of
applications. Online learning has been actively studied in several communities, including
machine learning, statistics, and artificial intelligence. Over the past years, a variety of
online learning algorithms have been proposed, but so far there is very few comprehensive
library which includes most of the state-of-the-art algorithms for researchers to make easy
side-by-side comparisons and for developers to explore their various applications.

In this work, we develop LIBOL as an easy-to-use online learning tool that consists of a
large family of classical and recent state-of-the-art online learning algorithms for large-scale
online classification tasks. In contrast to many existing software for large-scale data classi-
fication, LIBOL enjoys significant advantages for massive-scale data classification in the era
of big data nowadays, especially in efficiency, scalability, parallelization, and adaptability.
Our goal is to make LIBOL not only a useful machine learning tool for practical users, but
also a comprehensive experimental platform for machine learning researchers to conduct on-
line learning research. The LIBOL software is available at http://libol.stevenhoi.org/.
A more comprehensive and up-to-date documentation for the latest software is available at
http://libol.stevenhoi.org/LIBOL_manual.pdf.

c©2014 Steven C.H. Hoi, Jialei Wang and Peilin Zhao.

http://libol.stevenhoi.org/
http://libol.stevenhoi.org/LIBOL_manual.pdf

Hoi, Wang and Zhao

2. A Family of Online Learning Algorithms for Linear Classification

Online learning operates on a sequence of data examples with time stamps. At each step
t, the learner receives an incoming example xt ∈ X in a d-dimensional vector space,
that is, X = Rd. It first attempts to predict the class label of the incoming instance,
ŷt = sgn(f(xt;wt)) = sgn(wt ·xt) ∈ Y, and Y = {−1,+1} for binary classification tasks. Af-
ter making the prediction, the true label yt ∈ Y is revealed, and the learners then computes
the loss `(yt, ŷt) based on some criterion to measure the difference between the learner’s
prediction and the revealed true label yt. Based on the result of the loss, the learner finally
decides when and how to update the classification model at the end of each learning step.
The following algorithmic framework gives an overview of most online learning algorithms1

for linear classification, where ∆(wt; (xt, yt)) denotes the update of the classification mod-
els. Different online learning algorithms in general are distinguished in terms of different
definitions and designs of the loss function `(·) and their various updating functions ∆(·).

Algorithm 1: LIBOL: Online Learning Framework for Linear Classification.

1 Initialize: w1 = 0
2 for t = 1, 2, . . . , T do
3 The learner receives an incoming instance: xt ∈ X ;
4 The learner predicts the class label: ŷt = sgn(f(xt;wt));
5 The true class label is revealed from the environment: yt ∈ Y;
6 The learner calculates the suffered loss: `(wt; (xt, yt));
7 if `(wt; (xt, yt)) > 0 then
8 The learner updates the classification model:
9 wt+1 ← wt + ∆(wt; (xt, yt));

10 end

11 end

The goal of our work is to implement a large family of diverse online learning methods in
literature to facilitate research and development of online learning techniques to real-world
applications. In particular, this software consists of 29 different online learning algorithms
and variants for both binary and multiclass classification tasks. In general, they can be
grouped into two major categories: (i) first order learning (Rosenblatt, 1958; Crammer
et al., 2006), and (ii) second order learning (Dredze et al., 2008; Wang et al., 2012a; Yang
et al., 2009). Examples of online learning algorithms in the first order learning category
include the following list of classical and popular algorithms:

• Perceptron: the classical online learning algorithm (Rosenblatt, 1958);

• ALMA: A New Approximate Maximal Margin Classification Algorithm (Gentile, 2001);

• ROMMA: the relaxed online maximum margin algorithms (Li and Long, 2002);

• OGD: the Online Gradient Descent (OGD) algorithms (Zinkevich, 2003);

• PA: the Passive Aggressive (PA) online learning algorithms (Crammer et al., 2006).

1. Note that second order online learning algorithms follow a slightly different procedure.

496

LIBOL: A Library for Online Learning Algorithms

To improve the efficacy of first order learning methods, recent years have witnessed the
emerging active studies of second order online learning algorithms. One family of recent
second order algorithms (Dredze et al., 2008) assume the weight vector follows a Gaussian
distribution w ∼ N (µµµ,Σ) with mean vector µµµ ∈ Rd and covariance matrix Σ ∈ Rd×d.
The model parameters, including both Σ and µµµ are updated in the online learning process.
Examples of the second order online learning algorithms include the following:

• SOP: the Second Order Perceptron (SOP) algorithm (Cesa-Bianchi et al., 2005);

• CW: the Confidence-Weighted (CW) learning algorithm (Dredze et al., 2008);

• IELLIP: online learning algorithms by improved ellipsoid method (Yang et al., 2009);

• AROW: the Adaptive Regularization of Weight Vectors (Crammer et al., 2009);

• NAROW: New variant of Adaptive Regularization (Orabona and Crammer, 2010);

• NHERD: the Normal Herding method via Gaussian Herding (Crammer and Lee, 2010)

• SCW: the recently proposed Soft Confidence Weighted algorithms (Wang et al., 2012a).

3. The Software Package

The current version (V0.3.0) of LIBOL implements a large family of online learning algo-
rithms and their variants, including 16 algorithms for binary classification, and 13 algorithms
for multiclass classification. The package includes the MATLAB library and command-line
tools for both online binary and multiclass classification tasks. In addition to MATLAB
implementation, we also provide C/C++ implementation for the core functions. The data
formats used by this software are compatible with popular machine learning and data mining
packages, such as LIBSVM, SVM-light, and WEKA, etc.

3.1 Practical Usage

To illustrate the online learning procedure, we take two data sets from the LIBSVM website,
including one small data set “svmguide3” with 1243 instances and one large data set “ijcnn1”
with 141,691 instances. In the following example, we use the default “Perceptron” algorithm
to demo the usage of LIBOL for a binary classification (’bc’) task:

$ demo(’bc’, ’Perceptron’, ’svmguide3’)

The results output by the above command are summarized as follows:

Algorithm: mistake rate nb of updates cpu time (seconds)
Perceptron 0.3318 +/- 0.0118 412.45 +/- 14.66 0.0516 +/- 0.0008

To ease researchers to run a full set of experiments for side-by-side comparisons of
different algorithms, we offer a very easy-to-use example program as follows:

$ run experiment(’bc’, ’svmguide3’)

The above command will run side-by-side comparison of varied online learning algo-
rithms on the given data set fully automatically, including all the parameter settings and
selection. The full set of experimental results will be generated by the library automatically,
as shown in Table 1 and Figure 1. This library provides a fairly easy-to-use testbed to facil-
itate online learning researchers to develop their new algorithms and conduct side-by-side
comparisons with the state-of-the-art algorithms with the minimal efforts.

497

Hoi, Wang and Zhao

Data Set: svmguide3 (#samples=1243,#dimensions=36) ijcnn1 (#samples=141,691,#dimensions=22)
Algorithm mistake # updates time (s) mistake # updates time (s)

Perceptron 0.332 ± 0.012 412.4 ± 14.7 0.052 ± 0.002 0.106 ± 0.000 15059.9 ± 65.1 5.668 ± 0.064
ROMMA 0.329 ± 0.019 409.3 ± 23.2 0.056 ± 0.001 0.101 ± 0.001 14284.2 ± 89.8 5.823 ± 0.111
aROMMA 0.328 ± 0.018 500.1 ± 29.1 0.055 ± 0.001 0.101 ± 0.001 14776.0 ± 101.8 5.665 ± 0.062
ALMA 0.230 ± 0.006 592.9 ± 6.6 0.062 ± 0.001 0.071 ± 0.000 21474.0 ± 80.4 6.662 ± 0.127
OGD 0.237 ± 0.003 636.5 ± 4.2 0.064 ± 0.002 0.095 ± 0.000 27465.8 ± 31.1 6.369 ± 0.107
PA 0.318 ± 0.013 721.1 ± 18.3 0.060 ± 0.001 0.102 ± 0.001 33847.9 ± 135.2 5.955 ± 0.091
PA1 0.236 ± 0.002 763.4 ± 11.5 0.064 ± 0.001 0.077 ± 0.000 28376.3 ± 84.2 6.352 ± 0.109
PA2 0.253 ± 0.007 1131.5 ± 15.6 0.069 ± 0.001 0.081 ± 0.000 61093.8 ± 199.3 6.876 ± 0.114
SOP 0.297 ± 0.012 369.1 ± 14.8 0.095 ± 0.002 0.102 ± 0.001 14470.7 ± 81.3 10.616 ± 0.096
IELLIP 0.332 ± 0.013 412.7 ± 16.1 0.081 ± 0.002 0.119 ± 0.001 16876.8 ± 72.9 8.079 ± 0.082
CW 0.299 ± 0.011 704.6 ± 19.1 0.118 ± 0.002 0.093 ± 0.001 30648.3 ± 166.2 9.499 ± 0.110
NHERD 0.217 ± 0.007 1150.5 ± 27.7 0.096 ± 0.002 0.084 ± 0.001 86660.7 ± 2692.6 9.735 ± 0.133
AROW 0.222 ± 0.004 1219.5 ± 8.1 0.112 ± 0.002 0.082 ± 0.000 74247.1 ± 846.3 10.164 ± 0.069
NAROW 0.276 ± 0.042 1193.8 ± 23.2 0.118 ± 0.002 0.095 ± 0.008 103843.6 ± 8841.3 12.027 ± 0.467
SCW 0.206 ± 0.004 593.4 ± 13.9 0.085 ± 0.002 0.060 ± 0.002 11077.3 ± 678.3 7.921 ± 0.144
SCW2 0.212 ± 0.009 802.0 ± 73.2 0.092 ± 0.002 0.070 ± 0.001 30833.8 ± 2116.8 8.681 ± 0.150

Table 1: Comparison of a variety of online learning algorithms on two data sets.

0 200 400 600 800 1000 1200
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

Number of samples

O
nl

in
e

C
um

ul
at

iv
e

M
is

ta
ke

 R
at

e

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

Number of samples

O
nl

in
e

C
um

ul
at

iv
e

N
um

be
r o

f U
pd

at
es

0 200 400 600 800 1000 1200
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of samples

O
nl

in
e

C
um

ul
at

iv
e

Ti
m

e
C

os
t (

s)

Perceptron

ROMMA

agg−ROMMA

ALMA

OGD

PA

PA−I

PA−II

SOP

CW

IELLIP

NHERD

AROW

NAROW

SCW−I

SCW−II

Figure 1: Comparison of a variety of online learning algorithms on data set “svmguide3”.

3.2 Documentation and Design

The LIBOL package comes with comprehensive documentation. The README file de-
scribes the setup and usage. Users can read the “Quick Start” section to begin shortly. All
the functions and related data structures are explained in detail. If the README file does
not give the information users want, they can check the online FAQ. In addition to software
documentation, theoretical properties of the algorithms and comparisons can be found in
Wang et al. (2012a). The authors are also willing to answer any further questions.

The design principle is to keep the package simple, easy to read and extend. All codes
follow the MATALB standards with core functions implemented in C/C++. It generally
needs no external libraries, except for the support of popular data formats, such as LIBSVM
and WEKA data sets for which existing libraries are included. LIBOL is written in a
modular way. All the online learning algorithms can be called via the uniform “ol train()”
function by setting proper options. One can easily develop a new algorithm and make side-
by-side comparisons with the existing ones in the package. Our goal is to make LIBOL not
only a machine learning tool, but also an experimental platform for online learning research.

4. Conclusion

LIBOL is an easy-to-use open-source package for online learning research and development.
The current version of LIBOL includes a large number of online learning algorithms for
online classification tasks. LIBOL is still being improved by feedback from practical users
and new research results (Zhao et al., 2011a,b; Wang et al., 2012b; Hoi et al., 2013a,b). We
hope to make LIBOL not only a useful machine learning tool, but also an ideal research
platform for conducting online learning research. The ultimate goal is to make easy learning
with massive data streams for tackling the grand challenge of big data analytics.

498

LIBOL: A Library for Online Learning Algorithms

References

Nicolò Cesa-Bianchi, Alex Conconi, and Claudio Gentile. A second-order perceptron algo-
rithm. SIAM J. Comput., 34(3):640–668, 2005.

Koby Crammer and Daniel D. Lee. Learning via gaussian herding. In NIPS, pages 451–459,
2010.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. Online
passive-aggressive algorithms. Journal of Machine Learning Research, 7:551–585, 2006.

Koby Crammer, Alex Kulesza, and Mark Dredze. Adaptive regularization of weight vectors.
In NIPS, pages 345–352, 2009.

Mark Dredze, Koby Crammer, and Fernando Pereira. Confidence-weighted linear classifi-
cation. In ICML, pages 264–271, 2008.

Claudio Gentile. A new approximate maximal margin classification algorithm. Journal of
Machine Learning Research, 2:213–242, 2001.

Steven C. H. Hoi, Rong Jin, Peilin Zhao, and Tianbao Yang. Online multiple kernel classi-
fication. Machine Learning, 90(2):289–316, 2013a.

Steven C. H. Hoi, Jialei Wang, Peilin Zhao, Jinfeng Zhuang, and Zhi-Yong Liu. Large scale
online kernel classification. In IJCAI, 2013b.

Yi Li and Philip M. Long. The relaxed online maximum margin algorithm. Machine
Learning, 46(1-3):361–387, 2002.

Francesco Orabona and Koby Crammer. New adaptive algorithms for online classification.
In NIPS, pages 1840–1848, 2010.

Frank Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psych. Rev., 7:551–585, 1958.

Jialei Wang, Peilin Zhao, and Steven C. H. Hoi. Exact soft confidence-weighted learning.
ICML, 2012a.

Jialei Wang, Peilin Zhao, and Steven CH Hoi. Cost-sensitive online classification. In IEEE
12th International Conference on Data Mining (ICDM), pages 1140–1145. IEEE, 2012b.

Liu Yang, Rong Jin, and Jieping Ye. Online learning by ellipsoid method. In ICML, page
145, 2009.

Peilin Zhao, Steven C. H. Hoi, and Rong Jin. Double updating online learning. Journal of
Machine Learning Research, 12:1587–1615, 2011a.

Peilin Zhao, Steven C. H. Hoi, Rong Jin, and Tianbao Yang. Online auc maximization. In
ICML, pages 233–240, 2011b.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In ICML, pages 928–936, 2003.

499

Journal of Machine Learning Research 15 (2014) 501-532 Submitted 2/13; Revised 10/13; Published 2/14

Improving Markov Network Structure Learning Using
Decision Trees

Daniel Lowd lowd@cs.uoregon.edu
Department of Computer and Information Science
University of Oregon
Eugene, OR 97403, USA

Jesse Davis jesse.davis@cs.kuleuven.be

Department of Computer Science

Katholieke Universiteit Leuven

3001 Heverlee, Belgium

Editor: Max Chickering

Abstract

Most existing algorithms for learning Markov network structure either are limited to learn-
ing interactions among few variables or are very slow, due to the large space of possible
structures. In this paper, we propose three new methods for using decision trees to learn
Markov network structures. The advantage of using decision trees is that they are very fast
to learn and can represent complex interactions among many variables. The first method,
DTSL, learns a decision tree to predict each variable and converts each tree into a set
of conjunctive features that define the Markov network structure. The second, DT-BLM,
builds on DTSL by using it to initialize a search-based Markov network learning algorithm
recently proposed by Davis and Domingos (2010). The third, DT+L1, combines the fea-
tures learned by DTSL with those learned by an L1-regularized logistic regression method
(L1) proposed by Ravikumar et al. (2009). In an extensive empirical evaluation on 20 data
sets, DTSL is comparable to L1 and significantly faster and more accurate than two other
baselines. DT-BLM is slower than DTSL, but obtains slightly higher accuracy. DT+L1
combines the strengths of DTSL and L1 to perform significantly better than either of them
with only a modest increase in training time.

Keywords: Markov networks, structure learning, decision trees, probabilistic methods

1. Introduction

A Markov network is an undirected, probabilistic graphical model for compactly represent-
ing a joint probability distribution over a set of random variables. In general, these variables
can be discrete, continuous, or a mix; in this paper, we consider the case when all variables
are discrete. Markov networks have been widely used in a number of domains, including
computer vision, computational biology, and natural language processing. The structure
of a Markov network defines which direct interactions among the variables are included
in the model. This structure can be represented as a set of features, each of which is a
Boolean-valued function of a subset of the variables. The parameters of a Markov network
define the relative strength of those interactions. Selecting a Markov network structure that

c©2014 Daniel Lowd and Jesse Davis.

Lowd and Davis

includes the most important interactions in a domain is therefore essential for building an
accurate model of that domain.

For some tasks, such as image processing, the structure of the Markov network may be
hand crafted to fit the problem. In other problems, the structure is unknown and must be
learned from data. These learned structures may be interesting in themselves, since they
show the most significant direct interactions in the domain. In many domains, however, the
goal is not an interpretable structure but an accurate final model. It is this last scenario
that is the focus of our paper: learning the structure of a Markov network in order to
accurately estimate marginal and conditional probabilities.

Learning an effective structure is difficult due to the very large structure space—the
number of possible sets of conjunctive features is doubly-exponential in the number of
variables. As a result, most previous approaches to learning Markov network structure
are either very slow or limited to relatively simple features, such as only allowing pairwise
interactions. In this paper, we propose to overcome these limitations by using decision tree
learners, which are able to quickly learn complex structures involving many variables.

Our first method, DTSL (Decision Tree Structure Learner), learns probabilistic decision
trees to predict the value of each variable and then converts the trees into sets of conjunctive
features. We propose and evaluate several different methods for performing the conversion.
Finally, DTSL merges all learned features into a global model. Weights for these features
can be learned using any standard Markov network weight learning method. DTSL is
similar in spirit to work by Ravikumar et al. (2010), who learn a sparse logistic regression
model for each variable and combine the features from each local model into a global network
structure. DTSL can also be viewed as converting a dependency network (Heckerman et al.,
2000) with decision trees into a consistent Markov network.

Our second method, DT-BLM (Decision Tree Bottom-Up Learning), builds on DTSL
by using the BLM algorithm of Davis and Domingos (2010) to further refine the structure
learned by DTSL. This algorithm is much slower, but usually more accurate than DTSL.
Furthermore, it serves as an example of how decision trees can be used to improve search-
based structure learning algorithms by providing a good initial structure.

Our third method, DT+L1, combines the structure learned by DTSL with the pairwise
interactions learned by L1-regularized logistic regression (L1) (Ravikumar et al., 2010).
The trees used by DTSL are good at capturing higher-order interactions, but each leaf is
mutually exclusive. In contrast, L1 captures many independent interaction terms, but each
interaction is between just two variables. Their combination offers the potential to represent
both kinds of interaction, leading to better performance in many domains.

We conducted an extensive empirical evaluation on 20 real-world data sets. We found
that DTSL offers similar accuracy and speed as L1, performing better on data sets where
it finds interesting tree structure and worse on data sets where it does not. Over 90%
of the running time was spent learning weights, so there is potential to improve learning
times even more with more sophisticated weight learning algorithms. The hybrid DT-BLM
algorithm is often more accurate than DTSL, but is also much slower due to the additional
refinement step. DT+L1 often has the best overall accuracy and runs much faster than
DT-BLM, making it a very good algorithm overall. We also evaluated two other baseline
structure learners, but they were not competitive with L1 and the three variants of DTSL.

502

Improving Markov Network Structure Learning Using Decision Trees

This journal paper is an extended and improved version of the conference paper (Lowd
and Davis, 2010). The extensions include two additional algorithms (DT-BLM and DT+L1)
and more extensive experiments, including seven additional data sets and learning curves.
The presentation has also been expanded and polished.

2. Markov Networks

This section provides a basic overview about Markov networks.

2.1 Representation

A Markov network is a model for the joint probability distribution of a set of variables
X = (X1, X2, . . . , Xn) (Della Pietra et al., 1997). It is often expressed as an undirected
graph G and a set of potential functions φk. The graph has a node for each variable, and
the model has a potential function for each clique in the graph. The joint distribution
represented by a Markov network is:

P (X=x) =
1

Z

∏
k

φk(x{k}) (1)

where x{k} is the state of the variables that appear in the kth clique, and Z is a normalization
constant called the partition function.

The graph encodes the following conditional independencies: sets of variables XA and
XB are conditionally independent given evidence Y if all paths between their corresponding
nodes in the graph pass through nodes from Y. Any probability distribution that can
be represented as a product of potential functions over the cliques of the graph, as in
Equation (1), satisfies these independencies; for positive distributions, the converse holds
as well.

One of the limitations of the graph structure is that it says nothing about the structure
of the potential functions themselves. The most standard representation of a potential
function over discrete variables is a table with one value for each variable configuration, but
this requires a number of parameters that is exponential in the size of the clique. To learn
an effective probability distribution, we typically need a finer-grained parametrization that
permits a compact distribution even when the cliques are relatively large.

Therefore, we focus on learning the log-linear representation of a Markov network, in
which the clique potentials are replaced by an exponentiated weighted sum of features of
the state:

P (X=x) =
1

Z
exp

∑
j

wjfj(x{j})

 .

A feature fj(x{j}) may be any real-valued function of the state. For discrete data, a feature
typically is a conjunction of tests of the form Xi = xi, where Xi is a variable and xi is
a value of that variable. We say that a feature matches an example if it is true of that
example. Any positive probability distribution over a discrete domain can be represented
as log-linear model with conjunctive features. For example, a product of tabular potential
functions could be converted into a log-linear model by constructing one conjunctive feature
for each row of each table, using the log of the potential function value as the feature weight.

503

Lowd and Davis

In this paper, we will refer to this set of conjunctive features as the structure of the
Markov network. This detailed structure specifies not only the independencies of the dis-
tribution, but also the specific interaction terms that are most significant. If desired, the
simpler undirected graph structure can be constructed from the features by adding an edge
between each pair of nodes whose variables appear together in a feature.

2.2 Inference

The main inference task in graphical models is to compute the conditional probability of
some variables (the query) given the values of some others (the evidence), by summing
out the remaining variables. This problem is #P-complete. Thus, approximate inference
techniques are required. One widely used method is Markov chain Monte Carlo (MCMC)
(Gilks et al., 1996), and in particular Gibbs sampling, which proceeds by sampling each
variable in turn given its Markov blanket, the variables it appears with in some potential or
feature. These samples can be used to answer probabilistic queries by counting the number
of samples that satisfy each query and dividing by the total number of samples. Under
modest assumptions, the distribution represented by these samples will eventually converge
to the true distribution. However, convergence may require a very large number of samples,
and detecting convergence is difficult.

2.3 Weight Learning

The goal of weight learning is to select feature weights that maximize a given objective
function. One of the most popular objective functions is the log-likelihood of the training
data. In a Markov network, the negative log-likelihood is a convex function of the weights,
and thus weight learning can be posed as a convex optimization problem. However, this op-
timization typically requires evaluating the log-likelihood and its gradient in each iteration.
This is typically intractable to compute exactly due to the partition function. Further-
more, an approximation may work poorly: Kulesza and Pereira (2007) have shown that
approximate inference can mislead weight learning algorithms.

A more computationally efficient alternative, widely used in areas such as spatial statis-
tics, social network modeling, and language processing, is to optimize the pseudo-likelihood
or pseudo-log-likelihood (PLL) instead (Besag, 1975). Pseudo-likelihood is the product of
the conditional probabilities of each variable given its Markov blanket; pseudo-log-likelihood
is the log of the pseudo-likelihood:

logP •w(X=x) =
V∑
j=1

N∑
i=1

logPw(Xi,j =xi,j |MBx(Xi,j)) (2)

where V is the number of variables, N is the number of examples, xi,j is the value of the jth
variable of the ith example, MBx(Xi,j) is the state of Xi,j ’s Markov blanket in the data.
PLL and its gradient can be computed efficiently and optimized using any standard convex
optimization algorithm, since the negative PLL of a Markov network is also convex.

504

Improving Markov Network Structure Learning Using Decision Trees

3. Structure Learning in Markov Networks

Our goal in structure learning is to find a succinct set of features that can be used to
accurately represent a probability distribution in a domain of interest. Other goals include
learning the independencies or causal structure in the domain, but we focus on accurate
probabilities. In this section, we briefly review four categories of approaches for Markov
network structure learning, along with their strengths and weaknesses.

Global Search-Based Learning. One of the common approaches is to perform a global
search for a set of features that accurately captures high-probability regions of the instance
space (Della Pietra et al., 1997; McCallum, 2003). The algorithm of Della Pietra et al.
(1997) is the most canonical example of this approach. The algorithm starts with a set of
atomic features, each consisting of one state of one variable. It creates candidate features
by conjoining each feature to each other feature, including the original atomic features. It
calculates the weight for each candidate feature by assuming that all other feature weights
remain unchanged, which is done for efficiency reasons. It uses Gibbs sampling for infer-
ence when setting the weight. Then, it evaluates each candidate feature f by estimating
how much adding f would increase the log-likelihood. It adds the feature that results in
the largest gain to the feature set. This procedure terminates when no candidate feature
improves the model’s score.

Recently, Davis and Domingos (2010) proposed an alternative bottom-up approach,
called Bottom-up Learning of Markov Networks (BLM), for learning the structure of a
Markov network. BLM starts by treating each complete example as a long feature in the
Markov network. The algorithm repeatedly iterates through the feature set. It considers
generalizing each feature to match its k nearest previously unmatched examples by dropping
variables. If incorporating the newly generalized feature improves the model’s score, it is
retained in the model. The process terminates when no generalization improves the score.

These discrete search approaches are often slow due to the exponential number of pos-
sible features, leading to a doubly-exponential space of possible structures. Even a greedy
search through this space must use the training data to repeatedly evaluate many candi-
dates.

Optimization-Based Learning. Instead of performing a discrete search through possible
structures, other recent work has framed the search as a continuous weight optimization
problem with L1 regularization for sparsity (Lee et al., 2007; Schmidt and Murphy, 2010).
The final structure consists of all features that are assigned non-zero weights. These methods
are somewhat more efficient, but are typically limited to relatively short features. For
example, in the approach of Lee et al. (2007), the set of candidate features must be specified
in advance, and must be small enough that the gradient of all feature weights can be
computed. Even including interactions among three variables requires a cubic number
of features. Learning higher-order interactions quickly becomes infeasible. Schmidt and
Murphy (2010) propose an algorithm that can learn longer features, as long as they satisfy
a hierarchical constraint: longer features are only included when all subsets of the feature
have been assigned non-zero weights. In experiments, this method does identify some longer
features, but most features are short.

Independence Test Based Learning. Another line of work attempts to identify the
Markov network structure directly by performing independence tests (Spirtes et al., 1993).

505

Lowd and Davis

The basic idea is that if two variables are conditionally independent given some other vari-
ables then there should be no edge between them in the Markov network. Thus, instead
of searching for interactions among the variables, these methods search for independencies.
The challenge is the large number of conditional independencies to test: simply testing for
marginal independence among each pair of variables is quadratic in the number of variables,
and the complexity grows exponentially with the size of the separating set. Some variants
of this approach search for the Markov blanket of each variable, the minimal set of variables
that renders it conditionally independent from all others (Bromberg et al., 2009). Using
independencies in the data to infer additional independencies can speed up this search, but
many tests are still required. Furthermore, reliably recovering the independencies may not
necessarily lead to the most accurate probabilistic model, since that is not the primary goal
of these methods.

Learning Local Models. Ravikumar et al. (2010) proposed the alternative idea of learning
a local model for each variable and then combining these models into a global model. Their
method learns the structure by trying to discover the Markov blanket of each variable. It
considers each variable Xi in turn and builds an L1-regularized logistic regression model
to predict the value of Xi given the remaining variables. L1 regularization encourages
sparsity, so that most of the variables end up with a weight of zero. The Markov blanket of
Xi is all variables that have non-zero weight in the logistic regression model. Under certain
conditions, this is a consistent estimator of the structure of a pairwise Markov network. In
practice, when learned from real-world data, these Markov blankets are often incompatible
with each other; for example, Xi may be in the inferred Markov blanket of Xj while the
reverse does not hold. There are two methods for resolving these conflicts. One is to
include an edge if either Xi is in Xj ’s Markov blanket or Xj is in Xi’s Markov blanket.
The other method is to include an edge only if Xi is in Xj ’s Markov blanket and Xj is in
Xi’s Markov blanket. In the final model, if there is an edge between Xi and Xj then the
log-linear model includes a pairwise feature involving those two variables. All weights are
then learned globally using any standard weight learning algorithm. While this approach
greatly improves the tractability of structure learning, it is limited to modeling pairwise
interactions, ignoring all higher-order effects. Furthermore, it still exhibits long run times
for domains that have large numbers of variables.

4. Decision Tree Structure Learning (DTSL)

We now describe our method for learning Markov network structure from data, decision
tree structure learning (DTSL). Algorithm 1 outlines our basic approach. For each variable
Xi, we learn a probabilistic decision tree to represent the conditional probability of Xi given
all other variables, P (Xi|X − Xi). Each tree is converted to a set of conjunctive features
capable of representing the same probability distribution as the tree. Finally, all features
are taken together in a single model and weights are learned globally using any standard
weight learning algorithm.

This is similar in spirit to learning a dependency network (Heckerman et al., 2000): Both
dependency networks (with tree distributions) and DTSL learn a probabilistic decision
tree for each variable and combine the trees to form a probabilistic model. However, a
dependency network may not represent a consistent probability distribution, and inference

506

Improving Markov Network Structure Learning Using Decision Trees

!"#$%"#&'(!"#)%"#*'(!"#*%"#)'(

+$(

+,(

-.+)/+$%+,0(((1(

Figure 1: Example of a probabilistic decision tree.

can only be done by Gibbs sampling. In contrast, the Markov networks learned by DTSL
always represent consistent probability distributions and allow inference to be done by any
standard technique, such as loopy belief propagation (Murphy et al., 1999), mean field, or
MCMC.

We now describe each step of DTSL in more detail.

Algorithm 1 The DTSL Algorithm

function DTSL(training examples D, variables X)
F ← ∅
for all Xi ∈X do
Ti ← LearnTree(D,Xi)
Fi ← GenerateFeatures(Ti)
F ← F ∪ Fi

end for
M ←LearnWeights(F,D)
return M

4.1 Learning Trees

A probabilistic decision tree represents a probability distribution over a target variable, Xi,
given a set of inputs. Each interior node tests the value of an input variable and each of its
outgoing edges is labeled with one of the outcomes of that test (e.g., true or false). Each leaf
node contains the conditional distribution (e.g., multinomial) of the target variable given
the test outcomes specified by its ancestor nodes and edges in the tree. We focus on discrete
variables and consider tests of the form Xj = xj , where Xj is a variable and xj is value
of that variable. Each conditional distribution is represented by a multinomial. Figure 1
contains an example of a probabilistic decision tree.

We can learn a probabilistic decision tree from data in a depth-first manner, one split
at a time. We select a split at the root, partition the training data into the sets matching
each outgoing branch, and recurse. We select each split to maximize the conditional log-
likelihood of the target variable. This is very similar to using information gain as the split
criterion. We used multinomials as the leaf distributions with a Dirichlet prior (α = 1)
for smoothing. In order to help avoid overfitting, we used a structure prior P (S) ∝ κp,

507

Lowd and Davis

where p is the number of parameters and κ < 1 represents a multiplicative penalty for
each additional parameter in the model, as in Chickering et al. (1997). To further avoid
overfitting, we set the minimum number of examples at each leaf to 10. Any splits that
would result in fewer examples in a leaf are rejected.

Pseudocode for the tree learning subroutine is in Algorithm 2.

Algorithm 2 DTSL Tree Learning Subroutine

function LearnTree(training examples D, variable Xi)
best split← ∅
best score← 0
for all Xj ∈X −Xi do
for all xj ∈ Val(Xj) do
S ← (Xj = xj)
if Score(S,Xi, D) > best score then

best split ← S
best score ←Score(S,Xi, D)

end if
end for

end for
if best score > log κ then

(Dt, Df)←SplitData(D, best split)
TL ←LearnTree(Dt, Xi)
TR ←LearnTree(Df , Xi)
return new TreeVertex(best split, TL, TR)

else
Use D to estimate P (Xi)
return new TreeLeaf(P (Xi))

end if

4.2 Generating Features

While decision trees are not commonly thought of as a log-linear model, any decision tree can
be converted to a set of conjunctive features. In addition to a direct translation (Default),
we explored four modifications (Prune, Prune-10, Prune-5, and Nonzero) which could
yield structures with easier weight learning or better generalization.

The Default feature generation method is a direct translation of a probabilistic decision
tree to an equivalent set of features. For each state of the target variable, we generate a
feature for each path from the root to a leaf. The feature’s conditions specify a single state
of the target variable and all variable tests along the path in the decision tree. For example,
to convert the decision tree in Figure 1 to a set of rules, we generate two features for each
leaf, one where X4 is true and one where X4 is false. The complete list of features is as
follows:

1. X1 = T ∧X4 = T

2. X1 = T ∧X4 = F

508

Improving Markov Network Structure Learning Using Decision Trees

3. X1 = F ∧X2 = T ∧X4 = T

4. X1 = F ∧X2 = T ∧X4 = F

5. X1 = F ∧X2 = F ∧X4 = T

6. X1 = F ∧X2 = F ∧X4 = F

By using the log probability at the leaf as the rule’s weight, we obtain a log linear model
representing the same distribution. By applying this transformation to all decision trees,
we obtain a set of conjunctive features that comprise the structure of our Markov network.
However, their weights may be poorly calibrated (e.g., due to the same feature appearing
in several decision trees), so weight learning is still necessary.

The Prune method expands the set of features generated by Default in order to make
learning and inference easier. One disadvantage of the Default procedure is that it gener-
ates very long features with many conditions when the source trees are deep. Intuitively, we
would like to capture the coarse interactions with short features and the finer interactions
with longer features, rather than representing everything with long features. In the Prune
method, we generate additional features for each path from the root to an interior node,
not just paths from the root to a leaf. Each feature’s conditions specify a single state of
the target variable and all variable tests along the path in the decision tree. However, we
include paths ending at any node, not just at leaves.

Specifically, for each state of the target variable and node in the tree (leaf or non-
leaf), we generate a feature that specifies the state of the target variable and contains a
condition for each ancestor of the node. This is equivalent to applying the Default feature
generation method to all possible “pruned” versions of a decision tree, that is, where one or
more interior nodes are replaced with leaves. This yields four additional rules, in addition
to those enumerated above:

1. X4 = T

2. X4 = F

3. X1 = F ∧X4 = T

4. X1 = F ∧X4 = F

The Prune-10 and Prune-5 methods begin with the features generated by Prune and
remove all features with more than 10 and 5 conditions, respectively. This can help avoid
overfitting.

Our final feature generation method, Nonzero, is similar to Default, but removes
all false variable constraints in a post-processing step. For example, the decision tree in
Figure 1 would be converted to the following set of rules:

1. X1 = T ∧X4 = T

2. X1 = T

3. X2 = T ∧X4 = T

4. X2 = T

5. X4 = T

This simplification is designed for sparse binary domains such as text, where a value of false
or zero contains much less information than a value of true or one.

509

Lowd and Davis

4.3 Asymptotic Complexity

Next, we explore DTSL’s efficiency by analyzing its asymptotic complexity. Let n be the
number of variables, m be the number of training examples, and l be the number of values
per variable. The complexity of selecting the first split is O(lmn), since we must compute
statistics for each of the l values of each of the n variables using all of the m examples. At
the next level, we now have two splits to select: one for the left child and one for the right
child of the original split. However, since the split partitions the training data into two sets,
each of the m examples is only considered once, either for the left split or the right split,
leading to a total time of O(lmn) at each level. If each split assigns a fraction of at least 1/k
examples to each child, then the depth is at most O(logk(m)), yielding a total complexity
of O(lmn logk(m)) for one tree, and O(lmn2 logk(m)) for the entire structure. Depending
on the patterns present in the data, the depth of the learned trees could be much less than
logk(m), leading to faster run times in practice. For large data sets or streaming data, we
can apply the Hoeffding tree algorithm, which uses the Hoeffding bound to select decision
tree splits after enough data has been seen to make a confident choice, rather than using
all available data (Domingos and Hulten, 2000).

5. Decision Tree Bottom-Up Learning (DT-BLM)

The DTSL algorithm works by first using a decision tree learner to generate a set of conjunc-
tive features and then learning weights for those features. In this section, we propose using
decision trees within the context of the BLM Markov network structure learning algorithm
(Davis and Domingos, 2010), which is described in Section 3.

BLM starts with a large set of long (i.e., specific) features and simplifies them to make
them more general. The standard BLM algorithm uses the set of all training examples
as the initial feature set. However, BLM could, in principle, generalize any set of initial
features. The key idea of DT-BLM is to run BLM on the features from DTSL.

Algorithm 3 outlines the DT-BLM algorithm. DT-BLM receives a set of training exam-
ples, D, a set of variables, X, and a set of integers, K, as input. It begins by running DTSL.
Of the five feature conversion methods, it selects whichever one results in the best scoring
model on validation data. Then DT-BLM employs the standard BLM learning procedure,
but uses the features learned by DTSL as the initial feature set. The main loop in BLM
involves repeatedly iterating through the feature set, calling the GeneralizeFeature
method on each feature f in the feature set F .

The GeneralizeFeature method, outlined in Algorithm 4, proposes and scores several
candidate feature generalizations. Specifically, it creates one generalization, f ′, for each
k ∈ K by finding the set of examples Uk which are f ’s k nearest unmatched examples. Next,
it creates f ′ by dropping each variable-value test in f that does not match all examples in
Uk, which has the effect of generalizing f ′ to match all examples in this set. It also scores
the effect of removing f from F .

DT-BLM measures the distance between a feature and an example using the generalized
value difference metric (GVDM), which tends to perform better in practice than the simpler

510

Improving Markov Network Structure Learning Using Decision Trees

Hamming distance (Davis and Domingos, 2010). Formally, the distance, D(f, e) is:

D(f, e) =
∑
c∈f

GVDM(f, e, c)

where f is a feature, e is an example, c ranges over the variables in f and

GVDM(f, e, c) =
∑
h

∑
fi∈f,fi 6=c

|P (c = h|fi)− P (c = h|efi)|
Q

where h ranges over the possible values of variable c, fi is the value of the ith variable in
f , efi is the value of the attribute referenced by fi in e, and Q is an integer. For a variable
c that appears in f , GVDM measures how well the other variables in f predict c. The
intuition is that if c appears in a feature then the other variables should be good predictors
of c.

Each generalization is evaluated by replacing f with the generalization in the model,
relearning the weights of the modified feature set, and scoring the new model as:

S(D,F ′, α) = PLL(D,F ′)− α
∑
fi∈F ′

|fi|

where PLL(D,F ′) is the train set pseudo-likelihood of feature set F ′, α is a penalty term to
avoid overfitting, and |fi| is the number of variable-value tests in feature fi. The procedure
returns the best scoring generalized feature set, F ′. DT-BLM updates F to F ′ if F ′ has a
better score. The process terminates after making one full loop over the feature set without
changing F by accepting a generalization.

The advantage of DT-BLM over DTSL is that it can refine individual features based on
their global contribution to the pseudo-likelihood. This can lead to simpler models in terms
of both the number and length of the features. One advantage of DT-BLM over BLM is
that the features selected by DTSL are already very effective, so BLM is less likely to end
up in a bad local optimum. A second advantage is that it removes the restriction that BLM
can never learn a model that has more features than examples. This is valuable for domains
which are most effectively modeled with a large number of short features (e.g., text). The
principle disadvantage of DT-BLM is speed: it can be much slower than DTSL, since it is
doing a secondary search over feature simplifications. We have also found that DT-BLM
is sensitive to the Gaussian weight prior used during the BLM structure search, unlike the
standard BLM algorithm. This means that DT-BLM requires more tuning time than BLM,
as discussed more extensively in our empirical evaluation in Section 7.

Note that DT-BLM is similar in spirit to Bayesian network structure learning algorithms
that combine independence-test and search-based learning techniques (Tsamardinos et al.,
2006). These algorithms work in two phases. In the first step, they identify a superset of
the edges that could be included in the network using independence tests. In the second
step, a search through the space of possible structures is performed, but it is restricted
to only consider including candidate edges identified in the first step. Typically, a greedy,
general-to-specific search is employed. These algorithms differ from DT-BLM in three key
ways: DT-BLM searches for features and not edges; DT-BLM uses decision trees to identify
candidate features and not independence tests; and DT-BLM uses a specific-to-general
search and not a general-to-specific search to refine the structure.

511

Lowd and Davis

Algorithm 3 The DT-BLM Algorithm

function DT-BLM(training examples D, variables X, K)
F ← ∅
for all Xi ∈X do
Ti ← LearnTree(Xi, D)
Fi ← GenerateFeatures(Ti)
F ← F ∪ Fi

end for
repeat

for all features f ∈ F do
F ′ ← GeneralizeFeature(D, F , f , K)
if Score(TS, F ′) > Score(TS, F) then
F ← F ′

end if
end for

until no generalization improves the score
return M

Algorithm 4 Feature generalization subroutine used by DT-BLM.

function GeneralizeFeature(training examples D, feature set F , feature f , K)
Fbest = F
for all k ∈ K do
Uk = k nearest examples to f that do not match f
f ′ = f excluding each test in f that does not match all examples in Uk.
F ′ ← F with f replaced by f ′

if Score(D,F ′) > Score(D,Fbest) then
Fbest ← F ′

end if
end for
F ′ = F without f
if Score(D,F ′) > Score(D,Fbest) then
Fbest ← F ′

end if
return Fbest

6. Combining DTSL and L1 (DT+L1)

In this section we propose DT+L1, a very simple way to combine DTSL and Ravikumar et
al.’s L1 algorithm. DT+L1 works as follows. First, DTSL and L1 are run normally. That
is, each method is run to completion (i.e., learning both the features and weights) to find
the best model. Second, DT+L1 takes the union of the best DTSL feature set and the best
L1 feature set. Third, DT+L1 learns the weights for the combined feature set and returns
this as the final model.

512

Improving Markov Network Structure Learning Using Decision Trees

The advantage of this approach is that it combines the strengths of both algorithms.
DTSL excels at learning long features that capture complex interactions. Ravikumar et al.’s
L1 approach only learns pairwise features, which occur less frequently in DTSL’s learned
models. One disadvantage is that DT+L1 will be more time intensive than either approach
independently. DT+L1 involves performing parameter tuning to select the best model for
both DTSL and L1 and then another run of weight learning, including parameter tuning,
on the combined feature set. Another potential problem is that the combined model will
have more features, which may lead to a more complex inference task.

7. Empirical Evaluation

We evaluate our algorithms on 20 real-world data sets. The goals of our experiments are
three-fold. First, we want to determine how the different feature generation methods affect
the performance of DTSL and DT-BLM (Section 7.3). Second, we want to compare the
accuracy of DTSL, DT-BLM, and DT+L1 to each other as well as to several state-of-the-art
Markov network structure learners: the algorithm of Della Pietra et al. (1997), which we
refer to as DP; BLM (Davis and Domingos, 2010); and L1-regularized logistic regression
(Ravikumar et al., 2010) (Section 7.4). Finally, we want to compare the running time of
these learning algorithms, since this greatly affects their practical utility (Section 7.5).

7.1 Methodology

We used DTSL, DT-BLM, DT+L1, and each of the baselines to learn structures on 20 data
sets.

DTSL was implemented in OCaml. For both BLM and DP, we used the publicly avail-
able code of Davis and Domingos (2010). Since DT-BLM is built on both DTSL and BLM,
it used a combination of the DTSL and BLM code as well. For Ravikumar et al.’s ap-
proach, we tried both the OWL-QN (Andrew and Gao, 2007) and LIBLINEAR (Fan et al.,
2008) software packages. Our initial experiments and evaluation were done using OWL-QN,
but we later discovered that LIBLINEAR was much faster with nearly identical accuracy.
Therefore, to be as fair as possible to L1, we report the running times for LIBLINEAR.

The output of each structure learning algorithm is a set of conjunctive features. To
learn weights, we optimized the pseudo-likelihood of the data via the limited-memory BFGS
algorithm (Liu and Nocedal, 1989) since optimizing the likelihood of the data is prohibitively
expensive for the domains we consider.

Like Lee et al. (2007), we evaluated our algorithm using test set conditional marginal
log-likelihood (CMLL). To make results from different data sets more comparable, we report
normalized CMLL (NCMLL), which is CMLL divided by the number of variables in the
domain. Calculating the NCMLL requires dividing the variables into a query set Q and an
evidence set E. Then, for each test example we computed:

NCMLL(X = x) =
1

|X|
∑
i∈Q

logP (Xi = xi|E).

For each domain, we divided the variables into four disjoint sets. One set served as the query
variables while the remaining three sets served as evidence. We repeated this procedure so

513

Lowd and Davis

that each set served as the query variables once. We computed the conditional marginal
probabilities using Gibbs sampling, as implemented in the open-source Libra toolkit.1 For
all domains, we ran 10 independent chains, each with 100 burn-in samples and followed
by 1,000 samples for computing the probability. CMLL is related to PLL (Equation 2),
since both measure the ability of the model to predict individual variables given evidence.
However, we used approximately 75% of the variables as evidence when computing CMLL,
while PLL always uses all-but-one variable as evidence.

We tuned all algorithms using separate validation sets, the same validation sets used by
Van Haaren and Davis (2012). For DTSL, we selected the structure prior κ for each domain
that maximized the total log-likelihood of all probabilistic decision trees on the validation
set. The values of κ we used were powers of 10, ranging from 0.0001 to 1.0. When learning
the weights for each feature generation method, we placed a Gaussian prior with mean 0
on each feature weight and then tuned the standard deviation to maximize PLL on the
validation set, with values of 100, 10, 1, and 0.1. For comparisons to other algorithms, we
selected the DTSL model with the best pseudo-likelihood on the validation set. We chose
to use pseudo-likelihood for tuning instead of CMLL because it is much more efficient to
compute.

For L1, on each data set we tried the following values of the LIBLINEAR tuning pa-
rameter C: 0.001, 0.01, 0.05, 0.1, 0.5, 1 and 5.2 We also tried both methods of making the
Markov blankets consistent. These parameter settings allowed us to explore a variety of
different models, ranging from those containing all pairwise interactions to those that were
very sparse. We also tuned the weight prior as we did with DTSL. Tuning the standard
deviation of the Gaussian weight prior allowed us to get better results than reported by
Davis and Domingos (2010).

For BLM and DP, we kept the tuning settings used by Davis and Domingos (2010).
We tried performing additional tuning of the weight prior for BLM, but it did not lead to
improved results. For DT+L1, we combined the DTSL and L1 structures and relearned the
final weights, including tuning the Gaussian weight prior on the validation set.

All of our code is available at http://ix.cs.uoregon.edu/~lowd/dtsl under a modi-
fied BSD license.

7.2 Data Sets

For our experiments, we used the same set of 20 domains as Van Haaren and Davis (2012),
13 of which were previously used by Davis and Domingos (2010).3 All variables are binary-
valued. Basic statistics for all data sets are in Table 1, ordered by number of variables in the
domain. “Density” refers to the fraction of non-zero entries. Below, we provide additional
information about each data set.

1. Libra is available from http://libra.cs.uoregon.edu/.
2. C is the inverse of the L1 regularization weight λ used by OWL-QN (Andrew and Gao, 2007). Larger C

values almost always resulted in generating all pairwise features.
3. These data sets are publicly available at http://alchemy.cs.washington.edu/papers/davis10a.

514

http://ix.cs.uoregon.edu/~lowd/dtsl
http://libra.cs.uoregon.edu/
http://alchemy.cs.washington.edu/papers/davis10a

Improving Markov Network Structure Learning Using Decision Trees

Data Set # Train Ex. # Tune Ex. # Test Ex. # Vars Density

1. NLTCS 16,181 2,157 3,236 16 0.332
2. MSNBC 291,326 38,843 58,265 17 0.166
3. KDDCup 2000 180,092 19,907 34,955 64 0.008
4. Plants 17,412 2,321 3,482 69 0.180
5. Audio 15,000 2,000 3,000 100 0.199
6. Jester 9,000 1,000 4,116 100 0.608
7. Netflix 15,000 2,000 3,000 100 0.541
8. Accidents 12,758 1,700 2,551 111 0.291
9. Retail 22,041 2,938 4,408 135 0.024
10. Pumsb Star 12,262 1,635 2,452 163 0.270
11. DNA 1,600 400 1,186 180 0.253
12. Kosarek 33,375 4,450 6,675 190 0.020
13. MSWeb 29,441 3,270 5,000 294 0.010
14. Book 8,700 1,159 1,739 500 0.016
15. EachMovie 4,524 1,002 591 500 0.059
16. WebKB 2,803 558 838 839 0.064
17. Reuters-52 6,532 1,028 1,540 889 0.036
18. 20 Newsgroups 11,293 3,764 3,764 910 0.049
19. BBC 1,670 225 330 1,058 0.078
20. Ad 2,461 327 491 1,556 0.008

Table 1: Data set characteristics.

We used four clickstream prediction domains: KDDCup 2000, MSNBC, Anonymous
MSWeb,4 and Kosarek.5 Each data point was a single session, with one binary-valued
variable for each page, area, or category of the site, indicating if it was visited during that
session or not. For KDD Cup 2000 (Kohavi et al., 2000), we used the subset of Hulten
and Domingos (2002), which consisted of 65 page categories. We dropped one category
that was never visited in the training data. The MSNBC anonymous web data contains
information about which top-level MSNBC pages were visited during a single session. The
MSWeb anonymous web data contains visit data for 294 areas (Vroots) of the Microsoft
web site, collected during one week in February 1998. Kosarek is clickstream data from a
Hungarian online news portal.

Five of our domains were from recommender systems: Audio, Book, EachMovie, Jester
and Netflix. The Audio data set consists of information about how often a user listened to
a particular artist.6 The data was provided by the company Audioscrobbler before it was
acquired by Last.fm. We focused on the 100 most listened-to artists. We used a random
subset of the data and reduced the problem to “listened to” or “did not listen to.” The

4. KDDCup 2000, MSNBC, and Anonymous MSWeb, are available from the UCI machine learning repos-
itory (Blake and Merz, 2000).

5. The Kosarek, Pumsb Star, Accidents, and Retail data sets are available at http://fimi.ua.ac.be/

data/.
6. The Audio data set is available at http://www-etud.iro.umontreal.ca/~bergstrj/audioscrobbler_

data.html.

515

http://fimi.ua.ac.be/data/
http://fimi.ua.ac.be/data/
http://www-etud.iro.umontreal.ca/~bergstrj/audioscrobbler_data.html
http://www-etud.iro.umontreal.ca/~bergstrj/audioscrobbler_data.html

Lowd and Davis

Book Crossing (Book) data set (Ziegler et al., 2005) consists of a user’s rating of how much
they liked a book. We considered the 500 most frequently rated books. We reduced the
problem to “rated” or “not rated” and considered all people who rated at least two of these
books. EachMovie7 is a collaborative filtering data set in which users rate movies they
have seen. We focused on the 500 most-rated movies, and reduced each variable to “rated”
or “not rated”. The Jester data set (Goldberg et al., 2001) consists of users’ real-valued
ratings for 100 jokes. For Jester, we selected all users who had rated all 100 jokes, and
reduced their preferences to “like” and “dislike” by thresholding the real-valued preference
ratings at zero. Finally, we considered a random subset of the Netflix challenge data and
focused on the 100 most frequently rated movies. We reduced the problem to “rated” or
“not rated.”

We used four text domains: 20 Newsgroups, Reuters-52, WebKB,8 and BBC.9 For
20 Newsgroups, we only considered words that appeared in at least 200 documents. For
Reuters, WebKB, and BBC, we only considered words that appeared in at least 50 doc-
uments. For all four data sets, we created one binary feature for each word. The text
domains contained roughly a 50-50 train-test split, whereas all other domains used around
75% of the data for the training, 10% for tuning, and 15% for testing. Thus we split the
test set of these domains to make the proportion of data devoted to each task more closely
match the other domains used in the empirical evaluation.

The remaining seven data sets have no unifying theme. Plants consists of different plant
types and locations where they are found.4 We constructed one binary feature for each
location, which is true if the plant is found there. DNA10 is DNA sequences for primate
splice-junctions; we used the binary-valued encoding provided. The National Long Term
Care Survey (NLTCS) data consist of binary variables that measure an individual’s ability
to perform different daily living activities.11 Pumsb Star contains census data for population
and housing.5 Accidents contains anonymized traffic incident data.5 Retail is market basket
data from a Belgian retail store.5

7.3 Feature Generation Methods

First, we compared the accuracy of DTSL with different feature generation methods: De-
fault, Prune, Prune-10, Prune-5, and Nonzero. Table 2 lists the NCMLL of each
method on each data set. For each data set, the method with the best NCMLL on the
test set is in bold, and the method with the best PLL on the validation set is underlined.
The results are shown graphically in the top half of Figure 2. The data sets are shown in
the same order as in Table 1. Each bar represents the negative NCMLL of DTSL with one
feature generation method on one data set. Lower is better. To make the differences easier
to see, we subtracted the negative NCMLL for Default from each bar, so that positive
values (above the x-axis) are worse than Default and negative values (below the x-axis)
are better than Default.

7. The EachMovie data set was provided by Compaq at http://research.compaq.com/SRC/eachmovie/;
as of October 2004, it is no longer available for download.

8. 20 Newsgroups and Reuters-52 are available at http://web.ist.utl.pt/~acardoso/datasets/.
9. The BBC data set is available at http://mlg.ucd.ie/datasets/bbc.html.

10. The DNA data set is available at http://www.cs.sfu.ca/~wangk/ucidata/dataset/DNA/.
11. NLTCS is available at http://lib.stat.cmu.edu/datasets/.

516

http://research.compaq.com/SRC/eachmovie/
http://web.ist.utl.pt/~acardoso/datasets/
http://mlg.ucd.ie/datasets/bbc.html
http://www.cs.sfu.ca/~wangk/ucidata/dataset/DNA/
http://lib.stat.cmu.edu/datasets/

Improving Markov Network Structure Learning Using Decision Trees

D
T

S
L

D
T

-B
L

M
D

at
a

S
et

D
e
fa

u
lt

N
o
n
z
e
r
o

P
r
u
n
e

P
r
u
n
e
-1
0

P
r
u
n
e
-5

D
e
fa

u
lt

N
o
n
z
e
r
o

P
r
u
n
e

P
r
u
n
e
-1
0

P
r
u
n
e
-5

N
L
T

C
S

-0
.3

28
-0

.3
26

-0
.3

2
6

-0
.3
2
5

-0
.3

2
6

-0
.3
2
4

-0
.3

2
6

-0
.3
2
4

-0
.3
2
4

-0
.3

2
5

M
S

N
B

C
-0
.3
3
6

-0
.3

44
-0
.3
3
6

-0
.3

4
0

-0
.3

5
8

-0
.3
3
6

-0
.3

4
4

-0
.3
3
6

-0
.3

3
9

-0
.3

5
7

K
D

D
C

u
p

20
00

-0
.0
3
2

-0
.0

33
-0
.0
3
2

-0
.0
3
2

-0
.0
3
2

-0
.0
3
2

-0
.0

3
3

-0
.0
3
2

-0
.0
3
2

-0
.0
3
2

P
la

n
ts

-0
.1

46
-0

.1
48

-0
.1
4
3

-0
.1

4
5

-0
.1

5
3

-0
.1

4
2

-0
.1

4
8

-0
.1
4
1

-0
.1

4
4

-0
.1

5
3

A
u

d
io

-0
.3

80
-0
.3
7
5

-0
.3

7
9

-0
.3

7
9

-0
.3

8
4

-0
.3

7
5

-0
.3
7
3

-0
.3

7
5

-0
.3

7
5

-0
.3

8
0

J
es

te
r

-0
.5

12
-0
.5
0
5

-0
.5

1
1

-0
.5

1
1

-0
.5

1
4

-0
.5

0
7

-0
.5
0
3

-0
.5

0
7

-0
.5

0
7

-0
.5

0
9

N
et

fl
ix

-0
.5

43
-0
.5
3
2

-0
.5

4
1

-0
.5

4
1

-0
.5

4
5

-0
.5

4
0

-0
.5
3
2

-0
.5

3
9

-0
.5

3
9

-0
.5

4
2

A
cc

id
en

ts
-0

.1
50

-0
.1
4
7

-0
.1

5
0

-0
.1

5
0

-0
.1

6
9

-0
.1

4
8

-0
.1

4
6

-0
.1

4
6

-0
.1
4
5

-0
.1

6
7

R
et

ai
l

-0
.0
7
8

-0
.0

79
-0

.0
7
9

-0
.0
7
8

-0
.0

7
9

-0
.0
7
8

-0
.0

7
9

-0
.0
7
8

-0
.0
7
8

-0
.0

7
9

P
u

m
sb

S
ta

r
-0

.1
04

-0
.0
9
8

-0
.1

0
1

-0
.1

0
2

-0
.1

0
8

-0
.1

0
5

-0
.0
9
9

-0
.1

0
0

-0
.0
9
9

-0
.1

1
0

D
N

A
-0
.3
8
4

-0
.3

85
-0
.3
8
4

-0
.3
8
4

-0
.3
8
4

-0
.3

8
4

-0
.3

8
5

-0
.3
8
3

-0
.3
8
3

-0
.3

8
4

K
os

ar
ek

-0
.0
5
3

-0
.0
5
3

-0
.0
5
3

-0
.0
5
3

-0
.0
5
3

-0
.0
5
3

-0
.0
5
3

-0
.0
5
3

-0
.0
5
3

-0
.0
5
3

M
S

W
eb

-0
.0
2
9

-0
.0

30
-0
.0
2
9

-0
.0

3
0

-0
.0

3
0

-0
.0
2
9

-0
.0

3
0

-0
.0
2
9

-0
.0
2
9

-0
.0

3
0

B
o
ok

-0
.0
6
9

-0
.0

70
-0
.0
6
9

-0
.0
6
9

-0
.0
6
9

-0
.0
6
8

-0
.0

6
9

-0
.0
6
8

-0
.0
6
8

-0
.0

6
9

E
ac

h
M

ov
ie

-0
.1

09
-0

.1
04

-0
.1
0
2

-0
.1
0
2

-0
.1

0
5

-0
.1

0
1

-0
.1

0
2

-0
.1
0
0

-0
.1
0
0

-0
.1

0
2

W
eb

K
B

-0
.1
7
9

-0
.1
7
9

-0
.1
7
9

-0
.1
7
9

-0
.1

8
0

-0
.1

7
8

-0
.1

7
7

-0
.1
7
7

-0
.1
7
7

-0
.1

7
8

R
eu

te
rs

-5
2

-0
.0
9
2

-0
.0
9
2

-0
.0
9
2

-0
.0

9
4

-0
.0

9
3

-0
.0

9
3

-0
.0

9
2

-0
.0
9
1

-0
.0
9
1

-0
.0

9
2

20
N

ew
sg

ro
u

p
s

-0
.1

70
-0

.1
69

-0
.1
6
6

-0
.1
6
6

-0
.1

6
7

-0
.1
6
3

-0
.1

6
5

-0
.1

6
5

-0
.1

6
5

-0
.1

6
5

B
B

C
-0

.2
38

-0
.2
3
7

-0
.2

4
0

-0
.2

4
0

-0
.2

4
1

-0
.2
3
7

-0
.2
3
7

-0
.2
3
7

-0
.2
3
7

-0
.2
3
7

A
d

-0
.0
1
2

-0
.1

44
-0

.0
1
6

-0
.0

1
6

-0
.0

1
7

-0
.0
1
6

-0
.1

5
1

-0
.0

2
0

-0
.0

1
9

-0
.0

2
2

T
a
b

le
2:

N
C

M
L

L
o
f

D
T

S
L

(l
ef

t)
an

d
D

T
-B

L
M

(r
ig

h
t)

w
it

h
d

iff
er

en
t

co
n
ve

rs
io

n
m

et
h

o
d

s.
F

or
ea

ch
al

go
ri

th
m

an
d

d
at

a
se

t,
th

e
m

et
h

o
d

w
it

h
th

e
b

es
t

te
st

se
t

N
C

M
L

L
is

in
b

ol
d

an
d

th
e

m
et

h
o
d

w
it

h
th

e
b

es
t

va
li

d
at

io
n

se
t

P
L

L
is

u
n

d
er

li
n

ed
.

517

Lowd and Davis

DTSL

Prune−5

 −0.015

 −0.01

 −0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
eg

at
iv

e
N

C
M

LL
 r

el
at

iv
e

to
 D

ef
au

lt

Data Set

Nonzero
Prune
Prune−10

DT-BLM

Prune−5

 −0.015

 −0.01

 −0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
C

M
LL

 r
el

at
iv

e
to

 D
ef

au
lt

Data Set

Nonzero
Prune
Prune−10

Figure 2: Performance of different feature conversion methods with DTSL (top) and DT-
BLM (bottom), relative to Default. Lower values indicate better performance.
Positive values (above the x-axis) indicate methods that performed worse than
Default, and negative values (below the x-axis) indicate methods that performed
better than Default.

518

Improving Markov Network Structure Learning Using Decision Trees

For DTSL, Prune is more accurate than Default on 15 data sets. Prune-10 rarely
improved on the accuracy of Prune and Prune-5 often did worse. Nonzero was the most
accurate method on seven data sets for DTSL. Overall, Prune did better on more data
sets, but Nonzero worked especially well on Audio, Jester, and Netflix, three relatively
dense collaborative filtering data sets. When we investigated these data sets further, we
found that Default, Prune, and Prune-10 were overfitting, since they obtained better
PLLs than Nonzero on the training data but worse PLLs on the validation data. Prune-
5 was underfitting, obtaining worse PLLs than Nonzero on both training and validation
data. We hypothesize that Nonzero provides beneficial regularization by removing many
features. Long features are more likely to have one or more false variable constraints, and
are therefore more likely to be removed by Nonzero. If these longer features are the source
of the overfitting problems, then placing a stricter prior on the weights of longer features
might offer a similar benefit.

The results on DT-BLM are similar, as shown in the right side of Table 2 and the bottom
half of Figure 2. For DT-BLM, Prune is more accurate on 18 data sets, although many of
these differences are very small. Nonzero is most accurate on five data sets, but Prune
is relatively close on three of them. On average, the additional feature refinement done
by DT-BLM seems to render it somewhat less sensitive to the choice of feature generation
method.

Our tuning procedure uses the PLL of the validation set for model selection. Thus, the
model we select may be different from the one with the best NCMLL on the test set, since
it is selected according to a different metric on different evaluation data. For both DTSL
and DT-BLM, the method selected with the validation set (underlined in Table 2) is often
the same as the one with the best NCMLL (bold in Table 2). When they are different, the
NCMLL of the alternative model is very close. This suggests that PLL does a reasonably
good job of model selection for DTSL and DT-BLM on these data sets.

For DTSL, additional characteristics of the features generated by each method are shown
in Figures 3 and 4. “Average feature length” is the average number of conditions per feature.
The Prune method leads to roughly twice as many features as Default, which is what one
would expect, since half of the nodes in a balanced binary tree are leaves and the other half
are interior nodes. Nonzero typically yields the shortest and the fewest rules, as expected.

7.4 Accuracy

We then compared DTSL, DT-BLM, and DT+L1 to three standard Markov network struc-
ture learners: L1-regularized logistic regression (Ravikumar et al., 2010), BLM (Davis and
Domingos, 2010), and DP (Della Pietra et al., 1997). For DTSL and DT-BLM, we used the
feature generation method that performed best on the validation set. In some cases, such
as KDDCup 2000, this was not the method that performed best on the test data.

Figure 5 shows how DTSL, DT-BLM, DT+L1, and the three baselines compare in
terms of NCMLL. For each data set, bars above the x-axis indicate algorithms that perform
worse than DTSL, and bars below the x-axis indicate algorithms that perform better. Raw
numbers for NCMLL and NPLL can be found in Table 3. NPLL is the pseudo-log-likelihood
divided by the number of variables in the domain. The NPLL results are qualitatively similar
to the NCMLL results, except for Pumsb Star and DNA, where L1 ranks better according

519

Lowd and Davis

T
est

set
C

M
L

L
T

est
set

N
P

L
L

D
a
ta

S
et

D
P

B
L

M
L

1
D

T
S

L
D

T
-B

L
M

D
T

+
L

1
D

P
B

L
M

L
1

D
T

S
L

D
T

-B
L

M
D

T
+

L
1

N
L
T

C
S

-0
.3

2
6

-0.32
8

-0.32
7

-0
.3

2
5

-0
.3
2
4

-0
.3

2
5

-0
.3

0
7

-0
.3

1
1

-0.309
-0.309

-0
.3
0
7

-0.308
M

S
N

B
C

-0
.3

4
9

-0.34
4

-0.36
9

-0
.3

3
7

-0
.3
3
6

-0
.3
3
6

-0
.2

9
9

-0
.2

8
8

-0.356
-0
.2
5
2

-0
.2
5
2

-0
.2
5
2

K
D

D
C

u
p

2
0
00

-0
.0

3
3

-0
.0
3
2

-0.03
3

-0
.0
3
2

-0
.0
3
2

-0
.0
3
2

-0
.0

3
4

-0
.0

3
2

-0.032
-0.032

-0
.0
3
1

-0
.0
3
1

P
lan

ts
-0

.1
5
9

-0.15
1

-0.15
6

-0
.1

4
3

-0
.1
4
1

-0
.1
4
1

-0
.1

3
5

-0
.1

3
3

-0.136
-0.124

-0
.1
2
2

-0
.1
2
2

A
u

d
io

-0
.3

9
2

-0.37
5

-0
.3
7
0

-0
.3

7
5

-0
.3

7
3

-0
.3
7
0

-0
.3

8
5

-0
.3

6
8

-0
.3
6
2

-0.370
-0.367

-0.366
J
ester

-0
.5

3
7

-0.53
0

-0
.4
9
6

-0
.5

0
5

-0
.5

0
3

-0
.5

0
4

-0
.5

2
8

-0
.5

2
6

-0
.4
8
8

-0.498
-0.497

-0.492
N

etfl
ix

-0
.5

7
4

-0.56
5

-0
.5
2
3

-0
.5

3
2

-0
.5

3
2

-0
.5

2
5

-0
.5

6
1

-0
.5

6
0

-0
.5
1
1

-0.523
-0.524

-0.514
A

ccid
en

ts
-0

.2
7
0

-0.33
9

-0.14
9

-0
.1

4
7

-0
.1

4
6

-0
.1
4
1

-0
.2

4
0

-0
.2

9
6

-0.112
-0
.1
0
5

-0.106
-0
.1
0
5

R
etail

-0
.0

7
9

-0.07
9

-0.07
9

-0
.0
7
8

-0
.0
7
8

-0
.0
7
8

-0
.0

7
5

-0
.0

7
7

-0
.0
7
6

-0
.0
7
6

-0
.0
7
6

-0
.0
7
6

P
u

m
sb

S
tar

-0
.1

8
3

-0.62
3

-0.08
5

-0
.1

0
1

-0
.1

0
0

-0
.0
8
4

-0
.1

4
5

-0
.1

7
6

-0
.0
5
9

-0
.0
5
9

-0
.0
5
9

-0
.0
5
9

D
N

A
-0

.5
4
1

-0.55
4

-0
.3
8
4

-0
.3
8
4

-0
.3
8
4

-0
.3
8
4

-0
.5

2
3

-0
.5

4
5

-0.326
-0
.3
2
3

-0
.3
2
3

-0
.3
2
3

K
o
sarek

-0
.0

5
7

-0.05
4

-0.05
4

-0
.0

5
3

-0
.0

5
3

-0
.0
5
2

-0
.0

5
6

-0
.0

5
3

-0.052
-0.052

-0
.0
5
1

-0
.0
5
1

M
S

W
eb

-0
.0

3
1

-0.03
0

-0.03
0

-0
.0
2
9

-0
.0
2
9

-0
.0
2
9

-0
.0

3
0

-0
.0

2
9

-0.030
-0
.0
2
7

-0
.0
2
7

-0
.0
2
7

B
o
o
k

-0
.0

7
8

-0.06
9

-0.07
3

-0
.0

6
9

-0
.0
6
8

-0
.0
6
8

-0
.0

7
6

-0
.0

6
8

-0.073
-0.068

-0
.0
6
7

-0
.0
6
7

E
ach

M
ov

ie
-0

.1
3
4

-0.11
7

-0.10
4

-0
.1

0
2

-0
.1
0
0

-0
.1
0
0

-0
.1

3
2

-0
.1

1
6

-0.101
-0.102

-0
.0
9
9

-0
.0
9
9

W
eb

K
B

-0
.2

1
0

-0.19
6

-0.17
9

-0
.1

7
9

-0
.1

7
7

-0
.1
7
6

-0
.2

0
1

-0
.1

9
3

-0.175
-0.175

-0.173
-0
.1
7
2

R
eu

ters-5
2

-0
.1

1
9

-0.10
2

-0
.0
9
1

-0
.0

9
2

-0
.0

9
2

-0
.0
9
1

-0
.1

3
0

-0
.1

0
1

-0.090
-0.091

-0
.0
8
9

-0.090
2
0

N
ew

sgrou
p

s
-0

.1
8
8

-0.17
6

-0
.1
6
5

-0
.1

6
9

-0
.1
6
5

-0
.1

6
6

-0
.1

7
2

-0
.1

7
5

-0
.1
6
3

-0.167
-0
.1
6
3

-0.166
B

B
C

-0
.2

5
8

-0.25
1

-0.24
5

-0
.2
3
7

-0
.2
3
7

-0
.2

4
0

-0
.2

5
0

-0
.2

4
7

-0.246
-0.236

-0
.2
3
5

-0.241
A

d
-0

.0
3
3

-0.02
5

-0
.0
0
6

-0
.0

1
7

-0
.0

2
2

-0
.0
0
6

-0
.0

3
3

-0
.0

0
8

-0
.0
0
4

-0.008
-0.008

-0
.0
0
4

T
a
b

le
3:

T
est

set
N

C
M

L
L

an
d

N
P

L
L

for
all

algorith
m

s.
T

h
e

D
T

S
L

featu
re

gen
eration

m
eth

o
d

w
as

selected
u

sin
g

th
e

valid
ation

set.
T

h
e

b
est

resu
lt

for
ea

ch
m

etric
is

sh
ow

n
in

b
old

.
T

h
e

m
eth

o
d

w
ith

th
e

b
est

valid
ation

set
P

L
L

is
u

n
d

erlin
ed

.

520

Improving Markov Network Structure Learning Using Decision Trees

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 F
ea

tu
re

 L
en

gt
h

Data Set

Default
Nonzero

Prune
Prune-10
Prune-5

Figure 3: Average feature length for each DTSL feature generation method on each data
set.

0

10,000

20,000

30,000

40,000

50,000

60,000

 2 4 6 8 10 12 14 16 18 20

N
um

be
r

of
 F

ea
tu

re
s

Data Set

Default
Nonzero

Prune
Prune-10
Prune-5

Figure 4: Number of features for each DTSL feature generation method on each data set.

to NCMLL than NPLL, and 20 Newsgroups and BBC, where BLM ranks worse according
to NCMLL than NPLL. Table 3 also shows which model has the best validation set NPLL.
Note that in 19 out of the 20 data sets this corresponds to the model with the best NCMLL,
indicating that PLL is a good objective function to optimize for this evaluation metric. We
focus our subsequent discussion on the NCMLL results, which we believe to be a better
measure of model accuracy than NPLL for typical queries.

Overall, DP and BLM are fairly inaccurate, DTSL and L1 are roughly comparable,
and DT-BLM is slightly better than DTSL. DT+L1 usually does at least as well as both
DTSL and L1, making it the most reliably accurate algorithm overall. DTSL is always

521

Lowd and Davis

 −0.02

 −0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
eg

at
iv

e
N

C
M

LL
 r

el
at

iv
e

to
 D

T
S

L

Data Set

DP
BLM
L1
DT−BLM
DT+L1

Figure 5: Normalized negative CMLL, relative to DTSL. Lower values indicate better per-
formance. Positive values (above the x-axis) indicate methods that performed
worse than DTSL, and negative values (below the x-axis) indicate methods that
performed better than DTSL.

more accurate than DP and BLM, except for three data sets where it is tied with BLM.
DTSL is significantly more accurate than both DP and BLM (p < 0.001) according to a
Wilcoxon signed-ranks test in which the test set NCMLL of each data set appears as one
sample in the significance test. DT-BLM represents a modest improvement in accuracy over
DTSL, performing slightly better than DTSL on 11 data sets and worse on only one. On the
remaining eight data sets, the difference in NCMLL was less than 0.001. A Wilcoxon signed-
ranks test indicates that DT-BLM is significantly more accurate than DTSL (p < 0.05).
Since DT+L1 includes the features from both DTSL and L1, it usually does at least as well
as both methods, and sometimes better. DT+L1 is the most accurate method (including
ties) on 15 out of 20 data sets, while DT-BLM is one of the most accurate methods on only
11 data sets, DTSL on five, and L1 on seven. DT+L1 is more accurate than both L1 and
DTSL (p < 0.05) according to a Wilcoxon signed-ranks test.

Comparisons between DTSL or DT-BLM and L1 are interesting because they demon-
strate the relative strengths of using trees versus logistic regression for generating features.
DTSL performs better than L1 on 11 data sets and worse on seven. Similarly, DT-BLM
performs better than L1 on 12 data sets and worse on six. These differences are not signifi-
cant according to a Wilcoxon signed-ranks test. The relative performance of DTSL and L1
seems to vary greatly from data set to data set. To better understand what makes DTSL
perform better or worse than L1, we examined the average length of the features learned by
DTSL. For the domains where DTSL performs worse than L1, the average feature length

522

Improving Markov Network Structure Learning Using Decision Trees

is 3.22, indicating relatively shallow trees with simple features. For the domains where
DTSL performs better, the average feature length is 6.04. This supports the hypothesis
that DTSL does better on domains with higher-order interactions that can be discovered
by decision trees, while L1 does better on domains with many low-order interactions that
can be modeled as pairwise features. DT-BLM’s features show a similar trend. Figure 6
shows the average feature length for each algorithm on each data set.

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 F
ea

tu
re

 L
en

gt
h

Data Set

DP
BLM

L1
DTSL

DT-BLM
DT+L1

Figure 6: Average feature length for each algorithm on each data set.

We also examined the number of features learned by each algorithm (see Figure 7).
When DTSL learned many more features than L1, it typically did better than L1 (NLTCS,
MSNBC, KDDCup, Plants, Kosarek, EachMovie) or the same (DNA, WebKB). However,
when L1 learned many more features than DTSL, it sometimes did better (Reuters-52, Ad)
and sometimes did worse (Retail, MSWeb, Book). Thus, the number of features learned
does not appear to correlate strongly with the relative performance of these two algorithms.

Figures 8 and 9 contain learning curves comparing DTSL and DT-BLM to L1. For the
most part, all three algorithms exhibit a similar dependence on the amount of training data.
The exceptions to this are Pumsb Star and Ad, where DTSL shows signs of overfitting. The
relative performance of L1 goes up and down somewhat in NLTCS, DNA, EachMovie, and
20 Newsgroups, but in most data sets the ranking of the methods is stable across all amounts
of training data. For some data sets (MSNBC, KDDCup 2000, Plants), L1 appears to have
converged to a different asymptotic error rate than DTSL, due to its different learning
bias. This is consistent with the hypothesis that some data sets are simply better suited
to the learning bias of L1, and some are better suited to the longer conjunctive features
representable by trees.

7.5 Learning Time

A comparison of running times is shown in Figure 10 (excluding DP), with raw numbers in
Table 4. The timing results shown include parameter tuning. L1 was fastest on nine data
sets; DTSL was fastest on 10; and BLM was fastest on one data set (Ad). Results excluding

523

Lowd and Davis

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

 2 4 6 8 10 12 14 16 18 20

N
um

be
r

of
 F

ea
tu

re
s

Data Set

DP
BLM

L1
DTSL

DT-BLM
DT+L1

Figure 7: Number of features for each algorithm on each data set.

tuning time are similar—L1 is fastest on six data sets; DTSL on 13; and BLM on one. For
DT+L1, we report the total time required for learning both the DTSL and L1 structures,
as well as the additional time required for weight learning.

We use the geometric mean running time of each algorithm to summarize performance
over all data sets. On average, DTSL is 5% slower than L1, 4.6 times faster than BLM, and
21.7 times faster than DP. DTSL is significantly faster than both BLM and DP according
to a Wilcoxon signed-ranks test on the log of the training time (p < 0.05). Although the
geometric mean running time of DTSL is slightly worse than L1’s, its arithmetic mean is
slightly better, mainly because DTSL tends to be faster on the larger, slower data sets such
as 20 Newsgroups and BBC.

DT-BLM is 19.7 times slower than DTSL and 10.6 times slower than BLM; these differ-
ences are also significant under the same test (p < 0.01). DT-BLM is slower than BLM for
two reasons. First, some data sets have more DTSL features than examples in the original
training data. For example, BBC has only 1,670 examples but results in 5,475 features
in DTSL’s model. Since DT-BLM runs on DTSL features instead of the original training
data, more features means a longer running time. Second, DT-BLM is more sensitive to the
width of the Gaussian prior than BLM is, so DT-BLM has one extra parameter to tune. If
we instead use the best Gaussian prior width from DTSL, the algorithm runs roughly four
times faster, but remains slower than BLM.

Table 5 shows a division of the total learning time, including tuning, divided into the
time spent learning the structure (i.e., the features) and the time spent on weight learning.
With respect to the number of variables, DTSL has better scaling characteristics for feature
generation than Ravikumar et al.’s L1 approach. The number of variables seems to have a
greater effect on run time than the number of examples. Each additional variable requires
learning one extra model. Furthermore, each individual learning task is more complex
because the target variable can depend on one additional input variable. The most striking
observation is that the majority of time is spent learning the feature weights. For L1, on

524

Improving Markov Network Structure Learning Using Decision Trees

NLTCS MSNBC KDDCup 2000

-0.39
-0.38
-0.37
-0.36
-0.35
-0.34
-0.33
-0.32

 1 2 5 10 16.181

C
M

L
L

Training Examples in 1000s

-0.41
-0.40
-0.39
-0.38
-0.37
-0.36
-0.35
-0.34
-0.33

 0 1 2 5 10 50 100 291.326

C
M

L
L

Training Examples in 1000s

-0.04
-0.04
-0.04
-0.04
-0.04
-0.03
-0.03
-0.03

 0 1 2 5 10 50 100 180.092

C
M

L
L

Training Examples in 1000sPlants Audio Jester

-0.26

-0.24

-0.22

-0.20

-0.18

-0.16

-0.14

 1 2 5 10 17.412

C
M

L
L

Training Examples in 1000s

-0.52
-0.50
-0.48
-0.46
-0.44
-0.42
-0.40
-0.38
-0.36

 1 2 5 10 15

C
M

L
L

Training Examples in 1000s

-0.62
-0.60
-0.58
-0.56
-0.54
-0.52
-0.50
-0.48

 1 2 5 9

C
M

L
L

Training Examples in 1000sNetflix Accidents Retail

-0.64

-0.62

-0.60

-0.58

-0.56

-0.54

-0.52

 1 2 5 10 15

C
M

L
L

Training Examples in 1000s

-0.26

-0.24

-0.22

-0.20

-0.18

-0.16

-0.14

 1 2 5 12.758

C
M

L
L

Training Examples in 1000s

-0.10
-0.10
-0.09
-0.09
-0.09
-0.09
-0.09
-0.08
-0.08
-0.08
-0.08

 1 2 5 10 22.041

C
M

L
L

Training Examples in 1000sPumsb Star DNA Kosarek

-0.17
-0.16
-0.15
-0.14
-0.13
-0.12
-0.11
-0.10
-0.09
-0.08

 1 2 5 12.262

C
M

L
L

Training Examples in 1000s

-0.45
-0.44
-0.43
-0.42
-0.41
-0.40
-0.39
-0.38

 1 1.6

C
M

L
L

Training Examples in 1000s

-0.07

-0.07

-0.06

-0.06

-0.05

-0.05

 1 2 5 10 20 33.375

C
M

L
L

Training Examples in 1000s

Figure 8: NCMLL vs. thousands of training examples for DT+L1 (circles), DT-BLM
(pluses), DTSL (x marks), and L1 (boxes) on the first 12 data sets. Higher
is better.

525

Lowd and Davis

MSWeb Book EachMovie

-0.04
-0.04
-0.04
-0.04
-0.04
-0.03
-0.03
-0.03
-0.03

 1 2 5 10 20 29.441

C
M

L
L

Training Examples in 1000s

-0.10

-0.09

-0.08

-0.08

-0.07

-0.07

-0.06

 1 2 5 8.7

C
M

L
L

Training Examples in 1000s

-0.15
-0.14
-0.14
-0.13
-0.13
-0.12
-0.12
-0.11
-0.11
-0.10
-0.10
-0.09

 1 2 4 4.524

C
M

L
L

Training Examples in 1000sWebKB Reuters-52 20 Newsgroups

-0.22
-0.21
-0.21
-0.20
-0.20
-0.19
-0.19
-0.18
-0.18
-0.17

 1 2 2.803

C
M

L
L

Training Examples in 1000s

-0.13
-0.12
-0.12
-0.11
-0.11
-0.10
-0.10
-0.09
-0.09

 1 2 5 6.532

C
M

L
L

Training Examples in 1000s

-0.20
-0.20
-0.19
-0.18
-0.18
-0.17
-0.17
-0.16
-0.16

 1 2 5 11.293

C
M

L
L

Training Examples in 1000sBBC Ad

-0.27
-0.27
-0.26
-0.26
-0.25
-0.24
-0.24
-0.23

 1 1.67

C
M

L
L

Training Examples in 1000s

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

 1 2 2.461

C
M

L
L

Training Examples in 1000s

Figure 9: NCMLL vs. thousands of training examples for DT+L1 (circles), DT-BLM
(pluses), DTSL (x marks), and L1 (boxes) on the last 8 data sets. Higher is
better.

average, weight learning accounts for 93.8% of the total run time. For DTSL, this rises to
99.1% of the total run time. The factor that most influences weight learning time is the
number of features: models with more features lead to longer weight learning times. Thus,
more efficient weight learning techniques would substantially improve the running time of
both structure learning algorithms.

7.6 Discussion

Both DTSL and L1 are typically faster and more accurate than DP and BLM. DTSL
excels in domains that depend on higher-order interactions, while L1 performs better in
domains that require many pairwise interactions. Therefore, neither algorithm dominates
or subsumes the other; rather, they discover complementary types of structure.

DTSL has two weaknesses. The first is a higher risk of overfitting, since it often generates
many very specialized features. For the most part, this can be remedied with careful tuning

526

Improving Markov Network Structure Learning Using Decision Trees

102

103

104

105

106

102 103 104 105 106

B
L

M
 r

un
 ti

m
e

(s
)

DTSL run time (s)

102

103

104

105

106

102 103 104 105 106

L
1

ru
n

tim
e

(s
)

DTSL run time (s)

103

104

105

106

107

102 103 104 105 106

D
T

-B
L

M
 r

un
 ti

m
e

(s
)

DTSL run time (s)

102

103

104

105

106

102 103 104 105 106

D
T

+
L

1
ru

n
tim

e
(s

)

DTSL run time (s)

Figure 10: Running time on each data set in seconds (y-axis) relative to DTSL’s running
time (x-axis). Points below the line y=x represent data sets where DTSL was
slower than the other algorithm. All times include tuning.

on a validation set. The second is a limited ability to capture many independent interactions.
For instance, to capture pairwise interactions between a variable and k other variables would
require a decision tree with 2k leaves, even though such interactions could be represented
exactly by O(k) features.

DT-BLM extends DTSL by further refining the features it generates, merging them
into a smaller set of more essential features. This leads to modest but consistent gains in
accuracy over DTSL at the cost of significantly longer learning times.

527

Lowd and Davis

Data Set DP BLM L1 DTSL DT-BLM DT+L1
NLTCS 1,934 8,836 157 1,089 21,430 2,001
MSNBC 438,611 116,315 782 10,597 2,533,367 19,606
KDDCup 2000 335,398 51,744 4,036 23,201 1,012,635 30,463
Plants 423,593 321,880 6,474 16,118 682,405 24,145
Audio 653,111 402,441 8,611 28,738 155,970 45,829
Jester 583,969 341,830 23,769 13,771 485,892 38,078
Netflix 653,099 472,792 49,582 26,560 962,730 76,944
Accidents 637,574 364,282 41,982 25,436 120,434 69,045
Retail 279,507 384,011 10,698 25,030 405,059 36,090
Pumsb Star 707,530 489,854 66,971 17,578 318,017 87,292
DNA 197,406 1,666 4,570 661 6,635 7,365
Kosarek 626,336 130,962 21,353 47,363 1,947,259 69,363
MSWeb 426,199 83,727 30,393 47,363 2,635,238 78,579
Book 641,338 72,398 38,444 40,409 1,405,667 82,966
EachMovie 694,509 66,983 42,923 25,873 1,401,549 70,613
WebKB 715,885 26,754 63,010 22,113 1,192,672 86,727
Reuters-52 790,165 144,641 118,166 82,467 202,551 202,237
20 Newsgroups 792,268 520,361 364,512 235,778 1,201,506 601,137
BBC 864,000 8,944 56,293 8,661 12,352 66,197
Ad 719,893 6,196 23,375 15,373 354,843 40,083
Arith. Mean 559,116 200,831 48,805 35,709 852,911 86,738
Geom. Mean 416,573 87,876 18,268 19,172 378,405 48,662

Table 4: Run time in seconds, including parameter tuning. The best run time is shown in
bold.

DT+L1 extends DTSL by including the features from L1, allowing it to capture many
pairwise interactions and some higher-order interactions in the same model. As a result,
DT+L1 does well overall across all data sets. DT+L1 is slower than DTSL but still much
faster than DT-BLM. The accuracy of DT+L1 could perhaps be improved by performing
additional tuning, rather than simply combining the models learned by DTSL and L1, or
by using the features from DT-BLM. However, these modifications would also increase the
learning time. The main risk of the expanded feature set used by DT+L1 is overfitting,
which could explain its slightly worse performance on Jester and BBC.

8. Conclusions and Future Work

In this paper, we presented three new methods for using decision trees to learn the structure
of Markov networks: DTSL, DT-BLM, and DT+L1.

DTSL is similar to the approach of Ravikumar et al. (2010), except that it uses decision
trees in place of L1-regularized logistic regression. This allows it to learn longer features
capturing interactions among more variables, which yields substantially better performance
in several domains. DTSL is also similar to methods for learning dependency networks with
tree conditional probability distributions (Heckerman et al., 2000). However, dependency
networks may not represent consistent probability distributions and require that inference

528

Improving Markov Network Structure Learning Using Decision Trees

L1 Learning Times DTSL Learning Times

Data Set Structure Weights Total Structure Weights Total

NLTCS 7 151 157 2 1,087 1,089
MSNBC 155 626 782 126 10,471 10,597
KDDCup 2000 1,469 2,567 4036 780 22,421 23,201
Plants 126 6,348 6,474 34 16,084 16,118
Audio 138 8,473 8,611 49 28,688 28,738
Jester 79 23,690 23,769 27 13,745 13,771
Netflix 157 49,426 49,582 47 26,513 26,560
Accidents 213 41,769 41,982 43 25,393 25,436
Retail 306 10,392 10,698 112 24,918 25,030
Pumsb Star 293 66,679 66,971 43 17,534 17,578
DNA 38 4,532 4,570 6 655 661
Kosarak 1,210 20,143 21,353 238 47,125 47,363
MSWeb 2,254 28,140 30,393 485 46,878 47,363
Book 1,694 36,751 38,444 256 40,153 40,409
EachMovie 1,321 41,602 42,923 191 25,681 25,873

WebKB 2,052 60,959 63,010 212 21,901 22,113
Reuters-52 5,713 112,453 118,166 589 81,878 82,467
20 Newsgroups 9,971 354,541 364,512 1,455 234,323 235,778
BBC 1,555 54,738 56,293 173 8,488 8,661
Ad 4,510 18,865 23,375 740 14,634 15,373

Arith. Mean 1,663 47,142 48,805 280 35,428 35,709
Geom. Mean 507 17,060 18,267 110 18,987 19,173

Table 5: Run time for Ravikumar et al.’s algorithm and DTSL divided into time spent on
structure learning and weight learning. Time is in seconds and includes parameter
tuning.

be done with Gibbs sampling, while the Markov networks learned by DTSL have neither of
those limitations.

In terms of speed, we found that DTSL and L1-regularized logistic regression (Raviku-
mar et al., 2010) had similar speed, while BLM (Davis and Domingos, 2010) and Della
Pietra et al. (1997) were significantly slower. With a faster weight learning method, this
comparison would be even more favorable to DTSL and L1, since most of their time was
spent on the final weight learning step. In terms of accuracy, DTSL is comparable in ac-
curacy to other approaches, placing ahead of all three baselines on nine out of 20 data
sets.

The other two methods are extensions of DTSL that combine it with other structure
learning algorithms. DT-BLM builds on DTSL by running the BLM bottom-up structure
learning algorithm on the features generated by DTSL. This usually leads to slightly better
accuracy, but is also much slower. DT+L1 extends DTSL by adding the features learned by
L1-regularized logistic regression. This hybrid approach is very effective: DT+L1 is one of
the most accurate methods on 15 out of 20 data sets and runs much faster than DT-BLM.

529

Lowd and Davis

Future work includes exploring other methods of learning local structure, such as rule
sets, boosted decision trees, and neural networks; determining sufficient conditions for the
asymptotic consistency of local learning; further improving speed, perhaps by using frequent
itemsets; and incorporating faster methods for weight learning, since structure learning is
no longer the bottleneck.

Acknowledgments

The authors would like to thank the anonymous reviewers for many helpful suggestions.
We also thank Jan Van Haaren for his valuable feedback on the article. DL is partly
supported by ARO grant W911NF-08-1-0242 and NSF grant IIS-1118050. The views and
conclusions contained in this document are those of the authors and should not be inter-
preted as necessarily representing the official policies, either expressed or implied, of ARO
or the United States Government. JD is partially supported by the research fund KU Leu-
ven (CREA/11/015 and OT/11/051), and EU FP7 Marie Curie Career Integration Grant
(#294068).

References

G. Andrew and J. Gao. Scalable training of l1-regularized log-linear models. In Proceedings
of the Twenty-Fourth International Conference on Machine Learning, pages 33–40. ACM
Press, 2007.

J. Besag. Statistical analysis of non-lattice data. The Statistician, 24:179–195, 1975.

C. Blake and C. J. Merz. UCI repository of machine learning databases. Machine-readable
data repository, Department of Information and Computer Science, University of Cali-
fornia at Irvine, Irvine, CA, 2000. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

F. Bromberg, D. Margaritis, and V. Honavar. Efficient Markov network structure discovery
using independence tests. Journal of Artificial Intelligence Research, 35(2):449–484, 2009.

D. Chickering, D. Heckerman, and C. Meek. A Bayesian approach to learning Bayesian
networks with local structure. In Proceedings of the Thirteenth Conference on Uncertainty
in Artificial Intelligence, pages 80–89, Providence, RI, 1997. Morgan Kaufmann.

J. Davis and P. Domingos. Bottom-up learning of Markov network structure. In Proceedings
of the Twenty-Seventh International Conference on Machine Learning, pages 271–278,
Haifa, Israel, 2010. ACM Press.

S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19:380–392, 1997.

P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of the Sixth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 71–80, Boston, MA, 2000. ACM Press.

530

Improving Markov Network Structure Learning Using Decision Trees

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Liblinear: A library for
large linear classification. Journal of Machine Learning Research, (9):1871–1874, 2008.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain Monte Carlo
in Practice. Chapman and Hall, London, UK, 1996.

K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time collabo-
rative filtering algorithm. Information Retrieval, 4(2):133–151, 2001.

D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Dependency
networks for inference, collaborative filtering, and data visualization. Journal of Machine
Learning Research, 1:49–75, 2000.

G. Hulten and P. Domingos. Mining complex models from arbitrarily large databases in
constant time. In Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 525–531, Edmonton, Canada, 2002. ACM
Press.

R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng. KDD-Cup 2000 organizers’
report: Peeling the onion. SIGKDD Explorations, 2(2):86–98, 2000.

A. Kulesza and F. Pereira. Structured learning with approximate inference. In Advances
in Neural Information Processing Systems 20, pages 785–792, 2007.

S.-I. Lee, V. Ganapathi, and D. Koller. Efficient structure learning of Markov networks
using L1-regularization. In Advances in Neural Information Processing Systems 19, pages
817–824. MIT Press, 2007.

D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical Programming, 45(3):503–528, 1989.

D. Lowd and J. Davis. Learning Markov network structure with decision trees. In Proceed-
ings of the 10th IEEE International Conference on Data Mining (ICDM), pages 334–343,
Sydney, Australia, 2010. IEEE Computer Society Press.

A. McCallum. Efficiently inducing features of conditional random fields. In Proceedings
of the Nineteenth Conference on Uncertainty in Artificial Intelligence, pages 403–410,
Acapulco, Mexico, 2003. Morgan Kaufmann.

K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approximate inference:
An empirical study. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial
Intelligence, pages 467–475. Morgan Kaufmann, Stockholm, Sweden, 1999.

P. Ravikumar, M. J. Wainwright, and J. Lafferty. High-dimensional ising model selection
using L1-regularized logistic regression. Annals of Statistics, 38(3):1287–1319, 2010.

M. Schmidt and K. Murphy. Convex structure learning in log-linear models: Beyond pair-
wise potentials. In Proceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 709–716, 2010.

531

Lowd and Davis

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. Springer, New
York, NY, 1993.

I. Tsamardinos, L. Brown, and C. Aliferis. The max-min hill-climbing Bayesian network
structure learning algorithm. Machine Learning, 65(1):31–78, 2006.

J. Van Haaren and J. Davis. Markov network structure learning: A randomized feature gen-
eration approach. In Proceedings of the Twenty-Sixth National Conference on Artificial
Intelligence, pages 1148–1154. AAAI Press, 2012.

C. Ziegler, S. McNee, J. Konstan, and G. Lausen. Improving recommendation lists through
topic diversification. In Proceedings of the Fourteenth International World Wide Web
Conference, pages 22–32, 2005.

532

Journal of Machine Learning Research 15 (2014) 533-564 Submitted 10/11; Revised 8/13; Published 2/14

Ground Metric Learning

Marco Cuturi mcuturi@i.kyoto-u.ac.jp

David Avis avis@i.kyoto-u.ac.jp

Graduate School of Informatics

Kyoto University

36-1 Yoshida-Honmachi, Sakyo-ku

Kyoto 606-8501, Japan

Editor: Gert Lanckriet

Abstract

Optimal transport distances have been used for more than a decade in machine learning to
compare histograms of features. They have one parameter: the ground metric, which can
be any metric between the features themselves. As is the case for all parameterized dis-
tances, optimal transport distances can only prove useful in practice when this parameter is
carefully chosen. To date, the only option available to practitioners to set the ground met-
ric parameter was to rely on a priori knowledge of the features, which limited considerably
the scope of application of optimal transport distances. We propose to lift this limitation
and consider instead algorithms that can learn the ground metric using only a training set
of labeled histograms. We call this approach ground metric learning. We formulate the
problem of learning the ground metric as the minimization of the difference of two convex
polyhedral functions over a convex set of metric matrices. We follow the presentation of
our algorithms with promising experimental results which show that this approach is useful
both for retrieval and binary/multiclass classification tasks.

Keywords: optimal transport distance, earth mover’s distance, metric learning, metric
nearness

1. Introduction

We consider in this paper the problem of learning a distance for normalized histograms. Nor-
malized histograms, namely finite-dimensional vectors with nonnegative coordinates whose
sum is equal to 1, arise frequently in natural language processing, computer vision, bioinfor-
matics and more generally areas involving complex datatypes. Objects of interest in such
areas are usually simplified and are represented as a bag of smaller features. The occur-
rence frequencies of each of these features in the considered object can be then represented
as a histogram. For instance, the representation of images as histograms of pixel colors,
SIFT or GIST features (Lowe 1999, Oliva and Torralba 2001, Douze et al. 2009); texts as
bags-of-words or topic allocations (Joachims 2002, Blei et al. 2003, Blei and Lafferty 2009);
sequences as n-grams counts (Leslie et al. 2002) and graphs as histograms of subgraphs
(Kashima et al. 2003) all follow this principle.

Various distances have been proposed in the statistics and machine learning literatures
to compare two histograms (Amari and Nagaoka 2001, Deza and Deza 2009, §14). Our
focus is in this paper is on the family of optimal transport distances, which is both well

c©2014 Marco Cuturi and David Avis.

Cuturi and Avis

motivated theoretically (Villani 2003, Rachev 1991) and works well empirically (Pele and
Werman 2009). Optimal transport distances are particularly popular in computer vision,
where, following the influential work of Rubner et al. (1997), they were called Earth Mover’s
Distances (EMD).

Optimal transport distances can be thought of as meta-distances that build upon a
metric on the features to form a distance on histograms of features. Such a metric between
features, which is known in the computer vision literature as the ground metric,1 is the
only parameter of optimal transport distances. In their seminal paper, Rubner et al. (2000)
argue that, “in general, the ground distance can be any distance and will be chosen according
to the problem at hand”. As a consequence, the earth mover’s distance has only been
applied to histograms of features when a good candidate for the ground metric was available
beforehand. We argue that this is problematic in two senses: first, this restriction limits
the application of optimal transport distances to problems where such a knowledge exists.
Second, even when such an a priori knowledge is available, we argue that there cannot
be a “universal” ground metric that will be suitable for all learning problems involving
histograms on such features. As with all parameters in machine learning algorithms, the
ground metric should be selected adaptively using data samples. The goal of this paper is
to propose ground metric learning algorithms to do so.

This paper is organized as follows: after providing background and a few results on
optimal transport distances in Section 2, we propose in Section 3 a criterion to select a
ground metric given a training set of labeled histograms. We then show how to obtain a local
minimum for that criterion using a projected subgradient descent algorithm in Section 4.
We provide a review of other relevant distances and metric learning techniques in Section 5,
in particular Mahalanobis metric learning techniques (Xing et al. 2003, Weinberger et al.
2006, Weinberger and Saul 2009, Davis et al. 2007) which have inspired much of this work.
We provide empirical evidence in Section 6 that the metric learning framework proposed
in this paper compares favorably to competing tools in terms of retrieval and classification
performance. We conclude this paper in Section 7 by providing a few research avenues that
could alleviate the heavy computational price tag of these techniques.

Notations: We consider throughout this paper histograms of length d ≥ 1. We use
upper case letters A,B, . . . for d × d matrices. Bold upper case letters A,B, . . . stand for
larger matrices; lower case letters r, c, . . . are used for vectors of Rd or simply scalars in
R. An upper case letter M and its bold lower case m stand for the same matrix written
in d× d matrix form or d2 vector form by stacking successively all its column vectors from
the left-most on the top to the right-most at the bottom. The notations m and m stand
respectively for the strict upper and lower triangular parts of M expressed as vectors of
size

(
d
2

)
. The order in which these elements are enumerated must be coherent in the sense

that the upper triangular part of MT expressed as a vector must be equal to m. Finally,
we use the Frobenius dot-product for both matrix and vector representations, written as

〈A,B 〉 def
= tr(ATB) = aTb.

1. Since the terms metric and distance are interchangeable mathematically speaking, we will always use
the term metric for a metric between features and the term distance for the resulting transport distance
between histograms, or more generally any other distance on histograms.

534

Ground Metric Learning

2. Optimal Transport Between Histograms

We recall in this section a few facts about optimal transport between two histograms. A
more general and technical introduction is provided by Villani (2003, Introduction and
§7); practical insights and motivation for the application of optimal transport distances in
machine learning can be found in Rubner et al. (2000); a recent review of extensions and
acceleration techniques to compute the EMD can be found in Pele and Werman (2009, §2).

Our interest in this paper lies in defining distances for pairs of probability vectors,
namely on two nonnegative vectors r and c with the same sum. We consider in the following
vectors of length d, and define the probability simplex accordingly:

Σd
def
={u ∈ Rd+ |

d∑
i=1

ui = 1}.

Optimal transport distances build upon two ingredients: (1) a d×dmetric matrix, known
as the ground metric parameter of the distance; (2) a feasible set of d× d matrices known
as the transport polytope. We provide first an intuitive description of optimal transport
distances in Section 2.1 (which can be skipped by readers familiar with these concepts) and
follow with a more rigorous exposition in Section 2.2.

2.1 The Intuition behind Optimal Transport

The fundamental idea behind optimal transport distances is that they can be used to com-
pare histograms of features, when the features lie in a metric space and can therefore be
compared one with the other. To illustrate this idea, suppose we wish to compare images
of 10 × 10 = 100 pixels. Suppose further, for the sake of simplicity, that these pixels can
only take values in a range of 4 possible colors, dark red, light red, dark blue and light
blue, and that each image is represented as a histogram of 4 colors as in Figure 1.

So called bin-to-bin distances (we provide a formal definition in Section 5.1) would
compute the distance between a and b by comparing for each given index i their coordinates
ai and bi one at a time. For instance, computing the Manhattan distances (the l1 norm of
the difference of two vectors) of three histograms a, b and c in Figure 1, we obtain that a is
equidistant to b and c. However, upon closer inspection, assuming that dark and light red
have more in common than, say, dark red and dark blue, one may have the intuition that c
should be closer to a than it is to b. Optimal transport theory implements this intuition by
carrying out an optimization procedure to compute a distance between histograms. Such
an optimization procedure builds upon a set of feasible solutions (transport mappings) and
a cost function (a linear cost), to define an optimal transport.

X =

13 7 56 24

10 4 40 6 60
1 1 11 7 20
1 2 4 7 14
1 0 1 4 6

(1)

Mapping a to b: An assignment between a and b assigns to each of the 100 colored pixels
of a one of the 100 colored pixels of b. By grouping these assignments according to the 4×4

535

Cuturi and Avis

dR lR dB lB
0

20

40

60

a = [60 20 14 6]

dR lR dB lB
0

20

40

60

b=[13 7 56 24]

dR lR dB lB
0

20

40

60

c=[10 64 4 22]

Figure 1: Three color histograms summing to 100. Although a and c are arguably closer to
each other because of their overlapping dominance in red colors, the Manhattan
distance cannot consider such an overlap and treats all colors separately. As a
result, in this example, a is equidistant from b and c, ‖a− b‖1 = ‖a− c‖1 = 120.

possible color pairs, we obtain a 4× 4 matrix which details, for each possible pair of colors
(i, j), the overall amount xij of pixels of color i in a which have been morphed into pixels
of color j in b. Because such a matrix representation only provides aggregated assignments
and does not detail the actual individual assignments, such matrices are known as transport
plans. A transport plan between a and b must be such that its row and column sums match
the quantities detailed in a and b, as highlighted on the top and right side of an example
matrix X in Equation 1.

M =

• • • •

0 1 2 3 •
1 0 3 2 •
2 3 0 1 •
3 2 1 0 •

(2)

A Linear Cost for Transport Plans: A cost matrix M quantifies all 16 possible costs
mij of turning a pixel of a given color i into another color j. In the example provided in
Equation 3, M states for instance that the cost of turning a dark red pixel into a dark blue
pixel is twice that of turning it into a light red pixel; that transferring a colored pixel from
a to the same color in b has a zero cost for all four colors. The cost of a transport plan
X, given the cost matrix M , is defined as the Frobenius dot-product of X and M , namely
〈X,M 〉 =

∑
ij xijmij = 169 in our example.

536

Ground Metric Learning

X? =

13 7 56 24

13 42 5 60
7 13 20

14 14
6 6

(3)

Smallest Possible Total Transport Cost: The transport distance is defined as the low-
est cost one could possibly find by considering all possible transport plans from a to b.
Computing such an optimum involves solving a linear program, as detailed in Section 2.3.
For a and b and given M above, solving this program would return an optimal matrix X?

provided in Equation (3) with an optimum of 〈X?,M 〉 = 120. When comparing a and c,
the distance would, on the other hand, be equal to 72. Comparing these two numbers, we
can see that the transport distance agrees with our initial intuition that a is closer to c than
b by taking into account a metric on features. We define rigorously the properties of both
the cost matrix M and the set of transport plans in the next section.

2.2 The Ingredients of Discrete Optimal Transport

Optimal transport distances between histograms are computed through a mathematical
program. The feasible set of that program is a polytope of matrices. Its objective is a linear
function parameterized by metric matrices. We define both in the sections below.

2.2.1 Objective: Semimetric and Metric Matrices

Consider d points labeled as {1, 2, . . . , d} in a metric space. Form now the d× d matrix M
where element mij is equal to the distance between points i and j. Because of the metric
axioms, the elements of M must obey three rules: (1) symmetry: mij = mji for all pairs of
indices i, j; (2) mii = 0 for all indices i and more generally mij ≥ 0 for any pair (i, j); (3)
triangle inequality: mij ≤ mik + mkj , for all triplets of indices i, j, k. The set of all d × d
matrices that observe such rules, and thus represent hypothetically the pairwise distances
between d points taken in any arbitrary metric space, is known as the cone of semimetric
matrices,

M def
=
{
M ∈ Rd×d : ∀ 1 ≤ i, j, k ≤ d,mii = 0,mij ≤ mik +mkj

}
⊂ Rd×d+ .

Note that the
(
d
2

)
symmetry conditions mij = mji and non-negativity conditions mij ≥ 0 are

contained in the d3 linear inequalities described in the definition above. M is a polyhedral
set, because it is defined by a finite set of linear equalities and inequalities. M is also a
convex pointed cone as can be visualized in Figure 2 for d = 3. Additionally, if a matrix M
satisfies conditions (1) and (3) but also has, in addition to (2), the property that mij > 0
whenever i 6= j, then we call M a metric matrix. We write M+ ⊂M for the set of metric
matrices, which is neither open nor closed.

2.2.2 Feasible Set: Transport Polytopes

Consider two vectors r and c in the simplex Σd. Let U(r, c) be the set of d× d nonnegative
matrices such that their row and columns sums are equal to r and c respectively, that is,

537

Cuturi and Avis

 0 m12 m13

• 0 m23

• • 0

Figure 2: Semimetric cone in 3 dimensions. A d×d metric matrix for d = 3 can be described
by 3 positive numbers m12,m13 and m23 that follow the three triangle inequalities,
m12 ≤ m13 + m23, m13 ≤ m12 + m23, m23 ≤ m12 + m13. The set (neither open
nor closed) of positive triplets (m12,m13,m23) forms the set of metric matrices.

writing 1d ∈ Rd for the column vector of ones,

U(r, c) = {X ∈ Rd×d+ | X1d = r, X>1d = c}.

Because of these constraints, it is easy to see that any matrix X = [xij] in U(r, c) is such that∑
ij xij = 1. While r and c can be interpreted as two probability measures on the discrete set

{1, . . . , d}, any matrix X in U(r, c) is thus a probability measure on {1, . . . , d}×{1, . . . , d},
the cartesian product of {1, . . . , d} with itself. U(r, c) can be identified with the set of all
discrete probabilities on {1, . . . , d}× {1, . . . , d} that admit r and c as their first and second
marginals respectively.

U(r, c) is a bounded polyhedron (the entries of any X in U(r, c) are bounded between
0 and 1) and is thus a polytope with a finite set of extreme points. This polytope has
an effective dimension of d2 − 2d + 1 in the general case where r and c have positive
coordinates (Brualdi 2006, §8.1). U(r, c) is known in the operations research literature as
the set of transport plans between r and c (Rachev and Rüschendorf 1998). When r and c
are integer valued histograms with the same total sum, a transport plan with integral values
is also known as a contingency table or a two-way table with fixed margins (Lauritzen 1982,
Diaconis and Efron 1985).

2.3 Optimal Transport Distances

Given two histograms r and c of Σd and a matrix M , the quantity

G(r, c;M)
def
= min

X∈U(r,c)
〈M,X 〉.

538

Ground Metric Learning

M

dM (r, c) = 〈X?,M〉 = min
X∈U(r,c)

〈X,M〉

U(r, c)

X?

Figure 3: Schematic view of the optimal transport distance. Given a feasible set U(r, c)
and a cost parameter M ∈M+, the distance between r and c is the minimum of
〈X,M 〉 when X varies across U(r, c). The minimum is reached here at X?.

describes the optimum of a linear program whose feasible set is defined by r and c and
whose cost is parameterized by M . G is a positive homogeneous function of M , that is
G(r, c; tM) = tG(r, c;M) for t ≥ 0. G(r, c;M) can also be described as minus the support
function (Rockafellar 1970, §13) of the polytope U(r, c) evaluated at −M . A schematic view
of that LP is given in Figure 3.

When M belongs to the cone of metric matricesM, the value of G(r, c;M) is a distance
(Villani 2003, §7, p.207) between r and c, parameterized by M . In that case, assuming
implicitly that M is fixed and only r and c vary, we will refer to G(r, c;M) as dM (r, c), the
optimal transport distance between r and c.

Theorem 1 dM is a distance on Σd whenever M ∈M+.

The fact that dM (r, c) is a distance is a well known result; a standard proof for continuous
probability densities is provided in Villani (2003, Theorem 7.3). A proof often reported in
the literature for the discrete case can be found in Rubner et al. (2000). We believe this
proof is not very clear, so we provide an alternative proof in the Appendix.

When r and c are, on the contrary, considered fixed, we will use the notation Grc(M)
to stress that M is the variable argument of G, as will be mostly the case in this paper.
Although using two notations for the same mathematical object may seem cumbersome,
these notations will allow us to stress alternatively which of the three variables r, c and M
are considered fixed in our analysis.

2.3.1 Extensions of Optimal Transport Distances

The distance dM bears many names: 1-Wasserstein; Monge-Kantorovich; Mallow’s (Mal-
lows 1972, Levina and Bickel 2001) and finally Earth Mover’s (Rubner et al. 2000) in the
computer vision literature. Rubner et al. (2000) and more recently Pele and Werman (2009)

539

Cuturi and Avis

have also proposed to extend the optimal transport distance to compare unnormalized his-
tograms, that is vectors with nonnegative coordinates which do not necessarily sum to 1.
Simply put, these extensions compute a distance between two unnormalized histograms u
and v by combining any difference in the total mass of u and v with the optimal transport
plan that can carry the whole mass of u onto v if ‖u‖1 ≤ ‖v‖1 or v onto u if ‖v‖1 ≤ ‖u‖1.
These extensions can also be traced back to earlier work by Kantorovich and Rubinshtein
(1958), see Vershik (2006) for a historical perspective. We will not consider such extensions
in this work, and will only consider distances for histograms of equal sum.

2.3.2 Relationship with Other Distances

The optimal transport distance bears an interesting relationship with the total variation
distance, which is a popular distance between histograms of features in computer vision
following early work by Swain and Ballard (1991). As noted by Villani (2003, p.7 & Ex.1.17
p.36), the total variation distance, defined as

dTV(r, c)
def
=

1

2
‖r − c‖1,

can be seen as a trivial instance of optimal transport distances by simply noting that

dTV = dM1
,

where M1 is the matrix of ones with a zero diagonal, namely M1(i, j) is equal to 1 if
i = j and zero otherwise. The metric on features defined by M1 simply states that all
d considered features are equally different, that is their pairwise distances are constant.
This relationship between total variation and optimal transport can be compared to the
analogous observation that Euclidean distances are a trivial instance of the Mahalanobis
family of distances, by setting the Mahalanobis parameter to the identity matrix. Tuning
the ground metric M to select an optimal transport distance dM can thus be compared to
the idea of tuning a positive-definite matrix Ω to define a suitable Mahalanobis distance
for a given problem: Mahalanobis distances are to the Euclidean distance what optimal
transport distances are to the total variation distance, as schematized in Figure 4. We
discuss this parallel further when reviewing related work in Section 5.2.

2.3.3 Computing Optimal Transport Distances

The distance dM between two histograms r and c can be computed as the solution of the
following Linear Program (LP),

dM (r, c) = minimize
∑d

i,j=1mijxij

subject to
∑d

j=1 xij = ri, 1 ≤ i ≤ d∑d
i=1 xij = cj , 1 ≤ j ≤ d

xij ≥ 0, 1 ≤ i, j ≤ d.
This program is equivalent to the following program, provided in a more compact form, as:

dM (r, c) = minimize mTx

subject to Ax =

[
r
c

]
∗

x ≥ 0,

(4)

540

Ground Metric Learning

Figure 4: Contour plots of the Euclidean (top-left) and Total variation (bottom-left) of all
points in the simplex for d = 3 to the point [0.5, 0.3, 0.2], and their respective pa-
rameterized equivalents, the Mahalanobis distance (top-right) and the transport
distance (bottom-right). The parameter for the Mahalanobis distance has been
drawn randomly. The upper right values of the ground metric M are 0.8 and 0.4
on the first row and 0.6 on the second row.

where A is the (2d− 1)× d2 matrix that encodes the row-sum and column-sum constraints
for X to be in U(r, c) as

A =

[
11×d ⊗ Id
Id ⊗ 11×d

]
∗
,

where ⊗ is Kronecker’s product and the lower subscript
[
·
]
∗ in a matrix (resp. a vector)

means that its last line (resp. element) has been removed. This modification is carried out
to make sure that all constraints described by A are independent, or equivalently that AT

is not rank deficient. This LP can be solved using the network simplex (Ford and Fulkerson
1962) or through more specialized minimum-cost network flow algorithms (Ahuja et al.
1993, §9). The computational effort required to compute a single distance between two
histograms of dimension d scales typically as O(d3 log(d)) (Pele and Werman 2009, §2.3)
when M has no particular structure.

541

Cuturi and Avis

2.4 Properties of the Optimal Transport Distance Seen As a Function of M

When both its arguments are fixed, the optimal transport distance dM (r, c) seen as a func-
tion Grc of M has three important properties: Grc is piecewise linear; concave; a subgradient
of Grc can be directly recovered by considering any optimal solution of the linear program
considered to compute Grc. These properties are crucial, because they highlight that for a
given pair of histograms (r, c), a gradient direction to increase or decrease dM (r, c) can be
obtained through the optimal transport plan that realizes dM (r, c), and that maximizing
this value is a convex problem.

2.4.1 Concavity and Piecewise-linearity

Because its feasible set U(r, c) is a bounded polytope and its objective is linear, Problem (4)
has an optimal solution in the finite set Ex(r, c) of extreme points of U(r, c) (Bertsimas and
Tsitsiklis 1997, Theorem 2.7, p.65). Grc is thus the minimum of a finite collection of linear
functions, each indexed by an extreme point, and thus

Grc(M) = min
X∈U(r,c)

〈X,M 〉 = min
X∈Ex(r,c)

〈X,M 〉, (5)

is piecewise linear. Grc is also concave by a standard result stating that the point-wise
minimum of a family of affine functions is itself concave (Boyd and Vandenberghe 2004,
§3.2.3).

2.4.2 Differentiability

Because the computation of Grc involves a linear program, the gradient ∇Grc of Grc at a
given point M is equal to the optimal solution X? to Problem (4) whenever this solution is
unique,

∇Grc = X?,

as stated by Bertsimas and Tsitsiklis (1997, Theorem 5.3). Intuitively, by continuity of all
functions involved in Problem (4) and the uniqueness of the optimal solution X?, one can
show that there exists a ball with a positive radius around M for which Grc(M) is locally
linear, equal to 〈X?,M 〉 on that ball, resulting in the fact that the gradient of 〈X?,M 〉 is
simply X?. More generally and regardless of the uniqueness of X?, any optimal solution
X? of Problem (4) is in the sub-differential ∂Grc(M) of Grc at M (Bertsimas and Tsitsiklis
1997, Lemma 11.4). Indeed, suppose that Z(p) is the minimum of a linear program Z
parameterized by a cost vector x, over a bounded feasible polytope with extreme points
{c1, . . . , cm}. Z(x) can in that case be written as

Z(x) = min
i=1,...,m

ui + cTi x.

Then, defining E(x) = {i|Z(x) = ui + cTi x}, namely the set of indices of extreme points
which are optimal for x, Bertsimas and Tsitsiklis (1997, Lemma 11.4) show that for any
fixed x and any index i in E(x), ci is a subgradient of Z at x. More generally, this lemma
also shows that the differential of Z at x is exactly the convex hull of those optimal solutions
{ci}i∈E(x). If, as in Equation (5), these ci’s describe the set of extreme points of U(r, c),
the variable x is the ground metric M , and Z is Grc, this lemma implies that any optimal

542

Ground Metric Learning

transport is necessarily in the subdifferential of Grc(M), and that this subdifferential is
exactly the convex hull of all the optimal transports between r and c using cost M .

In summary, the distance dM (r, c) seen as a function of M (Grc(M) using our notations)
can be computed by solving a network flow problem, and any optimal solution of that
network flow is a subgradient of the distance with respect to M . This function itself is
concave in M . We use extensively these properties in Section 4 when we optimize the
criteria considered in the next section.

3. Learning Ground Metrics as an Optimization Problem

We define in this section a family of criteria to quantify the relevance of a ground metric
to compare histograms in a given learning task. We use to that effect a training sample of
histograms with additional information.

3.1 Training Set: Histograms and Side Information

Suppose that we are given a sample {r1, . . . , rn} ⊂ Σd of histograms in the canonical simplex
along with a family of coefficients {ωij}1≤i,j≤n, which quantify how similar ri and rj are.
We assume that these coefficients are such that ωij is positive whenever ri and rj describe
similar objects and negative for dissimilar objects. We further assume that this similarity
is symmetric, ωij = ωji. The similarity of an object with itself will not be considered in the
following, so we simply assume that ωii = 0 for 1 ≤ i ≤ n.

In the most simple case, these weights may reflect a labeling of all histograms into
multiple classes and be set to ωij > 0 whenever ri and rj come from the same class and ωij <
0 for two different classes. An ever simpler setting which we consider in our experiments
is that of setting ωij = 1yi=yj , where the label yi of histogram ri for 1 ≤ i ≤ n is taken in
a finite set of labels L = {1, 2, . . . , L}. Let us introduce more notations before moving on
to the next section. Since by symmetry ωij = ωji and Grirj = Grjri , we restrict the set of
pairs of indices (i, j) we will study to

I def
={(i, j) | i, j ∈ {1, . . . , n}, i < j},

and introduce two subsets of I, the subsets of similar and dissimilar histograms:

E+
def
={(i, j) ∈ I | ωij > 0}; E−

def
={(i, j) ∈ I | ωij < 0}.

Finally, we define the shorthand Gij
def
= Grirj .

3.2 Feasible Set of Metrics

We propose to formulate the ground metric learning problem as that of finding a metric
matrix M ∈ M+ such that the corresponding optimal transport distance dM computed
between pairs of points in (r1, . . . , rn) agrees with the weights ω. However, because projec-
tors are not well defined on feasible sets that are not closed, we will consider the whole of
the semimetric cone M as a feasible set instead of considering M+ directly. We implicitly
assume in this paper that, if our algorithms output a matrix that has null off-diagonal
elements, such a matrix will be regularized by adding the same arbitrarily small positive

543

Cuturi and Avis

constant to all its off-diagonal elements. Moreover, and as remarked earlier, two histograms
r and c define a homogeneous function Grc of M , that is Grc(tM) = tGrc(M). To remove
this ambiguity on the scale of M , we only consider in the following matrices that lie in the
intersection of M and the unit sphere in Rd×d of the 1-norm,

M1 =M∩B1,

where B1 = {A ∈ Rd×d | ‖A‖1
def
=‖a‖1 = 1}. M1 is convex as the intersection of two convex

sets. In what follows we call matrices in M1 metric matrices (this is a slight abuse of
language since some of these matrices are in fact semimetrics).

3.3 A Local Criterion to Select the Ground Metric

More precisely, this criterion will favor metrics M for which the distance dM (ri, rj) is small
for pairs of similar histograms ri and rj (ωij > 0) and large for pairs of dissimilar histograms
(ωij < 0). We build such a criterion by considering the family of all

(
n
2

)
pairs

{ (ωij , Gij(M)) , (i, j) ∈ I}.

Given the ith datum of the training set, we consider the subsets Ei+ and Ei− of points
that share their label with ri and those that do not respectively:

Ei+
def
={j|(i, j) or (j, i) ∈ E+}, Ei−

def
={j|(i, j) or (j, i) ∈ E−}.

Within these subsets, we consider the sets N+
ik and N−ik , which stand for the indices of any

k nearest neighbours of ri using distance dM and whose indices are taken respectively in
the subsets Ei+ and Ei−. For each index i and corresponding histogram ri, we can now form
the weighted sum of distances to its similar and dissimilar neighbors

S+
ik(M)

def
=
∑
j∈N+

ik

ωij Gij(M), and S−ik(M)
def
=
∑
j∈N−

ik

ωij Gij(M). (6)

Note that N+
ik and N−ik are not necessarily uniquely defined. Whenever more than one list

of indices can qualify as the k closest neighbors of ri, we select such a list randomly among
all possible choices. We adopt the convention that N+

ik = Ei+ whenever k is larger than the
cardinality of Ei+, and follow the same convention for N−ik . We use these two terms to form
our final criterion:

Ck(M)
def
=

n∑
i=1

S+
ik(M) + S−ik(M). (7)

4. Approximate Minimization of Ck

Since all functions Gij are concave, Ck can be cast as a difference of convex functions

Ck(M) = S−k (M)− -S+
k (M),

where both

S−k (M)
def
=

n∑
i=1

S−ik(M) and -S+
k (M)

def
=

n∑
i=1

-S+
ik(M)

544

Ground Metric Learning

are convex, by virtue of the convexity of each of the terms S−ik and -S+
ik defined in Equa-

tion (6). This follows in turn from the concavity of each of the distances Gij as discussed
in Sections 2.4 and 3.3, and the fact that such functions are weighted by negative factors,
ωij for (i, j) ∈ E− and -ωij for (i, j) ∈ E+. We propose an algorithm to approximate the
minimization of Ck defined in Equation (7) that takes advantage of this decomposition.

4.1 Subdifferentiability of Ck

It is easy to see that, using the results on Grc we have recalled in Section 2.4.1, the gradient
of Ck computed at a given metric matrix M is

∇Ck(M) = ∇S−k (M) +∇S+
k (M),

where,

∇S+
k (M) =

n∑
i=1

∑
j∈N+

ik

ωijX
?
ij , ∇S−k (M) =

n∑
i=1

∑
j∈N−

ik

ωijX
?
ij ,

whenever all solutions X?
ij to the linear programs Gij considered in Ck are unique and

whenever each of the two sets of k nearest neighbors of each histogram ri is unique. Also
as recalled in Section 2.4.1, any optimal solution X?

ij is in the sub-differential ∂Gij(M) of
Gij at M and we thus have that

n∑
i=1

∑
j∈N+

ik

ωijX
?
ij ∈ ∂S+

k (M),
n∑
i=1

∑
j∈N−

ik

ωijX
?
ij ∈ ∂S−k (M),

regardless of the unicity of the nearest-neighbors sets of each histogram ri. The details of
the computation of S−k (M) and of the subgradient described above are given in Algorithm 1.
The computations for S+

k (M) are analogous to those of S−k (M) and we use the abbreviation
S±k (M) to consider either of these two cases in our algorithm outline.

4.2 Local Linearization of the Concave Part of Ck

We describe in Algorithm 2 a simple approach to obtain an approximate solution to the
problem of minimizing Ck with a projected subgradient descent and a local linearization of
the concave part of Ck. Algorithm 2 runs a subgradient descent on Ck using two nested
loops: we linearize the concave part of Ck in an outer loop and minimize the resulting
convex approximation in the inner loop.

More precisely, the first loop is parameterized with an iteration counter p and starts by
computing both S+

k (the concave part of Ck) and a vector γ+ in its subdifferential using the
current candidate metric Mp. Using this value and the subgradient γ+, the concave part
S+
k of Ck can be locally approximated by its first order Taylor expansion,

Ck(M) ≈ S−k (M) + S+
k (Mp) + γT+(M −Mp).

This approximation is convex, larger than Ck and can be minimized in an inner loop using
a projected subgradient descent. When this convex function has been minimized up to

545

Cuturi and Avis

Algorithm 1 Computation of z = S±k (M) and a subgradient γ, where ± is either + or −.

Input: M ∈M1.
for (i, j) ∈ E± do

Compute the optimum z?ij and an optimal solution X?
ij for Problem (4) with cost vector

m and constraint vector [ri; rj]∗.
end for
Set G = 0, z = 0.
for i ∈ {1, · · · , n} do

Select the smallest k elements of z?ij , j ∈ Ei± to define the set of neighbors N±ik .

for j ∈ N±ik do
G← G+ ωijX

?
ij .

z ← z + ωijz
?.

end for
end for
Output z and γ = g + g.

sufficient precision, we obtain a point

Mp+1 ∈ argmin
M∈M1

S−k (M) + S+
k (Mp) + γT+(M −Mp).

We increment p and repeat the linearization step described above. The algorithm terminates
when sufficient progress in the outer loop has been realized, at which point the matrix
computed in the last iteration is returned as the output of the algorithm.

The overall quality of the solution obtained through this procedure is directly linked to
the quality of the initial point M0. The selection of M0 requires thus some attention. We
provide a few options to select M0 in the next section.

4.3 Initial Points

Since Ck is not a convex criterion, particular care needs to be taken to initialize our descent
algorithm. We propose in this section two approaches to choose the initial point M0.

4.3.1 The Total Variation Distance as an Optimal Transport Distance

The total variation distance between two histograms, defined as half the l1 norm of their
difference, can provide an educated guess to define an initial point M0 to optimize Ck.
Indeed, as explained in Section 2.3, the total variation distance can be interpreted as the
optimal transport distance parameterized with the uniform ground metric M1 which is a
matrix equal to 1 on all its off-diagonal terms and 0 on the diagonal. Therefore, we consider
M1 (divided by d(d−1) to normalize it) in our experiments to initialize Algorithm 2. Since
Ck is not convex, using M1 is attractive from a numerical point of view because M1 exhibits
the highest entropy among all matrices in M1. This choice has, however, two drawbacks:

• Because all the costs enumerated in M1 are equal, one can show that for a pair
of histograms (r, c) any transport matrix that assigns the maximum weight to its

546

Ground Metric Learning

Algorithm 2 Projected Subgradient Descent to minimize Ck
Input M0 ∈M1 (see Section 4.3), gradient step t0.
t← 1.
p← 0, Mout

0 ←M0.
while p < pmax or insufficient progress for zout

p do

Use Algorithm 1 to compute z+
def
= S+

k (Mout
p) and γ+.

q ← 0, M in
0 ←Mout

p .

while q < qmax or insufficient progress for zin
q do

Compute γ− and z− of S−k using Algorithm 1 with M in
q , (i, j) ∈ E−.

Set zin
q ← z− + z+ + γT+(min

q −mout
p) .

Set M in
q+1 ← PM1

(
min
q − t0√

q (γ+ + γ−)
)

.

q ← q + 1.
t← t+ 1.

end while
Mout
p+1 ←M in

q .
p← p+ 1.

end while
Output Mout

p .

diagonal elements, namely any matrix X in the convex set

{X ∈ U(r, c)|xii = min(ri, ci)}

is optimal. As a result, any matrix in that set is in the subdifferential of Grc at M1.
Solvers that build upon the network simplex will return an arbitrary vertex within
that set, mostly depending on the pivot rule they use. The very first subgradient
descent iteration is thus likely to be extremely uninformative, and this should be
reflected by a poor initial behaviour which we do indeed observe in practice.

• Because such a starting point ignores the information provided by all histograms
{ri, 1 ≤ i ≤ n} and weights {ωij , (i, j) ∈ I}, we expect it to be far from the actual
optimum.

We propose an alternative approach in the next section: we approximate Ck by a linear
function of M and set M0 to be the minimizer of that approximation.

4.3.2 Linear Approximations to Ck and Independence Tables

We propose to form an initial point M0 by replacing the optimization underlying the com-
putation of each distance Gij(M) by a dot product,

Gij(M) = min
X∈U(ri,rj)

〈M,X 〉 ≈ 〈M,Ξij 〉,

where Ξij is a representative matrix of the polytope U(ri, rj). This idea is illustrated in
Figure 5. We discuss a natural choice to define Ξij later in this section. Assuming we

547

Cuturi and Avis

have chosen such matrices, we replace now each term Gij in the criterion presented in
Equation (7) by the corresponding quantity 〈M,Ξij 〉 and obtain an approximation χk of
Ck parameterized by a matrix Ξk,

χk(M)
def
= 〈M,Ξk 〉, where Ξk

def
=

n∑
i=1

∑
j∈N−

ik∪N
+
ik

ωij Ξij ,

where the k nearest neighbors of each histogram ri defined in N−ik and N+
ik are those selected

by considering the total variation distance. To select a candidate matrix M that minimizes
this criterion, we consider the following penalized problem,

min
M∈M

λ〈M,Ξk 〉+ ‖M‖22 = min
M∈M

‖M +
λ

2
Ξk‖22, λ > 0, (8)

which can be solved using the approach described by Brickell et al. (2008, Algorithm 3.1).
Brickell et al. propose triangle fixing algorithms to obtain projections on the cone of dis-
tances under various norms, including the Euclidean distance. They study in particular the
following problem,

min
M∈M

‖M −H‖2, (9)

where H is a symmetric nonnegative matrix that is zero on the diagonal. It is however
straightforward to check that these three conditions, although intuitive when considering
the metric nearness problem (Brickell et al. 2008, §2), are not necessary for Algorithm (3.1)
described by Brickell et al. (2008, §3) to work. This algorithm is not only valid for non-
symmetric matrices H as pointed out by the authors themselves, but it is also applicable
to matrices H with negative entries and non-zero diagonal entries. Problem (8) can thus
be solved by replacing H by −λ

2 Ξk in Problem (9) regardless of the sign of the entries of Ξ.

Note that other approaches could be considered to minimize the dot product 〈M,Ξ 〉
using alternative regularizers. Frangioni et al. (2005) propose for instance to handle lin-
ear programs in the intersection between the cone of metrics and the set of polyhedral
constraints {Mik +Mkj +Mij ≤ 2} which defines what is known as the metric polytope.

The techniques presented above build upon a linear approximation of each function
Gij(M) as 〈M,Ξij 〉 by selecting a particular matrix Ξij such that Gij(M) ≈ 〈M,Ξij 〉. We
propose to use a simple proxy for the optimal transport distance: the dot-product of M
with a matrix that lies at the center of U(r, c), as illustrated in Figure 5. We consider for
such a center the independence table rcT (Good 1963). The table rcT , which is in U(r, c)
because rcT1d = r and crT1d = c, is also the maximal entropy table in U(r, c), that is, the
table which maximizes

h(X) = −
d∑

p,q=1

Xpq logXpq.

Using the independence table to approximate Gij , that is using the approximation

min
X∈U(ri,rj)

〈M,X 〉 ≈ rTi Mrj ,

548

Ground Metric Learning

M

U(ri, rj)

X?
ij

Ξij

Figure 5: Schematic view of the approximation minX∈U(ri,rj)〈M,X 〉 ≈ 〈M,Ξij 〉 carried
out when using a central transport table Ξij instead of the optimal table X?

ij to
compare ri and rj .

provides us with a weighted center,

Ξk =

n∑
i=1

∑
j∈N−

ik∪N
+
ik

ωijrir
T
j .

Note however that this approximation tends to overestimate substantially the distance
between two similar histograms. Indeed, it is easy to check that rTMr is positive whenever
r has positive entropy. In the case where all coordinates of r are equal to 1/d, rTMr is
‖M‖1/d2. To close this section, one may notice that several methods can be used to compute
centers for polytopes such as U(r, c), among which the Chebyshev center, the analytic center,
or the center of the Löwner-John ellipsoid, all described by Boyd and Vandenberghe (2004,
§8.4,§8.5). We have not considered these approaches because computing them involve,
unlike the independence table proposed above, the resolution of large convex programs or
LP’s. Barvinok has, on the other hand, proposed recently a new center tailored specifically
for transport polytopes, that he calls the typical table (2010). The typical table can be
computed efficiently, both in theory and practice, as the result of a convex program of 2d
variables (Barvinok 2010, p.523). Experimental results indicate that they perform very
similarly to independent tables so we do not explore them further in this paper.

In summary, we propose in this section to approximate Ck by a linear function and
compute its minimum in the intersection M1 of the l1 unit sphere and the cone of metric
matrices. This linear objective can be efficiently minimized using a set of tools proposed by
Brickell et al. (2008) adapted to our problem. In order to propose such an approximation, we
have used the independence tables as representative points of the polytopes U(ri, rj). The
successive steps of the computations that yield an initial point M0 are given in Algorithm 3.

549

Cuturi and Avis

Algorithm 3 Initial Point M0 to minimize Ck
Set Ξ = 0.
for i ∈ {1, · · · , n} do

Compute the neighborhood setsN+
ik andN−ik of histogram ri using an arbitrary distance,

for example, the total variation distance.
for j ∈ N+

ik ∪N
−
ik do

Ξ← Ξ + ωijrir
T
j .

end for
end for
Set M0 ← minM∈M‖M + λ

2 Ξ‖2 (Brickell et al. 2008, Algorithm 3.1).
Output M0. optional: regularize M0 by setting M0 ← λM0 + (1− λ)M1.

5. Related Work

We provide in this section an overview of other distances for histograms of features. We
start by presenting simple distances on histograms and follow by presenting metric learning
approaches.

5.1 Metrics on the Probability Simplex

Deza and Deza (2009, §14) provide an exhaustive list of metrics for probability measures,
most of which apply to probability measures on R and Rd. When narrowed down to dis-
tances for probabilities on unordered discrete sets—the dominant case in machine learning
applications—Rubner et al. (2000, §2) propose to split such distances into two families:
bin-to-bin distances and cross-bin distances. Let r = (r1, . . . , rd)

T and c = (c1, . . . , cd)
T be

two histograms in the canonical simplex Σd.

Bin-to-bin distances only compare the d couples of bin-counts (ri, ci)i=1..d independently
to form a distance between r and c. The Jensen-divergence, χ2, Hellinger, total variation
distances and more generally Csizar f -divergences (Amari and Nagaoka 2001, §3.2) all fall
within this category. Notice that any of these divergences is known to work usually better
for histograms than a straightforward application of the Euclidean distance as shown in our
experiments or for instance by Chapelle et al. (1999, Table 4). This can be explained in
theory using geometric (Amari and Nagaoka 2001, §3) or statistical arguments (Aitchison
and Egozcue 2005).

Bin-to-bin distances are easy to compute and accurate enough to compare histograms
when all d features are sufficiently distinct. When, on the contrary, some of these features
are known to be similar, either because of statistical co-occurrence (e.g., the words cat

and kitty) or through any other form of prior knowledge (e.g., pixel colors or amino-acid
similarity) then a simple bin-to-bin comparison may not be accurate enough as argued by
Rubner et al. (2000, §2.2). In particular, bin-to-bin distances are invariably large when they
compare histograms with distinct supports, regardless of the fact that these two supports
may in fact describe very similar features.

Cross-bin distances handle this issue by considering all d2 possible pairs (ri, cj) of cross-
bin counts to form a distance. The most simple cross-coordinate distance for general vectors

550

Ground Metric Learning

in Rd is arguably the Mahalanobis family of distances,

dΩ(x, y) =
√

(x− y)TΩ(x− y),

where Ω is a positive definite d× d matrix. The Mahalanobis distance between x and y can
be interpreted as the Euclidean distance between Lx and Ly where L is a Cholesky factor
of Ω or any square root of Ω. Learning such linear maps L or positive definite matrices Ω
directly using labeled information has been the subject of a substantial amount of research
in recent years. We briefly review this literature in the following section.

5.2 Mahalanobis Metric Learning

Xing et al. (2003), followed by Weinberger et al. (2006) and Davis et al. (2007) have proposed
different algorithms to learn the parameters of a Mahalanobis distance. We refer to recent
surveys by Kulis (2012) and Bellet et al. (2013) for more details on these approaches. These
techniques define first a criterion and a feasible set of candidate matrices—either a positive
semidefinite matrix Ω or a linear map L—to optimize the best parameter that fits best
the data at hand. The criteria we propose in Section 3 are modeled along these ideas.
Weinberger et al. (2006) were the first to consider criteria that only use nearest neighbors,
which inspired in this work the proposal of Ck in Section 3.3.

We would like point out that Mahalanobis metric learning and ground metric learning
have very little in common conceptually: Mahalanobis metric learning algorithms learn a
d × d positive semidefinite matrix or a m × d linear operator L. Ground metric learning
learns instead a d× d metric matrix M . The difference between Mahalanobis distances and
optimal transport distances can be further highlighted by these simple identities:

dTV(r, c) =
1

2
‖r − c‖1 = dM1

(r, c), d2(r, c) = ‖r − c‖2 = dI(r, c)

The relationship between the Euclidean distance and the family of Mahalanobis distances,
in which the former is a trivial instance of the latter when Ω is set to the identity matrix, is
analogous to that between the total variation distance and optimal transport distances, in
which the former is also a trivial instance of the latter where all distances between features
are uniformly set to 1. The two families of distances evolve in related albeit completely
different sets of distances, just like the l1 and l2 norms describe different geometries. An il-
lustration of this can be found in Figure 4 provided earlier in this paper, where the Euclidean
and the total variation distances are compared with their parameterized counterparts. Both
total variation and optimal transport distances have piecewise linear level sets, whereas the
Euclidean and Mahalanobis distances have ellipsoidal level sets.

It is also worth mentioning that although Mahalanobis distances have been designed
for general vectors in Rd, and as a consequence can be applied to histograms, there is
however, to our knowledge, no statistical theory which motivates their use on the probability
simplex. This should be compared to the fact that there is a fairly large literature on optimal
transport distances for probabilities, described by Villani (2003, §7) and references therein.

551

Cuturi and Avis

5.3 Metric Learning in the Probability Simplex

Lebanon (2006) has proposed to learn a bin-to-bin distance in the probability simplex using
a parametric family of distances parameterized by a histogram λ ∈ Σd−1 defined as

dλ(r, c) = arccos

(
d∑
i=1

√
riλi
rTλ

√
ciλi
cTλ

)
.

This formula can be simplified by using the perturbation operator proposed by Aitchison
(1986, p.46):

∀r, λ ∈ Σd−1, r � λ def
=

1

rTλ
(r1λ1, · · · , rdλd)T .

Aitchison argues that the perturbation operation can be naturally interpreted as an addition
operation in the simplex. Using this notation, the family of distances dλ(r, c) proposed by
Lebanon can be seen as the standard Fisher metric applied to perturbed histograms r � λ
and c� λ,

dλ(r, c) = arccos〈
√
r � λ,

√
c� λ 〉.

Using arguments related to the fact that a distance should vary according to the density of
points described in a data set, Lebanon (2006) proposes to learn this perturbation λ in an
unsupervised context, by only considering histograms but no other side-information.

More recently, Kedem et al. (2012) have proposed non-linear metric learning techniques,
and focus more specifically on parameterized χ2 distances defined as dPχ2

(r, c) = dχ2(Pr, Pc)
where P can be any stochastic matrix P with unit row sums. We also note that, a few
months after the publication on the arxiv of an early version of our paper, Wang and
Guibas (2012) have proposed an algorithm that is very similar to ours, with the notable
difference that they do not take into account metric constraints for the ground metric.

6. Experiments

We provide in this section a few details on the practical implementation of Algorithms 1, 2
and 3. We follow by presenting empirical evidence that ground metric learning improves
upon other state-of-the-art metric learning techniques when considered on normalized his-
tograms of low dimensions, albeit at a substantial computational cost.

6.1 Implementation Notes

Algorithm 1 builds upon the computation of several optimal transport problems. We use
the CPLEX Matlab API implementation of network flows to that effect. Using directly the
API is faster than calling the CPLEX matlab toolbox or the Mosek solver. These benefits
come from the fact that only the constraint vector in Problem (4) needs to be updated
at each iteration of the first loop of Algorithm 1. We use the metricNearness toolbox
released online by Suvrit Sra to carry out both the projections of each inner loop iteration
of Algorithm 2 and the last step of Algorithm 3.

552

Ground Metric Learning

6.2 Distances Used in this Benchmark

We consider five distances in this benchmark. Three classic bin-to-bin distances, Maha-
lanobis distances with different learning schemes and the optimal transport distance cou-
pled with ground metric learning. Bin-to-bin distances We consider the l1, l2 and Hellinger
distances on histograms,

l1(r, c) = ‖r − c‖1, l2(r, c) = ‖r − c‖2, H(r, c) = ‖
√
r −
√
c‖2,

where
√
r is the vector whose coordinates are the squared roots of each coordinate of r.

6.2.1 Mahalanobis Distances

We use the publicly available implementations of LMNN (Weinberger and Saul 2009) and
ITML (Davis et al. 2007) to learn Mahalanobis distances for each task. We run both
algorithms with default settings, that is k = 3 for LMNN and k = 4 for ITML. We use
these algorithms on the Hellinger representations {√ri, i = 1, . . . , n} of all histograms
originally in the training set using the element-wise square root. We have considered this
representation because the Euclidean distance between the Hellinger representations of two
histograms corresponds exactly to the Hellinger distance (Amari and Nagaoka 2001, p.57).
Since the Mahalanobis distance builds upon the Euclidean distance, we argue that this
representation is more adequate to learn Mahalanobis metrics in the probability simplex.
This observation is confirmed in all of our experimental results, where Mahalanobis metric
learning approaches perform consistently better with the Hellinger transformation (see for
instance the results reported in Figure 7).

6.2.2 Optimal Transport Distances with Ground Metric Learning

We learn ground metrics using the following settings. The neighborhood parameter k is set
to 3 to be directly comparable to the default parameter setting of ITML and LMNN. In
each classification task, and for two images ri and rj , the corresponding weight ωij is set to
1/nk if both histograms come from the same class and to −1/nk if they come from different
classes. The subgradient stepsize t0 of Algorithm 2 is set to = 0.1, guided by preliminary
experiments and by the fact that, because of the normalization of the weights ωij , both the
current iteration Mk in Algorithm 2 and subgradients γ+ or γ− all have the same 1-norms.

We carry out a minimum of 24 subgradient steps in each inner loop and set qmax to
80. Each inner loop is terminated when the objective does not progress more than 0.75%
every 8 steps, or when q reaches qmax. We carry out a maximum of 20 outer loop iterations.
With these settings, the algorithm takes about 300 steps to converge (Figures 8 and 9),
which, using a single Xeon 2.6Ghz core, 60 training points and d = 128 (the experimental
setting considered below) takes about 900 seconds. The main computational bottleneck
of the algorithm comes from the repeated computation of optimal transports. LMNN and
ITML parameterized with default settings converge much faster, in about 2 and 30 seconds
respectively.

553

Cuturi and Avis

6.3 Binary Classification

We study in this section the performance of ground metric learning when coupled with
a nearest neighbor classifier on binary classification tasks generated with the Caltech-256
database.

6.3.1 Experimental Setting

We sample randomly 80 images for each of the 256 images classes2 of the Caltech-256
database. Each image is represented as a normalized histogram of GIST features (Oliva
and Torralba 2001, Douze et al. 2009), obtained using an implementation provided by the
INRIA-LEAR team.3 These features describe 8 edge directions at mid-resolution computed
for each patch of a 4 × 4 grid on each image. Each feature histogram is of dimension
d = 8× 4× 4 = 128 and subsequently normalized to sum to one.

We select randomly 1,000 distinct pairs of classes among the 256 classes available in the
data set to form as many binary classification tasks. For each pair, we split the 80 + 80
available points into 30+30 points to train distance parameters and 50+50 points to form a
test set. This amounts to having n = 60 training points following the notations introduced
in Section 3.1. We consider in the following κ nearest neighbors approaches. Note that
the neighborhood size κ and the parameter k used in metric learning approaches need not
be the same. In our experiments κ varies, whereas k is always kept fixed, as detailed in
Section 6.2.

6.3.2 Results

The most important results of this experimental section are summarized in Figure 6, which
displays, for all considered distances, their average recall accuracy on the test set and
the average classification error using a κ-nearest neighbor classifier. These quantities are
averaged over 1,000 binary classifications. In this figure, GML paired with the the optimal
transport distance dM is shown to provide, on average, the best performance with three
different metrics: the leftmost plot considers retrieval performance for test points and shows
that, for each point considered on its own, GML-EMD selects on average more training
points from the same class as closest neighbors than any other distance. The performance
gap between GML-EMD and competing distances increases significantly as the number
of retrieved neighbors is itself increased. The middle plot displays the average error over
all 1,000 tasks of a κ-nearest neighbor classification algorithm when considered with all
distances for varying values of κ. The rightmost plot studies these errors in more detail for
the case where the neighborhood parameter κ of nearest neighbors is 3. In this case too,
GML combined with EMD fares significantly better than competing distances.

Figure 8 illustrates the empirical behavior of our descent algorithm. This plot displays
40 sample objective curves among the 1,000 computed to obtain the results above. The
bumps that appear regularly on these curves correspond to the first update carried out
after the linearization of the concave part of the objective. These results were obtained by
setting the initial matrix to M1.

2. We do not consider the clutter class in our experiments.
3. Implementation can be found at http://lear.inrialpes.fr/software.

554

http://lear.inrialpes.fr/software

Ground Metric Learning

5 10 15 20

0.66

0.68

0.7

0.72

0.74

0.76

0.78

Number of retrieved Neighbours

A
ve

ra
ge

 P
ro

po
rt

io
n

of
 C

or
re

ct
 N

ei
gh

bo
ur

s
Caltech−256 : Distance Accuracy

on Test Data,
Proportion of Correct Neighbors

L1
L2
Hellinger
LMNN k=3 (Hellinger)
ITML k=4 (Hellinger)
GML Ones k=3

1 3 5 7 9 11 13 15 17 19
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

Caltech−256 : κ−NN Test Error
 Averaged over

1,000 Binary Classifications

κ parameter in κ−NN

C
la

ss
ifi

ca
tio

n
E

rr
or

 R
at

e

0

0.1

0.2

0.3

0.4

0.5

0.6

L1 L2 H
el

lin
ge

r

LM
N

N
(H

)

IT
M

L(
H

)

G
M

L

Caltech−256: Distribution of
1,000 Classification Errors for κ=3

Figure 6: (left) Accuracy of each considered distance on the test set as measured by the
average proportion, for each datapoint in the test set, of points coming from the
same class within its κ nearest neighbors. These proportions were averaged over
1,000 binary classification problems randomly chosen among the

(
256
2

)
possible.

We use 40 test points from each class for each experiment, namely 80 test points.
The ground metric in GML and Mahalanobis matrices in ITML and LMNN have
been learned using a train set of 30 + 30 points. (middle) κ-NN classification
error using the same distances. These results show average κ-NN error over 1,000
classification tasks depending on the value of κ. A more detailed picture for the
case κ = 3 is provided with boxplots of all 1, 000 errors (right).

555

Cuturi and Avis

Data Set #Train #Test #Class Feature #Dim
20 News Group 600 19397 20 Topic Model (LDA) 100
Reuters 500 9926 10 Topic Model(LDA) 100
MIT Scene 800 800 8 SIFT 100
UIUC Scene 1500 1500 15 SIFT 100
OXFORD Flower 680 680 17 SIFT 100
CALTECH-101 3060 2995 102 SIFT 100

Table 1: Multiclass classification data sets and their parameters.

It is also worth mentioning as a side remark that the l2 distance does not perform as
well as the l1 or Hellinger distances on these data sets, which validates our earlier statement
that the Euclidean geometry is usually a poor choice to compare histograms directly. This
intuition is further validated in Figure 7, where Mahalanobis learning algorithms are shown
to perform significantly better when they use the Hellinger representation of histograms.

Finally, Figure 9 describes the evolution of the average test error for two initial ground
metrics, M1 and that which builds upon independence tables (Algorithm 3). Two conclu-
sions can be drawn from this plot: First, independence tables provide on average a better
initialization of the algorithm if only the first iterations of the algorithm are taken into
account. However, this advantage seems to vanish as the number of subgradient descent
iterations increases. Second, our algorithm does not seem to suffer from overfitting on av-
erage, since the average error rate is a decreasing curve of the total number of iterations
and does not seem to increase up to termination.

6.4 Multiclass Classification

We follow our experimental evaluation of ground metric learning by considering this time
6 multiclass classification data sets that consider text and image data.

6.4.1 Experimental Setting

The properties of the data sets and parameters used in our experiments are summarized in
Table 1. The dimensions of the features have been kept low to ensure that the computation
of optimal transports are tractable. We follow the recommended train/test splits for these
data sets. If they are not provided, we split the data sets arbitrarily to form features using
either LDA (Blei et al. 2003) or SIFT features (Lowe 1999). We then generate 5 random
splits with the same balance to compute average accuracies over the entire data set.

6.4.2 Results

Figure 10 details the results for these 6 experiments, and show that GML coupled with EMD
is at least equivalent or improves on the best techniques considered in our benchmark. These
results also illustrate that the performance of Mahalanobis learning (LMNN in this case) is
greatly improved by considering the Hellinger representation of histograms, and not their
original representation as vectors of the simplex.

556

Ground Metric Learning

5 10 15 20

0.66

0.68

0.7

0.72

0.74

0.76

0.78

Number of retrieved Neighbours

A
ve

ra
ge

 P
ro

po
rt

io
n

of
 C

or
re

ct
 N

ei
gh

bo
ur

s
Caltech−256 : Distance Accuracy

on Test Data,
Proportion of Correct Neighbors

L2
Hellinger
LMNN k=3
LMNN k=3 (Hellinger)
ITML k=4
ITML k=4 (Hellinger)

1 3 5 7 9 11 13 15 17 19
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

Caltech−256 : κ−NN Test Error
 Averaged over

1,000 Binary Classifications

κ parameter in κ−NN

C
la

ss
ifi

ca
tio

n
E

rr
or

 R
at

e

0

0.1

0.2

0.3

0.4

0.5

0.6

L2 H
el

lin
ge

r

LM
N

N

LM
N

N
 H

el
lin

ge
r

IT
M

L

IT
M

L
H

el
lin

ge
r

Caltech−256: Distribution of
1,000 Classification Errors for κ=3

Figure 7: The experimental setting in this figure is identical to that of Figure 6, except that
only two different versions of LMNN and ITML are compared with the Hellinger
and Euclidean distances. This figure supports our claim in Section 6.2.1 that
Mahalanobis learning methods work better using the Hellinger representation of
histograms, {√ri, i = 1, . . . , n}, rather than their straightforward representation
in the simplex {ri}i=1,...,n.

7. Conclusion and Future Work

We have proposed in this paper an approach to tune adaptively the unique parameter of
optimal transport distances, the ground metric, given a training data set of histograms. This
approach can be applied on any type of features, as long as a set of histograms along with
side-information, typically labels, are provided for the algorithm to learn a good candidate
for the ground metric. The algorithms proceeds with a projected subgradient descent to

557

Cuturi and Avis

0 50 100 150 200 250 300
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

−5

40 sample objective curves
from the 1,000 Caltech−256 Experiments

Iterations

O
bj

ec
tiv

e
V

al
ue

Figure 8: 40 sample objective curves randomly selected among the 1,000 binary classifica-
tion tasks run on the Caltech-256 data set. The initial point used here is the
matrix M1 of ones and zero diagonal. The very first bumps usually observed
in the first iterations agree with our empirical findings on empirical test error
displayed in Figure 9 which illustrate that the very first radients that are applied
are usually not informative and result momentarily in an objective increase.

minimize approximately a criterion that is a difference of polyhedral convex functions.
We propose two initial points to initialize this algorithm, and show that our approach
provides, when compared to other competing distances, a superior average performance for
a large set of image binary classification tasks using GIST features histograms, as well as
different multiclass classification tasks. This improvement comes, however, with a heavy
computational price tag.

Our benchmark experiments only contain low-dimensional descriptors. We chose such
small dimensions because it is well known that optimal transport distances do not scale
well for higher dimensions. That being said, the problem of speeding up the computation
of optimal transport distances by considering restrictions on ground metrics has attracted
significant attention. Ling and Okada (2007), Gudmundsson et al. (2007), Pele and Werman
(2009), Ba et al. (2011) have all recently argued that this computation can be dramatically

558

Ground Metric Learning

1 3 5 7 9 11 13 15 17 19
0.18

0.19

0.2

0.21

0.22

0.23

0.24

κ parameter

GML, M
0
=1: Average Test Error

1 3 5 7 9 11 13 15 17 19
0.18

0.19

0.2

0.21

0.22

0.23

0.24

κ parameter

GML, M
0
=Ind: Average Test Error

5 Iterations
20 Iterations
50 Iterations
100 Iterations
150 Iterations
Converged

0 50 100 150 200 Converged
0.19

0.2

0.21

0.22

0.23

0.24
3−NN Average Test Error as a function of Iteration Count

GML Ones k=3
GML Ind k=3

Figure 9: Average κ-nearest neighbor test error for GML using either the matrix of ones
(top left) or the independent table (top right) described in Section 4.3. As can be
seen for κ = 3 (bottom), initializing the algorithm with M1 performs worse than
independence tables for a low iteration count. Yet this competitive advantage is
reversed above a few iterations, as the algorithm converges. This figure also seems
to indicate that, on average, the algorithm does not overfit the data since the
average test error seems to decrease monotonically with the number of iterations,
and becomes flat after 200 iterations. The experimental setting is identical to
that of Figure 6.

sped up when the ground metric matrix has a certain structure. For instance, Pele and
Werman (2009) have shown that the computational speed of earth mover’s distances can
be significantly accelerated when the ground metric is thresholded above a certain level.
Ground metrics that follow such constraints are attractive because they result in transport

559

Cuturi and Avis

5 10 15

0.15

0.2

0.25

20 News Group

A
cc

ur
ac

y

5 10 15

0.4

0.45

0.5

0.55

Reuters

5 10 15

0.65

0.7

0.75

MIT Scene

A
cc

ur
ac

y

5 10 15

0.45

0.5

0.55

0.6

UIUC Scene

5 10 15

0.2

0.25

0.3

OXFORD Flower

Neighborhood Size

A
cc

ur
ac

y

5 10 15
0.15

0.2

0.25

0.3
CALTECH−101

Neighborhood Size

GML
LMNN
LMNN−HELLINGER
L1
L2
HELLINGER

Figure 10: κ-nearest neighbor performance for different distances on multi-class problems.
Performance is averaged over 5 repeats, whose variability is illustrated with er-
ror bars. Errors are reported over varying κ nearest neighbor parameters. Our
benchmark considers three classical distances, l1, l2 and Hellinger, and their
respective learned counterparts: GML paired with the transport distance ini-
tialized with the matrix M1, classic LMNN and LMNN on the Hellinger repre-
sentation.

problems which are provably faster to compute. Our work in this paper suggests on the other
hand that the content (and not the structure) of the ground metric can be learned to improve
classification accuracy. We believe that the combination of these two viewpoints could
result in optimal transport distances that are both adapted to the task at hand and fast to
compute. A strategy to achieve both goals would be to enforce such structural constraints
on candidate metrics M when looking for minimizers of criteria Ck. We also believe that the
recent proposal of Sinkhorn distances (Cuturi 2013) may provide the necessary speed-ups
to make our approach more scaleable regardless of the structure of the ground metric.

560

Ground Metric Learning

Acknowledgments

The authors would like to thank anonymous reviewers and the editor for stimulating com-
ments. MC would like to thank Zaid Harchaoui and Alexandre d’Aspremont for fruitful
discussions, as well as Tam Le for his help in preparing some of the experiments.

Appendix A.

Proof (Theorem 1) Symmetry and definiteness of the distance are easy to prove: since
M has a null diagonal, dM (x, x) = 0, with corresponding optimal transport matrix X? =
diag(x); by the positivity of all off-diagonal elements of M , dM (x, y) > 0 whenever x 6= y;
by symmetry of M , dM is itself a symmetric function in its two arguments. To prove the
triangle inequality, Villani (2003, Theorem 7.3) uses the gluing lemma. We provide here
a self-contained version of this proof which provides an explicit formulation for the gluing
lemma in the discrete case. Let x, y, z ∈ Σd. Let P and Q be two optimal solutions of the
transport problems between x and y, and y and z respectively. Let S be the d×d×d tensor
whose coefficients are defined as

sijk
def
=
pijqjk
yj

,

for all indices j such that yj > 0. For indices j such that yj = 0, the corresponding values
sijk are set to 0. S is a probability measure on {1, . . . , d}3, as a direct consequence of the

fact that the d× d matrix Si·k
def
= [
∑

j sijk]ik is a transport matrix between x and z and thus
sums to 1. Indeed,∑

i

∑
j

sijk =
∑
j

∑
i

pijqjk
yj

=
∑
j

qjk
yj

∑
i

pij =
∑
j

qjk
yj
yj =

∑
j

qjk = zk (column sums) ,

∑
k

∑
j

sijk =
∑
j

∑
k

pijqjk
yj

=
∑
j

pij
yj

∑
k

qjk =
∑
j

pij
yj
yj =

∑
j

pij = xi (row sums) .

To obtain the triangle inequality, notice that Si·k being a matrix of U(x, z) we can write:

dM (x, z) = min
X∈U(x,z)

〈X,M 〉

≤ 〈Si·k,M 〉 =
∑
ik

mik

∑
j

pijqjk
yj

≤
∑
ijk

(mij +mjk)
pijqjk
yj

=
∑
ijk

mij
pijqjk
yj

+mjk
pijqjk
yj

=
∑
ij

mijpij
∑
k

qjk
yj

+
∑
jk

mjkqjk
∑
i

pij
yj

=
∑
ij

mijpij +
∑
jk

mjkqjk = dM (x, y) + dM (y, z),

where we have used the triangle inequality for M at the end of the second line.

561

Cuturi and Avis

References

R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms and Applications.
Prentice Hall, 1993.

J. Aitchison. The Statistical Analysis of Compositional Data. Chapman & Hall, 1986.

J. Aitchison and J. Egozcue. Compositional data analysis: Where are we and where should
we be heading? Mathematical Geology, 37(7):829–850, 2005.

S.-I. Amari and H. Nagaoka. Methods of Information Geometry. AMS vol. 191, 2001.

K. Ba, H. Nguyen, H. Nguyen, and R. Rubinfeld. Sublinear time algorithms for earth
movers distance. Theory of Computing Systems, 48(2):428–442, 2011.

A. Barvinok. What does a random contingency table look like? Combinatorics, Probability
and Computing, 19(04):517–539, 2010.

A. Bellet, A. Habrard, and M. Sebban. A survey on metric learning for feature vectors and
structured data. arXiv:1306.6709, 2013.

D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific, 1997.

D. Blei and J. Lafferty. Topic models. Text Mining: Classification, Clustering, and Appli-
cations, 10:71, 2009.

D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. The Journal of Machine
Learning Research, 3:993–1022, 2003.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

J. Brickell, I. Dhillon, S. Sra, and J. Tropp. The metric nearness problem. SIAM Journal
of Matrix Analysis and Applications, 30(1):375–396, 2008.

R. A. Brualdi. Combinatorial Matrix Classes, volume 108. Cambridge University Press,
2006.

O. Chapelle, P. Haffner, and V. Vapnik. SVMs for histogram based image classification.
IEEE Transactions on Neural Networks, 10(5):1055, Sept. 1999.

M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances
in Neural Information Processing Systems 26, pages 2292–2300. 2013.

J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon. Information-theoretic metric learning. In
Proceedings of the 24th International Conference on Machine Learning, pages 209–216.
ACM, 2007.

M. Deza and E. Deza. Encyclopedia of Distances. Springer Verlag, 2009.

P. Diaconis and B. Efron. Testing for independence in a two-way table: new interpretations
of the chi-square statistic. The Annals of Statistics, 13(3):845–913, 1985.

562

Ground Metric Learning

M. Douze, H. Jégou, H. Sandhawalia, L. Amsaleg, and C. Schmid. Evaluation of GIST de-
scriptors for web-scale image search. In Proceedings of the ACM International Conference
on Image and Video Retrieval. Article 19, ACM, 2009.

L. Ford and Fulkerson. Flows in Networks. Princeton University Press, 1962.

A. Frangioni, A. Lodi, and G. Rinaldi. New approaches for optimizing over the semimetric
polytope. Mathematical Programming, 104(2):375–388, 2005.

I. Good. Maximum entropy for hypothesis formulation, especially for multidimensional
contingency tables. The Annals of Mathematical Statistics, pages 911–934, 1963.

J. Gudmundsson, O. Klein, C. Knauer, and M. Smid. Small manhattan networks and algo-
rithmic applications for the earth movers distance. In Proceedings of the 23rd European
Workshop on Computational Geometry, pages 174–177, 2007.

T. Joachims. Learning to Classify Text Using Support Vector Machines: Methods, Theory,
and Algorithms. Kluwer Academic Publishers, 2002.

L. Kantorovich and G. Rubinshtein. On a space of totally additive functions. Vestn Lening.
Univ., 13:52–59, 1958.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled graphs. In
Proceedings of the 20th International Conference on Machine Learning, pages 321–328,
2003.

D. Kedem, S. Tyree, K. Weinberger, F. Sha, and G. Lanckriet. Non-linear metric learning.
In Advances in Neural Information Processing Systems 25, pages 2582–2590, 2012.

B. Kulis. Metric learning: A survey. Foundations & Trends in Machine Learning, 5(4):
287–364, 2012.

S. Lauritzen. Lectures on Contingency Tables. Aalborg Univ. Press, 1982.

G. Lebanon. Metric learning for text documents. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(4):497–508, 2006.

C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: a string kernel for svm protein
classific ation. In Proceedings of the Pacific Symposium on Biology 2002, pages 564–575,
2002.

E. Levina and P. Bickel. The earth mover’s distance is the Mallows distance: some insights
from statistics. In Proceedings of the Eighth IEEE International Conference on Computer
Vision, volume 2, pages 251–256. IEEE, 2001.

H. Ling and K. Okada. An efficient earth mover’s distance algorithm for robust histogram
comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages
840–853, 2007.

563

Cuturi and Avis

D. Lowe. Object recognition from local scale-invariant features. In Computer Vision, 1999.
The Proceedings of the Seventh IEEE International Conference on, volume 2, pages 1150
–1157 vol.2, 1999.

C. Mallows. A note on asymptotic joint normality. The Annals of Mathematical Statistics,
pages 508–515, 1972.

A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the
spatial envelope. International Journal of Computer Vision, 42(3):145–175, 2001.

O. Pele and M. Werman. Fast and robust earth mover’s distances. In Proceedings of the
International Conference on Computer Vision’09, 2009.

S. Rachev. Probability Metrics and the Stability of Stochastic Models. Wiley series in
probability and mathematical statistics: Applied probability and statistics. Wiley, 1991.

S. Rachev and L. Rüschendorf. Mass Transportation Problems: Theory, volume 1. Springer
Verlag, 1998.

T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

Y. Rubner, L. Guibas, and C. Tomasi. The earth movers distance, multi-dimensional scal-
ing, and color-based image retrieval. In Proceedings of the ARPA Image Understanding
Workshop, pages 661–668, 1997.

Y. Rubner, C. Tomasi, and L. Guibas. The earth mover’s distance as a metric for image
retrieval. International Journal of Computer Vision, 40, 2000.

M. Swain and D. Ballard. Color indexing. International Journal of Computer Vision, 7(1):
11–32, 1991.

A. Vershik. Kantorovich metric: initial history and little-known applications. Journal of
Mathematical Sciences, 133(4):1410–1417, 2006.

C. Villani. Topics in Optimal Transportation, volume 58. AMS Graduate Studies in Math-
ematics, 2003.

F. Wang and L. J. Guibas. Supervised earth movers distance learning and its computer
vision applications. In Computer Vision–ECCV 2012, pages 442–455. Springer, 2012.

K. Weinberger and L. Saul. Distance metric learning for large margin nearest neighbor
classification. The Journal of Machine Learning Research, 10:207–244, 2009.

K. Weinberger, J. Blitzer, and L. Saul. Distance metric learning for large margin nearest
neighbor classification. In Advances in Neural Information Processing Systems 18, pages
1473–1480, 2006.

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning with applica-
tion to clustering with side-information. In Advances in Neural Information Processing
Systems 15, pages 505–512. MIT Press, 2003.

564

Journal of Machine Learning Research 15 (2014) 565-593 Submitted 11/12; Revised 10/13; Published 2/14

Link Prediction in Graphs with Autoregressive Features

Emile Richard emileric@stanford.edu
Department of Electrical Engineering
Stanford University - Packard 239
Stanford, CA 94304

Stéphane Gaïffas stephane.gaiffas@cmap.polytechnique.fr
CMAP - Ecole Polytechnique
Route de Saclay
91128 Palaiseau Cedex, France

Nicolas Vayatis nicolas.vayatis@cmla.ens-cachan.fr
CMLA - ENS Cachan
UMR CNRS No. 8536
61, avenue du Président Wilson
94 235 Cachan cedex, France

Editor: Tong Zhang

Abstract
In the paper, we consider the problem of link prediction in time-evolving graphs. We assume
that certain graph features, such as the node degree, follow a vector autoregressive (VAR)
model and we propose to use this information to improve the accuracy of prediction. Our
strategy involves a joint optimization procedure over the space of adjacency matrices and
VAR matrices. On the adjacency matrix it takes into account both sparsity and low rank
properties and on the VAR it encodes the sparsity. The analysis involves oracle inequalities
that illustrate the trade-offs in the choice of smoothing parameters when modeling the
joint effect of sparsity and low rank. The estimate is computed efficiently using proximal
methods, and evaluated through numerical experiments.

Keywords: graphs, link prediction, low-rank, sparsity, autoregression

1. Introduction

Forecasting systems behavior with multiple responses has been a challenging issue in many
contexts of applications such as collaborative filtering, financial markets, or bioinformat-
ics, where responses can be, respectively, movie ratings, stock prices, or activity of genes
within a cell. Statistical modeling techniques have been widely investigated in the context
of multivariate time series either in the multiple linear regression setup by Breiman and
Friedman (1997) or with autoregressive models by Tsay (2005). More recently, kernel-based
regularized methods have been developed for multitask learning by Evgeniou et al. (2005)
and Andreas et al. (2007). These approaches share the use of the correlation structure
among input variables to enrich the prediction on every single output. Often, the correla-
tion structure is assumed to be given or it is estimated separately. A discrete encoding of
correlations between variables can be modeled as a graph so that learning the dependence

c©2014 Emile Richard, Stéphane Gaïffas and Nicolas Vayatis.

Richard, Gaïffas and Vayatis

structure amounts to performing graph inference through the discovery of uncovered edges
on the graph. The latter problem is interesting per se and it is known as the problem of
link prediction where it is assumed that only a part of the graph is actually observed, see
the paper by Liben-Nowell and Kleinberg (2007) and Kolar and Xing (2011). This situation
occurs in various applications such as recommender systems, social networks, or proteomics,
and the appropriate tools can be found among matrix completion techniques, see for in-
stance the papers by Srebro et al. (2005), Candès and Tao (2009) and Abernethy et al.
(2009). In the realistic setup of a time-evolving graph, matrix completion was also used and
adapted by Richard et al. (2010) to take into account the dynamics of the features of the
graph. The estimation of a VAR model for node degrees (that are linear graph features) has
been considered by Zhang et al. (2011) and successfully applied to customer valuation, and
to measure network effect in user generated content market places. Note also that sparse
autoregressive models are also considered by Davis et al. (2012) and Nardi and Rinaldo
(2011).

In this paper, we study the prediction problem where the observation is a sequence of
graphs represented through their adjacency matrices (At)0≤t≤T and the goal is to predict
AT+1. This prediction problem arises in recommender systems, where the purchases or
preference declarations are registered over time. In this context, users and products can be
modeled as the nodes of a bipartite graph, while purchases or clicks are modeled as edges. In
functional genomics and systems biology, estimating regulatory networks in gene expression
can be performed by modeling the data as graphs. In this setting, fitting predictive models
is a natural way for estimating evolving networks in these contexts, see the paper by Shojaie
et al. (2011). A large variety of methods for link prediction only consider prediction from
a single instantaneous snapshot of the graph. This includes heuristics: measures of node
neighbourhoods are considered by Liben-Nowell and Kleinberg (2007), Lü and Zhou (2011)
and Sarkar et al. (2010), matrix factorization by Koren (2008), diffusion by see Myers and
Leskovec (2010) and probabilistic methods by Taskar et al. (2003). More recently, some
works have investigated the use of sequences of observations of the graph to improve the
prediction, such as regression on features extracted from the graphs by Richard et al. (2010),
matrix factorization by Koren (2010), continuous-time regression by Vu et al. (2011) or non-
parametric models by Sarkar et al. (2012). An hybrid approach to dynamic link prediction
is considered by Huang and Lin (2009), based on a mixture of the static approach by Liben-
Nowell and Kleinberg (2007) and an individual ARIMA modeling of the links evolution.

The framework of the current paper is somehow related to compressed sensing introduced
by Donoho (2006) and Candès and Wakin (2008). In fact, due to stationarity assumptions,
the amount of available information is very small compared to the task of predicting the
quadratically many potential edges of the graph. Therefore penalization terms that en-
courage both sparsity and low-rank of related matrices are used to recover the edges of the
graph. In the static setup, these two effects have been previously combined by Richard
et al. (2012b) for the estimation of sparse and low-rank matrices, the rationale being that
graphs containing cliques have block-diagonal adjacency matrices that are simultaneously
sparse and low-rank. Key elements in deriving theoretical results are tools from the theory of
compressed sensing, developed by Candès and Tao (2005), Bickel et al. (2009), Koltchinskii
et al. (2011) and in particular the Restricted Eigenvalue of Koltchinskii (2009a), Koltchinskii
(2009b) and Bickel et al. (2009). Our main results are oracle inequalities under the general

566

Link Prediction in Graphs with Autoregressive Features

assumption that the innovation process of the VAR is a martingale increment sequence with
sub-gaussian tails. These oracle inequalities prove that our procedure achieves a trade-off
in the calibration of smoothing parameters that balances the sparsity and the rank of the
adjacency matrix. A preliminary version of this work can be found in a previous work by
Richard et al. (2012a).

The rest of this paper is organized as follows. In Section 2, we describe the general
setup of this study with the main assumptions. In Section 2.3, we formulate a regularized
optimization problem which aims at jointly estimating the autoregression parameters and
predicting the graph. In Section 3, we provide theoretical guarantees for the joint estimation-
prediction by providing oracle inequalities. In Section 4 we provide an efficient algorithm for
solving the optimization problem and show empirical results that illustrate our approach.
The proofs are provided in Appendix.

2. Modeling Low-Rank Graphs Dynamics with Autoregressive Features

We first introduce the main notations used in the paper.
Matrix norms and entrywise matrix operations. Denote by A a matrix. In the sequel, the
notations ‖A‖F , ‖A‖p, ‖A‖∞, ‖A‖∗ and ‖A‖op stand, respectively, for the Frobenius norm
of A, the entry-wise `p norm, the entry-wise `∞ norm, the trace-norm (or nuclear norm,
given by the sum of the singular values) and operator norm (the largest singular value) of
A. Given matrices A and B, we denote by 〈A,B〉 = tr(A>B) the Euclidean matrix product.
A vector in Rd is always understood as a d× 1 matrix. We denote by ‖A‖0 the number of
non-zero elements of A. The product A◦B between two matrices with matching dimensions
stands for the entry-wise product between A and B (also called Hadamard product). The
matrix |A| contains the absolute values of entries of A. The matrix (M)+ is the entry-wise
positive part of the matrix M, and sign(M) is the sign matrix associated to M with the
convention sign(0) = 0.
SVD and projections. If A is a n × n matrix with rank r, we write its Singular Value
Decomposition (SVD) as A = UΣV > =

∑r
j=1 σjujv

>
j where Σ = diag(σ1, . . . , σr) is a

r × r diagonal matrix containing the non-zero singular values of A in decreasing order, and
U = [u1, . . . , ur], V = [v1, . . . , vr] are n×r matrices with columns given by the left and right
singular vectors of A. The projection matrix onto the space spanned by the columns (resp.
rows) of A is given by PU = UU> (resp. PV = V V >). The operator PA : Rn×n → Rn×n
given by PA(B) = PUB +BPV −PUBPV is the projector onto the linear space spanned by
the matrices ukx> and yv>k for 1 ≤ j, k ≤ r and x, y ∈ Rn. The projector onto the orthogonal
space is given by P⊥A (B) = (I −PU)B(I −PV). We also use the notation a∨ b = max(a, b).

2.1 Working Assumptions

Our approach is based on a number of beliefs which we translate into mathematical assump-
tions:

• Low-rank of adjacency matrices At
This reflects the presence of highly connected groups of nodes such as communities in
social networks, or product categories and groups of loyal/fanatic users in a market
place data, and is sometimes motivated by the small number of factors that explain

567

Richard, Gaïffas and Vayatis

nodes interactions. We will not make an explicit assumption in the paper but the
results we obtain will be meaningful in the specific case where rank is small compared
to the dimension.

• Autoregressive linear features (VAR models)

We assume that intrinsic features of the graph can explain most of the information
contained in the graph, and that these features are evolving with time. Our approach
considers the simplest assumption on the dynamics over time of these features and we
assume a Vector Autoregressive Linear Regression model that is described in the next
subsection.

• Sub-gaussian noise process

A probabilistic framework is considered in order to describe performance under the
form of oracle inequalities and we propose to specify the distribution of the discrep-
ancy between the VAR model and the actual observations with a a sub-gaussian tail
behavior. This assumption will be formulated below in Section 3.

The first two items correspond to modeling assumptions which partly capture observa-
tions made on real-life data. The third item is a technical assumption used in the proofs.

2.2 An Autoregressive Linear Model for Graph Features

Feature map. We consider a list of graph features encoded through a linear map of the
adjacency matrix with ω : Rn×n → Rd defined by:

ω(A) =
[
〈Ω1, A〉, · · · , 〈Ωd, A〉

]>
, (1)

where {Ωi}1≤i≤d is a set of n× n matrices. These matrices could be either deterministic or
random in our theoretical analysis, but we take them deterministic for the sake of simplicity.
An example of linear features is the vector of node degrees, that is, the number of edges
connected to each node. The degree can be computed from the adjacency matrix using
the linear function ω : A 7→ A1 or ω : A 7→ A>1 respectively for the right and left
nodes degrees, where 1 denotes the vector with all coordinates equal to 1 of the appropriate
length. Other (linear) measures of popularity are considered in social and e-commerce
networks, such as the sum of the weights of incident edges if there is some graduation in
the strength of connection between nodes. Note that nonlinear features, such as the count
of the number of cycles of length k (k = 3, 4, · · ·) through each node, may be relevant in
real world applications. Such features involve, for instance, the diagonal elements of Ak. An
extensive study of this very interesting case is beyond the scope of the present paper.
VAR model. We consider a linear model for the evolution of ω(A) over time.

Assumption 1 The vector time series {ω(At)}t≥0 has autoregressive dynamics, given by a
VAR (Vector Auto-Regressive) model:

ω(At+1) = W>0 ω(At) +Nt+1,

where W0 ∈ Rd×d is an unknown sparse matrix and {Nt}t≥0 is a sequence of noise vectors
in Rd.

568

Link Prediction in Graphs with Autoregressive Features

In the sequel, we shall use the following compact notations:

XT−1 =
[
ω(A0), . . . , ω(AT−1)

]> and XT =
[
ω(A1), . . . , ω(AT)

]>
,

which are both T × d matrices, we can write this model in matrix form:

XT = XT−1W0 + NT ,

where NT = [N1, . . . , NT]>.

2.3 Simultaneous Prediction and Estimation through Regularized Optimization

Optimization problem formulation. We now introduce the optimization problem which will
account for both the prediction task (anticipate the appearance of new edges in the graph)
and the modeling choices which are supposed to reflect phenomena observed on real data
(smooth evolution of graph features). We consider that snapshots of the graph (and therefore
also the corresponding features) are available at times 1, . . . , T and we want to predict links
which will appear at the next instant T + 1. In order to fulfill this double objective, we
combine two regularized problems in an additive fashion based on two terms:

1. First objective - data-fitting term for weight vector W with sparsity-enforcing penalty

J1(W) =
1

T
‖XT −XT−1W‖2F + κ‖W‖1, (2)

where κ > 0 is a smoothing parameter.

2. Second objective - data-fitting term for the features of the adjacency matrix A with
mixed penalty enforcing both sparsity and low-rank

J2(A,W) =
1

d
‖ω(A)−W>ω(AT)‖22 + τ‖A‖∗ + γ‖A‖1,

where τ, γ > 0 are smoothing parameters.

The resulting penalized criterion will be the main topic of the present paper. It is the sum
of the two partial objectives J1 and J2, and is jointly convex with respect to A and W :

L(A,W)
.
=

1

T
‖XT −XT−1W‖2F + κ‖W‖1 +

1

d
‖ω(A)−W>ω(AT)‖22 + τ‖A‖∗+ γ‖A‖1. (3)

Rationale. As shown by the introduction of the two functionals, our approach pursues
a double goal. On the one hand, the data-fitting term on W in J1 aims at an estimate
on the past data of the weight factor in the autoregressive modeling setup according to
Assumption 1 and under a sparsity constraint. On the other hand, the link prediction
goes through the estimation of a matrix A = AT+1 which should be sparse and low-rank
simultaneously. Hence, the second functional J2 involves a mixed penalty of the form A 7→
τ‖A‖∗+ γ‖A‖1, with τ , γ smoothing parameters. Such a combination of `1 and trace-norm
was already studied by Gaïffas and Lecué (2011) for the matrix regression model, and by
Richard et al. (2012b) for the prediction of an adjacency matrix. This mixed norm combines
the benefits of each of the two norms and is well suited for estimating simultaneously sparse

569

Richard, Gaïffas and Vayatis

Figure 1: Unit balls for the trace norm (left), `1 (middle) and the mixed X 7→ ‖X‖∗+‖X‖1
norm (right). The norms where computed on the set of 2× 2 symmetric matrices
that can be identified to R3.

and low-rank matrices. In Figure 1 we illustrated the unit balls for the three norms `1,
trace-norm and the `1 + trace norm. The key observation is that the ball of the mixed
norm has singularities at the points where each of the two other balls are singular, but the
singularities get sharper at points where both norms are singular, namely on the matrices
that are sparse and low-rank at the same time.

The set of sparse and low-rank matrices obtained by minimizing an objective including
this mixed norm contains matrices that can be written in a block-diagonal or overlapping
block-diagonal form, up to permutations of rows and columns. These matrices can be
interpreted as adjacency matrices of networks containing highly connected groups of nodes
and therefore are of particular interest for prediction and denoising applications in graph
data and in covariance matrix estimation. Here we extend the approach developed by
Richard et al. (2012b) for the time-dependent setting by considering data-fitting measures
which ensure that the features of the next graph ω(AT+1) are close to W>ω(AT).
Search space and general scheme of the estimation procedure. We shall consider the case
where the optimization domain consists of the cartesian product of convex cones A and W
such that A ⊂ Rn×n and W ⊂ Rd×d. The joint estimation-prediction procedure is then
defined by

(Â, Ŵ) ∈ arg min
(A,W)∈A×W

L(A,W). (4)

It is natural to take W = Rd×d and A = (R+)n×n since there is no a priori on the values
of the true VAR model matrix W0, while the entries of the matrix AT+1 must be positive.
Table 1 summarizes the methodology in a scheme where the symbols ↓ω represent the feature
extraction procedure through the map ω : Rn×n → Rd. The prediction in the feature space is
represented by→W , and is handled in practice by the least squares regression onW . Finally,
the symbol ↑ that maps the predicted feature vector ̂ω(AT+1) to ÂT+1 represents the inverse
problem that is solved through the regression penalized by the mixed penalization.

2.4 An Overview of Main Results

The central contribution of our work is to provide bounds on the prediction error under
a Restricted Eigenvalue (RE) assumption on the feature map. The main result can be
summarized as follows: the prediction error and the estimation error can be simultaneously
bounded by the sum of three terms that involve homogeneously (a) the sparsity, (b) the

570

Link Prediction in Graphs with Autoregressive Features

A0 A1 · · · AT ÂT+1 Observed adjacency matrices ∈ Rn×n
↓ω ↓ω ↓ω ↑

ω(A0) ω(A1) · · · ω(AT) →
W

̂ω(AT+1) Features vectors ∈ Rd

Table 1: General scheme of our method for prediction in dynamic graph sequences through
a feature map ω.

rank of the true adjacency matrix AT+1, and (c) the sparsity of the true VAR model matrix
W0.

Namely, we prove oracle inequalities for the mixed prediction-estimation error which is
given, for any A ∈ Rn×n and W ∈ Rd×d, by

E(A,W)2 .
=

1

d
‖(W −W0)>ω(AT)− ω(A−AT+1)‖22 +

1

T
‖XT−1(W −W0)‖2F .

We point out that an upper-bound on E implies upper-bounds on each of its two components.
It entails in particular an upper-bound on the feature estimation error ‖XT−1(Ŵ −W0)‖F
that makes ‖(Ŵ −W0)>ω(AT)‖2 smaller and consequently controls the prediction error over
the graph edges through ‖ω(Â−AT+1)‖2.

We obtain upper bounds that are reminiscent of the bounds obtained for the Lasso by
Bickel et al. (2009) for instance, and that are of the following order:

log d

T
‖W0‖0 +

log n

d
‖AT+1‖0 +

log n

d
rankAT+1.

This upper bound, formalized in Theorem 3, exhibits the dependence of the accuracy of
estimation and prediction on the number of features d, the number of edges n and the
number T of observed graphs in the sequence. It indicates, in particular, that an optimal
choice for the number d of features is of order T log n. The positive constants C1, C2, C3

are proportional to the noise level σ. The interplay between the rank and the sparsity
constraints on AT+1 are reflected in the observation that the values of C2 and C3 can be
changed as long as their sum remains constant. The precise formulation of these results is
given in the next section.

3. Oracle Inequalities

This section contains the main theoretical results ot the paper. Complete proofs and tech-
nical details are provided in the Appendix section at the end of the paper.

3.1 A General Oracle Inequality

We recall from subsection 2.2 that the noise sequence in the VAR model is denoted by
{Nt}t≥0. We now introduce the noise processes as

M = −1

d

d∑
j=1

(NT+1)jΩj and Ξ =
1

T

T∑
t=1

ω(At−1)N>t +
1

d
ω(AT)N>T+1,

571

Richard, Gaïffas and Vayatis

which are, respectively, n× n and d× d random matrices. The source of randomness comes
from the noise sequence {Nt}t≥0.

Now, if these noise processes are controlled, we can prove oracle inequalities for proce-
dure (4). The first result is an oracle inequality of slow type, that holds in full generality.

Theorem 1 Under Assumption 1, let (Â, Ŵ) be given by (4) and suppose that

τ ≥ 2α‖M‖op, γ ≥ 2(1− α)‖M‖∞ and κ ≥ 2‖Ξ‖∞ (5)

for some α ∈ (0, 1). Then, we have

E(Â, Ŵ)2 ≤ inf
(A,W)∈A×W

{
E(A,W)2 + 2τ‖A‖∗ + 2γ‖A‖1 + 2κ‖W‖1

}
.

3.2 Restricted Eigenvalue Condition and Fast Oracle Inequalities

For the proof of oracle inequalities, the restricted eigenvalue (RE) condition introduced by
Bickel et al. (2009) and Koltchinskii (2009a,b) is of importance. As explained by van de Geer
and Bühlmann (2009), this condition is acknowledged to be one of the weakest to derive
fast rates for the Lasso. Matrix version of these assumptions are introduced by Koltchinskii
et al. (2011). Below is a version of the RE assumption that fits in our context. First, we
need to introduce the two restriction cones.

The first cone is related to the ‖W‖1 term used in procedure (4). IfW ∈ Rd×d, we denote
by ΘW = sign(W) ∈ {0,±1}d×d the signed sparsity pattern of W and by Θ⊥W ∈ {0, 1}d×d
the complementary sparsity pattern. For a fixed matrix W ∈ Rd×d and c > 0, we introduce
the cone

C1(W, c)
.
=
{
W ′ ∈ W : ‖Θ⊥W ◦W ′‖1 ≤ c‖ΘW ◦W ′‖1

}
.

This cone contains the matrices W ′ that have their largest entries in the sparsity pattern
of W .

The second cone is related to the mixture of the terms ‖A‖∗ and ‖A‖1 in procedure (4).
For a fixed A ∈ Rn×n and c, β > 0, we introduce

C2(A, c, β)
.
=
{
A′ ∈ A : ‖P⊥A (A′)‖∗ + β‖Θ⊥A ◦A′‖1 ≤ c

(
‖PA(A′)‖∗ + β‖ΘA ◦A′‖1

)}
.

This cone consist of the matrices A′ with large entries close to that of A and that are “almost
aligned” with the row and column spaces of A. The parameter β quantifies the interplay
between these two notions.

Assumption 2 (Restricted Eigenvalue (RE) condition) For W ∈ W and c > 0, we
have

µ1(W, c) = inf
{
µ > 0 : ‖ΘW ◦W ′‖F ≤

µ√
T
‖XT−1W

′‖F , ∀W ′ ∈ C1(W, c)
}
< +∞ .

For A ∈ A and c, β > 0, we introduce

µ2(A,W, c, β) = inf
{
µ > 0 : ‖PA(A′)‖F ∨ ‖ΘA ◦A′‖F ≤

µ√
d
‖W ′>ω(AT)− ω(A′)‖2

∀W ′ ∈ C1(W, c), ∀A′ ∈ C2(A, c, β)
}
< +∞ .

572

Link Prediction in Graphs with Autoregressive Features

Under this assumption, we can obtain refined oracle inequalities as shown in the next
theorem.

Theorem 2 Under Assumption 1 and Assumption 2, let (Â, Ŵ) be given by (4) and suppose
that

τ ≥ 3α‖M‖op, γ ≥ 3(1− α)‖M‖∞ and κ ≥ 3‖Ξ‖∞ (6)
for some α ∈ (0, 1). Then, we have

E(Â, Ŵ)2 ≤ inf
(A,W)∈A×W

{
E(A,W)2 +

25

18
µ2(A,W)2

(
τ2 rankA+ γ2‖A‖0) +

25

36
κ2µ1(W)2‖W‖0

}
,

where µ1(W) = µ1(W, 5) and µ2(A,W) = µ2(A,W, 5, γ/τ) (see Assumption 2).

The proofs of Theorems 1 and 2 use tools introduced by Koltchinskii et al. (2011) and
Bickel et al. (2009). Note that the residual term from this oracle inequality combines the
sparsity of A and W via the terms rankA, ‖A‖0 and ‖W‖0. It says that our mixed pe-
nalization procedure provides an optimal trade-off between fitting the data and complexity,
measured by both sparsity and low-rank. To our knowledge, this is the first result of this
nature to be found in literature.

3.3 Probabilistic Versions

We introduce the following natural hypothesis on the noise process.

Assumption 3 We assume that {Nt}t≥0 satisfies E[Nt|Ft−1] = 0 for any t ≥ 1 and that
there is σ > 0 such that for any λ ∈ R and j = 1, . . . , d and t ≥ 0:

E[eλ(Nt)j |Ft−1] ≤ eσ2λ2/2.

Moreover, we assume that for each t ≥ 0, the coordinates (Nt)1, . . . , (Nt)d are independent.

The latter statement assumes that the noise is driven by time-series dynamics (a martingale
increment), where the coordinates are independent (meaning that features are independently
corrupted by noise), with a sub-gaussian tail and variance uniformly bounded by a constant
σ2. In particular, no independence assumption between the Nt is required here.

In the next result (Theorem 3), we obtain convergence rates for the procedure (4) by
combining Theorem 2 with controls on the noise processes. We introduce the following
quantities:

v2
Ω,op =

∥∥∥1

d

d∑
j=1

Ω>j Ωj

∥∥∥
op
∨
∥∥∥1

d

d∑
j=1

ΩjΩ
>
j

∥∥∥
op
, v2

Ω,∞ =
∥∥∥1

d

d∑
j=1

Ωj ◦ Ωj

∥∥∥
∞
, (7)

σ2
ω = max

j=1,...,d
σ2
ω,j , where σ2

ω,j =
(1

T

T∑
t=1

ωj(At−1)2 + ωj(AT)2
)
,

which are the (observable) variance terms that naturally appear in the upper bounds of the
noise processes. We also introduce :

`T = 2 max
j=1,...,d

log log

(
σ2
ω,j ∨

1

σ2
ω,j

∨ e
)
, (8)

573

Richard, Gaïffas and Vayatis

which is a small (observable) technical term that comes out of our analysis of the noise
process Ξ. This term is a small price to pay for the fact that no independence assumption
is required on the noise sequence {Nt}t≥0, but only a martingale increment structure with
sub-gaussian tails.

We consider the following calibration of smoothing parameters as a function of noise
process parameters:

τ = 3
√

2ασvΩ,op

√
x+ log(2n)

d
,

γ = 3(1− α)σvΩ,∞

√
2(x+ 2 log n)

d
,

κ = 6σσω

{√
2e(x+ 2 log d+ `T)

T
+

√
2e(x+ 2 log d+ `T)

d

}
.

In the next Theorem 3 and Corollary 4, we fix the smoothing parameters to the latter
values. These two results convey the main message of the paper as it was announced in
Section 2.4.

Theorem 3 Under Assumption 1, Assumption 2 and Assumption 3, consider the procedure
(Â, Ŵ) given by (4) applied with the calibration of smoothing parameters shown above for
some α ∈ (0, 1) and a fixed confidence level x > 0. Then, we have, with probability larger
than 1− 17e−x:

E(Â, Ŵ)2 ≤ inf
(A,W)∈A×W

{
E(A,W)2 + C1‖W‖0(x+ 2 log d+ `T)

(1

T
+

1

d2

)
+ C2‖A‖0

x+ 2 log n

d
+ C3 rankA

x+ log(2n)

d

}
where

C1 = 100eµ1(W)2σ2σ2
ω, C2 = 50µ2(A,W)2(1−α)2σ2v2

Ω,∞, C3 = 50µ2(A,W)2α2σ2v2
Ω,op,

and RE constants µ1(W) and µ2(A,W) are taken as in Theorem 2.

The proof of Theorem 3 follows directly from Theorem 2 together with noise control as-
sumptions. In the next result, we propose more explicit upper bounds for both the individual
estimation of W0 and the prediction of AT+1.

Corollary 4 Under the same assumptions as in Theorem 3 and the same choice of smooth-
ing parameters, for any x > 0 the following inequalities hold with probability larger than
1− 17e−x:

• Feature prediction error:

1

T
‖XT (Ŵ −W0)‖2F ≤

25

36
κ2µ1(W0)2‖W0‖0

+ inf
A∈A

{1

d
‖ω(A)− ω(AT+1)‖22 +

25

18
µ2(A,W0)2

(
τ2 rankA+ γ2‖A‖0)

}
(9)

574

Link Prediction in Graphs with Autoregressive Features

• VAR parameter estimation error:

‖Ŵ −W0‖1 ≤ 5κµ1(W0)2‖W0‖0

+6
√
‖W0‖0µ1(W0) inf

A∈A

√
1

d
‖ω(A)− ω(AT+1)‖22 +

25

18
µ2(A,W0)2

(
τ2 rankA+ γ2‖A‖0)

(10)

• Link prediction error:

‖Â−AT+1‖∗ ≤ 5κµ1(W0)2‖W0‖0 + µ2(AT+1,W0)(6
√

rankAT+1 + 5
γ

τ

√
‖AT+1‖0)

× inf
A∈A

√
1

d
‖ω(A)− ω(AT+1)‖22 +

25

18
µ2(A,W0)2

(
τ2 rankA+ γ2‖A‖0) . (11)

4. Algorithms and Data Modeling

In this section, we explore how the proposed strategy of regularized optimization for si-
multaneously estimating the feature dynamics and predicting the forthcoming links can be
implemented in practice.

4.1 Incremental Proximal-Gradient Algorithm for Minimizing L

The objective to be minimized in our problem can be written as:

L = `+R ,

where we have set the loss function `:

` : (A,W) 7→ 1

T
‖XT −XT−1W‖2F +

1

d
‖ω(A)−W>ω(AT)‖22 ,

and the regularizer R:

R : (A,W) 7→ κ ‖W‖1 + τ‖A‖∗ + γ‖A‖1 .

We propose to develop an algorithm for solving this optimization problem based on
proximal gradient methods. Proximal algorithms (Beck and Teboulle, 2009; Combettes
and Pesquet, 2011) have been designed for solving convex optimization problems where
functionals have the following structure : L = `+R , where ` is convex, differentiable with
a Lipschitz gradient and R is convex and not differentiable. This is exactly our case. In the
classical setup, it is assumed that R has an explicit (or fast to compute) proximal operator,
defined by:

proxR(X) = arg min
Y

{1

2
‖X − Y ‖2F +R(Y)

}
.

It has been proved by Beck and Teboulle (2009) that the sequence

Xk+1 = proxθR(Xk − θ∇`(Xk))

575

Richard, Gaïffas and Vayatis

converges after O(1/ε) steps to a ball of radius ε of the minimizer of L. The step size θ is
usually taken of the order of magnitude of the inverse of the Lipschitz constant L of ∇`. An
accelerated algorithm (FISTA) that reaches the optimal convergence rate O(1/

√
ε) in the

sense of Nesterov (2005) can be written using an auxiliary sequence, are described by Beck
and Teboulle (2009) and Tseng (2008). The intuition behind the design of these algorithms
relies on the linear expansion of ` around the point Xk and the quadratic term L

2 ‖X−Xk‖2F
that controls the closeness of the next step point Xk+1 from Xk. Namely, we can write

L(X) ≈ `(Xk) +∇`(Xk)
>(X −Xk) +R(X) +

L

2
‖X −Xk‖2F

= L

{
1

2

∥∥∥(X −Xk) +
1

L
∇`(Xk)

∥∥∥2

F
− 1

2L2
‖∇`(Xk)‖2F +

1

L
`(Xk) +

1

L
R(X)

}
= L

{
1

2

∥∥∥X − (Xk −
1

L
∇`(Xk))

∥∥∥2

F
+

1

L
R(X)

}
+ constant.

It follows that the point Xk+1 = prox 1
L
R(Xk − 1

L∇`(Xk)) is a fair approximation of the
minimizer of L around Xk. The detailed analysis and extensions can be found in the paper
by Tseng (2008).

In our case, the presence of the sum of two simple regularizers (`1 and trace norm)
applied to the same object A makes the situation slightly more complicated, since the
proximal operator of this sum is non-explicit. We propose to use an incremental algorithm
to address this complication. Indeed, the proximal operators of each term are available.
First, it is known that the proximal operator of the trace norm is given by the spectral
shrinkage operator: if X = U diag(σ1, · · · , σn)V > is the singular value decomposition of X,
we have

proxτ‖·‖∗(X) = U diag((σi − τ)+)V >.

For the `1-norm, the proximal operator is the entrywise soft-thresholding defined by

proxγ‖·‖1(X) = sgn(X) ◦ (|X| − γ)+,

where we recall that ◦ denotes the entry-wise product. The algorithm converges under very
mild conditions when the step size θ is smaller than 2/L, where L is the operator norm of
the joint quadratic loss.

The algorithm is described below (see Algorithm 1). It is inspired from the method
proposed by Bertsekas (2011) Section 2 and conducts to the minimization our objective
function. The order in which proximal mappings are performed is chosen in order to compute
the SVD on a sparse matrix Z, for computational efficiency. If a sparse output is desired,
an extra soft-thresholding step can be performed at the end. Note that this algorithm
is preferable to the method previously introduced by Richard et al. (2010) as it directly
minimizes L jointly in (A,W) rather than alternately minimizing in W and A.

4.2 A Generative Model for Graphs with Linearly Autoregressive Features

In order to prepare the setup for empirical evaluation of the algorithm, we now explain how
synthetic data can be generated from the statistical model with linear autoregressive features.
Let V0 ∈ Rn×r be a sparse matrix, V †0 its pseudo-inverse such that V †0 V0 = V >0 V

>†
0 = Ir.

576

Link Prediction in Graphs with Autoregressive Features

Algorithm 1 Incremental Proximal-Gradient to Minimize L
Initialize A,Z1, Z2,W
repeat
Compute (GA, GW) = ∇A,W `(A,W).
Compute Z = proxθγ‖·‖1(A− θGA)
Compute A = proxθτ‖·‖∗(Z)
Set W = proxθκ‖·‖1(W − θGW)

until convergence
return (A,W) minimizing L

Fix two sparse matrices K0 ∈ Rr×r and U0 ∈ Rn×r. Now define the sequence of matrices
{At}t≥0 for t = 1, 2, · · · by

Ut = Ut−1K0 +Nt

and
At = UtV

>
0

for a sequence of i.i.d sparse noise matrices {Nt}t≥0, which means that for any pair of indices
(i, j), we have (Nt)i,j = 0 with a high probability. We consider the vectorization operator
A 7→ vec(A) that stacks the columns of A into a single column, and define the linear feature
map

ω(A)
.
= vec(AΨ),

where we set for short Ψ = (V >0)†, so that V >0 Ψ = Ir. Let us notice that

1. The sequence {ω(At)}t = {vec(Ut)}t follows the linear autoregressive relation

ω(At) = (K>0 ⊗ In)ω(At−1) + vec(Nt),

where vec(Nt) is a zero-mean noise process and ⊗ is the Kronecker product.

2. For any time index t, the matrix At is close to UtV >0 that has rank at most r

3. The matrices At and Ut are both sparse by construction.

4. The dimension of the feature space is d = nr � n2, so W0 = K>0 ⊗ In ∈ Rnr×nr. The
feature map can be written in standard form, see Equation (1), after vectorization by
using the design matrices

Ω(l−1)n+i = ei(Ψ
>)l,·

for 1 ≤ l ≤ r, 1 ≤ i ≤ n, where the n × n design matrix ei(Ψ>)l,· contains a copy of
the l-th column of Ψ at its i-th row and zeros elsewhere. The standard form of the
feature map is then given by the vector

ω(A) = [〈A,Ω(l−1)n+i〉 : 1 ≤ l ≤ r, 1 ≤ i ≤ n]>.

As a consequence, we can compute the variance terms vΩ,∞ and vΩ,op from Equation (7)
as functions of Ψ. By using

ei(Ψ
>)l,·Ψ·,le

>
i = ‖Ψ·,l‖22eie>i and Ψ·,le

>
i ei(Ψ

>)l,· = Ψ·,l(Ψ
>)l,·,

577

Richard, Gaïffas and Vayatis

we get respectively by summation over indices i and l,

r∑
l=1

n∑
i=1

eiΨ
>
l,·Ψl,·e

>
i =

(r∑
l=1

‖Ψ>l,·‖22
)(n∑

i=1

eie
>
i

)
= ‖Ψ‖2F In

and Equation (7) gives us the values of the variance terms

vΩ,op =
1

nr

(∥∥∥ r∑
l=1

Ψ·,l(Ψ·,l)
>
∥∥∥
op
∨ ‖Ψ‖2F

)
and vΩ,∞ =

1

n
‖Ψ‖2∞,2,

where the (∞, 2)-norm is defined by the maximum `2-norm of the columns, ‖X‖∞,2
.
=

maxj ‖X·,j‖2.

4.3 Beyond the First-Order Autoregressive Model

The theory developed in Sections 2 and 4 considers the VAR model of order p = 1 for the
sake of simplicity. However, our approach is flexible, since we may use any other time-series
modelling. To give a simple illustration of this fact, we consider below an extension to the
second-order VAR model. Indeed, we don’t want the VAR order p to be too large, since
the number of parameters scales as d2 × p (forgetting about sparsity assumptions). In our
experiments (see Section 5 below), we consider and compare both first order and second
order VAR models.

Let us define the (T − 1)× d time-series matrices

XT =
[
ω(A2), . . . , ω(AT)

]>
, XT−1 =

[
ω(A1), . . . , ω(AT−1)

]>
,

XT−2 =
[
ω(A0), . . . , ω(AT−2)

]>
.

We consider the following order 2 extension of the features VAR model:

XT = XT−1W1 + XT−2W2 + NT ,

where NT = [N2, . . . , NT]> denotes the centered noise vector, and W1,W2 are VAR model
parameters. In this case the Lasso objective is

J1(W1,W2) =
1

T

∥∥∥XT −
[
XT−1 XT−2

] [W1

W2

] ∥∥∥2

F
+ κ

∥∥∥ [W1

W2

] ∥∥∥
1

and the Lasso estimator is defined by

(Ŵ1, Ŵ2) = arg min
W1,W2

J1(W1,W2).

In the same spirit as in Section 2.3 we define the objective

L(A,W1,W2) = J1(W1,W2) +
1

d
‖ω(A)> − ω(AT)>W1 − ω(AT−1)>W2‖22 + τ‖A‖∗ + γ‖A‖1.

578

Link Prediction in Graphs with Autoregressive Features

The gradients of the quadratic loss are given by

1

2

[
∇W1`
∇W2`

]
=

1

T

[
X>T−1

X>T−2

]{ [
XT−1 XT−2

] [W1

W2

]
−XT

}
+

1

d

[
ω(AT)
ω(AT−1)

]{ [
ω(AT)> ω(AT−1)>

] [W1

W2

]
− ω(A)>

}
,

and
1

2
∇A`> =

1

d

d∑
j=1

{
ω(A)j − (ω(AT)>W1 + ω(AT−1)>W2)j

}
Ωj ,

where Ωj ∈ Rn×n is the j-th design matrix. We implemented the second order autoregressive
model with three different types of penalties. We used:

1. Ridge Regression using κ‖W1‖2F + κ‖W2‖2F as the penalty term

2. the Lasso estimator, that is, the minimizer of J1

3. the estimator suggested in this work.

5. Empirical Evaluation

In Section 5.1 we assess our algorithms on synthetic data, generated as described in Sec-
tion 4.2. In Section 5.2 we use our algorithm for the prediction of sales volume for web-
marketing data

5.1 Experiments with Synthetic Data

Data generator. In our experiments, the noise matrices Mt are built by soft-thresholding
i.i.d. noise N (0, σ2). We took as input T = 10 successive graph snapshots on n = 50 nodes
graphs of rank r = 5. We used d = 10 linear features, and finally the noise level was set to
σ = .5. Since the matrix V0 defining the linear map ω is unknown we consider the feature
map ω(A) = vec(AV) where ÃT = UΣV > is the SVD of ÃT .
Competitors. The competing methods for our problem, as considered in this paper, are:

• Nearest Neighbors, that scores pairs of nodes with the number of common friends
between them, which is given by A2 where A is the cumulative graph adjacency matrix
ÃT =

∑T
t=0At;

• Static sparse and low-rank, that is the link prediction algorithm suggested by Richard
et al. (2012b), which is obtained by minimizing the objective ‖X − ÃT ‖2F + τ‖X‖∗ +
γ‖X‖1. It is the closest static version of our method;

• Autoregressive low-rank and Static low-rank, that are regularized using only by the
trace-norm (corresponding to γ = 0);

• Katz scores pairs of nodes i and j by the sum of number of paths of length l connecting
i and j, weighted by an exponentially decreasing coefficient βl:

∑∞
l=1 β

l
(
Al
)
i,j
;

579

Richard, Gaïffas and Vayatis

2 3 4 5 6 7 8 9 10
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

T

A
U

C

Link prediction performance

Autoregressive Sparse and Low−rank

Autoregressive Low−rank

Static Sparse and Low−rank

Static Low−rank

Nearest−Neighbors

Katz

Adamic Adar

Prefferential Attachment

rank AT+1

T

AUC

0 10 20 30 40 50 60 70

2

4

6

8

10

12 0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Figure 2: Left: performance of algorithms in terms of Area Under the ROC Curve, average
and confidence intervals over 50 runs. Right: Phase transition diagram.

• Adamic Adar is the score
∑

ν∈N(i)∩N(j) 1/ log(dν), where dν is the degree of the node
ν which is a common neighbor of i and j;

• Preferential attachment only takes popularity into account and scores an edge ij by
the product of their degrees didj . See the papers by Liben-Nowell and Kleinberg
(2007) and Lü and Zhou (2011) for details on Katz, Adamic-Adar and Preferential
Attachment.

We also point out that other methods could possibly be adapted for the problem of link
prediction as stated in the present paper. We mainly refer to the works by Liben-Nowell
and Kleinberg (2007), Lü and Zhou (2011), Sarkar et al. (2012), Huang and Lin (2009),
Nardi and Rinaldo (2011) and Davis et al. (2012). However, they were introduced either
in a different setup, such as the one where multiple observations of a given edge occur, as
described by Liben-Nowell and Kleinberg (2007) and Lü and Zhou (2011), or in the feature
prediction problem of Nardi and Rinaldo (2011) and Davis et al. (2012), or they would
involve tuning complex subroutines, such as the ones of Huang and Lin (2009), leading us
far beyond the scope of the present work.
Performance assessment for validation and test. We compare our methods to standard
baselines in link prediction by comparing predictions Â to the adjacency matrix AT+1 = A,
which is binary, at step T + 1. Since the score matrix Â outputs scalar values, we use a
threshold parameter t to build a link predictor I{Âi,j > t} on the edge (i, j). The quality of
our estimation is then measured by considering all possible values of the threshold parameter
t which leads to the ROC curve as the plot of the proportion of hits (pairs (i, j) such
that Aij · I{Âi,j > t} = 1) versus the proportion of false detection (pairs (i, j) such that
Aij · I{Âi,j > t} = 0). Our criterion is the AUC for this particular definition of the ROC
curve. In this approach of assessment, the size of the coefficients of Â accounts for the
strength of the prediction. We report empirical results averaged over 50 runs with confidence
intervals in Figure 2. The parameters τ and γ are chosen by a 10-fold cross validation for

580

Link Prediction in Graphs with Autoregressive Features

0 5 10 15 20 25 30 35 40 45 50
10

0

10
1

10
2

10
3

Time (week)

S
a
le

s
 V

o
lu

m
e

Figure 3: Sales volumes of 20 top-sold items weekly sales over the year.

each of the methods separately. The validation set is the upwards sliding time window
when learning from the past. The right-hand side of Figure 2 is a phase transition diagram
showing the impact of both rank and time on the accuracy of estimation of the adjacency
matrix. The results are clearly better as we gain historical depth and the lower the rank of
the adjacency matrix.
Comparison with the baselines. This experiment shows the benefits of using a temporal
approach when one can handle the feature extraction task. The left-hand plot shows that if
few snapshots are available (T ≤ 4 in these experiments), then static approaches are to be
preferred, whereas feature autoregressive approaches outperform them as soon as a sufficient
number T of graph snapshots are available (see the Phase transition diagram from Figure 2).
The decreasing performance of static algorithms can be explained by the fact that they use
as input a mixture of different graphs observed at different time steps, whereas they require
a single simple graph as input.

5.2 Experiments with Real Data: Predicting Sales Volumes

Motivations. Predicting the popularity of products is of major interest for marketers and
product managers as it allows to anticipate or even create trends that diffuse in networks.
A useful observation when dealing with sales volumes is that when modeling purchases by
edges in the bipartite graph of users and products, the sales volumes can be seen as the
degrees of the product nodes. We use two VAR models of order 1 and 2, as described in
Section 4.3, in order to show the flexibility of our approach. We consider the linear feature
map ω(A) = A>1 that computes the columns degree vector. The dimension of the feature
space d equals the number of columns of the matrix in this case. If the input matrix At is
the users × products matrix of sales at time period t then the degree of each product equals
the sales volume of the product during that period, and it can be used as a fair popularity
indicator for the product. It is in addition common to consider a regular evolution of such
features, see the paper by Rogers (1962). Note that the suggested approach is valid for a
similar activity indicator in any other network, such as users activity on a social network

581

Richard, Gaïffas and Vayatis

AR(1) AR(2)
Error Ridge Lasso Our Ridge Lasso Our
T = 10 0.9524 1.1344 0.9730 1.0037 1.0110 0.9416
T = 15 0.6394 0.5389 0.5336 0.6010 0.5304 0.5401
T = 20 0.3419 0.3111 0.4878 0.3310 0.2972 0.3086
T = 25 0.3777 0.6238 0.5689 0.3356 0.3286 0.3279

Table 2: Relative quadratic error of the prediction of sales volume for three regularized VAR
models: one based on ridge regression penalty, one base don LASSO penalty, and
one based on our strategy with both sparse and low-rank regularizers.

or protein activity on a protein-protein interaction network. A last remark is that the prior
knowledge in the case of e-commerce data suggests that groups of highly related items exist,
which makes the adjacency matrix low-rank in addition to be sparse. In fact the adjacency
matrix of a fully clustered graph would be block-diagonal, and we expect the matrix of
interest to be close to such a matrix.
Protocol and description of data sets. We performed our experiments on the sales volumes
time series of the n = 200 top sold books over T = 25 consecutive weeks excluding the
Christmas period in 2009 of 31972 users.1 The weekly sales of each book corresponds to the
degree of the corresponding node. The books catalogue contains several book categories,
which motivates the low-rank matrix assumption. In Figure 3 we plot the time series of the
top 20 items from the catalogue. From this observation, the stationary assumption seems
plausible. More precisely, we observed that the time window allowing accurate predictions
(a window in which the data is stationary) is, among the range of values we used in our
experiments, equal to 20 weeks.
Comparison with other methods and performance metric. We compare estimators of the
degrees based on Ridge and Lasso penalization using the objective J1 only, see Equation (2),
with our procedure based on joint minimization of (3). For choosing the tuning parameters
κ, τ, γ we use the data collected from the same market a year before the test set to form the
training and validation sets. For testing the quality of our predictor, we used the parameters
performing the best predictions over the validation set. As data are abundant we can collect
past data easily for this step. On the other hand, as seasonality effects may harm the
method if cross-validation is performed on data taken from a different period of the year,
this is the best way to proceed for splitting the data onto training validation and test sets.
We evaluated the results in terms of relative quadratic error

Relative quadratic error =
‖ω(Â)− ω(AT+1)‖2
‖ω(AT+1)‖2

over the prediction of the sales volumes. The results are reported in Table 2.
Comments on the results. From this experiment we conclude the following. The order of
the VAR is an important factor. We provided theoretical results for the VAR of order 1,

1. The data was provided by the company 1000mercis.

582

Link Prediction in Graphs with Autoregressive Features

but fitting a higher order VAR in practice may result in better performance. This is also a
parameter that should ideally be chosen using the past data in a cross-validation process.
Moreover, the size of the time window T should be chosen according to the data. A small
value of T leads to poor result due to absence of enough signal. As opposite, a too large value
of T harms the quality of prediction due to the nonstationary trends in too large windows
of time. Note that in our synthetic data experiments only the first effect was observed: the
performance is increasing as the time parameter T increases. This is due to the stationarity
in synthetically generated data.

5.3 Discussion

Trading convexity for scalability. In the numerical experiments, for better scalability, one
can replace the penalty on A by a sparsity inducing penalty on the factors of A. Namely if
A = UV > is a factorization of A, one can replace the term τ‖A‖∗ + γ‖A‖1 by λ‖U‖1‖V ‖1.
This penalty leads to a non-convex problem, nevertheless it allows better scalability than
the convex penalty both in terms of memory requirement and computational complexity,
when evaluating the proximal. Another practical advantage of this change of variable is that
we need to tune only one real parameter λ instead of two (γ and τ). The maximum rank of
A = UV > (number of columns of U and V) replaces the low-rank inducing effect of τ .
Generalization of the regression method. In this paper, we consider only an autoregressive
process of order 1 and 2. For better prediction accuracy, one could consider more general
models, such as vector ARMA models, and use model-selection techniques for the choice of
the orders of the model. A general modelling based on state-space model could be developed
as well.
Choice of the feature map ω. In this work, we have used the projection onto the vector space
of the top-r singular vectors of the cumulative adjacency matrix as the linear map ω, and this
choice has shown empirical superiority to other choices. The question of choosing the best
measurement / representation to summarize graph information as in compress sensing seems
to have both theoretical and application potential. In our work the map ω was applied to
a single matrix At. One can consider a mapping taking as input several successive matrices
At, At+1, At+2. This idea has been used by Zhang et al. (2011) in order to distinguish the
effect of new and returning customers in a marketplace. Moreover, a deeper understanding of
the connections of our problem with compressed sensing, for the construction and theoretical
validation of the feature map, is an important point that needs several developments. An
extension to nonlinear graph features such as the distribution of triangles or other nonlinear
patterns of interest is also to be considered.

6. Conclusion

In this work, we studied the link prediction problem under structural hypotheses on the
graph generation process (sparse low-rank adjacency and autoregressive features). Our
work establishes a connection between the link prediction problem and compressed sens-
ing through the use of common tools in the model and in the theoretical analysis. Empirical
experiments show the benefit of adopting such a point of view. In fact, compared to the
existing heuristics, this approach offers a principled search method in the hypothesis space
through the regularization and convex optimization formulation. The flexibility of our ap-

583

Richard, Gaïffas and Vayatis

proach and its connections with several active areas of research makes it very attractive and
reveals several interesting directions of investigation for future work.

Appendix A. Proofs of the Main Results

From now on, we use the notation ‖(A, a)‖2F = ‖A‖2F + ‖a‖22 and 〈(A, a), (B, b)〉 = 〈A,B〉+
〈a, b〉 for any A,B ∈ RT×d and a, b ∈ Rd.

Let us introduce the linear mapping Φ : Rn×n × Rd×d → RT×d × Rd given by

Φ(A,W) =
(1√

T
XT−1W,

1√
d

(ω(A)−W>ω(AT))
)
.

Using this mapping, the objective (3) can be written in the following reduced way:

L(A,W) =
∥∥∥(1√

T
XT , 0

)
− Φ(A,W)

∥∥∥2

F
+ γ‖A‖1 + τ‖A‖∗ + κ‖W‖1.

Recalling that the error writes, for any A and W :

E(A,W)2 =
1

d
‖(W −W0)>ω(AT)− ω(A−AT+1)‖22 +

1

T
‖XT−1(W −W0)‖2F ,

we have
E(A,W)2 =

∥∥Φ(A−AT+1,W −W0)‖2F .
Let us introduce also the empirical risk

Rn(A,W) =
∥∥∥(1√

T
XT , 0

)
− Φ(A,W)

∥∥∥2

F
.

The proofs of Theorem 1 and 2 are based on tools developed by Koltchinskii et al. (2011)
and Bickel et al. (2009). However, the context considered here is very different from the
setting considered in these papers, so our proofs require a different scheme.

A.1 Proof of Theorem 1

First, note that

Rn(Â, Ŵ)−Rn(A,W)

= ‖Φ(Â, Ŵ)‖2F − ‖Φ(A,W)‖2F − 2〈(1√
T
XT , 0),Φ(Â−A, Ŵ −W)〉.

Since

‖Φ(Â, Ŵ)‖2F − ‖Φ(A,W)‖2F
= E(Â, Ŵ)2 − E(A,W)2 + 2〈Φ(Â−A, Ŵ −W),Φ(AT+1,W0)〉,

we have

Rn(Â, Ŵ)−Rn(A,W)

= E(Â, Ŵ)2 − E(A,W)2 + 2〈Φ(Â−A, Ŵ −W),Φ(AT+1,W0)− (
1√
T
XT , 0)〉

= E(Â, Ŵ)2 − E(A,W)2 + 2〈Φ(Â−A, Ŵ −W), (− 1√
T
NT ,

1√
d
NT+1)〉.

The next Lemma will come in handy several times in the proofs.

584

Link Prediction in Graphs with Autoregressive Features

Lemma 5 For any A ∈ Rn×n and W ∈ Rd×d we have

〈(1√
T
NT ,−

1√
d
NT+1),Φ(A,W)〉 = 〈(M,Ξ), (A,W)〉 = 〈W,Ξ〉+ 〈A,M〉.

This Lemma follows from a direct computation, and the proof is thus omitted. This Lemma
entails, together with (4), that

E(Â, Ŵ)2 ≤ E(A,W)2 + 2〈Ŵ −W,Ξ〉+ 2〈Â−A,M〉

+ τ(‖A‖∗ − ‖Â‖∗) + γ(‖A‖1 − ‖Â‖1) + κ(‖W‖1 − ‖Ŵ‖1).

Now, using Hölder’s inequality and the triangle inequality, and introducing α ∈ (0, 1), we
obtain

E(Â, Ŵ)2 ≤ E(A,W)2 +
(

2α‖M‖op − τ
)
‖Â‖∗ +

(
2α‖M‖op + τ

)
‖A‖∗

+
(

2(1− α)‖M‖∞ − γ
)
‖Â‖1 +

(
2(1− α)‖M‖∞ + γ

)
‖A‖1

+
(

2‖Ξ‖∞ − κ
)
‖Ŵ‖1 +

(
2‖Ξ‖∞ + κ

)
‖W‖1,

which concludes the proof of Theorem 1, using (5). �

A.2 Proof of Theorem 2

Let A ∈ Rn×n and W ∈ Rd×d be fixed, and let A = U diag(σ1, . . . , σr)V
> be the SVD

of A. Recalling that ◦ is the entry-wise product, we have A = ΘA ◦ |A| + Θ⊥A ◦ A, where
ΘA ∈ {0,±1}n×n is the entry-wise sign matrix of A and Θ⊥A ∈ {0, 1}n×n is the orthogonal
sparsity pattern of A.

The definition (4) of (Â, Ŵ) is equivalent to the fact that one can find Ĝ ∈ ∂L(Â, Ŵ)
(an element of the subgradient of L at (Â, Ŵ)) that belongs to the normal cone of A×W
at (Â, Ŵ). This means that for such a Ĝ, and any A ∈ A and W ∈ W, we have

〈Ĝ, (Â−A, Ŵ −W)〉 ≤ 0. (12)

Any subgradient of the function g(A) = τ‖A‖∗ + γ‖A‖1 writes

Z = τZ∗ + γZ1 = τ
(
UV > + P⊥A (G∗)

)
+ γ
(

ΘA +G1 ◦Θ⊥A

)
for some ‖G∗‖op ≤ 1 and ‖G1‖∞ ≤ 1 (see for instance the paper by Lewis (1995)). So, if
Ẑ ∈ ∂g(Â), we have, by monotonicity of the sub-differential, that for any Z ∈ ∂g(A)

〈Ẑ, Â−A〉 = 〈Ẑ − Z, Â−A〉+ 〈Z, Â−A〉 ≥ 〈Z, Â−A〉,

and, by duality, we can find Z such that

〈Z, Â−A〉 = τ〈UV >, Â−A〉+ τ‖P⊥A (Â)‖∗ + γ〈ΘA, Â−A〉+ γ‖Θ⊥A ◦ Â‖1.

585

Richard, Gaïffas and Vayatis

By using the same argument with the function W 7→ ‖W‖1 and by computing the gradient
of the empirical risk (A,W) 7→ Rn(A,W), Equation (12) entails that

2〈Φ(Â−AT+1, Ŵ −W0),Φ(Â−A, Ŵ −W)〉

≤ 2〈(1√
T
NT ,−

1√
d
NT+1),Φ(Â−A, Ŵ −W)〉 − τ〈UV >, Â−A〉 − τ‖P⊥A (Â)‖∗

− γ〈ΘA, Â−A〉 − γ‖Θ⊥A ◦ Â‖1 − κ〈ΘW , Ŵ −W 〉 − κ‖Θ⊥W ◦ Ŵ‖1.
(13)

Using Pythagora’s theorem, we have

2〈Φ(Â−AT+1, Ŵ −W0),Φ(Â−A, Ŵ −W)〉

= ‖Φ(Â−AT+1, Ŵ −W0)‖22 + ‖Φ(Â−A, Ŵ −W)‖22 − ‖Φ(A−AT+1,W −W0)‖22.
(14)

It shows that if 〈Φ(Â− AT+1,W −W0),Φ(Â− A, Ŵ −W)〉 ≤ 0, then Theorem 2 trivially
holds. Let us assume that

〈Φ(Â−AT+1,W −W0),Φ(Â−A, Ŵ −W)〉 > 0. (15)

Using Hölder’s inequality, we obtain

|〈UV >, Â−A〉| = |〈UV >,PA(Â−A)〉| ≤ ‖UV >‖op‖PA(Â−A)‖∗ = ‖PA(Â−A)‖∗,
|〈ΘA, Â−A〉| = |〈ΘA,ΘA ◦ (Â−A)〉| ≤ ‖ΘA‖∞‖ΘA ◦ (Â−A)‖1 = ‖ΘA ◦ (Â−A)‖1,

and the same is done for |〈ΘW , Ŵ −W 〉| ≤ ‖ΘW ◦ (Ŵ −W)‖1. So, when (15) holds, we
obtain by rearranging the terms of (13):

τ‖P⊥A (Â−A)‖∗ + γ‖Θ⊥A ◦ (Â−A)‖1 + κ‖Θ⊥W ◦ (Ŵ −W)‖1
≤ τ‖PA(Â−A)‖∗ + γ‖ΘA ◦ (Â−A)‖1 + κ‖ΘW ◦ (Ŵ −W)‖1

+ 2〈(1√
T
NT ,−

1√
d
NT+1),Φ(Â−A, Ŵ −W)〉.

(16)

Using Lemma 5, together with Hölder’s inequality, we have for any α ∈ (0, 1):

〈(1√
T
NT ,−

1√
d
NT+1),Φ(Â−A, Ŵ −W)〉 = 〈M, Â−A〉+ 〈Ξ, Ŵ −W 〉

≤ α‖M‖op‖PA(Â−A)‖∗ + α‖M‖op‖P⊥A (Â−A)‖∗
+ (1− α)‖M‖∞‖ΘA ◦ (Â−A)‖1 + (1− α)‖M‖∞‖Θ⊥A ◦ (Â−A)‖1
+ ‖Ξ‖∞(‖ΘW ◦ (Ŵ −W)‖1 + ‖Θ⊥W ◦ (Ŵ −W)‖1) .

(17)

Now, using (16) together with (17), we obtain(
τ − 2α‖M‖op

)
‖P⊥A (Â−A)‖∗ +

(
γ − 2(1− α)‖M‖∞

)
‖Θ⊥A ◦ (Â−A)‖1

+
(
κ− 2‖Ξ‖∞

)
‖Θ⊥W ◦ (Ŵ −W)‖1

≤
(
τ + 2α‖M‖op

)
‖PA(Â−A)‖∗ +

(
γ + 2(1− α)‖M‖∞

)
‖ΘA ◦ (Â−A)‖1

+
(
κ+ 2‖Ξ‖∞

)
‖ΘW ◦ (Ŵ −W)‖1

586

Link Prediction in Graphs with Autoregressive Features

which proves, using (6), that

τ‖P⊥A (Â−A)‖∗ + γ‖Θ⊥A ◦ (Â−A)‖1 ≤ 5τ‖PA(Â−A)‖∗ + 5γ‖ΘA ◦ (Â−A)‖1.

This proves that Â − A ∈ C2(A, 5, γ/τ). In the same way, using (16) with A = Â together
with (17), we obtain that Ŵ −W ∈ C1(W, 5).

Now, using together (13), (14) and (17) , and the fact that the Cauchy-Schwarz inequal-
ity entails

‖PA(Â−A)‖∗ ≤
√

rankA‖PA(Â−A)‖F , |〈UV >, Â−A〉| ≤
√

rankA‖PA(Â−A)‖F ,

‖ΘA ◦ (Â−A)‖1 ≤
√
‖A‖0‖ΘA ◦ (Â−A)‖F , |〈ΘA, Â−A〉| ≤

√
‖A‖0‖ΘA ◦ (Â−A)‖F .

and similarly for Ŵ −W , we arrive at

‖Φ(Â−AT+1, Ŵ −W0)‖22 + ‖Φ(Â−A, Ŵ −W)‖22 − ‖Φ(A−AT+1,W −W0)‖22
≤
(
2α‖M‖op + τ

)√
rankA‖PA(Â−A)‖F +

(
2α‖M‖op − τ

)
‖P⊥A (Â−A)‖∗

+
(
2α‖M‖∞ + γ

)√
‖A‖0‖ΘA ◦ (Â−A)‖F +

(
2α‖M‖∞ − γ

)
‖Θ⊥A ◦ (Â−A)‖1

+
(
2α‖Ξ‖∞ + κ

)√
‖W‖0‖ΘW ◦ (Ŵ −W)‖F +

(
2α‖Ξ‖∞ − κ

)
‖Θ⊥W ◦ (Ŵ −W)‖1,

which leads, using (6), to

‖Φ(Â−AT+1, Ŵ −W0)‖22 + ‖Φ(Â−A, Ŵ −W)‖22 − ‖Φ(A−AT+1,W −W0)‖22

≤ 5τ

3

√
rankA‖PA(Â−A)‖F +

5γ

3

√
‖A‖0‖ΘA ◦ (Â−A)‖F +

5κ

3

√
‖W‖0‖ΘW ◦ (Ŵ −W)‖F .

Since Â − A ∈ C2(A, 5, γ/τ) and Ŵ −W ∈ C1(W, 5), we obtain using Assumption 2 and
ab ≤ (a2 + b2)/2:

‖Φ(Â−AT+1, Ŵ −W0)‖22 + ‖Φ(Â−A, Ŵ −W)‖22

≤ ‖Φ(A−AT+1,W −W0)‖22 +
25

18
µ2(A,W)2

(
rankAτ2 + ‖A‖0γ2)

+
25

36
µ1(W)2‖W‖0κ2 + ‖Φ(Â−A, Ŵ −W)‖22,

which concludes the proof of Theorem 2. �

A.3 Proof of Corollary 4

For the proof of (9), we simply use the fact that 1
T ‖XT−1(Ŵ −W0)‖2F ≤ E(Â, Ŵ)2 and use

Theorem 3. Then we take W = W0 in the infimum over A,W .
For (10), we use the fact that since Ŵ − W0 ∈ C1(W0, 5), we have (see the Proof of

Theorem 2),

‖Ŵ −W0‖1 ≤ 6
√
‖W0‖0‖ΘW ◦ (Ŵ −W0)‖F

≤ 6
√
‖W0‖0‖XT−1(Ŵ −W0)‖F /

√
T

≤ 6
√
‖W0‖0E(Â, Ŵ),

and then use again Theorem 3. The proof of (11) follows exactly the same scheme. �

587

Richard, Gaïffas and Vayatis

A.4 Concentration Inequalities for the Noise Processes

The control of the noise terms M and Ξ is based on recent results on concentration in-
equalities for random matrices, developed by Tropp (2012). Moreover, the assumption on
the dynamics of the features’ noise vector {Nt}t≥0 is quite general, since we only assumed
that this process is a martingale increment. Therefore, our control of the noise Ξ rely in
particular on martingale theory.

Proposition 6 Under Assumption 3, the following inequalities hold for any x > 0. We
have ∥∥∥1

d

d∑
j=1

(NT+1)jΩj

∥∥∥
op
≤ σvΩ,op

√
2(x+ log(2n))

d
(18)

with a probability larger than 1− e−x. We have∥∥∥1

d

d∑
j=1

(NT+1)jΩj

∥∥∥
∞
≤ σvΩ,∞

√
2(x+ 2 log n)

d
(19)

with a probability larger than 1− 2e−x, and finally∥∥∥ 1

T

T∑
t=1

ω(At−1)N>t +
1

d
ω(AT)N>T+1

∥∥∥
∞
≤ σσω

√
2e(x+ 2 log d+ `T)

(1√
T

+
1

d

)
(20)

with a probability larger than 1− 15e−x, where we recall that `T is given by (8).

Proof For the proofs of Inequalities (18) and (19), we use the fact that (NT+1)1, . . . , (NT+1)d
are independent (scalar) sub-gaussian random variables.

From Assumption 3, we have for any n × n deterministic self-adjoint matrices Xj that
E[exp(λ(NT+1)jXj)] � exp(σ2λ2X2

j /2), where � stands for the semidefinite order on self-
adjoint matrices. Using Corollary 3.7 by Tropp (2012), this leads for any x > 0 to

P
[
λmax

(d∑
j=1

(NT+1)jXj

)
≥ x

]
≤ n exp

(
− x2

2v2

)
, where v2 = σ2

∥∥∥ d∑
j=1

X2
j

∥∥∥
op
. (21)

Then, following Tropp (2012), we consider the dilation operator ∆ : Rn×n → R2n×2n given
by

∆(Ω) =

(
0 Ω

Ω∗ 0

)
.

We have∥∥∥ d∑
j=1

(NT+1)jΩj

∥∥∥
op

= λmax

(
∆
(d∑
j=1

(NT+1)jΩj

))
= λmax

(d∑
j=1

(NT+1)j∆(Ωj)
)

and an easy computation gives∥∥∥ d∑
j=1

∆(Ωj)
2
∥∥∥

op
=
∥∥∥ d∑
j=1

Ω>j Ωj

∥∥∥
op
∨
∥∥∥ d∑
j=1

ΩjΩ
>
j

∥∥∥
op
.

588

Link Prediction in Graphs with Autoregressive Features

So, using (21) with the self-adjoint Xj = ∆(Ωj) gives

P
[∥∥∥ d∑

j=1

(NT+1)jΩj

∥∥∥
op
≥ x

]
≤ 2n exp

(
− x2

2v2

)
where v2 = σ2

∥∥∥ d∑
j=1

Ω>j Ωj

∥∥∥
op
∨
∥∥∥ d∑
j=1

ΩjΩ
>
j

∥∥∥
op
,

which leads easily to (18).
Inequality (19) comes from the following standard bound on the sum of independent

sub-gaussian random variables:

P
[∣∣∣1
d

d∑
j=1

(NT+1)j(Ωj)k,l

∣∣∣ ≥ x] ≤ 2 exp
(
− x2

2σ2(Ωj)2
k,l

)

together with an union bound on 1 ≤ k, l ≤ n.
Inequality (20) is based on a classical martingale exponential argument together with a

peeling argument. We denote by ωj(At) the coordinates of ω(At) ∈ Rd and by Nt,k those of
Nt, so that (T∑

t=1

ω(At−1)N>t

)
j,k

=

T∑
t=1

ωj(At−1)Nt,k.

We fix j, k and denote for short εt = Nt,k and xt = ωj(At). Since E[exp(λεt)|Ft−1] ≤ eσ2λ2/2

for any λ ∈ R, we obtain by a recursive conditioning with respect to FT−1, FT−2, . . . ,F0,
that

E
[

exp
(
θ

T∑
t=1

εtxt−1 −
σ2θ2

2

T∑
t=1

x2
t−1

)]
≤ 1.

Hence, using Markov’s inequality, we obtain for any v > 0:

P
[T∑
t=1

εtxt−1 ≥ x,
T∑
t=1

x2
t−1 ≤ v

]
≤ inf

θ>0
exp(−θx+ σ2θ2v/2) = exp

(
− x2

2σ2v

)
,

that we rewrite in the following way:

P
[T∑
t=1

εtxt−1 ≥ σ
√

2vx,
T∑
t=1

x2
t−1 ≤ v

]
≤ e−x.

Let us denote for short VT =
∑T

t=1 x
2
t−1 and ST =

∑T
t=1 εtxt−1. We want to replace v by

VT from the previous deviation inequality, and to remove the event {VT ≤ v}. To do so, we
use a peeling argument. We take v = T and introduce vk = vek so that the event {VT > v}
is decomposed into the union of the disjoint sets {vk < VT ≤ vk+1}. We introduce also

`T = 2 log log
(∑T

t=1 x
2
t−1

T ∨ T∑T
t=1 x

2
t−1

∨ e
)
.

589

Richard, Gaïffas and Vayatis

This leads to

P
[
ST ≥ σ

√
2eVT (x+ `T), VT > v

]
=
∑
k≥0

P
[
ST ≥ σ

√
2eVT (x+ `T), vk < VT ≤ vk+1

]
=
∑
k≥0

P
[
ST ≥ σ

√
2vk+1(x+ 2 log log(ek ∨ e)), vk < VT ≤ vk+1

]
≤ e−x(1 +

∑
k≥1

k−2) ≤ 3.47e−x.

On {VT ≤ v} the proof is the same: we decompose onto the disjoint sets {vk+1 < VT ≤ vk}
where this time vk = ve−k, and we arrive at

P
[
ST ≥ σ

√
2eVT (x+ `T), VT ≤ v

]
≤ 3.47e−x.

This leads to

P
[T∑
t=1

ωj(At−1)Nt,k ≥ σ
(

2e
T∑
t=1

ωj(At−1)2(x+ `T,j)
)1/2

]
≤ 7e−x

for any 1 ≤ j, k ≤ d, where we introduced

`T,j = 2 log log
(∑T

t=1 ωj(At−1)2

T
∨ T∑T

t=1 ωj(At−1)2
∨ e
)
.

The conclusion follows from an union bound on 1 ≤ j, k ≤ d, and from the use of the same
argument for the term ω(AT)N>T+1. This concludes the proof of Proposition 6.

References

J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert. A new approach to collaborative
filtering: Operator estimation with spectral regularization. Journal of Machine Learning
Research, 10:803–826, 2009.

A. Andreas, M. Pontil, Y. Ying, and C. A. Micchelli. A spectral regularization framework
for multi-task structure learning. In Advances in Neural Information Processing Systems
(NIPS), pages 25–32, 2007.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal of Imaging Sciences, 2(1):183–202, 2009.

D. P. Bertsekas. Incremental gradient, subgradient, and proximal methods for convex opti-
mization: a survey. Optimization for Machine Learning, page 85, 2011.

P. J. Bickel, Y. Ritov, and A. B. Tsybakov. Simultaneous analysis of lasso and Dantzig
selector. Ann. Statist., 37(4):1705–1732, 2009.

590

Link Prediction in Graphs with Autoregressive Features

L. Breiman and J. H. Friedman. Predicting multivariate responses in multiple linear regres-
sion. Journal of the Royal Statistical Society (JRSS): Series B (Statistical Methodology),
59:3–54, 1997.

E. J. Candès and T. Tao. Decoding by linear programming. In Proceedings of the 46th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2005.

E. J. Candès and T. Tao. The power of convex relaxation: Near-optimal matrix completion.
Information Theory, IEEE Transactions on, 56(5), 2009.

E. J. Candès and M. Wakin. An introduction to compressive sampling. IEEE Signal Pro-
cessing Magazine, 12(51):21–30, 2008.

P. L. Combettes and J. C. Pesquet. Proximal splitting methods in signal processing. Fixed-
Point Algorithms for Inverse Problems in Science and Engineering, pages 185–212, 2011.

R. A. Davis, P. Zang, and T. Zheng. Sparse vector autoregressive modeling. arXiv preprint
arXiv:1207.0520, 2012.

D. L. Donoho. Compressed sensing. Information Theory, IEEE Transactions on, 52(4):
1289–1306, 2006.

T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with kernel methods.
Journal of Machine Learning Research, 6:615–637, 2005.

S. Gaïffas and G. Lecué. Sharp oracle inequalities for high-dimensional matrix prediction.
Information Theory, IEEE Transactions on, 57(10):6942 –6957, oct. 2011.

Z. Huang and D. K. J. Lin. The time-series link prediction problem with applications in
communication surveillance. INFORMS J. on Computing, 21(2):286–303, 2009.

M. Kolar and E. P. Xing. On time varying undirected graphs. In International Conference
on Artificial Intelligence and Statistics, pages 407–415, 2011.

V. Koltchinskii. Sparsity in penalized empirical risk minimization. Ann. Inst. Henri Poincaré
Probab. Stat., 45(1):7–57, 2009a.

V. Koltchinskii. The Dantzig selector and sparsity oracle inequalities. Bernoulli, 15(3):
799–828, 2009b.

V. Koltchinskii, K. Lounici, and A. B. Tsybakov. Nuclear-norm penalization and optimal
rates for noisy low-rank matrix completion. Ann. Statist., 39(5):2302–2329, 2011.

Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering
model. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 426–434. ACM, 2008.

Y. Koren. Collaborative filtering with temporal dynamics. Communications of the ACM,
53(4):89–97, 2010.

591

Richard, Gaïffas and Vayatis

A. S. Lewis. The convex analysis of unitarily invariant matrix functions. J. Convex Anal.,
2(1-2):173–183, 1995.

D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks. Journal
of the American Society for Information Science and Technology, 58(7):1019–1031, 2007.

L. Lü and T. Zhou. Link prediction in complex networks: A survey. Physica A: Statistical
Mechanics and its Applications, 390(6):1150–1170, 2011.

S. A. Myers and J. Leskovec. On the convexity of latent social network inference. In Advances
in Neural Information Processing Systems (NIPS), 2010.

Y. Nardi and A. Rinaldo. Autoregressive process modeling via the lasso procedure. Journal
of Multivariate Analysis, 102(3):528–549, 2011.

Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
103(1):127–152, 2005.

E. Richard, N. Baskiotis, T. Evgeniou, and N. Vayatis. Link discovery using graph feature
tracking. In Advances in Neural Information Processing Systems (NIPS), 2010.

E. Richard, S. Gaiffas, and N. Vayatis. Link prediction in graphs with autoregressive features.
In Advances in Neural Information Processing Systems (NIPS), 2012a.

E. Richard, P.-A. Savalle, and N. Vayatis. Estimation of simultaneously sparse and low-rank
matrices. In Proceedings of 29th Annual International Conference on Machine Learning,
2012b.

E. M. Rogers. Diffusion of Innovations. London: The Free Press, 1962.

P. Sarkar, D. Chakrabarti, and A. W. Moore. Theoretical justification of popular link
prediction heuristics. In International Conference on Learning Theory (COLT), pages
295–307, 2010.

P. Sarkar, D. Chakrabarti, and M. I. Jordan. Nonparametric link prediction in dynamic
networks. In Proceedings of 29th Annual International Conference on Machine Learning,
2012.

A. Shojaie, S. Basu, and G. Michailidis. Adaptive thresholding for reconstructing regulatory
networks from time course gene expression data. Statistics In Biosciences, 2011.

N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin matrix factorization. In
Advances in Neural Information Processing Systems (NIPS). 2005.

B. Taskar, M. F. Wong, P. Abbeel, and D. Koller. Link prediction in relational data. In
Advances in Neural Information Processing Systems (NIPS), 2003.

J. A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Com-
putational Mathematics, 12(4):389–434, 2012.

R. S. Tsay. Analysis of Financial Time Series. Wiley-Interscience; 3rd edition, 2005.

592

Link Prediction in Graphs with Autoregressive Features

P. Tseng. On accelerated proximal gradient methods for convex-concave optimization.
Preprint, 2008.

S. A. van de Geer and P. Bühlmann. On the conditions used to prove oracle results for the
Lasso. Electron. J. Stat., 3:1360–1392, 2009.

D. Q. Vu, A. Asuncion, D. Hunter, and P. Smyth. Continuous-time regression models for
longitudinal networks. In Advances in Neural Information Processing Systems (NIPS),
2011.

K. Zhang, T. Evgeniou, V. Padmanabhan, and E. Richard. Content contributor management
and network effects in a ugc environment. Marketing Science, 2011.

593

Journal of Machine Learning Research 15 (2014) 595-627 Submitted 10/13; Revised 12/13; Published 2/14

Adaptivity of Averaged Stochastic Gradient Descent
to Local Strong Convexity for Logistic Regression

Francis Bach francis.bach@ens.fr

INRIA - Sierra Project-team

Département d’Informatique de l’Ecole Normale Supérieure

Paris, France

Editor: Léon Bottou

Abstract

In this paper, we consider supervised learning problems such as logistic regression and
study the stochastic gradient method with averaging, in the usual stochastic approximation
setting where observations are used only once. We show that after N iterations, with a
constant step-size proportional to 1/R2

√
N where N is the number of observations and R is

the maximum norm of the observations, the convergence rate is always of order O(1/
√
N),

and improves to O(R2/µN) where µ is the lowest eigenvalue of the Hessian at the global
optimum (when this eigenvalue is greater than R2/

√
N). Since µ does not need to be

known in advance, this shows that averaged stochastic gradient is adaptive to unknown
local strong convexity of the objective function. Our proof relies on the generalized self-
concordance properties of the logistic loss and thus extends to all generalized linear models
with uniformly bounded features.

Keywords: stochastic approximation, logistic regression, self-concordance

1. Introduction

The minimization of an objective function which is only available through unbiased es-
timates of the function values or its gradients is a key methodological problem in many
disciplines. Its analysis has been attacked mainly in three scientific communities: stochas-
tic approximation (Fabian, 1968; Ruppert, 1988; Polyak and Juditsky, 1992; Kushner and
Yin, 2003; Broadie et al., 2009), optimization (Nesterov and Vial, 2008; Nemirovski et al.,
2009), and machine learning (Bottou and Le Cun, 2005; Shalev-Shwartz et al., 2007; Bottou
and Bousquet, 2008; Shalev-Shwartz and Srebro, 2008; Shalev-Shwartz et al., 2009; Duchi
and Singer, 2009; Xiao, 2010). The main algorithms which have emerged are stochastic
gradient descent (a.k.a. Robbins-Monro algorithm), as well as a simple modification where
iterates are averaged (a.k.a. Polyak-Ruppert averaging).

For convex optimization problems, the convergence rates of these algorithms depends
primarily on the potential strong convexity of the objective function (Nemirovski and Yudin,
1983). For µ-strongly convex functions, after n iterations (i.e., n observations), the optimal
rate of convergence of function values is O(1/µn) while for convex functions the optimal
rate is O(1/

√
n), both of them achieved by averaged stochastic gradient with step size

respectively proportional to 1/µn or 1/
√
n (Nemirovski and Yudin, 1983; Agarwal et al.,

c©2014 Francis Bach.

Bach

2012). For smooth functions, averaged stochastic gradient with step sizes proportional to
1/
√
n achieves them up to logarithmic terms (Bach and Moulines, 2011).

Convex optimization problems coming from supervised machine learning are typically of
the form f(θ) = E

[
`(y, 〈θ, x〉)

]
, where `(y, 〈θ, x〉) is the loss between the response y ∈ R and

the prediction 〈θ, x〉 ∈ R, where x is the input data in a Hilbert space H and linear predic-
tions parameterized by θ ∈ H are considered. They may or may not have strongly convex
objective functions. This most often depends on (a) the correlations between covariates x,
and (b) the strong convexity of the loss function `. The logistic loss ` : u 7→ log(1 + e−u) is
not strongly convex unless restricted to a compact set (indeed, restricted to u ∈ [−U,U], we
have `′′(u) = e−u(1 + e−u)−2 > 1

4e
−U). Moreover, in the sequential observation model, the

correlations are not known at training time. Therefore, many theoretical results based on
strong convexity do not apply (adding a squared norm µ

2‖θ‖
2 is a possibility, however, in or-

der to avoid adding too much bias, µ has to be small and typically much smaller than 1/
√
n,

which then makes all strongly-convex bounds vacuous). The goal of this paper is to show
that with proper assumptions, namely self-concordance, one can readily obtain favorable
theoretical guarantees for logistic regression, namely a rate of the form O(R2/µn) where
µ is the lowest eigenvalue of the Hessian at the global optimum, without any exponentially
increasing constant factor (e.g., with the notations above, without terms of the form eU).

Another goal of this paper is to design an algorithm and provide an analysis that bene-
fit from hidden local strong convexity without requiring to know the local strong convexity
constant in advance. In smooth situations, the results of Bach and Moulines (2011) imply
that the averaged stochastic gradient method with step sizes of the form O(1/

√
n) is adap-

tive to the strong convexity of the problem. However the dependence in µ in the strongly
convex case is of the form O(1/µ2n), which is sub-optimal. Moreover, the final rate is
rather complicated, notably because all possible step-sizes are considered. Finally, it does
not apply here because even in low-correlation settings, the objective function of logistic
regression cannot be globally strongly convex.

In this paper, we provide an analysis for stochastic gradient with averaging for general-
ized linear models such as logistic regression, with a step size proportional to 1/R2√n where
R is the radius of the data and n the number of observations, showing such adaptivity. In
particular, we show that the algorithm can adapt to the local strong-convexity constant,
that is, the lowest eigenvalue of the Hessian at the optimum. The analysis is done for a
finite horizon N and a constant step size decreasing in N as 1/R2

√
N , since the analysis

is then slightly easier, though (a) a decaying stepsize could be considered as well, and (b)
it could be classically extended to varying step-sizes by a doubling trick (Hazan and Kale,
2001).

2. Stochastic Approximation for Generalized Linear Models

In this section, we present the assumptions our work relies on, as well as related work.

2.1 Assumptions

Throughout this paper, we make the following assumptions. We consider a function f
defined on a Hilbert space H, equipped with a norm ‖ · ‖. Throughout the paper, we
identify the Hilbert space and its dual; thus, the gradients of f also belongs to H and we

596

Adaptivity of Averaged Stochastic Gradient Descent

use the same norm on these. Moreover, we consider an increasing family of σ-fields (Fn)n>1

and we assume that we are given a deterministic θ0 ∈ H, and a sequence of functions
fn : H → R, for n > 1. We make the following assumptions, for a certain R > 0:

(A1) Convexity and differentiability of f : f is convex and three-times differentiable.

(A2) Generalized self-concordance of f (Bach, 2010): for all θ1, θ2 ∈ H, the function
ϕ : t 7→ f

[
θ1 + t(θ2 − θ1)

]
satisfies: ∀t ∈ R, |ϕ′′′(t)| 6 R‖θ1 − θ2‖ϕ′′(t).

(A3) Attained global minimum: f has a global minimum attained at θ∗ ∈ H.

(A4) Lipschitz-continuity of fn and f : all gradients of f and fn are bounded by R,
that is, for all θ ∈ H,

‖f ′(θ)‖ 6 R and ∀n > 1, ‖f ′n(θ)‖ 6 R almost surely.

(A5) Adapted measurability: ∀n > 1, fn is Fn-measurable.

(A6) Unbiased gradients: ∀n > 1, E(f ′n(θn−1)|Fn−1) = f ′(θn−1).

(A7) Stochastic gradient recursion: ∀n > 1, θn = θn−1− γnf ′n(θn−1), where (γn)n>1 is
a deterministic sequence.

In this paper, we will also consider the averaged iterate θ̄n = 1
n

∑n−1
k=0 θk, which may be

trivially computed on-line through the recursion θ̄n = 1
nθn−1 + n−1

n θ̄n−1.

Among the seven assumptions above, the non-standard one is (A2): the notion of self-
concordance is an important tool in convex optimization and in particular for the study
of Newton’s method (Nesterov and Nemirovskii, 1994). It corresponds to having the third
derivative bounded by the 3

2 -th power of the second derivative. For machine learning, Bach
(2010) has generalized the notion of self-concordance by removing the 3

2 -th power, so that it
is applicable to cost functions arising from probabilistic modeling, as shown below. The key
consequence of our notion of self-concordance is a relationship shown in Lemma 9 (Section 5)
between the norm of a gradient ‖f ′(θ)‖ and the excess cost function f(θ)− f(θ∗), which is
the same than for strongly convex functions, but with the local strong convexity constant
rather than the global one (which is equal to zero here).

Our set of assumptions corresponds to the following examples (with i.i.d. data, and Fn
equal to the σ-field generated by x1, y1, . . . , xn, yn):

– Logistic regression: fn(θ) = log(1 + exp(−yn〈xn, θ〉)), with data xn uniformly
almost surely bounded by R and yn ∈ {−1, 1}. The norm considered here is also the
norm of the Hilbert space. Note that this includes other binary classification losses,
such as fn(θ) = −yn〈xn, θ〉+

√
1 + 〈xn, θ〉2.

– Generalized linear models with uniformly bounded features: fn(θ) =
−〈θ,Φ(xn, yn)〉 + log

∫
h(y) exp

(
〈θ,Φ(xn, y)〉

)
dy, with Φ(xn, y) ∈ H almost surely

bounded in norm by R, for all observations xn and all potential responses y in a mea-
surable space. This includes multinomial regression and conditional random fields
(Lafferty et al., 2001).

– Robust regression: we may use fn(θ) = ϕ(yn − 〈xn, θ〉), with ϕ(t) = log cosh t =

log et+e−t

2 , with a similar boundedness assumption on xn.

597

Bach

2.2 Running-time Complexity

The stochastic gradient descent recursion θn = θn−1−γnf ′n(θn−1) operates in full generality
in the potentially infinite-dimensional Hilbert space H. There are two practical set-ups
where this recursion can be implemented. When H is finite-dimensional with dimension d,
then the complexity of a single iteration is O(d), and thus O(dn) after n iterations. When H
is infinite-dimensional, the recursion can be readily implemented when (a) all functions fn
depend on one-dimensional projections 〈xn, θ〉, that is, are of the form fn(θ) = ϕn

(
〈xn, θ〉

)
for certain random functions ϕn (e.g., ϕn(u) = `(yn, u) in machine learning), and (b) all
scalar products Kij = 〈xi, xj〉 between xi and xj , for i, j > 1, can be computed. This may
be done through the classical application of the “kernel trick” (Schölkopf and Smola, 2001;
Shawe-Taylor and Cristianini, 2004): if θ0 = 0, we may represent θn as a linear combination
of vectors x1, . . . , xn, that is, θn =

∑n
i=1 αixi, and the recursion may be written in terms of

the weights αn, through

αn = −γnxnϕ′n
(n−1∑
i=1

αiKni

)
.

A key element to notice here is that without regularization, the weights αi corresponding
to previous observations remain constant. The overall complexity of the algorithm is O(n2)
times the cost of evaluating a single kernel function. See Bordes et al. (2005) and Wang et al.
(2012) for approaches aiming at reducing the computational load in this setting. Finally,
note that in the kernel setting, the function f(θ) cannot be strongly convex because the
covariance operator of x is typically a compact operator, with a sequence of eigenvalues
tending to zero (some regularization is then needed).

3. Related Work

In this section, we review related work, first for non-strongly convex problems then for
strongly convex problems.

3.1 Non-strongly-convex Functions

When only convexity of the objective function is assumed, several authors (Nesterov and
Vial, 2008; Nemirovski et al., 2009; Shalev-Shwartz et al., 2009; Xiao, 2010) have shown
that using a step-size proportional to 1/

√
n, together with some form of averaging, leads to

the minimax optimal rate of O(1/
√
n) (Nemirovski and Yudin, 1983; Agarwal et al., 2012).

Without averaging, the known convergences rates are suboptimal, that is, averaging is key
to obtaining the optimal rate (Bach and Moulines, 2011). Note that the smoothness of the
loss does not change the rate, but may help to obtain better constants, with the potential
use of acceleration (Lan, 2012). Recent work (Bach and Moulines, 2013) has considered
algorithms which improve on the rate O(1/

√
n) for smooth self-concordant losses, such as

the square and logistic losses. Their analysis relies on some of the results proved in this
paper (in particular the high-order bounds in Section 4).

The compactness of the domain is often used within the algorithm (by using orthogonal
projections) and within the analysis (in particular to optimize the step size and obtain
high-probability bounds). In this paper, we do not make such compactness assumptions,

598

Adaptivity of Averaged Stochastic Gradient Descent

since in a machine learning context, the available bound would be loose and hurt practical
performance. Note that the analysis of the related dual averaging methods (Nesterov, 2009;
Xiao, 2010) has also been carried without compactness assumptions, and previous analyses
would also go through in the same set-up for stochastic mirror descent (Nemirovski and
Yudin, 1983), at least for bounds in expectation. In the present paper, we derive higher-
order bounds and bounds in high-probability where the lack of compactness is harder to
deal with.

Another difference between several analyses is the use of decaying step sizes of the form
γn ∝ 1/

√
n vs. the use of a constant step size of the form γ ∝ 1/

√
N for a finite known

horizon N of iterations. The use of a “doubling trick” as done by Hazan and Kale (2001) for
strongly convex optimization, where a constant step size is used for iterations between 2p

and 2p+1, with a constant that is proportional to 1/
√

2p, would allow to obtain an anytime
algorithm from a finite horizon one. In order to simplify our analysis, we only consider a
finite horizon N and a constant step-size that will be proportional to 1/

√
N .

3.2 Strongly-convex Functions

When the function is µ-strongly convex, that is, θ 7→ f(θ) − µ
2‖θ‖

2 is convex, there are
essentially two approaches to obtaining the minimax-optimal rate of O(1/µn) (Nemirovski
and Yudin, 1983; Agarwal et al., 2012): (a) using a step size proportional to 1/µn with
averaging for non-smooth problems (Nesterov and Vial, 2008; Nemirovski et al., 2009; Xiao,
2010; Shalev-Shwartz et al., 2009; Duchi and Singer, 2009; Lacoste-Julien et al., 2012) or
a step size proportional to 1/(R2 + nµ) also with averaging, for smooth problems, where
R2 is the smoothness constant of the loss of a single observation (Le Roux et al., 2012);
(b) for smooth problems, using longer step-sizes proportional to 1/nα for α ∈ (1/2, 1) with
averaging (Polyak and Juditsky, 1992; Ruppert, 1988; Bach and Moulines, 2011).

Note that the often advocated step size, that is, of the form C/n where C is larger than
1/µ, leads, without averaging to a convergence rate of O(1/µ2n) (Fabian, 1968; Bach and
Moulines, 2011), hence with a worse dependence on µ.

The solution (a) requires to have a good estimate of the strong-convexity constant
µ, while the second solution (b) does not require to know such estimate and leads to
a convergence rate achieving asymptotically the Cramer-Rao lower bound (Polyak and
Juditsky, 1992). Thus, this last solution is adaptive to unknown (but positive) amount of
strong convexity. However, unless we take the limiting setting α = 1/2, it is not adaptive to
lack of strong convexity. While the non-asymptotic analysis of Bach and Moulines (2011)
already gives a convergence rate in that situation, the bound is rather complicated and also
has a suboptimal dependence on µ. Another goal of this paper is to consider a less general
result, but more compact and, as already mentioned, a better dependence on the strong
convexity constant µ (moreover, as reviewed below, we consider the local strong convexity
constant, which is much larger).

Finally, note that unless we restrict the support, the objective function for logistic
regression cannot be globally strongly convex (since the Hessian tends to zero when ‖θ‖
tends to infinity). In this paper we show that stochastic gradient descent with averaging is
adaptive to the local strong convexity constant, that is, the lowest eigenvalue of the Hessian

599

Bach

of f at the global optimum, without any exponential terms in RD (which would be present
if a compact domain of diameter D was imposed and traditional analyses were performed).

3.3 Adaptivity to Unknown Constants

The desirable property of adaptivity to the difficulty of an optimization problem has also
been studied in several settings. Gradient descent with constant step size is for example
naturally adaptive to the strong convexity of the problem (see, e.g., Nesterov, 2004). In the
stochastic context, Juditsky and Nesterov (2010) provide another strategy than averaging
with longer step sizes, but for uniform convexity constants.

4. Non-Strongly Convex Analysis

In this section, we study the averaged stochastic gradient method in the non-strongly convex
case, that is, without any (global or local) strong convexity assumptions. We first recall
existing results in Section 4.1, that bound the expectation of the excess risk leading to a
bound in O(1/

√
N). We then show using martingale moment inequalities how all higher-

order moments may be bounded in Section 4.2, still with a rate of O(1/
√
N). However,

in Section 4.3, we consider the convergence of the squared gradient, with now a rate of
O(1/N). This last result is key to obtaining the adaptivity to local strong convexity in
Section 5.

4.1 Existing Results

In this section, we review existing results for Lipschitz-continuous non-strongly convex prob-
lems (Nesterov and Vial, 2008; Nemirovski et al., 2009; Shalev-Shwartz et al., 2009; Duchi
and Singer, 2009; Xiao, 2010). Note that smoothness is not needed here. We consider a
constant step size γn = γ > 0, for all n > 1, and we denote by θ̄n = 1

n

∑n−1
k=0 θk the averaged

iterate.
We prove the following proposition, which provides a bound on the expectation of f(θ̄n)−

f(θ∗) that decays at rate O(γ + 1/γn), hence the usual choice γ ∝ 1/
√
n:

Lemma 1 Assume (A1) and (A3-7). With constant step size equal to γ, for any n > 0,
we have:

Ef
(

1

n

n∑
k=1

θk−1

)
− f(θ∗) +

1

2γn
E‖θn − θ∗‖2 6

1

2γn
‖θ0 − θ∗‖2 +

γ

2
R2.

Proof We have the following recursion, obtained from the Lipschitz-continuity of fn:

‖θn − θ∗‖2 = ‖θn−1 − θ∗‖2 − 2γ〈θn−1 − θ∗, f ′n(θn−1)〉+ γ2‖f ′n(θn−1)‖2

6 ‖θn−1 − θ∗‖2 − 2γ〈θn−1 − θ∗, f ′(θn−1)〉+ γ2R2 +Mn,

with
Mn = −2γ〈θn−1 − θ∗, f ′n(θn−1)− f ′(θn−1)〉.

We thus get, using the classical result from convexity f(θn−1) − f(θ∗) 6 〈θn−1 −
θ∗, f

′(θn−1)〉:

2γ
[
f(θn−1)− f(θ∗)

]
6 ‖θn−1 − θ∗‖2 − ‖θn − θ∗‖2 + γ2R2 +Mn. (1)

600

Adaptivity of Averaged Stochastic Gradient Descent

Summing over integers less than n, this implies:

1

n

n−1∑
k=0

f(θk)− f(θ∗) +
1

2γn
‖θn − θ∗‖2 6

1

2γn
‖θ0 − θ∗‖2 +

γ

2
R2 +

1

2γn

n∑
k=1

Mk.

We get the desired result by taking expectation in the last inequality, and using the expec-
tation EMk = E(E(Mk|Fk−1)) = 0 and f

(
1
n

∑n−1
k=0 θk

)
6 1

n

∑n−1
k=0 f(θk).

The following corollary considers a specific choice of the step size (note that the bound is
only true for the last iterate):

Corollary 2 Assume (A1) and (A3-7). With constant step size equal to γ = 1
2R2
√
N

, we

have:

∀n ∈ {1, . . . , N}, E‖θn − θ∗‖2 6 ‖θ0 − θ∗‖2 +
1

4R2
,

Ef
(

1

N

N∑
k=1

θk−1

)
− f(θ∗) 6

R2

√
N
‖θ0 − θ∗‖2 +

1

4
√
N
.

Note that if ‖θ0− θ∗‖2 was known, then a better step-size would be γ = ‖θ0−θ∗‖
R
√
N

, leading to

a convergence rate proportional to R‖θ0−θ∗‖√
N

. However, this requires an estimate (or simply

an upper-bound) of ‖θ0 − θ∗‖2, which is typically not available.
We are going to improve this result in several ways:

– All moments of ‖θn − θ∗‖2 and f(θ̄n) − f(θ∗) will be bounded, leading to a sub-
exponential behavior. Note that we do not assume that the iterates are restricted to a
predefined bounded set, which is the usual assumption made to derive tail bounds for
stochastic approximation (Nesterov and Vial, 2008; Nemirovski et al., 2009; Kakade
and Tewari, 2009).

– We are going to show that the squared norm of the gradient at θ̄n = 1
n

∑n
k=1 θk−1

converges at rate O(1/n), even in the non-strongly convex case. This will allow us to
derive finer convergence rates in presence of local strong convexity in Section 5.

– The bounds above do not explicitly depend on the dimension of the problem, however,
in practice, the quantity R2‖θ0−θ∗‖2 typically implicitly scales linearly in the problem
dimension.

4.2 Higher-Order and Tail Bound

In this section, we prove novel higher-order bounds (see the proof in Appendix C), both for
any constant step-sizes and then for the specific choice γ = 1

2R2
√
N

. This will immediately

lead to tail bounds.

Proposition 3 Assume (A1) and (A3-7). With constant step size equal to γ, for any
n > 0 and integer p > 1, we have:

E
(

2γn
[
f(θ̄n)− f(θ∗)

]
+ ‖θn − θ∗‖2

)p
6
(
3‖θ0 − θ∗‖2 + 20npγ2R2

)p
.

601

Bach

Corollary 4 Assume (A1) and (A3-7). With constant step size equal to γ = 1
2R2
√
N

, for

any integer p > 1, we have:

∀n ∈ {1, . . . , N}, E‖θn − θ∗‖2p 6
[1

R2

(
3R2‖θ0 − θ∗‖2 + 5p

)]p
,

E
[
f(θ̄N)− f(θ∗)

]p
6

[1√
N

(
3R2‖θ0 − θ∗‖2 + 5p

)]p
.

In Appendix C, we first provide two alternative proofs of the same result: (a) our original
somewhat tedious proof based on taking powers of the inequality in Equation (1) and using
martingale moment inequalities, (b) a shorter proof later derived by Bach and Moulines
(2013), that uses Burkholder-Rosenthal-Pinelis inequality (Pinelis, 1994, Theorem 4.1). We
also provide in Appendix C a direct proof of the large deviation bound that we now present.

Having a bound on all moments allows immediately to derive large deviation bounds in
the same two cases (by applying Lemma 11 from Appendix A):

Proposition 5 Assume (A1) and (A3-7). With constant step size equal to γ, for any
n > 0 and t > 0, we have:

P
(
f(θ̄n)− f(θ∗) > 30γR2t+

3‖θ0 − θ∗‖2

γn

)
6 2 exp(−t),

P
(
‖θn − θ∗‖2 > 60nγ2R2t+ 6‖θ0 − θ∗‖2

)
6 2 exp(−t).

Corollary 6 Assume (A1) and (A3-7). With constant step size equal to γ = 1
2R2
√
N

, for

any t > 0 we have:

P
(
f(θ̄N)− f(θ∗) >

15t√
N

+
6R2‖θ0 − θ∗‖2√

N

)
6 2 exp(−t),

P
(
‖θN − θ∗‖2 > 15R−2t+ 6‖θ0 − θ∗‖2

)
6 2 exp(−t).

We can make the following observations:

– The results above are obtained by direct application of Proposition 3. In Appendix C,
we also provide an alternative direct proof of a slightly weaker result, which was
suggested and outlined by Alekh Agarwal (personal communication), and that uses
Freedman’s inequality for martingales (Freedman, 1975, Theorem 1.6).

– The results above bounding the norm between the last iterate and a global optimum
extend to the averaged iterate.

– The iterates θn and θ̄n do not necessarily converge to θ∗ (note that θ∗ may not be
unique in general anyway).

– Given that (E[f(θ̄n)− f(θ∗)]
p)1/p is affine in p, we obtain a subexponential behavior,

that is, tail bounds similar to an exponential distribution. The same decay was
obtained by Nesterov and Vial (2008) and Nemirovski et al. (2009), but with an extra
orthogonal projection step that is equivalent in our setting to know a bound on ‖θ∗‖,
which is in practice not available.

602

Adaptivity of Averaged Stochastic Gradient Descent

– The constants in the bounds of of Proposition 3 (and thus other results as well) could
clearly be improved. In particular, we have, for p = 1, 2, 3 (see proof in Appendix E):

E
(

2γn
[
f(θ̄n)− f(θ∗)

]
+ ‖θn − θ∗‖2

)
6 ‖θ0 − θ∗‖2 + nγ2R2,

E
(

2γn
[
f(θ̄n)− f(θ∗)

]
+ ‖θn − θ∗‖2

)2
6

(
‖θ0 − θ∗‖2 + 9nγ2R2

)2
,

E
(

2γn
[
f(θ̄n)− f(θ∗)

]
+ ‖θn − θ∗‖2

)3
6

(
‖θ0 − θ∗‖2 + 20nγ2R2

)3
.

4.3 Convergence of Gradients

In this section, we prove higher-order bounds on the convergence of the gradient, with
an improved rate O(1/n) for ‖f ′(θ̄n)‖2. In this section, we will need the self-concordance
property in Assumption (A2).

Proposition 7 Assume (A1-7). With constant step size equal to γ, for any n > 0 and
integer p, we have:(
E
∥∥∥∥f ′(1

n

n∑
k=1

θk−1

)∥∥∥∥2p)1/2p

6
R√
n

[
8
√
p+

4p√
n

+ 40R2γp
√
n+

3

γ
√
n
‖θ0 − θ∗‖2 +

3

γR
√
n
‖θ0 − θ∗‖

]
.

Corollary 8 Assume (A1-7). With constant step size equal to γ = 1
2R2
√
N

, for any integer

p, we have:(
E
∥∥∥∥f ′(1

N

N∑
k=1

θk−1

)∥∥∥∥2p)1/2p

6
R√
N

[
8
√
p+

4p√
n

+ 20p+ 6R2‖θ0 − θ∗‖2 + 6R‖θ0 − θ∗‖
]
.

We can make the following observations:

– The squared norm of the gradient ‖f ′(θ̄N)‖2 converges at rate O(1/N).

– Given that (E‖f ′(θ̄N)‖2p)1/2p is affine in p, we obtain a subexponential behavior for
‖f ′(θ̄N)‖, that is, tail bounds similar to an exponential distribution.

– The proof of Proposition 7 makes use of the self-concordance assumption (that allows
to upperbound deviations of gradients by deviations of function values) together with
the proof technique of Polyak and Juditsky (1992).

5. Self-Concordance Analysis for Strongly-Convex Problems

In the previous section, we have shown that ‖f ′(θ̄N)‖2 is of order O(1/N). If the function
f was strongly convex with constant µ > 0, this would immediately lead to the bound
f(θ̄N) − f(θ∗) 6 1

2µ‖f
′(θ̄N)‖2, of order O(1/µN). However, because of the Lipschitz-

continuity of f on the full Hilbert space H, it cannot be strongly convex. In this section, we
show how the self-concordance assumption may be used to obtain the exact same behavior,
but with µ replaced by the local strong convexity constant, which is more likely to be strictly
positive.

The required property is summarized in the following proposition about (generalized)
self-concordant function (see proof in Appendix B.1):

603

Bach

Lemma 9 Let f be a convex three-times differentiable function from H to R, such that
for all θ1, θ2 ∈ H, the function ϕ : t 7→ f

[
θ1 + t(θ2 − θ1)

]
satisfies: ∀t ∈ R, |ϕ′′′(t)| 6

R‖θ1 − θ2‖ϕ′′(t). Let θ∗ be a global minimizer of f and µ the lowest eigenvalue of f ′′(θ∗),
which is assumed strictly positive.

If
‖f ′(θ)‖R

µ
6

3

4
, then ‖θ − θ∗‖2 6 4

‖f ′(θ)‖2

µ2
and f(θ)− f(θ∗) 6 2

‖f ′(θ)‖2

µ
.

We may now use this proposition for the averaged stochastic gradient. For simplicity,
we only consider the step-size γ = 1

2R2
√
N

, and the last iterate (see proof in Appendix F):

Proposition 10 Assume (A1-7). Assume γ = 1
2R2
√
N

. Let µ > 0 be the lowest eigenvalue

of the Hessian of f at the unique global optimum θ∗. Then:

Ef(θ̄N)− f(θ∗) 6
R2

Nµ

(
5R‖θ0 − θ∗‖+ 15

)4
,

E
∥∥θ̄N − θ∗∥∥2

6
R2

Nµ2

(
6R‖θ0 − θ∗‖+ 21

)4
.

We can make the following observations:

– The proof relies on Lemma 9 and requires a control of the probability that ‖f
′(θ̄N)‖R
µ 6

3
4 , which is obtained from Proposition 7.

– We conjecture a bound of the form
[
R2

Nµ(�R‖θ0 − θ∗‖ +4√p)4
]p

for the p-th order

moment of f(θ̄N)− f(θ∗), for some scalar constants � and 4.

– The new bound now has the term R‖θ0 − θ∗‖ with a fourth power (compared to
the bound in Lemma 1, which has a second power), which typically grows with the
dimension of the underlying space (or the slowness of the decay of eigenvalues of the
covariance operator when H is infinite-dimensional). It would be interesting to study
whether this dependence can be reduced.

– The key elements in the previous proposition are that (a) the constant µ is the local
convexity constant, and (b) the step-size does not depend on that constant µ, hence
the claimed adaptivity.

– The bounds are only better than the non-strongly-convex bounds from Lemma 1,
when the Hessian lowest eigenvalue is large enough, that is, µR2

√
N larger than a

fixed constant.

– In the context of logistic regression, even when the covariance matrix of the inputs is
invertible, then the only available lower bound on µ is equal to the lowest eigenvalue
of the covariance matrix times exp(−R‖θ∗‖), which is exponentially small. However,
the previous bound is overly pessimistic since it is based on an upper bound on the
largest possible value of 〈x, θ∗〉. In practice, the actual value of µ is much larger and
only a small constant smaller than the lowest eigenvalue of the covariance matrix. In
order to assess if this result can be improved, it is interesting to look at the asymptotic
result from Polyak and Juditsky (1992) for logistic regression, which leads to a limit
rate of 1/n times tr f ′′(θ∗)

−1
(
Ef ′n(θ∗)f

′
n(θ∗)

>); note that this rate holds both for the

604

Adaptivity of Averaged Stochastic Gradient Descent

stochastic approximation algorithm and for the global optimum of the training cost,
using standard asymptotic statistics results (Van der Vaart, 1998). When the model
is well-specified, that is, the log-odds ratio of the conditional distribution of the label
given the input is linear, then Ef ′n(θ∗)f

′
n(θ∗)

> = Ef ′′n(θ∗) = f ′′(θ∗), and the asymptotic
rate is exactly d/n, where d is the dimension of H (which has to be finite-dimensional
for the covariance matrix to be invertible). It would be interesting to see if making the
extra assumption of well-specification, we can also get an improved non-asymptotic
result. When the model is mis-specified however, the quantity Ef ′n(θ∗)f

′
n(θ∗)

> may
be large even when f ′′(θ∗) is small, and the asymptotic regime does not readily lead
to an improved bound.

6. Conclusion

In this paper, we have provided a novel analysis of averaged stochastic gradient for logistic
regression and related problems. The key aspects of our result are (a) the adaptivity to
local strong convexity provided by averaging and (b) the use of self-concordance to obtain
a simple bound that does not involve a term which is explicitly exponential in R‖θ0 − θ∗‖,
which could be obtained by constraining the domain of the iterates.

Our results could be extended in several ways: (a) with a finite and known horizon
N , we considered a constant step-size proportional to 1/R2

√
N ; it thus seems natural to

study the decaying step size γn = O(1/R2√n), which should, up to logarithmic terms, lead
to similar results—and thus likely provide a solution to a a recently posed open problem
for online logistic regression (McMahan and Streeter, 2012); (b) an alternative would be
to consider a doubling trick where the step-sizes are piecewise constant; also, (c) it may
be possible to consider other assumptions, such as exp-concavity (Hazan and Kale, 2001)
or uniform convexity (Juditsky and Nesterov, 2010), to derive similar or improved results.
Finally, by departing from a plain averaged stochastic gradient recursion, Bach and Moulines
(2013) have considered an online Newton algorithm with the same running-time complexity,
which leads to a rate of O(1/n) without strong convexity assumptions for logistic regression
(though with additional assumptions regarding the distributions of the inputs). It would
be interesting to understand if simple assumptions such as the ones made in the present
paper are possible while preserving the improved convergence rate.

Acknowledgments

The author was partially supported by the European Research Council (SIERRA Project),
and thanks Simon Lacoste-Julien, Eric Moulines and Mark Schmidt for helpful discussions.
Morever, Alekh Agarwal suggested and provided a detailed outline of the proof technique
based on Freedman’s inequality; this was greatly appreciated.

Appendix A. Probability Lemmas

In this appendix, we prove simple lemmas relating bounds on moments to tail bounds, with
the traditional use of Markov’s inequality. See more general results by Boucheron et al.
(2013).

605

Bach

Lemma 11 Let X be a non-negative random variable such that for some positive constants
A and B, and all p ∈ {1, . . . , n},

EXp 6 (A+Bp)p.

Then, if t 6 n
2 ,

P(X > 3Bt+ 2A) 6 2 exp(−t).

Proof We have, by Markov’s inequality, for any p ∈ {1, . . . , n}:

P(X > 2Bp+ 2A) 6
EXp

(2Bp+ 2A)p
6

(A+Bp)p

(2A+ 2Bp)p
= exp(− log(2)p).

For u ∈ [1, n], we consider p = buc, so that

P(X > 2Bu+ 2A) 6 P(X > 2Bp+ 2A) 6 exp(− log(2)p) 6 2 exp(− log(2)u).

We take t = log(2)u and use 2/ log 2 6 3. This is thus valid if t 6 n
2 .

Lemma 12 Let X be a non-negative random variable such that for some positive constants
A, B and C, and for all p ∈ {1, . . . , n},

EXp 6 (A
√
p+Bp+ C)2p.

Then, if t 6 n,

P(X > (2A
√
t+ 2Bt+ 2C)2) 6 4 exp(−t).

Proof We have, by Markov’s inequality, for any p ∈ {1, . . . , n}:

P(X > (2A
√
p+ 2Bp+ 2C)2) 6

EXp

(2A
√
p+ 2Bp+ 2C)2p

6
(A
√
p+Bp+ C)2p

(2A
√
p+ 2Bp+ 2C)2p

6 exp(− log(4)p).

For u ∈ [1, n], we consider p = buc, so that

P(X > (2A
√
u+ 2Bu+ 2C)2) 6 P(X > (2A

√
u+ 2Bu+ 2C)2)

6 exp(− log(2)p) 6 4 exp(− log(4)u).

We take t = log(4)u and use log 4 > 1. This is thus valid if t 6 n.

606

Adaptivity of Averaged Stochastic Gradient Descent

Appendix B. Self-Concordance Properties

In this appendix, we show two lemmas regarding our generalized notion of self-concordance,
as well as Lemma 9. For more details, see Bach (2010) and references therein.

The following lemma provide an upper-bound on a one-dimensional self-concordant func-
tion at a given point which is based on the gradient at this point and the value and the
Hessian at the global minimum. This is key to going in Section 5 from a convergence of
gradients to a convergence of function values.

Lemma 13 Let ϕ : [0, 1]→ R a strictly convex three-times differentiable function such that
for some S > 0, ∀t ∈ [0, 1], |ϕ′′′(t)| 6 Sϕ′′(t). Assume ϕ′(0) = 0, ϕ′′(0) > 0. Then:

ϕ′(1)

ϕ′′(0)
S > 1− e−S and ϕ(1) 6 ϕ(0) +

ϕ′(1)2

ϕ′′(0)
(1 + S).

Moreover, if α = ϕ′(1)S
ϕ′′(0) < 1, then ϕ(1) 6 ϕ(0) +

ϕ′(1)2

ϕ′′(0)

1

α
log

1

1− α
. If in addition α 6 3

4 ,

then ϕ(1) 6 ϕ(0) + 2ϕ
′(1)2

ϕ′′(0) and ϕ′′(0) 6 2ϕ′(1).

Proof By self-concordance, we obtain that the derivative of u 7→ logϕ′′(u) is lower-bounded
by −S. By integrating between 0 and t ∈ [0, 1], we get

logϕ′′(t)− logϕ′′(0) > −St , that is, ϕ′′(t) > ϕ′′(0)e−St, (2)

and by integrating between 0 and 1, we obtain (note that we have assumed ϕ′(0) = 0):

ϕ′(1) > ϕ′′(0)
1− e−S

S
. (3)

We then get (with a first inequality from convexity of ϕ, and the last inequality from
eS > 1 + S):

ϕ(1)− ϕ(0) 6 ϕ′(1) 6 ϕ′(1)
ϕ′(1)

ϕ′′(0)

S

1− e−S
=
ϕ′(1)2

ϕ′′(0)

(
S +

S

eS − 1

)
6
ϕ′(1)2

ϕ′′(0)
(1 + S).

Equation (3) implies that α > 1− e−S , which implies, if α < 1, S 6 log 1
1−α . This implies

that

ϕ(1)− ϕ(0) 6 ϕ′(1)
ϕ′(1)

ϕ′′(0)

S

1− e−S
6
ϕ′(1)2

ϕ′′(0)

1

α
log

1

1− α
,

using the monotonicity of S 7→ S
1−e−S . Finally the last bounds are a consequence of S

α 6
1
α log 1

1−α 6 2, which is valid for α 6 3
4 .

Note that in Equation (2), we do consider a lower-bound on the Hessian with an expo-
nential factor e−St. The key feature of using self-concordance properties is to get around
this exponential factor in the final bound.

The following lemma upper-bounds the remainder in the first-order Taylor expansion of
the gradient by the remainder in the first-order Taylor expansion of the function. This is
important when function values behave well (i.e., converge to the minimal value) while the
iterates may not.

607

Bach

Lemma 14 Let f be a convex three-times differentiable function from H to R, such that
for all θ1, θ2 ∈ H, the function ϕ : t 7→ f

[
θ1 + t(θ2 − θ1)

]
satisfies: ∀t ∈ R, |ϕ′′′(t)| 6

R‖θ1 − θ2‖ϕ′′(t). For any θ1, θ2 ∈ H, we have:∥∥f ′(θ1)− f ′(θ2)− f ′′(θ2)(θ2 − θ1)
∥∥ 6 R[f(θ1)− f(θ2)− 〈f ′(θ2), θ2 − θ1〉

]
.

Proof For a given z ∈ H of unit norm, let ϕ(t) =
〈
z, f ′

(
θ2 + t(θ1 − θ2)

)
− f ′(θ2) −

tf ′′(θ2)(θ2 − θ1)
〉

and ψ(t) = R
[
f(θ2 + t(θ1 − θ2)) − f(θ2) − t〈f ′(θ2), θ2 − θ1〉

]
. We have

ϕ(0) = ψ(0) = 0. Moreover, we have the following derivatives:

ϕ′(t) =
〈
z, f ′′

(
θ2 + t(θ1 − θ2)

)
− f ′′(θ2), θ1 − θ2

〉
ϕ′′(t) = f ′′′

(
θ2 + t(θ1 − θ2)

)
[z, θ1 − θ2, θ1 − θ2]

6 R‖z‖2f ′′
(
θ2 + t(θ1 − θ2)

)
[θ1 − θ2, θ1 − θ2], using the Appendix A of Bach (2010),

= R
〈
θ2 − θ1, f

′′(θ2 + t(θ1 − θ2)
)
(θ1 − θ2)

〉
ψ′(t) = R

〈
f ′
(
θ2 + t(θ1 − θ2)

)
− f ′(θ2), θ1 − θ2

〉
ψ′′(t) = R

〈
θ2 − θ1, f

′′(θ2 + t(θ1 − θ2)
)
(θ1 − θ2)

〉
,

where f ′′′(θ) is the third order tensor of third derivatives. This leads to ϕ′(0) = ψ′(0) = 0
and ϕ′′(t) 6 ψ′′(t). We thus have ϕ(1) 6 ψ(1) by integrating twice, which leads to the
desired result by maximizing with respect to z.

B.1 Proof of Lemma 9

We follow the standard proof techniques in self-concordant analysis and define an appro-
priate function of a single real variable and apply simple lemmas like the ones above.

Define ϕ : t 7→ f
[
θ∗ + t(θ − θ∗)

]
− f(θ∗). We have

ϕ′(t) =
〈
f ′
[
θ∗ + t(θ − θ∗)

]
, θ − θ∗〉

ϕ′′(t) =
〈
θ − θ∗, f ′′

[
θ∗ + t(θ − θ∗)

]
(θ − θ∗)〉

ϕ′′′(t) = f ′′′
[
θ∗ + t(θ − θ∗)

]
[θ − θ∗, θ − θ∗, θ − θ∗].

We thus have: ϕ(0) = ϕ′(0) = 0, 0 6 ϕ′(1) = 〈f ′(θ), θ − θ∗〉 6 ‖f ′(θ)‖‖θ − θ∗‖, ϕ′′(0) =
〈θ − θ∗, f ′′(θ∗)(θ − θ∗)〉 > µ‖θ − θ∗‖2, and ϕ(t) > 0 for all t ∈ [0, 1]. Moreover, ϕ′′′(t) 6
R‖θ − θ∗‖ϕ′′(t) for all t ∈ [0, 1], that is, Lemma 13 applies with S = R‖θ − θ∗‖. This leads

to the desired result, with α = ϕ′(1)S
ϕ′′(0) 6

‖f ′(θ)‖R
µ . Note that we also have (using the second

inequality in Lemma 13), for all θ ∈ H (and without any assumption on θ):

f(θ)− f(θ∗) 6
(
1 +R‖θ − θ∗‖

)‖f ′(θ)‖2
µ

.

Appendix C. Proof of Proposition 3

We provide two alternative proofs of the same result: (a) our original somewhat tedious
proof in Appendices C.3 and C.4, based on taking powers of the inequality in Equation (1)

608

Adaptivity of Averaged Stochastic Gradient Descent

and using martingale moment inequalities, (b) a shorter proof in Appendix C.5, later derived
by Bach and Moulines (2013), that uses Burkholder-Rosenthal-Pinelis inequality (Pinelis,
1994, Theorem 4.1). Another proof technique was suggested and outlined by Alekh Agar-
wal (personal communication), that uses Freedman’s inequality for martingales (Freedman,
1975, Theorem 1.6); it allows to directly get a tail bound like in Proposition 5. This proof
will be presented in Appendix C.6.

Note that the two shorter proofs currently lead to slightly worse constants (or to extra
logarithmic factors), that may be improved with more refined derivations.

All proofs start from a similar martingale set-up that we describe in Appendix C.1 and
use an almost-sure bound when p gets large (Appendix C.2).

C.1 Bounding Martingales

From the proof of Lemma 1, we have the recursion:

2γ
[
f(θn−1)− f(θ∗)

]
+ ‖θn − θ∗‖2 6 ‖θn−1 − θ∗‖2 + γ2R2 +Mn,

with

Mn = −2γ〈θn−1 − θ∗, f ′n(θn−1)− f ′(θn−1)〉.

This leads to, by summing from 1 to n, and using the convexity of f :

2γnf

(
1

n

n∑
k=1

θk−1

)
− 2γnf(θ∗) + ‖θn − θ∗‖2 6 An,

with

An = ‖θ0 − θ∗‖2 + nγ2R2 +
n∑
k=1

Mk > 0.

Note that An may also be defined recursively as A0 = ‖θ0 − θ∗‖2 and

An = An−1 + γ2R2 +Mn. (4)

The random variables (Mn) and (An) satisfy the following properties that will proved
useful throughout the proof:

(a) Martingale increment: for all k > 1, E(Mk|Fk−1) = 0. This implies that Sn =∑n
k=1Mk is a martingale.

(b) Boundedness: |Mk| 6 4γR‖θk−1 − θ∗‖ 6 4γRA
1/2
k−1 almost surely.

C.2 Almost Sure Bound

In this section, we derive an almost sure bound that will be valid for small n. From the
stochastic gradient recursion θn = θn−1 − γf ′n(θn−1), we get, using Assumption (A4) and
the triangle inequality:

‖θn − θ∗‖ 6 ‖θn−1 − θ∗‖+ γ‖f ′n(θn−1)‖ 6 ‖θn−1 − θ∗‖+ γR almost surely.

609

Bach

This leads to ‖θn − θ∗‖ 6 ‖θ0 − θ∗‖+ nγR for all n > 0. This in turn implies that

An 6 ‖θ0 − θ∗‖2 + nγ2R2 + 4γR
n∑
k=1

‖θk−1 − θ∗‖ using |Mk| 6 4γR‖θk−1 − θ∗‖,

6 ‖θ0 − θ∗‖2 + nγ2R2 + 4γR
n∑
k=1

[
‖θ0 − θ∗‖+ (k − 1)γR

]
using the inequality above,

6 ‖θ0 − θ∗‖2 + nγ2R2 + 4γnR‖θ0 − θ∗‖+ 2γ2R2n2

by summing over the first n− 1 integers,

6 ‖θ0 − θ∗‖2 + nγ2R2 + 2γ2n2R2 + 2‖θ0 − θ∗‖2 + 2γ2R2n2 using ab 6
a2

2
+
b2

2
,

6 3‖θ0 − θ∗‖2 + 5n2γ2R2 almost surely. (5)

This implies that the bound is shown for all p > n
4 .

C.3 Derivation of p-th Order Recursion

The first proof works as follows: (a) derive a recursion between the p-th moments and
the lower-order moments (this section) and (c) prove the result by induction on p (Ap-
pendix C.4). Note that we have to treat separately small values on n in the recursion, for
which we use the almost sure bound from Appendix C.2.

Starting from Equation (4), using the binomial expansion formula, we get:

Apn 6
(
An−1 + γ2R2 +Mn

)p
=

p∑
k=0

(
p

k

)(
An−1 + γ2R2

)p−k
Mk
n

6
(
An−1 + γ2R2

)p
+ p
(
An−1 + γ2R2

)p−1
Mn +

p∑
k=2

(
p

k

)(
An−1 + γ2R2

)p−k(
4γRA

1/2
n−1

)k
.

This leads to, using E(Mn|Fn−1) = 0, upper bounding γ2R2 by 4γ2R2, and using the
binomial expansion formula several times:

E
[
Apn
∣∣Fn−1

]
6

(
An−1 + 4γ2R2

)p
+

p∑
k=2

(
p

k

)(
An−1 + 4γ2R2

)p−k(
4γRA

1/2
n−1

)k
=

(
An−1 + 4γ2R2 + 4γRA

1/2
n−1

)p − 4γRp
(
An−1 + 4γ2R2

)p−1
A

1/2
n−1

by isolating the term k = 1 in the binomial formula,

=
(
A

1/2
n−1 + 2γR

)2p − 4γRp
(
An−1 + 4γ2R2

)p−1
A

1/2
n−1

=

2p∑
k=0

(
2p

k

)
A
k/2
n−1(2γR)2p−k − 4γRpA

1/2
n−1

p−1∑
k=0

(
p− 1

k

)
Akn−1(2γR)2(p−1−k)

=

2p∑
k=0

A
k/2
n−1(2γR)2p−kCk,

610

Adaptivity of Averaged Stochastic Gradient Descent

with the constants Ck defined as:

C2q =

(
2p

2q

)
for q ∈ {0, . . . , p},

C2q+1 =

(
2p

2q + 1

)
− 2p

(
p− 1

q

)
for q ∈ {0, . . . , p− 1}.

In particular, C0 = 1, C2p = 1, C1 = 0 and C2p−1 =
(

2p
2p−1

)
− 2p

(
p−1
p−1

)
= 0.

Our goal is now to bounding the values of Ck to obtain Equation (8) below. This will
be done by bounding the odd-indexed element by the even-indexed elements.

We have, for q ∈ {1, . . . , p− 2},

C2q+1
2q + 1

2p− 2q − 1
6

(
2p

2q + 1

)
2q + 1

2p− 2q − 1

=
(2p)!

(2q + 1)!(2p− 2q − 1)!

2q + 1

2p− 2q − 1

=
(2p)!

(2q)!(2p− 2q)!

2p− 2q

2p− 2q − 1
=

(
2p

2q

)
2p− 2q

2p− 2q − 1
. (6)

For the end of the interval above in q, that is, q = p− 2, we obtain C2q+1
2q+1

2p−2q−1 6 C2q
4
3 ,

while for q 6 p− 3, we obtain C2q+1
2q+1

2p−2q−1 6 C2q
6
5 .

Moreover, for q ∈ {1, . . . , p− 2},

C2q+1
2p− 2q − 1

2q + 1
6

(
2p

2q + 1

)
2p− 2q − 1

2q + 1

=
(2p)!

(2q + 1)!(2p− 2q − 1)!

2p− 2q − 1

2q + 1

=
(2p)!

(2q + 2)!(2p− 2q − 2)!

2q + 2

2q + 1
=

(
2p

2q + 2

)
2q + 2

2q + 1
. (7)

For the end of the interval above in q, that is, q = 1, we obtain C2q+1
2p−2q−1

2q+1 6 C2q+2
4
3 ,

while for q > 2, we obtain C2q+1
2p−2q−1

2q+1 6 C2q+2
6
5 .

We have moreover, by using the bound 2γRA
1/2
n−1 6

α
2 (2γR)2 + 1

2αAn−1 for α = 2q+1
2p−2q−1 :

C2q+1A
q+1/2
n−1 (2γR)2p−2q−1

= C2q+1A
q
n−1(2γR)2p−2q−2A

1/2
n−1(2γR)

6 C2q+1A
q
n−1(2γR)2p−2q−2 1

2

[
2q + 1

2p− 2q − 1
(2γR)2 +

2p− 2q − 1

2q + 1
An−1

]
=

1

2
C2q+1

2p− 2q − 1

2q + 1
Aq+1
n−1(2γR)2p−2q−2 +

1

2
C2q+1

2q + 1

2p− 2q − 1
Aqn−1(2γR)2p−2q.

By combining the previous inequality with Equation (6) and Equation (7), we get that the
terms indexed by 2q + 1 are bounded by the terms indexed by 2q + 2 and 2q. All terms
with q ∈ {2, . . . , p− 3} are expanded with constants 3

5 , while for q = 1 and q = p− 2, this is

611

Bach

2
3 . Overall each even term receives a contribution which is less than max{6

5 ,
3
5 + 2

3 ,
2
3} = 19

15 .
This leads to

p−2∑
q=1

C2q+1A
q+1/2
n−1 (2γR)2p−2q−1 6

19

15

p−1∑
q=0

C2qA
q
n−1(2γR)2p−2q,

leading to the recursion that will allow us to derive our result:

E
[
Apn
∣∣Fn−1

]
6 Apn−1 +

34

15

p−1∑
q=0

(
2p

2q

)
Aqn−1(2γR)2p−2q. (8)

C.4 Proof by Induction

We now proceed by induction on p. If we assume that EAqk 6
(
3‖θ0 − θ∗‖2 + kqγ2R2B

)q
for all q < p, and a certain B (which we will choose to be equal to 20). We first note that
if n 6 4p, then from Equation (5), we have

EApn 6
(
3‖θ0 − θ∗‖2 + 5n2γ2R2

)p
6

(
3‖θ0 − θ∗‖2 + 20npγ2R2

)p
.

Thus, we only need to consider n > 4p. We then get from Equation (8):

E‖θn − θ∗‖2p 6 ‖θ0 − θ∗‖2p +
34

15

n−1∑
k=0

p−1∑
q=0

(
2p

2q

)
EAqk(2γR)2p−2q

6 ‖θ0 − θ∗‖2p +
34

15

n−1∑
k=0

p−1∑
q=0

(
2p

2q

)(
3‖θ0 − θ∗‖2 + kqγ2R2B

)q
(2γR)2p−2q,

using the induction hypothesis. We may now sum with respect to k:

E‖θn − θ∗‖2p

6 ‖θ0 − θ∗‖2p +
34

15

p−1∑
q=0

(
2p

2q

)
(2γR)2p−2q

n−1∑
k=0

(
3‖θ0 − θ∗‖2 + kqγ2R2B

)q
6 ‖θ0 − θ∗‖2p +

34

15

p−1∑
q=0

(
2p

2q

)
(2γR)2p−2q

q∑
j=0

3j‖θ0 − θ∗‖2j
(
q

j

)(
qγ2R2B

)q−j nq−j+1

q − j + 1

using

n−1∑
k=0

kα 6
nα+1

α+ 1
for any α > 0,

= ‖θ0 − θ∗‖2p +
34

15

p−1∑
j=0

3j‖θ0 − θ∗‖2j(4γ2R2n)p−j
p−1∑
q=j

(
2p

2q

)(
q

j

)(qB
4

)q−j nq−p+1

q − j + 1
,

by changing the order of summations. We now aim to show that it is less than(
3‖θ0 − θ∗‖2 + kpγ2R2B

)p
= 3p‖θ0 − θ∗‖2p +

p−1∑
j=0

3j‖θ0 − θ∗‖2j(γ2R2n)p−j(Bp)p−j
(
p

j

)
.

612

Adaptivity of Averaged Stochastic Gradient Descent

By comparing all terms in ‖θ0 − θ∗‖2j , this is true as soon as for all j ∈ {0, . . . , p− 1},

34

15

p−1∑
q=j

(
2p

2q

)(
q

j

)(
qB/4

)q−j 1

q − j + 1

1

np−q−1
6 (Bp/4)p−j

(
p

j

)

⇔ 34

15

p−1−j∑
k=0

(
2p

2k + 2

)(
p−1−k

j

)(
(p− 1− k)B/4

)p−1−k−j 1

p−k−j
1

nk
6 (Bp/4)p−j

(
p

j

)
,

obtained by using the change of variable k = p− 1− q. This is implied by, using n > 4p:

136

15

p−1−j∑
k=0

B−1−kp−k−p+j
(

2p

2k + 2

)(p−1−k
j

)(
p
j

) (
p− 1− k

)p−1−k−j 1

p− k − j
6 1.

By expanding the binomial coefficients and simplifying by p− k − j, this is equivalent to

136

15

p−1−j∑
k=0

B−1−kp−k−p+j
(

2p

2k + 2

)
(p− 1− k) · · · (p− k − j + 1)

p · · · (p− j + 1)

(
p− 1− k

)p−1−k−j
6 1.

We may now write

(p− 1− k) · · · (p− k − j + 1)

p · · · (p− j + 1)
=

(p− 1− k)!

(p− k − j)!
(p− j)!
p!

=
(p− 1− k)!

p!

(p− j)!
(p− k − j)!

=
(p− j) · · · (p− k − j + 1)

p · · · (p− k)
,

so that we only need to show that

136

15

p−1−j∑
k=0

B−1−kp−k−p+j
(

2p

2k + 2

)
(p− j) · · · (p− k − j + 1)

p · · · (p− k)

(
p− 1− k

)p−1−k−j
6 1.

613

Bach

We have, by bounding all terms then than p by p:

136

15

p−1−j∑
k=0

A−1−kp−k−p+j
(

2p

2k + 2

)
(p− j) · · · (p− k − j + 1)

p · · · (p− k)

(
p− 1− k

)p−1−k−j

6
136

15

p−1−j∑
k=0

A−1−kp−k−p+j
(

2p

2k + 2

)
pk

p · · · (p− k)
pp−1−k−j

=
136

15

p−1−j∑
k=0

A−1−kp−k−1

(
2p

2k + 2

)
1

p · · · (p− k)

=
136

15

p−1−j∑
k=0

A−1−k p−k−1

(2k + 2)!

2p(2p− 1) · · · (2p− 2k − 1)

p · · · (p− k)

=
136

15

p−1−j∑
k=0

A−1−k p
−2−122k+2

(2k + 2)!

p(p− 1/2) · · · (p− k − 1/2)

p · · · (p− k)

6
136

15

p−1−j∑
k=0

A−1−k 22k+2

(2k + 2)!

by associating all 2k + 2 terms in ratios which are all less than 1,

6
136

15

+∞∑
k=0

(2/
√
A)2k+2

(2k + 2)!
=

136

15

[
cosh(2/

√
A)− 1

]
< 1 if A 6 20.

We thus get the desired result EApn 6
(
3‖θ0 − θ∗‖2 + 20npγ2R2

)p
, and the proposition is

proved by induction.

C.5 Alternative Proof Using Burkholder-Rosenthal-Pinelis Inequality

In this section, we present (a slightly modified version of) the proof from Bach and Moulines
(2013) which is based on Burkholder-Rosenthal-Pinelis inequality (Pinelis, 1994, Theorem
4.1), which we now recall.

C.5.1 BRP Inequality

Throughout the proof, we use the notation for X ∈ H a random vector, and p any real

number greater than 1, ‖X‖p =
(
E‖X‖p

)1/p
. We first recall the Burkholder-Rosenthal-

Pinelis (BRP) inequality (Pinelis, 1994, Theorem 4.1). Let p ∈ R, p > 2 and (Fn)n>0 be
a sequence of increasing σ-fields, and (Xn)n>1 an adapted sequence of elements of H, such
that E

[
Xn|Fn−1

]
= 0, and ‖Xn‖p is finite. Then,

∥∥∥∥ sup
k∈{1,...,n}

∥∥∥∥ k∑
j=1

Xj

∥∥∥∥∥∥∥∥
p

6
√
p

∥∥∥∥ n∑
k=1

E
[
‖Xk‖2|Fk−1

]∥∥∥∥1/2

p/2

+ p

∥∥∥∥ sup
k∈{1,...,n}

‖Xk‖
∥∥∥∥
p

(9)

6
√
p

∥∥∥∥ n∑
k=1

E
[
‖Xk‖2|Fk−1

]∥∥∥∥1/2

p/2

+ p

∥∥∥∥ sup
k∈{1,...,n}

‖Xk‖2
∥∥∥∥1/2

p/2

.

614

Adaptivity of Averaged Stochastic Gradient Descent

C.5.2 Proof of Proposition 3 (With Slightly Worse Constants)

We use BRP’s inequality in Equation (9) to get, for p ∈ [2, n/4]:

∥∥∥ sup
k∈{0,...,n}

Ak

∥∥∥
p
6 ‖θ0 − θ∗‖2 + nγ2R2 +

√
p

∥∥∥∥16γ2R2
n∑
k=1

‖θk−1 − θ∗‖2
∥∥∥∥1/2

p/2

+p
∥∥∥ sup
k∈{1,...,n}

4γR‖θk−1 − θ∗‖
∥∥∥
p

6 ‖θ0 − θ∗‖2 + nγ2R2 +
√
p 4γR

√
n
∥∥∥ sup
k∈{0,...,n−1}

Ak

∥∥∥1/2

p/2

+p 4γR
∥∥∥ sup
k∈{0,...,n−1}

A
1/2
k

∥∥∥
p

6 ‖θ0 − θ∗‖2 + nγ2R2 + 4γR
∥∥∥ sup
k∈{0,...,n−1}

Ak

∥∥∥1/2

p/2

(√
pn+ p

)
.

Thus if B =
∥∥∥ supk∈{0,...,n}Ak

∥∥∥
p
, we have (using p 6 n/4, which implies

√
pn+ p 6 3

2

√
pn):

B 6 ‖θ0 − θ∗‖2 + nγ2R2 + 6γRB1/2√pn.

By solving this quadratic inequality, we get:(
B1/2 − 3γR

√
pn
)2
6 ‖θ0 − θ∗‖2 + nγ2R2 + 9γ2R2pn,

which implies

B1/2 6 3γR
√
pn+

√
‖θ0 − θ∗‖2 + nγ2R2 + 9γ2R2pn

B 6 2× 9γ2R2pn+ 2×
(
‖θ0 − θ∗‖2 + nγ2R2 + 9γ2R2pn

)
6 40γ2R2pn+ 2‖θ0 − θ∗‖2.

The previous statement is valid for p > 2 and trivial for p = 1. From Appendix C.2, we
only need to have the result for p 6 n

4 . Thus the bound is slightly worse (but could be
clearly improved with more care, for example, by using induction on n).

C.6 Alternative Proof Using Freedman’s Inequality

In the previous section, we have used p-th order moment martingale inequalities that relate
the norm of a martingale to the norm of its predictable quadratic variation process. Similar
results may be obtained for tail bounds through Freedman’s inequality (Freedman, 1975,
Theorem 1.6). This proof technique was suggested and outlined by Alekh Agarwal (personal
communication).

C.6.1 Freedman’s Inequality and Extensions

Let (Xn) be a real-valued martingale increment adapted to the increasing sequence of σ-
fields (Fn), that is, such that E(Xn|Fn) = 0, that is almost surely bounded, that is, |Xn| 6 R

615

Bach

almost surely. Let Σn =
∑n

k=1 E(X2
k |Fk−1) the predictable quadratic variation process.

Then for any constants t and σ2,

P
(

max
k∈{1,...,n}

k∑
i=1

Xi > t,Σn 6 σ
2
)
6 2 exp

(−t2

2(σ2 +Rt/3)

)
.

When (Xn) are independent random variables, this recovers Bernstein’s inequality. From
this bound, one may derive the following bound (Kakade and Tewari, 2009); with probability
1− 4(log n)δ, we have:

max
k∈{1,...,n}

k∑
i=1

Xi 6 max
{

2
√

Σn, 3R
√

log 1
δ

}√
log 1

δ 6 2
√

Σn

√
log 1

δ + 3R log 1
δ . (10)

Note that the result of Kakade and Tewari (2009) considers only

n∑
i=1

Xi rather than

max
k∈{1,...,n}

k∑
i=1

Xi, but that the extension of their proof is straightforward.

C.6.2 Proof of Proposition 5 (With Slightly Worse Constants and
Scalings)

We can now apply the inequality in Equation (10) to (Mn). We have |Mn| 6 4γR‖θn−1 −
θ∗‖ 6 4γR

(
‖θ0−θ∗‖+nγR

)
almost surely. Moreover, E(M2

n|Fn−1) 6 16γ2R2‖θn−1−θ∗‖2 6
16γ2R2An−1.

This leads to with probability greater than 1− 4(log n)δ,

max
k∈{1,...,n}

Ak 6 ‖θ0 − θ∗‖2 + nγ2R2 + 8γR

√√√√n−1∑
k=1

Ak

√
log 1

δ + 12γR
(
‖θ0 − θ∗‖+ nγR

)
log 1

δ

6 ‖θ0 − θ∗‖2 + nγ2R2 + 8γR
√
n max
k∈{1,...,n}

√
Ak

√
log 1

δ

+12γR
(
‖θ0 − θ∗‖+ nγR

)
log 1

δ .

We may now solve the quadratic inequality in maxk∈{1,...,n}
√
Ak. This leads to(

max
k∈{1,...,n}

√
Ak − 4γR

√
n
√

log 1
δ

)2

6 ‖θ0 − θ∗‖2 + nγ2R2 + 12γR
(
‖θ0 − θ∗‖+ nγR

)
log 1

δ + 16γ2R2nlog 1
δ

= ‖θ0 − θ∗‖2 + nγ2R2 +
(
12γR‖θ0 − θ∗‖+ 28nγ2R2

)
log 1

δ .

Then

max
k∈{1,...,n}

√
Ak

6 4γR
√
n

√
log

1

δ
+ ‖θ0 − θ∗‖+

√
nγR+

√
12γR‖θ0 − θ∗‖+ 28nγ2R2

√
log

1

δ

616

Adaptivity of Averaged Stochastic Gradient Descent

and

max
k∈{1,...,n}

Ak

6 64γ2R2nlog
1

δ
+ 4‖θ0 − θ∗‖2 + 4nγ2R2 + 4

(
12γR‖θ0 − θ∗‖+ 28nγ2R2

)
log

1

δ

6 4‖θ0 − θ∗‖2 + 4nγ2R2 +
(

64γ2R2n+ 48γR‖θ0 − θ∗‖+ 112nγ2R2
)

log
1

δ

6 4‖θ0 − θ∗‖2 + 4nγ2R2 +
(

176γ2R2n+ 48γR‖θ0 − θ∗‖
)

log
1

δ
.

We thus recover a tail bound which is very similar to the one obtained in Proposition 5,
with the following differences: the additional term 48γR‖θ0 − θ∗‖ is unimportant because
γ = O(N−1/2); however, because the extension of Freedman’s inequality is satisfied with
probability 1− 4(log n)δ, this proof technique loses a logarithmic factor.

Appendix D. Proof of Proposition 7

The proof is organized in two parts: we first show a bound on the averaged gradient
1
n

∑n
k=1 f

′(θk−1), then relate it to the gradient at the averaged iterate, that is,

f ′
(

1
n

∑n
k=1 θk−1

)
, using self-concordance.

D.1 Bound on 1
n

∑n
k=1 f

′(θk−1)

We have, following Polyak and Juditsky (1992) and Bach and Moulines (2011):

f ′n(θn−1) =
1

γ
(θn−1 − θn),

which implies, by summing over all integers between 1 and n:

1

n

n∑
k=1

f ′(θk−1) =
1

n

n∑
k=1

[
f ′(θk−1)− f ′k(θk−1)

]
+

1

γn
(θ0 − θ∗) +

1

γn
(θ∗ − θn).

We denote Xk = 1
n

[
f ′(θk−1) − f ′k(θk−1)

]
∈ H. We have: ‖Xk‖ 6 2R

n almost surely

and E(Xk|Fk−1) = 0, with
(∑n

k=1 E(‖Xk‖2|Fk−1)
)1/2

6 2R√
n

. We may thus apply the

Burkholder-Rosenthal-Pinelis inequality (Pinelis, 1994, Theorem 4.1), and get:

[
E
∥∥∥∥ 1

n

n∑
k=1

[
f ′(θk−1)− f ′k(θk−1)

]∥∥∥∥2p]1/2p

6 2p
2R

n
+
√

2p
2R

n1/2
.

617

Bach

This leads to, using Proposition 3 and Minkowski’s inequality:[
E
∥∥∥∥ 1

n

n∑
k=1

f ′(θk−1)

∥∥∥∥2p]1/2p

6

[
E
∥∥∥∥ 1

n

n∑
k=1

[
f ′(θk−1)− f ′k(θk−1)

]∥∥∥∥2p]1/2p

+
1

γn
‖θ0 − θ∗‖+

1

γn

[
E‖θ∗ − θn‖2p

]1/2p
6 2p

2R

n
+
√

2p
2R

n1/2
+

1

γn
‖θ0 − θ∗‖+

[1

γn

√
3‖θ0 − θ∗‖2 + 20npγ2R2

]
6 2p

2R

n
+
√

2p
2R

n1/2
+

1

γn
‖θ0 − θ∗‖+

[√3

γn
‖θ0 − θ∗‖+

1

γn

√
20npγR

]
6

4pR

n
+
√

2p
2R

n1/2
+

2

γn
‖θ0 − θ∗‖+

1

γn

√
20npγR

6
4pR

n
+
√
p
R√
n

[
2
√

2 +
√

20
]

+
1 +
√

3

γn
‖θ0 − θ∗‖

6
4pR

n
+ 8
√
p
R√
n

+
3

γn
‖θ0 − θ∗‖. (11)

D.2 Using Self-Concordance

Using the self-concordance property of Lemma 14 several times, we obtain:∥∥∥∥ 1

n

n∑
k=1

f ′(θk−1)− f ′
(

1

n

n∑
k=1

θk−1

)∥∥∥∥
=

∥∥∥∥ 1

n

n∑
k=1

[
f ′(θk−1)− f ′(θ∗)− f ′′(θ∗)(θk−1 − θ∗)

]
−f ′

(
1

n

n∑
k=1

θk−1

)
+ f ′(θ∗) + f ′′(θ∗)

(
1

n

n∑
k=1

θk−1 − θ∗
)∥∥∥∥

6
R

n

n∑
k=1

[
f(θk−1)− f(θ∗)− 〈f ′(θ∗), θk−1 − θ∗〉

]
+R

[
f

(
1

n

n∑
k=1

θk−1

)
− f(θ∗) +

〈
f ′(θ∗),

1

n

n∑
k=1

θk−1 − θ∗
〉]

6 2R

(
1

n

n∑
k=1

f(θk−1)− f(θ∗)

)
using the convexity of f .

This leads to, using Proposition 3:(
E
∥∥∥∥ 1

n

n∑
k=1

f ′(θk−1)− f ′
(

1

n

n∑
k=1

θk−1

)∥∥∥∥2p)1/2p

6 2R

(
E
[

1

n

n∑
k=1

f(θk−1)− f(θ∗)

]2p)1/2p

6
2R

2γn

(
3‖θ0 − θ∗‖2 + 40npγ2R2

)
. (12)

Summing Equation (11) and Equation (12) leads to the desired result.

618

Adaptivity of Averaged Stochastic Gradient Descent

Appendix E. Results for Small p

In Proposition 3, we may replace the bound 3‖θ0 − θ∗‖2 + 20npγ2R2 with a bound with
smaller constants for p = 1, 2, 3 (to be used in proofs of results in Section 5). This is done
using the same proof principle but finer derivations, as follows. We denote γ2R2 = b and
‖θ−θ∗‖2 = a, and consider the following inequalities which we have considered in the proof
of Proposition 3:

Apn 6 (An−1 + b+Mn)p

Mn 6 4b1/2A
1/2
n−1 and E(Mn|Fn−1) = 0,

A0 = a.

We simply take expansions of the p-th power above, and sum for all first integers. We have:

EAn 6 EAn−1 + b 6 a+ nb,

EA2
n 6 E(A2

n−1 + b2 + 2bAn−1 +M2
n) 6 EA2

n−1 + 2EAn−1b+ b2 + 16bEAn−1

6 a2 + 18b

[n−1∑
k=0

a+ kb

]
+ b2n 6 a2 + 18b[na+

n2

2
b] + b2n

using the result about EAn−1,

= a2 + 18bna+ b2(n+ 9n2)

6 (a+ 9nb)2.

We may now pursue for the third order moments:

EA3
n 6 E(An−1 + b)3 + 3E(An−1 + b)2M2

n + 3E(An−1 + b)3Mn + EM3
n−1

6 E(An−1 + b)3 + 3E(An−1 + b)216bAn−1 + 0 + 64b3/2EA3/2
n−1

6 (EA3
n−1 + 3EA2

n−1b+ 3EAn−1b
2 + b3) + 3E(An−1 + b)16bAn−1 + 64b3/2EA3/2

n−1

= (EA3
n−1 + 3EA2

n−1b+ 3EAn−1b
2 + b3) + 3E(An−1 + b)16bAn−1

+32bEAn−1[2b1/2A
1/2
n−1].

By expanding, we get

EA3
n 6 (EA3

n−1 + 3EA2
n−1b+ 3EAn−1b

2 + b3) + 3E(An−1 + b)16bAn−1

+32EbAn−1[
An−1

4
+ 4b]

= EA3
n−1 + EA2

n−1b[3 + 48 + 8] + EAn−1b
2[3 + 48 + 128] + b3

= EA3
n−1 + 59EA2

n−1b+ 179EAn−1b
2 + b3

6 a3 + 59b

[n−1∑
k=1

a2 + 18bka+ b2(k + 9k2)

]
+ 179b2

[n−1∑
k=1

a+ kb

]
+ nb3

6 a3 + 59b[na2 + 9bn2a+ b2(n2/2 + 3n3)] + 179b2[na+ bn2/2] + nb3

= a3 + 59nba2 + b2a[59 · 9n2 + 179n] + b3[59/2 · n2 + 3 · 59n3 + 179/2 · n2 + n]

= a3 + 59nba2 + b2a[531n2 + 179n] + b3[119n2 + 177n3 + n]

6 (a+ 20nb)3.

619

Bach

We then obtain:

E
[
2γn

[
f(θ̄n)− f(θ∗)

]
+ ‖θn − θ∗‖2

]2

6
(
‖θ0 − θ∗‖2 + 9nγ2R2

)2
E
[
2γn

[
f(θ̄n)− f(θ∗)

]
+ ‖θn − θ∗‖2

]3

6
(
‖θ0 − θ∗‖2 + 20nγ2R2

)3
.

Appendix F. Proof of Proposition 10

The proof follows from applying self-concordance properties (Lemma 9) to θ̄n. We thus
need to provide a control on the probability that ‖f ′(θ̄n)‖ > 3µ

4R .

F.1 Tail Bound for ‖f ′(θ̄n)‖

We derive a large deviation bound, as a consequence of the bound on all moments of ‖f ′(θ̄n)‖
(Proposition 7) and Lemma 12, that allows to go from moments to tail bounds:

P
(∥∥f ′(θ̄n)‖ > 2R√

n

[
10
√
t+ 40R2γt

√
n+

3

γ
√
n
‖θ0 − θ∗‖2 +

3

γR
√
n
‖θ0 − θ∗‖

])
6 4 exp(−t).

In order to derive the bound above, we need to assume that p 6 n/4 (so that 4p/n 6
2
√
p/
√
n), and thus, when applying Lemma 12, the bound above is valid as long as t 6 n/4.

It is however valid for all t, because the gradients are bounded by R, and for t > n, we have
2R√
n

10
√
t > R, and the inequality is satisfied with zero probability.

F.2 Bounding the Function Values

From Lemma 9, if ‖f ′(θ̄n)‖ > 3µ
4R , then f(θ̄n) − f(θ∗) 6 2‖f

′(θ̄n)‖2
µ . This will allow us to

derive a tail bound for f(θ̄n)−f(θ∗), for sufficiently small deviations. For larger deviations,
we will use the tail bound which does not use strong convexity (Proposition 5).

We consider the event

At =

{∥∥f ′(θ̄n)‖ 6 2R√
n

[
10
√
t+ 40R2γt

√
n+

3

γ
√
n
‖θ0 − θ∗‖2 +

3

γR
√
n
‖θ0 − θ∗‖

]}
.

We make the following two assumptions regarding γ and t:

10
√
t+ 40R2γt

√
n 6

2

3

3µ

4R

√
n

2R
=
µ
√
n

4R2
(13)

and
3

γ
√
n
‖θ0 − θ∗‖2 +

3

γR
√
n
‖θ0 − θ∗‖ 6

1

3

3µ

4R

√
n

2R
=
µ
√
n

8R2
,

so that the upper-bound on ‖f ′(θ̄n)‖ in the definition of At is less than 3µ
4R (so that we can

apply Lemma 9). We thus have:

At ⊂
{
f(θ̄n)− f(θ∗) 6

8R2

µn

[
10
√
t+ 40R2γt

√
n+

3

γ
√
n
‖θ0 − θ∗‖2 +

2

γR
√
n
‖θ0 − θ∗‖

]2}
⊂

{
f(θ̄n)− f(θ∗) 6

8R2

µn

[
10
√
t+ 20�t+4

]2}
,

620

Adaptivity of Averaged Stochastic Gradient Descent

with � = 2γR2√n and 4 =
3

γ
√
n
‖θ0 − θ∗‖2 +

3

γR
√
n
‖θ0 − θ∗‖.

This implies that for all t > 0, such that 10
√
t + 20�t 6 µ

√
n

4R2 , that is, our assumption
in Equation (13), we may apply the tail bound from Appendix F.1 to get:

P
(
f(θ̄n)− f(θ∗) >

8R2

µn

[
10
√
t+ 20�t+4

]2)
6 4e−t. (14)

Moreover, we have for all v > 0 (from Proposition 5):

P
(
f(θ̄n)− f(θ∗) > 30γR2v +

3‖θ0 − θ∗‖2

γn

)
6 2 exp(−v). (15)

We may now use the last two inequalities to bound the expectation E[f(θ̄n)− f(θ∗)].

We first express the expectation as an integral of the tail bound and split it into three
parts:

E
[
f(θ̄n)− f(θ∗)

]
=

∫ +∞

0
P
[
f(θ̄n)− f(θ∗) > u

]
du

=

∫ 42 8R2

µn

0
P
[
f(θ̄n)− f(θ∗) > u

]
du (16)

+

∫ 8R2

µn

(
µ
√
n

4R2 +4
)2

42 8R2

µn

P
[
f(θ̄n)− f(θ∗) > u

]
du

+

∫ +∞

8R2

µn

(
µ
√
n

4R2 +4
)2 P[f(θ̄n)− f(θ∗) > u

]
du.

We may now bound the three terms separately. For the first integral, we bound the proba-

bility by one to get

∫ 42 8R2

µn

0
P
[
f(θ̄n)− f(θ∗) > u

]
du 6 42 8R2

nµ
.

For the third term in Equation (16), we use the tail bound in Equation (15) to get∫ +∞

8R2

µn

(
µ
√
n

4R2 +4
)2 P[f(θ̄n)− f(θ∗) > u

]
du

=

∫ +∞

8R2

µn

(
µ
√
n

4R2 +4
)2
− 3
γn
‖θ0−θ∗‖2

P
[
f(θ̄n)− f(θ∗) > u+

3

γn
‖θ0 − θ∗‖2

]
du

6 2

∫ +∞

8R2

µn

(
µ
√
n

4R2 +4
)2
− 3
γn
‖θ0−θ∗‖2

exp
(
− u

30γR2

)
du.

We may apply Equation (15) because

8R2

µn

(µ√n
4R2

+4
)2− 3

γn
‖θ0−θ∗‖2 >

8R2

µn

(µ√n
4R2

+4
)2− µ

8R2
>

8R2

µn

(µ√n
4R2

)2− µ

8R2
=

3µ

8R2
> 0.

621

Bach

We can now compute the bound explicitly to get∫ +∞

8R2

µn

(
µ
√
n

4R2 +4
)2 P[f(θ̄n)− f(θ∗) > u

]
du

6 60γR2 exp

(
−1

30γR2

[
8R2

µn

(µ√n
4R2

+4
)2− 3

γn
‖θ0 − θ∗‖2

])
6 60γR2 exp

(
−1

30γR2

3µ

8R2

)
6 60γR2 exp

(
− µ

80γR4

)
6 60γR2 80γR4

2µ
using e−α 6

1

2α
for all α > 0

=
2400γ2R6

µ
.

We now consider the second term in Equation (16) for which we will use Equation (14).

We consider the change of variable u = 8R2

µn

[
10
√
t + 20�t + 4

]2
, for which u ∈[

42 8R2

µn ,
8R2

µn

(µ√n
4R2 +4

)2]
implies t ∈ [0,+∞). This implies that

∫ 8R2

µn

(
µ
√
n

4R2 +4
)2

42 8R2

µn

P
[
f(θ̄n)− f(θ∗) > u

]
du

6
∫ ∞

0
4e−td

(
8R2

µn

[
10
√
t+ 20�t+4

]2)
=

32R2

µn

∫ ∞
0

e−t
(

100 + 400�22t+ 400�
3

2
t1/2 + 2041

2
t−1/2 + 404�

)
dt

=
32R2

µn

(
100Γ(1) + 400�22Γ(2) + 400�

3

2
Γ(3/2) + 2041

2
Γ(1/2) + 404�Γ(1)

)
with Γ denoting the Gamma function,

=
32R2

µn

(
100 + 400�22 + 400�

3

2

1

2

√
π + 2041

2

√
π + 404�

)
.

We may now combine the three bounds to get, from Equation (16),

E
[
f(θ̄n)−f(θ∗)

]
6 42 8R2

nµ
+

2400γ2R6

µ

+
32R2

µn

(
100 + 400�22 + 400�

3

2

1

2

√
π + 2041

2

√
π + 404�

)
6

32R2

nµ

[
42

4
+75γ2R4n+100+800�2+300�

√
π+104

√
π+404�

]
.

For γ = 1
2R2
√
N

, with α = R‖θ0 − θ∗‖, � = 1 and 4 = 6α2 + 6α, we obtain

E
[
f(θ̄N)−f(θ∗)

]
6

32R2

Nµ

[
1

4
42 + 1451 + 58∆

]
6

32R2

Nµ

[
9α4 + 18α3 + 9α2 + 1451 + 348α2 + 348α

]
6
R2

Nµ

(
625α4 + 7500α3 + 33750α2 + 67500α+ 50625

)
=
R2

Nµ

(
5α+ 15

)4
.

622

Adaptivity of Averaged Stochastic Gradient Descent

Note that the previous bound is only valid if 3
γ
√
n
‖θ0 − θ∗‖2 + 3

γR
√
n
‖θ0 − θ∗‖ 6 µ

√
n

8R2 ,

that is, under the condition 6R2‖θ0 − θ∗‖2 + 6R‖θ0 − θ∗‖ 6 µ
√
N

8R2 . If the condition is not
satisfied, then the bound is still valid because of Lemma 1. We thus obtain the desired
result.

F.3 Bound on Iterates

Following the same principle as for function values in Appendix F.2, we consider the same
event At. With the same condition on γ and t, we have:

At ⊂
{
‖θ̄n − θ∗‖2 6

16R2

µ2n

[
10
√
t+ 20�t+4

]2}
,

which leads to the tail bound:

P
(
‖θ̄n − θ∗‖2 >

16R2

µ2n

[
10
√
t+ 20�t+4

]2)
6 4e−t.

We may now split the expectation in three integrals:

E‖θ̄n − θ∗‖2 =

∫ 16R2

µ2n
42

0
P
[
‖θ̄n − θ∗‖2 > u

]
du (17)

+

∫ 16R2

µ2n

(
µ
√
n

4R2 +4
)2

16R2

µ2n
42

P
[
‖θ̄n − θ∗‖2 > u

]
du

+

∫ ∞
16R2

µ2n

(
µ
√
n

4R2 +4
)2 P[‖θ̄n − θ∗‖2 > u]du.

The first term in Equation (17) is simply bounded by bounding the tail bound by one (like

in the previous section):

∫ 16R2

µ2n
42

0
P
[
‖θ̄n − θ∗‖2 > u

]
du 6

16R2

µ2n
42. The last integral in

Equation (17) may be bounded as follows:∫ ∞
16R2

µ2n

(
µ
√
n

4R2 +4
)2 P[‖θ̄n − θ∗‖2 > u]du

= E
[
1
‖θ̄n−θ∗‖2> 16R2

µ2n

(
µ
√
n

4R2 +4
)2‖θ̄n − θ∗‖2]

6 P
[
‖θ̄n − θ∗‖2 >

16R2

µ2n

(µ√n
4R2

+4
)2]1/2[

E
(
‖θ̄n − θ∗‖4

)]1/2

using Cauchy-Schwarz inequality,

6 P
[
‖θ̄n − θ∗‖2 >

16R2

µ2n

(µ√n
4R2

+4
)2]1/2(

‖θ0 − θ∗‖2 + 9γ2nR2

)
using Proposition 3.

623

Bach

Moreover, if we denote by t0 the largest solution of 10
√
t0 + 20�t0 = µ

√
n

4R2 , we have:

√
t0 =

−10 +

√
100 + 20�µ

√
n

R

40�
=
−10 + 10

√
1 + 20� µ

√
n

100R

40�

>
9

40�

√
20�

µ
√
n

100R
,

as soon as 20� µ
√
n

100R > 100, since if q > 100, −1 +
√

1 + q 6 9
10

√
q. This implies that∫ ∞

16R2

µ2n

(
µ
√
n

4R2 +4
)2 P[‖θ̄n − θ∗‖2 > u]du

6

[
4 exp(−t0)

]1/2(
‖θ0 − θ∗‖2 + 9γ2nR2

)
6

9

2t20

(
‖θ0 − θ∗‖2 + 9γ2nR2

)
using exp(−α) 6

9

16α2
for all α > 0,

6
9

2

404�41002R4

94202�2µ2n

[
9

4
�2/R2 +

γ
√
n

3
4
]

6 686× 64
�2R2

µ2n

[
9

4
�2 +

1

6
�4

]
.

The second term in Equation (17) is bounded exactly like in Appendix F.2, leading to:

∫ 16R2

µ2n

(
µ
√
n

4R2 +4
)2

42 16R2

µ2n

P
[
‖θ̄n − θ∗‖2 > u

]
du

6
∫ ∞

0
4e−td

(
16R2

µ2n

[
10
√
t+ 20�t+4

]2)
6

64R2

µ2n

∫ ∞
0

e−t
(

100 + 400�22t+ 400�
3

2
t1/2 + 2041

2
t−1/2 + 404�

)
dt

6
64R2

µ2n

(
100Γ(1) + 400�22Γ(2) + 400�

3

2
Γ(3/2) + 2041

2
Γ(1/2) + 404�Γ(1)

)
dt

6
64R2

µ2n

(
100 + 400�22 + 400�

3

2

1

2

√
π + 2041

2

√
π + 404�

)
.

We can now put all elements together to obtain, from Equation (17):

E‖θ̄n − θ∗‖2

6
64R2

µ2n

(
100 + 400�22 + 400�

3

2

1

2

√
π + 2041

2

√
π + 404�

)
+

16R2

µ2n
42 + 686× 64

�2R2

µ2n

[
9

4
�2 +

1

6
�4

]
6

64R2

nµ2

[
1

4
42 + 100 + 800�2 + 532�+ 324+ 404�+ 686

9

4
�4 + 686

4�3

6

]
.

624

Adaptivity of Averaged Stochastic Gradient Descent

For γ = 1
2R2
√
N

, with α = R‖θ0 − θ∗‖, � = 1 and 4 = 6α2 + 6α, we get

E‖θ̄N − θ∗‖2 6
8R2

Nµ2

[
242 + 84(32 + 40 + 115) + 8(100 + 800 + 532 + 1544)

]
6

8R2

Nµ2

[
242 + 14964+ 23808

]
6

8R2

Nµ2

[
72α4 + 144α3 + 72α2 + 1496× 6α2 + 1496× 6α+ 23808

]
6

R2

Nµ2

[
1296α4 + 18144α3 + 95256α2 + 222264α+ 194481

]
=

R2

Nµ2

(
6α+ 21

)4
.

The previous bound is valid as long as µ
√
N
R > 10000

20 = 500. If it is not satisfied, then
Lemma 1 shows that it is still valid.

References

A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. Information-theoretic
lower bounds on the oracle complexity of stochastic convex optimization. IEEE Trans-
actions on Information Theory, 58(5):3235–3249, 2012.

F. Bach. Self-concordant analysis for logistic regression. Electronic Journal of Statistics, 4:
384–414, 2010.

F. Bach and E. Moulines. Non-asymptotic analysis of stochastic approximation algorithms
for machine learning. In Advances in Neural Information Processing Systems (NIPS),
2011.

F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with con-
vergence rate O(1/n). In Advances in Neural Information Processing Systems (NIPS),
2013.

A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with online and
active learning. Journal of Machine Learning Research, 6:1579–1619, 2005.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Advances in Neural
Information Processing Systems (NIPS), 2008.

L. Bottou and Y. Le Cun. On-line learning for very large data sets. Applied Stochastic
Models in Business and Industry, 21(2):137–151, 2005.

S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities: A Nonasymptotic
Theory of Independence. Oxford University Press, 2013.

M. N. Broadie, D. M. Cicek, and A. Zeevi. General bounds and finite-time improvement
for stochastic approximation algorithms. Technical report, Columbia University, 2009.

J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting.
Journal of Machine Learning Research, 10:2899–2934, 2009.

625

Bach

V. Fabian. On asymptotic normality in stochastic approximation. The Annals of Mathe-
matical Statistics, 39(4):1327–1332, 1968.

D. A. Freedman. On tail probabilities for martingales. Annals of Probability, 3(1):100–118,
1975.

E. Hazan and S. Kale. Beyond the regret minimization barrier: an optimal algorithm for
stochastic strongly-convex optimization. In Proceedings of the Conference on Learning
Theory (COLT), 2001.

A. Juditsky and Y. Nesterov. Primal-dual subgradient methods for minimizing uniformly
convex functions. Technical Report 00508933, HAL, 2010.

S. M. Kakade and A. Tewari. On the generalization ability of online strongly convex pro-
gramming algorithms. In Advances in Neural Information Processing Systems (NIPS),
2009.

H. J. Kushner and G. G. Yin. Stochastic Approximation and Recursive Algorithms and
Applications. Springer-Verlag, second edition, 2003.

S. Lacoste-Julien, M. Schmidt, and F. Bach. A simpler approach to obtaining an O(1/t) con-
vergence rate for projected stochastic subgradient descent. Technical Report 1212.2002,
ArXiv, 2012.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In Proceedings of the International Conference
on Machine Learning (ICML), 2001.

G. Lan. An optimal method for stochastic composite optimization. Mathematical Program-
ming, 133(1-2):365–397, 2012.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential
convergence rate for strongly-convex optimization with finite training sets. In Advances
in Neural Information Processing Systems (NIPS), 2012.

H. B. McMahan and M. Streeter. Open problem: Better bounds for online logistic regression.
In COLT/ICML Joint Open Problem Session, 2012.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609,
2009.

A. S. Nemirovski and D. B. Yudin. Problem Complexity and Method Efficiency in Opti-
mization. Wiley & Sons, 1983.

Y. Nesterov. Introductory Lectures on Convex Optimization: a Basic Course. Kluwer
Academic Publishers, 2004.

Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Pro-
gramming, 120(1):221–259, 2009.

626

Adaptivity of Averaged Stochastic Gradient Descent

Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex Program-
ming. SIAM studies in Applied Mathematics, 1994.

Y. Nesterov and J. P. Vial. Confidence level solutions for stochastic programming. Auto-
matica, 44(6):1559–1568, 2008.

I. Pinelis. Optimum bounds for the distributions of martingales in banach spaces. The
Annals of Probability, 22(4):1679–1706, 1994.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging.
SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

D. Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Tech-
nical Report 781, Cornell University Operations Research and Industrial Engineering,
1988.

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.

S. Shalev-Shwartz and N. Srebro. SVM optimization: inverse dependence on training set
size. In Proceedings of the International Conference on Machine Learning (ICML), 2008.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver
for svm. In Proceedings of the International Conference on Machine Learning (ICML),
2007.

S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Stochastic convex optimization.
In Proceedings of the Conference on Learning Theory (COLT), 2009.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

A. W. Van der Vaart. Asymptotic Statistics. Cambridge Univ. Press, 1998.

Z. Wang, K. Crammer, and S. Vucetic. Breaking the curse of kernelization: Budgeted
stochastic gradient descent for large-scale SVM training. Journal of Machine Learning
Research, 13:3103–3131, 2012.

L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization.
Journal of Machine Learning Research, 9:2543–2596, 2010.

627

Journal of Machine Learning Research 15 (2014) 629-654 Submitted 3/13; Revised 9/13; Published 2/14

Random Intersection Trees

Rajen Dinesh Shah rds37@cam.ac.uk
Statistical Laboratory
University of Cambridge
Cambridge, CB3 0WB, UK

Nicolai Meinshausen meinshausen@stat.math.ethz.ch

Seminar für Statistik

ETH Zürich

8092 Zürich, Switzerland

Editor: John Lafferty

Abstract

Finding interactions between variables in large and high-dimensional data sets is often
a serious computational challenge. Most approaches build up interaction sets incremen-
tally, adding variables in a greedy fashion. The drawback is that potentially informative
high-order interactions may be overlooked. Here, we propose an alternative approach for
classification problems with binary predictor variables, called Random Intersection Trees.
It works by starting with a maximal interaction that includes all variables, and then grad-
ually removing variables if they fail to appear in randomly chosen observations of a class of
interest. We show that informative interactions are retained with high probability, and the
computational complexity of our procedure is of order pκ, where p is the number of pre-
dictor variables. The value of κ can reach values as low as 1 for very sparse data; in many
more general settings, it will still beat the exponent s obtained when using a brute force
search constrained to order s interactions. In addition, by using some new ideas based on
min-wise hash schemes, we are able to further reduce the computational cost. Interactions
found by our algorithm can be used for predictive modelling in various forms, but they are
also often of interest in their own right as useful characterisations of what distinguishes a
certain class from others.

Keywords: high-dimensional classification, interactions, min-wise hashing, sparse data

1. Introduction

In this paper, we consider classification with high-dimensional binary predictors. We sup-
pose we have data that can be written in the form (Yi, Xi) for observations i = 1, . . . , n; Yi
is the class label and Xi ⊆ {1, . . . , p} is the set of active predictors for observations i (out
of a total of p predictors). An important example of this type of problem is that of text
classification, where then Xi is the set of frequently appearing words (in a suitable sense)
for document i, and Yi indicates whether the document belongs to a certain class. In this
case, the dimension p can be of the order of several thousand or more. More generally, if
data with continuous predictors are available, they can be converted to binary format by
choosing various split-points, and then reporting whether or not each variable exceeds each
of these thresholds.

©2014 Rajen D. Shah and Nicolai Meinshausen.

Shah and Meinshausen

Our aim here is to develop methodology that can discover important interaction terms
in the data without requiring that any of their lower order interactions are also informative.
More precisely, we are interested in finding subsets S ⊆ {1, . . . , p} of all predictor variables
that occur more often for observations in a class of interest than for other observations. We
will use the terms “leaf nodes”, “rules”, “patterns” and “interactions” interchangeably to
describe such subsets S. For simplicity, suppose there are only two classes, the set of labels
being {0, 1}. The case with more than two classes can be dealt with using one-versus-one,
or one-versus-all strategies. Given a pair of thresholds, 0 ≤ θ0 < θ1 ≤ 1, our goal is to find
all sets S (or as many as possible), for which

Pn(S ⊆ X|Y = 1) ≥ θ1 and Pn(S ⊆ X|Y = 0) ≤ θ0. (1)

Here and throughout the paper, we use the subscript n to indicate that the probabilities
are empirical probabilities. For example, for c ∈ {0, 1},

Pn(S ⊆ X|Y = c) :=
1

|Cc|
∑
i∈Cc

1{S⊆Xi},

where we have denoted the set of observations in class c by Cc. Of course, one would also
be interested in sets S which satisfy a version of (1) with classes 1 and 0 interchanged, but
we will only consider (1) for simplicity.

The interaction terms uncovered can be used in various ways. For example, they can be
built into tree-based methods, or form new features in linear or logistic regression models.
The interactions may also be of interest in their own right, as they can characterise dis-
tinctions between classes in a simple and interpretable way. These potentially high-order
interactions that our method aims to target would be very difficult to discover using existing
methods, as we now explain.

A pure brute force search examines each potential interaction S of a given size to check
whether it fulfills (1). Restricting the order of interactions to size s, the computational
complexity scales as ps, rendering problems with even moderate values of p infeasible.

Instead of searching through every possible interaction, tree-based methods build up
interactions incrementally. A typical tree classifier such as CART (Breiman et al., 1984)
works by building a decision tree greedily from root node to the leaves; see also Loh and Shih
(1997). The feature space is recursively partitioned based on the variable whose presence
or absence best distinguishes the classes. The myopic nature of this strategy makes it a
computationally feasible approach, even for very large problems. The downside is that
it produces rather unstable results: small changes in the data can lead to very different
partitions being produced at the leaf nodes. Moreover, because of the incremental way in
which interactions are constructed, the success of this strategy in recovering an important
interaction S rests on at least some of its lower order interactions being informative for
distinguishing the classes.

Approaches based on tree ensembles can somewhat alleviate the problem of tree insta-
bility; Random Forests (Breiman, 2001) is a prominent example. Here the data with which
the decision trees are constructed is sampled with replacement from the original data. Fur-
ther randomness is introduced by randomising over the subset of variables considered for
each split in the construction of the trees. While the results of Random Forests are very

630

Random Intersection Trees

complex and hard to interpret, one can examine what are known as variable importance
measures. These aim to quantify the marginal or pairwise importance of predictor variables
(Strobl et al., 2008). Though such measures can be useful, checking through all possible
high-order interactions is too cumbersome, and so these may fail to be highlighted.

More recently, there has been interest in algorithms that start from deep splits or leaf
nodes in trees and then try to build a simpler model out of many thousands of these leaves by
regularisation and dimension reduction. Examples include Rule Ensembles (Friedman and
Popescu, 2008), Node Harvest (Meinshausen, 2010) and the general framework of Decision
Lists (Marchand and Sokolova, 2006; Rivest, 1987). Though these methods have been
demonstrated to improve on Random Forests in some situations, they nevertheless crucially
rely on a good initial basis of leaf nodes. These bases are usually generated by tree ensemble
methods and so, if the base trees miss some important splits, they would also be absent in
the results of these derivative algorithms.

A complementary approach has developed in data mining under the name of frequent
itemset search, starting with the Apriori algorithm (Agrawal et al., 1994), which has since
then developed into many improved and more specialised forms. The starting point for
these was “market basket analysis”, where the shopping behaviour of customers is analysed
and the goal is to identify items that are often bought together. Many algorithms have
been proposed that aim to improve on Apriori in terms of memory requirements and speed,
such as the FP-growth (Han et al., 2000) and H-mine (Pei et al., 2001) algorithms. While
generally very successful, all these methods are only computationally feasible in large-scale
settings if among the itemsets of low size, there are many that are infrequent, and so using
the principle that subsets of frequent itemsets are also frequent, the search space can be
greatly reduced. However, if small itemsets all have roughly the same frequency, these
methods cannot greatly improve over a brute force search.

We now give a simple example where tree-based approaches and those based on the
Apriori algorithm will struggle. Let Z = (Z1, . . . , Zp) ∈ {0, 1}p be a random variable with
p independent components each having a Bernoulli(1/2)-distribution. We take X to be the
set of active entries {k : Zk = 1}. Suppose the response Y ∈ {0, 1} is determined by an
interaction between the first two variables such that Y = 1{Z1+Z2 6=1}. Then none of the
variables have a marginal effect as Y is independent of Zk for all k = 1, . . . , p. In this case,
when using trees or the Apriori algorithm, one would have to search among O(p2) potential
interactions to find the interaction pattern {1, 2}.

This paper looks at a new way to discover interactions, which we call Random Inter-
section Trees. Rather than searching through potential interactions directly, our method
works by looking for collections of observations whose common active variables together
form informative interactions. We present a basic version of the Random Intersection Trees
algorithm in the following section. This approach allows for computationally feasible dis-
covery of interactions in settings where most existing procedures would perform poorly.
Bounds on the complexity of our algorithm are given in Section 3. For example, our results
yield that in the scenario discussed in the previous paragraph, the order of computational
complexity of our method is at most o(pκ) for any κ > 1. In Section 4, we propose some
modifications of our basic method to reduce its computational cost, based on min-wise
hash schemes. Some numerical examples are given in Section 5. We conclude with a brief
discussion in Section 6, and all technical proofs are collected in the appendix.

631

Shah and Meinshausen

2. Random Intersection Trees

Our method searches for important interactions by looking at intersections of randomly
chosen observations from class 1. We start with the full set of variables as an interaction and
then iteratively prune away variables to make the interaction smaller. At each iteration, we
just keep variables in the interaction that are present in a new randomly chosen observation
of class 1. All variables in the interaction that are not present in the chosen observation are
removed. Then we repeat with a new randomly chosen observation until an interaction of the
desired size emerges. If a pattern S has high prevalence in class 1, that is, Pn(X = S|Y = 1)
is large, it will be included in the observations chosen with high probability. Thus, provided
the overall process is repeated often enough, S is likely to be retained in some of the final
intersections. On the other hand, elements in Sc, the complement of S in {1, . . . , p}, are
unlikely to be present in all the observations being intersected. Thus of those intersections
which contain S, there is a good chance that at least one of them is exactly S. Arranging the
procedure in a tree-type search makes performing the intersections more computationally
efficient; details are given in the following section. One would then consider each of these
intersections as possible solutions of (1), checking whether their prevalence among class 0
is below θ0.

It may at first seem strange that in the above, class 0 plays a part in the procedure only
at the very end. One might expect that many candidate interactions could be generated that
have high prevalence in both classes 1 and 0 and thus would not be useful for distinguishing
between classes. In Section 4, we do present an improved version of our algorithm that
makes use of class 0 at an earlier stage. However, in the sparse setting we are considering
here, interactions with high prevalence in either class would typically be rather few in
number. Thus even if all interactions with high prevalence in class 1, and not necessarily
low prevalence in class 0, were generated by the procedure outlined above, this would be a
manageable number of candidate sets. Note that the assumptions that allow this to happen
certainly do not trivialise the problem: even if, given all solutions to the first equation in
(1), it is easy to uncover those interactions that additionally satisfy the second equation,
the first part of the task is still very challenging.

To describe the details of our algorithm, we first define some terms associated with trees
that will be needed later. Recall that a tree is a pair (N,E) of nodes and edges forming a
connected acyclic (undirected) graph. We will always assume (with no loss of generality)
that N = {1, . . . , |N |}. A rooted tree is the directed acyclic graph obtained from a tree by
designating one node as root and directing all edges away from this root.

Let α and β be two nodes in a rooted tree, with β not the root node. If (α, β) ∈ E, β is
said to be the child of α, and α, the parent of β. We will denote by ch(α), the set of children
of a node α. Since we are only considering rooted trees here as opposed to general directed
graphs, we will differ with convention slightly and will use pa(β) to mean the unique parent
of β. Thus here, pa(β) is a node itself, whereas ch(α) is a set of nodes.

If α 6= β lies on the unique path from the root to β, we say α is an ancestor of β, and
β is a descendant of α. We denote the sets of all ancestors and descendants of α by an(α)
and de(α) respectively. The depth of α, denoted depth(α), is the number of ancestors of α:
depth(α) = |an(α)|. In particular, the depth of the root node is 0. The depth (also known
as the height) of a rooted tree is the length of the longest path, or equivalently, the greatest

632

Random Intersection Trees

number of ancestors of any particular node. By level d of the tree, we will mean the set of
nodes with depth d.

We will say an indexing of the nodes is chronological if, for every parent and child pair,
larger indices are assigned to the child than the parent. In particular, the root node will be
1. Note that both depth-first and breadth-first indexing methods are chronological in this
way.

Algorithm 1 A basic version of Random Intersection Trees

for tree m = 1 to M do
Let m be a rooted tree of depth D, with each node j in levels 0, . . . , D − 1 having
Bj children, where the Bj are i.i.d. with a pre-specified distribution. Denote by J the
total number of nodes in the tree, and index the nodes chronologically. For each of the
nodes j = 1, . . . , J , let i(j) be an independently and uniformly chosen index in the set
of class 1 observations {i : Yi = 1}.

Set S1 = Xi(1).
for node j = 2 to J do

Set Sj = Xi(j) ∩ Spa(j).
end for

Denote the collection of resulting sets from all nodes at depth d, for d = 1, . . . , D, by
Ld,m = {Sj : depth(j) = d}.

end for
return candidate set of interactions LD :=

⋃M
m=1 LD,m.

Algorithm 1 describes a basic version of the Random Intersection Trees procedure. The
reason for allowing random choices of children is for the proof of Theorem 1, where we can
randomly choose the number of children to be in {b, b + 1} for a suitable integer value b.
Although we have allowed the number of children of each non-leaf node in the trees to be
random, in practice we would take this as a fixed number.

Looking at the innermost for-loop, we see that each node in each tree is associated with
a randomly drawn observation from class 1. For every tree, we visit each non-root node in
turn, and compute the intersection of the observation assigned to it, and all those assigned
to its ancestors. Because of the way the nodes are indexed, parents are always visited before
their children, and this intersection can simply be computed as Sj = Xi(j) ∩ Spa(j). This is
crucial to reducing the computational complexity of the procedure, as we shall see in the
next section.

Each of the sets assigned to the leaf nodes of each of the trees yields a collection of
potential candidate interactions, LD. One could then proceed to test these as potential
solutions to (1); we present a more efficient approach in Section 4, where we build this
testing step into the construction of the trees.

An illustration of this improved algorithm applied to the Tic-Tac-Toe data discussed in
Section 5 is given in Figure 1. Observations here correspond to winning endgame positions,
coded such that the data is binary. Class labels record which player (black or white) won the
game, and the goal is to infer the interactions (corresponding to positions of a few counters)
that lead to a win for each player. In this example, the root node contains a randomly

633

Shah and Meinshausen

drawn final win-state for black (class 1). This corresponds to S1 in our algorithm. For each
other node j, we draw a new random observation i(j) from all class 1 observations. The
randomly chosen additional black-win state Xi(j) is shown along the edge from its parent
node. The new intersection, Sj , is the intersection of the interaction in the parent node and
the new set Xi(j); it is shown in the corresponding node. The early stopping added in the
improved algorithm also allows it to run until the algorithm has terminated in all nodes.
Thus no prior specification of the tree depth will be necessary in practice, as will be shown
in Section 4.

3. Computational Complexity

How many trees do we have to compute to have a very high probability of finding an
interesting interaction S that fulfills (1)? And what is the required size of these trees? If the
interaction is not associated with a main effect, most approaches like trees and association
rules would require of order p|S| searches. In this section, we show that in many settings,
Random Intersection Trees improves on this complexity. We consider a single interaction S
of size s := |S|, and examine the computational cost for returning S as one of the candidate
interactions, with a given probability. We will see that this depends critically on three
factors:

• Prevalence θ1 := Pn(S ⊆ X|Y = 1) of the interaction pattern. If the pattern S in
question appears frequently in class 1, the search is more efficient.

• Sparsity δk := Pn(k ∈ X|Y = 1) of the predictor variables k = 1, . . . , p. If δk is very
low for many k (and sparsity of predictors consequently high), computation of the
intersections is much cheaper, and so overall computational cost is greatly reduced.
Indeed, for a fixed tree m, consider a node j with depth d < D. We have that

E(|Sj |) =

p∑
k=1

δd+1
k .

Thus, for j′ ∈ ch(j), computation of Sj′ requires on average at most

O

(
log(p)

p∑
k=1

δd+1
k

)

operations. This is because in order to compute the intersection, one can check
whether each member of Sj is in Xi(j′), and each such check is O(log(p)) if the sets Xi

are ordered so a binary search can be used. If we compare this to the O(p) computa-
tions required to calculate each of the Sj if no tree structure were used, we see that
large efficiency gains are possible when d ≥ 1 if many variables are sparse. For inter-
sections with the root node, the tree structure offers no advantage, and in practice,
branching the tree only after level 1 (so the root node has only one child), is more
efficient, though this modification does not improve the order of complexity.

• Independence of S: Define ν := maxk∈Sc Pn(k ∈ X|S ⊆ X,Y = 1). If ν is low,
less computational effort is required to recover S. Note that if, for some k ∈ Sc,

634

Random Intersection Trees

●●●

●
●
●●

●
●

●●

●
●

●●

●

●●●

●
●

● ● ●●●

●●● ●●
●
●

●●●

●●
● ●
●

●

●●●
●●●
●

●
●●
●

●

●●

●
●●●

● ●
●
●

●●
●●

●

●
●
●●

●●●

●●
● ●
●

●
●

● ●

●
●●●

● ●
●●
●

●●●

Figure 1: An intersection tree for the Tic-Tac-Toe game data set. Given winning positions
of the black player, we intersect them randomly to produce the interactions (cor-
responding to positions of black or white stones) that are responsible for wins.
Starting with a randomly chosen class 1 (black wins) observation at the root
node, B = 4 randomly chosen class 1 observations are intersected with the pat-
tern. These randomly chosen observations are shown along the edges and the
resulting intersections Sj as the nodes in the next layer of the tree. Nodes are
only shown if the corresponding patterns Sj have an estimated prevalence among
class 0 below a set threshold; the branching of the tree terminates for all other
nodes. The algorithm continues until all resulting Sj corresponding to the leaf
nodes have prevalence among class 0 exceeding the threshold. Here, one of the
winning states for black is filtered out after three intersections.

635

Shah and Meinshausen

Pn(k ∈ X|S ⊆ X) = 1, interest would centre on S ∪ {k} rather than S itself. Indeed,
if S satisfied (1), so would S ∪ {k}. In general, if ν is large, the search will tend to
find sets containing S, though not necessarily S itself.

With the assumptions that θ1 > 0 and ν < 1, we can give a bound on the computational
complexity of the basic version of Random Intersection Trees introduced in the previous
section.

Let us define

C(M,D,FB)

to be the expected number of computations required to perform all the intersections in
the algorithm when M trees of depth D are created and the distribution of the branching
factors Bj is FB.

Theorem 1 Given η, ε ∈ (0, 1], there exist choices of M,D and FB such that the set LD
returned by Algorithm 1 contains S with probability at least 1− η, and

C(M,D,FB) = O

log(1/η)
log2(p)

ε

{
p+

∑
k: (1+ε)δk>θ1

p
log{(1+ε)δk/θ1}

log(1/ν)

} . (2)

As a function of the number of variables p, there is a contribution of p log2(p) and
an additional contribution in the brackets that depends on the sparsity δk of each variable.
Sparse variables do not contribute to this sum, which can be O(1) if sparsity among variables
is high enough. This would yield a computational complexity with order bounded above
by o(pκ) for any κ > 1, compared to the corresponding complexity of ps for a brute force
search. In most interesting settings, however, we would not achieve a nearly linear scaling
in complexity, but would hope to still be faster than a brute force search.

Before discussing the result further, we comment briefly on the values of M,D and the
distribution of the Bj , that yield (2). From the proof, it follows that there exist choices of
M and D giving (2) that satisfy

M ≤ (1 + 2ε) log(1/η)

2εθ1
,

D ≤ log{p(1 + 2ε)}
log(1/ν)

.

The random number Bj used in the proof takes just one of two consecutive integers (es-
sentially to avoid the discretisation effect when being restricted to integers), and E(Bj) ≤
(1 + ε)/θ1. Though the optimal choices of parameters for the theorem depend on the un-
known ν and the minimising ε, which will in turn depend on ν, the functional relationships
given above still provide rough qualitative guidelines for good choices for these parameters
in practice.

Using the values of M , D and Bj necessary to guarantee that with high probability S is
in the set LD, we can also obtain a bound on the expected number of candidate interaction
sets in LD. This will in turn bound the expected number of “false positives” returned. The

636

Random Intersection Trees

expected number of sets returned is bounded by

E(|LD|) ≤ME(Bj)
D ≤ log(1/η)

ε

{
(1 + 2ε)p

ν

} log(1+ε)/θ1
log(1/ν)

.

The value of ε can be chosen to minimise the bound above, but its value here and in the
computational complexity bound of Theorem 1 have to be the same, as they are linked
to the choice of the branching factor used when building the trees. We see that in many
situations, we can expect the bound above to be very much lower than the O(ps) sets a
complete list of s-way interactions would contain. Note that if s were known, the relevant
quantity to consider would be

E(|{S′ ∈ LD : |S′| = s}|),

which is likely to be much less than E(|LD|). Even if s were unknown, one would only be
interested in the expected number of non-empty sets in LD, a quantity which may well also
be substantially lower than the derived bound on E(|LD|).

3.1 The Influence of Sparsity on Computational Complexity

It is interesting to make the influence of the sparsity of individual variables, δk, on the overall
computational complexity, more explicit. We have the following corollary to Theorem 1.

Corollary 2 Define β by ν = θβ1 . Suppose that γ, α?, α? are such that α? > α?, and

δk ≤ θ1−α
?

1 for all k ∈ {1, . . . , p},
δk > θ1−α?1 for at most pγ variables.

Given η ∈ (0, 1], there exist choices of M,D and FB such that the set LD returned by
Algorithm 1 contains S with probability at least 1− η, and

C(M,D,FB) = o
(
pκ
)

for any κ > max

{
α?

β
+ γ,

[α?
β

]
+

+ 1

}
.

The implication of Corollary 2 is most apparent if we take γ = 1 as we can then set α? = 0.
In this case,

α? = 1− log(maxk δk)

log(θ1)
.

We can then bound the computational complexity by

o
(
pκ
)

for any κ > 1 +
log(1/θ1)− log(1/maxk δk)

log(1/ν)
.

The fraction on the right-hand side is a function of the prevalence of the pattern S, θ1,
the maximum sparsity of the variables, and the maximum sparsity of the variables in Sc,
conditional on the presence of S. As long as this fraction is less than 1, the computational
complexity is guaranteed to be better than a brute force search with the knowledge that
s = 2, and the relative advantage grows for larger sizes of the pattern.

637

Shah and Meinshausen

3.2 Independent Noise Variables

To gain further insight, we consider the special case where variables in Sc are independent
of S (conditional on being in class 1), in the sense that for all k ∈ Sc,

Pn(k ∈ X|S ⊆ X,Y = 1) = Pn(k ∈ X|Y = 1) = δk. (3)

Corollary 3 Assume (3) and that δk < 1 for all k. Given η ∈ (0, 1], there exist choices of
M,D and FB such that the set LD returned by Algorithm 1 contains S with probability at
least 1− η, and

C(M,D,FB) = o(pκ) for any κ >
log(1/θ1)

log(1/maxk δk)
. (4)

We see that the computational complexity is approximately linear in p if the prevalence of
the pattern S is as high as the prevalence of the least sparse predictor variables. This is
the case in the example mentioned in the introduction, where θ = δk = 1/2.

We can also consider the situation where in addition to the independence (3), all vari-
ables have the same sparsity δ. If the prevalence θ1 of S is only as high as that of a random
occurrence of two independent predictor variables, we get κ > 2 and the computational
complexity is approximately quadratic in p. In this case, the algorithm would not yield a
computational advantage over brute force search if looking for patterns of size 2. This is to
be expected since every pattern S of size 2 would have the same prevalence in this scenario,
and so there is nothing special about a pattern S of size 2 with prevalence δ2, and in general
no hope of beating the complexity ps of a brute force search. However, the bound in (4)
is independent of s. Thus provided the prevalence, θ1, drops more slowly than the rate
δs, at which every pattern of size S would occur randomly among independent predictor
variables, our results show that Random Intersection Trees is still to be preferred over a
brute force search.

4. Early Stopping Using Min-Wise Hashing

While Algorithm 1 is computationally attractive, the following observation suggests that
further improvements are possible. Suppose that, for a particular tree, we have just com-
puted the intersection Sj corresponding to a node j at depth d < D. If

Pn(Sj ⊆ X|Y = 0) > θ0,

then since for all j′ ∈ de(j), Sj′ ⊆ Sj , we also have

Pn(Sj′ ⊆ X|Y = 0) > θ0.

Thus no intersection sets corresponding to descendants of j have any hope of yielding
solutions to (1), and so all further associated computations are wasted.

In view of this, one option would be to compute the quantity Pn(Sj ⊆ X|Y = 0) at
each node j as the algorithm progresses, and if this exceeds the threshold θ0, not visit any

638

Random Intersection Trees

descendants j′ of j for computation of Sj′ . This could be prohibitively costly, though, as it
would require a pass over all observations in class 0, for each node of each tree. One could
work with a subsample of the observations, but if θ0 is low, the subsample size may need
to be fairly large in order to estimate the probabilities to a sufficient degree of accuracy.

Instead, we propose a fast approximation, using some ideas based on min-wise hashing
(Broder et al., 1998; Cohen et al., 2001; Datar and Muthukrishnan, 2002) applied to the
columns of the data-matrix. We describe the scheme by leaving aside the conditioning on
Y = 0, which can be added at the end by restricting to observations in class 0. Consider
taking a random permutation σ of all observations {1, . . . , n}. Let hσ(k) be the minimal
value ι such that variable k is active in observation σ(ι):

hσ(k) := min{ι′ : k ∈ Xσ(ι′)}.

It is well known (Broder et al., 1998) that the probability that hσ(k) and hσ(k′) agree for
two variables k, k′ under a random permutation σ is identical to the Jaccard-index for the
two sets Ik = {i : k ∈ Xi} and Ik′ = {i : k′ ∈ Xi}, that is

Pσ(hσ(k) = hσ(k′)) =
|Ik ∩ Ik′ |
|Ik ∪ Ik′ |

.

Here the subscript σ indicates that the probability is with respect to a random permutation
σ of the observations. A min-wise hash scheme is typically used to estimate the Jaccard-
index by approximating the probability on the left-hand side of the equation above.

Now,

Pn(S ⊆ X) = Pn(k ∈ X for all k ∈ S)

= Pn(k ∈ X for all k ∈ S | ∃ k′ ∈ S such that k′ ∈ X)

× Pn(∃k ∈ S such that k ∈ X).

Let us denote the first and second terms on the right-hand side by π1(S) and π2(S) respec-
tively. Note that π1(S) is equal to the probability that all variables k ∈ S have the same
min-wise hash value hσ(k):

π1(S) = Pσ(∃ ι : hσ(k) = ι for all k ∈ S). (5)

Turning now to π2(S), observe that

Eσ(min
k∈S

hσ(k)) =
n+ 1

π2(S)n+ 1
, (6)

and so

π2(S) =
n+ 1

n

{
1

Eσ(mink∈S hσ(k))
− 1

n+ 1

}
. (7)

A derivation of (6) is given in the appendix.
Equations (5) and (7) provide the basis for an estimator of Pn(S ⊆ X). First we generate

L random permutations of {1, . . . , n}: σ1, . . . , σL. We then use these to create an L × p
matrix H whose entries are given by

Hlk = hσl(k).

639

Shah and Meinshausen

Now we estimate π1(S) and π2(S) by their respective finite-sample approximations, π̂1(S)
and π̂2(S):

π̂1(L;S,H) := 1
L

L∑
l=1

1{Hlk=Hlk′ for all k,k′∈S},

π̂2(L;S,H) :=
n+ 1

n

{
1

1
L

∑L
l=1 mink∈S Hlk

− 1

n+ 1

}
.

Finally, we estimate Pn(S ⊆ X) by

P̂n(L;S,H) := π̂1(L;S,H) · π̂2(L;S,H). (8)

To our knowledge, this use of min-wise hashing techniques, and in particular the estimator
π̂2(L;S,H), is new. The estimator enjoys reduced variance compared to that which would
be obtained using subsampling, as the following theorem shows.

Theorem 4 For P̂n(L;S,H), π1(S) and π2(S) defined as in (8), (5), and (7) respectively,
as L→∞, we have

√
L(P̂n(L;S,H)− Pn(S ⊆ X))

d→ N(0, π2(S)2π1(S)(1− π1(S)π2(S))(1 + ε(n))), (9)

where

ε(n) =
1

n

n−1 − π22 − 2π2n
−1

π2(π2 + 2n−1)(1 + n−1)
= O(n−1). (10)

A derivation is given in the appendix. If we tried to estimate π1π2 by evaluating the
prevalence of S on a subset of the data of size L, the corresponding estimator multiplied by√
L would have variance

π2(S)π1(S)(1− π1(S)π2(S)) + on(1),

where on(1) → 0 as n → ∞. Comparing this variance to the variance of the normal
distribution in (9), we see that a factor of π2(S) is gained: matching the accuracy of the
min-wise hash scheme with subsampling would require roughly 1/π2(S) times as many
samples. By using min-wise hashing, choosing L = 100 typically delivers a reasonable
approximation as long as we just want to resolve values at θ0 = 0.01 and above.

An improved version of Algorithm 1, building in the ideas discussed above, is given in
Algorithm 2 below. Note that P̂n(Spa(j), H) need only be computed once for every j with
the same parent.

Early stopping decreases the computational cost of the algorithm as many nodes in
the trees generated may not need to have their associated intersections calculated. In
addition, the set of candidate intersections LD will be smaller but the chance of it containing
interesting intersections would not decrease by much. These gains comes at a small price,
since the min-wise hash matrix H must be computed, and the computational effort going
into this will in turn determine the quality of the approximation in (8). We have previously
shown the complexity bounds in the absence of early stopping and thus avoided the difficulty
of making this trade-off explicit. We will use the improved version of Random Intersection

640

Random Intersection Trees

Algorithm 2 Random Intersection Trees with early stopping

Compute the L× p min-wise hash matrix H, using only class 0 observations.
for tree m = 1 to M do

Let m be a rooted tree of depth D, with each node j in levels 0, . . . , D − 1 having
Bj children, where the Bj are i.i.d. with a pre-specified distribution. Denote by J the
total number of nodes in the tree, and index the nodes chronologically. For each of the
nodes j = 1, . . . , J , let i(j) be an independently and uniformly chosen index in the set
of class 1 observations {i : Yi = 1}.

Set S1 = Xi(1).
for node j = 2 to J do

if P̂n(Spa(j), H) ≤ θ0 then
Set Sj = Xi(j) ∩ Spa(j).

end if
end for

Denote the collection of resulting sets of all nodes at depth d, for d = 1, . . . , D, by
Ld,m = {Sj : depth(j) = d}.

end for
return LD :=

⋃M
m=1 LD,m.

Trees with early stopping in all the practical examples to follow, taking small values of L
in the range of a (few) hundred permutations.

The depth D of the tree is still given explicitly in Algorithm 2. An interesting modifi-
cation creates the tree recursively. Starting with the root node, B children are added to all
leaf nodes of the tree in which the early stopping criterion has not been triggered yet. When
the algorithm terminates, all intersections in the leaf nodes of the final tree are collected.

5. Numerical Examples

In this section, we give two numerical examples to provide further insight into the per-
formance of our method. The first is about learning the winning combinations for the
well-known game Tic-Tac-Toe. This example serves to illustrate how Random Intersection
Trees can succeed in finding interesting interactions when other methods fail. The second
example concerns text classification. Specifically, we want to find simple characterisations
(using only a few words, or word-stems in this case) for classes within a large corpus in a
large-scale text analysis application.

5.1 Tic-Tac-Toe Endgame Prediction

The Tic-Tac-Toe endgame data set (Matheus and Rendell, 1989; Aha et al., 1991) contains
all possible winning end states of the game Tic-Tac-Toe, along with which player (white
or black) has won for each of these. There are just under 1000 possible such end states,
and our goal is to learn the rules that determine which player wins from a randomly chosen
subset of these. We use half of the observations for training, and the other half for testing.

641

Shah and Meinshausen

Figure 2: Left panel: patterns that are returned by Random Intersection Trees (bottom
row), emphRandom Forests of depth 3 (middle row) and brute force search among
all interactions of size 3 (top row) for the Tic-Tac-Toe data. Each pattern is
scaled to make the area proportional to the empirical frequency with which each
pattern is found by these search algorithms. Right panel: the same results in
the case when 100 noise variables are added. Note that Random Intersection
Trees were not constrained to find interactions of depth 3. In the case with
noise variables, some of the patterns with the very smallest areas also contained
a small number of noise variables, which are not shown. Just counting three- to
five-way interactions, there are more than 108 potential interactions when 100
noise variables are added.

642

Random Intersection Trees

0
1
0

2
0

3
0

4
0

5
0

R
I

R
F

R
F

3

T
R

E
E

T
R

E
E

3

1
−

N
N

3
−

N
N

5
−

N
N

1
0
−

N
N

R
I

R
F

R
F

3

T
R

E
E

T
R

E
E

3

1
−

N
N

3
−

N
N

5
−

N
N

1
0
−

N
N

R
I

R
F R

F
3

T
R

E
E

T
R

E
E

3

1
−

N
N

3
−

N
N

5
−

N
N

1
0
−

N
N

R
I

R
F

R
F

3

T
R

E
E

T
R

E
E

3

1
−

N
N

3
−

N
N

5
−

N
N

1
0
−

N
N

Figure 3: From left to right: the misclassification rate (in %) on Tic-Tac-Toe data for 0,
60, 300 and 400 added noise variables. Each classifier is tuned to have equal
misclassification rate in both classes. The simple classifier based on Random
Intersection Trees (RI) has a misclassification rate of 0% in all cases, as the
winning patterns are sampled very frequently (see Figure 2). Random Forests
(RF) and Random Forests limited to depth 3 trees (RF3) are competitive but the
misclassification rate increases sharply when many noise variables are added.

There are 9 variables in the original data set which can take the values ‘black’, ‘white’
or ‘blank’. These can trivially be transformed into a set of twice as many binary variables
where the first block of variables encodes presence of black and the second block encodes
presence of white.

Two properties of this data set that make it particularly interesting for us here are:

• The presence of interactions is obvious by the nature of the game.

• There are only very weak marginal effects. Knowing that the upper right corner is
occupied by a black stone is only very weakly informative about the winner of the
game. Greedy searches by trees fail in the presence of many added noise variables and
linear models do not work well at all.

We apply Random Intersection Trees to finding patterns that indicate a black win
(class 1), and also patterns that indicate a white win (class 0). We use the early stopping
modifications proposed in Section 4, and create two min-wise hash tables from the available
observations in each of the classes, taking L = 200. Figure 1 shows how the individual
Intersection Trees are constructed and illustrates the use of the early stopping rule. We
emphasise that we do not need to specify or know that the winning states are functions of
only three variables. We let each tree run until all its branches terminate, and collect all
resulting leaves.

643

Shah and Meinshausen

Figure 2 illustrates the importance sampling effect of Random Intersection Trees when
using only the training data, and adding a varying number of noise variables. When adding
100 noise variables, all 16 winning final combinations are among the 40 most frequently
chosen patterns. All winning states are chosen hundreds of millions times more often than
a random sampling of interactions would pick them.

As discussed in Section 1, the interactions or rules that are found could be entered
into any existing aggregation method, such as Rule Ensembles (Friedman and Popescu,
2008) or Decision Lists (Marchand and Sokolova, 2006; Rivest, 1987). Here, we consider
an even simpler aggregation method by selecting all patterns during 1000 iterations of
Random Intersection Trees (with B = 5 samples as branching factor in each tree) that were
selected by at least two trees. For each selected pattern, we compute the (empirical) class
distributions conditional on the presence and absence of the pattern, using the training
sample. That is, for each selected pattern S, we compute

Pn(Y = 1|X ⊆ S) and Pn(Y = 1|X * S).

Then, given an observation from the test set, we classify according to the average of the
log-odds of being in class 1 calculated from each of the conditional probabilities above.

Figure 3 shows the misclassification rates under situations with different numbers of
added noise variables. The simple prediction based on Random Intersection Trees achieves
perfect classification even when 400 noise variables are added. Neither k-NN nor CART
(Breiman et al., 1984), either restricted to trees of depth 3 (TREE3) or depth chosen by
cross-validation (TREE), are as successful, giving misclassification rates between 5% and
40%. Interestingly, trees of depth 3 perform much worse than deeper trees. The winning
patterns are not identified in a pure form but only after some other variables have been
factored in first. This also means that it is very hard to read the winning states of the
trees, unlike the patterns obtained by our method. Random Forests also maintain a 0%
misclassification rate up until about a hundred added noise variables but start to degrade in
performance when further noise variables are added. It is easy to identify the noise variables
from a variable importance plot (Strobl et al., 2008). However, within the signal variables
the patterns are not easy to see since each variable is approximately equally important for
determining the winner (with the slight exception of the middle field in the 3 × 3 board
which is more important than the other fields) and the nature of the interactions is thus
not obvious from analysing a Random Forest fit.

5.2 Reuters RCV1 Text Classification

The Reuters RCV1 text data contain the tf-idf (term frequency-inverse document fre-
quency) weighted presence of 47, 148 word-stems in each document; for details on the
collection and processing of the original data, see Lewis et al. (2004). Each document
is assigned possibly more than one topic. Here we are interested in whether Random Inter-
section Trees is able to give a quick and accurate summary of each topic. For each topic, we
seek sets of word-stems, S, whose simultaneous presence is indicative of a document falling
within that topic.

To evaluate the performance of Random Intersection Trees, we divide the documents
into a training and test set with the first batch of 23, 149 documents as training and the

644

Random Intersection Trees

0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00

●●●

●●●

● ●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

● ●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

● ●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

● ●●

●●●

●●●

●●●

●●●

E11

ECAT

M11

M12

MCAT

C24

CCAT

C151

C15

E41

GCAT

GJOB

C11

M14

M132

M13

C12

GCRIM

C13

C31

C42

E12

M131

C181

C18

GPOL

M143

E512

E51

G15

GDIP

GVOTE

C152

C21

M142

C33

C17

E211

E21

GVIO

C174

E212

C1511

C411

C41

C183

M141

C172

C171

GSPO

GDIS

GDEF

coupon / date / deliv / tax

coupon / date / deliv / sery

usda / week

alert / rate / research

note / profit / shr

note / shr

goal / socc

market / sulphur / trad

friday / index / shar / volum

index / point / stock / trad

chief / name / newsdesk / offic

end / incom / net / q4

chief / name / newsdesk

futur / ton / trad

ballot / elect / poll / vote

govern / milit

offer / shar / underwrit

net / profit

announc / issu / moody / rate

currenc / interbank / newsroom / trad

alumin / cop / lead

demo / polit / vote

dollar / interbank

area / flood / peopl / rain

capit / fight / rebel

bln / bond / lead / typ

aa / issu / rate / stat

charg / prosecut

auction / bill / day

compan / court / file / suit

negot / strik / union / work

assembl / countr / stat / test

econom / gdp

talk / union / wag / work

compan / merg / sharehold

merg / sharehold

deficit / revenu / spend

brussel / european / plan / union

commit / iraq / stat / unit

basi / bond / treasur / yield

gdp / growth / pct / percent

tariff / told / trad

aver / crop / percent

contract / win / won

billion / deficit / export / import

strik / told / tuesday / work

form / joint / ventur

shut / unit

currenc / monet / told

banc / bank / govern / minist

regulat / requir

percent / period / ton / year

Figure 4: The misclassification rate Pn(c /∈ Y |S ⊆ X) on the test data for a pattern S
chosen with a tree ensemble node generation mechanism (black circles), Random
Intersection Trees (white circles), and a linear method (black triangles) for topics
c ∈ C in the Reuters RCV1 text classification data. The topics are shown on
the left and the word combinations chosen by Random Intersection Trees on the
right.

645

Shah and Meinshausen

following 30000 documents as test documents. We compare our procedure to an approach
based on Random Forests and a simple linear method.

Random Forests and classification trees can be very time- and memory-intensive to
apply on a data set of the scale we consider here. In order to be able to compute Random
Forests, we only consider word-stems if they appear in at least 100 documents in the training
data. This leaves 2484 word-stems as predictor variables. We also only consider topics that
contain at least 200 documents. To simplify the problem further, we consider a binary
version of the predictor variables for all methods, using a 1 or 0 to represent whether each
tf-idf value is positive or not.

Let C be the set of topics in our modified data set. Let Y ⊆ C indicate the topics that
a given document belongs to. Consider a topic or class c ∈ C. Our goal is to find patterns
S that maximise

Pn(c ∈ Y |S ⊆ X), (11)

whilst also maintaining that the prevalence of S among all observations be bounded away
from 0. Specifically, we shall require that

Pn(S ⊆ X) ≥ pc/10 where pc = Pn(c ∈ Y). (12)

To see how this can be cast within the framework set in (1), note that if S? maximises (11)
and S?? satisfies

Pn(S?? ⊆ X|Y ∈ c) ≥ Pn(S? ⊆ X|Y ∈ c) and

Pn(S?? ⊆ X|Y /∈ c) ≤ Pn(S? ⊆ X|Y /∈ c),

then

Pn(c ∈ Y |S? ⊆ X) =
Pn(S? ⊆ X|c ∈ Y)Pn(c ∈ Y)

Pn(S? ⊆ X|c ∈ Y)Pn(c ∈ Y) + Pn(S? ⊆ X|c /∈ Y)Pn(c /∈ Y)

≤ Pn(S?? ⊆ X|c ∈ Y)Pn(c ∈ Y)

Pn(S?? ⊆ X|c ∈ Y)Pn(c ∈ Y) + Pn(S?? ⊆ X|c /∈ Y)Pn(c /∈ Y)

= Pn(c ∈ Y |S?? ⊆ X),

whence S?? also maximises (11) by optimality of S?. Thus treating those documents be-
longing to topic c as class 1, and all others as class 0, by solving (1) with θ0 and θ1 chosen
appropriately, we can obtain all solutions to (11).

In view of this, we use each of the methods to search for patterns S that have high
prevalence for a given topic c. We then remove all patterns that do not satisfy (12) on the
test data. Then, from the remaining patterns, we select the one that maximises (11) on
training data. Below, we describe specific implementation details of each of the methods
under consideration.

To compute Random Intersection Trees, we create the min-wise hash table for the preva-
lence among all samples once, using 200 permutations with associated min-wise hash values
for each word-stem. Then 1000 iterations of the tree search are performed with a cut-off
value θ0 = (3/20)pc and all remaining patterns S with a length less than or equal to 4 are
retained.

646

Random Intersection Trees

For a tree-based procedure, one approach is to fit classification trees on subsampled
data and adding randomness in the variable selection as in Random Forests (Breiman,
2001) and then looking among all created leaf nodes for the most suitable node among all
nodes created.

We generate 100 trees as in the Random Forests method: each is fit to subsampled
training data using CART algorithm restricted to depth 4, and further randomness is
injected by only permitting variables to be selected from a random subset of those available,
for each tree. This takes on average between 90% to 110% of the computational time of a
non-optimised pure R (R Core Team, 2013) implementation of Random Intersection Trees
for these data. Note that this is when using the Fortran version of Breiman (2001) for the
Random Forests node generation; we expect a significant speedup if Fortran or C code were
used for Random Intersection Trees. We are currently working on such a version and plan
to make it available soon. Furthermore, Random Forests would scale much worse if many
more word-stems were included as variables.

For linear models, we fit a sparse model with at most ` predictors (with ` ≤ 4), using a
logistic model with an `1-penalty (Tibshirani, 1996; Friedman et al., 2010). We constrain
the regression coefficients to be positive since we are only looking for positive associations
in the two previously discussed approaches, and want to keep the same interpretability for
the linear model. For each value of ` ≤ 4, we take S` to be the set of variables with a
positive regression coefficient. We select the largest value of ` such that the fraction of
documents attaining the maximal value is at least pc/10 and select the associated pattern
S`. (An alternative approach would be to retain the documents with the highest predicted
value when using a sparse regression fit. This approach gave very similar results.)

After screening the candidate patterns returned by each of the methods using (12) on
all of the topics c ∈ C, we evaluate the misclassification rate Pn(c /∈ Y |S ⊆ X) on the test
data. The results for all of the topics are shown in Figure 4. The rules found with Random
Intersection Trees have a smaller loss than those found with Random Forests in all but 5
of the topics. For those topics where Random Forests performs better, the difference in
loss is typically small. Linear models achieve a smaller loss than Random Forests among
most of the topics, but only have a smaller loss than Random Intersection Trees in 6 topics,
performing worse in all remaining 46 topics.

6. Discussion

We have proposed Random Intersection Trees as an efficient way of finding interesting
interactions. In contrast to more established algorithms, the patterns are not built up
incrementally by adding variables to create interactions of greater and greater size. Instead
we start from the full interaction S = {1, . . . , p} and remove more and more variables from
this set by taking intersections with randomly chosen observations. Arranging the search
in a tree increases efficiency by exploiting sparsity in the data. For the basic version of our
method (Algorithm 1), we were able to derive a bound on the computational complexity.
The bound depends on (a) the prevalence or frequency with which the pattern S appears
among observations in class 1, and (b) the overall sparsity of the data, with higher sparsity
making it easier to detect the interaction using a given computational budget. In the best
case, we can achieve an almost linear complexity bound as a function of p; more generally

647

Shah and Meinshausen

our complexity bound typically has a smaller exponent than that for a brute force search.
Further improvements can be made by using min-wise hashing techniques to terminate
parts of the search (i.e., branches of the Intersection Tree) that have no chance of leading to
interesting interactions. Numerical examples illustrate the improved interaction detection
power of Random Intersection Trees over other tree-based methods and linear models.

There are many diverse ways in which interactions that solve (1) can be used in further
analysis. The interactions may be of interest in their own right as shown in both numerical
examples. One can also simply use the search to make sure that a data set is unlikely to have
strong interactions that could otherwise have been missed. If the aim is to build a classifier,
they can be added to a linear model, or built into classifiers based on tree ensembles. For
the latter approach one could consider, for example, averaging predictions in a linear way
or averaging log-odds as in Random Ferns (Bosch et al., 2007). We believe developments
along these lines will prove to be fruitful directions for future research. We also plan to
generalise the idea to categorical and continuous predictor variables.

Appendix A.

Here we include proofs omitted earlier in the paper.
Proof of Theorem 1. Fix a tree m ∈ {1, . . . ,M} and suppose this has node set N =
{1, . . . , J} indexed chronologically (see Section 2). For d ∈ {1, . . . , D}, define

Nd = {j ∈ N : depth(j) = d and Sj ⊇ S},
Wd = |Nd|.

Let E be the event that S is contained in S1, the random sample selected for the root
node of tree m. Further, let Gd(t) = E(tWd |E), the probability generating function of Wd

conditional on the event E.
We make a few simple observations from the theory of branching processes. Firstly, for

d ≤ D − 1, Gd+1 = Gd ◦G where G := G1. To see this, first note that

Wd+1 =
∑
j∈Nd

∑
j′∈ch(j)

1{S⊆Xi(j′)}.

Now conditional on E, the random variables
∑

j′∈ch(j) 1{S⊆Xi(j′)} for j ∈ Nd, are indepen-

dent of Nd. Moreover, they are independent of each other and have identical distributions
equal to that of ∑

j′∈ch(1)

1{S⊆Xi(j′)} = W1.

This entails
E(tWd+1 |Wd = w,E) = {E(tW1 |E)}w = {G(t)}w.

Thus
Gd+1(t) = E(E(tWd+1 |Wd, E)|E) = E({G(t)}Wd |E) = Gd(G(t)),

as claimed.
From this we can conclude that if G has a fixed point q, then this must be a fixed point

for all Gd. Since each Gd is non-decreasing on (0, 1], we have that for all d ∈ N, if q′ ≤ q

648

Random Intersection Trees

and q′ ∈ (0, 1], then Gd(q
′) ≤ q. The relevance of these remarks will become clear from the

following: for an S′ ∈ LD,m, we have

GD(P(S′) S|S′ ⊇ S)) =

∞∑
`=0

P(WD = `|E)P(S′) S|S′ ⊇ S)`

=

∞∑
`=0

P({WD = `} ∩ {S /∈ LD,m}|E)

= P(S /∈ LD,m|E).

Thus if we can ensure that P(S′) S|S′ ⊇ S) is at most q, then the final probability in
the above display will also be at most q. The rest of the proof proceeds with the following
steps:

1. Find conditions on FB, the distribution of the Bj , such that there exists a fixed point
of G, q.

2. Find conditions on the tree depth D such that P(S′) S|S′ ⊇ S) ≤ q.

3. Given q establish conditions on M such that the overall probability of recovering S is
at least 1− η.

4. Given FB, D and M , compute the expected computational cost of the algorithm.

Step 1: Let the distribution of the Bj be such that

Bj =

{
b with probability 1− α,
b+ 1 with probability α.

Now given a q ∈ (0, 1], we shall pick b ∈ Z+ and α ∈ [0, 1) to satisfy G(q) = q. To this end,
observe that

G(q) = (1− α)(1− θ1(1− q))b + α(1− θ1(1− q))b+1

= [1− {(α+ b)− bα+ bc}θ1(1− q)]{1− θ1(1− q)}bα+bc.

From the last displayed equation, we see that G(q) varies with α+ b continuously. Further-
more, when α+ b = 0, G(q) = 1, and by making α+ b large, we can make G(q) arbitrarily
close to 0. Thus by the intermediate value theorem, for any q ∈ (0, 1], α+ b can be chosen
such that G(q) = q.

We now bound α+ b from above in terms of q for use later in creating a bound on the
complexity of the algorithm. We have

b+ α =
log(q)− log(1− αθ1(1− q))

log(1− θ1(1− q))
+ α

≤ − log(q) + log(1− αθ1(1− q))
θ1(1− q)

+ α

≤ − log(q)

θ1(1− q)

≤ 1 + (1− q)/(2q)
θ1

. (13)

649

Shah and Meinshausen

In the final line, we used the inequality

log(z) ≥ (z − 1)− (z − 1)2

2z
, 0 < z ≤ 1.

Step 2: We now bound P(S′) S|S′ ⊇ S) from above in terms of D. The set S′ is the
intersection of D+ 1 observations selected independently of one another. In order for some
k ∈ Sc to be contained in S′, it must have been present in all these D + 1 observations.
Thus by the union bound we have

P(S′) S|S′ ⊇ S) ≤
∑
k∈Sc

P(k ∈ S′|S′ ⊇ S) ≤ pνD+1,

the rightmost inequality following from (A2).

To ensure this is at most q, we take

D =

⌈
log(p/q)

log(1/ν)

⌉
− 1, (14)

so

D ≤ log(p/q)

log(1/ν)
. (15)

Step 3: Turning now to the probability of recovering S, we have

P(S ∈ LD) = 1− [1− {1− P(S /∈ LD,m|E)}θ1]M .

Given the choices of α and b (13), and D (14), we have that P(S /∈ LD,m|E) ≤ q. Thus
taking M to be at least

− log(η)

(1− q)θ1
≥ − log(η)

log{1− (1− q)θ1}
(16)

guarantees recovery of S with probability at least 1− η.

Step 4: To bound the complexity of the algorithm, observe that E(Bj) = b+ α, so

C(M,D,FB) ≤ log(p)M

p∑
k=1

[(b+ α)δk + · · ·+ {(b+ α)δk}D]

≤ log(p)MD

[
p+

∑
k:(b+α)δk>1

{(
(b+ α)δk

)D − 1
}]
. (17)

Substituting Equations (13), (15) and (16) into the complexity bound (17), and writing
ε = (1− q)/(2q) gives a bound for the computational complexity of

log(p)
log(1/η)

θ1

1 + 2ε

2ε

log{p(1 + 2ε)}
log(1/ν)

[
p+

∑
k:(1+ε)δk>θ1

{(
p(1 + 2ε)

) log{(1+ε)δk/θ1}
log(1/ν) − 1

}]
. (18)

Given that ε is bounded above, removing constant factors not depending on p, we get that
the order of the computational complexity is bounded above by

650

Random Intersection Trees

log(1/η)
log2(p)

ε

{
p+

∑
k:(1+ε)δk>θ1

(
p

log{(1+ε)δk/θ1}
log(1/ν) − 1

)}
.

Proof of Corollary 2. Note that ∑
k:(1+ε)δk>θ1

p
log((1+ε)δk/θ1)

log(1/ν)

is bounded by

(1 + ε)
log(p)

log(1/ν)

(
pγ · pα?/β1{α?/β>0} + p · pα?/β1{α?/β>0}

)
.

The result then follows from substituting into (18) and taking ε ∝ 1/ log(p)

Proof of Equation (6). Writing r = nπ2(S), we have(
n

r

)
Eσ(min

k∈S
hσ(k)) =

n−r+1∑
`=1

`

(
n− `
r − 1

)

=
n−r+1∑
`=1

{
(`− 1)

(
n− (`− 1)

r

)
− `
(
n− `
r

)}
+
n−r+1∑
`=1

(
n− `+ 1

r

)
.

The first two terms sum to zero leaving only the final term. Thus(
n

r

)
Eσ(min

k∈S
hσ(k)) =

n−r+1∑
`=1

{(
n− `+ 2

r + 1

)
−
(
n− `+ 1

r + 1

)}
=

(
n+ 1

r + 1

)
, (19)

whence

Eσ(min
k∈S

hσ(k)) =
n+ 1

r + 1
. (20)

Proof of Theorem 4. Writing

π̃−12 (L;S,H) := 1
L

L∑
l=1

min
k∈S

Hlk

and suppressing dependence on S and H, we have

π̂1π̂2 − π1π2 =
(n+ 1− π̃−12)π̂1

nπ̃−12

− π1π2

=
n+ 1− π̃−12

nπ̃−12

{
(π̂1 − π1)− π1

nπ2 + 1

n+ 1− π̃−12

(
π̃−12 −

n+ 1

nπ2 + 1

)}
. (21)

651

Shah and Meinshausen

Consider L→∞. By the weak law of large numbers and the continuous mapping theorem,
we have

n+ 1− π̃−12 (L)

nπ̃−12 (L)

p→ π2 and

nπ2 + 1

n+ 1− π̃−12 (L)

p→ (π2 + n−1)2

π2(1 + n−1)
.

By the central limit theorem, Slutsky’s lemma and Lemma 5,

AL :=
√
L(π̂1(L)− π1)

d→ N(0, π1(1− π1)) and

BL := −π1
nπ2 + 1

n+ 1− π̃−12 (L)
×
√
L

(
π̃−12 (L)− n+ 1

nπ2 + 1

)
d→ N(0, π21(1− π2)(1 + ε(n))),

with ε(n) defined as in (10). Define IS := {i : S ⊆ X} and let k ∈ S. Now observe that

{∃ι′ : hσ(k) = ι′ for all k′ ∈ S} = {σ−1(hσ(k)) ∈ IS} and {min
k∈S

hσ(k) = ι}

are independent: in words, the distribution of mink∈S hσ(k) conditional on the fact that an
observation index in IS was permuted to a lower value than any in Ik \ IS is the same as its
unconditional distribution. This implies the independence of π̂1 and π̃−12 and thence also
that of AL and BL. Thus we have that for all t1, t2 ∈ R,

E(ei(t1AL+t2BL)) = E(eit1AL)E(eit2BL)→ exp[12 t
2
1π1(1− π1) + 1

2 t
2
2{π21(1− π2)(1 + ε(n))}].

pointwise as L→∞. Returning to (21), by Lévy’s continuity theorem we have
√
L{π̂1(L)π̂2(L)− π1π2}

d→ N(0, π22π1(1− π1π2)(1 + ε(n))).

Lemma 5 Let r = nπ2(S) and suppose n ≥ r + 2. Then

Varσ(min
k∈S

hσ(k)) =
r(n+ 1)(n− r)
(r + 1)2(r + 2)

.

Proof We have,(
n

r

)
Eσ{(min

k∈S
hσ(k))2} =

n−r+1∑
`=1

`2
(
n− `
r − 1

)

=

n−r+1∑
`=1

{
(`− 1)2

(
n− (`− 1)

r

)
− `2

(
n− `
r

)}

+
n−r+1∑
`=1

{
2(`− 1)

(
n− (`− 1)

r

)
+

(
n− `+ 1

r

)}
= 2

(
n+ 1

r + 2

)
+

(
n+ 1

r + 1

)
,

where in the last line we used (19) and (20). Simplifying and using (6) gives the result.

652

Random Intersection Trees

References

R. Agrawal, R. Srikant, et al. Fast algorithms for mining association rules. In Proceedings
of the 20th International Conference on Very Large Data Bases, volume 1215, pages
487–499, 1994.

D. Aha, D. Kibler, and M. Albert. Instance-based learning algorithms. Machine Learning,
6:37–66, 1991.

A. Bosch, A. Zisserman, and X. Muoz. Image classification using random forests and ferns.
In IEEE 11th International Conference on Computer Vision, 2007, pages 1–8. IEEE,
2007.

L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Wadsworth, Belmont, 1984.

A. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher. Min-wise independent permuta-
tions. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing,
pages 327–336. ACM, 1998.

E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. Ullman, and C. Yang.
Finding interesting associations without support pruning. IEEE Transactions on Knowl-
edge and Data Engineering, 13:64–78, 2001.

M. Datar and S. Muthukrishnan. Estimating rarity and similarity over data stream windows.
Lecture Notes in Computer Science, 2461:323, 2002.

J. Friedman and B. Popescu. Predictive learning via rule ensembles. Annals of Applied
Statistics, 2:916–954, 2008.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33:1–22, 2010.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIG-
MOD Rec., 29:1–12, May 2000.

D. Lewis, Y. Yang, T. Rose, and F. Li. Rcv1: a new benchmark collection for text catego-
rization research. Journal of Machine Learning Research, 5:361–397, 2004.

W. Loh and Y. Shih. Split selection methods for classification trees. Statistica Sinica, 7:
815–840, 1997.

M. Marchand and M. Sokolova. Learning with decision lists of data-dependent features.
Journal of Machine Learning Research, 6:427, 2006.

C. Matheus and L. Rendell. Constructive induction on decision trees. In Proceedings of
the Eleventh International Joint Conference on Artificial Intelligence, volume 645650.
Citeseer, 1989.

653

Shah and Meinshausen

N. Meinshausen. Node harvest. Annals of Applied Statistics, 4:2049–2072, 2010.

J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang. H-mine: hyper-structure mining of
frequent patterns in large databases. ICDM 2001, Proceedings of the IEEE International
Conference on Data Mining, pages 441–448, 2001.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2013. URL http://www.R-project.org/.

R. Rivest. Learning decision lists. Machine Learning, 2:229–246, 1987.

C. Strobl, A. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis. Conditional variable
importance for random forests. BMC Bioinformatics, 9:307, 2008.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58:267–288, 1996.

654

http://www.R-project.org/

Journal of Machine Learning Research 15 (2014) 655-696 Submitted 9/12; Revised 12/13; Published 2/14

Reinforcement Learning for Closed-Loop Propofol
Anesthesia: A Study in Human Volunteers

Brett L Moore brett.moore@ieee.org
Department of Computer Science
Texas Tech University
Lubbock, TX 79409, USA

Larry D Pyeatt larry.pyeatt@sdsmt.edu
Department of Mathematics and Computer Science
South Dakota School of Mines and Technology
Rapid City, SD 57701, USA

Vivekanand Kulkarni vkulkarni@stanford.edu

Periklis Panousis panousis@stanford.edu

Kevin Padrez kpadrez@gmail.com

Anthony G Doufas agdoufas@stanford.edu

Department of Anesthesiology, Perioperative and Pain Medicine

Stanford University School of Medicine

Stanford, CA, 94305, USA

Editor: Peter Dayan

Abstract

Clinical research has demonstrated the efficacy of closed-loop control of anesthesia using
the bispectral index of the electroencephalogram as the controlled variable. These con-
trollers have evolved to yield patient-specific anesthesia, which is associated with improved
patient outcomes. Despite progress, the problem of patient-specific anesthesia remains
unsolved. A variety of factors confound good control, including variations in human physi-
ology, imperfect measures of drug effect, and delayed, hysteretic response to drug delivery.
Reinforcement learning (RL) appears to be uniquely equipped to overcome these challenges;
however, the literature offers no precedent for RL in anesthesia. To begin exploring the
role RL might play in improving anesthetic care, we investigated the method’s application
in the delivery of patient-specific, propofol-induced hypnosis in human volunteers. When
compared to performance metrics reported in the anesthesia literature, RL demonstrated
patient-specific control marked by improved accuracy and stability. Furthermore, these
results suggest that RL may be considered a viable alternative for solving other difficult
closed-loop control problems in medicine. More rigorous clinical study, beyond the confines
of controlled human volunteer studies, is needed to substantiate these findings.

Keywords: reinforcement learning, bispectral index, propofol, anesthesia, hypnosis,
closed-loop control

1. Introduction

When compared to standard population-based dosing, patient-specific drug administration
is generally preferred in the clinical practice of anesthesia. Computer-controlled drug deliv-

c©2014 Brett L. Moore, Vivekanand Kulkarni, Periklis Panousis, Kevin Padrez, Larry D. Pyeatt and Anthony G. Doufas.

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

ery systems have been investigated as a means of achieving patient-specific anesthesia(Liu
et al., 2013, 2012; Hahn et al., 2011; Hemmerling et al., 2010), and their application is associ-
ated with a number of favorable patient outcomes, including decreased intraoperative drug
consumption and shortened postoperative recovery times (Liu et al., 2006; Servin, 1998;
Theil et al., 1993). Historically, the application of conventional control techniques, such
as proportional-integral-derivative (PID) control, in closed-loop anesthesia has shown mod-
erate success (Absalom and Kenny, 2003). However, these historical successes have been
constrained by the PID method’s inherent limitations, as well as the complexity of human
physiology (Wood, 1989). To improve control performance, clinical study has broadened
to include techniques commonly associated with intelligent systems, most notably Bayesian
filtering and fuzzy control(Ching et al., 2013; Shanechi et al., 2013; De Smet et al., 2008;
Esmaeili et al., 2008; Carregal et al., 2000; Schaublin et al., 1996).

Reinforcement learning (RL), one of many intelligent system techniques, has demon-
strated proficiency in difficult robotic control tasks (Gullapalli, 1993). However, RL has
no reported application to clinical control problems, with the exception of work leading to
this study (Moore et al., 2011a,b, 2004). Nonetheless, RL has a presence in medicine, and
reported applications include ultrasound image segmentation (Sahba et al., 2008) and plan-
ning tasks, such as scheduling of HIV therapy (Ernst et al., 2006), optimizing deep-brain
stimulation in epilepsy treatment (Guez et al., 2008), dosing strategies for anemia manage-
ment in patients with chronic renal failure (Mart́ın-Guerrero et al., 2009; Gaweda et al.,
2006), and clinical trial design (Zhao et al., 2009). These applications support the assertion
that reinforcement learning can serve as a “medical decision aid” (Mart́ın-Guerrero et al.,
2009). However, RL’s aptitude for specialized clinical application remains incompletely ex-
plored since these applications were non-clinical. In the examples cited, RL was applied to
data collected from patients, but no RL algorithm contributed directly to patient care.

This lack of direct application does not imply that RL is unsuited for computer-controlled
drug delivery since the method has been successfully applied to critical real-time industrial
control tasks (Ernst et al., 2009). Furthermore, the basic principles of reinforcement learn-
ing (dynamic programming and value function optimization) have been studied in depth-
of-anesthesia control with favorable results (Hu et al., 1994). Thus, the two-fold objectives
of this study were to a) investigate the clinical suitability of reinforcement learning for
closed-loop control of intravenous propofol anesthesia in healthy human volunteers, and
b) compare the performance of RL control against published clinical metrics. To accom-
plish these objectives, an RL agent was developed, tested in silico, and then evaluated in
healthy volunteers under an IRB-approved study protocol in the Stanford University School
of Medicine Department of Anesthesiology, Perioperative, and Pain Medicine.

2. Background

To begin answering the question “why should reinforcement learning be applied in anes-
thesia,” this section establishes the problem with an introduction to the motivation and
challenges of closed-loop control of intraoperative hypnosis. Discussion continues by sum-
marizing the manner in which RL can address deficiencies in some contemporary approaches.

656

Reinforcement Learning for Closed-Loop Propofol Anesthesia

2.1 Propofol-Induced Hypnosis

Propofol is a short-acting sedative agent administered intravenously to achieve induction
and maintenance of general anesthesia in the operating room and other critical care arenas.
Propofol suppresses higher brain function to produce hypnosis, a suppression of conscious-
ness.1 Propofol, like other hypnotic agents, achieves unconsciousness “by altering neuro-
transmission at multiple sites in the cerebral cortex, brain stem, and thalamus.” (Brown
et al., 2010, p. 2641). For a thorough treatment of propofol’s mechanism of action, see
Brown et al.

The anesthesia community has studied automated delivery of propofol-induced hypnosis,
in part, because the drug and its pharmacodynamic effects satisfy basic requirements for
closed-loop control. To accomplish such feedback control, a controller must first be equipped
to a) influence the desired control parameter, and b) observe the affects of its actions on
that control parameter. The short-acting nature of propofol, characterized by rapid onset
and recovery, readily satisfies the first requirement (Vanlersberghe and Camu, 2008). The
complexities of the human central nervous system and its interaction with propofol make
objective, quantitative measurement of hypnosis (control effect) challenging, but—as the
following sections show—measurement of propofol effect is feasible.

2.2 Depth of Hypnosis Measurement

This section introduces the use of the electroencephalogram and its derivatives in the as-
sessment of hypnotic depth. Some of the challenges associated with these methods are also
discussed.

2.2.1 Electroencephalogram (EEG)

In closed-loop regulation of hypnosis, the controlled variable is the patient’s level of con-
sciousness, or awareness. Cerebral electrical activity is correlated with consciousness (Brown
et al., 2010), and hypnosis (suppression of awareness) displays as change in cortical electrical
activity. Electroencephalography, the measurement of cerebral electrical activity, produces
the electroencephalogram (EEG). The EEG is often obtained with an non-invasive array
of scalp sensors. Normal, waking cortical electrical activity is marked by periodic signals
in five narrow frequency bands, α, β, γ, δ, and θ. When an EEG is obtained transcuta-
neously, signals within these bands range in the tens of millivolts. Accurate capture of this
low-power signal is complicated by non-cortical biologic artifacts: eye motion and blinking,
facial muscle movement, and cardiac pulse (Fitzgibbon et al., 2007).2 Other factors, like
changes in skin conductance, can impact the fidelity of signal acquisition. The EEG is also
susceptible to contamination from electrical sources found in the intraoperative environ-
ment: power lines, overhead lighting, electrocautery, and other medical devices. For these
reasons, isolation and removal of non-cortical artifacts remains a challenging problem for
EEG analysis and interpretation.

1. Hypnosis is just one member of a collection of clinical endpoints that comprise “general anesthesia”;
others include akinesia (immobility), amnesia, analgesia, and autonomic system stability.

2. Electrooculography (EOG), electromyography (EMG) and electrocardiography (ECG) are the practices
of measuring these “unwanted” signals.

657

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

Research has shown that when Fourier analysis (or another time-frequency analysis
method) is applied to the EEG, the energy content within the five spectral bands can
provide insight into depth of hypnosis since the spectral features of the EEG signal are
modulated with level of consciousness. Studies demonstrate that the hypnotic component
of general anesthesia “produces distinct patterns on the electroencephalogram (EEG), the
most common of which is the progressive increase in low-frequency, high-amplitude activity
as the level of general anesthesia deepens.” (Brown et al., 2010, p. 2638).

2.2.2 Bispectral Analysis of the EEG

The practiced anesthetist can discern and interpret changes in EEG power spectra asso-
ciated with hypnosis induction, maintenance, and emergence; however, the relationship of
these spectral components (and their changes) to depth of hypnosis is not obvious. Thus,
processed EEG variables have been studied with the aim of developing a “simplified inter-
pretation of the EEG” for objective, broadly-applicable measures of anesthetic depth (Sigl
and Chamoun, 1994, p.392). One such indicator, the bispectral index (Covidien, Mansfield,
MA), is well-reported in the anesthesia literature. BIS, as it is known, differs from conven-
tional quantitative EEG parameters in that it augments traditional power spectral (Fourier)
methods with bispectral analysis, a means of measuring phase coupling between pairs of fre-
quency components. This added dimension of bicoherence can improve identification of
EEG patterns associated with varying levels of cortical activity.

2.2.3 The Bispectral Index of the EEG (BIS)

Sigl and Chamoun define the bispectral index of the EEG as “a multivariate measure incor-
porating bispectral and time-domain parameters derived from the EEG,” (1994, p. 402).
This proprietary index was developed by statistically linking the EEG’s time- and frequency-
domain features to a database of hand-selected “behavioral assessments of sedation and
hypnosis,” (Rampil, 1997, p. 998). The result, BIS, is a weighted sum of processed EEG
features tied to the clinical endpoints of hypnosis that is “insensitive to the specific anes-
thetic or sedative agent,” (Rampil, 1997, p. 1000). This bispectral index lies in the range [0,
100] (Sigl and Chamoun, 1994; Rampil, 1997). A measure of 100 is associated with normal
wakefulness; a value of 0 correlates to an iso-electric brain state.3

Research has shown that evidence of propofol’s pharmacodynamic effect may be ob-
served in the bispectral index of the EEG: “The BIS both correlated well with the level
of responsiveness and provided an excellent prediction of the loss of consciousness. These
results imply that BIS may be a valuable monitor of the level of sedation and loss of con-
sciousness for propofol, midazolam, and isoflurane.” (Glass et al., 1997). This finding
is consistent with expectation: BIS was developed to be a statistical correlation between
EEG patterns and clinical attributes of hypnosis: loss of consciousness, progressive loss of
reflexes, return of consciousness, etc.

However, BIS has been observed to be an imperfect indicator of hypnotic condition.
Some of the challenges stem from noise contamination in the underlying EEG signal. For
example, EMG signals, such as those resulting from eye or facial motion, may overlap the

3. Thorough treatments of bispectral analysis of the EEG may be found in Sigl and Chamoun (1994) and
Rampil (1997).

658

Reinforcement Learning for Closed-Loop Propofol Anesthesia

EEG’s higher frequency β and γ bands. This sort of EEG signal contamination has been
associated with elevated BIS values in surgical patients (Renna et al., 2002). To attenuate
the influence of electrical noise, the A-2000 BIS monitor, like the one used in this study,
applies selective band-pass and low-pass digital filters in its process of computing BIS.

Research also indicates that contamination of the BIS signal extends beyond external
electrical noise; normal physiologic processes can play a role. BIS and EMG variability,
characterized by relatively high-frequency fluctuation, has been observed to predict somatic
responses to noxious stimulus (Bloom et al., 2008; Greenwald and Rosow, 2006). In more
recent work, measures of BIS and EMG variability were computed as standard deviations
over a 3-min window of samples. The resulting sBIS and sEMG indicators predicted somatic
response to painful stimuli (Mathews et al., 2012). The implication is meaningful to closed-
loop control of hypnosis: BIS variability seems positively correlated to lack of analgesia,
rather than hypnosis. Since propofol is not an analgesic agent, it’s reasonable to conclude
that high-frequency changes in BIS should not contribute to propofol delivery decisions. In
acknowledgment of these issues, the A-2000 BIS monitor provides a user-selectable option
that applies either a 15-sec or 30-sec smoothing window to its BIS measurements. The
manual advises the user to select the smoothing windows according to a desire for “decreased
delay” or “decreased variability.”

Other research highlights additional sources of “noise” that may influence the BIS signal.
Dahaba provides an excellent survey of clinical and physiological conditions that perturb
BIS measurement (2005). In light of these factors, it’s reasonable to consider BIS as a
probabilistic indicator of hypnotic depth, not an absolute one. As such, probabilistic control
methods, like RL, become increasingly relevant.

2.3 Motivation for Good Control of Hypnosis

BIS has been recently studied as a mitigation for risk of unintended intraoperative aware-
ness, defined as conscious behavior (motion, vocalization, etc.) during surgery or post-
operative recall of intraoperative events. Unintentional intraoperative awareness can chal-
lenge the anesthetist because doses ensuring adequate hypnosis may lead to hemodynamic
and/or respiratory instabilities in sensitive patients (i.e., trauma, critically-ill, and elderly).
While the incidence of intraoperative awareness is estimated to be low, 0.13% (Sebel et al.,
2004), it can be severely traumatic for the patient. BIS monitoring has been recommended
as a preventative measure (Sandin et al., 2000) and has been reported to reduce the in-
cidence of unintended intraoperative awareness (Myles et al., 2000). This finding remains
controversial since this evidence comes from observational clinical trials (Avidan et al.,
2008), and the execution of a convincing prospective clinical trial is logistically difficult.

At first glance, the risk of unintended intraoperative awareness implies that “deeper is
better.” However, higher doses of propofol are correlated with respiratory and hemodynamic
depression. Emerging research substantiates a balance in hypnosis with reports of a possible
causal link between deep anesthesia (BIS < 45) and postoperative morbidity (Lindholm
et al., 2009). Again, this conclusion requires further substantiation before wide-spread
acceptance.

These opposing concerns, awareness versus toxicity, as well as the favorable outcomes
cited previously, link good control of intraoperative anesthesia to good patient care. Conse-

659

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

quently, closed-loop control of propofol-induced hypnosis is well-represented in the literature
(Liu et al., 2013, 2012; Hahn et al., 2011; Hemmerling et al., 2010; Struys et al., 2007, 2004;
Absalom and Kenny, 2003; Leslie et al., 2002; Absalom et al., 2002; Sakai et al., 2000;
Struys et al., 2001), yet accurate and stable control of intraoperative hypnosis remains an
incompletely solved problem.

2.4 Challenges to Optimal Control of Hypnosis

Optimal control of propofol-induced hypnosis is a difficult problem for several reasons.
Properties of the patient, the drug, and the intraoperative environment all contribute con-
founding influences. The patient’s age, gender, and ethnicity, as well as disease and surgical
intervention (Schnider et al., 1998; Barvais et al., 1996), are known to affect response to
propofol infusion. Additionally, “intra-subject heterogeneity”, or tendency for change in an
individual (Rigby-Jones and Sneyd, 2012), assures that any accurate characterization of a
patient’s propofol response has a limited lifetime. For these reasons, commercially available
target-controlled infusion (TCI) systems rely on general, population models of drug effect,
leaving them unequipped for patient-specific drug delivery.

Additionally, a system regulating a patient’s propofol concentration is limited to an
asymmetric influence that further hinders good control. Propofol concentrations can be
readily increased via intravenous infusion; however, the system lacks a direct means of
decreasing concentration. Instead, the controller must wait for the patient to decrease
propofol concentration through metabolism or redistribution. As a consequence, the con-
troller possesses a direct means of increasing hypnosis, but an indirect means of decreasing
hypnosis.

Other aspects of propofol infusion are problematic. The delay between action (infusion)
and effect (hypnosis) can exceed two minutes. This delay (transport delay in control liter-
ature) is variable, hysteretic, and demonstrates flow rate dependence (Struys et al., 2007;
Pilge et al., 2006). In addition, propofol’s effect on consciousness is nonlinear, meaning
that a fixed dose of propofol can impact BIS differently, depending on the patient’s level of
hypnosis at the time of infusion. As a result, the controller cannot always assume that a
chosen dose will always have the same effect.

Finally, hypnosis is a balance of stimulus and drug effect. In the absence of stimulus,
a relatively low concentration of propofol can yield the desired BIS. The onset of a routine
surgical event (incision, manipulation, etc.) can disturb this equilibrium, rendering the
patient’s previously adequate concentration insufficient and leading to an undesired increase
in consciousness. Thus, a clinically relevant hypnosis control system should be prepared to
compensate for those external influences that can negatively impact control (Röpcke et al.,
2001b; Ausems et al., 1986).

2.5 Conventional Control

Much of the initial progress in closed-loop anesthesia has been accomplished using con-
ventional control techniques, like Proportional-Integral-Derivative (PID) control (Absalom
et al., 2002; Struys et al., 2001; Sakai et al., 2000; Kenny and Mantzaridis, 1999; Mortier
et al., 1998). These classical control methods enjoy widespread industrial application due
to their simplicity of design and implementation, as well as their success in many control

660

Reinforcement Learning for Closed-Loop Propofol Anesthesia

problems. Furthermore, a measure of the PID technique’s popularity is due to its founda-
tion in classical control theory, its lack of dependence upon an accurate process model, and
its ease in implementation.

Given the clinical interest in well-controlled hypnosis, it is no surprise that PID (along
with its PI and PD variants) has been applied to hypnosis control. Kenny and Mantzaridis
used a basic proportional-integral controller to regulate hypnosis in surgical patients (1999).
This automated system delivered satisfactory anesthesia in a population of 100 patients and
demonstrated that the hypnotic process, although noisy and uncertain, may be regulated
using conventional techniques. Further research has demonstrated similar results: Absalom
et al. coupled the bispectral index with a PID controller and observed largely satisfactory
results in the administration of general anesthesia in ten patients (2002).

Despite instances of successful PID control in general anesthesia, the technique should
not be applied universally with an expectation of similar results. Constant-coefficient PID
methods, like those historically applied in hypnosis control, are not equipped to satisfac-
torily control processes with variable time delays, variable plant parameters, significant
nonlinearities, and non-negligible process noise. Olkkola summarizes the use of PID in
closed-loop control of anesthesia: “PID controllers are in general not universally applicable
to nonlinear concentration-response curves. . . ” (Olkkola et al., 1991, 420). Our simulation
work supports this assertion (Moore, 2003). In general, a PID controller may be tuned to
perform well for an arbitrary patient at a fixed level of hypnosis. However, the same con-
troller would perform poorly when patient characteristics or hypnosis target varied. More
convincingly, clinical observations support Olkkola’s claim, as well. Absalom et al. observed
oscillation around the BIS setpoint in the operating room (2002), and Leslie et al. observed
similar oscillations in a conscious sedation experiment (2002).

Given the known limitations of the constant-coefficient PID controller, as well as the
reported instances of sub-optimal control, it can be reasonably concluded that constant-
coefficient PID is not the ideal solution (Struys et al., 2001). Current anesthesia literature
suggests the ideal solution is a model-based, adaptive system(Ching et al., 2013; Shanechi
et al., 2013). These systems do not exclude the PID class of controllers since neural networks,
among other methods, have been used to establish relationships between system inputs and
variable PID coefficients (Omatu et al., 1996). However, it should be noted that adding
a model increases the complexity of the PID controller, thereby eroding its advantage of
simplicity.

2.6 Reinforcement Learning

Reinforcement learning (RL) is an intelligent control method that provides a structured,
mathematically robust mechanism for goal-directed decision making in which long-term gain
is maximized (Sutton and Barto, 1998; Kaelbling et al., 1996). Unlike supervised learning
methods, no examples of desired behavior are provided during training; instead, favorable
action choices are encouraged through positive and/or negative reinforcements. Under this
framework, knowledge is gained through experimentation: actions are chosen, effects are
observed, and rewards are gained.

661

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

3. Methods

To begin assessing the suitability of reinforcement learning for closed-loop control of hypno-
sis, an RL agent was developed in the Texas Tech University Computer Science Department
under the supervision of the study’s principal technical investigator, Dr. Pyeatt. In coop-
eration with the Stanford University School of Medicine Department of Anesthesiology,
Perioperative and Pain Medicine, intraoperative patient models were developed for agent
training and in silico evaluation under the supervision of the study’s principal clinical in-
vestigator, Dr. Doufas. Section 3.1 summarizes evolution of the RL agent; however, more
thorough treatment of the design, development, and in silico testing of the RL agent may
be found in our previously reported work (Moore et al., 2011a,b). After the agent was
validated in simulation and the clinical study protocol gained Institutional Review Board
approval, fifteen healthy volunteers underwent RL-controlled propofol hypnosis in surgical
facilities of the Stanford University School of Medicine.

3.1 The Clinical-Grade RL Agent

This section addresses the development and application of the clinical-grade RL agent.
As such, the architecture, training, and in-silico evaluation are covered. The section then
presents the application of Reagent, a data collection and control system using the RL agent
to administer propofol hypnosis in a population of healthy human volunteers.

3.1.1 Agent Architecture

The RL agent was implemented as a Markov Decision Process (MDP), a mathematical
framework for optimal decision-making in stochastic systems. A principal feature of the
MDP is the Markov Property, a characteristic in which the conditional probability of state
transition depends solely on the action chosen in the current state—as opposed to some
longer historical sequence of state visitation and action selection (Russel and Norvig, 2002;
Sutton and Barto, 1998). Littman (1994) formally defines the general MDP as a system
consisting of:

• the set of states S = {s0, s1, s2, . . . , s|S|−1},

• the transition probabilities Pr(s′|s, a)∀s, s′ ∈ S, a ∈ A(s),

• the set of actions A = {a0, a1, a2, . . . , a|A|−1},

• the set of actions A(s) ⊆ A for each state s ∈ S that can be executed in s,

• and the immediate rewards ra(s) ∀a ∈ A(s), s ∈ S that are available after taking any
legal action from any state.

For the purposes of this research, the sets S and A were discrete. Of these components, only
the transition probabilities Pr(s′|s, a) were initially unknown. (Agent training is tantamount
to the discovery of these transition probabilities. Were they initially known, an optimal
control policy could be determined using dynamic programming.) With the nature of an
RL agent formally defined, discussion continues with the application of the MDP in the
context of the hypnosis control task.

662

Reinforcement Learning for Closed-Loop Propofol Anesthesia

3.1.2 Agent Percepts

To achieve and maintain a desired level of hypnosis (BIStarget), the agent first observed the
patient’s bispectral index (BISmeasured) on five-second intervals as reported by an A-2000
BIS monitor (Covidien, Mansfield, MA). The monitor’s BIS smoothing window was set to
15 seconds, the minimum, to grant the agent flexibility in managing BIS measurement noise
(see Section 2.2.3).

To reduce the effect of measurement noise on the agent’s estimate of patient condition,
BISmeasured was smoothed using a low-pass filter. From the resulting BISsmoothed signal,
two control inputs were then computed: BISerror and ∆BISerror. BISerror was defined as
(BISsmoothed − BIStarget), and ∆BISerror was defined as the change in BISerror over 15 s,
or (BISerror(t)− BISerror(t− 2)). These control signals allowed the agent to observe the
magnitude of control error, as well its direction of change. This observation of BISerror and
∆BISerror served as the agent’s estimation of the patient’s state of hypnosis. Table 1 presents
a high-level summary of patient states that may be distinguished using these control signals.

BISerror ∆BISerror Interpretation

< 0 < 0 Good Below target, improving
< 0 ≈ 0 Neutral Below target, steady
< 0 > 0 Poor Below target, worsening

≈ 0 < 0 Good At target, improving
≈ 0 ≈ 0 Good At target, steady
≈ 0 > 0 Poor At target, worsening

> 0 < 0 Good Above target, improving
> 0 ≈ 0 Neutral Above target, steady
> 0 > 0 Poor Above target, worsening

Table 1: Interpreting the agent’s control signals

In pilot studies of human volunteers, the combined effects of BIS measurement noise,
filtering, and transport delay resulted in oscillatory control behavior. These confounding
influences were successfully mitigated by conditioning BISerror and ∆BISerror with sets of
fuzzy membership functions (Zadeh, 1965). The fuzzy set memberships for BISerror and
∆BISerror were assessed using two sets of triangular membership functions, µN (x), µZ(x),
and µP (x) (Figure 1). The resulting six-dimensional feature vector served as the agent’s
perceptual input:

f = [µN (E), µZ(E), µP (E), µN (∆E), µZ(∆E), µP (∆E)]

(where E represents BISerror and ∆E indicates ∆BISerror for brevity). Since fuzzy set
membership is expressed as a real number in the range [0, 1], the continuous feature vector
f required transformation before the discrete RL algorithms used in this study could be
applied. Section 3.2.2 provides greater detail in the methods used to map the feature vector
f to the set of discrete states S employed in this study.

663

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

−x −x/2 0 +x/2 +x

Input

µN (x) µZ(x) µP (x)
M

em
b

er
sh

ip

0

1

Figure 1: The system input variables, BISerror and ∆BISerror, were conditioned with sets of
fuzzy membership functions. A set of three membership functions operated on
BISerror (x = 20), and a second set of functions operated on ∆BISerror (x = 10).
The resulting membership values formed a six-dimensional feature vector that
served as the agent’s patient state descriptor.

3.1.3 Agent Actions

The agent delivered propofol to the volunteer via a catheter placed in the antecubital (elbow)
vein using a precision syringe pump (Pump 33, Harvard Apparatus, Holliston, MA). During
control, the agent selected an infusion rate from A, a discrete set of 15 flowrates ranging
from 0.0 – 6.0 ml/min:

A = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0}ml/min.

Once a rate was selected, the chosen action remained in effect for five seconds. A concen-
tration of 1% propofol was assumed for all members of A.

3.1.4 Reinforcements

Although reinforcement learning is unsupervised in the sense that no explicit training exem-
plars are provided during training, the method assumes the existence of a critic that grades
behavior as the agent learns. During learning, the critic’s role is to dispense reinforcements
in order to guide the agent’s action selection. In RL, this critic is implemented as the
application-specific reward function. In the hypnosis control task, the agent’s objective was
to achieve and maintain the selected BIS target. Expressed alternatively, the agent’s goal
was to minimize control error for the duration of the control interval. The reward function
below presents one system of reinforcement for guiding action selection toward this goal

r(t+ 1) = −|BISerror(t)|. (1)

This negative-bounded reward function provided instantaneous rewards proportional to the
observed control error. Under this scheme, the agent’s sole means of minimizing negative
reinforcement was to select actions yielding minimal control error. This reward function

664

Reinforcement Learning for Closed-Loop Propofol Anesthesia

highlights an important characteristic of the hypnosis control task, namely the lack of an
explicit goal state. Because the task lacked a definitive persistent terminal state, it was
classified as a continuing, non-episodic control task.

3.2 Agent Training

During learning, the naive, uninformed agent was expected to make arbitrarily poor propo-
fol dosing decisions; thus, a simulated intraoperative patient was developed to facilitate
agent training in a safe, off-line manner. Consequently, the principal role of this virtual
patient was to model the time-dependent effects of propofol infusion, collectively known as
the pharmacokinetic and pharmacodynamic (PK/PD) responses. A drug’s pharmacokinetic
properties describe its distribution within the body; pharmacodynamic attributes charac-
terize the dose effect. Through experimentation with this virtual patient, the agent was
expected to learn the general characteristics of propofol-induced hypnosis with respect to
bispectral index: BIS is linked to propofol infusion in an inverse, time-delayed, and non-
linear manner. It should also be noted that this in silico patient presented an advantage
in its rapid simulation of hypnotic episodes. Reinforcement learning is inherently a process
of statistical estimation, and a large number of training episodes were needed to learn the
control policy and achieve clinical readiness.

3.2.1 Modeling Propofol Effect

Propofol pharmacokinetics were simulated using a three-compartment model (Schnider
et al., 1998), a system which uses central, rapid, and slow compartments to estimate the
time-dependent distribution of propofol within the human body. In this model, propofol is
introduced into the central compartment via intravenous infusion; the drug is then free to
interact with the rapid and slow compartments through first-order, gradient-driven trans-
port. These compartments, which represent collections of tissues with high and low propofol
transport coefficients, were derived from empirical observations and sometimes lack direct,
obvious mapping to actual physiological systems.

Figure 2 illustrates the Schnider model and its transport coefficients, which vary with
patient height, weight, gender, and age. As shown, the coefficients are subscripted to
indicate direction of flow (from, to) since the coefficients may differ directionally, that is, the
central-to-slow coefficient (kcs) differs from the slow-to-central coefficient (ksc). Metabolic
losses of propofol are represented in kc0, establishing the only means of absolutely reducing
propofol concentration. This limitation presented a substantial challenge, the agent was
required to learn that inaction (realized as a zero propofol infusion rate) was the only
means of decreasing hypnosis and increasing BIS.

In prior clinical study, an infusion of propofol averaged a 2.7-minute time-to-peak effect
in BIS (Schnider et al., 1998). Accordingly, our PK model was augmented with a fourth
effect site compartment. The resulting transport coefficient, ke0 = 0.17, accounted for the
delay between infusion and BIS effect, which included physiological delay (mixing, circula-
tory, etc.) and BIS measurement delay (Doufas et al., 2004). The effect-site compartment
was assumed to possess negligible volume when modeling propofol distribution.

To model the hypnotic effect of propofol, a nonlinear pharmacodynamic model was
developed using previously obtained data (Doufas et al., 2004). A three-layer perceptron

665

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

Central RapidSlow

Infusion

Metabolism

kc0 ke0

kcs

ksc

kcr

krc

Effect Site

Figure 2: Schnider’s pharmacokinetic model of propofol is based on the three-compartment
mammalian model of pharmacokinetic action. Propofol is infused into the cen-
tral volume through intravenous infusion. Concentration gradients then drive
transport to the rapid and slow compartments, so named for their relative uptake
rates. The site of propofol effect is modeled as an additional “virtual compart-
ment” of infinitesimal volume in order to model observed delays between infusion
and hypnotic effect.

0 5 10 15
20

40

60

80

100

Propofol Concentration (µg/ml)

B
IS

Figure 3: Doufas et al. observed the propofol/BIS response in eighteen young, healthy
volunteers (2004). To model propofol pharmacodynamic effect for this study,
a neural network function approximator was used to fit the median dose curve
(highlighted here).

network was trained to associate arterial concentrations of propofol with observed BIS,
thereby allowing the model to generally predict propofol effect from estimated effect site
concentration. Figure 3 illustrates the observations of BIS and propofol concentration, as
well as the median fit approximated by the neural network. The nonlinear relationship of
propofol effect-site concentration to BIS is evident.

666

Reinforcement Learning for Closed-Loop Propofol Anesthesia

3.2.2 Knowledge Representation

During control, the RL agent is expected to observe the patient’s state and then select the
appropriate propofol dose using its control policy. To learn that optimal control policy,
the agent accumulated its experience in value functions, mathematical descriptions of state
utility commonly denoted as V (s)∀s ∈ S. Knowledge of V alone is not sufficient for
optimal decision-making since this function only expresses the utility of an observed state.
For control, it is also necessary to identify an action choice that can move the patient to
more favorable conditions (or preserve existing favorable ones). In RL, the state-action
value function, Q (s, a) ∀s ∈ S, ∀a ∈ A, provides the necessary information for rational
action selection. With Q, an RL agent can assess the utility of a patient state and then
identify the proper infusion rate to achieve optimality for that state.

Initially, Q is unknown. The discovery of Q (learning) is accomplished through iterative
function approximation. Consequently, Q must be represented in a form suitable for compu-
tational inspection and adjustment. Tables, decision trees, neural networks, and weighted
polynomials have been used for this purpose in the literature. Of these, the uniformly dis-
cretized table is favored for its ease of implementation and mathematical robustness (Boyan
and Moore, 1995; Baird, 1995).

In this study, state value (Q) functions were represented in a six-dimensional table. The
agent’s percepts, represented by the feature vector f , were mapped to a finite set of states
S through uniform discretization. Recall that f consisted of six fuzzy state membership
values (real numbers in the range [0, 1]). To obtain a state observation Si for a feature fi,
each dimension of the feature vector was partitioned into ten uniformly distributed bins,
yielding a value function approximator with 106 entries. To permit identification of the
optimal propofol infusion rate for all possible patient states, one such tabular function
approximator was associated with each of the agent’s actions.

3.2.3 Learning Algorithm

Watkins’ Q-learning algorithm, a temporal-differencing learning method characterized by
model-free, off-policy learning, was used to train the agent (Watkins, 1989). Q-learning is
mathematically robust (Tsitsiklas and Van Roy, 1996; Dayan, 1992), and this robustness
has contributed to the method’s popularity in applied reinforcement learning. To acceler-
ate learning, an improved form of Q-learning, called Q(λ), was applied in this study. This
algorithm assimilates experience more quickly through extended temporal credit assign-
ment. Whereas the one-step version considers only the previous action step when updating
Q (st, at), the improved version credits an historical chain of action selections. The “length”
of this chain is governed by λ, which was set to the recommended value of 0.8 (Sutton and
Barto, 1998).

3.2.4 Control Policy Identification

Watkins’ Q-learning does not directly yield an optimal control policy. The algorithm only
develops an approximation of the state-action value function, Q. However, the optimal
control policy is trivial to determine once Q has been discovered. For each patient state s,

667

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

the optimal action choice a?(s) may be expressed as:

a?(s) = argmax
a

Q (s, a) ∀a ∈ S.

As a result, a state’s optimal action may be represented as an integer number that indexes
the ordered set of actions A. Since the control policy identifies the best action choice for all
patient states, the complete control policy may be represented as a six-dimensional table of
these indices.

3.2.5 Training

Agent training consisted of a sequence of simulated hypnosis episodes using a standardized
intraoperative patient prototype (male, 21 yr, 170 cm, 75 kg). To aid in learning a general
association of propofol infusion and patient response, the patient’s ke0 was randomly selected
[0.17 ± 25%] at the beginning of each episode. This perturbation, of which the agent
remained unaware, influenced the timing and magnitude of peak BIS effect.

To ensure sufficient exploration of the state-action space, each episode began with an
exploring start in which a BIS target was randomly selected, and random propofol quantities
were assigned to the three major PK compartments (Section 3.2.1). The agent was then
permitted to interact with the patient and accumulate reinforcements for 1,000 consecutive
action choices (5,000 simulated seconds). At the conclusion of an episode, a new one began
with a newly randomized patient state.

Training began with a step-size parameter α= 0.2, horizon parameter γ= 0.69, and an
exploration parameter ε = 0.01.4 To assess the progress of learning, the sum of squared
difference (SSD) was computed between intermediate control polices. When the SSD met-
ric fell below a small threshold θ, α was halved, and learning resumed. This procedure
continued until α measured 10−5 or less. In total, training required 5×107 episodes over
approximately one week of CPU time on a contemporary desktop computer.

3.3 In silico Control Policy Evaluation

Prior to clinical application, the agent was evaluated in simulation to assess the fitness of
the agent and its control policy. Although the agent was trained using an ideal simulated
patient (fixed demographic parameters and near-ideal PK/PD characteristics), an actual
surgical patient was not expected to present so favorably. Because intraoperative patients
vary in height, weight, age, and gender (and other attributes), their PK/PD responses to
propofol cannot be so neatly characterized.

To challenge the agent in a more realistic manner, the patient model illustrated in
Figure 4 was modified to express patient-specific variation. The first point of individual
variability was found in simple demographics. Schnider reported lean body mass, age, and
gender to be significant covariates in propofol pharmacokinetic response (Schnider et al.,
1998). Accordingly, the RL agent was tested on simulated patients with a range of demo-
graphic parameters. Since the Schnider model considers these parameters in its estimation
of propofol distribution, demographic variation was not judged sufficient challenge for the
agent.

4. For a more thorough discussion of these parameters and their import, see Moore et al. (2011b).

668

Reinforcement Learning for Closed-Loop Propofol Anesthesia

For additional challenge, the ideal PK and PD models were perturbed in ways mimicking
the variation routinely observed in the operating room. A few quantitative (Röpcke et al.,
2001b; Schnider et al., 1999, 1998; Bailey et al., 1996) and qualitative (Kearse Jr. et al.,
1994; Ausems et al., 1986) descriptions of intraoperative patient variability may be found
in the anesthesia literature. Taken collectively, evidence suggests that individual patient
variation may be expressed as deviation in propofol pharmacokinetics (Gentilini et al., 2000;
Schwilden et al., 1987) or pharmacodynamics (Struys et al., 2004, 2001).

In this study, individualized response in the simulated intraoperative patient was achieved
with a Patient Variability Model (PVM), a mechanism for perturbing the patient’s PK/PD
in a manner removed from the agent’s direct observation (illustrated in Figure 7). The PVM
was implemented as two distinct components: one which affected the ideal pharmacokinetics
(PKPVM), and one which perturbed ideal pharmacodynamics (PDPVM).

3.3.1 Pharmacokinetic Variation

The anesthesia literature provides evidence that patients commonly exhibit pharmacoki-
netic variation. Gepts observed: “When individuals are given identical doses per kg of
body weight, large differences in pharmacological response may be seen” (Gepts, 1998, 10)
and “Pharmacokinetic variability is much greater in sick compared with healthy people. . . ”
(Gepts, 1998, 11). The findings of Doufas et al. support those observations of variability.
In a propofol pharmacokinetic study of 18 healthy volunteers, ke0 was determined to be
0.17 min−1 (range [0.08, 0.25] min−1) (Doufas et al., 2004). To model this source of patient
variation, the PKPVM block varied ke0 in conjunction with variation in patient demograph-
ics.

Figure 5 illustrates the effect of ke0 variation in simulated patients. A bolus of propofol
was applied at t = 0 min and allowed to distribute under the Schnider pharmacokinetic
model at the selected ke0 values. As shown, larger ke0 coefficients represented more “tightly
coupled” systems in which propofol was transported to the effect site more readily, resulting
in deeper hypnosis for a given dose. For emphasis, Figure 5 highlights the minimum hypnotic
levels, as well as the times of their occurrence. While the time of peak effect varied by
approximately 25 seconds, the range in peak effect varied by more than 20 points, a range
that can span the clinically meaningful endpoints of light to deep hypnosis (as measured by
BIS).

3.3.2 Pharmacodynamic Variation

Other sources of patient variation were better modeled as perturbations in propofol phar-
macodynamics (i.e., effect, rather than distribution). For example, propofol sensitivity or
tolerance may be modeled intuitively as a respective heightened or attenuated pharmacody-
namic response to a given concentration of propofol. Exogenous factors, such as measure-
ment noise and surgical stimuli, can not be reasonably expected to alter the pharmacokinetic
distribution of propofol within the patient; however, these influences may directly alter the
hypnotic action of the drug.

The role of the PDPVM block was to model those factors best expressed as change in phar-
macodynamics. The PDPVM block accomplished this by decomposing pharmacodynamic
variability into three classes: propofol sensitivity, intraoperative stimuli, and measurement

669

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

Figure 4: This figure illustrates the agent and its relationship to the simulated intraopera-
tive patient used for training. The agent observed two external inputs, BIStarget

and BISmeasured, to compute the control error (BISerror) and the change in con-
trol error over time (∆BISerror). The intraoperative patient was modeled with
near-ideal propofol PK/PD parameters.

0 1 2 3 4 5
40

50

60

70

80

90

100

Time (min)

B
IS

2.83 min

76.5 BIS
ke0 = 0.1275

2.58 min

64.3 BIS

ke0 = 0.17

2.42 min

54.4 BIS

ke0 = 0.2125

Figure 5: To demonstrate the variation associated with changes in ke0, a bolus of propofol
was delivered to a simulated patient, and distribution of propofol was modeled
over time. For comparison, ke0 was selected at values of 0.17, 0.1275 (0.17-25%),
and 0.2125 (0.17+25%). The points of peak BIS effect and their associated times
are highlighted.

noise. The simulated patient’s ideal BIS was then perturbed with a sum of time-dependent
and independent combinations of these factors.

670

Reinforcement Learning for Closed-Loop Propofol Anesthesia

Modeling changes in propofol sensitivity begins as a straightforward process. In the
tolerant patient, a given concentration of propofol may produce higher-than-expected BIS
levels (more conscious than predicted). Conversely, lower-than-expected BIS levels may
be observed in the patient with increased propofol sensitivity (less aware than predicted).
In the evaluation of the RL agent, these differences were considered as a constant bias
in pharmacodynamic effect. This time-independent parameter, denoted as ∆BISi

static, was
implemented as an additive factor, ≥ 0 in the resistant patient and ≤ 0 in the sensitive
patient.

A credible model of propofol sensitivity should also consider exogenous sources of vari-
ation, one of which is noxious surgical stimuli. When studying patient variation, it is
reasonable to conclude that some surgical procedures are more painful than others. For
example, in a common heart procedure, such as the coronary artery bypass graft (CABG),
the patient’s chest is opened with an approximate six-inch incision, and the sternum is sepa-
rated for access to the heart. Compare this procedure to the arthroscopic repair of a rotator
cuff injury and its small 1-cm incisions. Intuitively, the degree of noxious stimulation in the
CABG procedure is expected to exceed that of rotator cuff repair. Ausems et al. support
this expectation in a report that found upper abdominal procedures required more analge-
sia than other smaller procedures (Ausems et al., 1986). Likewise, intraoperative stimuli
were correlated to increased analgesic requirements in patients undergoing lower abdom-
inal gynecologic, upper abdominal, and breast surgery. From these observations, as well
others (Barvais et al., 1996), it is reasonable to conclude that some surgical procedures are
inherently more noxious than others. Accordingly, the time-independent positive constant
∆BISs

static was used to denote this persistent noxious surgical stimulus.

Noxious stimulus may also be presented in a time-dependent manner. Absalom observes,
“It is not always possible to predict when a surgeon will suddenly inflict a noxious stimulus
on the patient. . . ” (Absalom et al., 2002, 73). Ausems et al. reported that different intra-
operative stimuli, including tracheal intubation, skin incision, and closure, required different
levels of analgesia to maintain satisfactory anesthesia (Ausems et al., 1986). More recently,
decreases in hypnotic level have been associated with surgical stimulation (Röpcke et al.,
2001b), while increases in bispectral index have been correlated with skin incision (Kearse
Jr. et al., 1994). Ausems et al. also observed that “single short-duration” stimuli, such as
skin incision, required higher concentrations of opioid analgesic to ensure adequate anes-
thesia (Ausems et al., 1986). Given these observations, the short-duration surgical stimulus
can reasonably be considered a transient perturbation in propofol pharmacodynamics that
presents as a temporary decrease in hypnosis.

The effects of intraoperative stimuli are not limited to arousal events, those that decrease
hypnotic effect. Röpcke found that concomitant administration of propofol and remifentanil
(an opioid analgesic) resulted in lower than expected measurements of bispectral index in
the intraoperative patient (Röpcke et al., 2001a). Whereas the noxious stimulus could
be viewed as transient propofol tolerance, this synergistic drug interaction may present as
temporarily heightened propofol sensitivity. These depressive events pose a unique challenge
for hypnosis control since the agent cannot directly intervene and reduce the patient’s
propofol concentration.

During in silicon verification of the RL agent, irregular transient stimuli were presented
to the agent to evaluate its ability to handle the dynamic conditions commonly found in the

671

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

intraoperative patient. To challenge the agent in an unpredictable manner, the duration,
timing, and intensity of the short-duration stimuli were randomly chosen. In addition, the
“direction” of challenge was randomized. A positive magnitude, which simulated an arous-
ing event, was chosen with probability 0.8. Depressive events were chosen with probability
0.2. For this study, the time-dependent affect on patient pharmacodynamics was denoted
as ∆BISdynamic(t), where t indicated time dependence.

Finally, BIS is intrinsically noisy since the underlying EEG is a low-power signal re-
quiring amplification for adequate measurement (as discussed previously). Prior study has
modeled this noise as a stationary, normally-distributed signal (µ = 0, σ = 3) (Struys et al.,
2004). We modeled BIS measurement noise in accordance with this precedent.

In summary, the PVM modeled individual patient variability with changes in propofol
pharmacokinetics and pharmacodynamics that remained hidden from agent observation.
The PKPVM component modeled changes in ke0, while the PDPVM block modeled changes
in propofol sensitivity (∆BISPVM) as a sum of time-dependent and time-independent pa-
rameters (Moore et al., 2009). The cumulative PVM influence can thus be summarized
as:

∆BISstatic = ∆BISi
static + ∆BISs

static,

∆BISPVM (t) = ∆BISstatic + ∆BISdynamic(t) +N (0, 3),

BISmeasured(t) = BISideal(t) + ∆BISPVM (t).

3.4 Assessment of Agent Performance

The clinical study protocol included performance analysis of RL control under steady-
state (maintenance of hypnosis) and non-steady-state conditions (induction of hypnosis
and change in BIStarget). In the clinical practice of anesthesia, precise control has less
value during non-steady-state periods. Conditions that a control engineer might consider
unfavorable, like target overshoot, are expected during a manual induction as the clinician
seeks to quickly achieve the desired target. Because the agent’s principal goal of fine control
is less relevant during induction, performance analysis of this interval has been omitted from
this discussion.

3.4.1 Evaluation Population

To evaluate the agent’s ability to provide well-controlled propofol hypnosis in a diverse pop-
ulation, a set of 1,000 individualized patients was generated in silico. Control performance
was assessed over one episode of hypnosis for each of these individualized patients. In each
episode, the agent was first presented a fully conscious patient and then tasked with achiev-
ing and maintaining propofol-induced hypnosis for 240 minutes, an interval that the clinical
team considered representative. During the episode, BIS targets were randomly selected
(without replacement) from the set {40,50,60}. Once selected, a target remained in effect
for 80 minutes.

3.4.2 Maintenance Interval Identification

Although the induction interval is not addressed in this discussion, induction, along with
BIS target change events, delimit the maintenance control intervals. The first maintenance

672

Reinforcement Learning for Closed-Loop Propofol Anesthesia

interval began with the completion of anesthetic induction. The induction period began
when RL control was engaged to induce anesthesia in the conscious simulated patient (BIS
≈ 95). Induction continued until steady-state conditions, as defined by O’Hara et al.,
were observed at the selected target (1992). (The O’Hara metrics include Tsp = Time to
Setpoint,Tpeak = Time of Peak BIS, Tsp = Time to Steady State, and BISpeak =BISmeasured

at Tpeak.) This steady-state point, identified as Tss in Figure 6, marked the beginning of
the first maintenance control interval. The maintenance interval continued until the time
of BIS target change, denoted as Tss + 80 min, or ∆BIStarget.

The beginning of the next maintenance period was delineated similarly since the con-
ditions at target transition resembled those at induction. After a step change in BIStarget,
the agent acted to reestablish control and achieve steady-state conditions at the new tar-
get. Accurate identification of the new steady state was slightly complicated. High-to-low
target changes (i.e., BIStarget=60 to BIStarget=40) directly compared to induction, while
low-to-high changes (i.e., BIStarget=40 to BIStarget=50) resembled induction in an inverted
sense. Once the new Tss was achieved, the second maintenance control interval continued
until the second target change.

The beginning of the third maintenance period was handled just as the second mainte-
nance period. However, this control period was terminated by the end of automated control.
Propofol infusion was discontinued, and the virtual patient was allowed to recover normal
consciousness.

3.4.3 Performance Metrics

The steady-state control performance was evaluated using the four metrics of Varvel et al.
(1992), which comprise the standard performance measures in closed-loop infusion control.
These metrics build upon the instantaneous performance error (PE):

PE =
BISsmoothed −BIStarget

BIStarget
· 100. (2)

The first metric, the median performance error (MDPE), indicates the control bias observed
in a single patient and is computed as

MDPEi = median (PEij) j = 1 . . . N, (3)

where i identifies a subject, and j iterates over the set of PE measurements for a subject.
Median absolute performance (MDAPE) error reflects the accuracy of the controller in a
subject:

MDAPEi = median (|PEij |) j = 1 . . . N. (4)

Wobble measures the intra-subject variability in performance error:

Wobblei = median (|PEij −MDPEi|) j = 1 . . . N. (5)

Divergence is defined as the slope of the regression line computed through the observed
MDAPE measurements. Positive values indicate an increasing difference in measured and
target values; a negative divergence indicates more stable control.

673

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

0 2 4 6 8 10
40

50

60

70

80

90

100

Time (min)

B
IS

BIStarget

Tsp TssTpeak

BISpeak = 53.2

Figure 6: During analysis of control performance, the dynamic performance parameters
Tsp,Tss, Tpeak, and BISpeak first reported by O’Hara et al. (1992) were program-
matically identified to precisely delineate the maintenance control periods.

In addition to the Varvel metrics, contemporary studies of closed-loop anesthesia report
the Controlled metric, the percentage of measurements in which the measured BIS was
observed to be within ± 10 BIS (Struys et al., 2004) or ± 5 BIS (De Smet et al., 2008) of
target. As an additional performance comparator, this study also reports the root-mean-
square error (RMSE) computed for each maintenance control interval.

3.4.4 Acceptance Criteria

The anesthesia literature does not provide a definitive guideline for clinically suitable control
of propofol-induced hypnosis, but a survey of three contemporary studies (De Smet et al.,
2008; Struys et al., 2004; Absalom and Kenny, 2003) provides some reasonable performance
goals (Table 2). These performance objectives should be interpreted carefully since specific
values of these measures have not been correlated to favorable clinical outcomes. In other
words, no study strongly indicates that an MDPE of 5% is x times better than an MDPE of
10%. In the absence of such data, we aimed for performances levels that surpassed reported
values by reasonable margins.

3.4.5 Simulation Results

As indicated by comparison of observed performance and respective targets (Tables 2 and 3),
the median values for all observed steady state parameters met their respective acceptance
criteria. MDPE, MDAPE, Wobble, Divergence, and RMSE all presented values below the
respective requirements. (Note the change in units in the Divergence measure.) Likewise,
the Controlled metric was above its minimum threshold. These results suggested that the
RL agent was suitable for evaluation in healthy volunteers. However, no definitive conclusion
could be drawn since the accuracy of the Patient Variability Model was not verified prior

674

Reinforcement Learning for Closed-Loop Propofol Anesthesia

Figure 7: This figure illustrates the agent and its relationship to the simulated intraoper-
ative patient used for evaluation. Like the training system, the agent relied on
BIStarget and BISmeasured to compute control error, as well as change in control
error. Unlike the training system, the intraoperative patient presented variable
propofol PK/PD responses.

Time (min)

T0 Tss1

Nominal
Control

Nominal
Control

Tss1+15

Challenge

Tss2

∆BIStarget

Nominal
Control

Tss2+15

Challenge

Nominal
Control

Tss2+30

Figure 8: Induction (T0) marked the beginning of the first BIS target evaluation period.
Nominal control periods, as well as the surgical challenge, were scheduled in
relation to Tss1 (the time at which steady-state control was observed). Control
continued to the maintenance interval’s end at (Tss1 + 30) min. At that time, a
new BIStarget was selected (labeled ∆BIStarget here) and a second, similar event
schedule was observed. Recovery began at (Tss2 + 30) min after automated
control was discontinued.

to this study. After review of the simulation protocol and results, the principal clinical
investigator granted approval for human study.

675

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

Parameter Criterion

MDPE‡ ± 5.0
MDAPE‡ 7.5
Wobble‡ 5.0
Divergence? ± 0.001
Controlled‡� 80
RMSE§ 5.0

‡(%), ?(%/hr), §(BIS)
� Percentage of time within ±5 BIS of target.

Table 2: Steady state performance acceptance criteria

Parameter Observation

MDPE‡ -0.17 (-0.50, 0.25)
MDAPE‡ 3.33 (3.17, 3.50)
Wobble‡ 3.30 (3.13, 3.50)
Divergence? 0.001 (-0.001, 0.003)
RMSE§ 2.79 (2.58, 3.07)
Controlled‡� 82.4 (80.6, 84.0)

median (IQR) ‡(%), ?(%/hr), §(BIS)
� Percentage of time within ±5 BIS of target.

Table 3: Simulated steady-state performance metrics

3.4.6 Clinical Application of RL Control

After IRB approval in the Stanford University School of Medicine, we recruited fifteen
healthy (BMI ≤ 25 kg/m2, 18–45 yr) volunteers. The clinical study was conducted in an
operating room in the Stanford University Medical Center under informed consent. To
facilitate clinical study, a custom data collection and control system, dubbed Reagent , was
developed. The hypnosis control hardware consisted of a standard desktop computer, an
A-2000 BIS monitor (Covidien, Mansfield, MA), and a Harvard Pump 33 dual syringe pump
(Harvard Apparatus, Holliston, MA). The software consisted of a graphical user interface
for clinician use, an embedded RL agent for propofol dosing, and various other modules for
BIS monitor and syringe pump communication.

Volunteers fasted for at least six hours prior to the study and their vital signs were
monitored according to the standards of the American Society of Anesthesiologists (ASA).
After placement of the monitors, an intravenous catheter was inserted at the elbow for
agent-directed propofol infusion. The study began when the anesthesiologist engaged RL
control to achieve a randomly selected initial target (40 or 60). Once BIStarget was achieved,
the agent was permitted to regulate the level of hypnosis undisturbed for 15 minutes. A
tetanic stimulus was then administered to the volunteer’s thigh to simulate a noxious,
destabilizing surgical event. Control was allowed to continue for an additional 15 minutes

676

Reinforcement Learning for Closed-Loop Propofol Anesthesia

(see Figure 8). At that time, the agent was directed to achieve the second BIStarget. Once
the volunteer had stabilized at the second target, a similar procedure of maintenance and
stimulus followed. Finally, automated hypnosis control was disengaged, and the volunteer
was allowed to recover normal consciousness.

3.4.7 Performance Analysis

The agent’s steady state control performance was assessed using the same procedures ap-
plied in the in silico evaluation. Automated tools identified induction, maintenance, and
target change intervals. Maintenance intervals were then scored using the methods applied
in the in silico performance analysis (Equations 2–5). The BIStarget =40 and BIStarget =60
control periods were evaluated independently and then in aggregate form.

The expected infrequency of BIS target change and relatively short duration between
targets place the importance of transition control performance below maintenance perfor-
mance; however, well-controlled behavior during BIS target change remains valued since the
patient’s need for hypnosis may vary over the course of the surgical procedure. In response,
the dynamic O’Hara metrics are also presented in order to more thoroughly characterize
the agent’s control abilities. As discussed previously, these metrics were programmatically
determined to identify maintenance intervals and were readily available.

4. Results

This section tabulates the study’s observations. Results were grouped into three primary
sets for analysis: Target 40 Maintenance, Target 60 Maintenance, and Aggregate Mainte-
nance. The subordinate transition control metrics are reported, as well.

4.1 Volunteers

Fifteen healthy volunteers (11 males and 4 females) were recruited for the study of agent-
guided propofol hypnosis. Table 4 presents the observed demographic parameters, and
Table 5 summarizes those parameters. As the tables show, the volunteer population ap-
peared to be young, healthy (ASA I), and predominantly male—characteristics reflecting
the student population with ready access to study recruitment postings.

4.2 Target 40 Maintenance Control Metrics

Figure 9 graphically illustrates the BISmeasured and BISpredicted values observed in each of
target 40 episodes. The X-axes have been standardized to a 30-minute window. Note
that the duration of an episode did not always equal 30 minutes due to timing differences
between events hand-marked during the study and the more rigorous, post-study automated
segmentation. The Y-axes have been standardized to a 60-BIS interval.

Some immediate observations can be made from Figure 9. The vertical black line in-
dicates the time at which the tetanic stimulus was applied. Volunteers 5, 6, 7, 14, and 15
showed clearly distinguished arousal responses to noxious stimuli. The figure also highlights
notable behavior in the predicted BIS. In most Target 40 episodes, BISpredicted demonstrated
marked deviation from the observed BIS (BISmeasured). The degree of mis-prediction var-
ied with volunteer, and prediction error appeared to vary within individual volunteers in a

677

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

ID Gender Age Weight Height BMI
(yr) (kg) (cm) (kg/m2)

01 Male 21 84.0 183 25.1
02 Male 18 63.6 173 21.2
03 Male 20 69.0 178 21.8
04 Male 20 77.0 185 22.5
05 Male 18 61.4 175 20.1
06 Female 19 50.0 152 21.5
07 Male 22 77.3 178 24.4
08 Female 26 56.8 163 21.4
09 Female 19 61.4 163 23.1
10 Male 21 75.0 188 21.2
11 Male 19 70.5 180 21.7
12 Male 25 82.0 183 24.5
13 Male 20 61.4 175 20.0
14 Male 24 60.0 173 20.1
15 Female 19 59.1 168 20.9

Table 4: Human subject demographics

Age Weight Height BMI
(yr) (kg) (cm) (kg/m2)

20.7± 2.5 72.2± 10.0 174.5± 9.6 22.0± 1.6

Mean ± SD n = 15 (nmale = 11, nfemale = 4)

Table 5: Human subject demographic summary

time-dependent manner. No obvious systematic bias is evident; the model over-predicted
in some volunteers but under-predicted in others.

Table 6 presents the observed Target 40 control metrics for each volunteer. The metrics
are generally indicative of good control; however, two notable exceptions appear in the
table. First, Volunteer 2’s control metrics stand out as outliers. In this case, the volunteer
exhibited strong bouts of coughing at Target 40. Although signs of illness were not obvious
prior to study, the volunteer admitted to “having a cold” in a post-study interview. Likewise,
Volunteer 11’s study duration is anomalous; this Target 40 interval was abbreviated due to
mis-configuration of the syringe pump after a fresh syringe was loaded.

4.3 Target 60 Maintenance Control Metrics

Figure 10 follows the format of Figure 9 in illustrating the BIS values observed in the
Target 60 episodes. As before, the vertical black line indicates the point of tetanic stimulus.
Volunteers 4, 5, 6, 7, 8, 13, 14, and 15 show responsive arousal behavior. Not unexpectedly,
more volunteers exhibited obvious stimulus responses at this lighter hypnosis level. Table 7

678

Reinforcement Learning for Closed-Loop Propofol Anesthesia

ID Target Duration MDPE MDAPE Wobble Divergence RMSE Controlled
Order (min) (%) (%) (%) (%/hr) (BIS) (%)

01 2 39.5 -3.5 11.0 10.5 -0.0002 6.5 56.8
02 1 26.1 17.2 17.2 7.2 0.0002 9.4 27.7
03 2 25.4 -0.1 11.2 11.1 0.0002 5.9 59.5
04 1 28.2 2.0 9.8 9.9 -0.0002 5.6 60.9
05 2 30.3 5.5 15.0 15.5 0.0004 8.4 42.2
06 1 36.3 1.8 6.8 7.0 -0.0001 4.9 77.6
07 2 30.2 -4.8 7.0 6.6 0.0004 5.1 69.8
08 1 30.2 -2.0 6.5 6.0 0.0002 3.9 81.3
09 2 30.8 2.0 10.2 10.5 0.0002 6.0 59.6
10 1 35.4 5.1 10.5 10.4 -0.0006 7.6 59.2
11 2 17.2 0.5 6.5 6.2 0.0004 4.5 72.0
12 1 29.6 -1.2 5.7 5.5 0.0001 3.6 84.3
13 1 32.9 2.2 8.8 7.8 -0.0005 5.4 67.2
14 1 30.6 -0.3 8.0 8.1 -0.0003 5.0 69.8
15 2 30.5 -6.0 8.8 7.0 0.0001 5.1 67.6

Table 6: Observed performance at BIStarget=40

ID Target Duration MDPE MDAPE Wobble Divergence RMSE Controlled
Order (min) (%) (%) (%) (%/hr) (BIS) (%)

01 1 27.7 -1.0 1.4 1.5 0.0003 3.5 89.8
02 2 29.2 1.3 2.8 2.5 0.0001 3.1 90.3
03 1 24.6 0.7 3.2 3.2 0.0000 2.7 94.9
04 2 30.7 0.7 2.5 2.2 0.0000 2.2 97.8
05 1 30.6 -1.8 4.2 3.8 0.0003 4.6 77.4
06 2 32.2 0.6 4.0 3.8 0.0001 4.5 79.6
07 1 29.0 -0.7 2.8 2.7 0.0001 2.8 91.1
08 2 33.4 -0.7 4.5 4.7 0.0001 5.2 71.4
09 1 27.7 2.8 4.3 3.0 0.0000 4.0 80.8
10 2 30.0 0.2 3.5 3.5 0.0000 3.7 82.5
11 1 35.0 0.2 1.8 2.0 -0.0002 3.8 89.1
12 2 31.0 1.7 3.3 2.7 -0.0001 3.1 89.5
13 2 30.6 0.8 2.3 2.2 -0.0001 2.6 92.1
14 2 29.5 -2.3 6.7 5.7 0.0000 5.8 59.7
15 1 30.4 0.2 4.0 3.8 0.0001 4.2 79.5

Table 7: Observed performance at BIStarget=60

679

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

01

20

50

80 02 03 04 05

07 08

B
IS

06

20

50

80 09 10

11

0 15 30
20

50

80 12

0 15 30

14

0 15 30

15

0 15 30

Time (min)

13

0 15 30

Measured BIS Predicted BIS Target BIS

?Volunteer 11’s episode was interrupted due to misconfiguration of the syringe pump.

Figure 9: The figure presents the observed BIS measurements at BIStarget=40. The X-
axis represents a 30-minute window of time, and the Y-axis represents a 60-BIS
interval. Each plot is labeled with the respective volunteer ID, and the vertical
black line identifies the time of noxious stimulus. As shown, Volunteers 5, 6, 7,
14, and 15 demonstrated clear arousal responses to noxious stimulus.

presents the observed Target 60 control metrics for each volunteer. All of these metrics
indicative of good hypnosis control. It should also be noted that these results are similar to
those reported in the simulation (Table 3). Like the Target 40 observations, the Target 60
cases displayed varying degrees of PK/PD model mis-prediction. No systematic bias was
detected.

4.4 Aggregate Maintenance Control Metrics

Table 8 presents each volunteer’s aggregate control results. These metrics were computed
by pooling the Target 40 and Target 60 observations to produce a set of global control
measures. Table 9 summarizes the control metrics of the three groups (Target 40, Target
60, and Aggregate) with basic descriptive statistics. As shown, the mean aggregate control
metrics exceed the desired performance levels presented in Table 2. The individual results
were mixed: performance at BIStarget=60 met the desired goals by comfortable margins,
while performance at BIStarget=40 narrowly missed desired levels in the Controlled and
Wobble metrics.

4.5 Target Transition Metrics

Table 10 presents the observations obtained at changes from BIS Target 60 to Target 40.
This high-to-low target change presented the most direct transition, and these observations
were consistent with those observed in simulation. Table 11 presents the observations

680

Reinforcement Learning for Closed-Loop Propofol Anesthesia

ID Duration MDPE MDAPE Wobble Divergence RMSE Controlled
(min) (%) (%) (%) (%/hr) (BIS) (%)

01 67.2 -2.5 7.0 6.8 0.0000 5.3 70.5
02 55.3 8.8 9.6 4.7 0.0001 6.1 60.8
03 50.0 0.3 7.3 7.2 0.0001 4.3 76.9
04 59.0 1.3 6.0 5.9 -0.0001 3.8 80.1
05 60.9 1.8 9.6 9.6 0.0004 6.5 59.9
06 68.6 1.2 5.5 5.5 -0.0000 4.8 78.5
07 59.2 -2.8 5.0 4.7 0.0003 4.0 80.2
08 63.6 -1.3 5.4 5.3 0.0002 4.6 76.1
09 58.6 2.4 7.4 6.9 0.0001 5.1 69.6
10 65.4 2.9 7.3 7.2 -0.0003 5.8 69.9
11 52.2 0.3 3.4 3.4 -0.0000 4.0 83.4
12 60.6 0.2 4.5 4.1 0.0000 3.3 87.0
13 63.5 1.6 5.7 5.1 -0.0003 4.1 79.2
14 60.1 -1.3 7.3 6.9 -0.0002 5.4 64.9
15 60.9 -2.9 6.4 5.4 0.0001 4.6 73.5

Table 8: Observed aggregate maintenance performance

BIStarget BIStarget Aggregate
40 60

Duration† 30.2± 5.2 30.1± 2.5 60.3± 5.1
MDPE‡ 1.0± 5.6 −0.2± 1.2 0.4± 3.0
MDAPE‡ 7.4± 3.5 2.8± 1.2 5.1± 1.7
Wobble‡ 6.2± 2.6 2.6± 1.2 4.5± 1.5
Divergence? < 0.001 < 0.001 < 0.001
RMSE§ 4.5± 1.7 2.9± 1.1 3.7± 0.9

Controlled‡ 79.0 92.8 85.5
(70.9, 89.0) (83.3, 100.0) (72.9, 88.5)

Mean ± SD n=15 †(min), ‡(%), ?(%/hr), §(BIS)

Median (IQR)

Table 9: Summary of observed maintenance performance

681

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

30

60

90 01 02 03 04 05

30

60

90

B
IS

06 07 08 09 10

30

60

90 11

0 3015

12

0 3015

Time (min)

13

0 3015

15

0 3015

14

0 3015

Measured BIS Predicted BIS Target BIS

Figure 10: The figure presents the observed BIS measurements at BIStarget=60. The X-
axis represents a 30-minute window of time, and the Y-axis represents a 60-BIS
interval. Each plot is labeled with the respective volunteer ID, and the vertical
black line identifies the time of noxious stimulus. As shown, Volunteers 3, 5, 6,
7, 8, 13, 14, and 15 demonstrated clear arousal responses to noxious stimulus.

Vol Tsp Tpeak Tss BISpeak

(min) (min) (min) (BIS)

1 2.04 4.62 7.62 11.13
3 2.46 4.21 4.79 6.49
5 1.47 2.30 3.13 14.87
7 2.84 4.42 5.92 5.13
9 2.61 3.61 4.44 10.88
11 3.24 3.74 4.24 3.14
15 2.67 4.76 6.34 6.12

2.47± 0.57 3.95± 0.84 5.21± 1.51 8.25± 4.13

Mean ± SD n=7

Table 10: Observed transition performance: Target 60 to 40

associated with changes from BIS Target 40 to Target 60. All three time measurements
exceed those high-to-low transition observations by notable margins. These observations
may be initially interpreted as evidence of the previously-discussed asymmetrical control
influence.

682

Reinforcement Learning for Closed-Loop Propofol Anesthesia

Vol Tsp Tpeak Tss BISpeak

(min) (min) (min) (BIS)

2 7.13 8.13 8.13 1.29
4 11.25 12.09 14.25 14.22
6 11.19 11.94 16.61 13.06
8 11.39 12.36 14.86 15.91
10 10.79 12.54 14.20 13.66
12 10.84 12.17 14.26 10.36
13 6.58 7.58 7.58 2.10
14 8.59 8.92 9.59 0.38

9.72± 1.99 10.71± 2.11 12.43± 3.45 8.87± 6.51

Mean ± SD n=8

Table 11: Observed transition performance: Target 40 to 60

5. Discussion

This section presents additional discussion highlighting the promising aspects of RL in
closed-loop anesthesia control. The section also identifies some limitations of the clinical
study and presents some opportunities for future research.

5.1 Clinically-acceptable Performance

The RL agent delivered propofol hypnosis in a manner consistent with well-controlled anes-
thesia, and control performance met or exceeded most performance targets. Control was
considered accurate, as measured by MDPE, RMSE, and Controlled Percentage. The negli-
gible Divergence values indicated that control was stable. The MDAPE and Wobble metrics
were generally good, although an undesirable degree of oscillation was observed in some vol-
unteers.

Furthermore, the agent demonstrated resistance to the disrupting tetanic stimulus. In
cases where clear arousal response was observed, the agent reasserted control after the nox-
ious event (Figures 9 and 10). Testing the boundaries of agent’s capabilities in this manner
is enlightening, but may be overly aggressive because propofol does not provide analgesia
and cannot effectively manage pain as well as other anesthetics. In the intraoperative set-
ting, propofol is commonly administered alongside an opioid analgesic, drugs that tend to
suppress pain-induced arousal events, like those observed in this study.

5.2 Patient-specific Hypnosis

Figure 11 illustrates one favorable aspect of RL control: patient-specific hypnosis. During
each study, the data collection system computed the predicted bispectral index as the agent
controlled the volunteer’s level of hypnosis. Using the volunteer’s demographic data, the
agent’s action history, and the Schnider-Doufas PK/PD model, an estimate of propofol
effect was computed on five-second intervals. By comparing predicted and observed BIS

683

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

80 85 90 95 100 105
40

50

60

70

80

Time (min)

B
IS

Measured Predicted Target

(a) Indications of propofol sensitivity

15 20 25 30 35 40
40

50

60

70

80

Time (min)

B
IS

Measured Predicted Target

(b) Indications of propofol tolerance

Figure 11: Although the RL agent was trained using a standardized patient prototype, the
agent demonstrated good control in subjects deviating from the training model.
In (a), the volunteer’s observed BIS consistently measured below the predicted
value, indicating the drug had greater effect than expected. In (b), the predicted
BIS was consistently lower than measured, indicating the propofol dose yielded
a higher BIS than anticipated.

values (Figure 11), the RL agent’s ability to compensate for model mis-specification is high-
lighted. In the figure, Volunteer A demonstrated an apparent sensitivity to propofol. The
observed hypnosis level consistently measured below the predicted value for most of the
30-minute period. Likewise, the RL agent compensated for an apparent propofol tolerance
in Volunteer B. In this 30-minute period, the observed BIS consistently measured above
the predicted value, indicating that the volunteer required more propofol than the popula-
tion PK/PD models predicted. These observations suggest that the reinforcement learning
process yielded a patient-specific control policy that may be applied to a general, variable
population of volunteers with favorable results.

684

Reinforcement Learning for Closed-Loop Propofol Anesthesia

It should be noted that this RL implementation did not provide patient adaptive hyp-
nosis, that is, no model parameters were adjusted during the control process. Rather,
the agent exhaustively explored the discretized, bounded space of all possible BISerror and
∆BISerror combinations during the exploring-start driven training. As a result, the agent
formulated a control plan for all observable patient states, obviating a need for “on-the-fly”
changes in its control policy. (Note that this style of exploration is limited to relatively
small, discrete state spaces.) Adaptive closed-loop controllers in which model parameters
are adjusted online have been studied in similar clinical control tasks (Ching et al., 2013;
Shanechi et al., 2013; De Smet et al., 2008). Indeed, online reinforcement learning, a fixture
in the intelligent systems literature, was a viable candidate for this application. However,
a fixed-policy solution was preferred when seeking IRB approval for human study; likewise,
the regulatory demands for any subsequent commercialization activities are lower when
compared to an adaptive system. A convincing case is more easily made for a “safe and
efficacious” system when the agent’s control policy does not vary.

5.3 Limitations

The principal limitation of this study lies in its controlled nature. The human volunteers
were healthy and mirrored those populations from which the PK/PD models were derived.
Although the agent was challenged with credible intra-subject and inter-subject variation,
it did not experience the full rigor of the intraoperative environment. In several instances
of volunteer hypnosis, this limitation was realized with episodes of unanticipated natural
sleep.

Because the bispectral index is an indirect measure of cortical activity, BIS is known
to be affected by natural sleep (Nieuwenhuijs et al., 2002; Sleigh et al., 1999), as well
as other conditions (including head trauma and hypothermia). In our study, conditions
indicative of unanticipated natural sleep were observed after ∆BIStarget in some volunteers
first receiving anesthesia at BIStarget=40. Figure 12 illustrates one instance in which the
clinician directed a target change from 40 to 60 at t ≈ 64 min. Since the desired target
was higher than the subject’s observed BIS, the agent correctly halted propofol infusion
and waited for the volunteer to “recover” and awaken. Over the following ten minutes,
the volunteer’s predicted BIS rose as expected, but the volunteer’s BISmeasured remained
near 40. BISmeasured and BISpredicted increasingly diverged and the volunteer ultimately
presented a predicted BIS near waking levels.

Given the ten-minute absence of propofol infusion and paradoxically low BIS measure-
ments, the clinical team suspected the volunteer had transitioned from propofol-induced
hypnosis to natural sleep. To continue the study and re-establish agent control, the clini-
cian intervened with voice commands (“wake up”, etc.) and a brief shoulder shake at t≈74
min. The volunteer’s subsequent arousal was marked by a rapid convergence of BISmeasured

and BISpredicted. As the volunteer awakened, the agent responded with propofol to reassert
control at the new target of 60.

In summary, the volunteer shown in Figure 12 fell asleep shortly after the propofol
infusion was interrupted—instead of waking as expected. In retrospect, this behavior was
reasonable since our volunteer study lacked the usual surgical stimuli that would normally
prevent natural sleep in the OR. Our volunteers were not subjected to persistent noxious

685

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

60 65 70 75 80 85

40

60

80

Time (min)

B
IS

Target Change Peak BISpredicted =86.7

Intervention

Figure 12: Our volunteer study modeled intraoperative hypnosis in a limited sense. Here,
the agent stopped propofol infusion at the upward target change (t≈ 64 min).
In response, the predicted BIS rose as the estimated effect-site concentration
of propofol fell; however, BISmeasured showed no corresponding increase. After
ten minutes of no infusion, the subject failed to achieve a BIS > 40, although
the predicted BIS approached waking levels. To continue study, the clinician
intervened with rousing events (shoulder shake, voice commands, etc.). The
volunteer responded immediately, and control resumed. This behavior was seen
in several volunteers experiencing a low-to-high target change and was attributed
to an unplanned transition to natural sleep after the target change.

stimulus, nor did they experience the usual bustling, noisy conditions of the operating suite.
The ease in which the anesthetist roused the supposedly sedated volunteer, as well as the
rate in which the measured BIS converged to the predicted, support the premise of natural
sleep.

During the course of this study, the clinical team observed presumed natural sleep in 5 of
8 volunteers experiencing low-to-high target transition. (No sleep-like behavior was observed
in volunteers undergoing high-to-low transitions.) Closer inspection of the low-to-high tran-
sition data (Table 11) reveals an apparent bimodal distribution in the corresponding time
metrics. These observations appear to be naturally clustered in two well-differentiated
groups: a fast transitioning group (non-sleepers) and a slow transitioning group (sleepers)
that required an additional 3.5 min to emerge from Target 40 (Table 12). Exploratory
parametric and non-parametric statistical tests suggest that two distinct groups do exist,
but the small sample counts do not permit strong inferencing. The argument for sleep clas-
sification was bolstered when we confirmed post-hoc that all volunteers in the slow group
required clinician intervention in order to complete the low-to-high transition. No fast
group volunteers showed similar need. These findings suggest that presumed natural sleep
occurred frequently in upward transitioning volunteers, thereby revealing a limitation of
this study. Accordingly, our favorable results should be extrapolated to surgical patients in
an appropriately limited fashion.

686

Reinforcement Learning for Closed-Loop Propofol Anesthesia

Fast Cluster

Vol Tsp Tpeak Tss

(min) (min) (min)

2 7.13 8.13 8.13
13 6.58 7.58 7.58
14 8.59 8.92 9.59

Mean ± SD 7.43 ± 1.04 8.21 ± 0.67 8.43 ± 1.04
Median (IQR) 7.13 (1.01) 8.13 (0.67) 8.13 (1.01)

Slow Cluster

Vol Tsp Tpeak Tss

(min) (min) (min)

4 11.25 12.09 14.25
6 11.19 11.94 16.61
8 11.39 12.36 14.86
10 10.79 12.54 14.2
12 10.84 12.17 14.26

Mean ± SD 11.09 ± 0.26 12.22 ± 0.23 14.84 ± 1.03
Median (IQR) 11.19 (0.41) 12.17 (0.27) 14.26 (0.61)

Table 12: Cluster Analysis of Target 40 to 60 Timed Metrics

5.4 Future Directions

Given the favorable performance in both simulation and healthy human volunteers, it seems
reasonable to evaluate the agent in a study of actual surgical patients to more completely
assess the clinical utility of RL control. Evaluation under the full rigor of the intraoperative
environment, along with varying conditions of patient health, should provide further insight
into RL’s applicability. It is important to note that the studied RL agent does not directly
represent a closed-loop drug delivery system suitable for general clinical use. For example,
the current iteration of the agent is not equipped to reliably manage a prolonged open-loop
condition due to BIS input failure. As such, it is more appropriate to consider the agent to
be one player in a greater, more robust system.

The agent’s aptitude for managing propofol response deviating from the training model
(i.e., unexpected volunteer tolerance or sensitivity to propofol) is also cause for additional
study. Like other PK/PD models, the Schnider PK model and the Doufas PD models
characterize propofol response in a narrow, idealized population. Some poorly modeled
populations, such as the critically-ill or morbidly obese, gain the most from patient-specific
drug administration.

Finally, it should be noted that the application of reinforcement learning to medicine
is not limited to depth-of-anesthesia management. Other potential applications exist, such

687

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

as neuromuscular blockade, mechanical ventilation, and management of cardiovascular pa-
rameters, including heart rate, blood pressure, and cardiac output.

5.5 Improvements

This study demonstrates the feasibility of RL hypnosis control, but it cannot yet be po-
sitioned as the optimal solution to the problem. Some areas of improvement are readily
identifiable. For example, most of the metrics indicate that the agent controlled hypnosis
more proficiently at BIStarget = 60. The authors theorize that the performance difference
can be attributed to the apparent “mass” of a heavily-dosed patient. Patients at deeper
levels of hypnosis accumulate higher concentrations of propofol, and the sigmoidal BIS re-
sponse approaches saturation at levels near 4 µg/ml (Figure 3). Thus, an ever-increasing
amount of propofol is required to meaningfully change the observed BIS in this region of
the dose response curve. Likewise, the propofol-saturated patient responds to the zero in-
fusion rate more slowly as peripheral tissue reservoirs continue to dump propofol into the
patient’s bloodstream well after the agent has discontinued infusion. These factors muddle
the agent’s interpretation of its actions, impairing its ability to regulate the patient’s BIS
level. In the following discussion, we suggest a few possible approaches to improve control.

We anticipate that the non-linearity illustrated in Figure 3 can be handled more effec-
tively if the agent considers the current BIS measurement as an input. This additional
percept provides a cue to handle the gross slope changes occurring in the ranges [0,1] µg,
[1,4] µg, and [4,15] µg and should improve control at deeper levels of hypnosis.

An improvement may also be realized if the agent’s goals can be modified to better reflect
clinical practice. In general, control engineers are rightly concerned with achieving target
setpoints with limited adverse behaviors, such as overshoot and ringing. Few anesthetists
are control engineers, and few surgeons would appreciate the agent’s observed 1̃2.5-min
induction of anesthesia. The agent’s current reward strategy (Equation 1) discourages
overshoot and promotes a “soft landing” on target; however, the clinician takes a different
approach. A bolus of propofol is given, the patient is quickly rendered unconscious, and then
the anesthetist manages any overshoot as needed. In other words, the goal of anesthetic
induction differs fundamentally from the goal of anesthetic maintenance. Indeed, the goals
oppose one another in time and control accuracy. A more effective solution might involve
two independent, cooperative agents in which one agent is used for induction, and the other
for maintenance.

The RL agent might also be implemented more effectively. In pilot studies, undesirable
oscillation in the volunteer’s BIS was occasionally observed. The authors theorized that the
software filters used to attenuate BIS measurement noise compounded the 2.5-min lag in
propofol effect, causing the agent to “chase” the target in an oscillatory fashion. To counter
this noise without exacerbating lag, fuzzy state classifiers replaced aggressive smoothing
so that the agent might better classify the volunteer’s hypnotic state. The fuzzy classifiers
reduced the significance of transient fluctuation in the BISerror and ∆BISerror signals, thereby
improving control performance so that human study could proceed as planned. Note that
the fuzzy classifiers were selected without a comprehensive survey of filtering techniques.
Clinical trials are expensive, challenging affairs not amenable to interruption once begun.

688

Reinforcement Learning for Closed-Loop Propofol Anesthesia

Fortunately, state generalization methods, like fuzzy classifiers, are well-represented in
the RL literature,5 Sparse coding (Sutton, 1996) and neural networks (Tesauro, 1992) are
recognized methods for state aggregation in RL. Perhaps more fittingly, state generaliza-
tion can be “rolled into” the Q-learning algorithm; fuzzy Q-learning, like that reported by
Bonarini et al. (2009), Glorennec and Jouffe (1997) and Berenji and Kehdkar (1992), as
well as delayed Q-learning (Chapman and Kaelbling, 1991), appear to be logical next steps
in the evolution of this research.

It should also be noted that the agent was implemented as a discounted, infinite-horizon
task (γ < 1). As mentioned previously, the closed-loop hypnosis task lacked an explicit goal
state since the agent was expected to minimize control error for an undetermined duration.
Alternatives exist for reinforcement learning in such infinite-horizon problems. Techniques
that maximize returns over a window of time, like R-learning (Mahadevan, 1996), may be
viable candidates for improving control performance.

Finally, when RL has been applied to real-world control tasks, the problem is usually
modeled as an Markov Decision Process (MDP). This approach assumes complete observ-
ability of system states and influences that govern transitions among those states. In reality,
full observability can be reasonably expected only in toy problems. Fortunately, hidden in-
fluences may be ignored without great consequence in many applications, leaving unadorned
MDPs sufficient for the control task. However, closed-loop control of propofol hypnosis is a
textbook example of a partially observable control process (Russel and Norvig, 2002). The
task relies on an imperfect measurement (the bispectral index of the EEG) of a poorly-
defined quantity (patient consciousness). Therefore, we believe that techniques used to
solve Partially Observable Markov Decision Processes (POMDPs) (Kaelbling et al., 1998)
are relevant in future studies.

6. Conclusion

The RL agent demonstrated clinically-suitable performance in the closed-loop control of
propofol-induced hypnosis in healthy human volunteers. In doing so, the agent provided
generalizing control that compensated for varying degrees of intra-subject and inter-subject
variation in propofol effect, suggesting that RL control can improve propofol delivery in
the general surgical population, as well as populations lacking good PK/PD models. Fur-
thermore, RL’s success in this clinical control task establishes precedence and positions
the method as a viable candidate for solving other challenging clinical problems. Yet, as
promising as these results appear, no strong conclusions regarding RL’s place in closed-
loop anesthesia can be made until similar results are observed under actual intraoperative
conditions.

Acknowledgments

The clinical portion of this study was funded by the Department of Anesthesiology, Pe-
rioperative and Pain Management, Stanford University School of Medicine; the technical

5. More traditional predictive filtering techniques, like the Kalman filter, remain viable candidates for state
generalization but are not discussed here.

689

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

aspects were funded by the authors. The authors would like to thank the Stanford Univer-
sity School of Medicine operating room staff for their support, as well as Aspect Medical
(now Covidien) for providing an A-2000 BIS monitor.

References

A R Absalom and G N C Kenny. Closed-loop control of propofol anaesthesia using Bispectral
IndexTM: Performance assessment in patients receiving computer-controlled propofol and
manually controlled remifentanil infusions for minor surgery. Brit J Anaesth, 90(6):737–
41, 2003.

A R Absalom, N Sutcliffe, and G N C Kenny. Closed-loop control of anesthesia using
Bispectral IndexTM: Performance assessment in patients undergoing major orthopedic
surgery under combined general and regional anesthesia. Anesthesiology, 96(1):67–73,
Jan 2002.

M E Ausems, C C Hug, Jr, D R Stanski, and A G Burm. Plasma concentrations of alfentanil
required to supplement nitrous oxide anesthesia for general surgery. Anesthesiology, 65
(4):362–73, Oct 1986.

M S Avidan, L Zhang, B A Burnside, K J Finkel, A C Searleman, J A Selvidge, L Saager,
M S Turner, S Rao, M Bottros, C Hantler, E Jacobsohn, and A S Evers. Anesthesia
awareness and the bispectral index. New Eng J Med, 11(358):1097–1108, Mar 2008.

J M Bailey, C T Mora, and S L Shafer. Pharmacokinetics of propofol in adult patients
undergoing coronory revascularization. Anesthesiology, 84:1288–97, 1996.

L Baird. Residual algorithms: Reinforcement learning with function approximation. In Proc.
12th International Conference on Machine Learning, pages 30–37. Morgan Kaufmann,
1995.

L Barvais, I Rausin, J B Glen, S C Hunter, D D’Hulster, F Cantraine, and A d’Hollander.
Administration of propofol by target-controlled infusion in patients undergoing coronary
artery surgery. J Cardiothorac Vasc Anesth, 10(7):877–83, Dec 1996.

H R Berenji and P Kehdkar. Learning and tuning fuzzy logic controllers through reinforce-
ments. IEEE Transactions on Neural Networks, 3(5):724–740, 1992.

M J Bloom, A Bekker, C V Seshagiri, and S D Greenwald. Changes in BIS variability
reflect changes in remifentanil infusion during spinal surgery. Presented at the American
Society of Anesthesiologists Annual Meeting, Oct 2008.

A Bonarini, A Lazaric, F Montrone, and M Restelli. Reinforcement distribution in fuzzy
Q-learning. Fuzzy Sets and Systems, 160(10):1420–1443, 2009.

J Boyan and A W Moore. Generalization in reinforcement learning: Safely approximating
the value function. In G Tesauro, D S Touretzky, and T K Leen, editors, Advances in
Neural Information Processing Systems 7, pages 369–376, Cambridge, MA, 1995. The
MIT Press.

690

Reinforcement Learning for Closed-Loop Propofol Anesthesia

E Brown, R Lydic, and N Schiff. General anesthesia, sleep, and coma. N Engl J Med, 363
(27):2638–50, Dec 2010.

A Carregal, A Lorenzo, J A Taboada, and J L Barreiro. Intraoperative control of mean
arterial pressure and heart rate with alfentanyl with fuzzy logic. Rev Esp Anestesiol
Reanim, 47(3):108–113, Mar 2000.

D Chapman and L P Kaelbling. Input generalization in delayed reinforcement learning:
An algorithm and performance comparisons. In Proceedings of the International Joint
Conference on Artificial Intelligence, Sydney, Australia, 1991.

S Ching, B M Westover, M Liberman, J J Chemali, J Kenny, K Solt, P L Purdon, and E N
Brown. Real-time closed-loop control in a rodent model of medically induced coma using
burst suppression. Anesthesiology, 119(4):848–860, Oct 2013.

A Dahaba. Different conditions that could result in the bispectral index indicating an
incorrect hypnotic state. Anesth Analg, 101(3):765–73, Sep 2005.

P Dayan. The convergence of TD(λ) for general λ. Machine Learning, 8:341–362, 1992.

T De Smet, M M R F Struys, M M Neckebroek, K Van den Hauwe, S Bonte, and E P
Mortier. The accuracy and clinical feasibility of a new Bayesian-based closed-loop control
system for propofol administration using the bispectral index as a controlled variable.
Anesth Analg, 107:1200–1210, 2008.

A G Doufas, M Bakhshandeh, A R Bjorksten, S L Shafer, and D I Sessler. Induction speed
is not a determinant of propofol pharmacodynamics. Anesthesiology, 101:1112–21, 2004.

D Ernst, G B Stan, J Goncalves, and L Wehenkel. Clinical data based optimal STI strategies
for HIV; a reinforcement learning approach. In Machine Learning Conference of Belgium
and The Netherlands (Benelearn), pages 65–72, 2006.

D Ernst, M Glavic, F Capitanescu, and L Wehenkel. Reinforcement learning versus model
predictive control: A comparison on a power system problem. Trans Sys Man Cyber Part
B, 39(2):517–529, 2009. ISSN 1083-4419.

V Esmaeili, A Assareh, M B Shamsollahi, M H Moradi, and N M Arefian. Estimating the
depth of anesthesia using fuzzy soft computation applied to EEG features. Intell Data
Anal, 12(4):393–407, 2008.

S P Fitzgibbon, D M Powers, K J Pope, and C R Clark. Removal of EEG noise and artifact
using blind source separation. J Clin Neurophysiol, 24(3):232–43, Jun 2007.

A E Gaweda, M K Muezzinoglu, A A Jacobs, G R Aronoff, and M E Brier. Model predictive
control with reinforcement learning for drug delivery in renal anemia management. Conf
Proc IEEE Eng Med Biol Soc, 1:5177–80, 2006.

A Gentilini, C Frei, A H Glattfelder, M Morari, and T Schnider. Identification and targeting
policies for computer controlled infusion pumps. Crit Rev Biomed Eng, 28(1&2):179–185,
2000.

691

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

E Gepts. Pharmacokinetic concepts for TCI anaesthesia. Anaesthesia, 53(Suppl 1):4–12,
Apr 1998.

P S Glass, M Bloom, L Kearse, C Rosow, P Sebel, and P Manberg. Bispectral analysis
measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil
in healthy volunteers. Anesthesiology, 86(4):836–847, Apr 1997.

P Y Glorennec and L Jouffe. Fuzzy Q-learning. In Proceedings of Fuzz-IEEE’97, Sixth
International Conference on Fuzzy Systems, volume 3, pages 659–662, 1997.

S D Greenwald and C E Rosow. BIS and EMG variability increase before somatic responses
during surgery. Presented at the American Society of Anesthesiologists Annual Meeting,
Oct 2006.

A Guez, R D Vincent, M Avoli, and J Pineau. Adaptive treatment of epilepsy via batch-
mode reinforcement learning. In IAAI’08: Proceedings of the 20th national conference
on Innovative Applications of Artificial Intelligence, pages 1671–1678. AAAI Press, 2008.
ISBN 978-1-57735-368-3.

V Gullapalli. Learning control under extreme uncertainty. In Stephen José Hanson, Jack D.
Cowan, and C. Lee Giles, editors, Advances in Neural Information Processing Systems,
volume 5, pages 327–334. Morgan Kaufmann, San Mateo, CA, 1993. URL citeseer.nj.

nec.com/312133.html.

J O Hahn, G A Dumont, and J M Ansermino. Closed-loop anesthetic drug concentration
estimation using clinical-effect feedback. IEEE Trans Biomed Eng, 58(1):3–6, Jan 2011.

T M Hemmerling, S Charabati, C Zaouter, C Minardi, and P A Mathieu. A randomized
controlled trial demonstrates that a novel closed-loop propofol system performs better
hypnosis control than manual administration. Can J Anaesth, 57(8):725–735, Aug 2010.

C Hu, W S Lovejoy, and S L Shafer. Comparison of some control strategies for three-
compartment PK/PD models. Journal of Pharmacokinetics and Biopharmaceutics, 22
(6):525–550, 1994.

L P Kaelbling, M L Littman, and A W Moore. Reinforcement learning: A survey. Journal
of Artificial Intelligence Research, 4:237–285, 1996.

L P Kaelbling, M L Littman, and A R Cassandra. Planning and acting in partially observ-
able stochastic domains. Artificial Intelligence, 101:99–134, 1998.

L A Kearse Jr., P Manberg, N Chamoun, F deBros, and A Zaslavsky. Bispectral analysis
of the electroencephalogram correlates with patient movement to skin incision during
propofol/nitrous oxide anesthesia. Anesthesiology, 81(6):1365–70, Dec 1994.

G N C Kenny and H Mantzaridis. Closed-loop control of propofol anaesthesia. Brit J
Anaesth, 83(2):223–8, Aug 1999.

K Leslie, A R Absalom, and G N C Kenny. Closed loop control of sedation for colonoscopy
using the Bispectral Index. Anaesthesia, 57(7):690–709, Jul 2002.

692

citeseer.nj.nec.com/312133.html
citeseer.nj.nec.com/312133.html

Reinforcement Learning for Closed-Loop Propofol Anesthesia

M Lindholm, S Träff, F Granath, S D Greenwald, A Ekbom, C Lennmarken, and R H
Sandin. Mortality within 2 years after surgery in relation to low intraoperative bispectral
index values and preexisting malignant disease. Anesth Analg, 108(2):508–512, Feb 2009.

M Littman. Markov games as a framework for multi-agent reinforcement learning. In
Proceedings of the 11th International Conference on Machine Learning (ML-94), pages
157–163, New Brunswick, NJ, 1994. Morgan Kaufmann.

N Liu, T Chazot, A Genty, A Landais, A Restoux, K McGee, P A Laloë, B Trillat, L Barvais,
and M Fischler. Titration of propofol for anesthetic induction and maintenance guided
by the bispectral index: Closed-loop versus manual control: A prospective, randomized,
multicenter study. Anesthesiology, 104(4):686–695, April 2006.

N Liu, M Le Guen, F Benabbes-Lambert, T Chazot, B Trillat, D I Sessler, and M Fischler.
Feasibility of closed-loop titration of propofol and remifentanil guided by the spectral
M-Entropy monitor. Anesthesiology, 116(2):286–295, Feb 2012.

N Liu, O Pruszkowski, J E Leroy, T Chazot, B Trillat, A Colchen, F Gonin, and M Fischler.
Automatic administration of propofol and remifentanil guided by the bispectral index
during rigid bronchoscopic procedures: A randomized trial. Can J Anaesth, 60(9):881–
887, Sep 2013.

S Mahadevan. Average reward reinforcement learning: Foundations, algorithms, and em-
pirical results. Machine Learning, 22(1–3):159–195, 1996.

J D Mart́ın-Guerrero, F Gomez, E Soria-Olivas, J Schmidhuber, M Climente-Mart́ı, and
N V Jiménez-Torres. A reinforcement learning approach for individualizing erythropoietin
dosages in hemodialysis patients. Expert Syst Appl, 36(6):9737–9742, Aug 2009.

D M Mathews, L Clark, J Johansen, E Matute, and C V Seshagiri. Increases in electroen-
cephalogram and electromyogram variability are associated with an increased incidence
of intraoperative somatic response. Anesth Analg, 114(4):759–70, Apr 2012.

B L Moore. Intelligent control of closed-loop sedation in simulated ICU patients. Master’s
thesis, Texas Tech University, 2003.

B L Moore, E D Sinzinger, T M Quasny, and L D Pyeatt. Intelligent control of closed-loop
sedation in simulated ICU patients. In FLAIRS 2004. AAAI Press, 2004.

B L Moore, L D Pyeatt, and A G Doufas. Fuzzy control for closed-loop, patient-specific
hypnosis in intraoperative patients: A simulation study. In Conf Proc IEEE Eng Med
Biol Soc, volume 1, 2009.

B L Moore, A G Doufas, and L D Pyeatt. Reinforcement learning: A novel method for
optimal control of propofol-induced hypnosis. Anesth Analg, 112(2):360–367, Feb 2011a.

B L Moore, T M Quasny, and A G Doufas. Reinforcement learning versus proportional-
integral-derivative control of hypnosis in a simulated intraoperative patient. Anesth Analg,
112(2):350–359, Feb 2011b.

693

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

E P Mortier, M M R F Struys, T De Smet, Y D I Versichelen, and G Rolly. Closed-
loop controlled administration of propofol using bispectral analysis. Anaesthesia, 53(8):
749–754, Aug 1998.

P Myles, K Leslie, J McNeil, A Forbes, and M Chan. Bispectral index monitoring to
prevent awareness during anaesthesia: the B-Aware randomised controlled trial. Lancet,
363(9423):1757–1763, 2000.

D Nieuwenhuijs, E L Coleman, N J Douglas, G B Drummond, and A Dahan. Bispectral
index values and spectral edge frequency at different stages of physiologic sleep. Anesth
Analg, 94(1):125–129, Jan 2002.

D A O’Hara, D K Bogen, and A Noordergraaf. The use of computers for controlling the
delivery of anesthesia. Anesthesiology, 77(3):563–81, Sep 1992.

K T Olkkola, H Schwilden, and C Apffelstaedt. Model-based adaptive closed-loop feedback
control of atracurium-induced neuromuscular blockade. Acta Anaesth Scand, 35(5):420–3,
Jul 1991.

S Omatu, M Khalid, and R Yusof. Neuro-control and its Applications, chapter 4, pages
152–160. Advances in Industrial Control. Springer, 1996.

S Pilge, R Zanner, G Schneider, J Blum, M Kreuzer, and E F Kochs. Analysis of cerebral
state, bispectral, and narcotrend indices. Anesthesiology, 104(3):488–494, Mar 2006.

I J Rampil. A primer for EEG signal processing in anesthesia. Anesthesiology, 89(4):
980–1002, Oct 1997.

M Renna, T Wigmore, A Mofeez, and C Gillbe. Biasing effect of the electromyogram on
BIS: A controlled study during high-dose fentanyl induction. J Clin Monit Comput, 17
(6):377–81, Aug 2002.

A E Rigby-Jones and J R Sneyd. Pharmacokinetics and pharmacodynamics: Is there
anything new? Anaesthesia, 67(1):5–11, Jan 2012.

H Röpcke, M Knen-Bergmann, M Cuhls, T Bouillon, and A Hoeft. Propofol and remifen-
tanil pharmacodynamic interaction during orthopedic surgical procedures as measured
by effects on bispectral index. J Clin Anesth, 13(3):198–207, May 2001a.

H Röpcke, B Rehberg, M Koenen-Bergmann, T Bouillon, J Bruhn, and A Hoeft. Surgical
stimulation shifts EEG concentration-response relationship of desflurane. Anesthesiology,
94(3):255–113, Mar 2001b.

S Russel and P Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2nd
edition, 2002.

F Sahba, H R Tizhoosh, and M M A Salama. Application of reinforcement learning for
segmentation of transrectal ultrasound images. BMC Med Imaging, 8(8), 2008.

T Sakai, A Matsuki, P F White, and A H Giesecke. Use of an EEG-bispectral closed-loop
delivery system for administering propofol. Acta Anesth Scand, 44:1007–1010, 2000.

694

Reinforcement Learning for Closed-Loop Propofol Anesthesia

R H Sandin, G Enlund, P Samuelsson, and C Lennmarken. Awareness during anaesthesia:
A prospective case study. Lancet, 355(9205):707–711, 2000.

J Schaublin, M Derighetti, P Feigenwinter, S Petersen-Felix, and A M Zbinden. Fuzzy logic
control of mechanical ventilation during anaesthesia. Brit J Anaesth, 77(5):636–41, Nov
1996.

T Schnider, C F Minto, P L Gambus, C Andresen, D B Goodale, S L Shafer, and E J Youngs.
The influence of method of administration and covariates on the pharmacokinetics of
propofol in adult volunteers. Anesthesiology, 88(5):1170–1182, May 1998.

T W Schnider, C F Minto, S L Shafer, P L Gambus, C Andresen, D B Goodale, and E J
Youngs. The influence of age on propofol pharmacodynamics. Anesthesiology, 90(6):
1502–16, Jun 1999.

H Schwilden, J Schüttler, and H Stoeckel. Closed-loop feedback control of methohexital
anesthesia by quantitative EEG analysis in humans. Anesthesiology, 67(3):341–7, Sep
1987.

P S Sebel, T A Bowdle, M M Ghoneim, I J Rampil, R E Padilla, T J Gan, and K B Domino.
The incidence of awareness during anesthesia: A multicenter United States study. Anesth
Analg, 99:833–839, 2004.

F S Servin. TCI compared with manually controlled infusion of propofol: A multicentre
study. Anaesthesia, 53(Suppl 1):82–86, Apr 1998.

M M Shanechi, J J Chemali, M Liberman M, K Solt, and E N Brown. A brain-machine
interface for control of medically-induced coma. PLOS Compu Biol, 9(10):1–17, Oct 2013.

J C Sigl and N G Chamoun. An introduction to bispectral analyis for the electroencephalo-
gram. J Clin Monitor, 10(6):392–404, November 1994.

J W Sleigh, J Andrzejowski, A Steyn-Ross, and M Steyn-Ross. The bispectral index: A
measure of depth of sleep? Anesth Analg, 88(3):659–661, Mar 1999.

M M R F Struys, T De Smet, S D Greenwald, A R Abasalom, S Bingé, and E P Mortier.
Closed-loop controlled administration of propofol using bispectral analysis. Anesthesiol-
ogy, 95(1):6–17, Jul 2001.

M M R F Struys, T De Smet, S D Greenwald, A R Absalom, S Bingé, and E P Mortier.
Performance evaluation of two published closed-loop control systems using bispectral
index monitoring: A simulation study. Anesthesiology, 100(3):640–7, Mar 2004.

M M R F Struys, M J Coppens, N De Neve, E P Mortier, A G Doufas, J F P Van
Bocxlaer, and S L Shafer. Influence of administration rate on propofol plasma-effect site
equilibration. Anesthesiology, 07(3):386–396, Sept 2007.

R Sutton. Generalization in reinforcement learning: Successful examples using sparse coarse
coding. In Touretzky, Mozer, and Hasselmo, editors, Advances in Neural Information
Processing Systems, volume 8, pages 1038–1044. The MIT Press, 1996.

695

Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

R S Sutton and A G Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

G Tesauro. Temporal difference learning of backgammon strategy. In Proceedings of the
International Conference on Machine Learning, pages 451–457. Morgan Kaufmann, 1992.

D R Theil, T E Stanley, 3rd, W D White, D Goodman, P S Glass, S A Bai, J R Jacobs, and
J G Reves. Midazolam and fentanyl continuous infusion anesthesia for cardiac surgery:
A comparison of computer-assisted versus manual infusion systems. J Cardiothorac Vasc
Anesth, 7(3):300–6, Jun 1993.

J N Tsitsiklas and B Van Roy. An analysis of temporal difference learning with function
approximation. Technical Report LIDS-P-2322, Massachusetts Institute of Technology,
1996.

C Vanlersberghe and F Camu. Modern Anesthetics (Handbook of Experimental Pharmacol-
ogy), volume 182, chapter Propofol, pages 227–252. Springer, 2008.

J R Varvel, D L Donoho, and S L Shafer. Measuring the predictive performance of computer-
controlled infusion pumps. J Pharmacokinet Biopharm, 20:63–94, Feb 1992.

C J C H Watkins. Learning from Delayed Rewards. PhD dissertation, Cambridge University,
Computer Science Department, 1989.

W Wood. Variability of human drug response. Anesthesiology, 71(4):631–634, Nov 1989.

L Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

Y Zhao, M R Kosorok, and D Zeng. Reinforcement learning design for cancer clinical trials.
Stat Med, 28(26):3294–315, Nov 2009.

696

Journal of Machine Learning Research 15 (2014) 697-747 Submitted 10/12; Revised 6/13; Published 2/14

Clustering Hidden Markov Models with Variational HEM

Emanuele Coviello ecoviell@ucsd.edu
Department of Electrical and Computer Engineering
University of California, San Diego
La Jolla, CA 92093, USA

Antoni B. Chan abchan@cityu.edu.hk
Department of Computer Science
City University of Hong Kong
Kowloon Tong, Hong Kong

Gert R.G. Lanckriet gert@ece.ucsd.edu

Department of Electrical and Computer Engineering

University of California, San Diego

La Jolla, CA 92093, USA

Editor: Tony Jebara

Abstract

The hidden Markov model (HMM) is a widely-used generative model that copes with
sequential data, assuming that each observation is conditioned on the state of a hidden
Markov chain. In this paper, we derive a novel algorithm to cluster HMMs based on the
hierarchical EM (HEM) algorithm. The proposed algorithm i) clusters a given collection
of HMMs into groups of HMMs that are similar, in terms of the distributions they repre-
sent, and ii) characterizes each group by a “cluster center”, that is, a novel HMM that is
representative for the group, in a manner that is consistent with the underlying generative
model of the HMM. To cope with intractable inference in the E-step, the HEM algorithm
is formulated as a variational optimization problem, and efficiently solved for the HMM
case by leveraging an appropriate variational approximation. The benefits of the proposed
algorithm, which we call variational HEM (VHEM), are demonstrated on several tasks
involving time-series data, such as hierarchical clustering of motion capture sequences, and
automatic annotation and retrieval of music and of online hand-writing data, showing im-
provements over current methods. In particular, our variational HEM algorithm effectively
leverages large amounts of data when learning annotation models by using an efficient hi-
erarchical estimation procedure, which reduces learning times and memory requirements,
while improving model robustness through better regularization.

Keywords: Hierarchical EM algorithm, clustering, hidden Markov model, hidden Markov
mixture model, variational approximation, time-series classification

1. Introduction

The hidden Markov model (HMM) (Rabiner and Juang, 1993) is a probabilistic model
that assumes a signal is generated by a double embedded stochastic process. A discrete-
time hidden state process, which evolves as a Markov chain, encodes the dynamics of the
signal, while an observation process encodes the appearance of the signal at each time,

c©2014 Emanuele Coviello, Antoni B. Chan and Gert R.G. Lanckriet.

Coviello, Chan and Lanckriet

conditioned on the current state. HMMs have been successfully applied to a variety of
fields, including speech recognition (Rabiner and Juang, 1993), music analysis (Qi et al.,
2007) and identification (Batlle et al., 2002), online hand-writing recognition (Nag et al.,
1986), analysis of biological sequences (Krogh et al., 1994), and clustering of time series
data (Jebara et al., 2007; Smyth, 1997; Alon et al., 2003).

This paper is about clustering HMMs. More precisely, we are interested in an algorithm
that, given a collection of HMMs, partitions them into K clusters of “similar” HMMs,
while also learning a representative HMM “cluster center” that concisely and appropriately
represents each cluster. This is similar to standard k-means clustering, except that the data
points are HMMs now instead of vectors in Rd.

Various applications motivate the design of HMM clustering algorithms, ranging from hi-
erarchical clustering of sequential data (e.g., speech or motion sequences modeled by HMMs
as by Jebara et al. 2007), to hierarchical indexing for fast retrieval, to reducing the com-
putational complexity of estimating mixtures of HMMs from large data sets (e.g., semantic
annotation models for music and video)—by clustering HMMs, efficiently estimated from
many small subsets of the data, into a more compact mixture model of all data. However,
there has been little work on HMM clustering and, therefore, its applications.

Existing approaches to clustering HMMs operate directly on the HMM parameter space,
by grouping HMMs according to a suitable pairwise distance defined in terms of the HMM
parameters. However, as HMM parameters lie on a non-linear manifold, a simple application
of the k-means algorithm will not succeed in the task, since it assumes real vectors in a
Euclidean space. In addition, such an approach would have the additional complication that
HMM parameters for a particular generative model are not unique, that is, a permutation
of the states leads to the same generative model. One solution, proposed by Jebara et al.
(2007), first constructs an appropriate similarity matrix between all HMMs that are to be
clustered (e.g., based on the Bhattacharya affinity, which depends non-linearly on the HMM
parameters Jebara et al. 2004; Hershey and Olsen 2008), and then applies spectral clustering.
While this approach has proven successful to group HMMs into similar clusters (Jebara
et al., 2007), it does not directly address the issue of generating HMM cluster centers.
Each cluster can still be represented by choosing one of the given HMMs, for example, the
HMM which the spectral clustering procedure maps the closest to each spectral clustering
center. However, this may be suboptimal for some applications of HMM clustering, for
example in hierarchical estimation of annotation models. Another distance between HMM
distributions suitable for spectral clustering is the KL divergence, which in practice has been
approximated by sampling sequences from one model and computing their log-likelihood
under the other (Juang and Rabiner, 1985; Zhong and Ghosh, 2003; Yin and Yang, 2005).

Instead, in this paper we propose to cluster HMMs directly with respect to the prob-
ability distributions they represent. The probability distributions of the HMMs are used
throughout the whole clustering algorithm, and not only to construct an initial embedding
as Jebara et al. (2007). By clustering the output distributions of the HMMs, marginalized
over the hidden-state distributions, we avoid the issue of multiple equivalent parameteri-
zations of the hidden states. We derive a hierarchical expectation maximization (HEM)
algorithm that, starting from a collection of input HMMs, estimates a smaller mixture
model of HMMs that concisely represents and clusters the input HMMs (i.e., the input
HMM distributions guide the estimation of the output mixture distribution).

698

Clustering HMMs with Variational HEM

The HEM algorithm is a generalization of the EM algorithm—the EM algorithm can
be considered as a special case of HEM for a mixture of delta functions as input. The
main difference between HEM and EM is in the E-step. While the EM algorithm computes
the sufficient statistics given the observed data, the HEM algorithm calculates the expected
sufficient statistics averaged over all possible observations generated by the input probability
models. Historically, the first HEM algorithm was designed to cluster Gaussian probability
distributions (Vasconcelos and Lippman, 1998). This algorithm starts from a Gaussian
mixture model (GMM) with K(b) components and reduces it to another GMM with fewer
components, where each of the mixture components of the reduced GMM represents, that
is, clusters, a group of the original Gaussian mixture components. More recently, Chan
et al. (2010b) derived an HEM algorithm to cluster dynamic texture (DT) models (i.e.,
linear dynamical systems, LDSs) through their probability distributions. HEM has been
applied successfully to construct GMM hierarchies for efficient image indexing (Vasconcelos,
2001), to cluster video represented by DTs (Chan et al., 2010a), and to estimate GMMs or
DT mixtures (DTMs, that is, LDS mixtures) from large data sets for semantic annotation
of images (Carneiro et al., 2007), video (Chan et al., 2010a) and music (Turnbull et al.,
2008; Coviello et al., 2011). Note that HMMs cannot be clustered by using the original
HEM by Vasconcelos and Lippman (1998). Specifically, the original formulation of HEM
was designed for clustering data points represented by individual Gaussian models. When
clustering HMMs, we are interested in assigning every HMM as a whole to a cluster, and
do not want to treat their individual Gaussian states independently. Even with GMMs (as
opposed to single Gaussians) this is not possible in closed form, since it would need the
expected log likelihood of a mixture.

To extend the HEM framework from clustering Gaussians to clustering HMMs, addi-
tional marginalization over the hidden-state processes is required, as with DTs. However,
while Gaussians and DTs allow tractable inference in the E-step of HEM, this is no longer
the case for HMMs. Therefore, in this work, we derive a variational formulation of the HEM
algorithm (VHEM), and then leverage a variational approximation derived by Hershey et al.
(2007) (which has not been used in a learning context so far) to make the inference in the
E-step tractable. The resulting algorithm not only clusters HMMs, but also learns novel
HMMs that are representative centers of each cluster. The resulting VHEM algorithm can
be generalized to handle other classes of graphical models, for which exact computation
of the E-step in the standard HEM would be intractable, by leveraging similar variational
approximations—for example, any mixtures of continuous exponential family distributions
(e.g., Gaussian) the more general case of HMMs with emission probabilities that are (mix-
tures of) continuous exponential family distributions.

Compared to the spectral clustering algorithm of Jebara et al. (2007), the VHEM algo-
rithm has several advantages that make it suitable for a variety of applications. First, the
VHEM algorithm is capable of both clustering, as well as learning novel cluster centers,
in a manner that is consistent with the underlying generative probabilistic framework. In
addition, since it does not require sampling steps, it is also scalable with low memory re-
quirements. As a consequence, VHEM for HMMs allows for efficient estimation of HMM
mixtures from large data sets using a hierarchical estimation procedure. In particular, in-
termediate HMM mixtures are first estimated in parallel by running the EM algorithm on
small independent portions of the data set. The final model is then estimated from the

699

Coviello, Chan and Lanckriet

intermediate models using the VHEM algorithm. Because VHEM is based on maximum-
likelihood principles, it drives model estimation towards similar optimal parameter values as
performing maximum-likelihood estimation on the full data set. In addition, by averaging
over all possible observations compatible with the input models in the E-step, VHEM pro-
vides an implicit form of regularization that prevents over-fitting and improves robustness
of the learned models, compared to a direct application of the EM algorithm on the full
data set. Note that, in contrast to Jebara et al. (2007), VHEM does not construct a kernel
embedding, and is therefore expected to be more efficient, especially for large K(b).

In summary, the contributions of this paper are three-fold: i) we derive a variational for-
mulation of the HEM algorithm for clustering HMMs, which generates novel HMM centers
representative of each cluster; ii) we evaluate VHEM on a variety of clustering, annota-
tion, and retrieval problems involving time-series data, showing improvement over current
clustering methods; iii) we demonstrate in experiments that VHEM can effectively learn
HMMs from large sets of data, more efficiently than standard EM, while improving model
robustness through better regularization. With respect to our previous work, the VHEM
algorithm for HMMs was originally proposed by Coviello et al. (2012a)

The remainder of the paper is organized as follows. We review the hidden Markov
model (HMM) and the hidden Markov mixture model (H3M) in Section 2. We present the
derivation of the VHEM-H3M algorithm in Section 3, followed by a discussion in Section
4.boldsymbol Finally, we present experimental results in Sections 5 and 6.

2. The Hidden Markov (Mixture) Model

A hidden Markov model (HMM)M assumes a sequence of τ observations y = {y1, . . . , yτ}
is generated by a double embedded stochastic process, where each observation (or emission)
yt at time t depends on the state of a discrete hidden variable xt, and the sequence of hidden
states x = {x1, . . . , xτ} evolves as a first-order Markov chain. The hidden variables can take
one of S values, {1, . . . , S}, and the evolution of the hidden process is encoded in a state
transition matrix A = [aβ,β′]β,β′=1,...,S , where each entry, aβ,β′ = p(xt+1 = β′|xt = β,M),
is the probability of transitioning from state β to state β′, and an initial state distribution
π = [π1, . . . , πS], where πβ = p(x1 = β|M).

Each state β generates observations according to an emission probability density func-
tion, p(yt|xt = β,M). Here, we assume the emission density is time-invariant, and modeled
as a Gaussian mixture model (GMM) with M components:

p(y|x = β,M) =
M∑
m=1

cβ,mp(y|ζ = m,x = β,M), (1)

where ζ ∼ multinomial(cβ,1, . . . , cβ,M) is the hidden assignment variable that selects the
mixture component, with cβ,m as the mixture weight of the mth component, and each
component is a multivariate Gaussian distribution,

p(y|ζ = m,x = β,M) = N (y;µβ,m,Σβ,m),

with mean µβ,m and covariance matrix Σβ,m. The HMM is specified by the parameters

M = {π,A, {{cβ,m, µβ,m,Σβ,m}Mm=1}Sβ=1},

700

Clustering HMMs with Variational HEM

which can be efficiently learned from an observation sequence y with the Baum-Welch
algorithm (Rabiner and Juang, 1993), which is based on maximum likelihood estimation.

The probability distribution of a state sequence x generated by an HMM M is

p(x|M) = p(x1|M)

τ∏
t=2

p(xt|xt−1,M) = πx1

τ∏
t=2

axt−1,xt ,

while the joint likelihood of an observation sequence y and a state sequence x is

p(y,x|M) = p(y|x,M)p(x|M) = p(x1|M)
τ∏
t=2

p(xt|xt−1,M)
τ∏
t=1

p(yt|xt,M).

Finally, the observation likelihood of y is obtained by marginalizing out the state sequence
from the joint likelihood,

p(y|M) =
∑
x

p(y,x|M) =
∑
x

p(y|x,M)p(x|M), (2)

where the summation is over all state sequences of length τ , and can be performed efficiently
using the forward algorithm (Rabiner and Juang, 1993).

A hidden Markov mixture model (H3M) (Smyth, 1997) models a set of observation se-
quences as samples from a group of K hidden Markov models, each associated to a specific
sub-behavior. For a given sequence, an assignment variable z ∼ multinomial(ω1, · · · , ωK)
selects the parameters of one of the K HMMs, where the kth HMM is selected with prob-
ability ωk. Each mixture component is parametrized by

Mz = {πz, Az, {{czβ,m, µzβ,m,Σz
β,m}Mm=1}Sβ=1},

and the H3M is parametrized byM = {ωz,Mz}Kz=1, which can be estimated from a collec-
tion of observation sequences using the EM algorithm (Smyth, 1997; Alon et al., 2003).

To reduce clutter, here we assume that all the HMMs have the same number S of hidden
states and that all emission probabilities have M mixture components. Our derivation could
be easily extended to the more general case though.

3. Clustering Hidden Markov Models

Algorithms for clustering HMMs can serve a wide range of applications, from hierarchical
clustering of sequential data (e.g., speech or motion sequences modeled by HMMs (Jebara
et al., 2007)), to hierarchical indexing for fast retrieval, to reducing the computational
complexity of estimating mixtures of HMMs from large weakly-annotated data sets—by
clustering HMMs, efficiently estimated from many small subsets of the data, into a more
compact mixture model of all data.

In this work we derive a hierarchical EM algorithm for clustering HMMs (HEM-H3M)
with respect to their probability distributions. We approach the problem of clustering
HMMs as reducing an input HMM mixture with a large number of components to a new
mixture with fewer components. Note that different HMMs in the input mixture are allowed
to have different weights (i.e., the mixture weights {ωz}Kz=1 are not necessarily all equal).

701

Coviello, Chan and Lanckriet

One method for estimating the reduced mixture model is to generate samples from the
input mixture, and then perform maximum likelihood estimation, that is, maximize the
log-likelihood of these samples. However, to avoid explicitly generating these samples, we
instead maximize the expectation of the log-likelihood with respect to the input mixture
model, thus averaging over all possible samples from the input mixture model. In this
way, the dependency on the samples is replaced by a marginalization with respect to the
input mixture model. While such marginalization is tractable for Gaussians and DTs,
this is no longer the case for HMMs. Therefore, in this work, we i) derive a variational
formulation of the HEM algorithm (VHEM), and ii) specialize it to the HMM case by
leveraging a variational approximation proposed by Hershey et al. (2007). Note that the
work of Hershey et al. (2007) was proposed as an alternative to MCMC sampling for the
computation of the KL divergence between two HMMs, and has not been used in a learning
context so far.

We present the problem formulation in Section 3.1, and derive the algorithm in Sections
3.2, 3.3 and 3.4.

3.1 Formulation

Let M(b) be a base hidden Markov mixture model with K(b) components. The goal of the
VHEM algorithm is to find a reduced hidden Markov mixture modelM(r) with K(r) < K(b)

(i.e., fewer) components that represents M(b) well. The likelihood of a random sequence
y ∼M(b) is given by

p(y|M(b)) =

K(b)∑
i=1

ω
(b)
i p(y|z(b) = i,M(b)), (3)

where z(b) ∼ multinomial(ω
(b)
1 , · · ·ω(b)

K(b)) is the hidden variable that indexes the mixture

components. p(y|z = i,M(b)) is the likelihood of y under the ith mixture component, as in

(2), and ω
(b)
i is the mixture weight for the ith component. Likewise, the likelihood of the

random sequence y ∼M(r) is

p(y|M(r)) =
K(r)∑
j=1

ω
(r)
j p(y|z(r) = j,M(r)), (4)

where z(r) ∼ multinomial(ω
(r)
1 , · · · , ω(r)

K(r)) is the hidden variable for indexing components

in M(r).

At a high level, the VHEM-H3M algorithm estimates the reduced H3M model M(r) in
(4) from virtual sequences distributed according to the base H3M modelM(b) in (3). From
this estimation procedure, the VHEM algorithm provides:

1. a soft clustering of the original K(b) components into K(r) groups, where cluster
membership is encoded in assignment variables that represent the responsibility of
each reduced mixture component for each base mixture component, that is, ẑi,j =
p(z(r) = j|z(b) = i), for i = 1, . . . ,K(b) and j = 1, . . . ,K(r);

702

Clustering HMMs with Variational HEM

variables base model (b) reduced model (r)
index for HMM components i j

number of HMM components K(b) K(r)

HMM states β ρ
number of HMM states S S
HMM state sequence β = {β1, · · · , βτ} ρ = {ρ1, · · · , ρτ}
index for component of GMM m `
number of Gaussian components M M

models

H3M M(b) M(r)

HMM component (of H3M) M(b)
i M(r)

j

GMM emission M(b)
i,β M(r)

j,ρ

Gaussian component (of GMM) M(b)
i,β,m M(r)

j,ρ,`

parameters

H3M component weight ω
(b)
i ω

(r)
j

HMM initial state π(b),i π(r),j

HMM state transition matrix A(b),i A(r),j

GMM emission {c(b),i
β,m , µ

(b),i
β,m ,Σ

(b),i
β,m}

M
m=1 {c(r),j

ρ,` , µ
(r),j
ρ,` ,Σ

(r),j
ρ,` }

M
`=1

probability distributions notation short-hand

HMM state sequence (b) p(x = β|z(b) = i,M(b)) p(β|M(b)
i) = π

(b),i
β

HMM state sequence (r) p(x = ρ|z(r) = j,M(r)) p(ρ|M(r)
j) = π

(r),j
ρ

HMM observation likelihood (r) p(y|z(r) = j,M(r)) p(y|M(r)
j)

GMM emission likelihood (r) p(yt|xt = ρ,M(r)
j) p(yt|M(r)

j,ρ)

Gaussian component likelihood (r) p(yt|ζt = `, xt = ρ,M(r)
j) p(yt|M(r)

j,ρ,`)

expectations
HMM observation sequence (b) Ey|z(b)=i,M(b) [·] EM(b)

i

[·]
GMM emission (b) E

yt|xt=β,M(b)
i

[·] EM(b)
i,β

[·]
Gaussian component (b) E

yt|ζt=m,xt=β,M(b)
i

[·] EM(b)
i,β,m

[·]

expected log-likelihood lower bound variational distribution

EM(b)
i

[log p(Yi|M(r))] LiH3M qi(zi = j) = zij

EM(b)
i

[log p(y|M(r)
j)] Li,jHMM qi,j(ρ|β) = φi,jρ|β

= φi,j1 (ρ1|β1)
∏τ
t=2 φ

i,j
t (ρt|ρt−1, βt)

EM(b)
i,β

[log p(y|M(r)
j,ρ)] L(i,β),(j,ρ)

GMM qi,jβ,ρ(ζ = `|m) = η
(i,β),(j,ρ)
`|m

Table 1: Notation used in the derivation of the VHEM-H3M algorithm.

2. novel cluster centers represented by the individual mixture components of the reduced
model in (4), that is, p(y|z(r) = j,M(r)) for j = 1, . . . ,K(r).

Finally, because we take the expectation over the virtual samples, the estimation is carried
out in an efficient manner that requires only knowledge of the parameters of the base model,
without the need of generating actual virtual samples.

703

Coviello, Chan and Lanckriet

3.1.1 Notation

We will always use i and j to index the components of the base modelM(b) and the reduced

modelM(r), respectively. To reduce clutter, we will also use the short-hand notationM(b)
i

andM(r)
j to denote the ith component ofM(b) and the jth component ofM(r), respectively.

Hidden states of the HMMs are denoted with β for the base model M(b)
i , and with ρ for

the reduced model M(r)
j .

The GMM emission models for each hidden state are denoted asM(b)
i,β andM(r)

j,ρ . We will
always use m and ` for indexing the individual Gaussian components of the GMM emissions
of the base and reduced models, respectively. The individual Gaussian components are

denoted as M(b)
i,β,m for the base model, and M(r)

j,ρ,` for the reduced model. Finally, we

denote the parameters of ith HMM component of the base mixture model as M(b)
i =

{π(b),i, A(b),i, {{c(b),i
β,m , µ

(b),i
β,m ,Σ

(b),i
β,m}

M
m=1}Sβ=1}, and for the jth HMM in the reduced mixture

as M(r)
j = {π(r),j , A(r),j , {{c(r),j

ρ,` , µ
(r),j
ρ,` ,Σ

(r),j
ρ,` }

M
`=1}Sρ=1}.

When appearing in a probability distribution, the short-hand model notation (e.g.,

M(b)
i) always implies conditioning on the model being active. For example, we will use

p(y|M(b)
i) as short-hand for p(y|z(b) = i,M(b)), or p(yt|M(b)

i,β) as short-hand for p(yt|xt =

β, z(b) = i,M(b)). Furthermore, we will use π
(b),i
β as short-hand for the probability of the

state sequence β according to the base HMM component M(b)
i , that is, p(β|M(b)

i), and

likewise M(r),j
ρ for the reduced HMM component.

Expectations will also use the short-hand model notation to imply conditioning on the
model. In addition, expectations are assumed to be taken with respect to the output variable
(y or yt), unless otherwise specified. For example, we will use EM(b)

i

[·] as short-hand for

Ey|z(b)=i,M(b) [·].
Table 1 summarizes the notation used in the derivation, including the variable names,

model parameters, and short-hand notations for probability distributions and expectations.
The bottom of Table 1 also summarizes the variational lower bound and variational distri-
butions, which will be introduced subsequently.

3.2 Variational HEM Algorithm

To learn the reduced model in (4), we consider a set of N virtual samples, distributed

according to the base model M(b) in (3), such that Ni = Nω
(b)
i samples are drawn from

the ith component. We denote the set of Ni virtual samples for the ith component as

Yi = {y(i,m)}Nim=1, where y(i,m) ∼ M(b)
i , and the entire set of N samples as Y = {Yi}K

(b)

i=1 .
Note that, in this formulation, we are not considering virtual samples {x(i,m),y(i,m)} for

each base component, according to its joint distribution p(x,y|M(b)
i). The reason is that the

hidden-state space of each base mixture componentM(b)
i may have a different representation

(e.g., the numbering of the hidden states may be permuted between the components). This

mismatch will cause problems when the parameters of M(r)
j are computed from virtual

samples of the hidden states of {M(b)
i }K

(b)

i=1 . Instead, we treat Xi = {x(i,m)}Nim=1 as “missing”

704

Clustering HMMs with Variational HEM

information, and estimate them in the E-step. The log-likelihood of the virtual samples is

log p(Y |M(r)) =
K(b)∑
i=1

log p(Yi|M(r)), (5)

where, in order to obtain a consistent clustering, we assume the entirety of samples Yi is
assigned to the same component of the reduced model (Vasconcelos and Lippman, 1998).

The original formulation of HEM (Vasconcelos and Lippman, 1998) maximizes (5) with
respect to M(r), and uses the law of large numbers to turn the virtual samples Yi into

an expectation over the base model components M(b)
i . In this paper, we will start with a

different objective function to derive the VHEM algorithm. To estimateM(r), we will max-
imize the average log-likelihood of all possible virtual samples, weighted by their likelihood

of being generated by M(b)
i , that is, the expected log-likelihood of the virtual samples,

J (M(r)) = EM(b)

[
log p(Y |M(r))

]
=

K(b)∑
i=1

EM(b)
i

[
log p(Yi|M(r))

]
, (6)

where the expectation is over the base model components M(b)
i . Maximizing (6) will even-

tually lead to the same estimate as maximizing (5), but allows us to strictly preserve the
variational lower bound, which would otherwise be ruined when applying the law of large
numbers to (5).

A general approach to deal with maximum likelihood estimation in the presence of
hidden variables (which is the case for H3Ms) is the EM algorithm (Dempster et al., 1977).
In the traditional formulation the EM algorithm is presented as an alternation between
an expectation step (E-step) and a maximization step (M-step). In this work, we take a
variational perspective (Neal and Hinton, 1998; Wainwright and Jordan, 2008; Csiszár and
Tusnády, 1984), which views each step as a maximization step. The variational E-step
first obtains a family of lower bounds to the (expected) log-likelihood (i.e., to Equation 6),
indexed by variational parameters, and then optimizes over the variational parameters to
find the tightest bound. The corresponding M-step then maximizes the lower bound (with
the variational parameters fixed) with respect to the model parameters. One advantage of
the variational formulation is that it readily allows for useful extensions to the EM algorithm,
such as replacing a difficult inference in the E-step with a variational approximation. In
practice, this is achieved by restricting the maximization in the variational E-step to a
smaller domain for which the lower bound is tractable.

The EM algorithm with variational E-step is guaranteed to converge (Gunawardana
and Byrne, 2005). Despite the approximation prevents convergence to local maxima of
the data log-likelihood (Gunawardana and Byrne, 2005), the algorithm still performs well
empirically, as shown in Section 5 and Section 6.

3.2.1 Lower Bound to an Expected Log-likelihood

Before proceeding with the derivation of VHEM for H3Ms, we first need to derive a lower-
bound to an expected log-likelihood term, for example, (6). Our derivation starts from
a variational lower-bound to a log-likelihood (as opposed to an expected log-likelihood), a

705

Coviello, Chan and Lanckriet

standard tool in machine learning (Jordan et al., 1999; Jaakkola, 2000), which we briefly
review next. In all generality, let {O,H} be the observation and hidden variables of a
probabilistic model, respectively, where p(H) is the distribution of the hidden variables,
p(O|H) is the conditional likelihood of the observations, and p(O) =

∑
H p(O|H)p(H) is

the observation likelihood. We can define a variational lower bound to the observation
log-likelihood (Jordan et al., 1999; Jaakkola, 2000):

log p(O) ≥ log p(O)−D(q(H)||p(H|O))

=
∑
H

q(H) log
p(H)p(O|H)

q(H)
,

where p(H|O) is the posterior distribution of H given observation O, and D(p‖q) =∫
p(y) log p(y)

q(y)dy is the Kullback-Leibler (KL) divergence between two distributions, p and

q. We introduce a variational distribution q(H), which approximates the posterior dis-
tribution, where

∑
H q(H) = 1 and q(H) ≥ 0. When the variational distribution equals

the true posterior, q(H) = P (H|O), then the KL divergence is zero, and hence the lower-
bound reaches log p(O). When the true posterior cannot be computed, then typically q is
restricted to some set of approximate posterior distributions Q that are tractable, and the
best lower-bound is obtained by maximizing over q ∈ Q,

log p(O) ≥ max
q∈Q

∑
H

q(H) log
p(H)p(O|H)

q(H)
. (7)

From the standard lower bound in (7), we can now derive a lower bound to an expected
log-likelihood expression. Let Eb[·] be the expectation with respect to O with some dis-
tribution pb(O). Since pb(O) is non-negative, taking the expectation on both sides of (7)
yields,

Eb [log p(O)] ≥ Eb

[
max
q∈Q

∑
H

q(H) log
p(H)p(O|H)

q(H)

]
(8)

≥ max
q∈Q

Eb

[∑
H

q(H) log
p(H)p(O|H)

q(H)

]
(9)

= max
q∈Q

∑
H

q(H)

{
log

p(H)

q(H)
+ Eb [log p(O|H)]

}
, (10)

where (9) follows from Jensen’s inequality (i.e., f(E[x]) ≤ E[f(x)] when f is convex), and
the convexity of the max function. Hence, (10) is a variational lower bound on the expected
log-likelihood, which depends on the family of variational distributions Q.

In (8) we are computing the best lower-bound (7) to log p(O) individually for each value
of the observation variable O, which in general corresponds to different optimal q∗ ∈ Q for
different values of O. Note that the expectation in (8) is not analytically tractable when
p(O) is a mixture model (i.e., it is the expected log-likelihood of a mixture). Hence, we
treat the ensemble of observations O ∼ pb as a whole, and in (9) find a single q∗ ∈ Q for
which the lower bound is best on average. Mathematically, this correspond to using Jensen
inequality to pass from (8) to (9), which shows that the additional approximation makes
the lower-bound looser.

706

Clustering HMMs with Variational HEM

3.2.2 Variational Lower Bound

We now derive a lower bound to the expected log-likelihood cost function in (6). The
derivation will proceed by successively applying the lower bound from (10) to each expected
log-likelihood term that arises. This will result in a set of nested lower bounds.

A variational lower bound to the expected log-likelihood of the virtual samples in (6) is
obtained by lower bounding each of the expectation terms EM(b)

i

in the sum,

J (M(r)) =
K(b)∑
i=1

EM(b)
i

[
log p(Yi|M(r))

]
≥

K(b)∑
i=1

LiH3M , (11)

where we define three nested lower bounds, corresponding to different model elements (the
H3M, the component HMMs, and the emission GMMs):

EM(b)
i

[log p(Yi|M(r))] ≥ LiH3M , (12)

EM(b)
i

[log p(y|M(r)
j)] ≥ Li,jHMM , (13)

EM(b)
i,β

[log p(y|M(r)
j,ρ)] ≥ L(i,β),(j,ρ)

GMM . (14)

In (12), the first lower bound, LiH3M , is on the expected log-likelihood of an H3M M(r)

with respect to an HMM M(b)
i . Because p(Yi|M(r)) is the likelihood under a mixture of

HMMs, as in (4), where the observation variable is Yi and the hidden variable is zi (the
assignment of Yi to a component of M(r)), its expectation cannot be calculated directly.
Hence, we introduce the variational distribution qi(zi) and apply (10) to (12), yielding the
lower bound (see Appendix A),

LiH3M = max
qi

∑
j

qi(zi = j)

{
log

p(zi = j|M(r))

qi(zi = j)
+NiLi,jHMM

}
. (15)

The lower bound in (15) depends on the second lower bound (Eq. 13), Li,jHMM , which is

on the expected log-likelihood of an HMMM(r)
j , averaged over observation sequences from

a different HMM M(b)
i . Although the data log-likelihood log p(y|M(r)

j) can be computed
exactly using the forward algorithm (Rabiner and Juang, 1993), calculating its expectation

is not analytically tractable since an observation sequence y from a HMMM(r)
j is essentially

an observation from a mixture model.1

To calculate the lower bound Li,jHMM in (13), we first rewrite the expectation EM(b)
i

in

(13) to explicitly marginalize over the state sequence β ofM(b)
i , and then apply (10) where

the hidden variable is the state sequence ρ of M(r)
j , yielding (see Appendix A)

Li,jHMM =
∑
β

π
(b),i
β max

qi,j

∑
ρ

qi,j(ρ|β)

{
log

p(ρ|M(r)
j)

qi,j(ρ|β)
+
∑
t

L(i,βt),(j,ρt)
GMM

}
, (16)

1. For an observation sequence of length τ , an HMM with S states can be considered as a mixture model
with O(Sτ) components.

707

Coviello, Chan and Lanckriet

where we introduce a variational distribution qi,j(ρ|β) on the state sequence ρ, which

depends on a particular sequence β from M(b)
i . As before, (16) depends on another nested

lower bound, L(i,β),(j,ρ)
GMM in (14), which is on the expected log-likelihood of a GMM emission

density M(r)
j,ρ with respect to another GMM M(b)

i,β. This lower bound does not depend on
time, as we have assumed that the emission densities are time-invariant.

Finally, we obtain the lower bound L(i,β),(j,ρ)
GMM for (14), by explicitly marginalizing over

the GMM hidden assignment variable in M(b)
i,β and then applying (10) to the expectation

of the GMM emission distribution p(y|M(r)
j,ρ), yielding (see Appendix A),

L(i,β),(j,ρ)
GMM =

M∑
m=1

c
(b),i
β,m max

qi,jβ,ρ

M∑
ζ=1

qi,jβ,ρ(ζ|m)

{
log

p(ζ|M(r)
j,ρ)

qi,jβ,ρ(ζ|m)
+ EM(b)

i,β,m

[log p(y|M(r)
j,ρ,ζ)]

}
, (17)

where we introduce the variational distribution qi,jβ,ρ(ζ|m), which is conditioned on the obser-

vation y arising from the mth component inM(b)
i,β. In (17), the term EM(b)

i,β,m

[log p(y|M(r)
j,ρ,`)]

is the expected log-likelihood of the Gaussian distributionM(r)
j,ρ,` with respect to the Gaus-

sian M(b)
i,β,m, which has a closed-form solution (see Section 3.3.1).

In summary, we have derived a variational lower bound to the expected log-likelihood of
the virtual samples, which is given by (11). This lower bound is composed of three nested
lower bounds in (15), (16), and (17), corresponding to different model elements (the H3M,
the component HMMs, and the emission GMMs), where qi(zi), q

i,j(ρ|β), and qi,jβ,ρ(ζ|m)
are the corresponding variational distributions. Finally, the variational HEM algorithm for
HMMs consists of two alternating steps:

• (variational E-step) given M(r), calculate the variational distributions
qi,jβ,ρ(ζ|m), qi,j(ρ|β), and qi(zi) for the lower bounds in (17), (16), and (15);

• (M-step) update the model parameters via M(r)∗ = argmaxM(r)

∑K(b)

i=1 LiH3M .

In the following subsections, we derive the E- and M-steps of the algorithm. The entire
procedure is summarized in Algorithm 1.

3.3 Variational E-Step

The variational E-step consists of finding the variational distributions that maximize the
lower bounds in (17), (16), and (15). In particular, given the nesting of the lower bounds,

we proceed by first maximizing the GMM lower bound L(i,β),(j,ρ)
GMM for each pair of emission

GMMs in the base and reduced models. Next, the HMM lower bound Li,jHMM is maximized
for each pair of HMMs in the base and reduced models, followed by maximizing the H3M
lower bound LiH3M for each base HMM. Finally, a set of summary statistics are calculated,
which will be used in the M-step.

3.3.1 Variational Distributions

We first consider the forms of the three variational distributions, as well as the optimal
parameters to maximize the corresponding lower bounds.

708

Clustering HMMs with Variational HEM

Algorithm 1 VHEM algorithm for H3Ms

1: Input: base H3M M(b) = {ω(b)
i ,M(b)

i }K
(b)

i=1 , number of virtual samples N .

2: Initialize reduced H3M M(r) = {ω(r)
j ,M(r)

j }K
(r)

j=1 .
3: repeat
4: {Variational E-step}
5: Compute optimal variational distributions and variational lower bounds:

6: for each pair of HMMs M(s)
i and M(r)

j

7: for each pair of emission GMMs for state β of M(s)
i and ρ of M(r)

j :

8: Compute optimal variational distributions η̂
(i,β),(j,ρ)
`|m as in (18)

9: Compute optimal lower bound L(i,β),(j,ρ)
GMM to expected log-likelihood as in (22)

10: Compute optimal variational distributions for HMMs as in Appendin B
φ̂i,j1 (ρ1|β1), φ̂i,jt (ρt|ρt−1, βt) for t = τ, . . . , 2

11: Compute optimal lower bound Li,jHMM to expected log-likelihood as in (21)
12: Compute optimal assignment probabilities:

ẑij =
ω

(r)
j exp(Nω

(b)
i L

i,j
HMM)∑

j′ ω
(r)
j′ exp(Nω

(b)
i L

i,j′

HMM)

13: Compute aggregate summary statistics for each pair of HMMs M(s)
i and M(r)

j as in
Section 3.3.3:

ν̂i,j1 (ρ) =

S∑
β=1

νi,j1 (ρ, β), ν̂i,j(ρ, β) =

τ∑
t=1

νi,jt (ρ, β), ξ̂i,j(ρ, ρ′) =

τ∑
t=2

S∑
β=1

ξi,jt (ρ, ρ′, β)

14: {M-step}
15: For each component M(r)

j , recompute parameters using (24)-(28).
16: until convergence

17: Output: reduced H3M {ω(r)
j ,M(a)

j }K
(r)

j=1 .

GMM: For the GMM lower bound L(i,β),(j,ρ)
GMM , we assume each variational distribution

has the form (Hershey et al., 2007)

qi,jβ,ρ(ζ = l|m) = η
(i,β),(j,ρ)
`|m ,

where
∑M

`=1 η
(i,β),(j,ρ)
`|m = 1, and η

(i,β),(j,ρ)
`|m ≥ 0, ∀`. Intuitively, η(i,β),(j,ρ) is the responsibility

matrix between each pair of Gaussian components in the GMMs M(b)
i,β and M(r)

j,ρ , where

η
(i,β),(j,ρ)
`|m represents the probability that an observation from component m of M(b)

i,β cor-

responds to component ` of M(r)
j,ρ . Substituting into (17) and maximizing the variational

709

Coviello, Chan and Lanckriet

parameters yields (see Appendix B)

η̂
(i,β),(j,ρ)
`|m =

c
(r),j
ρ,` exp

{
EM(b)

i,β,m

[log p(y|M(r)
j,ρ,`)]

}
∑

`′ c
(r),j
ρ,`′ exp

{
EM(b)

i,β,m

[log p(y|M(r)
j,ρ,`′)]

} , (18)

where the expected log-likelihood of a Gaussian M(r)
j,ρ,` with respect to another Gaussian

M(b)
i,β,m is computable in closed-form (Penny and Roberts, 2000),

EM(b)
i,β,m

[log p(y|M(r)
j,ρ,`)] = −d

2
log 2π − 1

2
log
∣∣∣Σ(r),j

ρ,`

∣∣∣− 1

2
tr
(

(Σ
(r),j
ρ,`)−1Σ

(b),i
β,m

)
− 1

2
(µ

(r),j
ρ,` − µ

(b),i
β,m)T (Σ

(r),j
ρ,`)−1(µ

(r),j
ρ,` − µ

(b),i
β,m).

HMM: For the HMM lower bound Li,jHMM , we assume each variational distribution
takes the form of a Markov chain,

qi,j(ρ|β) = φi,j(ρ|β) = φi,j1 (ρ1|β1)

τ∏
t=2

φi,jt (ρt|ρt−1, βt),

where
∑S

ρ1=1 φ
i,j
1 (ρ1|β1) = 1, and

∑S
ρt=1 φ

i,j
t (ρt|ρt−1, βt) = 1, and all the factors are non-

negative. The variational distribution qi,j(ρ|β) represents the probability of the state se-

quence ρ in HMM M(r)
j , when M(r)

j is used to explain the observation sequence generated

by M(b)
i that evolved through state sequence β.

Substituting φi,j into (16), the maximization with respect to φi,jt (ρt|ρt−1, βt) and
φi,j1 (ρ1|β1) is carried out independently for each pair (i, j), and follows (Hershey et al.,
2007). This is further detailed in Appendix B. By separating terms and breaking up the
summation over β and ρ, the optimal φ̂i,jt (ρt|ρt−1, βt) and φ̂i,j1 (ρ1|β1) can be obtained using
an efficient recursive iteration (similar to the forward algorithm).

H3M: For the H3M lower bound LiH3M , we assume variational distributions of the

form qi(zi = j) = zij , where
∑K(r)

j=1 zij = 1, and zij ≥ 0. Substituting zij into (15), and
maximizing variational parameters are obtained as (see Appendix B)

ẑij =
ω

(r)
j exp(NiLi,jHMM)∑
j′ ω

(r)
j′ exp(NiLi,j

′

HMM)
. (19)

Note that in the standard HEM algorithm (Vasconcelos and Lippman, 1998; Chan et al.,
2010a), the assignment probabilities zij are based on the expected log-likelihoods of the

components, (e.g., EM(b)
i

[log p(y|M(r)
j)] for H3Ms). For the variational HEM algorithm,

these expectations are now replaced with their lower bounds (in our case, Li,jHMM).

710

Clustering HMMs with Variational HEM

3.3.2 Lower Bound

Substituting the optimal variational distributions into (15), (16), and (17) gives the lower
bounds,

LiH3M =
∑
j

ẑij

{
log

ω
(r)
j

ẑij
+NiLi,jHMM

}
, (20)

Li,jHMM =
∑
β

π
(b),i
β

∑
ρ

φ̂i,j(ρ|β)

{
log

π
(r),j
ρ

φ̂i,j(ρ|β)
+
∑
t

L(i,βt),(j,ρt)
GMM

}
, (21)

L(i,β),(j,ρ)
GMM =

M∑
m=1

c
(b),i
β,m

M∑
`=1

η̂
(i,β),(j,ρ)
`|m

log
c

(r),j
ρ,`

η̂
(i,β),(j,ρ)
`|m

+ EM(b)
i,β,m

[log p(y|M(r)
j,ρ,`)]

 . (22)

The lower bound Li,jHMM requires summing over all sequences β and ρ. This summation

can be computed efficiently along with φ̂i,jt (ρt|ρt−1, βt) and φ̂i,j1 (ρ1|β1) using a recursive
algorithm from Hershey et al. (2007). This is described in Appendix B.

3.3.3 Summary Statistics

After calculating the optimal variational distributions, we calculate the following summary
statistics, which are necessary for the M-step:

νi,j1 (ρ1, β1) = π
(b),i
β1

φ̂i,j1 (ρ1|β1),

ξi,jt (ρt−1, ρt, βt) =

 S∑
βt−1=1

νi,jt−1(ρt−1, βt−1) a
(b),i
βt−1,βt

 φ̂i,jt (ρt|ρt−1, βt), for t = 2, . . . , τ,

νi,jt (ρt, βt) =
S∑

ρt−1=1

ξi,jt (ρt−1, ρt, βt), for t = 2, . . . , τ,

and the aggregate statistics

ν̂i,j1 (ρ) =

S∑
β=1

νi,j1 (ρ, β), (23)

ν̂i,j(ρ, β) =
τ∑
t=1

νi,jt (ρ, β),

ξ̂i,j(ρ, ρ′) =

τ∑
t=2

S∑
β=1

ξi,jt (ρ, ρ′, β).

The statistic ν̂i,j1 (ρ) is the expected number of times that the HMMM(r)
j starts from state

ρ, when modeling sequences generated by M(b)
i . The quantity ν̂i,j(ρ, β) is the expected

number of times that the HMMM(r)
j is in state ρ when the HMMM(b)

i is in state β, when

both HMMs are modeling sequences generated by M(b)
i . Similarly, the quantity ξ̂i,j(ρ, ρ′)

711

Coviello, Chan and Lanckriet

is the expected number of transitions from state ρ to state ρ′ of the HMM M(r)
j , when

modeling sequences generated by M(b)
i .

3.4 M-Step

In the M-step, the lower bound in (11) is maximized with respect to the parameters M(r),

M(r)∗ = argmax
M(r)

K(b)∑
i=1

LiH3M .

The derivation of the maximization is presented in Appendix C. Each mixture component
of M(r) is updated independently according to

ω
(r)
j

∗
=

∑K(b)

i=1 ẑi,j

K(b)
, (24)

π(r),j
ρ

∗
=

∑K(b)

i=1 ẑi,jω
(b)
i ν̂i,j1 (ρ)∑S

ρ′=1

∑K(b)

i=1 ẑi,jω
(b)
i ν̂i,j1 (ρ′))

, a
(r),j
ρ,ρ′

∗
=

∑K(b)

i=1 ẑi,jω
(b)
i ξ̂i,j(ρ, ρ′)∑S

σ=1

∑K(b)

i=1 ẑi,jω
(b)
i ξ̂i,j(ρ, σ)

, (25)

c
(r),j
ρ,`

∗
=

Ωj,ρ

(
η̂

(i,β),(j,ρ)
`|m

)
∑M

`′=1 Ωj,ρ

(
η̂

(i,β),(j,ρ)
`′|m

) , µ
(r),j
ρ,`

∗
=

Ωj,ρ

(
η

(i,β),(j,ρ)
`|m µ

(b),i
β,m

)
Ωj,ρ

(
η̂

(i,β),(j,ρ)
`|m

) , (26)

Σ
(r),j
ρ,`

∗
=

Ωj,ρ

(
η̂

(i,β),(j,ρ)
`|m

[
Σ

(b),i
β,m + (µ

(b),i
β,m − µ

(r),j
ρ,`)(µ

(b),i
β,m − µ

(r),j
ρ,`)T

])
Ωj,ρ

(
η̂

(i,β),(j,ρ)
`|m

) , (27)

where Ωj,ρ(·) is the weighted sum operator over all base models, HMM states, and GMM
components (i.e., over all tuples (i, β,m)),

Ωj,ρ(f(i, β,m)) =
K(b)∑
i=1

ẑi,jω
(b)
i

S∑
β=1

ν̂i,j(ρ, β)
M∑
m=1

c
(b),i
β,m f(i, β,m). (28)

The terms π
(r),j
ρ and a

(r),j
ρ,ρ′ are elements of the initial state prior and transition matrix, π(r),j

and A(r),j . Note that the covariance matrices of the reduced models in (27) include an
additional outer-product term, which acts to regularize the covariances of the base models.
This regularization effect derives from the E-step, which averages all possible observations
from the base model.

4. Applications and Related Work

In the previous section, we derived the VHEM-H3M algorithm to cluster HMMs. We now
discuss various applications of the algorithm (Section 4.1), and then present some literature
that is related to HMM clustering (Section 4.2).

712

Clustering HMMs with Variational HEM

4.1 Applications of the VHEM-H3M Algorithm

The proposed VHEM-H3M algorithm clusters HMMs directly through the distributions they
represent, and learns novel HMM cluster centers that compactly represent the structure of
each cluster.

An application of the VHEM-H3M algorithm is in hierarchical clustering of HMMs. In
particular, the VHEM-H3M algorithm is used recursively on the HMM cluster centers, to
produce a bottom-up hierarchy of the input HMMs. Since the cluster centers condense the
structure of the clusters they represent, the VHEM-H3M algorithm can implicitly leverage
rich information on the underlying structure of the clusters, which is expected to impact
positively the quality of the resulting hierarchical clustering.

Another application of VHEM is for efficient estimation of H3Ms from data, by using a
hierarchical estimation procedure to break the learning problem into smaller pieces. First, a
data set is split into small (non-overlapping) portions and intermediate HMMs are learned
for each portion, via standard EM. Then, the final model is estimated from the intermediate
models using the VHEM-H3M algorithm. Because VHEM and standard EM are based on
similar maximum-likelihood principles, it drives model estimation towards similar optimal
parameter values as performing EM estimation directly on the full data set. However,
compared to direct EM estimation, VHEM-H3M is more memory- and time-efficient. First,
it no longer requires storing in memory the entire data set during parameter estimation.
Second, it does not need to evaluate the likelihood of all the samples at each iteration, and
converges to effective estimates in shorter times. Note that even if a parallel implementation
of EM could effectively handle the high memory requirements, a parallel-VHEM will still
require fewer resources than a parallel-EM.

In addition, for the hierarchical procedure, the estimation of the intermediate models
can be easily parallelized, since they are learned independently of each other. Finally, hi-
erarchical estimation allows for efficient model updating when adding new data. Assuming
that the previous intermediate models have been saved, re-estimating the H3M requires
learning the intermediate models of only the new data, followed by running VHEM again.
Since estimation of the intermediate models is typically as computationally intensive as the
VHEM stage, reusing the previous intermediate models will lead to considerable computa-
tional savings when re-estimating the H3M.

In hierarchical estimation (EM on each time-series, VHEM on intermediate models),
VHEM implicitly averages over all possible observations (virtual variations of each time-
series) compatible with the intermediate models. We expect this to regularize estimation,
which may result in models that generalize better (compared to estimating models with
direct EM). Lastly, the “virtual” samples (i.e., sequences), which VHEM implicitly generates
for maximum-likelihood estimation, need not be of the same length as the actual input data
for estimating the intermediate models. Making the virtual sequences relatively short will
positively impact the run time of each VHEM iteration. This may be achieved without loss
of modeling accuracy, as show in Section 6.3.

4.2 Related Work

Jebara et al. (2007)’s approach to clustering HMMs consists of applying spectral clustering
to a probability product kernel (PPK) matrix between HMMs—we will refer to it as PPK-

713

Coviello, Chan and Lanckriet

SC. In particular, the PPK similarity between two HMMs, M(a) and M(b), is defined as

k(a, b) =

∫
p(y|M(a))λ p(y|M(b))λdy, (29)

where λ is a scalar, and τ is the length of “virtual” sequences. The case λ = 1
2 corresponds

to the Bhattacharyya affinity. While this approach indirectly leverages the probability dis-
tributions represented by the HMMs (i.e., the PPK affinity is computed from the probability
distributions of the HMMs) and has proven successful in grouping HMMs into similar clus-
ters (Jebara et al., 2007), it has several limitations. First, the spectral clustering algorithm
cannot produce novel HMM cluster centers to represent the clusters, which is suboptimal
for several applications of HMM clustering. For example, when implementing hierarchi-
cal clustering in the spectral embedding space (e.g., using hierarchical k-means clustering),
clusters are represented by single points in the embedding space. This may fail to capture
information on the local structure of the clusters that, when using VHEM-H3M, would be
encoded by the novel HMM cluster centers. Hence, we expect VHEM-H3M to produce
better hierarchical clustering than the spectral clustering algorithm, especially at higher
levels of the hierarchy. This is because, when building a new level, VHEM can leverage
more information from the lower levels, as encoded in the HMM cluster centers.

One simple extension of PPK-SC to obtain a HMM cluster center is to select the input
HMM that the spectral clustering algorithm maps closest to the spectral clustering center.
However, with this method, the HMM cluster centers are limited to be one of the existing
input HMMs (i.e., similar to the k-medoids algorithm by Kaufman and Rousseeuw 1987),
instead of the HMMs that optimally condense the structure of the clusters. Therefore,
we expect the novel HMM cluster centers learned by VHEM-H3M to better represent the
clusters. A more involved, “hybrid” solution is to learn the HMM cluster centers with
VHEM-H3M after obtaining clusters with PPK-SC—using the VHEM-H3M algorithm to
summarize all the HMMs within each PPK-SC cluster into a single HMM. However, we
expect our VHEM-H3M algorithm to learn more accurate clustering models, since it jointly
learns the clustering and the HMM centers, by optimizing a single objective function (i.e.,
the lower bound to the expected log-likelihood in Equation 11).

A second drawback of the spectral clustering algorithm is that the construction and the
inversion of the similarity matrix between the input HMMs is a costly operation when their
number is large2 (e.g., see the experiment on H3M density estimation on the music data in
Section 6.1). Therefore, we expect VHEM-H3M to be computationally more efficient than
the spectral clustering algorithm since, by directly operating on the probability distributions
of the HMMs, it does not require the construction of an initial embedding or any costly
matrix operation on large kernel matrices.

Finally, as Jebara et al. (2004) note, the exact computation of (29) cannot be carried
out efficiently, unless λ = 1. For different values of λ,3 Jebara et al. (2004) propose to
approximate k(a, b) with an alternative kernel function that can be efficiently computed;

2. The computational complexity of large spectral clustering problems can be alleviated by means of
numerical techniques for the solutions of eigenfunction problems such as the Nyström method (Nyström,
1930; Fowlkes et al., 2004), or by sampling only part of the similarity matrix and using a sparse eigen-
sonver (Achlioptas et al., 2002).

3. The experimental results in Jebara et al. (2004) and Jebara et al. (2007) suggest to use λ < 1.

714

Clustering HMMs with Variational HEM

this alternative kernel function, however, is not guaranteed to be invariant to different but
equivalent representations of the hidden state process (Jebara et al., 2004).4 Alternative
approximations for the Bhattacharyya setting (i.e., λ = 1

2) have been proposed by Hershey
and Olsen (2008).

Note that spectral clustering algorithms (similar to the one by Jebara et al. 2007) can be
applied to kernel (similarity) matrices that are based on other affinity scores between HMM
distributions than the PPK similarity of Jebara et al. (2004). Examples can be found in
earlier work on HMM-based clustering of time-series, such as by Juang and Rabiner (1985),
Lyngso et al. (1999), Bahlmann and Burkhardt (2001), Panuccio et al. (2002). In particular,
Juang and Rabiner (1985) propose to approximate the (symmetrised) log-likelihood between
two HMM distributions by computing the log-likelihood of real samples generated by one
model under the other.5 Extensions of the work of Juang and Rabiner (1985) have been
proposed by Zhong and Ghosh (2003) and Yin and Yang (2005). In this work we do not
pursue a comparison of the various similarity functions, but implement spectral clustering
only based on PPK similarity (which Jebara et al. 2007 showed to be superior).

HMMs can also be clustered by sampling a number of time-series from each of the HMMs
in the base mixture, and then applying the EM algorithm for H3Ms (Smyth, 1997), to cluster
the time-series. Despite its simplicity, this approach would suffer from high memory and
time requirements, especially when dealing with a large number of input HMMs. First,
all generated samples need to be stored in memory. Second, evaluating the likelihood of
the generated samples at each iteration is computationally intensive, and prevents the EM
algorithm from converging to effective estimates in acceptable times.6 On the contrary,
VHEM-H3M is more efficient in computation and memory usage, as it replaces a costly
sampling step (along with the associated likelihood computations at each iteration) with an
expectation. An additional problem of EM with sampling is that, with a simple application
of the EM algorithm, time-series generated from the same input HMM can be assigned
to different clusters of the output H3M. As a consequence, the resulting clustering is not
necessary consistent, since in this case the corresponding input HMM may not be clearly
assigned to any single cluster. In our experiments, we circumvent this problem by defining
appropriate constrains on the assignment variables.

The VHEM algorithm is similar in spirit to Bregman-clustering by Banerjee et al. (2005).
Both algorithms base clustering on KL-divergence—the KL divergence and the expected

4. The kernel in (29) is computed by marginalizing out the hidden state variables, that is,∫ (∑
x p(y,x|M

(a))
)λ (∑

x p(y,x|M
(b))
)λ
dy. This can be efficiently solved with the junction tree

algorithm only when λ = 1. For λ 6= 1, Jebara et al. (2004) propose to use an alternative kernel k̃ that
applies the power operation to the terms of the sum rather than the entire sum, where the terms are

joint probabilities p(y,x). I.e., k̃(a, b) =
∫ ∑

x

(
p(y,x|M(a))

)λ ∑
x

(
p(y,x|M(b))

)λ
dy.

5. For two HMM distributions, M(a) and M(b), Juang and Rabiner (1985) consider the affinity L(a, b) =
1
2

[
log p(Yb|M(a)) + p(Ya|M(b))

]
, where Ya and Yb are sets of observation sequences generated fromM(a)

and M(b), respectively.
6. In our experiments, EM on generated samples took two orders of magnitude more time than VHEM.

715

Coviello, Chan and Lanckriet

log-likelihood differ only for an entropy term that does not affect the clustering.7 The
main differences are: 1) in our setting, the expected log-likelihood (and KL divergence) is
not computable in closed form, and hence VHEM uses an approximation; 2) VHEM-H3M
clusters random processes (i.e., time series models), whereas Bregman-clustering (Banerjee
et al., 2005) is limited to single random variables. Note that the number of virtual observa-
tions N allows to control the peakiness of the assignments ẑi,j . Limiting cases for N →∞
and N = 1 are similar to Bregman hard and soft cluttering, respectively (Goldberger and
Roweis, 2004; Banerjee et al., 2005; Dhillon, 2007).

In the next two sections, we validate the points raised in this discussion through exper-
imental evaluation using the VHEM-H3M algorithm. In particular, we consider clustering
experiments in Section 5, and H3M density estimation for automatic annotation and re-
trieval in Section 6. Each application exploits some of the benefits of VHEM. First, we
show that VHEM-H3M is more accurate in clustering than PPK-SC, in particular at higher
levels of a hierarchical clustering (Section 5.2), and in an experiment with synthetic data
(Section 5.3). Similarly, the annotation and retrieval results in Section 6 favor VHEM-H3M
over PPK-SC and over standard EM, suggesting that VHEM-H3M is more robust and ef-
fective for H3M density estimation. Finally, in all the experiments, the running time of
VHEM-H3M compares favorably with the other HMM clustering algorithms; PPK-SC suf-
fers long delays when the number of input HMMs is large and the standard EM algorithm
is considerably slower. This demonstrates that VHEM-H3M is most efficient for clustering
HMMs.

5. Clustering Experiments

In this section, we present an empirical study of the VHEM-H3M algorithm for clustering
and hierarchical clustering of HMMs. Clustering HMMs consists in partitioning K1 input
HMMs into K2 < K1 groups of similar HMMs. Hierarchical clustering involves organizing
the input HMMs in a multi-level hierarchy with h levels, by applying clustering in a recursive
manner. Each level ` of the hierarchy has K` groups (with K1 > K2 > · · · > Kh−1 > Kh),
and the first level consists of the K1 input HMMs.

We begin with an experiment on hierarchical clustering, where each of the input HMMs
to be clustered is estimated on a sequence of motion capture data (Section 5.2). Then, we
present a simulation study on clustering synthetic HMMs (Section 5.3). First, we provide
an overview of the different algorithms used in this study.

5.1 Clustering Methods

In the clustering experiments, we will compare our VHEM-H3M algorithm with several
other clustering algorithms. The various algorithms are summarized here.

• VHEM-H3M: We clusterK1 input HMMs intoK2 clusters by using the VHEM-H3M
algorithm (on the input HMMs) to learn a H3M with K2 components (as explained

7. We can show that the VHEM algorithm performs clustering based on KL divergence. Letting Di,jHMM =

Li,iHMM −L
i,j
HMM ≈ D(M(b)

i ||M
(r)
j) be an approximation to the KL using (21), we can rewrite the E-step

as ẑij ∝ ω(r)
j e−Nω

(b)
i D

i,j
HMM . Similarly, the M-step is M̂(r)

j = arg minM(r)
j

∑K(b)

i=1 ω
(b)
i ẑijDi,jHMM .

716

Clustering HMMs with Variational HEM

in Section 3.1). To build a multi-level hierarchy of HMMs with h levels, we start from
the first level of K1 input HMMs, and recursively use the VHEM-H3M algorithm
h− 1 times. Each new level ` is formed by clustering the K`−1 HMMs at the previous
level into K` < K`−1 groups with the VHEM-H3M algorithm, and using the learned
HMMs as cluster centers at the new level. In our experiments, we set the number of
virtual samples to N = 104K(`−1), a large value that favors “hard” clustering (where
each HMM is univocally assigned to a single cluster), and the length of the virtual
sequences to τ = 10.

• PPK-SC: Jebara et al. (2007) cluster HMMs by calculating a PPK similarity ma-
trix between all HMMs, and then applying spectral clustering. The work in Jebara
et al. (2007) only considered HMMs with single Gaussian emissions, which did not
always give satisfactory results in our experiments. Hence, we extended the method
of Jebara et al. (2007) by allowing GMM emissions, and derived the PPK similarity
for this more general case (Jebara et al., 2004). From preliminary experiments, we
found the best performance for PPK with λ = 1

2 (i.e., Bhattacharyya affinity), and
when integrating over sequences of length τ = 10. Finally, we also extend Jebara
et al. (2007) to construct multi-level hierarchies, by using hierarchical k-means in the
spectral clustering embedding.

• SHEM-H3M: This is a version of HEM-H3M that maximizes the likelihood of actual
samples generated from the input HMMs, as in (5), rather than the expectation of

virtual samples, as in (6). In particular, from each input HMMM(b)
i we sample a set

Yi of Ni = π
(b)
i N observation sequences (for a large value of N). We then estimate

the reduced H3M from the N samples Y = {Yi}K
(b)

i=1 , with the EM-H3M algorithm of
Smyth (1997), which was modified to use a single assignment variable for each sample
set Yi, to obtain a consistent clustering.

In many real-life applications, the goal is to cluster a collection of time series, that is,
observed sequences. Although the input data is not a collection of HMMs in that case,
it can still be clustered with the VHEM-H3M algorithm by first modeling each sequence
as an HMM, and then using the HMMs as input for the VHEM-H3M algorithm. With
time-series data as input, it is also possible to use clustering approaches that do not model
each sequence as a HMM. Hence, in one of the hierarchical motion clustering experiments,
we also compare to the following two algorithms, one that clusters time-series data directly
(Smyth, 1997), and a second one that clusters the time series after modeling each sequence
with a dynamic texture (DT) model (Chan et al., 2010a).

• EM-H3M: The EM algorithm for H3Ms (Smyth, 1997) is applied directly on a col-
lection of time series to learn the clustering and HMM cluster centers, thus bypassing
the intermediate HMM modeling stage. To obtain a hierarchical clustering (with
h ≥ 3 levels), we proceed in a bottom up fashion and build each new level by simply
re-clustering the given time series in a smaller number of clusters using the EM algo-
rithm by Smyth (1997). We extend the algorithm to use a single assignment variable
for each set of sequences Yi that are within the same cluster in the immediately lower

717

Coviello, Chan and Lanckriet

level of the hierarchy. This modification preserves the hierarchical clustering property
that sequences in a cluster will remain together at the higher levels.

• HEM-DTM: Rather than use HMMs, we consider a clustering model based on linear
dynamical systems, that is, dynamic textures (DTs) (Doretto et al., 2003). Hierar-
chical clustering is performed using the hierarchical EM algorithm for DT mixtures
(HEM-DTM) (Chan et al., 2010a), in an analogous way to VHEM-H3M. The main
difference is that, with HEM-DTM, time-series are modeled as DTs, which have a con-
tinuous state space (a Gauss-Markov model) and unimodal observation model, whereas
VHEM-H3M uses a discrete state space and multimodal observations (GMMs).

We will use several metrics to quantitatively compare the results of different clustering
algorithms. First, we will calculate the Rand-index (Hubert and Arabie, 1985), which
measures the correctness of a proposed clustering against a given ground truth clustering.
Intuitively, this index measures how consistent cluster assignments are with the ground
truth (i.e., whether pairs of items are correctly or incorrectly assigned to the same cluster,
or different clusters). Second, we will consider the log-likelihood, as used by Smyth (1997)
to evaluate a clustering. This measures how well the clustering fits the input data. When
time series are given as input data, we compute the log-likelihood of a clustering as the sum
of the log-likelihoods of each input sequence under the HMM cluster center to which it has
been assigned. When the input data consists of HMMs, we will evaluate the log-likelihood
of a clustering by using the expected log-likelihood of observations generated from an input
HMM under the HMM cluster center to which it is assigned. For PPK-SC, the cluster center
is estimated by running the VHEM-H3M algorithm (with K(r) = 1) on the HMMs assigned
to the cluster.8 Note that the log-likelihood will be particularly appropriate to compare
VHEM-H3M, SHEM-H3M, EM-H3M and HEM-DTM, since they explicitly optimize for it.
However, it may be unfair for PPK-SC, since this method optimizes the PPK similarity and
not the log-likelihood. As a consequence, we also measure the PPK cluster-compactness,
which is more directly related to what PPK-SC optimizes for. The PPK cluster-compactness
is the sum (over all clusters) of the average intra-cluster PPK pair-wise similarity. This
performance metric favors methods that produce clusters with high intra-cluster similarity.

Note that, time series can also be clustered with recourse to similarity measures based on
dynamic time warping (Oates et al., 1999; Keogh and Pazzani, 2000; Keogh and Ratanama-
hatana, 2005) or methods that rely on non-parametric sequence kernels (Leslie et al., 2002;
Campbell, 2003; Kuksa et al., 2008; Cortes et al., 2008), which have shown good perfor-
mance in practice. In this work we focus on the problem of clustering hidden Markov models,
so we do not pursue an empirical evaluation of these methods.

5.2 Hierarchical Motion Clustering

In this experiment we test the VHEM algorithm on hierarchical motion clustering from
motion capture data, that is, time series representing human locomotions and actions. To
hierarchically cluster a collection of time series, we first model each time series with an HMM
and then cluster the HMMs hierarchically. Since each HMM summarizes the appearance

8. Alternatively, we could use as cluster center the HMM mapped the closest to the spectral embedding
cluster center, but this always resulted in lower log-likelihood.

718

Clustering HMMs with Variational HEM

(a) “Walk” sequence.

(b) “Run” sequence.

Figure 1: Examples of motion capture sequences from the MoCap data set, shown with
stick figures.

and dynamics of the particular motion sequence it represents, the structure encoded in the
hierarchy of HMMs directly applies to the original motion sequences. Jebara et al. (2007)
uses a similar approach to cluster motion sequences, applying PPK-SC to cluster HMMs.
However, they did not extend their study to hierarchies with multiple levels.

5.2.1 Data Sets and Setup

We experiment on two motion capture data sets, the MoCap data set (http://mocap.cs.
cmu.edu/) and the Vicon Physical Action data set (Theodoridis and Hu, 2007; Asuncion and
Newman, 2010). For the MoCap data set, we use 56 motion examples spanning 8 different
classes (“jump”, “run”, “jog”, “walk 1”, “walk 2”, “basket”, “soccer”, and “sit”). Each
example is a sequence of 123-dimensional vectors representing the (x, y, z)-coordinates of 41
body markers tracked spatially through time. Figure 1 illustrates some typical examples.
We built a hierarchy of h = 4 levels. The first level (Level 1) was formed by the K1 = 56
HMMs learned from each individual motion example (with S = 4 hidden states, and M = 2
components for each GMM emission). The next three levels contain K2 = 8, K3 = 4 and
K4 = 2 HMMs. We perform the hierarchical clustering with VHEM-H3M, PPK-SC, EM-
H3M, SHEM-H3M (N ∈ {560, 2800} and τ = 10), and HEM-DTM (state dimension of 7).
The experiments were repeated 10 times for each clustering method, using different random
initializations of the algorithms.

The Vicon Physical Action data set is a collection of 200 motion sequences. Each se-
quence consists of a time series of 27-dimensional vectors representing the (x, y, z)-coordinates
of 9 body markers captured using the Vicon 3D tracker. The data set includes 10 normal
and 10 aggressive activities, performed by each of 10 human subjects a single time. We
build a hierarchy of h = 5 levels, starting with K1 = 200 HMMs (with S = 4 hidden states
and M = 2 components for each GMM emission) at the first level (i.e., one for each motion
sequence), and using K2 = 20, K3 = 8, K4 = 4, and K5 = 2 for the next four levels. The
experiment was repeated 5 times with VHEM-H3M and PPK-SC, using different random
initializations of the algorithms.

719

http://mocap.cs.cmu.edu/
http://mocap.cs.cmu.edu/

Coviello, Chan and Lanckriet

1 2

L
e

v
e

l
4

1 2 3 4

L
e

v
e

l
3

1 2 3 4 5 6 7 8

L
e

v
e

l
2

1 2

L
e

v
e

l
4

1 2 3 4

L
e

v
e

l
3

1 2 3 4 5 6 7 8

L
e

v
e

l
2

5 10 15 20 25 30 35 40 45 50 55

L
e

v
e

l
1

walk 1 jump run jog basket soccer walk 2 sit

VHEM algorithm PPK-SC

s
o

c
c
e

r

soccer

soccer

soccersoccer

soccer

soccer

soccerju
m

p

ju
m

p

jump

jump

jump
jump

walk 1
walk 1

walk 1

w
a

lk
 1

walk 1

walk 1

run run

ru
n

ru
n

run
run

walk 2 walk 2

w
a

lk
 2

w
a

lk
 2walk 2

walk 2
walk 2

jog
jog

jogjog

jo
g

jo
g

basket

basket

basket

b
a

s
k
e

t

basketbasket

s
it

s
it

sit

sit

sit

sit

sit

Figure 2: An example of hierarchical clustering of the MoCap data set, with VHEM-H3M
and PPK-SC. Different colors represent different motion classes. Vertical bars
represent clusters, with the colors indicating the proportions of the motion classes
in a cluster, and the numbers on the x-axes representing the clusters’ indexes. At
Level 1 there are 56 clusters, one for each motion sequence. At Levels 2, 3 and 4
there are 8, 4 and 2 HMM clusters, respectively. For VHEM almost all clusters
at Level 2 are populated by examples from a single motion class. The error of
VHEM in clustering a portion of “soccer” with “basket” is probably because
both actions involve a sequence of movement, shot, and pause. Moving up the
hierarchy, the VHEM algorithm clusters similar motions classes together, and at
Level 4 creates a dichotomy between “sit” and the other (more dynamic) motion
classes. PPK-SC also clusters motion sequences well at Level 2, but incorrectly
aggregates “sit” and “soccer”, which have quite different dynamics. At Level 4,
the clustering obtained by PPK-SC is harder to interpret than that by VHEM.

In similar experiments where we varied the number of levels h of the hierarchy and
the number of clusters at each level, we noted similar relative performances of the various
clustering algorithms, on both data sets.

5.2.2 Results on the MoCap Data Set

An example of hierarchical clustering of the MoCap data set with VHEM-H3M is illustrated
in Figure 2 (left). In the first level, each vertical bar represents a motion sequence, with
different colors indicating different ground-truth classes. In the second level, the K2 = 8
HMM clusters are shown with vertical bars, with the colors indicating the proportions
of the motion classes in the cluster. Almost all clusters are populated by examples from
a single motion class (e.g., “run”, “jog”, “jump”), which demonstrates that VHEM can

720

Clustering HMMs with Variational HEM

Rand-index log-likelihood (×106) PPK cluster-compactness time (s)
Level 2 3 4 2 3 4 2 3 4

VHEM-H3M 0.937 0.811 0.518 -5.361 -5.682 -5.866 0.0075 0.0068 0.0061 30.97
PPK-SC 0.956 0.740 0.393 -5.399 -5.845 -6.068 0.0082 0.0021 0.0008 37.69
SHEM-H3M (560) 0.714 0.359 0.234 -13.632 -69.746 -275.650 0.0062 0.0034 0.0031 843.89
SHEM-H3M (2800) 0.782 0.685 0.480 -14.645 -30.086 -52.227 0.0050 0.0036 0.0030 3849.72
EM-H3M 0.831 0.430 0.340 -5.713 -202.55 -168.90 0.0099 0.0060 0.0056 667.97
HEM-DTM 0.897 0.661 0.412 -7.125 -8.163 -8.532 - - - 121.32

Table 2: Hierarchical clustering of the MoCap data set using VHEM-H3M, PPK-SC,
SHEM-H3M, EM-H3M and HEM-DTM. The number in brackets after SHEM-
H3M represents the number of real samples used. We computed Rand-index, data
log-likelihood and cluster compactness at each level of the hierarchy, and reg-
istered the time (in seconds) to learn the hierarchical structure. Differences in
Rand-index at Levels 2, 3, and 4 are statistically significant based on a paired
t-test with confidence 95%.

group similar motions together. We note an error of VHEM in clustering a portion of the
“soccer” examples with “basket”. This is probably caused by the fact that both types
of actions begin with a stationary phase (e.g., subject focusing on the execution) followed
with a forward movement (note that our “basket” examples correspond to forward dribbles).
Moving up the hierarchy, the VHEM algorithm clusters similar motion classes together (as
indicated by the arrows), for example “walk 1” and “walk 2” are clustered together at
Level 2, and at the highest level (Level 4) it creates a dichotomy between “sit” and the rest
of the motion classes. This is a desirable behavior as the kinetics of the “sit” sequences
(which in the MoCap data set correspond to starting in a standing position, sitting on a
stool, and returning to a standing position) are considerably different from the rest. On
the right of Figure 2, the same experiment is repeated with PPK-SC. PPK-SC clusters
motion sequences properly, but incorrectly aggregates “sit” and “soccer” at Level 2, even
though they have quite different dynamics. Furthermore, the highest level (Level 4) of the
hierarchical clustering produced by PPK-SC is harder to interpret than that of VHEM.

Table 2 presents a quantitative comparison between PPK-SC and VHEM-H3M at each
level of the hierarchy. While VHEM-H3M has lower Rand-index than PPK-SC at Level 2
(0.937 vs. 0.956), VHEM-H3M has higher Rand-index at Level 3 (0.811 vs. 0.740) and Level
4 (0.518 vs. 0.393). In terms of PPK cluster-compactness, we observe similar results. In
particular, VHEM-H3M has higher PPK cluster-compactness than PPK-SC at Level 3 and
4. Overall, keeping in mind that PPK-SC is explicitly driven by PPK-similarity, while the
VHEM-H3M algorithm is not, these results can be considered as strongly in favor of VHEM-
H3M (over PPK-SC). In addition, the data log-likelihood for VHEM-H3M is higher than
that for PPK-SC at each level of the hierarchy. This suggests that the novel HMM cluster
centers learned by VHEM-H3M fit the motion capture data better than the spectral cluster
centers, since they condense information of the entire underlying clusters. This conclusion
is further supported by the results of the density estimation experiments in Sections 6.1
and 6.2. Note that the higher up in the hierarchy, the more clearly this effect is manifested.

721

Coviello, Chan and Lanckriet

Comparing to other methods (also in Table 2), EM-H3M generally has lower Rand-index
than VHEM-H3M and PPK-SC (consistent with the results from Jebara et al. (2007)).
While EM-H3M directly clusters the original motion sequences, both VHEM-H3M and
PPK-SC implicitly integrate over all possible virtual variations of the original motion se-
quences (according to the intermediate HMM models), which results in more robust cluster-
ing procedures. In addition, EM-H3M has considerably longer running times than VHEM-
H3M and PPK-SC (i.e., roughly 20 times longer) since it needs to evaluate the likelihood
of all training sequences at each iteration, at all levels.

The results in Table 2 favor VHEM-H3M over SHEM-H3M, and empirically validate
the variational approximation that VHEM uses for learning. For example, when using
N = 2800 samples, running SHEM-H3M takes over two orders of magnitude more time
than VHEM-H3M, but still does not achieve performance competitive with VHEM-H3M.
With an efficient closed-form expression for averaging over all possible virtual samples,
VHEM approximates the sufficient statistics of a virtually unlimited number of observation
sequences, without the need of using real samples. This has an additional regularization
effect that improves the robustness of the learned HMM cluster centers. In contrast, SHEM-
H3M uses real samples, and requires a large number of them to learn accurate models, which
results in significantly longer running times.

In Table 2, we also report hierarchical clustering performance for HEM-DTM. VHEM-
H3M consistently outperforms HEM-DTM, both in terms of Rand-index and data log-
likelihood.9 Since both VHEM-H3M and HEM-DTM are based on the hierarchical EM
algorithm for learning the clustering, this indicates that HMM-based clustering models are
more appropriate than DT-based models for the human MoCap data. Note that, while
PPK-SC is also HMM-based, it has a lower Rand-index than HEM-DTM at Level 4. This
further suggests that PPK-SC does not optimally cluster the HMMs.

Finally, to assess stability of the clustering results, starting from the 56 HMMs learned
on the motion examples, in turn we exclude one of them and build a hierarchical clustering of
the remaining ones (h = 4 levels, K1 = 55,K2 = 8,K3 = 4,K4 = 2), using in turn VHEM-
H3M and PPK-SC. We then compute cluster stability as the mean Rand-index between all
possible pairs of clusterings. The experiment is repeated 10 times for both VHEM-H3M and
PPK-SC, using a different random initialization for each trial. The stability of VHEM-H3M
is 0.817, 0.808 and 0.950, at Levels 2, 3 and 4. The stability of PPK-SC is 0.786, 0.837 and
0.924, at Levels 2, 3 and 4. Both methods are fairly stable in terms of Rand-index, with a
slight advantage for VHEM-H3M over PPK-SC (with average across levels of 0.858 versus
0.849).

The experiments were repeated 10 times for each clustering method, using different
random initializations of the algorithms.

Alternatively, we evaluate the out-of-sample generalization of the clusterings discovered
by VHEM-H3M and PPK-SC, by computing the fraction of times the held out HMMs is
assigned10 to the cluster that contains the majority of HMMs from its same ground truth

9. We did not report PPK cluster-compactness for HEM-DTM, since it would not be directly comparable
with the same metric based on HMMs.

10. For VHEM-H3M we use the expected log-likelihood, for PPK-SC we use the out-of-sample extension for
spectral clustering of Bengio et al. (2004).

722

Clustering HMMs with Variational HEM

Rand-index log-likelihood (×106) PPK cluster-compactness
Level 2 3 4 5 2 3 4 5 2 3 4 5

VHEM-H3M 0.909 0.805 0.610 0.244 -1.494 -3.820 -5.087 -6.172 0.224 0.059 0.020 0.005
PPK-SC 0.900 0.807 0.452 0.092 -3.857 -5.594 -6.163 -6.643 0.324 0.081 0.026 0.008

Table 3: Hierarchical clustering of the Vicon Physical Action data set using VHEM-H3M
and PPK-SC. Performance is measured in terms of Rand-index, data log-likelihood
and PPK cluster-compactness at each level. Differences in Rand-index at Levels 2,
4 and 5 are statistically significant based on a paired t-test with confidence 95%.
The test failed at Level 3.

class. Out of sample generalization of VHEM-H3M and PPK-SC are comparable, registering
an averages of 0.875, respectively, 0.851 across the different levels.

5.2.3 Results on the Vicon Physical Action Data Set

Table 3 presents results using VHEM-H3M and PPK-SC to cluster the Vicon Physical
Action data set. While the two algorithms performs similarly in terms of Rand-index at
lower levels of the hierarchy (i.e., Level 2 and Level 3), at higher levels (i.e., Level 4 and Level
5) VHEM-H3M outperforms PPK-SC. In addition, VHEM-H3M registers higher data log-
likelihood than PPK-SC at each level of the hierarchy. This, again, suggests that by learning
new cluster centers, the VHEM-H3M algorithm retains more information on the clusters’
structure than PPK-SC. Finally, compared to VHEM-H3M, PPK-SC produces clusters that
are more compact in terms of PPK similarity. However, this does not necessarily imply a
better agreement with the ground truth clustering, as evinced by the Rand-index metrics.

5.3 Clustering Synthetic Data

In this experiment, we compare VHEM-H3M and PPK-SC on clustering a synthetic data
set of HMMs.

5.3.1 Data Set and Setup

The synthetic data set of HMMs is generated as follows. Given a set of C HMMs {M(c)}Cc=1,
for each HMM we synthesize a set of K “noisy” versions of the original HMM. Each “noisy”

HMM M̃(c)
k (k = 1, . . .K) is synthesized by generating a random sequence y1:T of length T

fromM(c), corrupting it with Gaussian noise ∼ N (0, σ2
nId), and estimating the parameters

of M̃(c)
k on the corrupted version of y1:T . Note that this procedure adds noise in the

observation space. The number of noisy versions (of each given HMM), K, and the noise
variance, σ2

n, will be varied during the experiments.

The collection of original HMMs was created as follows. Their number was always set
to C = 4, the number of hidden states of the HMMs to S = 3, the emission distributions to
be single, one-dimensional Gaussians (i.e., GMMs with M = 1 component), and the length
of the sequences to T = 100. For all original HMMs M(c), if not otherwise specified, the
initial state probability, the state transition matrix, and the means and variances of the

723

Coviello, Chan and Lanckriet

emission distributions were fixed as

π(c) =

 1/3
1/3
1/3

 , A(c) =

 0.8 0.1 0.1
0.2 0.8 0
0 0.2 0.8

 ,

µ
(c)
1 = 1

µ
(c)
2 = 2

µ
(c)
3 = 3

σ(c)
ρ

2
= 0.5 ∀ρ, ∀c.

We consider three different experimental settings. In the first setting, experiment (a), the
HMMs M(c) only differ in the means of the emission distributions,

µ
(1)
1 = 1

µ
(1)
2 = 2

µ
(1)
3 = 3

,

µ

(2)
1 = 3

µ
(2)
2 = 2

µ
(2)
3 = 1

,

µ

(3)
1 = 1

µ
(3)
2 = 2

µ
(3)
3 = 2

,

µ

(4)
1 = 1

µ
(4)
2 = 3

µ
(4)
3 = 3

In the second setting, experiment (b), the HMMs differ in the variances of the emission
distributions,

σ(1)
ρ

2
= 0.5, σ(2)

ρ

2
= 0.1, σ(3)

ρ

2
= 1, σ(4)

ρ

2
= 0.05, ∀ρ.

In the last setting, experiment (c), the HMMs differ in the transition matrices,

A(1) =

 0.8 0.1 0.1
0.2 0.8 0
0 0.2 0.8

 A(2) =

 0.2 0.2 0.2
0.4 0.6 0
0 0.4 0.6

 A(3) =

 0.9 0.05 0.05
0.1 0.9 0
0 0.1 0.9

 A(4) =

 0.4 0.3 0.4
0.6 0.4 0
0 0.6 0.4

.
The VHEM-H3M and PPK-SC algorithms are used to cluster the synthesized HMMs,

{{M̃(c)
k }

K
k=1}Cc=1, into C groups, and the quality of the resulting clusterings is measured

with the Rand-index, PPK cluster-compactness, and the expected log-likelihood of the
discovered cluster centers with respect to the original HMMs. The expected log-likelihood
was computed using the lower bound, as in (13), with each of the original HMMs assigned
to the most likely HMM cluster center. The results are averages over 10 trials.

The reader is referred to Appendix E for experiments where the order of the model used
for clustering does not match the order of the true model used for generating the data.

5.3.2 Results

Figure 3 reports the performance metrics when varying the number K ∈ {2, 4, 8, 16, 32} of
noisy versions of each of the original HMMs, and the noise variance σ2

n ∈ {0.1, 0.5, 1}, for
the three experimental settings. (Note that, in each trial, for each class, we first generated
32 noisy HMMs per class, and then, varying K ∈ {4, 8, 16, 32}, we subsampled only K of
them.) For the majority of settings of K and σ2

n, the clustering produced by VHEM-H3M
is superior to the one produced by PPK-SC, for each of the considered metrics (i.e., in the
plots, solid lines are usually above dashed lines of the same color). The only exception is in
experiment (b) where, for low noise variance (i.e., σ2

n = 0.1) PPK-SC is the best in terms of
Rand-index and cluster compactness. It is interesting to note that the gap in performance
between VHEM-H3M and PPK-SC is generally larger at low values of K. We believe this
is because, when only a limited number of input HMMs is available, PPK-SC produces an

724

Clustering HMMs with Variational HEM

Experiment (a): different emission means.

4 8 16 32
0.5

0.6

0.7

0.8

0.9

1

Noisy HMMs per original HMM

R
a

n
d

−
In

d
e

x

4 8 16 32
−160

−150

−140

−130

−120

−110

Noisy HMMs per original HMM

L
L

 t
o

 o
ri
g

in
a

l
H

M
M

s

4 8 16 32
3.65

3.7

3.75

3.8

3.85

3.9

3.95

Noisy HMMs per original HMM

C
lu

s
te

r
c
o

p
m

a
c
tn

e
s
s
 (

P
P

K
)

Experiment (b): different emission variances.

4 8 16 32
0.5

0.6

0.7

0.8

0.9

1

Noisy HMMs per original HMM

R
a

n
d

−
In

d
e

x

4 8 16 32
−160

−150

−140

−130

−120

−110

Noisy HMMs per original HMM

L
L

 t
o

 o
ri
g

in
a

l
H

M
M

s

4 8 16 32
3.65

3.7

3.75

3.8

3.85

3.9

3.95

Noisy HMMs per original HMM

C
lu

s
te

r
c
o

p
m

a
c
tn

e
s
s
 (

P
P

K
)

Experiment (c): different state transition matrices.

4 8 16 32
0.5

0.6

0.7

0.8

0.9

1

Noisy HMMs per original HMM

R
a

n
d

−
In

d
e

x

4 8 16 32
−160

−150

−140

−130

−120

−110

Noisy HMMs per original HMM

L
L

 t
o

 o
ri
g

in
a

l
H

M
M

s

4 8 16 32
3.65

3.7

3.75

3.8

3.85

3.9

3.95

Noisy HMMs per original HMM

C
lu

s
te

r
c
o

p
m

a
c
tn

e
s
s
 (

P
P

K
)

σ
n

2
=0.1 HEM σ

n

2
=0.1 PPKσ

n

2
=0.5 HEM σ

n

2
=0.5 PPKσ

n

2
=1 HEM σ

n

2
=1 PPK

Figure 3: Results on clustering synthetic data with VHEM-H3M and PPK-SC. Performance
is measured in terms of Rand-index, expected log-likelihood and PPK cluster-
compactness.

embedding of lower quality. This does not affect VHEM-H3M, since it clusters in HMM
distribution space and does not use an embedding.

Note that the Rand-Index values for experiment (c) (i.e., different state transition ma-
trices) are superior to the corresponding ones in experiments (a) and (b) (i.e., different
emission distributions) for both VHEM-H3M and PPK-SC. This shows that VHEM-H3M
(and slightly less robustly PPK-SC as well) can cluster dynamics characterized by different
hidden states processes more easily than dynamics that differ only in the emission distri-

725

Coviello, Chan and Lanckriet

butions. In addition, VHEM-H3M is more robust to noise than PPK-SC, as demonstrated
by the experiments with σ2

n = 1 (blue lines).

These results suggest that, by clustering HMMs directly in distribution space, VHEM-
H3M is generally more robust than PPK-SC, the performance of which instead depends on
the quality of the underlying embedding.

Finally, the results in Figure 3 show only small fluctuations across different values ofK at
each noise value, suggesting stability of the clustering results (relative to the ground truth
clustering) for both VHEM-H3M and PPK-SC, to both subsampling and jittering (i.e.,
addition of noise) (Hennig, 2007). In particular, from the expected log-likelihood values
(central column in Figure 3), we evince that the similarity of the discovered clustering to
the true distribution (i.e., the original HMMs) is not largely affected by the amount of
subsampling, except when only as little as the 12.5% of the data is used (when K = 4).

6. Density Estimation Experiments

In this section, we present an empirical study of VHEM-H3M for density estimation, in
automatic annotation and retrieval of music (Section 6.1) and hand-written digits (Section
6.2).

6.1 Music Annotation and Retrieval

In this experiment, we evaluate VHEM-H3M for estimating annotation models in content-
based music auto-tagging. As a generative time-series model, H3Ms allow to account for
timbre (i.e., through the GMM emission process) as well as longer term temporal dynamics
(i.e., through the HMM hidden state process), when modeling musical signals. Therefore,
in music annotation and retrieval applications, H3Ms are expected to prove more effective
than existing models that do not explicitly account for temporal information (Turnbull
et al., 2008; Mandel and Ellis, 2008; Eck et al., 2008; Hoffman et al., 2009).

6.1.1 Music Data Set

We consider the CAL500 collection from Turnbull et al. (2008), which consists of 502 songs
and provides binary annotations with respect to a vocabulary V of 149 tags, ranging from
genre and instrumentation, to mood and usage. To represent the acoustic content of a song
we extract a time series of audio features Y = {y1, . . . , y|Y|}, by computing the first 13 Mel
frequency cepstral coefficients (MFCCs) (Rabiner and Juang, 1993) over half-overlapping
windows of 46ms of audio signal, augmented with first and second instantaneous derivatives.
The song is then represented as a collection of audio fragments, which are sequences of
T = 125 audio features (approximately 6 seconds of audio), using a dense sampling with
80% overlap.

6.1.2 Music Annotation Models

Automatic music tagging is formulated as a supervised multi-label problem (Carneiro et al.,
2007), where each class is a tag from V. We approach this problem by modeling the audio
content for each tag with a H3M probability distribution. I.e., for each tag, we estimate
an H3M over the audio fragments of the songs in the database that have been associated

726

Clustering HMMs with Variational HEM

with that tag, using the hierarchical estimation procedure based on VHEM-H3M. More
specifically, the database is first processed at the song level, using the EM algorithm to
learn a H3M with K(s) = 6 components for each song11 from its audio fragments. Then,
for each tag, the song-level H3Ms labeled with that tag are pooled together to form a large
H3M, and the VHEM-H3M algorithm is used to reduce this to a final H3M tag-model with
K = 3 components (τ = 10 and N = NvNtK

(s), where Nv = 1000 and Nt is the number of
training songs for the particular tag).

Given the tag-level models, a song can be represented as a vector of posterior proba-
bilities of each tag (a semantic multinomial, SMN), by extracting features from the song,
computing the likelihood of the features under each tag-level model, and applying Bayes’
rule.12 A test song is annotated with the top-ranking tags in its SMN. To retrieve songs
given a tag query, a collection of songs is ranked by the tag’s probability in their SMNs.

We compare VHEM-H3M with three alternative algorithms for estimating the H3M tag
models: PPK-SC, PPK-SC-hybrid, and EM-H3M.13 For all three alternatives, we use the
same number of mixture components in the tag models (K = 3). For the two PPK-SC
methods, we leverage the work of Jebara et al. (2007) to learn H3M tag models, and use
it in place of the VHEM-H3M algorithm in the second stage of the hierarchical estimation
procedure. We found that it was necessary to implement the PPK-SC approaches with song-
level H3Ms with only K(s) = 1 component (i.e., a single HMM), since the computational
cost for constructing the initial embedding scales poorly with the number of input HMMs.14

PPK-SC first applies spectral clustering to the song-level HMMs and then selects as the
cluster centers the HMMs that map closest to the spectral cluster centers in the spectral
embedding. PPK-SC-hybrid is a hybrid method combining PPK-SC for clustering, and
VHEM-H3M for estimating the cluster centers. Specifically, after spectral clustering, HMM
cluster centers are estimated by applying VHEM-H3M (with K(r) = 1) to the HMMs
assigned to each of the resulting clusters. In other words, PPK-SC and PPK-SC-hybrid use
spectral clustering to summarize a collection of song-level HMMs with a few HMM centers,
forming a H3M tag model. The mixture weight of each HMM component (in the H3M tag
model) is set proportional to the number of HMMs assigned to that cluster.

For EM-H3M, the H3M tag models were estimated directly from the audio fragments
from the relevant songs using the EM-H3M algorithm.15 Empirically, we found that, due

11. Most pop songs have 6 structural parts: intro, verse, chorus, solo, bridge and outro.
12. We compute the likelihood of a song under a tag model as the geometric average of the likelihood of the

individual segments, and further normalized it by the length of the segments to prevent the posteriors
from being too “peaked” (Coviello et al., 2011).

13. For this experiment, we were not able to successfully estimate accurate H3M tag models with SHEM-
H3M. In particular, SHEM-H3M requires generating an appropriately large number of real samples to
produce accurate estimates. However, due to the computational limits of our cluster, we were able
to test SHEM-H3M only using a small number of samples. In preliminary experiments we registered
performance only slightly above chance level and training times still twice longer than for VHEM-H3M.
For a comparison between VHEM-H3M and SHEM-H3M on density estimation, the reader can refer to
the experiment in Section 6.2 on online hand-writing classification and retrieval.

14. Running PPK-SC with K(s) = 2 took 3958 hours in total (about 4 times more than when setting
K(s) = 1), with no improvement in annotation and retrieval performance. A larger K(s) would yield
impractically long learning times.

15. The EM algorithm has been used to estimate HMMs from music data in previous work (Scaringella and
Zoia, 2005; Reed and Lee, 2006).

727

Coviello, Chan and Lanckriet

to its runtime and RAM requirements, for EM-H3M we must use non-overlapping audio-
fragments and evenly subsample by 73% on average, resulting in 14.5% of the sequences
used by VHEM-H3M. Note that, however, EM-H3M is still using 73% of the actual song
data (just with non-overlapping sequences). We believe this to be a reasonable comparison
between EM and VHEM, as both methods use roughly similar resources (the sub-sampled
EM is still 3 times slower, as reported in Table 4). Based on our projections, running EM
over densely sampled song data would require roughly 9000 hours of CPU time (e.g., more
than 5 weeks when parallelizing the algorithm over 10 processors), as opposed to 630 hours
for VHEM-H3M. This would be extremely cpu-intensive given the computational limits of
our cluster. The VHEM algorithm, on the other hand, can learn from considerable amounts
of data while still maintaining low runtime and memory requirements.16

Finally, we also compare against two state-of-the-art models for music tagging, HEM-
DTM (Coviello et al., 2011), which is based on a different time-series model (mixture of
dynamic textures), and HEM-GMM (Turnbull et al., 2008), which is a bag-of-features model
using GMMs. Both methods use efficient hierarchical estimation based on a HEM algorithm
(Chan et al., 2010a; Vasconcelos and Lippman, 1998) to obtain the tag-level models.17

6.1.3 Performance Metrics

A test song is annotated with the 10 most likely tags, and annotation performance is
measured with the per-tag precision (P), recall (R), and F-score (F), averaged over all tags.
If |wH | is the number of test songs that have the tag w in their ground truth annotations,
|wA| is the number of times an annotation system uses w when automatically tagging a
song, and |wC | is the number of times w is correctly used, then precision, recall and F-score
for the tag w are defined as:

P =
|wC |
|wA|

, R =
|wC |
|wH |

, F = 2
(
(P)−1 + (R)−1

)−1
.

Retrieval is measured by computing per-tag mean average precision (MAP) and precision
at the first k retrieved songs (P@k), for k ∈ {5, 10, 15}. The P@k is the fraction of true
positives in the top-k of the ranking. MAP averages the precision at each point in the
ranking where a song is correctly retrieved. All reported metrics are averages over the
97 tags that have at least 30 examples in CAL500 (11 genre, 14 instrument, 25 acoustic
quality, 6 vocal characteristics, 35 emotion and 6 usage tags), and are the result of 5-fold
cross-validation.

Finally, we also record the total time (in hours) to learn the 97 tag-level H3Ms on the
5 splits of the data. For hierarchical estimation methods (VHEM-H3M and the PPK-SC
approaches), this also includes the time to learn the song-level H3Ms.

16. For example, consider learning a tag-level H3M from 200 songs, which corresponds to over 3GB of audio
fragments. Using the hierarchical estimation procedure, we first model each song (in average, 15MB of
audio fragments) individually as a song-level H3M, and we save the song models (150 KB of memory
each). Then, we pool the 200 song models into a large H3M (in total 30MB of memory), and reduce it
to a smaller tag-level H3M using the VHEM-H3M algorithm.

17. Both auto-taggers operate on audio features extracted over half-overlapping windows of 46ms. HEM-
GMM uses MFCCs with first and second instantaneous derivatives (Turnbull et al., 2008). HEM-DTM
uses 34-bins of Mel-spectral features (Coviello et al., 2011), which are further grouped in audio fragments
of 125 consecutive features.

728

Clustering HMMs with Variational HEM

annotation retrieval

P R F MAP P@5 P@10 P@15 time (h)

VHEM-H3M 0.446 0.211 0.260 0.440 0.474 0.451 0.435 629.5

PPK-SC 0.299 0.159 0.151 0.347 0.358 0.340 0.329 974.0
PPK-SC-hybrid 0.407 0.200 0.221 0.415 0.439 0.421 0.407 991.7

EM-H3M 0.415 0.214 0.248 0.423 0.440 0.422 0.407 1860.4

HEM-DTM 0.431 0.202 0.252 0.439 0.479 0.454 0.428 -
HEM-GMM 0.374 0.205 0.213 0.417 0.441 0.425 0.416 -

Table 4: Annotation and retrieval performance on CAL500, for VHEM-H3M, PPK-SC,
PPK-SC-hybrid, EM-H3M, HEM-DTM (Coviello et al., 2011) and HEM-GMM
(Turnbull et al., 2008).

6.1.4 Results

In Table 4 we report the performance of the various algorithms for both annotation and
retrieval on the CAL500 data set. Looking at the overall runtime, VHEM-H3M is the most
efficient algorithm for estimating H3M distributions from music data, as it requires only
34% of the runtime of EM-H3M, and 65% of the runtime of PPK-SC. The VHEM-H3M
algorithm capitalizes on the first stage of song-level H3M estimation (about one third of
the total time) by efficiently and effectively using the song-level H3Ms to learn the final tag
models. Note that the runtime of PPK-SC corresponds to setting K(s) = 1. When we set
K(s) = 2, we registered a running time four times longer, with no significant improvement
in performance.

The gain in computational efficiency does not negatively affect the quality of the cor-
responding models. On the contrary, VHEM-H3M achieves better performance than EM-
H3M,18 strongly improving the top of the ranked lists, as evinced by the higher P@k scores.
Relative to EM-H3M, VHEM-H3M has the benefit of regularization, and during learning
can efficiently leverage all the music data condensed in the song H3Ms. VHEM-H3M also
outperforms both PPK-SC approaches on all metrics. PPK-SC discards considerable in-
formation on the clusters’ structure by selecting one of the original HMMs to approximate
each cluster. This significantly affects the accuracy of the resulting annotation models.
VHEM-H3M, on the other hand, generates novel HMM cluster centers to summarize the
clusters. This allows to retain more accurate information in the final annotation models.

PPK-SC-hybrid achieves considerable improvements relative to standard PPK-SC, at
relatively low additional computational costs.19 This further demonstrates that the VHEM-
H3M algorithm can effectively summarize in a smaller model the information contained in
several HMMs. In addition, we observe that VHEM-H3M still outperforms PPK-SC-hybrid,
suggesting that the former produces more accurate cluster centers and density estimates.

18. The differences in performance are statistically significant based on a paired t-test with 95% confidence.
19. In PPK-SC-hybrid, each run of the VHEM-H3M algorithm converges quickly since there is only one

HMM component to be learned, and can benefit from clever initialization (i.e., to the HMM mapped the
closest to the spectral clustering center).

729

Coviello, Chan and Lanckriet

In fact, VHEM-H3M couples clustering and learning HMM cluster centers, and is entirely
based on maximum likelihood for estimating the H3M annotation models. PPK-SC-hybrid,
on the contrary, separates clustering and parameter estimation, and optimizes them against
two different metrics (i.e., PPK similarity and expected log-likelihood, respectively). As a
consequence, the two phases may be mismatched, and the centers learned with VHEM may
not be the best representatives of the clusters according to PPK affinity.

Finally, VHEM-H3M compares favorably to the auto-taggers based on other generative
models. First, VHEM-H3M outperforms HEM-GMM, which does not model temporal
information in the audio signal, on all metrics. Second, the performances of VHEM-H3M
and HEM-DTM (a continuous-state temporal model) are not statistically different based
on a paired t-test with 95% confidence, except for annotation precision where VHEM-
H3M scores significantly higher. Since HEM-DTM is based on linear dynamic systems
(a continuous-state model), it can model stationary time-series in a linear subspace. In
contrast, VHEM-H3M uses HMMs with discrete states and GMM emissions, and can hence
better adapt to non-stationary time-series on a non-linear manifold. This difference is
illustrated in the experiments: VHEM-H3M outperforms HEM-DTM on the human MoCap
data (see Table 2), which has non-linear dynamics, while the two perform similarly on the
music data (see Table 4), where audio features are often stationary over short time frames.

6.2 On-Line Hand-Writing Data Classification and Retrieval

In this experiment, we investigate the performance of the VHEM-H3M algorithm in es-
timating class-conditional H3M distributions for automatic classification and retrieval of
on-line hand-writing data.

6.2.1 Data Set

We consider the Character Trajectories Data Set (Asuncion and Newman, 2010), which is a
collection of 2858 examples of characters from the same writer, originally compiled to study
handwriting motion primitives (Williams et al., 2006).20 Each example is the trajectory of
one of the 20 different characters that correspond to a single pen-down segment. The data
was captured from a WACOM tablet at 200 Hz, and consists of (x, y)-coordinates and pen
tip force. The data has been numerically differentiated and Gaussian smoothed (Williams
et al., 2006). Half of the data is used for training, with the other half held out for testing.

6.2.2 Classification Models and Setup

From the hand-writing examples in the training set, we estimate a series of class-conditional
H3M distributions, one for each character, using hierarchical estimation with the VHEM-
H3M algorithm. First, for each character, we partition all the relevant training data into
groups of 3 sequences, and learn a HMM (with S = 4 states and M = 1 component for
the GMM emissions) from each group using the Baum-Welch algorithm. Next, we estimate
the class-conditional distribution (classification model) for each character by aggregating all
the relevant HMMs and summarizing them into a H3M with K = 4 components using the

20. Even if we limit this experiment to the data set of Williams et al. (2006), we would like to refer the
interest readers to the data set of Liwicki and Bunke (2005), which is a collection of word trajectories
(as opposed to character trajectories).

730

Clustering HMMs with Variational HEM

VHEM-H3M algorithm (τ = 10 and N = NvNc, where Nv = 10,21 and Nc is the number of
intermediate models for that character). Using the character-level H3Ms and Bayes’ rule,
for each hand-writing example in the test set we compute the posterior probabilities of
all of the 20 characters. Each example is classified as the character with largest posterior
probability. For retrieval given a query character, examples in the test set are ranked by
the character’s posterior probability.

We repeated the same experiment using PPK-SC or SHEM-H3M (τ = 10, N = 1000) to
estimate the classification models from the intermediate HMMs. Finally, we considered the
EM-H3M algorithm, which directly uses the training sequences to learn the class-conditional
H3M (K = 4).

Since VHEM-H3M, SHEM-H3M and EM-H3M are iterative algorithms, we studied them
when varying the stopping criterion. In particular, the algorithms were terminated when the
relative variation in the value of the objective function between two consecutive iterations
was lower than a threshold ∆LL, which we varied in {10−2, 10−3, 10−4, 10−5}.22

Finally, we measure classification and retrieval performance on the test set using the
classification accuracy, and the average per-tag P@3, P@5 and MAP. We also report the
total training time, which includes the time used to learn the intermediate HMMs. The
experiments consisted of 5 trials with different random initializations of the algorithms.

6.2.3 Results

Table 5 lists the classification and retrieval performance on the test set for the various
methods. Consistent with the experiments on music annotation and retrieval (Section 6.1),
VHEM-H3M performs better than PPK-SC on all metrics. By learning novel HMM cluster
centers, VHEM-H3M estimates H3M distributions that are representative of all the relevant
intermediate HMMs, and hence of all the relevant training sequences. While EM-H3M is the
best in classification (at the price of longer training times), VHEM-H3M performs better in
retrieval, as evinced by the P@3 and P@5 scores. In terms of training time, VHEM-H3M
and PPK-SC are about 5 times faster than EM-H3M. In particular, PPK-SC is the fastest
algorithm, since the small number of input HMMs (i.e., on average 23 per character) allows
to build the spectral clustering embedding efficiently.

The version of HEM based on actual sampling (SHEM-H3M) performs better than
VHEM-H3M in classification, but VHEM-H3M has higher retrieval scores. However, the
training time for SHEM-H3M is approximately 15 times longer than for VHEM-H3M. These
differences in performance can be understood in terms of the different types of approximation
used by SHEM-H3M and VHEM-H3M. The sampling operation of SHEM-H3M provides
an unbiased estimator, whose variance depends on the number of samples used. Hence, in
order to reliably estimate the reduced model (i.e., making the variance small), the SHEM-

21. Note that choosing a lower value of Nv (compared to the music experiments) plays a role in making
the clustering algorithm more reliable. Using fewer virtual samples equates to attaching smaller “virtual
probability masses” to the input HMMs, and leads to less certain assignments of the input HMMs to the
clusters (cf. Equation 19). This determines more mixing in the initial iterations of the algorithm (e.g.,
similar to higher annealing temperature), and reduces the risk of prematurely specializing any cluster to
one of the original HMMs. This effect is desirable, since the input HMMs are estimated over a smaller
number of sequences (compared to the music experiments) and can therefore be noisier and less reliable.

22. In a similar experiment where we used the number of iterations as the stopping criterion, we registered
similar results.

731

Coviello, Chan and Lanckriet

stop retrieval classification

∆LL P@3 P@5 MAP Accuracy total time (s)

VHEM-H3M

10−2 0.750 0.750 0.738 0.618 1838.34
10−3 0.717 0.750 0.741 0.619 1967.55
10−4 0.733 0.790 0.773 0.648 2210.77
10−5 0.750 0.820 0.775 0.651 2310.93

SHEM-H3M

10−2 0.417 0.440 0.517 0.530 13089.32
10−3 0.683 0.680 0.728 0.664 23203.44
10−4 0.700 0.750 0.753 0.689 35752.20
10−5 0.700 0.750 0.754 0.690 50094.36

EM-H3M

10−2 0.583 0.610 0.667 0.646 6118.53
10−3 0.617 0.650 0.731 0.674 7318.56
10−4 0.650 0.710 0.756 0.707 9655.08
10−5 0.517 0.560 0.665 0.635 10957.38

PPK-SC - 0.600 0.700 0.698 0.646 1463.54

Table 5: Classification and retrieval performance, and training time on the Character Tra-
jectories Data Set, for VHEM-H3M, PPK-SC, SHEM-H3M, and EM-H3M.

H3M algorithm requires generating and handling a sufficiently large number of samples
(relative to the model order/complexity, Hastie et al. 2005). In contrast, the variational
approximation of VHEM-H3M does not require generating samples (and hence avoids the
problem of large variances associate to relatively small samples), but introduces a bias
in the estimator (Gunawardana and Byrne, 2005). Hence, it is not surprising that, on a
relatively less complex problem where a relatively smaller sample size suffices, SHEM-H3M
can perform more robustly than VHEM-H3M (even if still at a larger computational cost).

It is also interesting to note that EM-H3M appears to suffer from overfitting of the
training set, as suggested by the overall drop in performance when the stopping criterion
changes from ∆LL = 10−4 to ∆LL = 10−5. In contrast, both VHEM-H3M and SHEM-
H3M consistently improve on all metrics as the algorithm converges (again looking at ∆LL ∈
{10−4, 10−5}). These results suggest that the regularization effect of hierarchical estimation,
which is based on averaging over more samples (either virtual or actual), can positively
impact the generalization of the learned models.23

Finally, we elaborate on how these results compare to the experiments on music annota-
tion and retrieval (in Section 6.1). First, in the Character Trajectory Data Set the number
of training sequences associated with each class (i.e, each character) is small compared to
the CAL500 data set.24 As a result, the EM-H3M algorithm is able to process all the data,
and achieve good classification performance. However, EM-H3M still needs to evaluate the

23. For smaller values of ∆LL (e.g., ∆LL < 10−5), the performance of EM-H3M did not improve.
24. In the Character Trajectory data set there are on average 71 training sequences per character. In

CAL500, each tag is associated with thousands of training sequences at the song level (e.g., an average
of about 8000 audio fragments per tag).

732

Clustering HMMs with Variational HEM

Nv = 1000 τ = 10
τ = 2 τ = 5 τ = 10 τ = 20 Nv = 1 Nv = 10 Nv = 100 Nv = 1000

P@5 0.4656 0.4718 0.4738 0.4734 0.4775 0.4689 0.4689 0.4738
P@10 0.4437 0.4487 0.4507 0.4478 0.4534 0.4491 0.4466 0.4507
P@15 0.4236 0.4309 0.4346 0.4327 0.4313 0.4307 0.4242 0.4346

Table 6: Annotation and retrieval performance on CAL500 for VHEM-H3M when varying
the virtual sample parameters Nv and τ .

likelihood of all the original sequences at each iteration. This leads to slower iterations,
and results in a total training time about 5 times longer than that of VHEM-H3M (see
Table 5). Second, the Character Trajectory data is more “controlled” than the CAL500
data, since each class corresponds to a single character, and all the examples are from the
same writer. As a consequence, there is less variation in the intermediate HMMs (i.e., they
are clustered more closely), and several of them may summarize the cluster well, providing
good candidate cluster centers for PPK-SC. In conclusion, PPK-SC faces only a limited
loss of information when selecting one of the initial HMMs to represent each cluster, and
achieves reasonable performances.

6.3 Robustness of VHEM-H3M to Number and Length of Virtual Samples

The generation of virtual samples in VHEM-H3M is controlled by two parameters: the
number of virtual sequences (N), and their length (τ). In this section, we investigate the
impact of these parameters on annotation and retrieval performance on CAL500. For a
given tag t, we set N = NvNtK

(s), where Nv is a constant, Nt the number of training songs
for the tag, and K(s) the number of mixture components for each song-level H3M. Starting
with (Nv, τ) = (1000, 10), each parameter is varied while keeping the other one fixed, and
annotation and retrieval performance on the CAL500 data set are calculated, as described
in Section 6.1.

Table 6 presents the results, for τ ∈ {2, 5, 10, 20} and Nv ∈ {1, 10, 100, 1000}. The
performances when varying τ are close on all metrics. For example, average P@5, P@10
and P@15 vary in small ranges (0.0082, 0.0070 and 0.0110, respectively). Similarly, varying
the number of virtual sequences Nv has a limited impact on performance as well.25 This
demonstrates that VHEM-H3M is fairly robust to the choice of these parameters.

Finally, we tested VHEM-H3M for music annotation and retrieval on CAL500, using
virtual sequences of the same length as the audio fragments used at the song level, that is,
τ = T = 125. Compared to τ = 10 (the setting used in earlier experiments), we registered
an 84% increase in total running time, with no corresponding improvement in performance.
Thus, in our experimental setting, making the virtual sequences relatively short positively
impacts the running time, without reducing the quality of the learned models.

25. Note that the E-step of the VHEM-H3M algorithm averages over all possible observations compatible
with the input models, also when we choose a low value of Nv (e.g., Nv = 1). The number of virtual
samples controls the “virtual mass” of each input HMMs and thus the certainty of cluster assignments.

733

Coviello, Chan and Lanckriet

7. Conclusion

In this paper, we presented a variational HEM (VHEM) algorithm for clustering HMMs
with respect to their probability distributions, while generating a novel HMM center to
represent each cluster. Experimental results demonstrate the efficacy of the algorithm on
various clustering, annotation, and retrieval problems involving time-series data, showing
improvement over current methods. In particular, using a two-stage, hierarchical estima-
tion procedure—learn H3Ms on many smaller subsets of the data, and summarize them in
a more compact H3M model of the data—the VHEM-H3M algorithm estimates annotation
models from data more efficiently than standard EM and also improves model robustness
through better regularization. Specifically, averaging over all possible virtual samples pre-
vents over-fitting, which can improve the generalization of the learned models. Moreover,
using relatively short virtual sequences positively impacts the running time of the algorithm,
without negatively affecting its performance on practical applications. In addition, we have
noted that the VHEM-H3M algorithm is robust to the choice of the number and length of
virtual samples.

In our experiments, we have implemented the first stage of the hierarchical estimation
procedure by partitioning data in non-overlapping subsets (and learning an intermediate
H3M on each subset). In particular, partitioning the CAL500 data at the song level had
a practical advantage. Since individual songs in CAL500 are relevant to several tags, the
estimation of the song H3Ms can be executed one single time for each song in the database,
and re-used in the VHEM estimation of all the associated tag models. This has a positive
impact on computational efficiency. Depending on the particular application, however, a
slightly different implementation of this first stage (of the hierarchical estimation procedure)
may be better suited. For example, when estimating a H3M from a very large amount of
training data, one could use a procedure that does not necessarily cover all data, inspired by
Kleiner et al. (2011). If n is the size of the training data, first estimate B > 1 intermediate
H3Ms on as many (possibly overlapping) “little” bootstrap subsamples of the data,26 each
of size b < n. Then summarize all the intermediate H3Ms into a final H3M using the
VHEM-H3M algorithm.

In future work we plan to extend VHEM-H3M to the case where all HMMs share a
large GMM universal background model for the emission distributions (with each HMM
state having a different set of weights for the Gaussian components), which is commonly
used in speech (Huang and Jack, 1989; Bellegarda and Nahamoo, 1990; Rabiner and Juang,
1993) or in hand-writing recognition (Rodriguez-Serrano and Perronnin, 2012). This would
allow for faster training (moving the complexity to estimating the noise background model)
and would require a faster implementation of the inference (e.g., using a strategy inspired
by Coviello et al. (2012b)). In addition, we plan to derive a HEM algorithm for HMMs
with discrete emission distributions, and compare its performance to the work presented
here and to the extension with the large GMM background model.

Finally, in this work we have not addressed the model selection problem, that is, selecting
the number of reduced mixture components. Since VHEM is based on maximum likelihood
principles, it is possible to apply standard statistical model selection techniques, such as

26. Several techniques have been proposed to bootstrap from sequences of samples, for example refer to Hall
et al. (1995).

734

Clustering HMMs with Variational HEM

Bayesian information criterion (BIC) and Akaike information criterion (AIC) (MacKay,
2003). Alternatively, inspired by Bayesian non-parametric statistics, the VHEM formulation
could be extended to include a Dirichlet process prior (Blei and Jordan, 2006), with the
number of components adapting to the data.

Acknowledgments

E.C. thanks Yingbo Song for providing the code for the PPK similarity between HMMs
(Jebara et al., 2007) and assistance with the experiments on motion clustering. The authors
acknowledge support from Google, Inc. E.C. and G.R.G.L. also wish to acknowledge sup-
port from Qualcomm, Inc., Yahoo!, Inc., KETI under the PHTM program, and NSF Grants
CCF-0830535 and IIS-1054960. A.B.C. was supported by the Research Grants Council of
the Hong Kong Special Administrative Region, China (CityU 110513). G.R.G.L. acknowl-
edges support from the Alfred P. Sloan Foundation. This research was supported in part
by the UCSD FWGrid Project, NSF Research Infrastructure Grant Number EIA-0303622.

Appendix A. Derivation of the Lower Bounds

The lower bounds are derived as follow.

A.1 Lower Bound on EM(b)
i

[
log p(Yi|M(r))

]
The lower bound (15) on EM(b)

i

[
log p(Yi|M(r))

]
is computed by introducing the variational

distribution qi(zi) and applying (10)

EM(b)
i

[
log p(Yi|M(r))

]
≥ max

qi

∑
j

qi(zi = j)

{
log

p(zi = j|M(r))

qi(zi = j)
+ EM(b)

i

[log p(Yi|M(r)
j)]

}

= max
qi

∑
j

qi(zi = j)

{
log

p(zi = j|M(r))

qi(zi = j)
+ EM(b)

i

[log p(y|M(r)
j)Ni]

}
(30)

= max
qi

∑
j

qi(zi = j)

{
log

p(zi = j|M(r))

qi(zi = j)
+NiEM(b)

i

[log p(y|M(r)
j)]

}
(31)

≥ max
qi

∑
j

qi(zi = j)

{
log

p(zi = j|M(r))

qi(zi = j)
+NiLi,jHMM

}
, LiH3M ., (32)

where in (30) we use the fact that Yi is a set of Ni i.i.d. samples. In (31), log p(y|M(r)
j)

is the observation log-likelihood of an HMM, which is essentially a mixture distribution.
Since the latter expectation cannot be calculated directly, in (32) we use instead the lower
bound Li,jHMM defined in (13).

735

Coviello, Chan and Lanckriet

A.2 Lower Bound on EM(b)
i

[log p(y|M(r)
j)]

To calculate the lower bound Li,jHMM ,starting with (13), we first rewrite the expectation

EM(b)
i

to explicitly marginalize over the HMM state sequence β from M(b)
i ,

EM(b)
i

[log p(y|M(r)
j)] = E

β|M(b)
i

[
E
y|β,M(b)

i

[log p(y|M(r)
j)]

]
=
∑
β

π
(b),i
β E

y|β,M(b)
i

[log p(y|M(r)
j)]. (33)

We introduce a variational distribution qi,j(ρ|β) on the state sequence ρ, which depends

on a particular sequence β from M(b)
i . Applying (10) to (33), we have

EM(b)
i

[log p(y|M(r)
j)]

≥
∑
β

π
(b),i
β max

qi,j

∑
ρ

qi,j(ρ|β)

{
log

p(ρ|M(r)
j)

qi,j(ρ|β)
+ E

y|β,M(b)
i

[log p(y|ρ,M(r)
j)]

}

=
∑
β

π
(b),i
β max

qi,j

∑
ρ

qi,j(ρ|β)

{
log

p(ρ|M(r)
j)

qi,j(ρ|β)
+
∑
t

EM(b)
i,βt

[log p(yt|M(r)
j,ρt

)]

}
(34)

≥
∑
β

π
(b),i
β max

qi,j

∑
ρ

qi,j(ρ|β)

{
log

p(ρ|M(r)
j)

qi,j(ρ|β)
+
∑
t

L(i,βt),(j,ρt)
GMM

}
, Li,jHMM , (35)

where in (34) we use the conditional independence of the observation sequence given the
state sequence, and in (35) we use the lower bound, defined in (14), on each expectation.

A.3 Lower Bound on EM(b)
i,β

[log p(y|M(r)
j,ρ)]

To derive the lower bound L(i,β),(j,ρ)
GMM for (14), we first rewrite the expectation with respect

to M(b)
i,β to explicitly marginalize out the GMM hidden assignment variable ζ,

EM(b)
i,β

[log p(y|M(r)
j,ρ)] = E

ζ|M(b)
i,β

[
EM(b)

i,β,ζ

[log p(y|M(r)
j,ρ)]

]
=

M∑
m=1

c
(b),i
β,mEM(b)

i,β,m

[
log p(y|M(r)

j,ρ)
]
.

Note that p(y|M(r)
j,ρ) is a GMM emission distribution as in (1). Hence, the observation vari-

able is y, and the hidden variable is ζ. Therefore, we introduce the variational distribution
qi,jβ,ρ(ζ|m), which is conditioned on the observation y arising from the mth component in

M(b)
i,β, and apply (10),

EM(b)
i,β

[log p(y|M(r)
j,ρ)]

≥
M∑
m=1

c
(b),i
β,m max

qi,jβ,ρ

M∑
ζ=1

qi,jβ,ρ(ζ|m)

{
log

p(ζ|M(r)
j,ρ)

qi,jβ,ρ(ζ|m)
+ EM(b)

i,β,m

[log p(y|M(r)
j,ρ,ζ)]

}
, L(i,β),(j,ρ)

GMM .

736

Clustering HMMs with Variational HEM

Appendix B. Derivation of the E-Step

GMM: Substituting the variational distribution η
(i,β),(j,ρ)
`|m into (17), we have

L(i,β),(j,ρ)
GMM =

M∑
m=1

c
(b),i
β,m max

η
(i,β),(j,ρ)
`|m

M∑
`=1

η
(i,β),(j,ρ)
`|m

log
c

(r),j
ρ,`

η
(i,β),(j,ρ)
`|m

+ EM(b)
i,β,m

[log p(y|M(r)
j,ρ,`)]

 .

The maximizing variational parameters are obtained as (see Appendix D.2)

η̂
(i,β),(j,ρ)
`|m =

c
(r),j
ρ,` exp

{
EM(b)

i,β,m

[log p(y|M(r)
j,ρ,`)]

}
∑

`′ c
(r),j
ρ,`′ exp

{
EM(b)

i,β,m

[log p(y|M(r)
j,ρ,`′)]

} ,
HMM: Substituting the variational distribution φi,j into (16), we have

Li,jHMM =
∑
β

π
(b),i
β max

φi,j

∑
ρ

φi,j(ρ|β)

{
log

π
(r),j
ρ

φi,j(ρ|β)
+
∑
t

L(i,βt),(j,ρt)
GMM

}
. (36)

The maximization of (36) with respect to φi,jt (ρt|ρt−1, βt) and φi,j1 (ρ1|β1) is carried out
independently for each pair (i, j), and follow Hershey et al. (2007). In particular it uses a
backward recursion, starting with Li,jτ+1(βt, ρt) = 0, for t = τ, . . . , 2,

φ̂i,jt (ρt|ρt−1, βt) =
a

(r),j
ρt−1,ρt exp

{
L(i,βt),(j,ρt)

GMM + Li,jt+1(βt, ρt)
}

∑S
ρ a

(r),j
ρt−1,ρ exp

{
L(i,βt),(j,ρ)

GMM + Li,jt+1(βt, ρ)
}

Li,jt (βt−1, ρt−1) =
S∑
β=1

a
(b),i
βt−1,β

log
S∑
ρ=1

a(r),j
ρt−1,ρ exp

{
L(i,β),(j,ρ)

GMM + Li,jt+1(β, ρ)
}
,

and terminates with

φ̂i,j1 (ρ1|β1) =
π

(r),j
ρ1 exp

{
L(i,β1),(j,ρ1)

GMM + Li,j2 (β1, ρ1)
}

∑S
ρ π

(r),j
ρ exp

{
L(i,β1),(j,ρ)

GMM + Li,j2 (β1, ρ)
}

Li,jHMM =

S∑
β=1

π
(b),i
β log

S∑
ρ=1

π(r),j
ρ exp

{
L(i,β),(j,ρ)

GMM + Li,j2 (β, ρ)
}

(37)

where (37) is the maxima of the terms in (36) in Section 3.3.1.
H3M: Substituting the variational distribution zij into (15), we have

LiH3M = max
zij

∑
j

zij

{
log

ω
(r)
j

zij
+NiLi,jHMM

}
. (38)

The maximizing variational parameters of (38) are obtained using Appendix D.2,

ẑij =
ω

(r)
j exp(NiLi,jHMM)∑
j′ ω

(r)
j′ exp(NiLi,j

′

HMM)
.

737

Coviello, Chan and Lanckriet

Appendix C. Derivation of the M-Step

The M-steps involves maximizing the lower bound in (11) with respect to M(r), while
holding the variational distributions fixed,

M(r)∗ = argmax
M(r)

K(b)∑
i=1

LiH3M . (39)

Substituting (20) and (21) into the objective function of (39),

L(M(r)) =
K(b)∑
i=1

LiH3M

=
∑
i,j

ẑij

log
ω

(r)
j

ẑij
+Ni

∑
β

π
(b),i
β

∑
ρ

φ̂i,j(ρ|β)

[
log

π
(r),j
ρ

φ̂i,j(ρ|β)
+
∑
t

L(i,βt),(j,ρt)
GMM

] (40)

In the following, we detail the update rules for the parameters of the reduced model M(r).

C.1 HMMs Mixture Weights

Collecting terms in (40) that only depend on the mixture weights {ω(r)
j }K

(r)

j=1 , we have

L̃({ω(r)
j }) =

∑
i

∑
j

ẑij logω
(r)
j =

∑
j

[∑
i

ẑij

]
logω

(r)
j (41)

Given the constraints
∑K(r)

j=1 ω
(r)
j = 1 and ω

(r)
j ≥ 0, (41) is maximized using the result in

Appendix D.1, which yields the update in (24).

C.2 Initial State Probabilities

The objective function in (40) factorizes for each HMMM(r)
j , and hence the parameters of

each HMM are updated independently. For the j-th HMM, we collect terms in (40) that

depend on the initial state probabilities {π(r),j
ρ }Sρ=1,

L̃j({π(r),j
ρ }) =

∑
i

ẑijNi

∑
β1

π
(b),i
β1

∑
ρ1

φ̂i,j1 (ρ1|β1) log π(r),j
ρ1

=
∑
ρ1

∑
i

ẑijNi

∑
β1

π
(b),i
β1

φ̂i,j1 (ρ1|β1)︸ ︷︷ ︸
ν̂i,j1 (ρ1)

log π(r),j
ρ1

=
∑
ρ

∑
i

ẑijNiν̂
i,j
1 (ρ) log π(r),j

ρ (42)

∝
∑
ρ

[∑
i

ẑijω
(b)
i ν̂i,j1 (ρ)

]
log π(r),j

ρ , (43)

738

Clustering HMMs with Variational HEM

where in the (42) we have used the summary statistic defined in (23). Considering the

constraints
∑S

ρ=1 π
(r),j
ρ = 1 and π

(r),j
ρ ≥ 0, (43) is maximized using the result in Appendix

D.1, giving the update formula in (25).

C.3 State Transition Probabilities

Similarly, for each HMM M(r)
j and previous state ρ, we collect terms in (40) that depend

on the transition probabilities {a(r),j
ρ,ρ′ }

S
ρ′=1,

L̃j,ρ({a(r),j
ρ,ρ′ }

S
ρ′=1) =

∑
i

ẑijNi

∑
β

π
(b),i
β

∑
ρ

φ̂i,j(ρ|β) log π
(r),j
ρ

∝
∑
i

ẑijNi

∑
β

[
π

(b),i
β1

τ∏
t=2

a
(b),i
βt−1,βt

]∑
ρ

[
φ̂i,j1 (ρ1|β1)

τ∏
t=2

φ̂i,jt (ρt|ρt−1, βt)

][
τ∑
t=2

log a(r),j
ρt−1,ρt

]

=
∑
i

ẑijNi

∑
ρ1

∑
ρ2

∑
β2

∑
β1

π
(b),i
β1

φ̂i,j1 (ρ1|β1)︸ ︷︷ ︸
νi,j1 (ρ1,β1)

a
(b),i
β1,β2

φ̂i,j2 (ρ2|ρ1, β2)

︸ ︷︷ ︸
ξi,j2 (ρ1,ρ2,β2)

[
log a(r),j

ρ1,ρ2

+
∑
β3···βτ

∑
ρ3···ρτ

τ∏
t=3

a
(b),i
βt−1,βt

τ∏
t=3

φ̂i,jt (ρt|ρt−1, βt)
τ∑
t=3

log a(r),j
ρt−1,ρt

=
∑
i

ẑijNi

∑
ρ1

∑
ρ2

∑
β2

ξi,j2 (ρ1, ρ2, β2) log a(r),j
ρ1,ρ2

+
∑
i

ẑijNi

∑
ρ2

∑
ρ3

∑
β3

∑
β2

∑
ρ1

ξi,j2 (ρ1, ρ2, β2)︸ ︷︷ ︸
νi,j2 (ρ2,β2)

a
(b),i
β2,β3

φ̂i,j3 (ρ3|ρ2, β3)

︸ ︷︷ ︸
ξi,j3 (ρ2,ρ3,β3)

[
log a(r),j

ρ2,ρ3

+
∑
β4···βτ

∑
ρ4···ρτ

τ∏
t=4

a
(b),i
βt−1,βt

τ∏
t=4

φ̂i,jt (ρt|ρt−1, βt)
τ∑
t=4

log a(r),j
ρt−1,ρt

= . . .

=
∑
i

ẑijNi

τ∑
t=2

∑
ρt−1

∑
ρt

∑
βt

ξi,jt (ρt−1, ρt, βt) log a(r),j
ρt−1,ρt

∝
∑
i

ẑijNi

∑
ρ′

τ∑
t=2

∑
β

ξi,jt (ρ, ρ′, β)︸ ︷︷ ︸
ξ̂i,j(ρ,ρ′)

log a
(r),j
ρ,ρ′

∝
S∑

ρ′=1

[∑
i

ẑijω
(b)
i ξ̂i,j(ρ, ρ′)

]
log a

(r),j
ρ,ρ′ . (44)

739

Coviello, Chan and Lanckriet

Considering the constraints
∑S

ρ′=1 a
(r),j
ρ,ρ′ = 1 and a

(r),j
ρ,ρ′ ≥ 0, (44) is maximized using the

result in Appendix D.1, giving the update in (25).

C.4 Emission Probability Density Functions

The cost function (40) factors also for each GMM indexed by (j, ρ, `). Factoring (40),

L̃(M(r)
j,ρ,`) =

∑
i

ẑijNi

∑
β

π
(b),i
β

∑
ρ

φ̂i,j(ρ|β)
∑
t

L(i,βt),(j,ρt)
GMM

=
∑
i

ẑijNi

∑
β

[
π

(b),i
β1

τ∏
t=2

a
(b),i
βt−1,βt

]∑
ρ

[
φ̂i,j1 (ρ1|β1)

τ∏
t=2

φ̂i,jt (ρt|ρt−1, βt)

]∑
t

L(i,βt),(j,ρt)
GMM

=
∑
i

ẑijNi

∑
ρ1

∑
β1

π
(b),i
β1

φ̂i,j1 (ρ1|β1)︸ ︷︷ ︸
νi,j1 (ρ1,β1)

[
L(i,β1),(j,ρ1)
GMM . . .

+
∑
β2···βτ

τ∏
t=2

a
(b),i
βt−1,βt

∑
ρ2···ρτ

τ∏
t=2

φ̂i,j(ρt|ρt−1, βt)
τ∑
t=2

L(i,βt),(j,ρt)
GMM

=
∑
i

ẑijNi

∑
ρ1

∑
β1

νi,j1 (ρ1, β1)L(i,β1),(j,ρ1)
GMM

+
∑
i

ẑijNi

∑
ρ2

∑
β2

∑
ρ1

∑
β1

(
νi,j1 (ρ1, β1)a

(b),i
β1,β2

)
φ̂i,j2 (ρ2|ρ1, β2)︸ ︷︷ ︸

ξi,j2 (ρ1,ρ2,β2)︸ ︷︷ ︸
νi,j2 (ρ2,β2)

[
L(i,β2),(j,ρ2)
GMM . . .

+
∑
β3···βτ

τ∏
t=3

a
(b),i
βt−1,βt

∑
ρ3···ρτ

τ∏
t=3

φ̂i,jt (ρt|ρt−1, βt)

τ∑
t=3

L(i,βt),(j,ρt)
GMM

= . . .

=
∑
i

ẑijNi

τ∑
t=1

∑
ρt

∑
βt

νi,jt (ρt, βt)L(i,βt),(j,ρt)
GMM

∝
∑
i

ẑijNi

∑
β

τ∑
t=1

νi,jt (ρ, β)︸ ︷︷ ︸
ν̂i,jt (ρ,β)

L(i,β),(j,ρ)
GMM

∝
∑
i

ẑijNi

S∑
β=1

ν̂i,j(ρ, β)

M∑
m=1

c
(b),i
β,m η̂

(i,β),(j,ρ)
`|m

[
log c

(r),j
ρ,` + EM(b)

i,β,m

[log p(y|M(r)
j,ρ,`)]

]

= Ωj,ρ

(
η̂

(i,β),(j,ρ)
`|m

[
log c

(r),j
ρ,` + EM(b)

i,β,m

[log p(y|M(r)
j,ρ,`)]

])
, (45)

where in (45) we use the weighted-sum operator defined in (28), which is over all base model

GMMs {M(b)
i,β,m}. The GMM mixture weights are subject to the constraints

∑M
`=1 c

(r),j
ρ,` = 1,

740

Clustering HMMs with Variational HEM

∀j, ρ. Taking the derivative with respect to each parameter and setting it to zero,27 gives
the GMM update Equations (26) and (27).

Appendix D. Useful Optimization Problems

The following two optimization problems are used in the derivation of the E-step and M-
step.

D.1

The optimization problem

max
α`

L∑
`=1

β` logα` s.t.
L∑
`=1

α` = 1, α` ≥ 0, ∀`

is optimized by α∗` = β`∑L
`′=1 β

′
`

.

D.2

The optimization problem

max
α`

L∑
`=1

α` (β` − logα`) s.t.

L∑
`=1

α` = 1 α` ≥ 0, ∀`

is optimized by α∗` = expβ`∑L
`′=1 expβ′`

.

Appendix E. Clustering Synthetic Data where the Clustering Model
Does Not Match the “True” Model

In this appendix we present two experiments on clustering synthetic data, where the order
of the model used for clustering does not necessarily match the order of the “true” model
used to generate the data. In both experiments, the true model consists of C = 4 HMMs
each with S = 3 hidden states—we used the HMMs of experiment (c) in Section 5.3. Data
sequences are generated from each of the C HMMs, and then corrupted with Gaussian
noise. An HMM with S′ states is estimated over each sequence. These HMMs are denoted
as noisy HMMs, to differentiate them from the original HMMs representing the C classes.
The entirety of noisy HMMs are then clustered into C ′ groups using in turn our VHEM-H3M
algorithm and PPK-SC.

In the first experiments we set S′ = S(= 3), and vary C ′ ∈ {3, 4, 5, 6}. Hence, the
number of clusters does not necessarily match the true number of groups. In the second
experiments, we fix C ′ = C(= 4), and vary S′ ∈ {2, 3, 4, 5}, that is, the model order of the
noisy HMMs does not match the order of the original HMMs. Results are reported in Table
7 below.

27. We also considered the constraints on the covariance matrices Σ
(r),j
ρ,` � 0.

741

Coviello, Chan and Lanckriet

experiment (d) experiment (e)
number of clusters C ′ varies, S′ = 3 number of HMM states S′ varies, C ′ = 4 fixed

2 3 4 (true) 5 2 3 (true) 4 5
VHEM-H3M 0.665 0.782 0.811 0.816 0.801 0.811 0.828 0.832
PPK-SC 0.673 0.729 0.768 0.781 0.766 0.768 0.781 0.798

Table 7: Results on clustering synthetic data with VHEM-H3M and PPK-SC, when the
model order does not match the order of the true model used for generating the
data. We fist vary the number of clusters C ′, keeping S′ = 3 fixed to the true
value. Then, we vary the number of HMM states S′, keeping C ′ = 4 fixed to the
true value. Performance is measured in terms of Rand-index, and is averaged over
K ∈ {2, 4, 8, 16, 32}.

Performance are more sensitive to selecting a sufficient number of clusters than using the
right number of HMM states. In particular, when using fewer clusters than the true number
of classes (e.g., C ′ < C), the Rand-index degrades for both VHEM-H3M and PPK-SC, see
experiment (d) in Table 7. On the opposite, performance are relatively stable when the
number of HMM states does not match the true one, for example, S′ 6= S, see experiment
(e) in Table 7. In particular, when using fewer HMM states (e.g., S′ < S) the model can
still capture some of the dynamics, and the drop in performance is not significant. It is
also interesting to note that using a larger number of HMM states (e.g., S′ > S) leads to
slightly better results. The reason is that, when estimating the HMMs on the corrupted
data sequences, there are additional states to better account for the effect of the noise.

References

Dimitris Achlioptas, Frank McSherry, and Bernhard Schölkopf. Sampling techniques for
kernel methods. In Advances in Neural Information Processing Systems 14, volume 1,
pages 335–342. MIT Press, 2002.

Jonathan Alon, Stan Sclaroff, George Kollios, and Vladimir Pavlovic. Discovering clusters
in motion time-series data. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, volume 1, pages 368–375. IEEE, 2003.

Arthur Asuncion and David J Newman. UCI machine learning repository, 2010. URL
http://archive.ics.uci.edu/ml.

Claus Bahlmann and Hans Burkhardt. Measuring HMM similarity with the Bayes proba-
bility of error and its application to online handwriting recognition. In Proceedings of the
Sixth International Conference on Document Analysis and Recognition, pages 406–411.
IEEE, 2001.

Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh. Clustering
with Bregman divergences. The Journal of Machine Learning Research, 6:1705–1749,
2005.

742

http://archive.ics.uci.edu/ml

Clustering HMMs with Variational HEM

Eloi Batlle, Jaume Masip, and Enric Guaus. Automatic song identification in noisy broad-
cast audio. In Proceeding of the International Conference on Signal and Image Processing.
IASTED, 2002.

Jerome R Bellegarda and David Nahamoo. Tied mixture continuous parameter modeling
for speech recognition. IEEE Transactions on Acoustics, Speech and Signal Processing,
38(12):2033–2045, 1990.

Yoshua Bengio, Jean-François Paiement, Pascal Vincent, Olivier Delalleau, Nicolas Le Roux,
and Marie Ouimet. Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spec-
tral clustering. In Advances in Neural Information Processing Systems, volume 16, pages
177–184. MIT Press, 2004.

David M Blei and Michael I Jordan. Variational inference for Dirichlet process mixtures.
Bayesian Analysis, 1(1):121–143, 2006.

William M Campbell. A SVM/HMM system for speaker recognition. In Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 2,
pages II–209. IEEE, 2003.

Gustavo Carneiro, Antoni B Chan, Pedro J Moreno, and Nuno Vasconcelos. Supervised
learning of semantic classes for image annotation and retrieval. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(3):394–410, 2007.

Antoni B Chan, Emanuele Coviello, and Gert RG Lanckriet. Clustering Dynamic Tex-
tures with the Hierarchical EM Algorithm. In Proceeding of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. IEEE, 2010a.

Antoni B Chan, Emanuele Coviello, and Gert RG Lanckriet. Derivation of the hierarchical
EM Algorithm for Dynamic Textures. Technical report, City University of Hong Kong,
2010b.

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Learning sequence kernels. In
IEEE Workshop on Machine Learning for Signal Processing, pages 2–8. IEEE, 2008.

Emanuele Coviello, Antoni B Chan, and Gert RG Lanckriet. Time series models for semantic
music annotation. IEEE Transactions on Audio, Speech, and Language Processing, 5(19):
1343–1359, 2011.

Emanuele Coviello, Antoni Chan, and Gert Lanckriet. The variational hierarchical EM
algorithm for clustering hidden Markov models. In Advances in Neural Information
Processing Systems 25, pages 413–421, 2012a.

Emanuele Coviello, Adeel Mumtaz, Antoni B Chan, and Gert RG Lanckriet. Growing
a Bag of Systems Tree for fast and accurate classification. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 1979–1986. IEEE, 2012b.

Imre Csiszár and Gábor Tusnády. Information geometry and alternating minimization
procedures. Statistics and decisions, 1984.

743

Coviello, Chan and Lanckriet

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society B, 39:1–38,
1977.

Inderjit S. Dhillon. Differential entropic clustering of multivariate Gaussians. In Advances
in Neural Information Processing Systems, volume 19, page 337. MIT Press, 2007.

Gianfranco Doretto, Alessandro Chiuso, Ying Nian Wu, and Stefano Soatto. Dynamic
textures. International Journal on Computer Vision, 51(2):91–109, 2003.

Douglas Eck, Paul Lamere, Thierry Bertin-Mahieux, and Stephen Green. Automatic gen-
eration of social tags for music recommendation. In Advances in Neural Information
Processing Systems, pages 385–392. MIT Press, 2008.

Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik. Spectral grouping using
the nyström method. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(2):214–225, 2004.

Jacob Goldberger and Sam Roweis. Hierarchical clustering of a mixture model. In Advances
in Neural Information Processing Systems, pages 505–512. MIT Press, 2004.

Asela Gunawardana and William Byrne. Convergence theorems for generalized alternating
minimization procedures. Journal of Machine Learning Research, 6:2049–73, 2005.

Peter Hall, Joel L Horowitz, and Bing-Yi Jing. On blocking rules for the bootstrap with
dependent data. Biometrika, 82(3):561–574, 1995.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The elements
of statistical learning: data mining, inference and prediction. The Mathematical Intelli-
gencer, 27(2):83–85, 2005.

Christian Hennig. Cluster-wise assessment of cluster stability. Computational Statistics &
Data Analysis, 52(1):258–271, 2007.

John R Hershey and Peder A Olsen. Variational Bhattacharyya divergence for hidden
Markov models. In IEEE Computer Society International Conference on Acoustics,
Speech and Signal Processing, pages 4557–4560. IEEE, 2008.

John R Hershey, Peder A Olsen, and Steven J Rennie. Variational Kullback-Leibler diver-
gence for hidden Markov models. In IEEE Workshop on Automatic Speech Recognition
& Understanding, pages 323–328. IEEE, 2007.

Matthew D Hoffman, David M Blei, and Perry R Cook. Easy as CBA: A simple probabilistic
model for tagging music. In Proceedings of the 10th International Symposium on Music
Information Retrieval, pages 369–374, 2009.

Xuedong D Huang and Mervyn A Jack. Semi-continuous hidden Markov models for speech
signals. Computer Speech & Language, 3(3):239–251, 1989.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 2
(1):193–218, 1985.

744

Clustering HMMs with Variational HEM

Tommi S. Jaakkola. Tutorial on Variational Approximation Methods. In Advanced Mean
Field Methods: Theory and Practice, pages 129–159. MIT Press, 2000.

Tony Jebara, Risi Kondor, and Andrew Howard. Probability product kernels. The Journal
of Machine Learning Research, 5:819–844, 2004.

Tony Jebara, Yingbo Song, and Kapil Thadani. Spectral clustering and embedding with
hidden Markov models. In Machine Learning: ECML 2007, pages 164–175. 2007.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An
introduction to variational methods for graphical models. Machine learning, 37(2):183–
233, 1999.

Biing-Hwang Juang and Lawrence R Rabiner. A probabilistic distance measure for hidden
Markov models. AT&T Technical Journal, 64(2):391–408, February 1985.

Leonard Kaufman and Peter Rousseeuw. Clustering by means of medoids. Statistical Data
Analysis Based on the L1-Norm and Related Methods, pages 405–416, 1987.

Eamonn Keogh and Chotirat Ann Ratanamahatana. Exact indexing of dynamic time warp-
ing. Knowledge and Information Systems, 7(3):358–386, 2005.

Eamonn J Keogh and Michael J Pazzani. Scaling up dynamic time warping for datamining
applications. In Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 285–289. ACM, 2000.

Ariel Kleiner, Ameet Talwalkar, Purnamrita Sarkar, and Michael I Jordan. Bootstrapping
big data. Advances in Neural Information Processing Systems, Workshop: Big Learning:
Algorithms, Systems, and Tools for Learning at Scale, 2011.

Anders Krogh, Michael Brown, I Saira Mian, Kimmen Sjölander, and David Haussler. Hid-
den Markov models in computational biology. Applications to protein modeling. Journal
of Molecular Biology, 235(5):1501–1531, 1994.

Pavel Kuksa, Pai-Hsi Huang, and Vladimir Pavlovic. Scalable algorithms for string kernels
with inexact matching. In Advances in Neural Information Processing Systems, pages
881–888, 2008.

Christina Leslie, Eleazar Eskin, and William Stafford Noble. The spectrum kernel: A
string kernel for SVM protein classification. In Proceedings of the Pacific Symposium on
Biocomputing, volume 7, pages 566–575, 2002.

Marcus Liwicki and Horst Bunke. Iam-ondb-an on-line english sentence database acquired
from handwritten text on a whiteboard. In Document Analysis and Recognition, 2005.
Proceedings. Eighth International Conference on, pages 956–961. IEEE, 2005.

Rune B Lyngso, Christian NS Pedersen, and Henrik Nielsen. Metrics and similarity measures
for hidden Markov models. In Proceedings International Conference on Intelligent Systems
for Molecular Biology, pages 178–186, 1999.

745

Coviello, Chan and Lanckriet

David JC MacKay. Information Theory, Inference and Learning Algorithms. Cambridge
university press, 2003.

Michael I Mandel and Daniel PW Ellis. Multiple-instance learning for music information
retrieval. In Proceedings of the 9th International Symposium on Music Information Re-
trieval, pages 577–582, 2008.

Nag, Kin-Hong Wong, and Frank Fallside. Script recognition using hidden Markov models.
In IEEE Computer Society International Conference on Acoustics, Speech, and Signal
Processing, volume 11, pages 2071–2074. IEEE, 1986.

Radford M Neal and Geoffrey E Hinton. A view of the EM algorithm that justifies incre-
mental, sparse, and other variants. Learning in Graphical Models, 89:355–370, 1998.

Evert J Nyström. Über die praktische auflösung von integralgleichungen mit anwendungen
auf randwertaufgaben. Acta Mathematica, 54(1):185–204, 1930.

Tim Oates, Laura Firoiu, and Paul R Cohen. Clustering time series with hidden markov
models and dynamic time warping. In Joint Conferences on Artificial Intelligence, Work-
shop on Neural, Symbolic and Reinforcement Learning Methods for Sequence Learning,
pages 17–21, 1999.

Antonello Panuccio, Manuele Bicego, and Vittorio Murino. A hidden Markov model-based
approach to sequential data clustering. Structural, Syntactic, and Statistical Pattern
Recognition, pages 734–743, 2002.

William D Penny and Stephen J Roberts. Notes on variational learning. Technical report,
Oxford University, 2000.

Yuting Qi, John William Paisley, and Lawrence Carin. Music analysis using hidden Markov
mixture models. IEEE Transactions on Signal Processing, 55(11):5209–5224, 2007.

Lawrence R Rabiner and Biing-Hwang Juang. Fundamentals of Speech Recognition. Prentice
Hall, Upper Saddle River (NJ, USA), 1993.

Jeremy Reed and Chin-Hui Lee. A study on music genre classification based on universal
acoustic models. In Proceedings of the 7th International Symposium on Music Information
Retrieval, pages 89–94, 2006.

Jose Rodriguez-Serrano and Florent Perronnin. A model-based sequence similarity with
application to handwritten word-spotting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34:2108 – 2120, 2012.

Nicolas Scaringella and Giorgio Zoia. On the modeling of time information for automatic
genre recognition systems in audio signals. In Proc. 6th International Symposium Music
Information Retrieval, pages 666–671, 2005.

Padhraic Smyth. Clustering sequences with hidden Markov models. In Advances in Neural
Information Processing Systems, pages 648–654. MIT Press, 1997.

746

Clustering HMMs with Variational HEM

Theodoros Theodoridis and Huosheng Hu. Action classification of 3d human models using
dynamic ANNs for mobile robot surveillance. In IEEE Computer Society International
Conference on Robotics and Biomimetics, pages 371–376. IEEE, 2007.

Douglas Turnbull, Luke Barrington, David Torres, and Gert RG Lanckriet. Semantic an-
notation and retrieval of music and sound effects. IEEE Transactions on Audio, Speech
and Language Processing, 16(2):467–476, February 2008.

Nuno Vasconcelos. Image indexing with mixture hierarchies. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2001.

Nuno Vasconcelos and Andrew Lippman. Learning mixture hierarchies. In Advances in
Neural Information Processing Systems, 1998.

Martin J Wainwright and Michael I Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–305, 2008.

Ben H Williams, Marc Toussaint, and Amos J Storkey. Extracting motion primitives from
natural handwriting data. In Proceeding of the 16th International Conference on Artificial
Neural Networks, pages 634–643. Springer, 2006.

Jie Yin and Qiang Yang. Integrating hidden Markov models and spectral analysis for
sensory time series clustering. In IEEE Computer Society International Conference on
Data Mining. IEEE, 2005.

Shi Zhong and Joydeep Ghosh. A unified framework for model-based clustering. The
Journal of Machine Learning Research, 4:1001–1037, 2003.

747

Journal of Machine Learning Research 15 (2014) 749-808 Submitted 12/11; Revised 6/13; Published 2/14

A Novel M-Estimator for Robust PCA

Teng Zhang zhang620@umn.edu
Institute for Mathematics and its Applications
University of Minnesota
Minneapolis, MN 55455, USA

Gilad Lerman∗ lerman@umn.edu

School of Mathematics

University of Minnesota

Minneapolis, MN 55455, USA

Editor: Martin Wainwright

Abstract

We study the basic problem of robust subspace recovery. That is, we assume a data set that
some of its points are sampled around a fixed subspace and the rest of them are spread in the
whole ambient space, and we aim to recover the fixed underlying subspace. We first estimate
“robust inverse sample covariance” by solving a convex minimization procedure; we then
recover the subspace by the bottom eigenvectors of this matrix (their number correspond to
the number of eigenvalues close to 0). We guarantee exact subspace recovery under some
conditions on the underlying data. Furthermore, we propose a fast iterative algorithm,
which linearly converges to the matrix minimizing the convex problem. We also quantify
the effect of noise and regularization and discuss many other practical and theoretical issues
for improving the subspace recovery in various settings. When replacing the sum of terms in
the convex energy function (that we minimize) with the sum of squares of terms, we obtain
that the new minimizer is a scaled version of the inverse sample covariance (when exists).
We thus interpret our minimizer and its subspace (spanned by its bottom eigenvectors) as
robust versions of the empirical inverse covariance and the PCA subspace respectively. We
compare our method with many other algorithms for robust PCA on synthetic and real
data sets and demonstrate state-of-the-art speed and accuracy.

Keywords: principal components analysis, robust statistics, M-estimator, iteratively
re-weighted least squares, convex relaxation

1. Introduction

The most useful paradigm in data analysis and machine learning is arguably the modeling of
data by a low-dimensional subspace. The well-known total least squares solves this modeling
problem by finding the subspace minimizing the sum of squared errors of data points. This is
practically done via principal components analysis (PCA) of the data matrix. Nevertheless,
this procedure is highly sensitive to outliers. Many heuristics have been proposed for robust
recovery of the underlying subspace. Recent progress in the rigorous study of sparsity and
low-rank of data has resulted in provable convex algorithms for this purpose. Here, we
propose a different rigorous and convex approach, which is a special M-estimator.

∗. Gilad Lerman is the corresponding author.

c©2014 Zhang and Lerman.

Teng Zhang and Gilad Lerman

Robustness of statistical estimators has been carefully studied for several decades (Huber
and Ronchetti, 2009; Maronna et al., 2006). A classical example is the robustness of the
geometric median (Lopuhaä and Rousseeuw, 1991). For a data set X = {xi}Ni=1 ⊂ RD, the
geometric median is the minimizer of the following function of y ∈ RD:

N∑
i=1

‖y − xi‖ , (1)

where ‖ · ‖ denotes the Euclidean norm. This is a typical example of an M-estimator, that
is, a minimizer of a function of the form

∑N
i=1 ρ(ri), where ri is a residual of the ith data

point, xi, from the parametrized object we want to estimate. Here, ri = ‖y−xi‖, ρ(x) = |x|
and we estimate y ∈ RD, which is parametrized by its D coordinates.

There are several obstacles in developing robust and effective estimators for subspaces.
For simplicity, we discuss here estimators of linear subspaces and thus assume that the data
is centered at the origin.1 A main obstacle is due to the fact that the set of d-dimensional
linear subspaces in RD, that is, the Grassmannian G(D, d), is not convex. Therefore, a
direct optimization on G(D, d) (or a union of G(D, d) over different d’s) will not be convex
(even not geodesically convex) and may result in several (or many) local minima. Another
problem is that extensions of simple robust estimators of vectors to subspaces (e.g., using
l1-type averages) can fail by a single far away outlier. For example, one may extend the
d-dimensional geometric median minimizing (1) to the minimizer over L ∈ G(D, d) of the
function

N∑
i=1

‖xi −PLxi‖ ≡
N∑
i=1

‖PL⊥xi‖ , (2)

where L⊥ is the orthogonal complement of L and PL and PL⊥ are the orthogonal projections
on L and L⊥ respectively (see, e.g., Ding et al., 2006; Lerman and Zhang, 2010). However,
a single outlier with arbitrarily large magnitude will enforce the minimizer of (2) to contain
it.

The first obstacle can be resolved by applying a convex relaxation of the minimization
of (2) so that subspaces are mapped into a convex set of matrices (the objective function
may be adapted respectively). Indeed, the subspace recovery proposed by Xu et al. (2010b)
can be interpreted in this way. Their objective function has one component which is similar
to (2), though translated to matrices. They avoid the second obstacle by introducing a
second component, which penalizes inliers of large magnitude (so that outliers of large
magnitude may not be easily identified as inliers). However, the combination of the two
components involves a parameter that needs to be carefully estimated.

Here, we suggest a different convex relaxation that does not introduce arbitrary param-
eters and its implementation is significantly faster. However, it introduces some restrictions
on the distributions of inliers and outliers. Some of these restrictions have analogs in other

1. This is a common assumption to reduce the complexity of the subspace recovery problem (Candès
et al., 2011; Xu et al., 2010b, 2012; McCoy and Tropp, 2011), where McCoy and Tropp (2011) suggest
centering by the geometric median. Nevertheless, our methods easily adapt to affine subspace fitting by
simultaneously estimating both the offset and the shifted linear component, but the justification is a bit
more complicated then.

750

A Novel M-Estimator for Robust PCA

works (see, e.g., §2.2), while others are unique to this framework (see §2.3 and the non-
technical description of all of our restrictions in §1.2).

1.1 Previous Work

Many algorithms (or pure estimators) have been proposed for robust subspace estimation
or equivalently robust low rank approximation of matrices. Maronna (1976), Huber and
Ronchetti (2009, §8), Devlin et al. (1981), Davies (1987), Xu and Yuille (1995), Croux
and Haesbroeck (2000) and Maronna et al. (2006, §6) estimate a robust covariance matrix.
Some of these methods use M-estimators (Maronna et al., 2006, §6) and compute them via
iteratively re-weighted least squares (IRLS) algorithms, which linearly converge (Arslan,
2004). The convergence of algorithms based on other estimators or strategies is not as
satisfying. The objective functions of the MCD (Minimum Covariance Determinant) and
S-estimators converge (Maronna et al., 2006, §6), but no convergence rates are specified.
Moreover, there are no guarantees for the actual convergence to the global optimum of these
objective functions. There is no good algorithm for the MVE (Minimum Volume Ellipsoid)
or Stahel-Donoho estimators (Maronna et al., 2006, §6). Furthermore, convergence analysis
is problematic for the online algorithm of Xu and Yuille (1995).

Li and Chen (1985), Ammann (1993), Croux et al. (2007), Kwak (2008) and McCoy
and Tropp (2011, §2) find low-dimensional projections by “Projection Pursuit” (PP), now
commonly referred to as PP-PCA (the initial proposal is due to Huber, see, e.g., Huber and
Ronchetti, 2009, p. 204 of first edition). The PP-PCA procedure is based on the observa-
tion that PCA maximizes the projective variance and can be implemented incrementally
by computing the residual principal component or vector each time. Consequently, PP-
PCA replaces this variance by a more robust function in this incremental implementation.
Most PP-based methods are based on non-convex optimization and consequently lack sat-
isfying guarantees. In particular, Croux et al. (2007) do not analyze convergence of their
non-convex PP-PCA and Kwak (2008) only establishes convergence to a local maximum.
McCoy and Tropp (2011, §2) suggest a convex relaxation for PP-PCA. However, they do not
guarantee that the output of their algorithm coincides with the exact maximizer of their
energy (though they show that the energies of the two are sufficiently close). Ammann
(1993) applies a minimization on the sphere, which is clearly not convex. It iteratively tries
to locate vectors spanning the orthogonal complement of the underlying subspace, that is,
D−d vectors for a subspace in G(D, d). We remark that our method also suggests an opti-
mization revealing the orthogonal complement, but it requires a single convex optimization,
which is completely different from the method of Ammann (1993).

Torre and Black (2001, 2003), Brubaker (2009) and Xu et al. (2010a) remove possible
outliers, followed by estimation of the underlying subspace by PCA. These methods are
highly non-convex. Nevertheless, Xu et al. (2010a) provide a probabilistic analysis for their
near recovery of the underlying subspace.

The non-convex minimization of (2) as a robust alternative for principal component anal-
ysis was suggested earlier by various authors for hyperplane modeling (Osborne and Watson,
1985; Späth and Watson, 1987; Nyquist, 1988; Bargiela and Hartley, 1993), surface mod-
eling (Watson, 2001, 2002), subspace modeling (Ding et al., 2006) and multiple subspaces
modeling (Zhang et al., 2009). This minimization also appeared in a pure geometric-analytic

751

Teng Zhang and Gilad Lerman

context of general surface modeling without outliers (David and Semmes, 1991). Lerman
and Zhang (2010, 2011) have shown that this minimization can be robust to outliers under
some conditions on the sampling of the data.

Ke and Kanade (2003) tried to minimize (over all low-rank approximations) the element-
wise l1 norm of the difference of a given matrix and its low-rank approximation. Chan-
drasekaran et al. (2011) and Candès et al. (2011) have proposed to minimize a linear com-
bination of such an l1 norm and the nuclear norm of the low-rank approximation in order
to find the optimal low-rank estimator. Candès et al. (2011) considered the setting where
uniformly sampled elements of the low-rank matrix are corrupted, which does not apply
to our outlier model (where only some of the rows are totally corrupted). Chandrasekaran
et al. (2011) consider a general setting, though their underlying condition is too restric-
tive; weaker condition was suggested by Hsu et al. (2011), though it is still not sufficiently
general. Nevertheless, Chandrasekaran et al. (2011) and Candès et al. (2011) are ground-
breaking to the whole area, since they provide rigorous analysis of exact low-rank recovery
with unspecified rank.

Xu et al. (2010b) and McCoy and Tropp (2011) have suggested a strategy analogous to
Chandrasekaran et al. (2011) and Candès et al. (2011) to solve the outlier problem. They
divide the matrix X whose rows are the data points as follows: X = L+O, where L is low-
rank and O represents outliers (so that only some of its rows are non-zero). They minimize
‖L‖∗+ λ‖O‖(2,1), where ‖ · ‖∗ and ‖ · ‖(2,1) denote the nuclear norm and sum of l2 norms of
rows respectively and λ is a parameter that needs to be carefully chosen. We note that the
term ‖O‖(2,1) is analogous to (2). Xu et al. (2012) have established an impressive theory
showing that under some incoherency conditions, a bound on the fraction of outliers and
correct choice of the parameter λ, they can exactly recover the low-rank approximation.
Hsu et al. (2011) and Agarwal et al. (2012a) improved error bounds for this estimator as
well as for the ones of Chandrasekaran et al. (2011) and Candès et al. (2011).

In practice, the implementations by Chandrasekaran et al. (2011), Candès et al. (2011),
Xu et al. (2010b) and McCoy and Tropp (2011) use the iterative procedure described by
Lin et al. (2009). The difference between the objective functions of the minimizer and its
estimator obtained at the kth iteration is of order O(k−2) (Lin et al., 2009, Theorem 2.1).
On the other hand, for our algorithm the convergence rate is of order O(exp(−ck)) for some
constant c (i.e., it r-linearly converges). This rate is the order of the Frobenius norm of the
difference between the minimizer sought by our algorithm (formulated in (4) below) and its
estimator obtained at the kth iteration (it is also the order of the difference of the regularized
objective functions of these two matrices). Recently, Agarwal et al. (2012b) showed that
projected gradient descent algorithms for these estimators obtain linear convergence rates,
though with an additional statistical error.

Our numerical algorithm can be categorized as IRLS. Weiszfeld (1937) used a procedure
similar to ours to find the geometric median. Lawson (1961) later used it to solve uniform
approximation problems by the limits of weighted lp-norm solutions. This procedure was
generalized to various minimization problems, in particular, it is native to M-estimators
(Huber and Ronchetti, 2009; Maronna et al., 2006), and its linear convergence was proved
for special instances (see, e.g., Cline, 1972; Voss and Eckhardt, 1980; Chan and Mulet, 1999).
Recently, IRLS algorithms were also applied to sparse recovery and matrix completion
(Daubechies et al., 2010; Fornasier et al., 2011).

752

A Novel M-Estimator for Robust PCA

1.2 This Work

We suggest another convex relaxation of the minimization of (2). We note that the original
minimization is over all subspaces L or equivalently all orthogonal projectors P ≡ PL⊥ . We
can identify P with a D ×D matrix satisfying P2 = P and PT = P (where ·T denotes the
transpose). Since the latter set is not convex, we relax it to include all symmetric matrices,
but avoid singularities by enforcing unit trace. That is, we minimize over the set:

H := {Q ∈ RD×D : Q = QT , tr(Q) = 1} (3)

as follows

Q̂ = arg min
Q∈H

F (Q), whereF (Q) :=
N∑
i=1

‖Qxi‖. (4)

For the noiseless case (i.e., inliers lie exactly on L∗), we estimate the subspace L∗ by

L̂ := ker(Q̂). (5)

If the intrinsic dimension d is known (or can be estimate from the data), we estimate
the subspace by the span of the bottom d eigenvectors of Q̂ (or equivalently, the top d
eigenvectors of −Q̂). This procedure is robust to sufficiently small levels of noise. We refer
to it as the Geometric Median Subspace (GMS) algorithm and summarize it in Algorithm 1.
We elaborate on this scheme throughout the paper,

Algorithm 1 The Geometric Median Subspace Algorithm

Input: X = {xi}Ni=1 ⊆ RD: data, d: dimension of L∗, an algorithm for minimizing (4)
Output: L̂: a d-dimensional linear subspace in RD.

Steps:
• {vi}di=1 = the bottom d eigenvectors of Q̂ (see (4))
• L̂ = Sp({vi}di=1)

We remark that Q̂ is semi-definite positive (we verify this later in Lemma 14). We can
thus restrict H to contain only semi-definite positive matrices and thus make it even closer
to a set of orthogonal projectors. Theoretically, it makes sense to require that the trace of
the matrices in H is D−d (since they are relaxed versions of projectors onto the orthogonal
complement of a d-dimensional subspace). However, scaling of the trace in (3) results in
scaling the minimizer of (4) by a constant, which does not effect the subspace recovery
procedure.

We note that (4) is an M-estimator with residuals ri = ‖Qxi‖, 1 ≤ i ≤ N , and ρ(x) = |x|.
Unlike (2), which can also be seen as a formal M-estimator, the estimator Q̂ is unique under
a weak condition that we will state later.

We are unaware of similar formulations for the problem of robust PCA. Nevertheless,
the Low-Rank Representation (LRR) framework of Liu et al. (2010, 2013) for modeling
data by multiple subspaces (and not a single subspace as in here) is formally similar. LRR
tries to assign to a data matrix X, which is viewed as a dictionary of N column vectors in
RD, dictionary coefficients Z by minimizing λ‖Z‖∗+‖(X(I−Z))T ‖(2,1) over all Z ∈ RN×N ,
where λ is a free parameter. Our formulation can be obtained by their formulation with

753

Teng Zhang and Gilad Lerman

λ = 0, Q = (I − Z)T and the additional constraint tr(Z) = D − 1 (which is equivalent
with the scaling tr(Q) = 1), where {xi}Ni=1 are the row vectors of X (and not the column
vectors that represent the original data points). In fact, our work provides some intuition
for LRR as robust recovery of the low rank row space of the data matrix and its use (via
Z) in partitioning the column space into multiple subspaces. We also remark that a trace 1
constraint is quite natural in convex relaxation problems and was applied, for example, in
the convex relaxation of sparse PCA (d’Aspremont et al., 2007), though the optimization
problem there is completely different.

Our formulation is rather simple and intuitive, but results in the following fundamental
contributions to robust recovery of subspaces:

1. We prove that our proposed minimization can achieve exact recovery under some
assumptions on the underlying data (which we clarify below) and without introducing
an additional parameter.

2. We propose a fast iterative algorithm for achieving this minimization and prove its
linear convergence.

3. We demonstrate the state-of-the-art accuracy and speed of our algorithm when com-
pared with other methods on both synthetic and real data sets.

4. We establish the robustness of our method to noise and to a common regularization
of IRLS algorithms.

5. We explain how to incorporate knowledge of the intrinsic dimension and also how to
estimate it empirically.

6. We show that when replacing the sum of norms in (4) by the sum of squares of
norms, then the modified minimizer Q̂ is a scaled version of the empirical inverse
covariance. The subspace spanned by the bottom d eigenvectors is clearly the d-
dimensional subspace obtained by PCA. The original minimizer of (4) can thus be
interpreted as a robust version of the inverse covariance matrix.

7. We show that previous and well-known M-estimators (Maronna, 1976; Huber and
Ronchetti, 2009; Maronna et al., 2006) do not solve the subspace recovery problem
under a common assumption.

1.3 Exact Recovery and Conditions for Exact Recovery by GMS

In order to study the robustness to outliers of our estimator for the underlying subspace,
we formulate the exact subspace recovery problem (see also Xu et al. 2012). This problem
assumes a fixed d-dimensional linear subspace L∗, inliers sampled from L∗ and outliers
sampled from its complement; it asks to recover L∗ as well as identify correctly inliers and
outliers.

In the case of point estimators, like the geometric median minimizing (1), robustness is
commonly measured by the breakdown point of the estimator (Huber and Ronchetti, 2009;
Maronna et al., 2006). Roughly speaking, the breakdown point measures the proportion of

754

A Novel M-Estimator for Robust PCA

arbitrarily large observations (that is, the proportion of “outliers”) an estimator can handle
before giving an arbitrarily large result.

In the case of estimating subspaces, we cannot directly extend this definition, since the
set of subspaces, that is, the Grassmannian (or unions of it), is compact, so we cannot
talk about “an arbitrarily large result”, that is, a subspace with arbitrarily large distance
from all other subspaces. Furthermore, given an arbitrarily large data point, we can always
form a subspace containing it; that is, this point is not arbitrarily large with respect to
this subspace. Instead, we identify the outliers as the ones in the compliment of L∗ and we
are interested in the largest fraction of outliers (or smallest fraction of inliers per outliers)
allowing exact recovery of L∗. Whenever an estimator can exactly recover a subspace under
a given sampling scenario we view it as robust and measure its effectiveness by the largest
fraction of outliers it can tolerate. However, when an estimator cannot exactly recover
a subspace, one needs to bound from below the distance between the recovered subspace
and the underlying subspace of the model. Alternatively, one would need to point out at
interesting scenarios where exact recovery cannot even occur in the limit when the number
of points approaches infinity. We are unaware of other notions of robustness of subspace
estimation (but of robustness of covariance estimation, which does not apply here; see, for
example, §6.2.1 of Maronna et al. 2006).

In order to guarantee exact recovery of our estimator we basically require three kinds of
restrictions on the underlying data, which we explain here on a non-technical level (technical
discussion appears in §2). First of all, the inliers need to permeate through the whole
underlying subspace L∗, in particular, they cannot concentrate on a lower dimensional
subspace of L∗. Second of all, outliers need to permeate throughout the whole complement
of L∗. This assumption is rather restrictive and its violation is a failure mode of the
algorithm. We thus show that this failure mode does not occur when the knowledge of
d is used appropriately. We also suggest some practical methods to avoid this failure
mode when d is unknown (see §5.1). Third of all, the “magnitude’ of outliers needs to be
restricted. We may initially scale all points to the unit sphere in order to avoid extremely
large outliers. However, we still need to avoid outliers concentrating along lines, which may
have an equivalent effect of a single arbitrarily large outlier. Figure 1 (which appears later
in §2) demonstrates cases where these assumptions are not satisfied.

The failure mode discussed above occurs in particular when the number of outliers is
rather small and the dimension d is unknown. While we suggest some practical methods to
avoid it (see §5.1), we also note that there are many modern applications with high percent-
ages of outliers, where this failure mode may not occur. In particular, computer vision data
often contain high percentages of outliers (Stewart, 1999; Chin et al., 2012). However, such
data usually involve multiple geometric models, in particular, multiple underlying linear
subspaces. We believe that the robust subspace modeling is still relevant to these kinds
of data. First of all, robust single subspace strategies can be well-integrated into com-
mon schemes of modeling data by multiple subspaces. For example, the K-flats algorithm
is based on repetitive clustering and single subspace modeling per cluster (Tipping and
Bishop, 1999; Bradley and Mangasarian, 2000; Tseng, 2000; Ho et al., 2003; Zhang et al.,
2009, 2012) and the LBF and SLBF algorithms use local subspace modeling (Zhang et al.,
2010, 2012). Second of all, some of the important preprocessing tasks in computer vision
require single subspace modeling. For example, in face recognition, a preprocessing step

755

Teng Zhang and Gilad Lerman

requires efficient subspace modeling of images of the same face under different illuminating
conditions (Basri and Jacobs, 2003; Basri et al., 2011). There are also problems in computer
vision with more complicated geometric models and large percentage of corruption, where
our strategies can be carefully adapted. One important example is the synchronization
problem, which finds an important application in Cryo-EM. The goal of this problem is to
recover rotation matrices R1, . . ., RN ∈ S0(3) from noisy and mostly corrupted measure-
ments of R−1i Rj for some values of 1 ≤ i, j ≤ N . Wang and Singer (2013) adapted ideas of
both this work and Lerman et al. (2012) to justify and implement a robust solution for the
synchronization problem.

1.4 Recent Subsequent Work

In the case where d is known, Lerman et al. (2012) followed this work and suggested a
tight convex relaxation of the minimization of (31) over all projectors PL⊥ of rank d. Their
optimizer, which they refer to as the REAPER (of the needle-in-haystack problem) minimize
the same function F (Q) (see (4)) over the set

H′ = {Q ∈ RD×D : Q = QT , tr(Q) = 1, ‖Q‖ ≤ 1

D − d
}.

They estimate the underlying subspace by the bottom d eigenvectors of the REAPER.
The new constraints in H′ result in more elegant conditions for exact recovery and tighter
probabilistic theory (due to the tighter relaxation). Since d is known the failure mode of
GMS mentioned above is avoided. Their REAPER algorithm for computing the REAPER
is based on the IRLS procedure of this paper with additional constraints, which complicate
its analysis. The algorithmic and theoretical developments of Lerman et al. (2012) are based
on the ones here.

While the REAPER framework applies a tighter relaxation, the GMS framework still
has several advantages over the REAPER framework. First of all, in various practical situa-
tions the dimension of the data is unknown and thus REAPER is inapplicable. On the other
hand, GMS can be used for dimension estimation, as we demonstrate in §6.3. Second of all,
the GMS algorithm is faster than REAPER (the REAPER requires additional eigenvalue
decomposition of a D ×D matrix at each iteration of the IRLS algorithm). Furthermore,
we present here a complete theory for the linear convergence of the GMS algorithm, where
the convergence theory for the REAPER algorithm is currently incomplete. Third of all,
when the failure mode mentioned above is avoided, the empirical performances of REAPER
and GMS are usually comparable (while GMS is faster). At last, GMS and REAPER have
different objectives with different consequences. REAPER aims to find a projector onto the
underlying subspace. On the other hand, GMS aims to find a “generalized inverse covari-
ance” (see §3.3) and is formally similar to other M-estimators (see §3.1 and §3.2). Therefore,
the eigenvalues and eigenvectors of the GMS estimator (i.e., the “generalized inverse covari-
ance”) can be interpreted as robust eigenvalues and eigenvectors of the empirical covariance
(see §6.3 and §6.5).

1.5 Structure of This Paper

In §2 we establish exact and near subspace recovery via the GMS algorithm. We also
carefully explain the common obstacles for robust subspace recovery and the way they are

756

A Novel M-Estimator for Robust PCA

handled by previous rigorous solutions (Candès et al., 2011; Chandrasekaran et al., 2011;
Xu et al., 2012) as well as our solution. Section 3 aims to interpret our M-estimator in two
different ways. First of all, it shows a formal similarity to a well-known class of M-estimators
(Maronna, 1976; Huber and Ronchetti, 2009; Maronna et al., 2006), though clarifies the
difference. Those estimators aims to robustly estimate the sample covariance. However, we
show there that unlike our M-estimator, they cannot solve the subspace recovery problem
(under a common assumption). Second of all, it shows that non-robust adaptation of our
M-estimator provides both direct estimation of the inverse covariance matrix as well as
convex minimization equivalent to the non-convex total least squares (this part requires
full rank data and thus a possible initial dimensionality reduction but without any loss of
information). We thus interpret (4) as a robust estimation of the inverse covariance. In §4 we
propose an IRLS algorithm for minimizing (4) and establish its linear convergence. Section
5 discusses practical versions of the GMS procedure that allow more general distributions
than the ones guaranteed by the theory. One of these versions, the Extended GMS (EGMS)
even provides robust alternative to principal components. In §6 we demonstrate the state-
of-the-art accuracy and speed of our algorithm when compared with other methods on both
synthetic and real data sets and also numerically clarify some earlier claims. Section 7
provides all details of the proofs and §8 concludes with brief discussion.

2. Exact and Near Subspace Recovery by GMS

We establish exact and near subspace recovery by the GMS algorithm. In §2.1 we formulate
the problems of exact and near subspace recovery. In §2.2 we describe common obstacles for
solving these problems and how they were handled in previous works; in §2.3 we formulate
some conditions that the data may satisfy; whereas in §2.4 we claim that these conditions
are sufficient to avoid the former obstacles, that is, they guarantee exact recovery (see
Theorem 1); We also propose weaker conditions for exact recovery and demonstrate their
near-tightness in §2.4.1. Section 2.5 describes a simple general condition for uniqueness of
GMS (beyond the setting of exact recovery). Section 2.6 establishes (with some specified
limitations) unique exact recovery with high probability under basic probabilistic models
(see Theorems 4 and 5); it also covers cases with asymmetric outliers. At last, §2.7 and §2.8
establish results for near recovery under noise and under regularization respectively.

2.1 Problem Formulation

Let us repeat the formulation of the exact subspace recovery problem, which we motivated
in §1.2 as a robust measure for the performance of our estimator. We assume a linear
subspace L∗ ∈ G(D, d) and a data set X = {xi}Ni=1, which contains inliers sampled from
L∗ and outliers sampled from RD \ L∗. Given the data set X and no other information,
the objective of the exact subspace recovery problem is to exactly recover the underlying
subspace L∗.

In order to make the problem well-defined, one needs to assume some conditions on the
sampled data set, which may vary with the proposed solution. We emphasize that this is a
formal mathematical problem, which excludes some ambiguous scenarios and allows us to
determine admissible distributions of inliers and outliers.

757

Teng Zhang and Gilad Lerman

In the noisy case (where inliers do not lie on L∗, but perturbed by noise), we ask about
near subspace recovery, that is, recovery up to an error depending on the underlying noise
level. We argue below that in this case additional information on the model is needed. Here
we assume the knowledge of d, though under some assumptions we can estimate d from
the data (as we demonstrate later). We remark that exact asymptotic recovery under some
conditions on the noise distribution is way more complicated and is discussed in another
work (Coudron and Lerman, 2012).

2.2 Common Difficulties with Subspace Recovery

We introduce here three typical enemies of subspace recovery and exemplify them in Fig-
ure 1. We also explain how they are handled by the previous convex solutions for exact
recovery of subspaces as well as low-rank matrices (Chandrasekaran et al., 2011; Candès
et al., 2011; Xu et al., 2012).

A type 1 enemy occurs when the inliers are mainly sampled from a subspace L′ ⊂ L∗.
In this case, it seems impossible to recover L∗. We would expect a good algorithm to
recover L′ (instead of L∗) or a subspace containing it with slightly higher dimension (see
for example Figure 1(a)). Chandrasekaran et al. (2011), Candès et al. (2011) and Xu et al.
(2012) have addressed this issue by requiring incoherence conditions for the inliers. For
example, if m and N − m points are sampled from L′ and L∗ \ L′ respectively, then the
incoherency condition of Xu et al. (2012) requires that µ ≥ N/(dim(L∗) · (N −m)), where µ
is their incoherency parameter. That is, their theory holds only when the fraction of points
sampled from L∗ \ L′ is sufficiently large.

A type 2 enemy occurs when the outliers are mainly sampled from a subspace L̃ such
that dim(L̃ ⊕ L∗) < D. In this case L∗ ⊕ L̃ can be mistakenly identified as the low-rank
subspace (see for example Figure 1(b)). This is a main issue when the intrinsic dimension
is unknown; if on the other hand the intrinsic dimension is known, then one can often
overcome this enemy. Candès et al. (2011) handle it by assuming that the distribution
of corrupted elements is uniform. Chandrasekaran et al. (2011) address it by restricting
their parameter µ (see their main condition, which is used in Theorem 2 of their work, and
their definition of µ in (1.2) of their work) and consequently limit the values of the mixture
parameter (denoted here by λ). On the other hand, Xu et al. (2012) use the true percentage
of outliers to infer the right choice of the mixture parameter λ. That is, they practically
invoke model selection (for estimating this percentage) in order to reject L̃⊕L∗ and choose
the true model, which is L∗.

A type 3 enemy occurs due to large magnitudes of outliers. For example, a single outlier
with arbitrarily large magnitude will be contained in the minimizer of (2), which will thus
be different than the underlying subspace (see for example Figure 1(c)). Also, many outliers
with not-so-small magnitudes that lie around a fixed line may have the effect of a single
large outlier (see for example Figure 1(d)). This enemy is avoided by Chandrasekaran et al.
(2011), Candès et al. (2011) and Xu et al. (2012) by the additional mixture component
of nuclear norm, which penalizes the magnitude (or combined magnitude) of the supposed
inliers (so that outliers of large magnitude may not be easily identified as inliers). It is
interesting to note that if the rank is used instead of the nuclear norm (as sometimes
advocated), then it will not resolve this issue.

758

A Novel M-Estimator for Robust PCA

−3 −2 −1 0 1 2 3

−5

0

5

−1.5

−1

−0.5

0

0.5

1

1.5

L∗

(a) Example of a type 1 enemy: L∗ is a plane
represented by a rectangle, “inliers” (in L∗) are
colored blue and “outliers” (in R3 \ L∗) red. Most
inliers lie on a line inside L∗. It seems unlikely to
distinguish between inliers, which are not on “the
main line”, and the outliers. It is thus likely to
recover the main line instead of L∗.

−3 −2 −1 0 1 2 3−2
0

2

−1

−0.5

0

0.5

1

1.5

2

L∗

(b) Example of a type 2 enemy: L∗ is a line rep-
resented by a black line segment, “inliers” (in L∗)
are colored blue and “outliers” (in R3\L∗) red. All
outliers but one lie within a plane containing L∗,
which is represented by a dashed rectangle. There
seems to be stronger distinction between the points
on this plane and the isolated outlier than the orig-
inal inliers and outliers. Therefore, an exact recov-
ery algorithm may output this plane instead of L∗.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

L∗

L̃

(c) Example 1 of a type 3 enemy: The inliers (in
blue) lie on the line L∗ and there is a single outlier
(in red) with relatively large magnitude. An exact
recovery algorithm can output the line L̃ (deter-
mined by the outlier) instead of L∗. If the data
is normalized to the unit circle, then any reason-
able robust subspace recovery algorithm can still
recover L∗.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

L∗

L̃

(d) Example 2 of a type 3 enemy: Points are nor-
malized to lie on the unit circle, inliers (in blue)
lie around the line L∗ and outliers (in red) concen-
trate around another line, L̃. A subspace recovery
algorithm can output L̃ instead of L∗.

Figure 1: Enemies of the mathematical formulation of exact subspace recovery.

759

Teng Zhang and Gilad Lerman

Another issue for our mathematical problem of exact subspace recovery is whether the
subspace obtained by a proposed algorithm is unique. Many of the convex algorithms de-
pend on convex l1-type methods that may not be strictly convex. But it may still happen
that in the setting of pure inliers and outliers and under some conditions avoiding the three
types of enemies, the recovered subspace is unique (even though it may be obtained by
several non-unique minimizers). This is indeed the case in Chandrasekaran et al. (2011),
Candès et al. (2011), Xu et al. (2012) and our own work. Nevertheless, uniqueness of our
minimizer (and not the recovered subspace) is important for analyzing the numerical algo-
rithm approximating it and for perturbation analysis (e.g., when considering near recovery
with noisy data). It is also helpful for practically verifying the conditions we will propose
for exact recovery. Uniqueness of the minimizer (and not just the subspace) is also impor-
tant in Chandrasekaran et al. (2011) and Candès et al. (2011) and they thus established
conditions for it.

At last, we comment that subspace recovery with unknown intrinsic dimension may
require a model selection procedure (possibly implicitly). That is, even though one can
provide a theory for exact subspace recovery (under some conditions), which might be stable
to perturbations, in practice, some form of model selection will be necessary in noisy cases.
For example, the impressive theories by Chandrasekaran et al. (2011) and Xu et al. (2012)
require the estimation of the mixture parameter λ. Xu et al. (2012) propose such an estimate
for λ, which is based on knowledge of the data set (e.g., the distribution of corruptions and
the fraction of outliers). However, we noticed that in practice this proposal did not work
well (even for simple synthetic examples), partly due to the fact that the deduced conditions
are only sufficient, not necessary and there is much room left for improvement. The theory
by Candès et al. (2011) specified a choice for λ that is independent of the model parameters,
but it applies only for the special case of uniform corruption without noise; moreover, they
noticed that other values of λ could achieve better results.

2.3 Conditions for Handling the Three Enemies

We introduce additional assumptions on the data to address the three types of enemies. We
denote the sets of exact inliers and outliers by X1 and X0 respectively, that is, X1 = X ∩L∗

and X0 = X \ L∗. The following two conditions simultaneously address both type 1 and
type 3 enemies:

min
Q∈H,QP

L∗⊥=0

∑
x∈X1

‖Qx‖ >
√

2 min
v∈L∗⊥,‖v‖=1

∑
x∈X0

|vTx|, (6)

min
Q∈H,QP

L∗⊥=0

∑
x∈X1

‖Qx‖ >
√

2 max
v∈L∗,‖v‖=1

∑
x∈X0

|vTx|. (7)

A lower bound on the common LHS of both (6) and (7) is designed to avoid type
1 enemies. This common LHS is a weak version of the permeance statistics, which was
defined in (3.1) of Lerman et al. (2012) as follows:

P(L∗) := min
u∈L∗
‖u‖=1

∑
x∈X1

|uTx|.

760

A Novel M-Estimator for Robust PCA

Similarly to the permeance statistics, it is zero if and only if all inliers are contained in a
proper subspace of L∗. Indeed, if all inliers lie in a subspace L′ ⊂ L∗, then this common
LHS is zero with the minimizer Q = PL′⊥∩L∗/ tr(PL′⊥∩L∗). Similarly, if it is zero, then
Qx = 0 for any x ∈ X1 and for some Q with kernel containing L∗⊥. This is only possible
when X1 is contained in a proper subspace of L∗. Similarly to the permeance statistics, if
the inliers nicely permeate through L∗, then this common LHS clearly obtain large values.

The upper bounds on the RHS’s of (6) and (7) address two complementing type 3
enemies. If X0 contains few data points of large magnitude, which are orthogonal to L∗,
then the RHS of (6) may be too large and (6) may not hold. If on the other hand X0

contains few data points with large magnitude and a small angle with L∗, then the RHS
of (7) will be large so that (7) may not hold. Conditions (6) and (7) thus complete each
other.

The RHS of condition (7) is similar to the linear structure statistics (for L∗), which was
defined in (3.3) of Lerman et al. (2012). The linear structure statistics uses an l2 average
of dot products instead of the l1 average used here and was applied in this context to RD
(instead of L∗) in Lerman et al. (2012). Similarly to the linear structure statistics, the
RHS of (7) is large when outliers either have large magnitude or they lie close to a line
(so that their combined contribution is similar to an outlier with a very large magnitude as
exemplified in Figure 1(d)). The RHS of condition (7) is a very weak analog of the linear
structure statics of L∗⊥ since it uses a minimum instead of a maximum. There are some
significant outliers within L∗⊥ that will not be avoided by requiring (7). For example, if
the codimension of L∗ is larger than 1 and there is a single outlier with an arbitrary large
magnitude orthogonal to L∗, then the RHS of (7) is zero.

The next condition avoids type 2 enemies and also significant outliers within L∗⊥ (i.e.,
type 3 enemies) that were not avoided by condition (7). This condition requires that any
minimizer of the following oracle problem

Q̂0 := arg min
Q∈H,QPL∗=0

F (Q) (8)

satisfies
rank(Q̂0) = D − d. (9)

We note that the requirement QPL∗ = 0 is equivalent to the condition ker(Q) ⊇ L∗ and
therefore the rank of the minimizer is at most D − d. Enforcing the rank of the minimizer
to be exactly D−d restricts the distribution of the projection of X onto L∗⊥. In particular,
it avoids its concentration on lower dimensional subspaces and is thus suitable to avoid
type 2 enemies. Indeed, if all outliers are sampled from L̃ ⊂ L∗⊥, then any Q ∈ H with
ker(Q) ⊃ L̃+L∗ satisfies F (Q) = 0 and therefore it is a minimizer of the oracle problem (4),
but it contradicts (9).

We note that this condition also avoids some type 3 enemies, which were not handled by
conditions (6) and (7). For example, any D−d−1 outliers with large magnitude orthogonal
to L∗ will not be excluded by requiring (6) or (7), but will be avoided by (9).

This condition is restrictive though, especially in very high ambient dimensions. Indeed,
it does not hold when the number of outliers is smaller than D − d (since then the outliers
are sampled from some L̃ with dim(L̃⊕ L∗) < D). We thus explain in §5.2 and §5.2.1 how
to avoid this condition when knowing the dimension. We also suggest in §5.1 some practical

761

Teng Zhang and Gilad Lerman

solutions to overcome the corresponding restrictive lower bound on the number of outliers
when the dimension is unknown.

Example 1 We demonstrate the violation of the conditions above for the examples depicted
in Figure 1. The actual calculations rely on ideas explained in §2.4.1.

For the example in Figure 1(a), which represents a type 1 enemy, both conditions (6)
and (7) are violated. Indeed, the common LHS of (6) and (7) is 5.69, whereas the RHS
of (6) is 8.57 and the RHS of (7) is larger than 10.02 (this lower bound is obtained by
substituting v = [0, 1, 0] in the RHS of (7); note that v is a unit vector in L∗).

For the example in Figure 1(b), which represents a type 2 enemy, condition (9) is vio-
lated. Indeed, we obtained numerically a solution Q̂0 with rank(Q̂0) = 1 6= D − d = 2 (one
can actually prove in this case that Q̂0 is the projector onto the orthogonal complement of
the plane represented by the dashed rectangle).

For the example in Figure 1(c), which represents a type 3 enemy, both conditions (6)
and (7) are violated. Indeed, the common LHS of (6) and (7) is 1.56 and the RHS’s of
(6) and (7) are 5.66 and 4.24 respectively. However, if we normalize all points to lie on the
unit circle, then this enemy can be overcome. Indeed, for the normalized data, the common
LHS of (6) and (7) is 6 and the RHS’s of (6) and (7) are 1.13 and 0.85 respectively.

For the example in Figure 1(d), which also represents a type 3 enemy, both conditions
(6) and (7) are violated. Indeed, the LHS of (6) and (7) are 5.99 and the RHS’s of (6) and
(7) are 6.91 and 7.02 respectively.

2.4 Exact Recovery Under Combinatorial Conditions

We show that the minimizer of (4) solves the exact recovery problem under the above
combinatorial conditions.

Theorem 1 Assume that d,D ∈ N, d < D, X is a data set in RD and L∗ ∈ G(D, d).
If conditions (6), (7) and (9) hold (w.r.t. X and L∗), then any minimizer of (4), Q̂,
recovers the subspace L∗ in the following way: ker(Q̂) = L∗. If only (6) and (7) hold, then
ker(Q̂) ⊇ L∗.

2.4.1 Weaker Alternatives of Conditions (6) and (7)

It is sufficient to guarantee exact recovery by requiring (9) and that for an arbitrarily chosen
solution of (8), Q̂0, the following two conditions are satisfied:

min
Q∈H,QP

L∗⊥=0

∑
x∈X1

‖Qx‖ >
√

2

∥∥∥∥∥∥
∑
x∈X0

Q̂0xxTPL∗⊥/‖Q̂0x‖

∥∥∥∥∥∥ (10)

and

min
Q∈H,QP

L∗⊥=0

∑
x∈X1

‖Qx‖ >
√

2

∥∥∥∥∥∥
∑
x∈X0

Q̂0xxTPL∗/‖Q̂0x‖

∥∥∥∥∥∥ . (11)

We note that condition (9) guarantees that Q̂0x 6= 0 for all x ∈ X0 and thus the RHS’s
of (10) and (11) are well-defined. We prove this statement in (7.3).

762

A Novel M-Estimator for Robust PCA

We note that conditions (10) and (11) can be verified when X0, X1 and L∗ are known
(unlike (6) and (7)), where Q̂0 can be found by Algorithm 2. Furthermore, (10) and (11) are
weaker than (6) and (7), though they are more technically involved and harder to motivate.

In order to demonstrate the near-tightness of (10) and (11), we formulate the following
necessary conditions for the recovery of L∗ as ker(Q̂) (see the idea of their justification at
the end of §7.3): For an arbitrarily chosen solution of (8), Q̂0:

min
Q∈H,QP

L∗⊥=0

∑
x∈X1

‖Qx‖ ≥ ‖
∑
x∈X1

Q̂0xxTPL∗⊥/‖Q̂0x‖‖ (12)

and ∑
x∈X1

‖Q(P̃L∗x)‖ ≥
∑
x∈X0

〈
Q, P̃T

L∗⊥Q̂0xxT P̃L∗/‖Q̂0x‖
〉
F

for any Q ∈ R(D−d)×d, (13)

where for matrices A, B ∈ Rk×l: 〈A,B〉F = tr(ABT) is the Frobenius dot product. Indeed,
conditions (12) and (13) are close to conditions (10) and (11). In particular, (12) and (10)
are only different by the constant factor

√
2, that is, (10) is practically tight.

2.5 Uniqueness of the Minimizer

We recall that Theorem 1 implies that if (6), (7) and (9) hold, then ker(Q̂) is unique.
Here we guarantee the uniqueness of Q̂ (which is required in §2.4.1, §2.7, §2.8 and §4.2)
independently of the exact subspace recovery problem.

Theorem 2 If the following condition holds:

{X ∩ L1} ∪ {X ∩ L2} 6= X for all (D − 1)-dimensional subspaces L1,L2 ⊂ RD, (14)

then F (Q) is a strictly convex function on H.

2.6 Exact Recovery under Probabilistic Models

We show that our conditions for exact recovery (or the main two of them) and our condition
for uniqueness of the minimizer Q̂ hold with high probability under basic probabilistic mod-
els. Such a probabilistic theory is cleaner when the outliers are sampled from a spherically
symmetric distribution as we carefully demonstrate in §2.6.1 (with two different models).
The problem is that when the outliers are spherically symmetric then various non-robust
algorithms (such as PCA) can asymptotically approach exact recovery and nearly recover
the underlying subspace with sufficiently large sample. We thus also show in §2.6.2 how the
theory in §2.6.1 can be slightly modified to establish exact recovery of the GMS algorithm
in an asymmetric case, where PCA cannot even nearly recover the underlying subspace.

2.6.1 Cases with Spherically Symmetric Distributions of Outliers

First we assume a more general probabilistic model. We say that µ on RD is an Outliers-
Inliers Mixture (OIM) measure (w.r.t. the fixed subspace L∗ ∈ G(D, d)) if µ = α0µ0 +α1µ1,
where α0, α1 > 0, α0 + α1 = 1, µ1 is a sub-Gaussian probability measure and µ0 is a
sub-Gaussian probability measure on RD (representing outliers) that can be decomposed to

763

Teng Zhang and Gilad Lerman

a product of two independent measures µ0 = µ0,L∗ × µ0,L∗⊥ such that the supports of µ0,L∗

and µ0,L∗⊥ are L∗ and L∗⊥ respectively, and µ0,L∗⊥ is spherically symmetric with respect to

rotations within L∗⊥.

To provide cleaner probabilistic estimates, we also invoke the needle-haystack model
of Lerman et al. (2012). It assumes that both µ0 and µ1 are the Gaussian distributions:
µ0 = N(0, σ20I/D) and µ1 = N(0, σ21PL∗P

T
L∗/d) (the factors 1/D and 1/d normalize the

magnitude of outliers and inliers respectively so that their norms are comparable). While
Lerman et al. (2012) assume a fixed number of outliers and inliers independently sampled
from µ0 and µ1 respectively, here we independently sample from the mixture measure µ =
α0µ0 + α1µ1; we refer to µ as a needle-haystack mixture measure.

In order to prove exact recovery under any of these models, one needs to restrict the
fraction of inliers per outliers (or equivalently, the ratio α1/α0). We refer to this ratio as
SNR (signal to noise ratio) since we may view the inliers as the pure signal and the outliers
as some sort of “noise”. For the needle-haystack model we require the following SNR, which
is similar to the one of Lerman et al. (2012):

α1

α0
> 4

σ0
σ1

d√
(D − d)D

. (15)

We later explain how to get rid of the term σ1/σ0. For the OIM model we assume the
following more general condition:

α1 min
Q∈H,QP

L∗⊥
=0

∫
‖Qx‖ dµ1(x) > 2

√
2

α0

D − d

∫
‖PL∗⊥x‖dµ0(x). (16)

Under the needle-haystack model, this condition is a weaker version of (15). That is,

Lemma 3 If µ is a needle-haystack mixture measure, then (15) implies (16).

For i.i.d. samples from an OIM measure satisfying (16), we can establish our modified
conditions of unique exact recovery (i.e., (10), (11) and (9)) with overwhelming probability
in the following way (we also guarantee the uniqueness of the minimizer Q̂).

Theorem 4 If X is an i.i.d. sample from an OIM measure µ satisfying (16), then con-
ditions (10), (11), and (9) hold with probability 1 − C exp(−N/C), where C is a constant
depending on µ and its parameters. Moreover, (14) holds with probability 1 if there are at
least 2D − 1 outliers (i.e., the number of points in X \ L∗ is at least 2D − 1).

Under the needle-haystack model, the SNR established by Theorem 4 is comparable
to the best SNR among other convex exact recovery algorithms (this is later clarified in
Table 1). However, the probabilistic estimate under which this SNR holds is rather loose
and thus its underlying constant C is not specified. Indeed, the proof of Theorem 4 uses ε-
nets and union-bounds arguments, which are often not useful for deriving tight probabilistic
estimates (see, e.g., Mendelson 2003, page 18). One may thus view Theorem 4 as a near-
asymptotic statement.

The statement of Theorem 4 does not contradict our previous observation that the
number of outliers should be larger than at least D−d. Indeed, the constant C is sufficiently

764

A Novel M-Estimator for Robust PCA

large so that the corresponding probability is negative when the number of outliers is smaller
than D − d.

In the next theorem we assume only a needle-haystack model and thus we can provide
a stronger probabilistic estimate based on the concentration of measure phenomenon (our
proof follows directly Lerman et al., 2012). However, the SNR is worse than the one in
Theorem 4 by a factor of order

√
D − d. This is because we are unable to estimate Q̂0

of (8) by concentration of measure. Similarly, in this theorem we do not estimate the
probability of (9) (which also involves Q̂0). Nevertheless, we observed in experiments that
(9) holds with high probability for N0 = 2(D − d) and the probability seems to go to 1 as
N0 = 2(D − d) and D − d→∞. Moreover, one of the algorithms proposed below (EGMS)
does not require condition (9).

Theorem 5 If X is an i.i.d. sample of size N from a needle-haystack mixture measure µ
and if

α1

α0
>
σ0
σ1

√
2/π − 1/4− 1/10√
2/π + 1/4 + 1/10

√
d2

D
(17)

and

N > 64 max(2d/α1, 2d/α0, 2(D − d)/α0), (18)

then (6) and (7) hold with probability 1− e−α2
1N/2 − 2e−α

2
0N/2 − e−α1N/800 − e−α0N/800.

In Table 1 we present the theoretical asymptotic SNRs for exact recovery of some recent
algorithms. We assume the needle-haystack model with fixed d, D, α0, α1, σ0 and σ1 and
N → ∞. Let us clarify these results. We first remark that the pure SNR of the High-
dimensional Robust PCA (HR-PCA) algorithm of Xu et al. (2010a) approaches infinity
(see Remark 3 of Xu et al. 2010a). However, as we explained earlier the violation of exact
recovery does not necessarily imply non-robustness of the estimator as it may nearly recover
the subspace. Indeed, Xu et al. (2010a) show that if (for simplicity) σ0 = σ1 and the SNR
is greater than 1, then the subspace estimated by HR-PCA is a good approximation in
the following sense: there exists a constant c > 0 such that for the inliers set X0 and
the estimated subspace L:

∑
x∈X0

‖PLx‖22 > c
∑

x∈X0
‖x‖22 (see Remark 4 of Xu et al.

(2010a)). We thus use the notation: SNR(HR-PCA) “'” 1 (see Table 1 with appropriate
scales of σ0 and σ1). Xu et al. (2012) established the SNR for their Outlier Pursuit (OP)
algorithm (equivalently the Low-Leverage Decomposition (LLD) of McCoy and Tropp 2011)
in Theorem 1 of their work. Their analysis assumes a deterministic condition, but it is
possible to show that this condition is asymptotically valid under the needle-haystack model.
Lerman et al. (2012) established w.h.p. the SNR of the REAPER algorithm in Theorem 1
of their work (for simplicity of their expressions they assumed that d ≤ (D − 1)/2). Zhang
(2012) established the SNR for Tyler’s M-Estimator (TME) in Theorem 1 of his work.
His result is deterministic, but it is easy to show that the deterministic condition holds
with probability 1 under the needle-haystack model. Hardt and Moitra (2013) proposed
randomized and deterministic robust recovery algorithms, RF (or RandomizedFind) and
DRF (or DERandomizedFind) respectively, and proved that they obtained the same SNR
as in Zhang (2012) under a similar (slightly weaker) combinatorial condition (they only
guarantee polynomial time, where Zhang, 2012 specifies a complexity similar to that of

765

Teng Zhang and Gilad Lerman

HR-PCA LLD (OP) L̂ := ker(Q̂) REAPER (d ≤ (D − 1)/2) TME & D/RF
σ1α1
σ0α0

“'” 1 α1
α0
≥ 121d

9
α1
α0
> 4σ0σ1

d√
(D−d)D

α1
α0
> σ0

σ1

(
C1

d
D −

d
C2α1

)
α1
α0
> d

D−d

Table 1: Theoretical SNR (lowest bound on α1/α0) for exact recovery when N →∞

GMS). We remark that both Zhang (2012) and Hardt and Moitra (2013) appeared after
the submission of this manuscript.

The asymptotic SNR of the minimization proposed in this paper is of the same order
as that of the REAPER algorithm (which was established for d ≤ (D − 1)/2) and both of
them are better than that of the HR-PCA algorithm. The asymptotic SNRs of OP, TME,
RF and DRF are independent of σ1 and σ0. However, by normalizing all data points to the
unit sphere, we may assume that σ1 = σ0 in all other algorithms and treat them equally
(see Lerman et al., 2012). In this case, the SNR of OP is significantly worse than that of
the minimization proposed in here, especially when d� D (it is also worse than the weaker
SNR specified in (17)). When d� D, the SNR of TME, RF and DRF is of the same order
as the asymptotic SNR of our formulation. However, when d is very close to D, the SNR of
our formulation is better than the SNR of TME by a factor of

√
D. We question whether

a better asymptotic rate than the one of GMS and REAPER can be obtained by a convex
algorithm for robust subspace recovery for the needle-haystack model. Hardt and Moitra
(2013) showed that it is small set expansion hard for any algorithm to obtain better SNR
than theirs for all scenarios satisfying their combinatorial condition.

We note though that there are non-convex methods for removing outliers with asymp-
totically zero SNRs. Such SNRs are valid only for the noiseless case and may be differently
formulated for detecting the hidden low-dimensional structure among uniform outliers. For
example, Arias-Castro et al. (2005) proved that the scan statistics may detect points sam-
pled uniformly from a d-dimensional graph in RD of an m-differentiable function among
uniform outliers in a cube in RD with SNR of order O(N−m(D−d)/(d+m(D−d))). Arias-Castro
et al. (2011) used higher order spectral clustering affinities to remove outliers and thus detect
differentiable surfaces (or certain unions of such surfaces) among uniform outliers with sim-
ilar SNR to that of the scan statistics. Soltanolkotabi and Candès (2012) removed outliers
with “large dictionary coefficients” and showed that this detection works well for outliers

uniform in SD−1, inliers uniform in SD−1 ∩ L∗ and SNR at least d
D · ((

α1N−1
d)

cD
d
−1 − 1)−1

(where α1 is the fraction of inliers) as long as N < ec
√
D/D. For fixed D and d and suf-

ficiently large N , this SNR, which depends on N , can be arbitrarily small. Furthermore,
Lerman and Zhang (2010) showed that the global minimizer of (2) (that we relax in this
paper so that the minimization is convex) can in theory recover the subspace with asymptot-
ically zero SNR. They also showed that the underlying subspace is a local minimum of (2)
with SNR of order ω(1/

√
N). However, these non-convex procedures do not have efficient

or sufficiently fast implementations for subspace recovery. Furthermore, their impressive
theoretical estimates often break down in the presence of noise. Indeed, in the noisy case
their near-recovery is not better than the one stated for GMS in Theorem 6 (see, e.g., (16)
and (17) of Arias-Castro et al. (2011) or Theorem 1.2 of Lerman and Zhang (2010)). On
the other hand, in view of Coudron and Lerman (2012) we may obtain significantly better

766

A Novel M-Estimator for Robust PCA

asymptotic SNR for GMS when the noise is symmetrically distributed with respect to the
underlying subspace.

2.6.2 A Special Case with Asymmetric Outliers

In the case of spherically symmetric outliers, PCA cannot exactly recover the underlying
subspace, but it can asymptotically recover it (see, e.g., Lerman and Zhang, 2010). In
particular, with sufficiently large sample with spherically symmetric outliers, PCA nearly
recovers the underlying subspace. We thus slightly modify the two models of §2.6.1 so that
the distribution of outliers is asymmetric and show that our combinatorial conditions for
exact recovery still hold (with overwhelming probability). On the other hand, the subspace
recovered by PCA, when sampling data from these models, is sufficiently far from the
underlying subspace for any given sample size.

We first generalize Theorem 5 under a generalized needle-haystack model: Let µ =
α0µ0 + α1µ1, µ0 = N(0,Σ0/D), where Σ0 is an arbitrary positive definite matrix (not
necessarily a scalar matrix as before), and as before µ1 = N(0, σ21PL∗P

T
L∗/d). We claim

that Theorem 5 still holds in this case if we replace σ0 in the RHS of (17) with
√
λmax(Σ0),

where λmax(Σ0) denotes the largest eigenvalue of Σ0 (see justification in §7.6.1).
In order to generalize Theorem 4 for asymmetric outliers, we assume that the outlier

component µ0 of the OIM measure µ is a sub-Gaussian distribution with an arbitrary
positive definite covariance matrix Σ0. Following Coudron and Lerman (2012), we define
the expected version of F , FI , and its oracle minimizer, Q̂I , which is analogous to (8) (the
subscript I indicates integral):

FI(Q) =

∫
‖Qx‖ dµ(x) (19)

and
Q̂I = arg min

Q∈H,QPL∗=0
FI(Q). (20)

We assume that Q̂I is the unique minimizer in (20) (we remark that the two-subspaces
criterion in (25) for the projection of µ onto L∗⊥ implies this assumption). Under these
assumptions Theorem 4 still holds if we multiply the RHS of (16) by the ratio between
the largest eigenvalue of PL∗⊥Q̂IPL∗⊥ and the (D − d)th eigenvalue of PL∗⊥Q̂IPL∗⊥ (see
justification in §7.5.1).

2.7 Near Subspace Recovery for Noisy Samples

We show that in the case of sufficiently small additive noise (i.e., the inliers do not lie exactly
on the subspace L∗ but close to it), the GMS algorithm nearly recovers the underlying
subspace.

We use the following notation: ‖A‖F and ‖A‖ denote the Frobenius and spectral norms
of A ∈ Rk×l respectively. Furthermore, H1 denotes the set of all positive semidefinite
matrices in H, that is, H1 = {Q ∈ H : Q < 0}. We also define the following two constants

γ0 =
1

N
min

Q∈H1,‖∆‖F=1,tr(∆)=0

N∑
i=1

‖∆xi‖2‖Qxi‖2 − (xTi ∆Qxi)
2

‖Qxi‖3
, (21)

767

Teng Zhang and Gilad Lerman

and

γ′0 =
1

N
min

Q∈H1,‖∆‖=1,tr(∆)=0

N∑
i=1

‖∆xi‖2‖Qxi‖2 − (xTi ∆Qxi)
2

‖Qxi‖3
. (22)

The sum in the RHS’s of (21) and (22) is the following second directional derivative:
d2

dt2
F (Q + t∆); when Qxi = 0, its ith term can be set to 0. It is interesting to note

that both (21) and (22) express the Restricted Strong Convexity (RSC) parameter γl of
Agarwal et al. (2012b, Definition 1), where their notation translates into ours as follows:
Ln(Q) := F (Q)/N , τl := 0, Ω′ := H1 and θ− θ′ := ∆. The difference between γ0 and γ′0 of
(21) and (22) is due to the choice of either the Frobenius or the spectral norms respectively
for measuring the size of θ − θ′.

Using this notation, we formulate our noise perturbation result as follows.

Theorem 6 Assume that {εi}Ni=1 is a set of positive numbers, X = {xi}Ni=1 and X̃ =
{x̃i}Ni=1 are two data sets such that ‖x̃i − xi‖ ≤ εi ∀1 ≤ i ≤ N and X satisfies (14). Let
FX (Q) and FX̃ (Q) denote the corresponding versions of F (Q) w.r.t. the sets X and X̃ and

let Q̂ and Q̃ denote their respective minimizers. Then we have

‖Q̃− Q̂‖F <

√√√√2

N∑
i=1

εi/(Nγ0) and ‖Q̃− Q̂‖ <

√√√√2

N∑
i=1

εi/(Nγ′0). (23)

Moreover, if L̃ and L̂ are the subspaces spanned by the bottom d eigenvectors of Q̃ and Q̂
respectively and νD−d is the (D − d)th eigengap of Q̂, then

‖PL̂ −PL̃‖F ≤
2
√

2
∑N

i=1 εi/(Nγ0)

νD−d
and ‖PL̂ −PL̃‖ ≤

2
√

2
∑N

i=1 εi/(Nγ
′
0)

νD−d
. (24)

We note that if X and X̃ satisfy the conditions of Theorem 6, then given the perturbed
data set X̃ and the dimension d, Theorem 6 guarantees that GMS nearly recovers L∗. More
interestingly, the theorem also implies that we may properly estimate the dimension of
the underlying subspace in this case (we explain this in details in §7.7.1). Such dimension
estimation is demonstrated later in Figure 2.

Theorem 6 is a perturbation result in the spirit of the stability analysis by Candès et al.
(2006) and Xu et al. (2012, Theorem 2). In order to observe that the statement of Theorem 6
is comparable to that of Theorem 2 of Xu et al. (2012), we note that asymptotically the
bounds on the recovery errors in (23) and (24) depend only on the empirical mean of {εi}Ni=1

and do not grow with N . To clarify this point we formulate the following proposition.

Proposition 7 If X is i.i.d. sampled from a bounded distribution µ and

µ(L1) + µ(L2) < 1 for any two D − 1-dimensional subspaces L1 and L2, (25)

then there exist constants c0(µ) > 0 and c′0(µ) > 0 depending on µ such that

lim inf
N→∞

γ0(X) ≥ c0(µ) and lim inf
N→∞

γ′0(X) ≥ c′0(µ) almost surely. (26)

768

A Novel M-Estimator for Robust PCA

If (25) is strengthened so that µ(L1) + µ(L2) is sufficiently smaller than 1, then it can be
noticed empirically that c0(µ) and c′0(µ) are sufficiently larger than zero.

Nevertheless, the stability theory of Candès et al. (2006), Xu et al. (2012) and this
section is not optimal. Stronger stability results require nontrivial analysis and we leave it
to a possible future work. We comment though on some of the deficiencies of our stability
theory and their possible improvements.

We first note that the bounds in Theorem 6 are generally not optimal. Indeed, if
εi = O(ε) for all 1 ≤ i ≤ N , then the error bounds in Theorem 6 are O(

√
ε), whereas we

empirically noticed that these error bounds are O(ε). In §7.7.2 we sketch a proof for this
empirical observation when ε is sufficiently small and rank(Q̂) = D.

The dependence of the error on D, which follows from the dependence of γ0 and γ′0 on
D, is a difficult problem and strongly depends on the underlying distribution of X and of
the noise. For example, in the very special case where the set X is sampled from a subspace
L0 ⊂ RD of dimension D0 < D, and the noise distribution is such that X̃ also lies in L0,
then practically we are performing GMS over PL0(X) and PL0(X̃), and the bound in (23)
would depend on D0 instead of D.

Coudron and Lerman (2012) suggested a stronger perturbation analysis and also re-
marked on the dependence of the error on D in a very special scenario.

2.8 Near Subspace Recovery for Regularized Minimization

For our practical algorithm it is advantageous to regularize the function F as follows (see
Theorems 11 and 12 below):

Fδ(Q) :=
N∑

i=1,‖Qxi‖≥δ

‖Qxi‖+
N∑

i=1,‖Qxi‖<δ

(
‖Qxi‖2

2δ
+
δ

2

)
.

We remark that other convex algorithms (Candès et al., 2011; Xu et al., 2012; McCoy and
Tropp, 2011) also regularize their objective function by adding the term δ‖X − L −O‖2F .
However, their proofs are not formulated for this regularization.

In order to address the regularization in our case and conclude that the GMS algorithm
nearly recovers L∗ for the regularized objective function, we adopt a similar perturbation
procedure as in §2.7. We denote by Q̂δ and Q̂ the minimizers of Fδ(Q) and F (Q) in H
respectively. Furthermore, let L̂δ and L̂ denote the subspaces recovered by the bottom d
eigenvectors of Q̂δ and Q̂ respectively. Using the constants νD−d and γ0 of Theorem 6, the
difference between the two minimizers and subspaces can be controlled as follows.

Theorem 8 If X is a data set satisfying (14), then

‖Q̂δ − Q̂‖F <
√
δ/2γ0

and

‖PL̂δ
−PL̂‖F ≤

2
√
δ/2γ0
νD−d

. (27)

769

Teng Zhang and Gilad Lerman

3. Understanding Our M Estimator: Interpretation and Formal
Similarities with Other M Estimators

We highlight the formal similarity of our M-estimator with a common M-estimator and
with Tyler’s M-estimator in §3.1 and §3.2 respectively. We also show that in view of the
standard assumptions on the algorithm for computing the common M-estimator, it may fail
in exactly recovering the underlying subspace (see §3.1.1). At last, in §3.3 we interpret our
M-estimator as a robust inverse covariance estimator.

3.1 Formal Similarity with the Common M-estimator for Robust Covariance
Estimation

A well-known robust M-estimator for the 0-centered covariance matrix (Maronna, 1976;
Huber and Ronchetti, 2009; Maronna et al., 2006) minimizes the following function over all
D ×D positive definite matrices (for some choices of a function ρ)

L(A) =
N∑
i=1

ρ(xTi A−1xi)−
N

2
log(det(A−1)). (28)

The image of the estimated covariance is clearly an estimator to the underlying subspace
L∗.

If we set ρ(x) =
√
x and A−1 = Q2 then the objective function L(A) in (28) is∑N

i=1 ‖Qxi‖ −N log(det(Q)). This energy function is formally similar to our energy func-

tion. Indeed, using Lagrangian formulation, the minimizer Q̂ in (4) is also the minimizer
of
∑N

i=1 ‖Qxi‖ − λ tr(Q) among all D × D symmetric matrices (or equivalently nonnega-
tive symmetric matrices) for some λ > 0 (the parameter λ only scales the minimizer and
does not effect the recovered subspace). Therefore, the two objective functions differ by
their second terms. In the common M-estimator (with ρ(x) =

√
x and A−1 = Q2) it is

log(det(Q)), or equivalently, tr(log(Q)), where in our M-estimator, it is tr(Q).

3.1.1 Problems with Exact Recovery by the Common M-estimator

The common M-estimator is designed for robust covariance estimation, however, we show
here that in general it cannot exactly recover the underlying subspace. To make this state-
ment more precise we recall the following uniqueness and existence conditions for the min-
imizer of (28), which were established by Kent and Tyler (1991): 1) u = 2ρ′ is positive,
continuous and non-increasing. 2) Condition M: u(x)x is strictly increasing. 3) Condition
D0: For any linear subspace L: |X ∩L|/N < 1−(D−dim(L))/ limx→∞ xu(x). The following
Theorem 9 shows that the uniqueness and existence conditions of the common M-estimator
are incompatible with exact recovery.

Theorem 9 Assume that d,D ∈ N, d < D, X is a data set in RD and L∗ ∈ G(D, d) and
let Â be the minimizer of (28). If conditions M and D0 hold, then Im(Â) 6= L∗.

For symmetric outliers (as the ones of §2.6.1) the common M-estimator can still asymp-
totically achieve exact recovery (similarly to PCA). However, for many scenarios of asym-
metric outliers, in particular, the one of §2.6.2, the subspace recovered by the common
M-estimator is sufficiently far from the underlying subspace for any given sample size.

770

A Novel M-Estimator for Robust PCA

We remark that Tyler’s M-estimator (Tyler, 1987) can still recover the subspace exactly.
This estimator uses ρ(x) = D log(x)/2 in (28) and adds an additional assumption tr(A) = 1.
Zhang (2012) recently showed that this M-estimator satisfies Im(Â) = L∗. However, it does
not belong to the class of estimators of Kent and Tyler (1991) addressed by Theorem 9
(it requires that tr(A) = 1, otherwise it has multiple minimizers; it also does not satisfy
condition M).

3.2 Formal Similarity with Tyler’s M-Estimator

We show here that the algorithms for our estimator and Tyler’s M-estimator (Tyler, 1987)
are formally similar. Following Tyler (1987), we write the iterative algorithm for the Tyler’s
M-estimator for robust covariance estimation as follows:

Σn+1 =
N∑
i=1

xix
T
i

xTi Σ−1n xi

/
tr

(
N∑
i=1

xix
T
i

xTi Σ−1n xi

)
. (29)

The unregularized iterative algorithm for GMS is later described in (38). Let us formally
substitute Σ = Q−1/ tr(Q−1) in (38); in view of the later discussion of 3.3, Σ (if exists) can
be interpreted as a robust estimator for the covariance matrix (whose top d eigenvectors
span the estimated subspace). Then an unregularized version for GMS can be formally
written as

Σn+1 =
N∑
i=1

xix
T
i

‖Σ−1n xi‖

/
tr

(
N∑
i=1

xix
T
i

‖Σ−1n xi‖

)
. (30)

Clearly, (30) is obtained from (29) by replacing xTi Σ−1n xi with ‖Σ−1n xi‖ ≡
√

xTi Σ−2n xi.

3.3 Interpretation of Q̂ as Robust Inverse Covariance Estimator

The total least squares subspace approximation is practically the minimization over L ∈
G(D, d) of the function

N∑
i=1

‖xi −PLxi‖2 ≡
N∑
i=1

‖PL⊥xi‖2 . (31)

Its solution is obtained by the span of the top d right vectors of the data matrix X (whose
rows are the data points in X), or equivalently, the top d eigenvectors of the covariance
matrix XTX. The convex relaxation used in (31) can be also applied to (31) to obtain the
following convex minimization problem:

Q̂2 := arg min
Q∈H

N∑
i=1

‖Qxi‖2. (32)

The “relaxed” total least squares subspace is then obtained by the span of the bottom d
eigenvectors of Q̂.

We show here that Q̂2 coincides with a scaled version of the empirical inverse covariance
matrix. This clearly imply that the “relaxed” total least squared subspace coincides with
the original one (as the bottom eigenvectors of the inverse empirical covariance are the

771

Teng Zhang and Gilad Lerman

top eigenvectors of the empirical covariance). We require though that the data is of full
rank so that the empirical inverse covariance is well-defined. This requirement does not
hold if the data points are contained within a lower-dimensional subspace, in particular, if
their number is smaller than the dimension. We can easily avoid this restriction by initial
projection of the data points onto the span of eigenvectors of the covariance matrix with
nonzero eigenvalues. That is, by projecting the data onto the lowest-dimensional subspace
containing it without losing any information.

Theorem 10 If X is the data matrix, Q̂2 is the minimizer of (32) and rank(X) = D
(equivalently the data points span RD), then

Q̂2 = (XTX)−1/ tr((XTX)−1). (33)

We view (4) as a robust version of (32). Since we verified robustness of the subspace
recovered by (4) and also showed that (32) yields the inverse covariance matrix, we some-
times refer to the solution of (4) as a robust inverse covariance matrix (though we have
only verified robustness to subspace recovery). This idea helps us interpret our numerical
procedure for minimizing (4), which we present in §4.

4. IRLS Algorithms for Minimizing (4)

We propose a fast algorithm for computing our M-estimator by using a straightforward
iterative re-weighted least squares (IRLS) strategy. We first motivate this strategy in §4.1
(in particular, see (38) and (40)). We then establish its linear convergence in §4.2. At last,
we describe its practical choices in §4.3 and summarize its complexity in §4.4.

4.1 Heuristic Proposal for Two IRLS Algorithms

The procedure for minimizing (4) formally follows from the simple fact that the directional
derivative of F at Q̂ in any direction Q̃− Q̂, where Q̃ ∈ H, is 0, that is,〈

F ′(Q̂)
∣∣∣
Q=Q̂

, Q̃− Q̂

〉
F

= 0 for any Q̃ ∈ H. (34)

We remark that since H is an affine subspace of matrices, (34) holds globally in H and not
just locally around Q̂.

We formally differentiate (4) at Q̂ as follows (see more details in (44), which appears
later):

F ′(Q)
∣∣∣
Q=Q̂

=

N∑
i=1

Q̂xix
T
i + xix

T
i Q̂

2‖Q̂xi‖
. (35)

Throughout the formal derivation we ignore the possibility of zero denominator in (35),
that is, we assume that Q̂xi 6= 0 ∀ 1 ≤ i ≤ N ; we later address this issue.

Since F ′(Q̂) is symmetric and Q̃ − Q̂ can be any symmetric matrix with trace 0, it is
easy to note that (34) implies that F ′(Q̂) is a scalar matrix (e.g., multiply it by a basis of
symmetric matrices with trace 0 whose members have exactly 2 nonzero matrix elements).

772

A Novel M-Estimator for Robust PCA

That is,
N∑
i=1

Q̂xix
T
i + xix

T
i Q̂

2‖Q̂xi‖
= cI (36)

for some c ∈ R. This implies that

Q̂ = c

(
N∑
i=1

xix
T
i

‖Q̂xi‖

)−1
. (37)

Indeed, we can easily verify that (37) solves (36), furthermore, (36) is a Lyapunov equation
whose solution is unique (see, e.g., page 1 of Bhatia and Drissi (2005)). Since tr(Q̂) = 1,
we obtain that

Q̂ =

(
N∑
i=1

xix
T
i

‖Q̂xi‖

)−1
/ tr

(N∑
i=1

xix
T
i

‖Q̂xi‖

)−1 ,

which suggests the following iterative estimate of Q̂:

Qk+1 =

(
N∑
i=1

xix
T
i

‖Qkxi‖

)−1
/ tr

(N∑
i=1

xix
T
i

‖Qkxi‖

)−1 . (38)

Formula (38) is undefined whenever Qkxi = 0 for some k ∈ N and 1 ≤ i ≤ N . In theory,
we address it as follows. Let I(Q) = {1 ≤ i ≤ N : Qxi = 0}, L(Q) = Sp{xi}i∈I(Q) and

T (Q)=PL(Q)⊥

∑
i/∈I(Q)

xix
T
i

‖Qxi‖

−1PL(Q)⊥/ tr

PL(Q)⊥

∑
i/∈I(Q)

xix
T
i

‖Qxi‖

−1PL(Q)⊥

.
Using this notation, the iterative formula can be corrected as follows

Qk+1 = T (Qk). (39)

In practice, we can avoid data points satisfying ‖Qkxi‖ ≤ δ for a sufficiently small parameter
δ (instead of ‖Qkxi‖ = 0). We follow a similar idea by replacing F with the regularized
function Fδ for a regularized parameter δ. In this case, (39) obtains the following form:

Qk+1 =

(
N∑
i=1

xix
T
i

max(‖Qkxi‖, δ)

)−1
/ tr

(N∑
i=1

xix
T
i

max(‖Qkxi‖, δ)

)−1 . (40)

We note that the RHS of (39) is obtained as the limit of the RHS of (40) when δ approaches
0.

The two iterative formulas, that is, (39) and (40), give rise to IRLS algorithms. For sim-
plicity of notation, we exemplify this idea with the formal expression in (38). It iteratively
finds the solution to the following weighted (with weight 1/‖Qkxi‖) least squares problem:

arg min
Q∈H

N∑
i=1

1

‖Qkxi‖
‖Qxi‖2. (41)

773

Teng Zhang and Gilad Lerman

To show this, we note that (41) is a quadratic function and any formal directional derivative
at Qk+1 is 0. Indeed,

d

dQ

N∑
i=1

1

‖Qkxi‖
‖Qxi‖2

∣∣∣
Q=Qk+1

=Qk+1

(
N∑
i=1

xix
T
i

‖Qkxi‖

)
+

(
N∑
i=1

xix
T
i

‖Qkxi‖

)
Qk+1= cI

for some c ∈ R, and
〈
I, Q̃−Qk+1

〉
F

= 0 for any Q̃ ∈ H. Consequently, Qk+1 of (38) is

the minimizer of (41).

Formula (40) (as well as (39)) provides another interpretation for Q̂ as robust inverse
covariance (in addition to the one discussed in §3.3). Indeed, we note for example that the
RHS of (40) is the scaled inverse of a weighted covariance matrix; the scaling enforces the
trace of the inverse to be 1 and the weights of xix

T
i are significantly larger when xi is an

inlier. In other words, the weights apply a shrinkage procedure for outliers. Indeed, since
Qkxi approaches Q̂xi and the underlying subspace, which contain the inliers, is recovered
by ker(Q̂), for an inlier xi the coefficient of xix

T
i approaches 1/δ, which is a very large

number (in practice we use δ = 10−20). On the other hand, when xi is sufficiently far from
the underlying subspace, the coefficient of xix

T
i is significantly smaller.

4.2 Theory: Convergence Analysis of the IRLS Algorithms

The following theorem analyzes the convergence of the sequence proposed by (39) to the
minimizer of (4).

Theorem 11 Let X = {xi}Ni=1 be a data set in RD satisfying (14), Q̂ the minimizer of (4),
Q0 an arbitrary symmetric matrix with tr(Q0) = 1 and {Qi}i∈N the sequence obtained by
iteratively applying (39) (while initializing it with Q0), then {Qi}i∈N converges to a matrix
Q̃ ∈ H. If Q̃xi 6= 0 for all 1 ≤ i ≤ N , then Q̃ = Q̂ and furthermore, {F (Qi)}i∈N converges
linearly to F (Q̃) and {Qi}i∈N converges r-linearly to Q̃.

The condition for the linear convergence to Q̂ in Theorem 11 (i.e., Q̂xi 6= 0 for all 1 ≤ i ≤
N) usually does not occur for noiseless data. This condition is common in IRLS algorithms
whose objective functions are l1-type and are not twice differentiable at 0. For example,
Weiszfeld’s Algorithm (Weiszfeld, 1937) may not converge to the geometric median but to
one of the data points (Kuhn, 1973, §3.4). On the other hand, regularized IRLS algorithms
often converge linearly to the minimizer of the regularized function. We demonstrate this
principle in our case as follows.

Theorem 12 Let X = {xi}Ni=1 be a data set in RD satisfying (14), Q0 an arbitrary symmet-
ric matrix with tr(Q0) = 1 and {Qi}i∈N the sequence obtained by iteratively applying (40)
(while initializing it with Q0). Then, the sequence {Fδ(Qi)}i∈N converges linearly to the
unique minimum of Fδ(Q), and {Qi}i∈N converges r-linearly to the unique minimizer of
Fδ(Q).

774

A Novel M-Estimator for Robust PCA

The convergence rate of the iterative application of (40) depends on δ. Following The-
orem 6.1 of Chan and Mulet (1999), this rate is at most

r(δ) =

√√√√√ max
∆=∆T ,tr(∆)=0

∑N
i=1,‖Q∗xi‖>δ

(xTi ∆Q∗xi)2

‖Q∗xi‖3∑N
i=1

‖∆xi‖2
max(‖Q∗xi,δ‖)

.

That is, ‖Qk − Q̂‖ < C · r(δ)k for some constant C > 0. If (14) holds, then r(δ) < 1 for all
δ > 0 and r(δ) is a non-increasing function. Furthermore, if {xi ∈ X : ‖Q̂xi‖ 6= 0} satisfies
assumption (14), then limδ→0 r(δ) < 1.

4.3 The Practical Choices for the IRLS Algorithm

Following the theoretical discussion in §4.2 we prefer using the regularized version of the
IRLS algorithm. We fix the regularization parameter to be smaller than the rounding error,
that is, δ = 10−20, so that the regularization is very close to the original problem (even with-
out regularization the iterative process is stable, but may have few warnings on badly scaled
or close to singular matrices). The idea of the algorithm is to iteratively apply (40) with
an arbitrary initialization (symmetric with trace 1). We note that in theory {Fδ(Qk)}k∈N
is non-increasing (see, e.g., the proof of Theorem 12). However, empirically the sequence
decreases when it is within the rounding error to the minimizer. Therefore, we check Fδ(Qk)
every four iterations and stop our algorithm when we detect an increase (we noticed empir-
ically that checking every four iterations, instead of every iteration, improves the accuracy
of the algorithm). Algorithm 2 summarizes our practical procedure for minimizing (4).

Algorithm 2 Practical and Regularized Minimization of (4)

Input: X = {x1,x2, · · · ,xN} ⊆ RD: data
Output: Q̂: a symmetric matrix in RD×D with tr(Q̂) = 1.

Steps:
• δ = 10−20

• Arbitrarily initialize Q0 to be a symmetric matrix with tr(Q0) = 1
• k = −1
repeat
• k=k+1

• Qk+1 =
(∑N

i=1
xix

T
i

max(‖Qkxi‖,δ)

)−1
/ tr

((∑N
i=1

xix
T
i

max(‖Qkxi‖,δ)

)−1)
.

until F (Qk+1) > F (Qk−3) and mod (k + 1, 4) = 0
• Output Q̂ := Qk

4.4 Complexity of Algorithm 2

Each update of Algorithm 2 requires a complexity of order O(N · D2), due to the sum of
N D × D matrices. Therefore, for ns iterations the total running time of Algorithm 2 is
of order O(ns · N · D2). In most of our numerical experiments ns was less than 40. The
storage of this algorithm is O(N ×D), which amounts to storing X . Thus, Algorithm 2 has

775

Teng Zhang and Gilad Lerman

the same order of storage and complexity as PCA. In practice, it might be a bit slower due
to a larger constant for the actual complexity.

5. Subspace Recovery in Practice

We view the GMS algorithm as a prototype for various subspace recovery algorithms. We
discuss here modifications and extensions of this procedure in order to make it even more
practical. Sections 5.1 and 5.2 discuss the cases where d is unknown and known respectively;
in particular, §5.2.1 proposes the EGMS algorithm when d is known. At last, §5.3 concludes
with the computational complexity of the GMS and EGMS algorithms.

5.1 Subspace Recovery without Knowledge of d

In theory, the subspace recovery described here can work without knowing the dimension d.
In the noiseless case, one may use (5) to estimate the subspace as guaranteed by Theorem 1.
In the case of small noise one can estimate d from the eigenvalues of Q̂ and then apply the
GMS algorithm. This strategy is theoretically justified by Theorems 1 and 6 as well as
the discussion following (81). The problem is that condition (9) for guaranteeing exact
recovery by GMS is restrictive; in particular, it requires the number of outliers to be larger
than at least D − d (according to our numerical experiments it is safe to use the lower
bound 1.5 (D − d)). For practitioners, this is a failure mode of GMS, especially when the
dimension of the data set is large (for example, D > N).

While this seems to be a strong restriction, we remark that the problem of exact subspace
recovery without knowledge of the intrinsic dimension is rather hard and some assumptions
on data sets or some knowledge of data parameters would be expected. Other algorithms for
this problem, such as Chandrasekaran et al. (2011), Candès et al. (2011), Xu et al. (2010b)
and McCoy and Tropp (2011), require estimates of unknown regularization parameters
(which often depend on various properties of the data, in particular, the unknown intrinsic
dimension) or strong assumptions on the underlying distribution of the outliers or corrupted
elements.

We first note that if only conditions (6) and (7) hold, then Theorem 1 still guarantees
that the GMS algorithm outputs a subspace containing the underlying subspace. Using
some information on the data one may recover the underlying subspace from the outputted
subspace containing it, even when dealing with the failure mode.

In the rest of this section we describe several practical solutions for dealing with the
failure mode, in particular, with small number of outliers. We later demonstrate them
numerically in §6.2 for artificial data and in §6.7 and §6.8 for real data.

Our first practical solution is to reduce the ambient dimension of the data. When the
reduction is not too aggressive, it can be performed via PCA. In §5.2.1 we also propose a
robust dimensionality reduction which can be used instead. There are two problems with
this strategy. First of all, the reduced dimension is another parameter that requires tuning.
Second of all, some information may be lost by the dimensionality reduction and thus exact
recovery of the underlying subspace is generally impossible.

A second practical solution is to add artificial outliers. The number of added outliers
should not be too large (otherwise (6) and (7) will be violated), but they should sufficiently
permeate through RD so that (9) holds. In practice, the number of outliers can be 2D,

776

A Novel M-Estimator for Robust PCA

since empirically (9) holds with high probability when N0 = 2(D − d). To overcome the
possible impact of outliers with arbitrarily large magnitude, we project the data with arti-
ficial outliers onto the sphere (following Lerman et al. 2012). Furthermore, if the original
data matrix does not have full rank (in particular if N < D) we reduce the dimension of
the data (by PCA) to be the rank of the data matrix. This dimensionality reduction clearly
does not result in any loss of information. We refer to the whole process of initial “lossless
dimensionality reduction” (if necessary), addition of 2D artificial Gaussian outliers, nor-
malization onto the sphere and application of GMS (with optional estimation of d by the
eigenvalues of Q̂) as the GMS2 algorithm. We believe that it is the best practical solution
to avoid condition (9) when d is unknown.

A third solution is to regularize our M estimator, that is, to minimize the following
objective function with the regularization parameter λ:

Q̂ = arg min
tr(Q)=1,Q=QT

N∑
i=1

‖Qxi‖+ λ‖Q‖2F . (42)

The IRLS algorithm then becomes

Qk+1 =

(
N∑
i=1

xix
T
i

max(‖Qkxi‖, δ)
+ 2λI

)−1
/ tr

(N∑
i=1

xix
T
i

max(‖Qkxi‖, δ)

)−1
+ 2λI

 .

We note that if λ = 0 and there are only few outliers, then in the noiseless case dim(ker(Q̂)) >
d and in the small noise case the number of significantly small eigenvalues is bigger than
d. On the other hand when λ → ∞, Q̂ → I/D, whose kernel is degenerate (similarly, it
has no significantly small eigenvalues). Therefore, there exists an appropriate λ for which
dim(ker(Q̂)) (or the number of significantly small eigenvalues of Q̂) is d. This formulation
transforms the estimation of d into estimation of λ. This strategy is in line with other com-
mon regularized solutions to this problem (see, e.g., Chandrasekaran et al. 2011; Candès
et al. 2011; Xu et al. 2010b; McCoy and Tropp 2011), however, we find it undesirable to
estimate a regularization parameter that is hard to interpret in terms of the data.

5.2 Subspace Recovery with Knowledge of d

Knowledge of the intrinsic dimension d can help improve the performance of GMS or sug-
gest completely new variants (especially as GMS always finds a subspace containing the
underlying subspace). For example, knowledge of d can be used to carefully estimate the
parameter λ of (42), for example, by finding λ yielding exactly a d-dimensional subspace
via a bisection procedure.

Lerman et al. (2012) modified the strategy described in here by requiring an additional
constraint on the maximal eigenvalue of Q in (28): λmax(Q) ≤ 1

D−d (where λmax(Q) is
the largest eigenvalue of Q). This approach has theoretical guarantees, but it comes with
the price of additional SVD in each iteration, which makes the algorithm slightly more
expensive. Besides, in practice (i.e., noisy setting) this approach requires tuning the upper
bound on λmax(Q). Indeed, the solution Q′ to their minimization problem (with λmax(Q′) ≤
1/(D−d) and tr(Q′) = 1) satisfies that dim(ker(Q′) is at most d and equals d when Q′ is a

777

Teng Zhang and Gilad Lerman

scaled projector operator. They proved that dim(ker(Q′) = d for the setting of pure inliers
(lying exactly on a subspace) under some conditions avoiding the three types of enemies.
However, in practice (especially in noisy cases) the actual subspace often has dimension
smaller than d and thus the bound on λmax(Q) has to be tuned as an additional parameter.
In some cases, one may take λmax(Q) > 1

D−d and find the subspace according to the bottom
d eigenvectors. In other cases, a bisection method on the bound of λmax(Q) provide more
accurate results (see related discussion in Lerman et al. (2012, §6.1.6)).

5.2.1 The EGMS Algorithm

We formulate in Algorithm 3 the Extended Geometric Median Subspace (EGMS) algorithm
for subspace recovery with known intrinsic dimension.

Algorithm 3 The Extended Geometric Median Subspace Algorithm

Input: X = {xi}Ni=1 ⊆ RD: data, d: dimension of L∗, an algorithm for minimizing (4)
Output: L̂: a d-dimensional linear subspace in RD.

Steps:
• L̂ = RD
repeat
• Q̂ = arg minQ∈H,QP

L̂⊥=0 F (Q)

• u = the top eigenvector of Q̂
• L̂ = L̂ ∩ Sp(u⊥)

until dim(L̂) = d

We justify this basic procedure in the noiseless case without requiring (9) as follows.

Theorem 13 Assume that d,D ∈ N, d < D, X is a data set in RD and L∗ ∈ G(D, d). If
only conditions (6) and (7) hold, then the EGMS Algorithm exactly recovers L∗.

In §6.5 we show how the vectors obtained by EGMS at each iteration can be used to
form robust principal components (in reverse order), even when Q̂ is degenerate.

5.3 Computational Complexity of GMS and EGMS

The computational complexity of GMS is of the same order as that of Algorithm 2, that
is, O(ns ·N ·D2) (where ns is the number of required iterations for Algorithm 2). Indeed,
after obtaining Q̂, computing L∗ by its smallest d eigenvectors takes an order of O(d ·D2)
operations.

EGMS on the other hand repeats Algorithm 2 D − d times; therefore it adds an order
of O((D − d) · ns · N · D2) operations, where ns denotes the total number of iterations
for Algorithm 2. In implementation, we can speed up the EGMS algorithm by excluding
the span of some of the top eigenvectors of Q̂ from L̂ (instead of excluding only the top
eigenvector in the third step of Algorithm 3). We demonstrate this modified procedure on
artificial setting in §6.2.

778

A Novel M-Estimator for Robust PCA

6. Numerical Experiments

We compare our proposed estimator to other algorithms, while using both synthetic and
real data. We also demonstrate the effectiveness of some of our practical proposals. In
§6.1 we describe a model for generating synthetic data. Using this model, we respectively
demonstrate in §6.2-§6.4 the effectiveness of the following strategies: the practical solutions
of §5.1 and §5.2, our estimation of the subspace dimension, and our regularization (more
precisely, its effect on the recovery error). In §6.5 we demonstrate the use of our M estimator
for robust estimation of eigenvectors of the covariance (or the inverse covariance) matrix.
At last, actual comparisons are demonstrated in §6.6-§6.8 for synthetic data, face data and
video surveillance data respectively.

6.1 Model for Synthetic Data

In §6.2-§6.4 and §6.6 we generate data from the following model. We randomly choose
L∗ ∈ G(D, d), sample N1 inliers from the d-dimensional Multivariate Normal distribu-
tion N(0, Id×d) on L∗ and add N0 outliers sampled from a uniform distribution on [0, 1]D.
The outliers are strongly asymmetric around the subspace to make the subspace recovery
problem more difficult (Lerman and Zhang, 2010). In some experiments below additional
Gaussian noise is considered. When referring to this synthetic data we only need to specify
its parameters N1, N0, D, d and possibly the standard deviation for the additive noise.
For any subspace recovery algorithm (or heuristics), we denote by L̃ its output (i.e., the
estimator for L∗) and measure the corresponding recovery error by eL̃ = ‖PL̃ −PL∗‖F .

6.2 Demonstration of Practical Solutions of §5.1 and §5.2

We present two different artificial cases, where in one of them condition (9) holds and in
the other one it does not hold and test the practical solutions of §5.1 and §5.2 in the second
case.

The two cases are the following instances of the synthetic model of §6.1: (a) (N1, N0, D, d)
= (100 , 100, 100, 20) and (b) (N1, N0, D, d) = (100, 20, 100, 20). The GMS algorithm es-
timates the underlying subspace L∗ given d = 20 with recovery errors 2.1 × 10−10 and
3.4 in cases (a) and (b) respectively. In case (a) there are sufficiently many outliers (with
respect to D − d) and the GMS algorithm is successful. We later show in §6.3 that the
underlying dimension (d = 20) can be easily estimated by the eigenvalues of Q̂. In case (b)
N0 = 0.25 ∗ (D− d), therefore, condition (9) is violated and the GMS algorithm completely
fails.

We demonstrate the success of the practical solutions of §5.1 and §5.2 in case (b). We
assume that the dimension d is known, though in §6.3 we estimate d correctly for the non-
regularized solutions of §5.1. Therefore, these solutions can be also applied without knowing
the dimension. If we reduce the dimension of the data set in case (b) from D = 100 to
D = 35 (via PCA; though one can also use EGMS), then GMS (with d = 20) achieves a
recovery error of 0.23, which indicates that GMS almost recovers the subspace correctly.
We remark though that if we reduce the dimension to, for example, D = 55, then the GMS
algorithm will still fail. We also note that the recovery error is not as attractive as the

779

Teng Zhang and Gilad Lerman

ones below; this observation probably indicates that some information was lost during the
dimension reduction.

The GMS2 algorithm with d = 20 recovers the underlying subspace in case (b) with
error 1.2 × 10−10. This is the method we advocated for when possibly not knowing the
intrinsic dimension.

The regularized minimization of (42) with λ = 100 works well for case (b). In fact, it
recovers the subspace as ker Q̂ (without using its underlying dimension) with error 3.3 ×
10−13. The only issue is how to determine the value of λ. We claimed in §5.2 that if d is
known, then λ can be carefully estimated by the bisection method. This is true for this
example, in fact, we initially chose λ this way.

We remark that the REAPER algorithm of Lerman et al. (2012) did not perform well
for this particular data, though in general it is a very successful solution. The recovery
error of the direct REAPER algorithm was 3.725 (and 3.394 for S-REAPER) and the error
for its modified version via bisection (relaxing the bound on the largest eigenvalue so that
dim(ker(Q̂)) = 20) was 3.734 (and 3.175 for S-REAPER).

At last we demonstrate the performance of EGMS and its faster heuristic with d = 20.
The recovery error of the original EGMS for case (b) is only 0.095. We suggested in §5.3
a faster heuristic for EGMS, which can be reformulated as follows: In the third step of
Algorithm 3, we replace u (the top eigenvector of Q̂) with U, the subspace spanned by
several top eigenvectors. In the noiseless case, we could let U be the span of the nonzero
eigenvectors of Q̂. This modification of EGMS (for the noiseless case) required only two
repetitions of Algorithm 2 and its recovery error was 2.2 × 10−13. In real data sets with
noise we need to determine the number of top eigenvectors spanning U, which makes this
modification of EGMS less automatic.

6.3 Demonstration of Dimension Estimation

We test dimension estimation by eigenvalues of Q̂ for cases (a) and (b) of §6.2. The
eigenvalues of Q̂ obtained by Algorithm 2 for the two cases are shown in Figure 2. In
case (a), the largest logarithmic eigengap (i.e., the largest gap in logarithms of eigenvalues)
occurs at 80, so we can correctly estimate that d = D − 80 = 20 (the eigenvalues are not
zero since Algorithm 2 uses the δ-regularized objective function). However, in case (b) the
largest eigengap occurs at 60 and thus mistakenly predicts d = 40.

As we discussed in §6.2, the dimension estimation fails here since condition (9) is not
satisfied. However, we have verified that if we try any of the solutions proposed in §5.1
then we can correctly recover that d = 20 by the logarithmic eigengap. For example, in
Figure 2 we demonstrate the logarithms of eigenvalues of Q̂ in case (b) after dimensionality
reduction (via PCA) onto dimension D = 35 and it is clear that the largest gap is at
d = 20 (or D−d = 80). We obtained similar graphs when using 2D artificial outliers (more
precisely, the GMS2 algorithm without the final application of the GMS algorithm) or the
regularization of (42) with λ = 100.

6.4 The Effect of the Regularization Parameter δ

We assume a synthetic data set sampled according to the model of §6.1 with (N1, N0, D, d) =
(250, 250, 100, 10). We use the GMS algorithm with d = 10 and different values of the

780

A Novel M-Estimator for Robust PCA

10 20 30 40 50 60 70 80 90 100
−40

−35

−30

−25

−20

−15

−10

−5

0

lo
g
(σ

i
(Q̂

))

index of singular values
5 10 15 20 25 30 35

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

lo
g
(σ

i
(Q̂

))

index of singular values

Figure 2: Dimension estimation: In the left figure, the starred points and the dotted point
represent log-scaled eigenvalues of the output of Algorithm 2 for cases (a) and (b)
respectively (see §6.3). The right figure corresponds to case (b) with dimension
reduced to 35.

regularization parameter δ and record the recovery error in Figure 3. For 10−14 ≤ δ ≤ 10−2,
log(error) − log(δ) is constant. We thus empirically obtain that the error is of order O(δ)
in this range. On the other hand, (27) only obtained an order of O(

√
δ). It is possible

that methods similar to those of Coudron and Lerman (2012) can obtain sharper error
bounds. We also expect that for δ sufficiently small (here smaller than 10−14), the rounding
error becomes dominant. On the other hand, perturbation results are often not valid for
sufficiently large δ (here this is the case for δ > 10−2).

−16 −14 −12 −10 −8 −6 −4 −2 0 2
−12

−10

−8

−6

−4

−2

0

log10(δ)

lo
g
1
0
(e
rr
or
)

Figure 3: The recovery errors and the regularization parameters δ

6.5 Information Obtained from Eigenvectors

Throughout the paper we emphasized the subspace recovery problem, but did not discuss
at all the information that can be inferred from the eigenvectors of our robust PCA strat-
egy. Since in standard PCA these vectors have significant importance, we exemplify the
information obtained from our robust PCA and compare it to that obtained from PCA and
some other robust PCA algorithms.

781

Teng Zhang and Gilad Lerman

We create a sample from a mixture of two Gaussian distributions with the same mean
and same eigenvalues of the covariance matrices, but different eigenvectors of the covariance
matrices. The mixture percentages are 25% and 75%. We expect the eigenvectors of any
good robust PCA algorithm (robust to outliers as perceived in this paper) to be close to
that of the covariance of the main component (with 75%).

More precisely, we sample 300 points from N(0,Σ1), where Σ1 is a 10×10 diagonal ma-
trix with elements 1, 2−1, 2−2, · · · , 2−9 and 100 points from N(0,Σ2), where Σ2 = UΣ1U

T ,
where U is randomly chosen from the set of all orthogonal matrices in R10×10. The goal is
to estimate the eigenvectors of Σ1 (i.e., the standard basis vectors in R10) in the presence of
25% “outliers”. Unlike the subspace recovery problem, where we can expect to exactly re-
cover a linear structure among many outliers, here the covariance structure is more complex
and we cannot exactly recover it with 25% outliers.

We estimated the eigenvectors of Σ1 by the the eigenvectors of Q̂ of Algorithm 2 in
reverse order (recall that Q̂ is a scaled and robust version of the inverse covariance). We
refer to this procedure as “EVs (eigenvectors) of Q̂−1”. We also estimated these eigenvectors
by standard PCA, LLD (McCoy and Tropp, 2011) with λ = 0.8

√
D/N and PCP (Candès

et al., 2011) with λ = 1/
√

max(D,N). We repeated the random simulation (with different
samples for the random orthogonal matrix U) 100 times and reported in Table 2 the average
angles between the estimated and actual top two eigenvectors of Σ1 according to the different
methods. We note that the “EVs of Q̂−1” outperforms PCA, LLD (or OP) and PCP in
terms of estimation of the top two eigenvectors of Σ1. We remark though that PCP does
not suit for robust estimation of the empirical covariance and thus the comparison is unfair
for PCP.

EVs of Q̂−1 LLD PCP PCA

Eigenvector 1 3.0◦ 5.5◦ 45.7◦ 14.8◦

Eigenvector 2 3.0◦ 5.5◦ 47.4◦ 40.3◦

Table 2: Angles (in degrees) between the estimated and actual top two eigenvectors of Σ1.

When the covariance matrix Σ1 (and consequently also Σ2) is degenerate, Q̂ might
be singular and therefore Q̂ cannot be directly used to robustly estimate eigenvectors of
the covariance matrix. For this case, EGMS (Algorithm 3) can be used, where the vector
u obtained in the ith iteration of Algorithm 3 can be considered as the (D − i + 1)st
robust eigenvector (that is, we reverse the order again). To test the performance of this
method, we modify Σ1 in the above model as follows: Σ1=diag(1, 0.5, 0.25, 0, 0, · · · , 0).
We repeated the random simulations of this modified model 100 times and reported in
Table 2 the average angles between the estimated and actual top two eigenvectors of Σ1

according to the different methods. Here LLD did slightly better than EGMS and they
both outperformed PCA (and PCP).

782

A Novel M-Estimator for Robust PCA

EGMS LLD PCP PCA

Eigenvector 1 5.2◦ 3.4◦ 42.6◦ 8.2◦

Eigenvector 2 5.2◦ 3.4◦ 47.3◦ 16.1◦

Table 3: Angles (in degrees) between the estimated and actual top two eigenvectors of Σ1.

6.6 Detailed Comparison with Other Algorithms for Synthetic Data

Using the synthetic data of §6.1, we compared the GMS algorithm with the following al-
gorithms: MDR (Mean Absolute Deviation Rounding) of McCoy and Tropp (2011), LLD
(Low-Leverage Decomposition) of McCoy and Tropp (2011), OP (Outlier Pursuit) of Xu
et al. (2010b), PCP (Principal Component Pursuit) of Candès et al. (2011), MKF (Me-
dian K-flats with K = 1) of Zhang et al. (2009), HR-PCA (High-dimensional Robust
PCA) of Xu et al. (2010a), a common M-estimator (Huber and Ronchetti, 2009, see,
e.g.,) and R1-PCA of Ding et al. (2006). The codes of OP and HR-PCA were obtained
from http://guppy.mpe.nus.edu.sg/~mpexuh, the code of MKF from http://www.math.

umn.edu/~zhang620/mkf, the code of PCP from http://perception.csl.illinois.edu/

matrix-rank/sample_code.html with the Accelerated Proximal Gradient and full SVD
version, the codes of MDR and LLD from http://www.acm.caltech.edu/~mccoy/code/

and the codes of the common M-estimator, R1-PCA and GMS will appear in a supplemental
webpage. We also record the output of standard PCA, where we recover the subspace by
the span of the top d eigenvectors. We ran the experiments on a computer with Intel Core
2 CPU at 2.66GHz and 2 GB memory.

We remark that since the basic GMS algorithm already performed very well on these
artificial instances, we did not test its extensions and modifications described in §5 (e.g.,
GMS2 and EGMS).

For all of our experiments with synthetic data, we could correctly estimate d by the
largest logarithmic eigengap of the output of Algorithm 2. Nevertheless, we used the knowl-
edge of d for all algorithms for the sake of fair comparison.

For LLD, OP and PCP we estimated L∗ by the span of the top d eigenvectors of the
low-rank matrix. Similarly, for the common M-estimator we used the span of the top d
eigenvectors of the estimated covariance A. For the HR-PCA algorithm we also used the
true percentage of outliers (50% in our experiments). For LLD, OP and PCP we set the
mixture parameter λ as 0.8

√
D/N, 0.8

√
D/N, 1/

√
max(D,N) respectively (following the

suggestions of McCoy and Tropp (2011) for LLD/OP and Candès et al. (2011) for PCP).
These choices of parameters are also used in experiments with real data sets in §6.7 and
§6.8.

For the common M-estimator, we used u(x) = 2 max(ln(x)/x, 1030) and the algorithm
discussed by Kent and Tyler (1991). Considering the conditions in §3.1.1, we also tried other
functions: u(x) = max(x−0.5, 1030) had a significantly larger recovery error and u(x) =
max(x−0.9, 1030) resulted in a similar recovery error as max(ln(x)/x, 1030) but a double
running time.

783

http://guppy.mpe.nus.edu.sg/~mpexuh
http://www.math.umn.edu/~zhang620/mkf
http://www.math.umn.edu/~zhang620/mkf
http://perception.csl.illinois.edu/matrix-rank/sample_code.html
http://perception.csl.illinois.edu/matrix-rank/sample_code.html
http://www.acm.caltech.edu/~mccoy/code/

Teng Zhang and Gilad Lerman

We used the syntectic data with different values of (N1, N0, D, d). In some instances we
also add noise from the Gaussian distribution N(0, η2I) with η = 0.1 or 0.01. We repeated
each experiment 20 times (due to the random generation of data). We record in Table 4
the mean running time, the mean recovery error and their standard deviations.

We remark that PCP is designed for uniformly corrupted coordinates of data, instead
of corrupted data points (i.e., outliers), therefore, the comparison with PCP is somewhat
unfair for this kind of data. On the other hand, the applications in §6.7 and §6.8 are tailored
for the PCP model (though the other algorithms still apply successfully to them).

From Table 4 we can see that GMS is the fastest robust algorithm. Indeed, its running
time is comparable to that of PCA. We note that this is due to its linear convergence rate
(usually it converges in less than 40 iterations). The common M-estimator is the closest
algorithm in terms of running time to GMS, since it also has the linear convergence rate.
In contrast, PCP, OP and LLD need a longer running time since their convergence rates
are much slower. Overall, GMS performs best in terms of exact recovery. The PCP, OP
and LLD algorithms cannot approach exact recovery even by tuning the parameter λ. For
example, in the case where (N1, N0, D, d) = (125, 125, 10, 5) with η = 0, we checked a geo-
metric sequence of 101 λ values from 0.01 to 1, and the smallest recovery errors for LLD,
OP and PCP are 0.17, 0.16 and 0.22 respectively. The common M-estimator performed
very well for many cases (sometimes slightly better than GMS), but its performance de-
teriorates as the density of outliers increases (e.g., poor performance for the case where
(N1, N0, D, d) = (125, 125, 10, 5)). Indeed, Theorem 9 indicates problems with the exact
recovery of the common M-estimator.

At last, we note that the empirical recovery error of the GMS algorithm for noisy data
sets is in the order of

√
η, where η is the size of noise.

6.7 Yale Face data

Following Candès et al. (2011), we apply our algorithm to face images. It has been shown
that face images from the same person lie in a low-dimensional linear subspace of dimen-
sion at most 9 (Basri and Jacobs, 2003). However, cast shadows, specular reflections and
saturations could possibly distort this low-rank modeling. Therefore, one can use a good
robust PCA algorithm to remove these errors if one has many images from the same face.

We used the images of the first two persons in the extended Yale face database B (Lee
et al., 2005), where each of them has 65 images of size 192×168 under different illumination
conditions. Therefore we represent each person by 65 vectors of length 32256. Following
Basri and Jacobs (2003) we applied GMS, GMS2 and EGMS with d = 9 and we also
reduced the 65×32256 matrix to 65×65 (in fact, we only reduced the representation of the
column space) by rejecting left vectors with zero singular values. We also applied the GMS
algorithm after initial dimensionality reduction (via PCA) to D = 20. The running times of
EGMS and GMS (without dimensionality reduction) are 13 and 0.16 seconds respectively
on average for each face (we used the same computer as in §6.6). On the other hand, the
running times of PCP and LLD are 193 and 2.7 seconds respectively. Moreover, OP ran
out of memory. The recovered images are shown in Figure 4, where the shadow of the nose
and the parallel lines were removed best by EGMS. The GMS algorithm without dimension
reduction did not perform well, due to the difficulty explained in §5 and demonstrated in

784

A Novel M-Estimator for Robust PCA

(N1, N0, D, d) GMS MDR LLD OP PCP HR-PCA MKF PCA M-est.R1-PCA

e 6e-11 0.275 1.277 0.880 0.605 0.210 0.054 0.193 0.102 0.121
(125, 125, 10, 5) std.e 4e-11 0.052 0.344 0.561 0.106 0.049 0.030 0.050 0.037 0.048

η = 0 t(s) 0.008 0.371 0.052 0.300 0.056 0.378 0.514 0.001 0.035 0.020
std.t 0.002 0.120 0.005 0.054 0.002 0.001 0.262 8e-06 4e-04 0.014

e 0.011 0.292 1.260 1.061 0.567 0.233 0.069 0.213 0.115 0.139
(125, 125, 10, 5) std.e 0.004 0.063 0.316 0.491 0.127 0.075 0.036 0.073 0.054 0.073

η = 0.01 t(s) 0.008 0.340 0.053 0.287 0.056 0.380 0.722 0.001 0.035 0.052
std.t 0.001 0.075 0.007 0.033 0.001 0.009 0.364 1e-05 4e-04 0.069

e 0.076 0.264 1.352 0.719 0.549 0.200 0.099 0.185 0.122 0.128
(125, 125, 10, 5) std.e 0.023 0.035 0.161 0.522 0.102 0.051 0.033 0.048 0.041 0.050

η = 0.1 t(s) 0.007 0.332 0.055 0.301 0.056 0.378 0.614 0.001 0.035 0.032
std.t 0.001 0.083 0.004 0.044 0.001 0.001 0.349 7e-06 4e-04 0.037

e 2e-11 0.652 0.258 0.256 0.261 0.350 0.175 0.350 1e-12 0.307
(125, 125, 50, 5) std.e 3e-11 0.042 0.030 0.032 0.033 0.023 0.028 0.025 5e-12 0.029

η = 0 t(s) 0.015 0.420 0.780 1.180 3.164 0.503 0.719 0.006 0.204 0.020
std.t 0.001 0.128 0.978 0.047 0.008 0.055 0.356 9e-05 0.001 0.011

e 0.061 0.655 0.274 0.271 0.273 0.355 0.196 0.359 0.007 0.321
(125, 125, 50, 5) std.e 0.009 0.027 0.039 0.038 0.040 0.038 0.038 0.033 0.001 0.038

η = 0.01 t(s) 0.023 0.401 4.155 1.506 0.499 0.653 0.656 0.006 0.191 0.028
std.t 0.002 0.079 0.065 0.197 0.006 0.044 0.377 8e-05 0.001 0.022

e 0.252 0.658 0.292 0.290 0.296 0.358 0.264 0.363 0.106 0.326
(125, 125, 50, 5) std.e 0.027 0.033 0.032 0.032 0.033 0.027 0.031 0.032 0.014 0.032

η = 0.1 t(s) 0.021 0.363 0.923 1.726 0.501 0.638 0.641 0.006 0.191 0.025
std.t 0.001 0.063 0.033 0.470 0.009 0.051 0.240 1e-04 0.001 0.012

e 3e-12 0.880 0.214 0.214 0.215 0.332 0.161 0.330 2e-12 0.259
(250, 250, 100, 10)std.e 2e-12 0.018 0.019 0.019 0.019 0.014 0.024 0.012 9e-12 0.016

η = 0 t(s) 0.062 1.902 3.143 7.740 2.882 1.780 1.509 0.039 0.819 1.344
std.t 0.006 0.354 4.300 0.038 0.014 0.041 1.041 3e-04 0.023 0.708

e 0.077 0.885 0.217 0.216 0.219 0.334 0.164 0.335 0.009 0.263
(250, 250, 100, 10)std.e 0.006 0.031 0.019 0.018 0.020 0.019 0.019 0.017 3e-04 0.018

η = 0.01 t(s) 0.084 1.907 21.76811.319 2.923 1.785 1.412 0.039 0.400 1.086
std.t 0.010 0.266 0.261 0.291 0.014 0.041 0.988 3e-04 0.002 0.738

e 0.225 0.888 0.238 0.237 0.262 0.342 0.231 0.345 0.136 0.276
(250, 250, 100, 10)std.e 0.016 0.020 0.019 0.019 0.019 0.019 0.018 0.015 0.010 0.019

η = 0.1 t(s) 0.076 1.917 4.430 16.649 2.876 1.781 1.555 0.039 0.413 1.135
std.t 0.007 0.299 0.069 1.184 0.014 0.025 0.756 4e-04 0.011 0.817

e 4e-11 1.246 0.162 0.164 0.167 0.381 0.136 0.381 3e-13 0.239
(500, 500, 200, 20)std.e 1e-10 0.018 0.011 0.011 0.011 0.010 0.009 0.008 6e-14 0.009

η = 0 t(s) 0.464 23.33216.77889.09016.604 8.602 5.557 0.347 6.517 15.300
std.t 0.024 2.991 0.878 1.836 0.100 0.216 4.810 0.009 0.126 3.509

e 0.082 1.247 0.160 0.162 0.166 0.374 0.139 0.378 0.012 0.236
(500, 500, 200, 20)std.e 0.003 0.018 0.007 0.007 0.008 0.011 0.010 0.006 2e-04 0.007

η = 0.01 t(s) 0.592 23.214128.51122.6116.823 8.541 6.134 0.354 2.361 15.165
std.t 0.060 3.679 1.155 6.500 0.036 0.219 4.318 0.019 0.064 3.485

e 0.203 1.262 0.204 0.204 0.250 0.391 0.275 0.398 0.166 0.270
(500, 500, 200, 20)std.e 0.007 0.012 0.007 0.007 0.007 0.012 0.272 0.009 0.005 0.008

η = 0.1 t(s) 0.563 24.11224.312202.2216.473 8.552 8.745 0.348 2.192 15.150
std.t 0.061 2.362 0.226 8.362 0.050 0.155 3.408 0.010 0.064 3.420

Table 4: Mean running times, recovery errors and their standard deviations for synthetic
data.

785

Teng Zhang and Gilad Lerman

§6.2. The GMS2 algorithm turns out to work well, except for the second image of face
2. However, other algorithms such as PCP and GMS with dimension reduction (D = 20)
performed even worse on this image and LLD did not remove any shadow at all; the only
good algorithm for this image is EGMS.

Figure 4: Recovering faces: (a) given images, (b)-(f) the recovered images by EGMS, GMS
without dimension reduction, GMS2, GMS with dimension reduced to 20, PCP
and LLD respectively

6.8 Video Surveillance

For background subtraction in surveillance videos (Li et al., 2004), we consider the follow-
ing two videos used by Candès et al. (2011): “Lobby in an office building with switching
on / off lights” and “Shopping center” from http://perception.i2r.a-star.edu.sg/bk_

model/bk_index.html. In the first video, the resolution is 160 × 128 and we used 1546
frames from ‘SwitchLight1000.bmp’ to ‘SwitchLight2545.bmp’. In the second video, the
resolution is 320×256 and we use 1000 frames from ‘ShoppingMall1001.bmp’ to ‘Shopping-
Mall2000.bmp’. Therefore, the data matrices are of size 1546 × 20480 and 1001 × 81920.
We used a computer with Intel Core 2 Quad Q6600 2.4GHz and 8 GB memory due to the
large size of these data.

786

http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html

A Novel M-Estimator for Robust PCA

We applied GMS, GMS2 and EGMS with d = 3 and with initial dimensionality reduction
to 200 to reduce running time. For this data we are unaware of a standard choice of d; though
we noticed empirically that the outputs of our algorithms as well as other algorithms are
very stable to changes in d within the range 2 ≤ d ≤ 5. We obtain the foreground by
the orthogonal projection to the recovered 3-dimensional subspace. Figure 5 demonstrates
foregrounds detected by EGMS, GMS, GMS2, PCP and LLD, where PCP and LLD used
λ = 1/

√
max(D,N), 0.8

√
D/N . We remark that OP ran out of memory. Using truth

labels provided in the data, we also form ROC curves for GMS, GMS2, EGMS and PCP in
Figure 6 (LLD is not included since it performed poorly for any value of λ we tried). We note
that PCP performs better than both GMS and EGMS in the ‘Shoppingmall’ video, whereas
the latter algorithms perform better than PCP in the ‘SwitchLight’ video. Furthermore,
GMS is significantly faster than EGMS and PCP. Indeed, the running times (on average)
of GMS, EGMS and PCP are 91.2, 1018.8 and 1209.4 seconds respectively.

Figure 5: Video surveillance: (a) the given frames (b)-(e) the detected foreground by
EGMS, GMS, GMS2, PCP, LLD respectively

787

Teng Zhang and Gilad Lerman

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

PCP

GMS

GMS2

EGMS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

PCP

GMS

GMS2

EGMS

Figure 6: ROC curves for EGMS, GMS, GMS2 and PCP in the ’SwitchLight’ video (the
left figure) and the ’Shoppingmall’ video (the right figure)

7. Proofs of Theorems

We present the technical proofs of the theoretical statements of this paper according to
their order of appearance.

7.1 Proof of Theorem 1

We will prove that if conditions (6) and (7) hold, then the set of all minimizers satisfying (4)
coincides with the set of all minimizers satisfying (8). This clearly implies that if conditions
(6) and (7) hold, then any minimizer Q̂ of (4) satisfies ker(Q̂) ⊇ L∗ (indeed, this condition
is equivalent with the condition QPL∗ = 0, which appears in the formulation of (8)). If
condition (9) also holds, then ker(Q̂) = L∗ and the theorem is concluded.

We assume that conditions (6) and (7) hold and arbitrarily fix a minimizer Q̂0 of the
oracle problem (8). We claim that in order to establish the equivalence of the sets of
solutions of (4) and (8), it is sufficient to prove that

F (Q̂0 + ∆)− F (Q̂0) > 0 for any symmetric ∆ with tr(∆) = 0 and ∆PL∗ 6= 0. (43)

Indeed, we first note that (43) implies that Q̂0 is also a minimizer of (4). This observation
follows from combining (43) with the following equation:

F (Q̂0 + ∆)− F (Q̂0) ≥ 0 for any symmetric ∆ with tr(∆) = 0 and ∆PL∗ = 0,

which is an immediate consequence of the definition of (8). To conclude the equivalence,
we assume on the contrary that there exists Q̂0, which is a minimizer of (8) but not a
minimizer of (4). We denote by Q̂′0 a minimizer of (8), which is also a minimizer of (4) and
let ∆ := Q̂′0 − Q̂0. Then by the definitions of Q̂0, Q̂′0 and ∆: tr(∆) = 0, ∆PL∗ 6= 0 and
F (Q̂′0) = F (Q̂0). This contradicts (43) and thus concludes the proof.

In order to conclude (43) (and thus the theorem) we first differentiate ‖Qx‖ at Q = Q0

when x ∈ ker(Q0)
⊥ as follows:

d

dQ
‖Qx‖

∣∣∣
Q=Q0

=
d

dQ

√
‖Qx‖2

∣∣∣
Q=Q0

=
d

dQ

QxxTQT

2‖Q0x‖

∣∣∣
Q=Q0

=
Q0xxT + xxTQ0

2‖Q0x‖
. (44)

788

A Novel M-Estimator for Robust PCA

We note that for any x ∈ RD \ {0} satisfying Q̂0x 6= 0 and ∆ ∈ RD×D symmetric:

‖(Q̂0 + ∆)x‖ − ‖Q̂0x‖ ≥
〈
∆, (Q̂0xxT + xxT Q̂0)/2‖Q̂0x‖

〉
F

=
〈
∆, Q̂0xxT /‖Q̂0x‖

〉
F
.

(45)
Indeed, the first equality follows from (44) and the convexity of ‖Qx‖ in Q and the second
equality follows from the symmetry of ∆ and Q̂0 as well as the definition of the Frobenius
dot product.

If on the other hand Q̂0x = 0, then clearly

‖(Q̂0 + ∆)x‖ − ‖Q̂0x‖ = ‖∆x‖. (46)

For simplicity of our presentation, we use (46) only for x ∈ X1 (where obviously Q̂0x = 0
since Q̂0PL∗ = 0). On the other hand, we use (45) for all x ∈ X0. One can easily check
that if x ∈ X0 and Q̂0x = 0, then replacing (45) with (46) does not change the analysis
below. Using these observations we note that

F (Q̂0 + ∆)− F (Q̂0) ≥
∑
x∈X1

‖∆x‖+
∑
x∈X0

〈
∆, Q̂0xxT /‖Q̂0x‖

〉
F
. (47)

We assume first that ∆PL∗ = 0. In this case, Q̂0 +∆ ∈ H and (Q̂0 +∆)PL∗ = 0. Since
Q̂0 is the minimizer of (8), we obtain the following identity (which is analogous to (34)):

∑
x∈X0

〈
∆,

Q̂0xxT

‖Q̂0x‖

〉
F

≥ 0 ∀ ∆ ∈ RD×D s.t. tr(∆) = 0 ,∆PL∗ = 0. (48)

We will prove (43) by showing that the RHS of (47) is positive for any symmetric ∆
with tr(∆) = 0 and ∆PL∗ 6= 0. Using (47) and the facts that X1 ⊂ L∗ and Q̂0 = PL∗⊥Q̂0

(since PL∗Q̂0 = Q̂0PL∗ = 0), we establish the following inequality:

F (Q̂0 + ∆)− F (Q̂0) ≥
∑
x∈X1

‖∆x‖+
∑
x∈X0

〈
∆, Q̂0xxT /‖Q̂0x‖

〉
F

=
∑
x∈X1

‖∆PL∗x‖+
∑
x∈X0

〈
(∆PL∗ + ∆PL∗⊥),PL∗⊥Q̂0xxT /‖Q̂0x‖

〉
F

≥
∑
x∈X1

(‖PL∗∆PL∗x‖+ ‖PL∗⊥∆PL∗x‖) /
√

2

+
∑
x∈X0

〈
(PL∗⊥∆PL∗ + PL∗⊥∆PL∗⊥), Q̂0xxT /‖Q̂0x‖

〉
F
. (49)

For ease of notation we denote ∆0 = tr(PL∗∆PL∗)v0v
T
0 , where v0 is the minimizer

of the RHS of (6). Combining the following two facts: tr(∆0) − tr(PL∗∆PL∗) = 0 and
tr(PL∗∆PL∗) + tr(PL∗⊥∆PL∗⊥) = tr(∆) = 0, we obtain that

tr(∆0 + PL∗⊥∆PL∗⊥) = 0.

Further application of (48) implies that∑
x∈X0

〈
∆0 + PL∗⊥∆PL∗⊥ , Q̂0xxT /‖Q̂0x‖

〉
F
≥ 0. (50)

789

Teng Zhang and Gilad Lerman

We note that〈
PL∗⊥∆PL∗⊥ , Q̂0xxT /‖Q̂0x‖

〉
F

=
〈
PL∗⊥∆PL∗⊥PL∗⊥ , Q̂0xxT /‖Q̂0x‖

〉
F

=
〈
PL∗⊥∆PL∗⊥ , Q̂0xxTPL∗⊥/‖Q̂0x‖

〉
F
. (51)

Combining (50) and (51) we conclude that

−
∑
x∈X0

〈
PL∗⊥∆PL∗⊥ , Q̂0xxT /‖Q̂0x‖

〉
F
≤
∑
x∈X0

〈
∆0, Q̂0xxTPL∗⊥/‖Q̂0x‖

〉
F

=
∑
x∈X0

tr(PL∗∆PL∗)(v
T
0 Q̂0x/‖Q̂0x‖)(vT0 PL∗⊥x) ≤ | tr(PL∗∆PL∗)|

∑
x∈X0

|vT0 x|. (52)

We apply (52) and then use (6) with Q = PL∗∆PL∗/ tr(PL∗∆PL∗) to obtain the inequality:∑
x∈X1

‖PL∗∆PL∗x‖/
√

2 +
∑
x∈X0

〈
PL∗⊥∆PL∗⊥ , Q̂0xxT /‖Q̂0x‖

〉
F

≥
∑
x∈X1

‖PL∗∆PL∗x‖/
√

2− | tr(PL∗∆PL∗)|
∑
x∈X0

|vT0 x| > 0. (53)

We define H1 = {Q ∈ H : QPL∗⊥ = 0} and claim that (7) leads to the following
inequality: ∑

x∈X1

‖Q(PL∗x)‖ >
√

2
∑
x∈X0

‖Q(PL∗x)‖ ∀Q ∈ H1. (54)

Indeed, since the RHS of (54) is a convex function of Q, its maximum is achieved at the
set of all extreme points of H1, which is {Q ∈ RD×D : Q = vvT ,where v ∈ L∗, ‖v‖ = 1}.
Therefore the maximum of the RHS of (54) is the RHS of (7). Since the minimum of the
LHS of (54) is also the LHS of (7), (54) is proved.

We also claim that (54) can be extended from H1 to all Q ∈ RD×D such that QPL∗⊥ = 0.
Indeed, for any Q ∈ RD×D satisfying QPL∗⊥ = 0 and having the SVD decomposition Q =
UΣVT , we can assign the following matrix Q′ = Q′(Q) ∈ H1: Q′ := VΣVT / tr(VΣVT).
It is not hard to note that the inequality in (54) holds for Q if and only if it holds for Q′.

By first applying Cauchy’s inequality, then using the defining property of projections
and at last applying (54) with Q = PL∗⊥∆PL∗ (while using its latter extension beyond
H1), we obtain the inequality:∑

x∈X1

‖PL∗⊥∆PL∗x‖/
√

2 +
∑
x∈X0

〈
PL∗⊥∆PL∗ , Q̂0xxT /‖Q̂0x‖

〉
F

≥
∑
x∈X1

‖PL∗⊥∆PL∗x‖/
√

2−
∑
x∈X0

‖PL∗⊥∆PL∗x‖

=
∑
x∈X1

‖PL∗⊥∆PL∗(PL∗x)‖/
√

2−
∑
x∈X0

‖PL∗⊥∆PL∗(PL∗x)‖ > 0. (55)

Finally, we combine (53) and (55) and conclude that the RHS of (49) is nonnegative and
consequently (43) holds.

790

A Novel M-Estimator for Robust PCA

7.2 Proof of Theorem 2

Assume on the contrary that F is not strictly convex, in particular, there exists 0 < t0 < 1
such that

t0 · F (Q1) + (1− t0) · F (Q2) = F (t0 ·Q1 + (1− t0) ·Q2) for Q1 6= Q2,

or equivalently,

t0 ·
N∑
i=1

‖Q1xi‖+ (1− t0) ·
N∑
i=1

‖Q2xi‖ =
N∑
i=1

‖(t0 ·Q1 + (1− t0) ·Q2)xi‖. (56)

Combining (56) with the fact that ‖Q1xi‖ + ‖Q2xi‖ ≥ ‖(Q1 + Q2)xi‖, we obtain that
t0 · ‖Q1xi‖+ (1− t0) · ‖Q2xi‖ = ‖(t0 ·Q1 + (1− t0) ·Q2)xi‖ for any 1 ≤ i ≤ N and therefore
there exists a sequence {ci}Ni=1 ⊂ R such that

Q2xi = 0 or Q1xi = ci Q2xi for all 1 ≤ i ≤ N . (57)

We conclude Theorem 2 by considering two different cases. We first assume that
ker(Q1) = ker(Q2). We denote

Q̃1 = Pker(Q1)⊥Q1Pker(Q1)⊥ and Q̃2 = Pker(Q1)⊥Q2Pker(Q1)⊥ .

It follows from (57) that

Q̃1(Pker(Q1)⊥xi) = ci Q̃2(Pker(Q1)⊥xi)

and consequently that Pker(Q1)⊥xi lies in one of the eigenspaces of Q̃−11 Q̃2. We claim

that Q̃−11 Q̃2 is a scalar matrix. Indeed, if on the contrary Q̃−11 Q̃2 is not a scalar matrix,
then {Pker(Q1)⊥xi}Ni=1 lies in a union of several eigenspaces with dimensions summing to

dim(Pker(Q1)⊥) and this contradicts (14). In view of this property of Q̃−11 Q̃2 and the fact

that tr(Q̃1) = tr(Q̂1) = 1 we have that Q̃1 = Q̃2 and Q1 = Q2, which contradicts our
current assumption.

Next, assume that ker(Q1) 6= ker(Q2). We will first show that if 1 ≤ i ≤ N is arbitrarily
fixed, then xi ∈ ker(Q2) ∪ ker(Pker(Q1)Q2). Indeed, if xi /∈ ker(Q2), then using (57) we
have Q1xi = ci Q2xi. This implies that ciPker(Q1)Q2xi = Pker(Q1)Q1xi = 0 and thus
xi ∈ ker(Pker(Q1)Q2). That is, X is contained in the union of the 2 subspaces ker(Q2) and
ker(Pker(Q1)Q2). The dimensions of both spaces are less than D. This obvious for ker(Q2),
since tr(Q2) = 1. For ker(Pker(Q1)Q2) it follows from the fact that ker(Q1) 6= ker(Q2) and
thus Pker(Q1)Q2 6= 0. We thus obtained a contradiction to (14).

7.3 Verification of (10) and (11) as Sufficient Conditions and (12) and (13) as
Necessary Ones

We revisit the proof of Theorem 1 and first show that (10) and (11) can replace (6) and
(7) in the first part of Theorem 1. We only deal with the first part of Theorem 1, which
assumes that (9) holds, since (9) guarantees that (10) and (11) are well-defined (see the
discussion in §2.4.1).

791

Teng Zhang and Gilad Lerman

To show that (11) can replace (7), we prove the inequality in (55) using (11) as fol-
lows. Assuming that the SVD of PL∗⊥∆PL∗ is UΣVT , then Q′ := VΣVT / tr(Σ) satisfies
Q′ ∈ H,Q′PL∗⊥ = 0 and ‖Q′x‖ = ‖PL∗⊥∆PL∗x‖/ tr(Σ) = ‖PL∗⊥∆PL∗x‖/‖PL∗⊥∆PL∗‖∗.
Using this fact, we obtain that∑

x∈X1

‖PL∗⊥∆PL∗x‖ ≥ ‖PL∗⊥∆PL∗‖∗ min
Q′∈H,Q′P

L∗⊥=0

∑
x∈X1

‖Q′x‖. (58)

We also note that∑
x∈X0

〈
PL∗⊥∆PL∗ , Q̂0xxT /‖Q̂0x‖

〉
F

=
∑
x∈X0

〈
PL∗⊥∆PL∗ , Q̂0xxTPL∗/‖Q̂0x‖

〉
F

≥− ‖PL∗⊥∆PL∗‖∗

∥∥∥∥∥∥
∑
x∈X0

Q̂0xxTPL∗/‖Q̂0x‖

∥∥∥∥∥∥ . (59)

Therefore (55) follows from (11), (58) and (59). Similarly, one can show that (10) may
replace (6).

One can also verify that (12) and (13) are necessary conditions for exact recovery by
revisiting the proof of Theorem 1 and reversing inequalities.

7.4 Proof of Lemma 3

We first note by symmetry that the minimizer of the LHS of (16) for the needle-haystack
model is Q = PL∗/d. We can thus rewrite (16) in this case as α1 E r1/d > 2

√
2α0 E r0/(D−

d), where the “radii” r1 and r0 are the norms of the normal distributions with covariances
σ21d

−1PL∗ and σ20D
−1PL∗⊥ respectively. Let r̃1 and r̃2 be the χ-distributed random variables

with d and D − d degrees of freedoms, then (16) obtains the form

α1σ1

d
√
d
E r̃1 >

2
√

2α0σ0

(D − d)
√
D

E r̃0.

Applying (B.7) of Lerman et al. (2012), E r̃1 ≥
√
d/2 and E r̃0 ≤

√
D − d. Therefore (16)

follows from (15).

7.5 Proof of Theorem 4

For simplicity of the proof we first assume that the supports of µ0 and µ1 are contained in
a ball centered at the origin of radius M .

We start with the proof of (9) “in expectation” and then extend it to hold with high
probability. We use the notation FI(Q) and Q̂I defined in (19) and (20) respectively. The
spherical symmetry of µ0,L∗⊥ implies that

Q̂I =
1

D − d
PL∗⊥PT

L∗⊥ (60)

is the unique minimizer of (20). To see this formally, we first note that µ0,L∗⊥ satisfies the
two-subspaces criterion of Coudron and Lerman (2012) for any 0 < γ ≤ 1 (this criterion

792

A Novel M-Estimator for Robust PCA

generalizes (14) of this paper to continuous measures) and thus by Theorem 2.1 of Coudron
and Lerman (2012) (whose proof follows directly the one of Theorem 2 here) the solution
of this minimization must be unique. On the other hand, any application of an arbitrary
rotation of L∗ (within RD) to the minimizer expressed in the RHS of (20) should also be
a minimizer of the RHS of (20). We note that 1

D−dPL∗⊥PT
L∗⊥

is the only element in the
domain of this minimization that is preserved under any rotation of L∗. Therefore, due to
uniqueness, this can be the only solution of this minimization problem.

Let

H2 = {Q ∈ H : QPL∗ = 0, Q � 0 and cond(PL∗⊥QPL∗⊥) ≥ 2}, (61)

where Q � 0 denotes the positive semidefiniteness of Q and cond(PL∗⊥QPL∗⊥) denotes
the condition number of this matrix, that is, the ratio between the largest and lowest
eigenvalues of PL∗⊥QPL∗⊥ , or equivalently, the ratio between the top eigenvalue and the
(D − d)th eigenvalue of Q. Since Q̂I is the unique minimizer of (20) and Q̂I ∈/H2, then

c1 := min
Q∈H2

(FI(Q)− FI(Q̂I)) > 0. (62)

We note that if x is a random variable sampled from µ and Q ∈ H (so that ‖Q‖ ≤ ‖Q‖∗ = 1),
then ‖Qx‖ ≤ M . Applying this fact, (62) and Hoeffding’s inequality, we conclude that for
any fixed Q ∈ H2

F (Q)− F (Q̂I) > c1N/2 w.p. 1− exp(−c21N/2M2). (63)

We also observe that

F (Q1)− F (Q2) ≤ ‖Q1 −Q2‖
N∑
i=1

‖x‖ ≤ ‖Q1 −Q2‖N M . (64)

Combining (63) and (64), we obtain that for all Q in a ball of radius r1 := c1/2M centered
around a fixed element in H2: F (Q)− F (Q̂I) > 0 w.p. 1− exp(−c21N/2M2).

We thus cover the compact space H2 by an r1-net. Denoting the corresponding covering
number by N(H2, r1) and using the above observation we note that w.p.
1−N(H2, r1) exp(−c21N/2M2)

F (Q)− F (Q̂I) > 0 for all Q ∈ H2. (65)

The definition of Q̂0 (that is, (8)) implies that F (Q̂0) ≤ F (Q̂I). Combining this obser-
vation with (65), we conclude that w.h.p. Q̂0 ∈/H2. We also claim that Q̂0 � 0 (see, e.g.,
the proof of Lemma 14, which appears later). Since Q̂0 ∈/H2 and Q̂0 � 0, Q̂0 satisfies the
following property w.h.p.:

cond(PT
L∗⊥Q̂0P

T
L∗⊥) < 2. (66)

Consequently, (9) holds w.h.p. (more precisely, w.p. 1−N(H2, c1/2M) exp(−c21N/2M2)).

Next, we verify (10) w.h.p. as follows. Since Q̂0 is symmetric and Q̂0PL∗ = 0 (see (8)),
then

Q̂0 = PL∗⊥Q̂0PL∗⊥ . (67)

793

Teng Zhang and Gilad Lerman

Applying (67), basic inequalities of operators’ norms and (66), we bound the RHS of (10)
from above as follows:

√
2

∥∥∥∥∥∥
∑
x∈X0

Q̂0xxTPL∗⊥/‖Q̂0x‖

∥∥∥∥∥∥ =
√

2

∥∥∥∥∥∥PL∗⊥Q̂0PL∗⊥ ·
∑
x∈X0

PL∗⊥xxTPL∗⊥/‖Q̂0x‖

∥∥∥∥∥∥
≤
√

2 ·
∥∥∥PL∗⊥Q̂0PL∗⊥

∥∥∥ ·
∥∥∥∥∥∥
∑
x∈X0

PL∗⊥xxTPL∗⊥/‖Q̂0x‖

∥∥∥∥∥∥ (68)

≤
√

2 · λmax(PL∗⊥Q̂0PL∗⊥) · ‖
∑
x∈X0

PL∗⊥xxTPL∗⊥/‖λmin(PL∗⊥Q̂0PL∗⊥)PL∗⊥x‖‖

<
√

8
∥∥∥ ∑

x∈X0

PL∗⊥xxTPL∗⊥/‖PL∗⊥x‖
∥∥∥ = max

u∈SD−1∩L∗⊥

√
8uT (

∑
x∈X0

PL∗⊥xxTPL∗⊥/‖PL∗⊥x‖)u.

Therefore to prove (10), we only need to prove that with high probability

min
Q∈H,QP

L∗⊥=0

∑
x∈X1

‖Qx‖ > max
u∈SD−1∩L∗⊥

√
8uT (

∑
x∈X0

PL∗⊥xxTPL∗⊥/‖PL∗⊥x‖)u. (69)

We will prove that the LHS and RHS of (69) concentrates w.h.p. around the LHS
and RHS of (16) respectively and consequently verify (69) w.h.p. Let ε1 be the difference
between the RHS and LHS of (69). Theorem 1 of Coudron and Lerman (2012) implies that
the LHS of (69) is within distance ε1/4 to the RHS of (16) with probability 1−C exp(−N/C)
(where C is a constant depending on ε1, µ and its parameters).

The concentration of the RHS of (16) can be concluded as follows. The spherical sym-
metry of µ0,L∗⊥ implies that the expectation (w.r.t. µ0) of

∑
x∈X0

PL∗⊥xxTPL∗⊥/‖PL∗⊥x‖
is a scalar matrix within L∗⊥, that is, it equals ρµ PL∗⊥xxTPL∗⊥/‖PL∗⊥x‖ for some ρµ ∈ R.
We observe that

Eµ0 tr(PL∗⊥xxTPL∗⊥/‖PL∗⊥x‖) = Eµ0 ‖PL∗⊥x‖

and thus conclude that ρµ = Eµ0 ‖PL∗⊥x‖/(D − d). Therefore, for any u ∈ SD−1 ∩ L∗⊥

Eµ0 uT (PL∗⊥xxTPL∗⊥/‖PL∗⊥x‖)u = Eµ0 ‖PL∗⊥x‖/(D − d) =

∫
‖PL∗⊥x‖ dµ0(x)/(D − d).

(70)
We thus conclude from (70) and Hoeffding’s inequality that for any fixed u ∈ SD−1∩L∗⊥

the function
√

8uT (
∑

x∈X0
PL∗⊥xxTPL∗⊥/‖PL∗⊥x‖)u is within distance ε1/4 to the RHS of

(16) with probability 1− C exp(−N/C) (where C is a constant depending on ε1, µ and its
parameters). Furthermore, applying ε-nets and covering (i.e., union bounds) arguments with
regards to SD−1 ∩ L∗⊥, we obtain that for all u ∈ SD−1 ∩ L∗⊥,√

8uT (
∑

x∈X0
PL∗⊥xxTPL∗⊥/‖PL∗⊥x‖)u is within distance ε1/2 to the RHS of (16) with

probability 1 − C exp(−N/C) (where C is a constant depending on ε1, µ and its parame-
ters). In particular, the RHS of (69) is within distance ε1/2 to the RHS of (16) with the
same probability. We thus conclude (69) with probability 1− C ′ exp(−N/C ′).

Similarly we can also prove (11), noting that the expectation (w.r.t. µ0) of
Q̂0xxTPL∗/‖Q̂0x‖ is 0, since Q̂0x/‖Q̂0x‖ and xTPL∗ are independent when x is restricted
to lie in the complement of L∗ (that is, x ∈ X0).

794

A Novel M-Estimator for Robust PCA

If we remove the assumption of bounded supports (with radius M), then we need to
replace Hoeffding’s inequality with the Hoeffding-type inequality for sub-Gaussian measures
of Proposition 5.10 of Vershynin (2012), where in this proposition ai = 1 for all 1 ≤ i ≤ n.

We emphasize that our probabilistic estimates are rather loose and can be interpreted
as near-asymptotic; we thus did not fully specify their constants. We clarify this point for
the probability estimate we have for (9), that is, 1 − N(H2, c1/2M) exp(−c21N/2M2). Its
constant N(H2, r1) can be bounded from above by the covering number N(H0, r1) of the
larger set H0 = {Q ∈ RD×D : |Qi,i| ≤ 1}, which is bounded from above by (8/r1)

D(D−1)/2

(see, e.g., Lemma 5.2 of Vershynin, 2012). This is clearly a very loose estimate that cannot
reveal interesting information, such as, the right dependence of N on D and d in order to
obtain a sufficiently small probability.

At last, we explain why (14) holds with probability 1 if there are at least 2D − 1
outliers. We denote the set of outliers by {y1,y2, · · · ,yN0}, where N0 ≥ 2D − 1, and
assume on the contrary that (14) holds with probability smaller than 1. Then, there exists
a sequence {ij}D−1j=1 ⊂ {1, 2, 3, · · · , N0} such that the subspace spanned by the D− 1 points
yi1 ,yi2 , · · · ,yiD−1 contains another outlier with positive probability. However, this is not
true for haystack model and thus our claim is proved.

7.5.1 Proof of the Extension of Theorem 4 to the Asymmetric Case

We recall our assumptions that µ0 is a sub-Gaussian distribution with covariance Σ0 and
that Q̂I is unique. We follow the proof of Theorem 4 in §7.5 with the following changes.
First of all, we replace the requirement

cond(PL∗⊥QPL∗⊥) ≥ 2. (71)

in (61) with the following one:

cond(PL∗⊥QPL∗⊥) ≥ 2 · cond(PL∗⊥Q̂IPL∗⊥). (72)

We note that (71) follows from (72) in the symmetric case. Indeed, in this case the expression
of Q̂I in (60) implies that the RHS of (72) is 2. Similarly, instead of (66) we prove that

cond(PT
L∗⊥Q̂0P

T
L∗⊥) < 2 · cond(PL∗⊥Q̂IPL∗⊥).

Second of all, in the third inequality of (68) the term
√

2λmax(PL∗⊥Q̂0PL∗⊥)/λmax(PL∗⊥Q̂0PL∗⊥)

needs to be bounded above by
√

8 cond(PL∗⊥Q̂IPL∗⊥), instead of
√

8. We can thus conclude
the revised theorem, in particular, the last modification in the proof clarifies why we need
to multiply the RHS of (16) by cond(PL∗⊥Q̂IPL∗⊥), which is the ratio between the largest
eigenvalue of PL∗⊥Q̂IPL∗⊥ and the (D − d)th eigenvalue of PL∗⊥Q̂IPL∗⊥ .

7.6 Proof of Theorem 5

This proof follows ideas of Lerman et al. (2012). We bound from below the LHS of (7) by
applying (A.15) of Lerman et al. (2012) as follows

min
Q∈H,QP

L∗⊥=0

∑
x∈X1

‖Qx‖ ≥ 1√
d

min
v∈L∗,‖v‖=1

∑
x∈X1

|vTx|. (73)

795

Teng Zhang and Gilad Lerman

We denote the number of inliers sampled from µ1 by N1 and the number of outliers sampled
from µ0 by N0(= N−N1). We bound from below w.h.p. the RHS of (73) by applying Lemma
B.2 of Lerman et al. (2012) in the following way:

1√
d

min
v∈L∗,‖v‖=1

∑
x∈X1

|vTx| ≥ σ1
d

(√
2/πN1 − 2

√
N1d− t

√
N1

)
w.p. 1− e−t2/2. (74)

By following the proof of Lemma B.2 of Lerman et al. (2012) we bound from above w.h.p. the
RHS of (7) as follows

max
v∈L∗,‖v‖=1

∑
x∈X0

|vTx| ≤ σ0√
D

(√
2/πN0 + 2

√
N0d+ t

√
N0

)
w.p. 1− e−t2/2. (75)

We need to show w.h.p. that the RHS of (75) is strictly less than the RHS of (74). We
note that Hoeffding’s inequality implies that

N1 > α1N/2 w.p. 1− e−α2
1N/2 and |N0 − α0N | < α0N/2 w.p. 1− 2e−α

2
0N/2. (76)

Furthermore, (18) and (76) imply that

d < N1/4 w.p. 1− e−α2
1N/2 and d < N0/4 w.p. 1− e−α2

0N/2. (77)

Substituting t =
√
N1/10 (>

√
α1N/20 w.p. 1 − e−α

2
1N/2) in (74) and t =

√
N0/10

(>
√
α0N/20 w.p. 1− 2e−α

2
0N/2) in (75) and combining (17) and (73)-(77), we obtain that

(7) holds w.p. 1 − e−α2
1N/2 − 2e−α

2
0N/2 − e−α1N/800 − e−α0N/800. We can similarly obtain

that (6) holds with the same probability.

7.6.1 Proof of the Extension of Theorem 5 to the Asymmetric Case

We assume the generalized needle-haystack model of §2.6.2. The proof of Theorem 5 in
§7.6 immediately extends to this model, where σ0 in the RHS of (75) needs to be replaced
with

√
λmax(Σ0) (recall that λmax(Σ0) denotes the largest eigenvalue of Σ0). Consequently,

Theorem 5 still holds in this case when replacing σ0 in the RHS of (17) with
√
λmax(Σ0).

7.7 Proof of Theorem 6

We first establish the following lemma.

Lemma 14 The minimizer of F (Q), Q̂, is a semi-definite positive matrix.

Proof We assume that Q̂ has some negative eigenvalues and show that this assumption
contradicts the defining property of Q̂, that is, being the minimizer of F (Q). We denote
the eigenvalue decomposition of Q̂ by Q̂ = VQ̂ΣQ̂VT

Q̂
and define Σ+

Q̂
= max(ΣQ̂, 0) and

Q̂+ = VQ̂Σ+

Q̂
VT

Q̂
/ tr(Σ+

Q̂
) ∈ H. Then tr(Σ+

Q̂
) > tr(ΣQ̂) = tr(Q̂) = 1 and for any x ∈ RD

we have

‖Q̂+x‖ < tr(Σ+

Q̂
)‖Q̂+x‖ = ‖Σ+

Q̂
(VT

Q̂
x)‖ ≤ ‖ΣQ̂(VT

Q̂
x)‖ = ‖Q̂x‖.

Summing it over all x ∈ X , we conclude the contradiction F (Q̂+) < F (Q̂).

796

A Novel M-Estimator for Robust PCA

In order to prove Theorem 6 we first notice that by definition and the connection of γ0,
γ0 with second derivative of F (Q)

FX (Q̃)− FX (Q̃) ≥ Nγ0‖Q̃− Q̂‖2F , (78)

and

FX (Q̃)− FX (Q̃) ≥ Nγ′0‖Q̃− Q̂‖2. (79)

Next, we observe that

|FX (Q̂)− FX̃ (Q̂)|≤
N∑
i=1

∣∣∣‖Q̂x̃i‖−‖Q̂xi‖
∣∣∣≤ N∑

i=1

‖Q̂(x̃i − xi)‖≤
N∑
i=1

‖x̃i − xi‖≤
N∑
i=1

εi

and similarly |FX (Q̃)− FX̃ (Q̃)| ≤
∑N

i=1 εi. Therefore,

FX (Q̃)− FX (Q̂) = (FX̃ (Q̃)− FX̃ (Q̂)) + (FX (Q̃)− FX̃ (Q̃)) + (FX̃ (Q̂)

−FX (Q̂)) ≤ 0 + |FX (Q̃)− FX̃ (Q̃)|+ |FX̃ (Q̂)− FX (Q̂)| ≤ 2
N∑
i=1

εi. (80)

Therefore (23) follows from (78), (79) and (80). Applying the Davis-Kahan perturbation
Theorem (Davis and Kahan, 1970) to (23), we conclude (24).

7.7.1 Implication of Theorem 6 to Dimension Estimation

Theorem 6 implies that we may properly estimate the dimension of the underlying subspace
for low-dimensional data with sufficiently small perturbation. We make this statement more
precise by assuming the setting of Theorem 6 and further assuming that Q̂ is a low-rank
matrix with ker(Q̂) = L∗. We note that the (D − d + 1)st eigenvalue of Q̂ is 0. Thus
applying the following eigenvalue stability inequality (Tao, 2012, (1.63)):

|λi(A + B)− λi(A)| ≤ ‖B‖, (81)

we obtain that the (D − d + 1)st eigenvalue of Q̃ is smaller than
√

2
∑N

i=1 εi/γ0, and the

(D − d)th eigengap of Q̃ is larger than νD−d − 2
√

2
∑N

i=1 εi/γ0 (recall that νD−d is the

(D − d)th eigengap of Q̂). This means that when the noise is small and the conditions of
Theorem 1 hold, then we can estimate the dimension of the underlying subspace for X̃ from
the number of small eigenvalues.

7.7.2 Improved Bounds in a Restricted Setting

We assume that εi = O(ε) for all 1 ≤ i ≤ N , where ε is sufficiently small, and further
assume that rank(Q̂) = D. We show that in this special case the norm of Q̂− Q̃ is of order
O(ε) instead of order O(

√
ε) that is specified in Theorem 6.

797

Teng Zhang and Gilad Lerman

We note that since Q̂ is of full rank, then the first and second directional derivative of
F are well-defined in a sufficiently small neighborhood around Q̂. Therefore, if ∆ ∈ RD×D
and ‖∆‖ is sufficiently small then

F ′X (Q̂)− F ′X (Q̂ + ∆) = O(‖∆‖). (82)

Furthermore, we note by basic calculations that

F ′X (Q)− F ′X̃ (Q) = O(ε). (83)

Combining (83) with the following facts: F ′X (Q̂) = 0 and F ′X̃ (Q̃) = 0, we obtain that

F ′X (Q̂)− F ′X (Q̃) = F ′X̃ (Q̃)− F ′X (Q̃) = O(ε). (84)

At last, the combination of (82) and (84) implies that ‖Q̂−Q̃‖ = O(ε). Clearly, the spectral
norm of Q̂− Q̃ can be replaced with any other norm, in particular, the Frobenius norm.

7.8 Proof of Proposition 7

We recall the function FI , which was defined in (19), and the notation FI,1
′′(Q,∆) should

be clear, where now FI replaces F .
The law of large numbers implies that F1

′′(Q,∆)/N → FI
′′(Q,∆) almost surely for

any ∆ and Q (see also related bounds in Coudron and Lerman 2012). Since Q and ∆ lie
in compact space, we conclude (26) for γ0 and c0; the proof is identical for γ′0 and c′0.

7.9 Proof of Theorem 8

The theorem follows from the observation that 0 ≤ F (Q) − Fδ(Q) ≤ Nδ/2 for all Q ∈ H
and the proof of Theorem 6.

7.10 Proof of Theorem 9

It is sufficient to verify that

If Ã ∈ RD×D with Im(Ã) = L∗, then L(Ã + ηI)→∞ as η → 0. (85)

Indeed, since L(A) is a continuous function, (85) implies that L(Ã) is undefined (or infinite)
and therefore Ã is not the minimizer of (28) as stated in Theorem 9.

We fix a1 < limx→∞ xu(x) and note that Condition D0 (w.r.t. L∗) implies that

|X0|/N > (D − d)/a1. (86)

Condition M implies that there exists x1 such that for any x > x1: xu(x) ≥ a1 and therefore
(recalling that u = ρ′) ρ(x) ≥ a1 ln(x− x1)/2 + u(x1)/2. Thus for any xi ∈ X0, we have

ρ(xTi (Ã + ηI)−1xi) ≥ a1 ln(1/η − x1)/2 + Ci for some constant Ci ≡ Ci(xi, Ã) (87)

and
N

2
log(det(A)) ≤ NC0 + (D − d)/2 ln(η) for some C0 ≡ C0(Ã). (88)

Equation (85) thus follows from (86)-(88) and the theorem is concluded.

798

A Novel M-Estimator for Robust PCA

7.11 Proof of Theorem 10

The derivative of the energy function in the RHS of (32) is QXTX + XTXQ. Using the
argument establishing (36) and the fact that Q̂2 is the minimizer of (32), we conclude
that QXTX + XTXQ is a scalar matrix. We then conclude (33) by using the argument
establishing (37) as well as the following two facts: tr(Q̂2) = 1 and X is full rank (so the
inverse of XTX exists).

7.12 Proof of Theorem 11

We frequently use here some of the notation introduced in §4.1, in particular, I(Q), L(Q)
and T (Q). We will first prove that F (Qk) ≥ F (Qk+1) for all k ≥ 1. For this purpose, we
use the convex quadratic function:

G(Q,Q∗) =
1

2

N∑
i=1

i/∈I(Q∗)

(
‖Qxi‖2/‖Q∗xi‖+ ‖Q∗xi‖

)
.

Following the same derivation of (44) and (36), we obtain that

d

dQ
G(Q,Qk)

∣∣
Q=Qk+1

=

Qk+1

 N∑
i=1

i/∈I(Qk)

xix
T
i

‖Qkxi‖

+

 N∑
i=1

i/∈I(Qk)

xix
T
i

‖Qkxi‖

Qk+1

 /2.

We let Ak =
∑N

i=1, i/∈I(Qk)
xix

T
i

‖Qkxi‖ , ck = PL(Qk)⊥A−1k PL(Qk)⊥ and for any symmetric ∆ ∈
RD×D with tr(∆) = 0 and PL(Qk)∆ = 0 we let ∆0 = P̃T

L(Qk)⊥
∆P̃L(Qk)⊥ . We note that

tr(∆0) = 〈∆0, I〉F =
〈
P̃T

L(Qk)⊥
∆P̃L(Qk)⊥ , I

〉
F

=
〈
∆, P̃L(Qk)⊥P̃T

L(Qk)⊥

〉
F

=
〈
∆, I−PL(Qk)

〉
F

= 〈∆, I〉F −
〈
∆,PL(Qk)

〉
F

= 〈∆, I〉F = tr(∆) = 0.

Consequently, we establish that the derivative of G(Q,Qk) at Qk+1 in the direction ∆ is
zero as follows.

〈(Qk+1Ak + AkQk+1)/2,∆〉F = 〈Qk+1Ak,∆〉F = ck

〈
PL(Qk)⊥A−1k PL(Qk)⊥Ak,∆

〉
F

=ck

〈
PL(Qk)⊥A−1k PL(Qk)⊥Ak, P̃L(Qk)⊥∆0P̃

T
L(Qk)⊥

〉
F

=ck

〈
(P̃T

L(Qk)⊥
A−1k P̃L(Qk)⊥)(P̃T

L(Qk)⊥
AkP̃L(Qk)⊥),∆0

〉
F

= ck 〈I,∆0〉F = 0 .

This and the strict convexity of G(Q,Qk) (which follows from Sp({xi}i/∈I(Qk)) = RD using
(14)) imply that Qk+1 is the unique minimizer of G(Q,Qk) among all Q ∈ H such that
PL(Qk)Q = 0.

799

Teng Zhang and Gilad Lerman

Combining this with the following two facts: Qk+1xi = 0 for any i ∈ I(Qk) and
G(Qk,Qk) = F (Qk), we conclude that

F (Qk+1) =
∑

i/∈I(Qk)

‖Qk+1xi‖ =
∑

i/∈I(Qk)

‖Qk+1xi‖‖Qkxi‖
‖Qkxi‖

≤
∑

i/∈I(Qk)

‖Qk+1xi‖2 + ‖Qkxi‖2

2‖Qkxi‖
= G(Qk+1,Qk) ≤ G(Qk,Qk) = F (Qk). (89)

Since F is positive, F (Qk) converges and

F (Qk)− F (Qk+1)→ 0 as k →∞. (90)

Applying (89) we also have that

F (Qk)−F (Qk+1)≥G(Qk,Qk)−G(Qk+1,Qk)=
1

2

∑
i/∈I(Qk)

‖(Qk −Qk+1)xi‖2/‖Qkxi‖. (91)

We note that if Qk 6= Qk+1, then Sp({xi}i/∈I(Qk)) = RD ⊃ ker(Qk − Qk+1) and
1/‖Qkxi‖ ≥ 1/maxi ‖xi‖. Combining this observation with (90) and (91) we obtain that

‖Qk −Qk+1‖2 → 0 as k →∞. (92)

Since for all k ∈ N, Qk is nonnegative (this follows from its defining formula (39)) and
tr(Qk) = 1, the sequence {Qk}k∈N lies in a compact space (of nonnegative matrices) and it
thus has a converging subsequence. Assume a subsequence of {Qk}k∈N, which converges to
Q̃. We claim the following property of Q̃:

Q̃ = arg min
Q∈H0

F (Q), where H0 := {Q ∈ H : ker Q ⊇ L(Q̃)}. (93)

In order to prove (93), we note that (89) and the convergence of the subsequence imply
that F (Q̃) = F (T (Q̃)). Combining this with (89) (though replacing Qk and Qk+1 in (89)
with Q̃ and T (Q̃) respectively) we get that G(T (Q̃), Q̃) = G(Q̃, Q̃). We conclude that
T (Q̃) = Q̃ from this observation and the following three facts: 1) Q = Q̃ is the unique
minimizer of G(Q, Q̃) among all Q ∈ H, 2) PL(Q̃)Q̃ = 0, 3) Q = T (Q̃) is the unique

minimizer of G(Q, Q̃) among all Q ∈ H such that PL(Q̃)Q = 0 (we remark that F (Q)

is strictly convex in H and consequently also in H0 by Theorem 2). Therefore, for any
symmetric ∆ ∈ RD×D with tr(∆) = 0 and PL(Q̃)∆ = 0, the directional derivative at Q̃ is
0:

0 =

〈
∆,

d

dQ
G(Q, Q̃)

∣∣
Q=Q̃

〉
F

=

〈
∆, Q̃

∑
i/∈I(Q̃)

xix
T
i

‖Q̃xi‖

〉
F

. (94)

We note that (94) is the corresponding directional derivative of F (Q) when restricted to
Q ∈ H0 and we thus conclude (93).

Next, we will prove that {Qk}k∈N converge to Q̃ by proving that there are only finite
choices for Q̃. In view of (93) and the strict convexity of F (Q) in H0, any limit Q̃ (of

800

A Novel M-Estimator for Robust PCA

a subsequence as above) is uniquely determined by I(Q̃). Since the number of choices
for I(Q̃) is finite (independently of Q̃), the number of choices for Q̃ is finite. That is,
Y := {Q ∈ H : F (Q) = F (T (Q))} is a finite set. Combining this with (92) and the
convergence analysis of the sequence {Qk}k∈N (see Ostrowski, 1966, Theorem 28.1), we
conclude that {Qk}k∈N converges to Q̃.

At last, we assume that Q̃xi 6= 0 for all 1 ≤ i ≤ N . We note that I(Q̃) = ∅ and thus
Q̃ = Q̂ by (93). The proof for the rate of convergence follows the analysis of generalized
Weiszfeld’s method by Chan and Mulet (1999) (in particular see §6 of that work). We
practically need to verify Hypotheses 4.1 and 4.2 (see §4 of that work) and replace the
functions F and G in that work by F (Q) and

G̃(Q,Q∗) =
N∑
i=1

(
‖Qxi‖2/‖Q∗xi‖+ ‖Q∗xi‖

)
respectively. We note that the functions G̃ and G (defined earlier in this work) coincide
in the following way: G̃(Q,Qk) = G(Q,Qk) for any k ∈ N (this follows from the fact
that Qkxi 6= 0 for all k ∈ N and 1 ≤ i ≤ N ; indeed, otherwise for some i, Qjxi = 0

for j ≥ k by (39) and this leads to the contradiction Q̂xi = 0). We remark that even
though Chan and Mulet (1999) consider vector-valued functions, their proof generalizes
to matrix-valued functions as here. Furthermore, we can replace the global properties
of Hypotheses 4.1 and 4.2 of Chan and Mulet (1999) by the local properties in B(Q̂, δ0)
for any δ0 > 0, since the convergence of Qk implies the existence of K0 > 0 such that
Qk ∈ B(Q̂, δ0) for all k > K0. In particular, there is no need to check condition 2 in
Hypothesis 4.1. Condition 1 in Hypothesis 4.1 holds since F (Q) is twice differentiable in
B(Q̂, δ0) (which follows from the assumption on the limit Q̃ ≡ Q̂ and the continuity of the
derivative). Conditions 1-3 in Hypothesis 4.2 are verified by the fact that C of Hypothesis
4.2 satisfies C(Q∗) =

∑N
i=1 xix

T
i /‖Q∗xi‖ and Q∗xi 6= 0 when Q∗ ∈ B(Q̂, δ0). Condition 3

in Hypothesis 3.1 and condition 4 in Hypothesis 4.2 are easy to check.

7.13 Proof of Theorem 12

The proof follows from the second part of the proof of Theorem 11, while using instead of
G̃(Q,Q∗) the function

Gδ(Q,Q
∗) =

1

2

N∑
i=1,‖Q∗xi‖≥δ

(
‖Qxi‖2/‖Q∗xi‖+ ‖Q∗xi‖

)
+

N∑
i=1,‖Q∗xi‖<δ

(‖Qxi‖2/2δ + δ/2).

7.14 Proof of Theorem 13

We note that the minimization of F (Q) over all Q ∈ H such that QPL̂⊥ = 0 in Algo-

rithm 3 can be performed at each iteration with respect to the projected data: P̃L̂(X) =

{P̃L̂x1, P̃L̂x2, · · · , P̃L̂xN}.
We note that conditions (6) and (7) hold for P̃L̂(X) with any L̂ ⊇ L∗. Therefore,

Theorem 1 implies that u ⊥ L∗ and L̂ ⊇ L∗ in each iteration. Since dim(L̂) decreases by
one in each iteration, dim(L̂) = d in D − d iterations and thus L̂ = L∗.

801

Teng Zhang and Gilad Lerman

8. Conclusion

We proposed an M-estimator for the problems of exact and near subspace recovery. Sub-
stantial theory has been developed to quantify the recovery obtained by this estimator as
well as its numerical approximation. Numerical experiments demonstrated state-of-the-art
speed and accuracy for our corresponding implementation on both synthetic and real data
sets.

This work broadens the perspective of two recent ground-breaking theoretical works
for subspace recovery by Candès et al. (2011) and Xu et al. (2012). We hope that it will
motivate additional approaches to this problem.

There are many interesting open problems that stem from our work. We believe that by
modifying or extending the framework described in here, one can even yield better results
in various scenarios. For example, we have discussed in §1.2 the modification by Lerman
et al. (2012) suggesting tighter convex relaxation of orthogonal projectors when d is known.
We also discussed in §1.2 adaptation by Wang and Singer (2013) of the basic ideas in here
to the different synchronization problem. Another direction was recently followed up by
Coudron and Lerman (2012), where they established exact asymptotic subspace recovery
under specific sampling assumptions, which may allow relatively large magnitude of noise.
It is interesting to follow this direction and establish exact recovery when using in theory
a sequence of IRLS regularization parameters {δi}i∈N approaching zero (in analogy to the
work of Daubechies et al. 2010).

An interesting generalization that was not pursued so far is robust data modeling by
multiple subspaces or by locally-linear structures. It is also interesting to know whether
one can adapt the current framework so that it can detect linear structure in the presence
of both sparse elementwise corruption (as in Candès et al. 2011) and the type of outliers
addressed in here.

Acknowledgments

This work was supported by NSF grants DMS-09-15064 and DMS-09-56072, GL was also
partially supported by the IMA (during 2010-2012). Arthur Szlam has inspired our extended
research on robust l1-type subspace recovery. We thank John Wright for referring us to Xu
et al. (2010b) shortly after it appeared online and for some guidance with the real data sets.
GL thanks Emmanuel Candès for inviting him to visit Stanford university in May 2010 and
for his constructive criticism on the lack of a theoretically guaranteed algorithm for the l1
subspace recovery of Lerman and Zhang (2010).

Supp. webpage: http://www.math.umn.edu/~lerman/gms.

References

A. Agarwal, S. Negahban, and M. J. Wainwright. Noisy matrix decomposition via convex
relaxation: optimal rates in high dimensions. Ann. Statist., 40(2):1171–1197, 2012a. ISSN
0090-5364. doi: 10.1214/12-AOS1000.

802

http://www.math.umn.edu/~lerman/gms

A Novel M-Estimator for Robust PCA

A. Agarwal, S. Negahban, and M. J. Wainwright. Fast global convergence of gradient
methods for high-dimensional statistical recovery. The Annals of Statistics, 40(5):2452–
2482, 2012b.

L. P. Ammann. Robust singular value decompositions: A new approach to projection
pursuit. Journal of the American Statistical Association, 88(422):pp. 505–514, 1993.
ISSN 01621459.

E. Arias-Castro, D. L. Donoho, X. Huo, and C. A. Tovey. Connect the dots: how many
random points can a regular curve pass through? Adv. in Appl. Probab., 37(3):571–603,
2005.

E. Arias-Castro, G. Chen, and G. Lerman. Spectral clustering based on local linear approx-
imations. Electron. J. Statist., 5:1537–1587, 2011.

O. Arslan. Convergence behavior of an iterative reweighting algorithm to compute multivari-
ate M-estimates for location and scatter. Journal of Statistical Planning and Inference,
118(1-2):115 – 128, 2004. ISSN 0378-3758. doi: 10.1016/S0378-3758(02)00402-0.

A. Bargiela and J. K. Hartley. Orthogonal linear regression algorithm based on augmented
matrix formulation. Comput. Oper. Res., 20:829–836, October 1993. ISSN 0305-0548.
doi: 10.1016/0305-0548(93)90104-Q.

R. Basri and D. Jacobs. Lambertian reflectance and linear subspaces. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 25(2):218–233, February 2003.

R. Basri, T. Hassner, and L. Zelnik-Manor. Approximate nearest subspace search. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(2):266–278, 2011. ISSN
0162-8828. doi: http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.110.

R. Bhatia and D. Drissi. Generalized Lyapunov equations and positive definite functions.
SIAM J. Matrix Anal. Appl., 27(1):103–114, May 2005. ISSN 0895-4798. doi: 10.1137/
040608970.

P. Bradley and O. Mangasarian. k-plane clustering. J. Global optim., 16(1):23–32, 2000.

S. C. Brubaker. Robust PCA and clustering in noisy mixtures. In Proceedings of the
Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’09, pages
1078–1087, Philadelphia, PA, USA, 2009. Society for Industrial and Applied Mathematics.

E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccu-
rate measurements. Communications on Pure and Applied Mathematics, 59(8):1207–1223,
2006. doi: 10.1002/cpa.20124.

E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal
of the ACM (JACM), 58(3):11, 2011.

T. F. Chan and P. Mulet. On the convergence of the lagged diffusivity fixed point method
in total variation image restoration. SIAM J. Numer. Anal., 36:354–367, 1999. ISSN
0036-1429. doi: 10.1137/S0036142997327075.

803

Teng Zhang and Gilad Lerman

V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky. Rank-sparsity incoherence
for matrix decomposition. SIAM J. Optim., 21(2):572–596, 2011. ISSN 1052-6234. doi:
10.1137/090761793.

T.-J. Chin, J. Yu, and D. Suter. Accelerated hypothesis generation for multistructure data
via preference analysis. IEEE Trans. Pattern Anal. Mach. Intell., 34(4):625–638, April
2012. ISSN 0162-8828. doi: 10.1109/TPAMI.2011.169.

A. K. Cline. Rate of convergence of Lawson’s algorithm. Mathematics of Computation, 26
(117):pp. 167–176, 1972. ISSN 00255718.

M. Coudron and G. Lerman. On the sample complexity of robust PCA. In NIPS, pages
3230–3238, 2012.

C. Croux and G. Haesbroeck. Principal component analysis based on robust estimators of
the covariance or correlation matrix: Influence functions and efficiencies. Biometrika, 87:
603–618, 2000.

C. Croux, P. Filzmoser, and M. Oliveira. Algorithms for projectionc pursuit robust principal
component analysis. Chemometrics and Intelligent Laboratory Systems, 87(2):218–225,
2007.

A. d’Aspremont, L. El Ghaoui, M. Jordan, and G. Lanckriet. A direct formulation for
sparse PCA using semidefinite programming. SIAM Review, 49(3):434–448, 2007. doi:
10.1137/050645506.

I. Daubechies, R. DeVore, M. Fornasier, and C. S. Gunturk. Iteratively reweighted least
squares minimization for sparse recovery. Communications on Pure and Applied Mathe-
matics, 63:1–38, 2010. doi: 10.1002/cpa.20303.

G. David and S. Semmes. Singular integrals and rectifiable sets in Rn: au-delà des graphes
Lipschitziens. Astérisque, 193:1–145, 1991.

P. L. Davies. Asymptotic behaviour of s-estimates of multivariate location parameters and
dispersion matrices. The Annals of Statistics, 15(3):pp. 1269–1292, 1987. ISSN 00905364.

C. Davis and W. M. Kahan. The rotation of eigenvectors by a perturbation. iii. SIAM J.
on Numerical Analysis, 7:1–46, 1970.

S. J. Devlin, R. Gnandesikan, and J. R. Kettenring. Robust estimation of dispersion matrices
and principal components. Journal of the American Statistical Association, 76(374):pp.
354–362, 1981. ISSN 01621459.

C. Ding, D. Zhou, X. He, and H. Zha. R1-PCA: rotational invariant L1-norm principal
component analysis for robust subspace factorization. In ICML ’06: Proceedings of the
23rd International Conference on Machine Learning, pages 281–288, New York, NY,
USA, 2006. ACM. ISBN 1-59593-383-2. doi: 10.1145/1143844.1143880.

M. Fornasier, H. Rauhut, and R. Ward. Low-rank matrix recovery via iteratively reweighted
least squares minimization. SIAM J. Optim., 21(4):1614–1640, 2011. ISSN 1052-6234.
doi: 10.1137/100811404.

804

A Novel M-Estimator for Robust PCA

M. Hardt and A. Moitra. Algorithms and hardness for robust subspace recovery. In COLT,
pages 354–375, 2013.

J. Ho, M. Yang, J. Lim, K. Lee, and D. Kriegman. Clustering appearances of objects under
varying illumination conditions. In Proceedings of International Conference on Computer
Vision and Pattern Recognition, volume 1, pages 11–18, 2003.

D. Hsu, S.M. Kakade, and Tong Zhang. Robust matrix decomposition with sparse corrup-
tions. Information Theory, IEEE Transactions on, 57(11):7221 –7234, nov. 2011. ISSN
0018-9448. doi: 10.1109/TIT.2011.2158250.

P. J. Huber and E. M. Ronchetti. Robust Statistics. Wiley Series in Probability and
Statistics. Wiley, Hoboken, NJ, 2nd edition, 2009. ISBN 978-0-470-12990-6. doi: 10.
1002/9780470434697.

Q. Ke and T. Kanade. Robust subspace computation using L1 norm. Technical report,
Carnegie Mellon, 2003.

J. T. Kent and D. E. Tyler. Redescending M-estimates of multivariate location and scatter.
The Annals of Statistics, 19(4):pp. 2102–2119, 1991. ISSN 00905364.

H. W. Kuhn. A note on Fermat’s problem. Mathematical Programming, 4:98–107, 1973.
ISSN 0025-5610. 10.1007/BF01584648.

N. Kwak. Principal component analysis based on L1-norm maximization. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 30(9):1672–1680, 2008. doi: 10.1109/
TPAMI.2008.114.

C. L. Lawson. Contributions to the Theory of Linear Least Maximum Approximation. PhD
thesis, University of California, Los Angeles, 1961.

K.-C. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for face recognition under
variable lighting. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27
(5):684–698, 2005. ISSN 0162-8828. doi: 10.1109/TPAMI.2005.92.

G. Lerman and T. Zhang. lp-Recovery of the most significant subspace among multiple
subspaces with outliers. ArXiv e-prints, December 2010. To Appear in Constructive
Approximation.

G. Lerman and T. Zhang. Robust recovery of multiple subspaces by geometric lp minimiza-
tion. Ann. Statist., 39(5):2686–2715, 2011. ISSN 0090-5364. doi: 10.1214/11-AOS914.

G. Lerman, M. McCoy, J. A. Tropp, and T. Zhang. Robust computation of linear models,
or how to find a needle in a haystack. ArXiv e-prints, February 2012.

G. Li and Z. Chen. Projection-pursuit approach to robust dispersion matrices and princi-
pal components: Primary theory and monte carlo. Journal of the American Statistical
Association, 80(391):759–766, 1985. ISSN 01621459. doi: 10.2307/2288497.

805

Teng Zhang and Gilad Lerman

L. Li, W. Huang, I. Gu, and Q. Tian. Statistical modeling of complex backgrounds for
foreground object detection. Image Processing, IEEE Transactions on, 13(11):1459 –
1472, nov. 2004. ISSN 1057-7149. doi: 10.1109/TIP.2004.836169.

Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma. Fast convex optimization
algorithms for exact recovery of a corrupted low-rank matrix. In In Intl. Workshop on
Comp. Adv. in Multi-Sensor Adapt. Processing, Aruba, Dutch Antilles, 2009.

G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by low-rank representation. In
ICML, 2010.

G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust recovery of subspace structures by
low-rank representation. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 35(1):171 –184, 2013. ISSN 0162-8828. doi: 10.1109/TPAMI.2012.88.

H. P. Lopuhaä and P. J. Rousseeuw. Breakdown points of affine equivariant estimators of
multivariate location and covariance matrices. Ann. Statist., 19(1):229–248, 1991. ISSN
0090-5364.

R. A. Maronna. Robust M-estimators of multivariate location and scatter. The Annals of
Statistics, 4(1):pp. 51–67, 1976. ISSN 00905364.

R. A. Maronna, R. D. Martin, and V. J. Yohai. Robust Statistics: Theory and methods.
Wiley Series in Probability and Statistics. John Wiley & Sons Ltd., Chichester, 2006.
ISBN 978-0-470-01092-1; 0-470-01092-4.

M. McCoy and J. Tropp. Two proposals for robust PCA using semidefinite programming.
Elec. J. Stat., 5:1123–1160, 2011.

S. Mendelson. A few notes on statistical learning theory. In Lecture Notes in Computer
Science, volume 2600, pages 1–40. Springer-Verlag, 2003.

H. Nyquist. Least orthogonal absolute deviations. Computational Statistics & Data Anal-
ysis, 6(4):361 – 367, 1988. ISSN 0167-9473. doi: 10.1016/0167-9473(88)90076-X.

M. R. Osborne and G. A. Watson. An analysis of the total approximation problem in
separable norms, and an algorithm for the total l1 problem. SIAM Journal on Scientific
and Statistical Computing, 6(2):410–424, 1985. doi: 10.1137/0906029.

A. M. Ostrowski. Solution of Equations and Systems of Equations. Academic Press, Second
edition, September 1966. ISBN 0471889873.

M. Soltanolkotabi and E. J. Candès. A geometric analysis of subspace clustering with
outliers. Ann. Stat., 40(4):2195–2238, 2012. doi: 10.1214/12-AOS1034.

H. Späth and G. A. Watson. On orthogonal linear approximation. Numer. Math., 51:
531–543, October 1987. ISSN 0029-599X. doi: 10.1007/BF01400354.

C. V. Stewart. Robust parameter estimation in computer vision. SIAM Reviews, 41:513–
537, 1999.

806

A Novel M-Estimator for Robust PCA

T. Tao. Topics in Random Matrix Theory, volume 132 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2012. ISBN 978-0-8218-7430-1.

M. Tipping and C. Bishop. Mixtures of probabilistic principal component analysers. Neural
Computation, 11(2):443–482, 1999.

F. De La Torre and M. J. Black. Robust principal component analysis for computer vision. In
Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference
on, volume 1, pages 362 –369 vol.1, 2001. doi: 10.1109/ICCV.2001.937541.

F. De La Torre and M. J. Black. A framework for robust subspace learning. In-
ternational Journal of Computer Vision, 54:117–142, 2003. ISSN 0920-5691. doi:
10.1023/A:1023709501986.

P. Tseng. Nearest q-flat to m points. Journal of Optimization Theory and Applications,
105:249–252, 2000. ISSN 0022-3239. 10.1023/A:1004678431677.

D. E. Tyler. A distribution-free M -estimator of multivariate scatter. Ann. Statist., 15(1):
234–251, 1987. ISSN 0090-5364. doi: 10.1214/aos/1176350263.

R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Com-
pressed sensing, pages 210–268. Cambridge Univ. Press, Cambridge, 2012.

H. Voss and U. Eckhardt. Linear convergence of generalized weiszfeld’s method. Computing,
25:243–251, 1980. ISSN 0010-485X. doi: 10.1007/BF02242002.

L. Wang and A. Singer. Exact and stable recovery of rotations for robust synchronization.
Information and Inference, 2013. doi: 10.1093/imaiai/iat005.

G. A. Watson. Some Problems in Orthogonal Distance and Non-Orthogonal Distance Re-
gression. Defense Technical Information Center, 2001. URL http://books.google.com/

books?id=WKKWGwAACAAJ.

G. A. Watson. On the gauss-newton method for l1 orthogonal distance regression. IMA
Journal of Numerical Analysis, 22(3):345–357, 2002. doi: 10.1093/imanum/22.3.345.

E. Weiszfeld. Sur le point pour lequel la somme des distances de n points donne’s est
minimum. Tohoku Math. J., 43:35–386, 1937.

H. Xu, C. Caramanis, and S. Mannor. Principal component analysis with contaminated
data: The high dimensional case. In COLT, pages 490–502, 2010a.

H. Xu, C. Caramanis, and S. Sanghavi. Robust PCA via outlier pursuit. In NIPS, pages
2496–2504, 2010b.

H. Xu, C. Caramanis, and S. Sanghavi. Robust PCA via outlier pursuit. Information
Theory, IEEE Transactions on, PP(99):1, 2012. ISSN 0018-9448. doi: 10.1109/TIT.
2011.2173156.

807

http://books.google.com/books?id=WKKWGwAACAAJ
http://books.google.com/books?id=WKKWGwAACAAJ

Teng Zhang and Gilad Lerman

L. Xu and A.L. Yuille. Robust principal component analysis by self-organizing rules based
on statistical physics approach. Neural Networks, IEEE Transactions on, 6(1):131–143,
1995. ISSN 1045-9227. doi: 10.1109/72.363442.

T. Zhang. Robust subspace recovery by geodesically convex optimization. ArXiv e-prints,
2012.

T. Zhang, A. Szlam, and G. Lerman. Median K-flats for hybrid linear modeling with
many outliers. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th
International Conference on Computer Vision, pages 234–241, Kyoto, Japan, 2009. doi:
10.1109/ICCVW.2009.5457695.

T. Zhang, A. Szlam, Y. Wang, and G. Lerman. Randomized hybrid linear modeling by
local best-fit flats. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, pages 1927 –1934, jun. 2010. doi: 10.1109/CVPR.2010.5539866.

T. Zhang, A. Szlam, Y. Wang, and G. Lerman. Hybrid linear modeling via local best-fit
flats. International Journal of Computer Vision, 100:217–240, 2012. ISSN 0920-5691.
doi: 10.1007/s11263-012-0535-6.

808

Journal of Machine Learning Research 15 (2014) 809-883 Submitted 5/13; Revised 11/13; Published 3/14

Policy Evaluation with Temporal Differences:
A Survey and Comparison

Christoph Dann cdann@cdann.de
Gerhard Neumann geri@robot-learning.de
Technische Universität Darmstadt
Karolinenplatz 5
64289 Darmstadt, Germany

Jan Peters∗ mail@jan-peters.net
Max Planck Institute for Intelligent Systems
Spemannstraße 38
72076 Tübingen, Germany

Editor: Peter Dayan

Abstract
Policy evaluation is an essential step in most reinforcement learning approaches. It yields
a value function, the quality assessment of states for a given policy, which can be used in
a policy improvement step. Since the late 1980s, this research area has been dominated by
temporal-difference (TD) methods due to their data-efficiency. However, core issues such as
stability guarantees in the off-policy scenario, improved sample efficiency and probabilistic
treatment of the uncertainty in the estimates have only been tackled recently, which has
led to a large number of new approaches.

This paper aims at making these new developments accessible in a concise overview,
with foci on underlying cost functions, the off-policy scenario as well as on regularization in
high dimensional feature spaces. By presenting the first extensive, systematic comparative
evaluations comparing TD, LSTD, LSPE, FPKF, the residual-gradient algorithm, Bellman
residual minimization, GTD, GTD2 and TDC, we shed light on the strengths and weak-
nesses of the methods. Moreover, we present alternative versions of LSTD and LSPE with
drastically improved off-policy performance.
Keywords: temporal differences, policy evaluation, value function estimation, reinforce-
ment learning

1. Introduction

Policy evaluation estimates a value function that predicts the accumulated rewards an agent
following a fixed policy will receive after being in a particular state. A policy prescribes
the agent’s action in each state. As value functions point to future success, they are im-
portant in many applications. For example, they can provide failure probabilities in large
telecommunication networks (Frank et al., 2008), taxi-out times at big airports (Balakr-
ishna et al., 2010) or the importance of different board configurations in the game Go
(Silver et al., 2007). Such value functions are particularly crucial in many reinforcement

∗. Also at Technische Universität Darmstadt, Karolinenplatz 5, Darmstadt, Germany.

c©2014 Christoph Dann, Gerhard Neumann and Jan Peters.

Dann, Neumann and Peters

learning methods for learning control policies as one of the two building blocks constituting
policy iteration. In policy iteration, an optimal policy is obtained by iterating between the
value prediction for states (and sometimes actions) given the agent’s current policy, that is,
policy evaluation, and improving the policy such that it maximizes the value of all states
predicted by the current value function, that is, policy improvement. Policy-iteration-based
reinforcement learning has yielded impressive applications in robot soccer (Riedmiller and
Gabel, 2007), elevator control (Crites and Barto, 1998) and game-playing such as Check-
ers (Samuel, 1959), Backgammon (Tesauro, 1994) and Go (Gelly and Silver, 2008). For
sufficiently accurate value function estimates, policy iteration frequently converges to the
optimal policy. Hence, a reliable and precise estimator of the value function for a given
policy is essential in reinforcement learning and helpful in many applications.

However, obtaining accurate value function estimates is not a straightforward supervised
learning problem. Creating sufficient data for obtaining the value function by regression
would require a large number of roll-outs (state-action-reward sequences) in order to acquire
the accumulated reward for each considered state. As the variance of the accumulated
reward frequently grows with the time horizon, exhaustive number of data points would be
required. To circumvent this issue, the idea of bootstrapping has been proposed, that is,
the current estimate of the value function is used to generate the target values for learning
a new estimate of the value function. In expectation, the sum of the current reward and the
discounted value of the next state should match the value of the current state. Hence, their
difference becomes an error signal for the value function estimator. The resulting approaches
are called temporal-difference methods from their introduction in Sutton (1988). Temporal-
difference methods have received a tremendous attention in the last three decades and had
a number of important successes including the ones mentioned in the previous paragraph.

While temporal-difference methods have been successful, they have not been under-
stood well for a long time (Tsitsiklis and van Roy, 1997; Schoknecht, 2002), they were
data-inefficient (Bradtke and Barto, 1996) , and were not stable if used with function ap-
proximation in the off-policy case (Baird, 1995). In the off-policy scenario, the value function
is estimated from a data set that was generated from another policy than the one we want
to evaluate, which is crucial for data re-use in policy iteration. Recently, there has been
a large number of substantial advances both in our understanding of temporal-difference
methods as well as in the design of novel estimators that can deal with the problems above.
These methods are currently scattered over the literature and usually only compared to the
most similar methods. In this survey paper, we attempt at presenting the state of the art
combined with a more comprehensive comparison.

This survey has two major contributions. First, we are going to present a principled
and structured overview on the classic as well as the recent temporal-difference methods de-
rived from general insights. Second, we are comparing these methods in several meaningful
scenarios. This comprehensive experimental study reveals the strengths and weaknesses of
temporal-difference methods in different problem settings. These insights on the behavior
of current methods can be used to design improvements which overcome previous limita-
tions as exemplified by the alternative off-policy reweighting strategy for LSTD and LSPE
proposed in this paper. The remainder of this paper is structured as follows: Sections 1.1
and 1.2 introduce the required background for this paper on Markov decision processes and
value functions. As the paper aims at complementing the literature, especially the book

810

Policy Evaluation with Temporal Differences

s1 s2

Figure 1: Stationary Distributions for Different Policies. The MDP has deterministic tran-
sitions depending on the state (1 or 2) and the action (solid or dashed) illustrated
by the arrows. Taking for example the dashed action in state 1 moves the agent
always to state 2. A policy which always chooses the solid action leaves the
agent always in state 1, that is, dsolid = [1, 0]T , while the dashed counterpart
makes the agent alternate between the two states (ddashed = [1

2 ,
1
2]T). If the agent

takes the solid action with probability α, the steady state distribution is given by
dα = [1

2 + 1
2α,

1
2 −

1
2α]T .

by Sutton and Barto (1998), we illustrate the concept of temporal-difference methods for
policy evaluation already in Section 1.2. In Section 2, we present a structured overview
of current policy evaluation methods based on temporal differences. This overview starts
out by presenting the core objective functions that underlie the various different temporal-
difference-based value function methods. We show how different algorithms can be designed
by using different optimization techniques, such as stochastic gradient descent, least-squares
methods or even Bayesian formulation, resulting in a large variety of algorithms. Further-
more, we illustrate how these objectives can be augmented by regularization to cope with
overabundant features. We present important extensions of temporal-difference learning in-
cluding eligibility traces and importance reweighting for more data-efficiency and estimation
from off-policy samples. As Section 2 characterizes methods in terms of design decisions,
it also sheds light on new combinations not yet contributed to the literature. In Section 3,
we first present a series of benchmark tasks that are being used for comparative evalua-
tions. We focus particularly on the robustness of the different methods in different scenarios
(e.g., on-policy vs. off-policy, continuous vs. discrete states, number of features) and for
different parameter settings (i.e., the open parameters of the algorithms such as learning
rates, eligibility traces, etc). Subsequently, a series of important insights gained from the
experimental evaluation is presented including experimental validation of known results as
well as new ones which are important for applying value-function estimation techniques in
practice. The paper is concluded in Section 4 with a short summary and an outlook on the
potential future developments in value-function estimation with temporal differences.

1.1 Notation and Background on Markov Decision Processes

The learning agent’s task is modeled as a Markov decision process (MDP)M = (S,A,P, R).
At each discrete time step t = 0, 1, 2 . . . , the system is in a state st ∈ S and the agent chooses
an action at ∈ A. The state of the next time step is then determined by the transition
model P : S × A × S → R, that is, P(st+1|at, st) is the conditional probability (density)
for transitioning from st to st+1 with action at. After each transition, the agent receives a
reward rt = R(st, at) specified by the deterministic reward function R : S × A → R. We
distinguish between discrete systems and continuous systems. While continuous systems

811

Dann, Neumann and Peters

Policy Evaluation:
Estimate the Value Function V π

Policy Improvement:
Update the Policy π

Figure 2: Policy Iteration Algorithm

have infinitely many states (and actions), discrete systems are usually restricted to a finite
number of states. For notational simplicity, we mostly treat S and A to be finite sets in the
remainder of this paper. Nevertheless, the analysis presented in this paper often generalizes
to continuous/infinite state-spaces.

The behavior of the learning agent within the environment, that is, the action-selection
strategy given the current state, is denoted by a policy π. A stochastic policy π : S×A → R
defines a probability distribution over actions given a state st. The agent samples from π to
select its actions. Stochasticity of the policy promotes state exploration, a key component
of robust policy learning. However, in certain cases a deterministic policy can be easier to
handle. Such a policy can be treated as a deterministic function π : S → A with at = π(st).

While we also consider episodic Markov decision processes in examples and experiments,
we concentrate on ergodic MDPs for the formal part to keep the theoretical analysis concise.
Ergodic Markov decision processes do not terminate and the agent can interact with its
environment for an infinite time. Their underlying stochastic processes have to be ergodic,
which, in highly simplified terms, means that every state can be reached from all others
within a finite amount of time steps (for details and exact definitions see for example the
work of Rosenblatt, 1971). If these assumptions hold, there exists a stationary distribution
dπ over S with dπ(s′) =

∑
s,a P(s′|s, a)π(a|s)dπ(s). This distribution yields the probability

of the process being in state s when following policy π, that is, sampled states from the MDP
with policy π are identically distributed samples from dπ. While they are not (necessarily)
independently drawn, ergodicity ensures that the strong law of large numbers still holds.
Formally, MDPs do not need to have unique limiting distributions. Instead, a distribution
defined as dπ(s) = Eπ,P

[∑∞
t=0 1{st=s}

]
would suffice in most cases. For fixed policies π, we

can rewrite the definition dπ more concisely as dπ(s) = EPπ
[
dπ(s)

]
, where Pπ denotes the

state transition distribution

Pπ(st+1|st) =
∑
at

P(st+1|at, st)π(at|st).

Marginalizing out the action reduces the MDP to a Markov chain. Even though the actions
are marginalized out, the policy affects Pπ and, thus, the stationary distribution is highly
dependent on π. See Figure 1 for an example.

Reinforcement learning aims at finding a policy that maximizes the expected (total dis-
counted) future reward

J(π) = EP,π
[∞∑
t=0

γtrt

]
.

812

Policy Evaluation with Temporal Differences

The discount factor γ ∈ [0, 1) controls the considered timespan or planning horizon. Small
discount factors emphasize earlier rewards while rewards in the future are becoming less
relevant with time.

A common family of iterative reinforcement learning algorithms for finding the optimal
policy is policy iteration. Policy iteration algorithms alternate between a policy evaluation
and a policy improvement step (see Figure 2). In the policy evaluation step, the value
function V π : S → R for the current policy is estimated. The value function corresponds to
the expected accumulated future reward

V π(s) = EP,π
[∞∑
t=0

γtrt

∣∣∣∣ s0 = s

]
, (1)

given that the process started in state s, and that the actions are chosen according to policy
π. Hence, the value function evaluates the policy in each state. It allows the subsequent
policy improvement step to obtain a policy which chooses actions that move the agent most
likely in states with the highest values.

1.2 Problem Statement: Efficient Value Function Estimation

This paper discusses different approaches to estimate the value function in Equation (1)
while observing the agent interacting with its environment. More formally, the problem of
value-function estimation can be defined as follows:

The value function of a target policy πG and a given MDP M is estimated based on
the data set D = {(st, at, rt; t = 1 . . . tf), (st, at, rt; t = 1 . . . tf), . . . } sampled from the
MDP M and a behavior policy πB. The data set D may consist of one or more roll-
outs (st, at, rt; t = 1 . . . tf). We distinguish between on-policy estimation (πB = πG) and
off-policy estimation (πB 6= πG). The latter scenario is particularly appealing for policy
iteration, as we can re-use samples from previous policy evaluation iterations for the current
value function.

To illustrate major challenges of value-function estimation we consider a classic 2D grid-
world example shown in Figure 3, a simple benchmark task often used in reinforcement
learning. To estimate the value of the agent’s position, we have to compute the expectation
in Equation (1). We can approximate this value directly with Monte-Carlo methods, that is,
take the average of the accumulated reward computed for several roll-outs starting from this
position (Sutton and Barto, 1998, Chapter 5). However, the variance of the accumulated
reward will be huge as the stochasticity of each time-step often adds up in the accumulated
rewards. For example one roll-out may yield a high reward as the agent always moves in
the directions prescribed by the policy, while another roll-out may yield very low reward as
the agent basically performs a random walk due to the transition probabilities of the MDP.
Hence, even if we have a model of the MDP to simulate the agent until future rewards
are sufficiently discounted, the value estimate of Monte-Carlo methods is typically highly
inaccurate in any reasonable limit of roll-outs.

The crux is the dependency of the state value on future rewards, and subsequently on the
state after many time-steps. The problem simplifies with decreasing discount factor γ and
reduces to standard supervised learning for γ = 0 (estimate immediate reward E[rt|st = s]).
Bootstrapping is an approach to circumvent the problems of long-time dependencies using

813

Dann, Neumann and Peters

a recursive formulation of the value function. This recursion can be obtained by comparing
Equation (1) for two successive time-steps t and t+ 1

V π(s) = EP,π
[
r(st, at) + γV π(st+1)

∣∣∣∣st = s

]
. (2)

This so-called Bellman equation1 holds true for arbitrary MDPsM, discount factors γ and
policies π. This basic insight allows us to update the value estimate of the current state based
on the observed reward rt and the value estimate for the successor state st+1. In the long run,
the estimate is changed such that the difference of the values of temporally subsequent states
(temporal difference) matches the observed rewards in expectation. This bootstrapping
approach is the foundation for efficient value-function estimation with temporal-difference
methods, as it drastically reduces the variance of the estimator. Yet, it may also introduce
a bias (cf. Section 2.1).

To simplify notation we will write V π as am = |S| dimensional vector V π which contains
V π(si) at position i for a fixed order s1, s2, . . . sm of the states. Using the same notation
for the rewards, that is, Rπ ∈ Rm with Rπ

i = Eπ
[
r(si, a)

]
, the Bellman equation can be

rewritten as
V π = Rπ + γPπV π =: T πV π. (3)

Here, the transition matrix Pπ ∈ Rm×m of policy π contains the state transitions probabili-
ties P πij =

∑
a P(si|sj , a)π(a|sj). As we can see, the Bellman equation specifies a fixpoint of

an affine transformation T π : Rm → Rm of V π (Bellman operator). We will omit the policy
superscripts in unambiguous cases for notational simplicity.

The depicted world in Figure 3 consists of 15 × 15 = 225 states, that is, we have to
estimate 225 values. Yet, such a small world can only be used for highly simplified tasks.
More realistic settings (such as street navigation) require much finer and larger grids or have
to allow arbitrary continuous positions s ∈ R2. This requirement illustrates another inherent
problem of value estimation, the curse of dimensionality, that is, the number of states |S|
increases exponentially with the number of state variables. For example, if there are several
moving objects in our grid world, the number of states |S| explodes. In a 15 × 15 grid
world with one agent and 9 moving objects, we have to estimate (15 × 15)10 ≈ 323 values.
Thus, we almost always need to resort to approximation techniques for the value function.
The simplest and most common approach is a linear parametrization with parameter vector
θ ∈ Rn, that is,

V (s) ≈ Vθ(s) = θTφ(s),

where φ(s) defines features of the state s.
The feature function φ : S → Rn reduces the number of parameters which we need to

estimate from m to n with n� m but comes at the price of less precision. Hence, the choice
of a feature representation is always a trade-off between compactness and expressiveness,
where the latter means that there exists a Vθ that is close to V for all states.

Estimation techniques for alternative parametrizations of V exist, such as non-linear
function approximation (e.g.„ see non-linear versions of GTD and TDC, Maei, 2011, Chap-
ter 6) or automatically built representations (cf. Section 2.3). However, defining non-linear

1. Bellman would not have claimed this equation but rather the principle of optimality (source: personal
correspondence with Bellman’s former collaborators).

814

Policy Evaluation with Temporal Differences

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14
1.5

0.0

1.5

3.0

4.5

6.0

7.5

9.0

Figure 3: Classic 2D Grid-World Example: The agent obtains a positive reward (10) when
it reaches the goal and negative (−2) ones when it goes through water ≈. The
agent always chooses a direction (up, right, down left) that points towards the
goal . With probability 0.8 the agent moves in that direction and with 0.2 in a
random direction. We are interested in the value V (s) of each possible position
(state) of the agent with a discount of γ = 0.99. The value V (s) is shown as an
overlay.

function approximations by hand requires domain knowledge to an extent that is usually not
available and the learning problem typically becomes non-convex, that is, the estimator may
get stuck in local, but not global, optima. Therefore, this paper focuses on more commonly
used linear function approximation.

After having identified temporal differences and function approximation as the key in-
gredients for efficient policy evaluation, we can concentrate on important properties of value
function estimators. In robotics and many other fields, the data gathering process is very
costly and time consuming. In such cases, algorithms need to be data efficient and yield
accurate estimates already after few observations. In other applications, accurate models of
the learning environment are available and observations can be generated efficiently by sim-
ulation. Hence, the focus is shifted to efficiency in terms of computation time. Computation
time is also a limiting factor in online and real-time learning, which require to update the
value estimations after each observation within a limited time frame.

2. Overview of Temporal-Difference Methods

Value estimation can be cast as an optimization problem, and, in fact, most temporal-
difference methods are direct applications of optimization techniques. Hence, their charac-
teristics are largely determined by (1) the chosen objective or cost function, and (2) how this
function is optimized. We start by discussing different optimization objectives in Section 2.1
that build the basis of most theoretical results and define the quality of the value estimates

815

Dann, Neumann and Peters

after enough observations. In Section 2.2, we introduce temporal-difference methods by
grouping them according to the employed optimization technique as algorithms within a
group share similar convergence speed and computational demands. To avoid cluttered no-
tation and to put the focus on their intrinsic characteristics, we present the algorithms in
their basic form and omit eligibility traces and importance weights for the off-policy case
here (these are discussed in Section 2.4). Complete versions of the algorithms with available
extensions can be found in Appendix C.

Reliable value estimates are the result of fruitful interplay between expressive feature de-
scriptors φ and suitable estimation algorithms. Yet, choosing appropriate feature functions
poses a hard problem when insufficient domain knowledge is available. Several approaches
have been proposed to simplify the generation and handling of features for temporal-difference
methods. We review these recent efforts in Section 2.3. Finally, in Section 2.4, we discuss
two important extensions applicable to most methods. The first extension are eligibility
traces, which reduce bootstrapping and may increase convergence speed. Subsequently, we
discuss importance reweighting for off-policy value-function estimation.

2.1 Objective Functions

We are interested in estimating parameters θ that yield a value function V θ as close as
possible to the true value function V π. This goal directly corresponds to minimizing the
mean squared error (MSE)

MSE(θ) = ‖Vθ − V π‖2D =
m∑
i=1

dπ(si)[Vθ(si)− V π(si)]2

= [Vθ − V π]TD[Vθ − V π]. (4)

The weight matrix D = diag[dπ(s1), dπ(s2), . . . , dπ(sm)] has the entries of the stationary
distribution dπ on the diagonal and weights each error according to its probability. The true
value function V π can be obtained by Monte-Carlo estimates, that is, performing roll-outs
with the current policy and collecting the long-term reward. However, the Monte-Carlo
estimate of V π requires a lot of samples as it suffers from a high variance.

The high variance can be reduced by eliminating the true value function V π from the
cost function. To do so, we can use bootstrapping (Sutton and Barto, 1998), where V π is
approximated by a one-step prediction based on the approximated value-function. Hence,
we minimize the squared difference between the two sides of the Bellman equation (3) which
corresponds to minimizing

MSBE(θ) = ‖Vθ − TVθ‖2D. (5)

This objective, called the mean squared Bellman error, can be reformulated in terms of
expectations using Equation (2)

MSBE(θ) =
n∑
i=1

dπ(si)[Vθ(si)− EP,π[r(st, at) + γVθ(st+1)|π, st = si]]2

= Ed
[(
Vθ(s)− EP,π[r(st, at) + γVθ(st+1)|π, st = s]

)2]
, (6)

where the outer expectation is taken with respect to the stationary distribution dπ and the
inner one with respect to the state dynamics P of the MDP and the policy π. Let δt denote

816

Policy Evaluation with Temporal Differences

HφVθ

ΠT√
MSPBE(θ)

ΠTVθ

T
√ M

SB
E(θ

)

TVθ

Π

Figure 4: MSBE compares the current value estimate V θ to the T -transformed one TVθ.
In contrast, MSPBE is a distance in the space of parameterized functions Hφ and
always smaller or equal than MSBE, as Π is an orthogonal projection. Figure
adopted from Lagoudakis and Parr (2003).

the temporal-difference (TD) error which is given by the error in the Bellman equation for
time step t

δt = r(st, at) + γVθ(st+1)− Vθ(st) = rt + (γφt+1 − φt)Tθ, (7)

with φt = φ(st). Equation (6) can then be written concisely as MSBE(θ) = Ed[EP,π[δt|st]2].
Using the second form of δt from Equation (7) to formulate the MSBE error as

MSBE(θ) = Ed
[((

EP,π[γφt+1|st]− φt
)T
θ + EP,π[rt|st]

)2
]

makes apparent that the MSBE objective corresponds to a linear least-squares regression
model with inputs γEP,π[φt+1|st] − φt and outputs −EP,π[rt|st]. However, we actually
cannot observe the inputs but only noisy samples γφt+1 − φt. The least-squares regression
model does not account for this noise in the input variables, known as error-in-variables
situation (Bradtke and Barto, 1996). As we will discuss in Section 2.2.1, this deficiency
requires that two independent samples of st+1 need to be drawn when being in state st,
also known as the double-sampling problem (Baird, 1995). Hence, samples generated by a
single roll-out cannot be used directly without introducing a bias. This bias corresponds to
minimizing the mean squared temporal-difference error (Maei, 2011)

MSTDE(θ) = Ed,P,π[δ2
t] = Ed[EP,π[δ2

t |st]]. (8)

The square is now inside the expectation. This cost function has a different optimum than
the MSBE and, hence, minimizing it results in a different value function estimate.

Another possibility to avoid the optimization problems connected to the MSBE is instead
to minimize the distance of the projected Bellman operator, also called the mean squared
projected Bellman error (MSPBE). The Bellman operator in Equation (3) is independent
of the feature representation, and, hence, TV θ may not be representable using the given
features. The MSPBE only yields the error which is representable with the given features

817

Dann, Neumann and Peters

and neglects the error orthogonal to the feature representation. Most prominent temporal-
difference methods such as TD learning (Sutton, 1988), LSTD (Bradtke and Barto, 1996),
GTD (Sutton et al., 2008) and TDC (Sutton et al., 2009) either directly minimize the
MSPBE or converge to the same fixpoint (Tsitsiklis and van Roy, 1997; Sutton et al., 2008,
2009). The MSPBE is given by the squared distance between V θ and the representable
function ΠTV θ that is closest to TV θ

MSPBE(θ) = ‖Vθ −ΠTVθ‖2D, (9)

where Π is a projection operator which projects arbitrary value functions onto the space of
representable functions Hφ. For linear function approximation, the projection Π has the
closed form

ΠV = min
Vθ∈Hφ

‖Vθ − V ‖2D = Φ(ΦTDΦ)−1ΦTDV ,

where Φ = [φ(s1),φ(s2), . . .φ(sm)]T ∈ Rm×n is the feature matrix consisting of rows with
features of every state.

An illustration of the differences between the cost function can be found in Figure 4. The
MSBE compares a parameterized value function V θ against TV θ (see the dotted distance
in Figure 4), which may lie outside the space of parameterized functions Hφ. The MSPBE
first projects TV θ on the set of representable functions and, subsequently, calculates the
error (solid distance).

Example 1 For a simple example of the different distance functions, consider an MDP of
two states and one action. The transition probabilities of the MDP and policy are uniform,
that is,

P π =
1

2

[
1 1
1 1

]
.

The agent receives reward r1 = −0.8 in the first state and r2 = 1.2 in the second state.
With a discount factor of γ = 0.8 the true value function is then given by V π = (I −
γP π)−1[−0.8 1.2]T = [0 2]T . If we only use a single constant feature φ(s) = 1, ∀s ∈ S, the
feature matrix is Φ = [1 1]T and the parametrization V θ = [1 1]Tθ assigns the same value
to all states. Hence, the true value function V π cannot be represented by any parameter,
that is, MSE(θ) > 0 ∀θ. In addition, γP πV θ is always a vector with equal components
and subsequently TV θ = [−0.8 1.2]T +γP πV θ has entries different from each other and the
MSBE is always greater 0. One can easily verify that the projection is a simple average-

operator Π = 1
2

[
1 1
1 1

]
and that θ = 1 satisfies V θ −ΠTVθ = 0, that is, MSPBE(θ) = 0.

The MSPBE circumvents the optimization problems connected to the MSBE, but instead
loses the direct connection to the original MSE, the quantity we truly want to minimize. As
shown by Sutton et al. (2009), the MSPBE can also be written as

MSPBE(θ) = ‖Vθ − TVθ‖2U = ‖ΦTD(Vθ − TVθ)‖2(ΦTDΦ)−1 , (10)

with U = DΦ(ΦTDΦ)−1ΦTD. A derivation of this formulation is given in Appendix A.
This formulation reveals two important insights for understanding the MSPBE. First, the

818

Policy Evaluation with Temporal Differences

MSPBE still measures the MSBE, just the metric is now defined as U instead ofD. Second,
the minimum of the MSPBE is reached if and only if

ΦTD(Vθ − TVθ) = Ed,P,π[δtφt] = 0. (11)

This condition means that there is no correlation between the temporal-difference error δt
and the feature vector φ(st). Many algorithms, such as TD learning and LSTD have been
shown to minimize the MSPBE as their fixpoints satisfy Ed,P,π[δtφt] = 0.

The insight that the fixpoint of TD learning has the property Ed,P,π[δtφt] = 0 has also
motivated the norm of the expected TD update

NEU(θ) = ‖ΦTD(Vθ − TVθ)‖22 = Ed,P,π[δtφt]
TEd,P,π[δtφt] (12)

as an alternative objective function. It shares the same minimum as the MSPBE but has
a different shape, and therefore yields different optimization properties such as speed of
convergence.

Many algorithms solve the problem of finding the minimum of the MSPBE indirectly
by solving a nested optimization problem (Antos et al., 2008; Farahmand et al., 2008)
consisting of the minimization of the operator error (OPE) and the fixed-point error (FPE).
The problem is given by

θ = arg min
θ′

OPE(θ′,ω) = arg min
θ′
‖V θ′ − TV ω‖2D and (13)

ω = arg min
ω′

FPE(θ,ω′) = arg min
ω′
‖V θ − V ω′‖2D = arg min

ω′
‖Φ(θ − ω′)‖2D. (14)

Minimizing the MSPBE is split into two problems where we maintain two estimates of
the parameters ω and θ. In the operator problem, we try to approximate the Bellman
operator applied to the value function Vω with Vθ. In the fixpoint problem, we reduce the
distance between both parameter estimates ω and θ. Many algorithms solve this problem
by alternating between improving the operator and fixed-point error.

To see that the FPE-OPE solution indeed minimizes the MSPBE, we first look at the op-
timality conditions of the error functions. By considering the first order optimality criterion
of the OPE

0 = ∇θ OPE(θ,ω) = ΦTD(Φθ − γΦ′ω −R) =
ω=θ

ΦTD(V θ − TV θ)

and using optimality in the fixpoint problem (ω = θ), we see that solving the nested OPE-
FPE problem (13) – (14) indeed corresponds to minimizing the MSPBE from Equation (11).
Note that the optimal value of the operator error is equal to the MSBE value due to ω = θ
and OPE(ω,ω) = ‖V ω − TV ω‖2D = MSBE(ω). Yet, the problem does not corresponds to
minimizing the MSBE as only one of the parameter vectors can change at a time. The OPE-
FPE formulation is particularly appealing as it does not suffer from the double-sampling
problem.

2.1.1 Fixpoint Discussion

Most temporal-difference methods for value estimation converge either to the minimum of
MSBE or MSPBE. Thus, the properties of both functions as well as their relation to each

819

Dann, Neumann and Peters

other and the mean squared error have been examined thoroughly by Schoknecht (2002)
and Scherrer (2010) and in parts by Bach and Moulines (2011), Lazaric et al. (2010), Sutton
et al. (2009) and Li (2008).

In the following, we summarize the most important results for both cost functions. First,
MSBE and MSPBE are quadratic functions that are strongly convex if the features are
linearly independent, that is, rank(Φ) = m. Linearly independent features are a necessary
assumption for the convergence of most temporal-difference methods. Convexity of the cost
function guarantees that optimization techniques such as gradient descent do not get stuck
in a non-global minimum. Second, the MSBE is larger than the MSPBE for any fixed θ as

MSBE(θ) = MSPBE(θ) + ‖TVθ −ΠTVθ‖2D,

where ‖TVθ − ΠTVθ‖2D is the projection error (dashed distance in Figure 4). As Π is
an orthogonal projection, this insight follows directly from the Pythagorean theorem (cf.
Figure 4).

In addition, Williams and Baird (1993) as well as Scherrer (2010) have derived a bound
on the MSE by the MSBE

MSE(θ) ≤
√
C(d)

1− γ
MSBE(θ), with C(d) = max

si,sj

∑
aP (sj |si, a)π(a|si)

dπ(si)
(15)

where C(d) is a constant concentration coefficient depending on π and P. The numerator
contains the average probability of transitioning from si to sj while the denominator is the
probability of the stationary distribution at state si. The term C(d) becomes minimal if
the transitions of the MDP are uniform. For the MSPBE no such general bound exists,
as the MSPBE only considers part of the MSBE and ignores the projection error. Under
mild conditions, the optimal value of MSPBE is always 0, while optima of MSE and MSBE
may have larger values (see Example 1). Bertsekas and Tsitsiklis (1996) and Scherrer (2010)
provide an example, where the projection error is arbitrarily large, and the MSE value of
the MSPBE optimum is therefore unbounded as well.

MSBE and MSPBE solutions (also referred to as fixpoints, as they satisfy Vθ = TVθ
and Vθ = ΠTVθ respectively) have been characterized as different projections of the true
value function V onto the space of representable functions Hφ by Schoknecht (2002) and
Scherrer (2010). These results imply that, if V π ∈ Hφ, that is, there exist parameters
for the true value function, algorithms optimizing MSPBE or MSBE converge to the true
solution. If V π cannot be represented, the optima of MSBE and MSPBE are different
in general. The natural question, which objective yield better solutions in terms of MSE
value, is addressed by Scherrer (2010). The minimum of MSPBE often has a lower mean
squared error, however, the solution may get unstable and may yield estimates arbitrarily far
away from the true solution V π. Scherrer (2010) illustrated this effect by an example MDP
with unstable MSPBE solutions for certain settings of the discount factor γ. On the other
hand, the MSBE has been observed to have higher variance in its estimate and is therefore
harder to minimize than the MSPBE even if we solve the double-sampling problem (see
Section 3.2). While the bound in Equation (15) gives a quality guarantee for the MSBE
solution, in practice, it may be too loose for many MDPs as shown in Section 3. In addition,
the MSPBE was observed to result in control policies of higher quality, if used as objective

820

Policy Evaluation with Temporal Differences

MSE

MSEt

Monte-Carlo
GPTD
KTD

MSTDE

MSTDEt

BRM w/o DS
RG w/o DS

MSBE

MSBEt

BRM w. DS
RG w. DS

MSPBE

MSPBEt

LSTD
TDC
GTD2

OPE/FPE

OPEt/FPEt

LSPE
TD

FPKF

NEU

NEUt

GTD

Figure 5: Relations between cost functions and temporal-difference learning algorithms. The
methods are listed below the sample-based objective function, which they mini-
mize at timestep t, denoted by the subscript t. The basic idea of temporal dif-
ference learning is to optimize for a different (potentially biased) objective func-
tion instead of the MSE directly, since its sample-based approximation MSEt at
timestep t converges very slowly to the MSE (due to the large sample variance).
The MSPBE, OPE/FPE and NEU objectives (blue shaded) share the same fixed-
point and their algorithms converge therefore to the same solution, but possibly
at different pace.

functions in a policy iteration loop (Lagoudakis and Parr, 2003). For these reasons the
MSPBE is typically preferred. While MSBE and MSPBE have been studied in detail, the
quality of the MSTDE cost function and its exact relation to the MSBE are still open
questions.

Figure 5 provides a visual overview of the important cost functions and their respective
algorithms which are introduced in the following section.

2.2 Algorithm Design

In the following discussion, we will categorize temporal-difference methods as a combina-
tion of cost functions and optimization techniques. While we introduced the former in the
previous section, we now focus on the optimization techniques. Temporal-difference meth-
ods for value function estimation rely either on gradient-based approaches, least-squares
minimization techniques or probabilistic models to minimize the respective cost function.
Each optimization approach and the consequent family of temporal-difference methods is
presented in Sections 2.2.1, 2.2.2 and 2.2.3. We do not give the complete derivation for every
method but instead aim for providing their key ingredients and highlighting similarities and
difference between the families. Table 1 lists all algorithms presented in this section along
with their most important properties.

821

Dann, Neumann and Peters

Fixpoint Runtime
Complexity

Eligibility
Traces

Off-Policy
Convergence

Idea

TD MSPBE O(n) TD(λ) no bootstrapped
SGD of MSE

GTD MSPBE O(n) - yes SGD of NEU

GTD2 MSPBE O(n) GTD2(λ) yes SGD of MSPBE

TDC MSPBE O(n) GTD(λ)/TDC(λ) yes SGD of MSPBE

RG MSBE /
MSTDE

O(n) gBRM(λ) yes SGD of MSBE

BRM MSBE /
MSTDE

O(n2) BRM(λ) yes ∇MSBE = 0

LSTD MSPBE O(n2) LSTD(λ) yes ∇MSPBE = 0

LSPE MSPBE O(n2) LSPE(λ) yes recursive LS Min.

FPKF MSPBE O(n2) FPKF(λ) ? recursive LS Min.

KTD MSE O(n2) - no
Parameter Track-
ing by Kalman
Filtering

GPTD MSE O(n2) GPTD(λ) no Gaussian Process
on V

Table 1: Overview of Temporal-Difference Methods. The methods can divided into gradient-
based approaches, least-squares methods and probabilistic models (from top to
bottom, separated by horizontal lines). The prior beliefs in probabilistic models
acts as a regularization of the cost function. The fixpoint of the residual-gradient
algorithm (RG) and Bellman residual minimization (BRM) depends on whether
independent second samples for successor states are used or not. The convergence
analysis of FPKF for off-policy estimation is still an open problem (Scherrer and
Geist, 2011; Geist and Scherrer, 2013).

2.2.1 Gradient-Based Approaches

One family of temporal-difference methods relies on stochastic gradient descent (SGD) to
optimize their cost function. This optimization technique is directly based on stochastic
approximation going back to Robbins and Monro (1951).

Stochastic gradient descent is typically applied to functions of the form f(θ) =
Ep(x)[g(x;θ)], where the expectation is usually approximated by samples and the distri-
bution p(x) is independent of θ. The parameter update in gradient descent follows the
negative gradient, that is,

θk+1 = θk − αk∇f(θk) = θk − αkEp(x)[∇g(x;θk)],

822

Policy Evaluation with Temporal Differences

where αk denotes a step-size. While in ordinary gradient descent, also denoted as batch
gradient descent, the gradient is calculated using all samples, stochastic gradient descent
only evaluates the gradient for one sample x̃

θk+1 = θk − αk∇g(x̃;θk) with x̃ ∼ p(x).

Stochastic updates are guaranteed to converge to a local minimum of f under the mild
stochastic approximation conditions (Robbins and Monro, 1951) such that the step-sizes
αk ≥ 0 satisfy

∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞.

All cost functions in Section 2.1 are expectations with respect to the stationary state
distribution dπ. Additionally, observations arrive sequentially in online learning, and there-
fore, stochastic gradient descent is particularly appealing as it requires only one sample per
update. Stochastic gradient temporal-difference methods update the parameter estimate θt
after each observed transition from the current state st to the next state st+1 with action at
and reward rt.

Temporal-Difference Learning. Learning signals similar to temporal differences have been
used before, for example by Samuel (1959), but the general concept was first introduced
by Sutton (1988) with the temporal-difference (TD) learning algorithm. It is considered
to be the first use of temporal differences for value-function estimation. Sometimes, also
subsequent approaches are referred to as TD learning algorithms. To avoid ambiguity, we
use the term TD learning only for the first algorithm presented by Sutton (1988) and denote
all other approaches with temporal-difference methods.

The idea behind TD learning is to minimize the MSE where we use TVθt as approxima-
tion for the true value function V π. Minimizing this function ‖V θ − TV θt‖2D w.r.t. θ by
stochastic gradient descent yields the update rule of TD learning in its basic form

θt+1 = θt + αt[rt + γVθt(st+1)− Vθt(st)]φt = θt + αtδtφt. (16)

As the target values TV θt change over time (TV θ0 ,TV θ1 ,TV θ2 , . . .), TD learning does
not perform stochastic gradient descent on a well-defined objective function. Thus, general
stochastic approximation results are not applicable and in fact several issues emerge from
the function change. TD learning as in Equation (16) is only guaranteed to converge if
the stationary state distribution dπ is used as sampling distribution, that is, on-policy esti-
mation. If the value function is estimated from off-policy samples, we can easily construct
scenarios where TD learning diverges (Baird, 1995). For a more detailed discussion of the
off-policy case we refer to Section 2.4.2. In addition, Tsitsiklis and van Roy (1997) have
shown that the TD learning algorithm can diverge for non-linear function approximation.

TD learning can be understood more clearly as minimization of the nested optimization
problem introduced in Equations (13) and (14). More precisely, TD learning first optimizes
the fixpoint problem from Equation (14) by setting ω = θt and then performs a stochastic
gradient step on the operator problem from Equation (13). Hence, we can already conclude
that the convergence point of TD learning is given by

V θ = ΠT πV θ,

823

Dann, Neumann and Peters

which is the minimum of the MSPBE objective in Equation (9).
As the results in Section 3 show, the performance of TD learning depends on good

step-sizes αt. Hutter and Legg (2007) aim at overcoming the need for optimizing this hyper-
parameter. They re-derived TD learning by formulating the least-squares value-function
estimate as an incremental update, which yielded automatically adapting learning rates for
tabular feature representations. Dabney and Barto (2012) extended this approach to arbi-
trary features and additionally proposed another adapting step-size scheme which ensures
that the value estimates do not increase the temporal-difference errors δ0, δ1, . . . , δt ob-
served in previous timesteps. Autostep (Mahmood et al., 2012), a learning-rate adaptation
approach for incremental learning algorithms based on stochastic gradient, yields individual
step-sizes for each feature which may boost learning speed. It relies on a meta-step-size
but works well for a wide range of step lengths which makes specifying the meta-parameter
easier than the step-size for TD learning directly.

Residual-Gradient Algorithm. The residual-gradient (RG) algorithm (Baird, 1995) mini-
mizes the mean squared Bellman error (MSBE) directly by stochastic gradient descent. Its
update rule in the most basic form is given by

θt+1 =θt + αt[rt + γVθt(st+1)− Vθt(st)](φt − γφt+1)

=θt + αtδt(φt − γφt+1).

The difference compared to TD learning is that the gradient of Vθt(st+1) with respect to θt
is also incorporated into the update.

Unfortunately, RG methods suffer from the double-sampling problem mentioned in Sec-
tion 2.1. Consider the gradient of the MSBE, in Equation (5), given by

2Ed
[(
Vθ(s)− Eπ,P [r(st, at) + γφ(st+1)Tθ|st = s]

)(
φ(s)− γEπ,P [φ(st+1)|st = s]

)]
. (17)

The outer expectation is computed over the steady state distribution and can be replaced
by a single term in stochastic gradient. Both inner expectations are taken over the joint
of the policy π and the transition distribution P of the MDP. Multiplying out the brackets
yields γ2E[φt+1]E[φt+1]Tθ besides other terms. If we replace both expectations with the
current observation φt+1, we obtain a biased estimator since

φt+1φ
T
t+1 ≈

Stoch. Approx.
E[φt+1φ

T
t+1|st] = E[φt+1|st]E[φt+1|st]T + Cov[φt+1,φt+1].

Hence, updating the parameters only with the current sample is biased by the covariances
Cov[φt+1,φt+1] and Cov[rt,φt+1] with respect to P and π. While this effect can be neglected
for deterministic MDPs and policies (since Cov[φt+1,φt+1] = 0,Cov[rt,φt+1] = 0), the
residual-gradient algorithm does not converge to a minimizer of the MSBE for stochastic
MDPs. It has been shown by Maei (2011) that the residual-gradient algorithm converges to
a fixed point of the mean squared TD error2 defined in Equation (8) instead. Alternatively,

2. A different characterization of the RG fixpoint was derived by Schoknecht (2002).

824

Policy Evaluation with Temporal Differences

each inner expectation in Equation (17) can be replaced by independently drawn samples
a′t, r

′
t, s
′
t+1 and a′′t , r′′t , s′′t+1 of the transition

θt+1 = θt + αt[r
′
t + γVθt(s

′
t+1)− Vθt(st)](φt − γφ′′t+1).

With double samples, the residual-gradient algorithm indeed convergences to a fixpoint of
the MSBE. However, a second sample is only available, if the model of the MDPs is known
or a previously observed transition from the same state is reused. While there have been
efforts to avoid the double-sampling problem for other approaches such as the projected
fixpoint methods or Bellman residual minimization (Farahmand et al., 2008), it is still an
open question whether the bias of the residual-gradient algorithm with single samples can
be removed by similar techniques.

Projected-Fixpoint Methods. The key idea of the projected fixpoint algorithms is to mini-
mize the MSPBE directly by stochastic gradient descent (Sutton et al., 2009) and, therefore,
overcome the issue of TD learning which alters the objective function between descent steps.

Sutton et al. (2009) proposed two different stochastic gradient descent techniques. The
derivation starts by writing the MSPBE in a different form given by

MSPBE(θ) = E[δtφt]
TE[φtφ

T
t]−1E[δtφt]. (18)

The proof of this equation is provided in Appendix A, Equation (43). We can write the
gradient of Equation (18) as

∇MSPBE(θ) = −2E[(φt − γφt+1)φTt]E[φtφ
T
t]−1E[δtφt] (19)

= −2E[δtφt] + 2γE[φt+1φ
T
t]E[φtφ

T
t]−1E[δtφt]. (20)

The gradient contains a product of expectations of φt+1 and δt in both forms (Equation 19
and 20). As both terms depend on the transition distribution of the MDP, minimizing
Equation (18) with stochastic gradient descent again requires two independently drawn
samples, as in the residual-gradient algorithm. To circumvent this limitation, a long-term
quasi-stationary estimate w of

E[φtφ
T
t]−1E[δtφt] = (ΦTDΦ)−1ΦTD(TVθ − Vθ) (21)

is calculated. To obtain an iterative update for w, we realize that the right side of Equa-
tion (21) is the solution to the following least-squares problem

J(w) = ‖ΦTw − (TV θ − V θ)‖22.

This least-squares problem can also be solved by stochastic gradient descent with the update
rule

wt+1 = wt + βt(δt − φTt wt)φt,

and the step-size βt. Inserting the estimate wt into Equation (19) and Equation (20) allows
us to rewrite the gradient with a single expectation

∇MSPBE(θ) = −2E[(φt − γφt+1)φt]
Twt (22)

= −2E[δtφt] + 2γE[φt+1φ
T
t]wt. (23)

825

Dann, Neumann and Peters

Minimizing with the gradient of the form of Equation (22) is called the GTD2 (gradient
temporal-difference learning 2) algorithm with update rule

θt+1 =θt + αt(φt − γφt+1)φTt wt,

and using the form of Equation (23) yields the TDC (temporal-difference learning with
gradient correction) algorithm (Sutton et al., 2009)

θt+1 =θt + αt(δtφt − γ(φTt wt)φt+1).

As θ and w are updated at the same time, the choice of step-sizes αt and βt are critical for
convergence (see also our experiments in Section. 3). Both methods can be understood as
a nested version of stochastic gradient descent optimization. TDC is similar to TD learn-
ing, but with an additional term to adjust the TD update to approximate the real gradient
of MSPBE. The right side of Figure 7 shows this corrections and compares both stochas-
tic approximations to descent following the true gradient. Both algorithms minimize the
MSPBE but show different speeds of convergence, as we will also illustrate in the discussion
of experimental results in Section 3.

The predecessor of the GTD2 algorithm is the GTD algorithm (Sutton et al., 2008). It
minimizes the NEU cost function from Equation (12) by stochastic gradient descent. The
gradient of NEU is given by

∇NEU(θ) = −2E[(φt − γφt+1)φTt]E[δtφt].

One of the two expectations needs to be estimated by a quasi-stationary estimate in analogy
to the other projected fixpoint methods. Hence, the term E[δtφt] is replaced by u which is
updated incrementally by

ut+1 = ut + βt(φ
T
t δt − ut) = (1− βt)ut + βtφ

T
t δt.

The updates for θ of GTD are then given by

θt+1 = θt + αt(φt − γφt+1)φTt ut.

The update rule for GTD is similar to GTD2 but the quasi stationary estimates w and u
are different. While GTD2 searches for the best linear approximation φTt w of E[δt], GTD
tries to approximate E[δtφt] with u. As shown by Sutton et al. (2009) and our experiments,
GTD2 converges faster and should be preferred over GTD.

All gradient-based temporal-difference methods only require sums and products of vec-
tors of length n to update the parameters. Thus, they run in O(n) time per update. The
initial value of θ has a tremendous influence on the convergence speed of gradient-based
methods. While other approaches such as LSTD do not require an initial values, the gra-
dient based approaches can benefit from good parameter guesses, which are available in
numerous applications. For example, the parameter vector learned in previous steps of
policy iteration can be used as initial guesses to speed up learning. Fixed-Point Kalman
Filtering (FPKF) proposed by Choi and Roy (2006) is a descent method, that has a close re-
lationship to TD learning. Yet, as it is motivated by least-squares minimization, we present
it in the next section.

826

Policy Evaluation with Temporal Differences

s1start s2 s3 s4 s5 s6 s7

[
0

1

]
φ(si) =

[
1
6
5
6

][
2
6
4
6

][
3
6
3
6

][
4
6
2
6

][
5
6
1
6

][
1

0

]
0.5 -3

0.5 -3

0.5 -3

0.5 -3

0.5 -3

0.5 -3

0.5 -3

0.5 -3

0.5 -3

0.5 -3

1 -2 1 0

-2 0-12V = -10 -8 -6 -4

Figure 6: 7-State Boyan Chain MDP from Boyan (2002). Each transition is specified by a
probability (left number) and a reward (right number). There are no actions to
chose for the agent. The features are linearly increasing / decreasing from left
to right and are capable of representing the true value function with parameters
θ = [−12, 0]T .

−80 −60 −40 −20 0 20 40 60
θ1

−60

−40

−20

0

20

40

θ 2

TD(0)

TDC

Batch GD ∇MSE 5

10

15

20

25

30

35

40

45

50

M
S
E

−80 −60 −40 −20 0 20 40 60
θ1

−60

−40

−20

0

20

40

θ 2

TD(0)

TDC

Batch GD ∇MSPBE

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

M
S
P
B
E

Figure 7: Comparison of Gradient Descent and TD learning for the MDP of Figure 6 with
γ = 1: The left plot shows the mean squared error. Ideally, we want to find
parameters that minimize this objective, however, TD(0) and TDC only find a
minimum of the MSPBE (Eq. 9, right plot). The dashed lines show the parameter
iterates of batch gradient descent of the respective cost functions. Stochastic
gradient methods such as TD and TDC are slower since they can only update θ1

for samples from the beginning of an episode and θ2 for samples from the end (cf.
the features from Figure 6). Comparison of both plots shows, that a fixpoint of
MSPBE can give arbitrarily bad results for MSE, as the problem is not discounted
and the guarantees of Section 2.1 do not hold. The MSPBE and MSBE measures
only compare the difference of the value of a state and its successor’s value. Hence,
all parameters which yield differences of 2 and arbitrary value of the terminal state
are optimal.

827

Dann, Neumann and Peters

2.2.2 Least-Squares Approaches

Least-squares approaches use all previously observed transitions to determine either the value
function directly in one step or an update of the value function. All considered objective
functions (cf. Section 2.1) have the form of a standard linear regression problem

‖y −Xθ‖2U = (y −Xθ)TU(y −Xθ),

with respect to the (semi-)norm induced by a positive semi-definite matrix U ∈ Rk×k.
While the targets are denoted by y ∈ Rk, X ∈ Rk×n is the matrix consisting of rows of
basis vectors. Setting the gradient of the objective function with respect to θ to 0 yields the
closed-form least-squares solution

θ∗ = (XTUX)−1XTUy.

Least-Squares Temporal-Difference Learning. The most prominent least-squares method for
policy evaluation is least-squares temporal-difference (LSTD) learning (Bradtke and Barto,
1996; Boyan, 2002). LSTD uses the MSPBE as objective function. The least-squares solution
of the MSPBE from Equation (10) is given by

θ = (ΦTD(Φ− γPΦ))︸ ︷︷ ︸
A

−1
ΦTDR︸ ︷︷ ︸

b

. (24)

During the derivation of this solution (see Appendix A) many terms cancel out, including
the ones which are connected to the double-sampling problem—in contrast to the analytical
solution for minimizing the MSBE shown in Equation (31). Alternatively, LSTD can be
derived by considering the analytical solution of the OPE problem from the OPE–FPE
formulation (Equations 13 and 14) given by

θ =(ΦTDΦ)−1ΦTD(R+ γPΦω)

=
ω=θ

(ΦTD(Φ− γPΦ))−1ΦTDR.

The LSTD solution in the second line is obtained by inserting the solution of the FPE
problem, ω = θ, into the first line and re-ordering the terms.

LSTD explicitly estimates A = ΦTD(Φ− γPΦ) and b = ΦTDR and then determines
θ = A−1b robustly (for example with singular value decomposition). The estimates At, bt
at time t can be computed iteratively by

At+1 = At + φt[φt − γφt+1]T , (25)
bt+1 = bt + φtrt, (26)

and converge to A, b (Nedic and Bertsekas, 2003) for t → ∞. For calculating θt we need
to invert a n× n matrix. This computational cost can be reduced from O(n3) to O(n2) by
updating A−1

t directly and maintaining an estimate θt = A−1
t bt (Nedic and Bertsekas, 2003;

Yu, 2010). The direct update of A−1
t can be derived using the Sherman-Morrison formula

(At + uvT)−1 = A−1
t −

A−1
t uv

TA−1
t

1 + vTA−1
t u

(27)

828

Policy Evaluation with Temporal Differences

with vectors u := φt and v := φt−γφt+1. The resulting recursive LSTD algorithm is listed
in Appendix C in a more general form with eligibility traces and off-policy weights (for the
basic form set λ = 0 and ρt = 1).

An initial guess A−1
0 has to be chosen by hand. A−1

0 corresponds to the prior belief of
A−1 and is ideally the inverse of the null-matrix. In practice, the choice A−1

0 = εI with
ε� 0 works well. Small values for ε act as a regularizer on θ.

Interestingly, LSTD has a model-based reinforcement learning interpretation. For lookup
table representations, the matrix At contains an empirical model of the transition probabil-
ities. To see that, we write At and bt as

At = N −C = N(I − γP̂), bt = NR̂,

where N is a diagonal matrix containing the state visit counts up to time step t. The
elements Cij of matrix C contain the number of times a transition from state i to state j has
been observed. The matrix P̂ = γ−1N−1C denotes the estimated transition probabilities
and R̂i denotes the average observed reward when being in state i. Note that, in this case,
the LSTD solution

θ∗ =
(
N
(
I − γP̂

))−1
NR̂ =

(
I − γP̂

)−1
R̂

exactly corresponds to model based policy evaluation with an estimated model. For approx-
imate feature spaces, the equivalence to model-based estimation is lost, but the intuition
remains the same. A more detailed analysis of this connection can be found in the work of
Boyan (2002) and Parr et al. (2008)

Least-Squares Policy Evaluation. The least-squares policy evaluation (LSPE) algorithm
proposed by Nedic and Bertsekas (2003) shares similarities with TD learning and the LSTD
method as it combines the idea of least-squares solutions and gradient descent steps. This
procedure can again be formalized with the nested OPE-FPE problem from Equations (13)
and (14). First, LSPE solves the operator problem

θt+1 = arg min
θ
‖Φθ − TΦωt‖2D (28)

in closed form with the least-squares solution. Then, it decreases the fixpoint error by
performing a step in the direction of the new θt+1

ωt+1 = ωt + αt(θt+1 − ωt), (29)

where αt ∈ (0, 1] is a predefined step size. The vector ωt is the output of the algorithm at
time-step t, that is, the parameter estimate for the value function. In practice, the step-sizes
are large in comparison to stochastic gradient approaches and can often be set to 1.

The solution of the LSPE problem from Equation (28) is given by

θt+1 = (ΦTDΦ)−1︸ ︷︷ ︸
M

ΦTD(R+ γΦ′ωt), (30)

829

Dann, Neumann and Peters

where Φ′ is the matrix containing the features of the successor states, that is, Φ′ = P πΦ.
The current estimateM t of (ΦTDΦ)−1 can again be updated recursively with the Sherman-
Morrison formula from Equation (27) similar to before, which yields the update rule of
LSPE summarized in Algorithm 7 in Appendix C. As LSPE solves the nested OPE-FPE
problem, it also converges to the MSPBE fixpoint (Nedic and Bertsekas, 2003). Hence,
LSPE and LSTD find the same solution, but LSPE calculates the value function recursively
using least-squares solutions of the OPE problem while LSTD acquires the value function
directly by solving both, OPE and FPE, problems in closed form. LSPE allows adapting
the step-sizes αt of the updates and using prior knowledge for the initial estimate of ω0,
which serves as a form of regularization. Therefore, LSPE does not aim for the minimum
of the MSPBE approximated by samples up to the current timestep, it instead refines the
previous estimates. Such behavior may avoid numerical issues of LSTD and is less prone to
over-fitting.

Fixed-Point Kalman Filtering. Kalman filtering is a well known second-order alternative
to stochastic gradient descent. Choi and Roy (2006) applied the Kalman filter to temporal-
difference learning, which resulted in the Fixed-Point Kalman Filtering (FPKF) algorithm.

As in TD learning, FPKF solves the nested optimization problem from Equations (13)
and (14) and hence finds the minimum of the MSPBE objective function. However, instead
of stochastic gradient descent, FPKF performs a second order update by multiplying the
standard TD learning update with the inverse of the HessianHt of the operator error given in
Equation (13). FPKF can therefore be also understood as an approximate Newton-method
on the OPE problem. The Hessian Ht is given by the second derivative of the OPE

Ht =
1

t

t∑
i=1

φiφ
T
i .

Note that the Hessian is calculated from the whole data set i = 1, . . . , t up to the current
time step and does not depend on the parameters θ. The update rule of FPKF is thus given
by

θt+1 = θt + αtH
−1
t φtδt.

This update rule can also be derived directly from the Kalman filter updates if αt is set to
1/t. See Figure 8 for a graphical model illustrating the Kalman Filter assumptions (e.g., the
definition of the evolution and observation function). For small values of t, the matrix Ht

becomes singular. In this case Ht needs to be regularized or the pseudo-inverse of Ht has
to be used. As FPKF is a second order method, it typically converges with fewer iterations
than TD but comes with additional price of estimating H−1

t . Analogously to the derivation
of LSPE, H−1

t can updated directly in O(n2) which yields the recursive parameter updates
of FPKF shown in Algorithm 9 (adapted from the work of Scherrer and Geist, 2011 and
Geist and Scherrer, 2013).

The step-size αt = 1/t of Kalman filtering basically assumes a stationary regression
problem, where all targets ri + γφTi+1θi are equally important. However, it is beneficial to
give later targets more weight, as the parameter estimates are getting more accurate and
therefore the targets ri + γφTi+1θi are becoming more reliable. Such increased influence of

830

Policy Evaluation with Temporal Differences

θ

γφT1 θ0

+r1

φT1

θ

γφT2 θ1

+r2

φT2

θ

γφT3 θ2

+r3

φT3

θ

γφT4 θ3

+r4

φT4

...

Figure 8: Illustration of the model assumptions of Fixed-Point Kalman Filtering. FPKF
aims at estimating the value of the hidden variable θ assuming a noise-free transi-
tion function (stationary environment, variable is constant over time). The main
idea of FPKF is to use estimates of previous timesteps to compute the outputs
ri + γφTi θi and treat them as fixed and observed in later timesteps. This as-
sumption makes FPKF essentially different from KTD (cf. Figure 9), which only
considers ri as observed.

recent time-steps can be achieved by using a step-size αt which decreases slower than 1/t,
for example, a/(a+ t) for some large a.

Bellman Residual Minimization. Bellman residual minimization (BRM) was one of the first
approaches for approximate policy evaluation proposed by Schweitzer and Seidmann (1985).
It calculates the least-squares solution of the MSBE given by

θ = (∆ΦTD∆Φ)︸ ︷︷ ︸
F

−1
∆ΦTDR︸ ︷︷ ︸

g

, (31)

where ∆Φ = Φ− γP πΦ denotes the difference of the state features and the expected next
state features discounted by γ. Again, the matrices F and g can be estimated by samples,
similar to A and b of LSTD, that is,

F t =
t∑

k=0

(φk − γφ′k+1)(φk − γφ′′k+1)T , gt =
t∑

k=0

(φk − γφ′k+1)r′′k .

However, as the residual-gradient algorithm, BRM suffers from the double-sampling problem
because F t contains the product φk+1φ

T
k+1 of the features of the next state and gt the

product φk+1rk (see Section 2.1 and the discussion of the residual-gradient algorithm in
Section 2.2.1). It therefore minimizes the MSTDE if we use one successor state sample,
that is, set φ′k+1 = φ′′k+1. To converge to a minimum of the MSBE, we have to use two
independent samples s′k+1, r

′
k and s′′k+1 r

′′
k . For this reason, the BRM algorithm can only be

employed for either a finite state space where we can visit each state multiple times or if we
know the model of the MDP. See Algorithm 10 in Appendix C for the recursive update rules
with double samples. For updates with a single sample see Algorithm 11, which already
includes eligibility traces (from Scherrer and Geist, 2011; Geist and Scherrer, 2013, see also
Section 2.4.1). If we compare the least-squares solutions for the MSPBE and the MSBE, we

831

Dann, Neumann and Peters

θ0

∆v0

θ1

∆v1

r1

(φt − γφt+1)θ1+
∆v1 − γ∆v0

θ2

∆v2

r2

(φt − γφt+1)θ2+
∆v2 − γ∆v1

...

...

Figure 9: Graphical Model of Kalman TD learning and Gaussian-process TD learning for
linearly parameterized value functions. Both approaches assume that a Gaussian
process generates the random variables and linear function approximation vt =
θTt φt is used. KTD aims to track the hidden state (blue dashed set of variables) at
each time step given the reward observation generated by the relationship (bend
arrows, in red) of the Bellman equation. While GPTD assumed θ to be constant
over time, that is, θt+1 = θt, KTD allows changing parameters.

can see that the product of ∆ΦT∆Φ cancels out for the MSPBE due to the projection of
the MSBE in the feature space and the MSPBE can subsequently avoid the double-sampling
problem.

2.2.3 Probabilistic Models

While gradient-based and least-squares approaches are motivated directly from an optimiza-
tion point of view, probabilistic methods take a different route. They build a probabilistic
model and infer value function parameters which are most likely, given the observations.
These methods not only yield parameter estimates that optimize a cost function, but also
provide a measure of uncertainty of these estimates. Especially in policy iteration, this
information can be very helpful to decide whether more observations are necessary or the
value function estimate is sufficiently reliable to improve the policy.

Gaussian-process temporal-difference learning (GPTD) by Engel et al. (2003, 2005) as-
sumes that the rewards rt as well as the unknown true values of the observed states
vt = V (st) are random variables generated by a Gaussian process. The Bellman Equa-
tion (2) specifies the relation between the variables

ṽt := vt + ∆vt = rt + γ(vt+1 + ∆vt+1), (32)

where ṽt =
∑∞

k=t γ
k−trt is the future discounted reward of the current state st in the

particular trajectory. The difference between ṽt and the average future discounted reward
vt is denoted by ∆vt and originates from the uncertainty in the system, that is, the policy π
and the state transition dynamics P. Please see Figure 9 for a graphical model illustrating
the dependencies of the random variables. While ∆vt ∼ N (0, σ2) always has mean zero, we
have to set its variances σt a-priori based on our belief of π and P. The covariance Σt of all

832

Policy Evaluation with Temporal Differences

∆vi for i = 1, . . . , t is a band matrix with bandwidth 2 as the noise terms of two subsequent
time steps are correlated.

We consider again a linear approximation of the value function, that is, vt = φTt θ. Prior
knowledge about the parameter θ can be incorporated in the prior p(θ), which acts as a
regularizer and is usually set to N (0, I). GPTD infers the mean and covariance of the
Gaussian distribution of θ given the observations r0, . . . , rt and our beliefs. The mean value
corresponds to the maximum a-posteriori prediction and is equivalent to finding the solution
of the regularized linear regression problem

θt = arg min
θ
‖∆Φtθ − rt‖2Σ−1

t
+ ‖θ‖2, (33)

where rt = [r0, r1, . . . , rt]
T is a vector containing all observed rewards. The matrix ∆Φt =

[∆φ0, . . . ,∆φt]
T is the difference of features of all transitions with ∆φt = φt − γφt+1. The

solution of this problem can be formulated as

θt =
(
∆ΦtΣ

−1
t ∆ΦT

t + I
)−1

∆ΦtΣ
−1
t rt. (34)

At first glance, the solution is similar to the MSBE least-squares solution. However, the
noise terms are often highly correlated and, hence, Σ−1

t is not a diagonal matrix. We can
transform the regression problem in Equation (33) into a standard regularized least-squares
problem with i.i.d. sampled data points by a whitening transformation (for details see
Appendix B). We then see that the whitening transforms the reward vector rt into the vector
of the long term returns Rt where the hth elements corresponds to (Rt)h =

∑t
k=h γ

k−hrk.
Consequently, the mean prediction of GPTD is equivalent to regularized Monte-Carlo value-
function estimation (cf. Section 1.2) and minimizes the MSE from Equation (4) in the limit
of infinite observations. For finite amount of data, the prior on θ compensates the high
variance problem of Monte-Carlo estimation, but may also slow down the learning process.

The quantity in Equation (34) can be computed incrementally without storing ∆Φt

explicitly or inverting a n × n-matrix at every timestep by a recursive algorithm shown in
Algorithm 12. Its full derivation can be found in Appendix 2.1 of Engel (2005). The most
expensive step involves a matrix product of the covariance matrix P t ∈ Rn×n of θt and
∆φt+1. Thus, GPTD has a runtime complexity of O(n2).

Kalman temporal-difference learning (KTD) by Geist and Pietquin (2010) is another
probabilistic model very similar to GPTD. While it is based on the same assumptions of
Gaussian distributed random variables, it approaches the value estimation problem from a
filtering or signal processing perspective. KTD uses a Kalman Filter to track a hidden state,
which changes over time and generates the observed rewards at every timestep. The state
consists of the parameter to estimate θt and the value difference variables ∆vt,∆vt−1 with
∆vt = ṽt − φtθt of the current and last timestep. As in GPTD, the rewards are generated
from this state with Equation (32) resulting in the linear observation function g

rt = g(θt,∆vt,∆vt+1) = [φt − γφt+1]θt + ∆vt − γ∆vt+1.

KTD does not necessarily assume that a unique single parameter θ has created all rewards,
but allows the parameter to change over time (as if the environment is non-stationary).
More precisely, θt+1 ∼ N (θt,Σθ) is modeled as a random walk. As we focus on stationary
environments, we can set Σθ = 0 to enforce constant parameters and faster convergence.

833

Dann, Neumann and Peters

In this case, KTD and GPTD are identical algorithms for linear value function parametriza-
tion (cf. Algorithm 12). The graphical model in Figure 9 illustrates the similar assumptions
of both approaches. Besides KTD’s ability to deal with non-stationary environments, KTD
and GPTD differ mostly in the way they handle value functions that are non-linear in the
feature space. KTD relies on the unscented transform (a deterministic sample approximation
for nonlinear observation functions), while GPTD avoids explicit function parametrization
assumptions with kernels (cf. Section 2.3). Depending on the specific application and avail-
able domain knowledge, either a well-working kernel or a specific nonlinear parametrization
is easier to chose.

Both probabilistic approaches share the benefit of not only providing a parameter esti-
mate but also an uncertainty measure on it. However, as they optimize the mean squared
error similar to Monte Carlo value-function estimation, their estimates may suffer from
higher variance. The long-term memory effect originating from the consideration of all
future rewards also prevents off-policy learning as discussed by Geist and Pietquin (2010,
Section 4.3.2) and Engel (2005).

2.3 Feature Handling

The feature representation φ of the states has a tremendous influence, not only on the qual-
ity of the final value estimate but also on convergence speed. We aim for features that can
represent the true value function accurately and are as concise as possible to reduce compu-
tational costs and the effects of over-fitting. Many commonly used feature functions are only
locally active. Their components are basis functions which have high values in a specific
region of the state space and low ones elsewhere. For example, cerebellar model articulation
controllers (CMAC) cover the state space with multiple overlapping tilings (Albus, 1975),
also known as tile-coding. The feature function consists of binary indicator functions for each
tile. Alternatively, smoother value functions can be obtained with radial basis functions.
Such bases work well in practice, but often only if they are normalized such that ‖φ(s)‖1 = 1
for all states s ∈ S as discussed by Kretchmar and Anderson (1997). The performance of
many algorithms, including the regularization methods discussed in Section 2.3.2, can be
improved by using normalized features with zero mean and unit variance.

Local function approximators are limited to small-scale settings as they suffer from the
curse of dimensionality similar to exact state representations (cf. Section 1.2). When the
number of state dimensions increases, the number of features explodes exponentially and so
does the amount of data required to learn the value function. Therefore, recent work has
focused on facilitating the search for well-working feature functions. These efforts follow two
principled approaches: (1) features are either generated automatically from the observed
data or (2) the learning algorithms are adapted to cope with huge numbers of features
efficiently in terms of data and computation time. We briefly review the advances in both
directions in the following two sections.

2.3.1 Automatic Feature Generation

Kernel-based value function estimators represent the value of a state in terms of the similarity
of that state to previously observed ones, that is, at each time step the similarity to current
state is added as an additional feature. A well chosen kernel, that is, the distance or similarity

834

Policy Evaluation with Temporal Differences

measure, is crucial for the performance of kernel-based approaches, as well as an adequate
sparsification technique to prevent the number of features to grow unboundedly.

GPTD (Engel et al., 2003) and LSTD (Xu et al., 2005, known as Kernelized LSTD,
KLSTD) have been extended to use kernelized value functions. A similar approach was
proposed in the work of Rasmussen and Kuss (2003) where a kernel-based Gaussian process
is used for approximating value functions based on the Bellman Equation (2). This approach,
KLSTD and GPTD were unified in a model-based framework for kernelized value function
approximation by Taylor and Parr (2009). Jung and Polani (2006) introduced an alternative
online algorithm originating from least-squares support-vector machines to obtain the GPTD
value function estimate; however, it is limited to MDPs with deterministic transitions.

An alternative to kernel methods based on spectral learning was presented by Mahade-
van and Maggioni (2007). The authors proposed to build a graph-representation of the MDP
from the observations and chose features based on the eigenvector of the Graph-Laplacian.
Compared to location-based features such as radial basis functions, this graph-based tech-
nique can handle discontinuities in the value-function more accurately. In contrast, Menache
et al. (2005) assumes a fixed class of features, for example, RBFs, and optimizes only the
free parameters (e.g., the basis function widths) by gradient descent or by using the cross-
entropy optimization method (De Boer et al., 2010). Keller et al. (2006) uses neighborhood
component analysis, a dimensionality reduction techniques for labeled data, to project the
high-dimensional state space to a lower dimensional feature representation. They take the
observed Bellman errors from Equation (7) as labels to obtain features that are most ex-
pressive for the value function. The approaches of Parr et al. (2007), Painter-Wakefield
and Parr (2012a) and Geramifard et al. (2013, 2011) are based on the orthogonal matching
principle (Pati et al., 1993) and incrementally add features which have high correlation with
the temporal-difference error. The intuition is that those additional features enable the
algorithms to further reduce the temporal-difference error.

2.3.2 Feature Selection by Regularization

Value function estimators face several challenges when the feature space is high dimensional.
First, the computational costs may become unacceptably large. Second, a large number of
noise-like features deteriorates the estimation quality due to numerical instabilities and,
finally, the amount of samples required for a reliable estimate grows prohibitively. The
issues are particularly severe for least-squares approaches which are computationally more
involved and tend to over-fit when the number of observed transitions is lower than the
dimensionality of the features.

The problem of computational costs for second order methods can be addressed by
calculating the second order updates incrementally. For example, the parameter update of
incremental LSTD (iLSTD proposed by Geramifard et al., 2006a,b) is linear in the total
number of features (O(n) instead of O(n2) for standard LSTD) if only a very small number
of features is non-zero in each state. Most location based features such as CMAC or fixed-
horizon radial basis functions fulfill this condition.

Information theoretic approaches which compress extensive feature representations are
prominent tools in machine learning for reducing the dimensionality of a problem. Yet,
these methods are often computationally very demanding which limits their use in online

835

Dann, Neumann and Peters

Formulation Optimization Technique

LSTD with `2 f(θ) ∝ ‖θ‖22 g(ω) = 0 closed form solution (Bradtke
and Barto, 1996)

LSTD with `2,`2 f(θ) ∝ ‖θ‖22 g(ω) ∝ ‖ω‖22 closed form solution (Hoffman
et al., 2011)

LARS-TD f(θ) ∝ ‖θ‖1 g(ω) = 0 custom LARS–like solver
(Kolter and Ng, 2009)

LC-TD f(θ) ∝ ‖θ‖1 g(ω) = 0 standard LCP solvers (Johns
et al., 2010)

`1-PBR f(θ) = 0 (*) g(ω) ∝ ‖ω‖1 standard Lasso solvers (Geist
and Scherrer, 2011)

LSTD with `2,`1 f(θ) ∝ ‖θ‖22 g(ω) ∝ ‖ω‖1 standard Lasso solvers
(Hoffman et al., 2011)

Laplacian-based
reg. LSTD

f(θ) ∝ ‖LΦtθ‖22 g(ω) = 0 closed form solution (Geist
et al., 2012)

LSTD-`1 min t‖Aθ − b‖22 + µ‖θ‖1 standard Lasso solvers (Pires,
2011)

D-LSTD min ‖θ‖1 s.t. t‖Aθ − b‖∞ ≤ µ standard LP solvers (Geist
et al., 2012)

Table 2: Comparison of Regularization Schemes for LSTD. f and g are the regularization
terms in the nested problem formulation of LSTD (Equations 2.3.2 and 2.3.2).
Parameters µ control the regularization strength. (*) `1-PBR actually assumes
a small `2 regularization on the operator problem if the estimate of ΦTDΦ is
singular, which is usually the case for t < m.

reinforcement learning. Some information theoretic approaches are equivalent to a special
form of regularization. Regularization is a standard way to avoid over-fitting by adding
punishment terms for large parameters θ. The regularization point of view often leads to
computationally cheaper algorithms compared to information theory. Hence, there has been
increasing interest in adding different regularization terms to LSTD and similar algorithms
(cf. Table 2). As in supervised learning, the most common types of regularization terms are
`1 and `2-regularization, which penalize large `1 respective `2 norms of the parameter vector.
While `2-regularization still allows closed form solutions, it becomes problematic when there
are only very few informative features and a high number of noise-like features. Regularizing
with `2-terms usually yields solutions with small but non-zero parameters in each dimension,
which have low quality when there are many noise-like features. `1-regularization on the
other hand prevents closed form solutions, but is known to induce sparsity for the resulting
estimate of θ where only few entries are different from zero. Hence, `1-regularization implic-

836

Policy Evaluation with Temporal Differences

itly performs a feature selection and can cope well with many irrelevant features. Therefore,
it is well suited for cases where the number of features exceeds the number of samples.

Most regularization methods are derived from the nested OPE-FPE optimization formu-
lation of LSTD in Equations (13)–(14) where the regularization term is added either to the
FPE problem, to the OPE problem or in both problems3

θ̂ = arg min
θ
‖V θ − TV ω̂‖2D +

1

t
f(θ) and

ω̂ = arg min
ω
‖Φ(θ̂ − ω)‖2D +

1

t
g(ω).

Using the regularization term f(θ) corresponds to regularization before setting the fixpoint
solution in the OPE problem while enabling g(ω) regularizes after employing the fixpoint
solution. Using an `2-penalty in f(θ), that is, f(θ) = βf‖θ‖22 yields the solution θ̂ = (A+
βf t
−1I)−1b. This form of regularization is often considered as the standard regularization

approach for LSTD, since it is equivalent to initializingM0 = A−1
0 = β−1

f I in the recursive
LSTD algorithm (Algorithm 5). The posterior mean of GPTD also corresponds to LSTD
with an `2-regularization of the operator problem if both algorithms are extended with
eligibility traces (see the next section). In addition to the regularization of the operator
problem, Farahmand et al. (2008) and Hoffman et al. (2011) proposed an `2-penalty for
the fixpoint problem (i.e., g(ω) = βg‖ω‖22). There are still closed-form solutions for both
problems with `2-regularizations. However, the benefits of such regularization in comparison
to just using f(θ) still need to be explored.

Regularization with `1-norm was first used by Kolter and Ng (2009) in the operator
problem, that is, f(θ) = βf‖θ‖1 and g(ω) = 0. They showed that `1-regularization gives
consistently better results than `2 in a policy iteration framework and is computationally
faster for a large number of irrelevant features. Yet, using `1-regularization for the OPE
problem prevents a closed form solution and the resulting optimization problem called Lasso-
TD is non-convex. The least-angle regression algorithm (Efron et al., 2004) could be adapted
to solve this optimization problem which yielded the LARS-TD algorithm (Kolter and Ng,
2009). Johns et al. (2010) started from the Lasso-TD problem but reformulated it as a linear
complementarity problem (Cottle et al., 1992), for which standard solvers can be employed.
Additionally, this linear complementary TD (LC-TD) formulation allows using warm-starts
when the policy changes.4 Ghavamzadeh et al. (2011) showed that the Lasso-TD problem
has a unique fixpoint which means that LC-TD and LARS-TD converge to the same solution.
In addition, Ghavamzadeh et al. (2011) provided bounds on the MSE for this fixpoint.

The `1-Projected-Bellman-Residual (`1-PBR) method (Geist and Scherrer, 2011) puts
the regularization onto the fixpoint problem instead of the operator problem, that is, f(θ) =
0 and g(ω) = βg‖ω‖21. Hoffman et al. (2011) proposed a similar technique but with addi-
tional `2-penalty on the operator problem. Regularizing FPE problem with an `1 norm
allows for a closed form solution of the OPE problem. Using this solution in the regularized
FPE problem reduces to a standard Lasso problem and, hence, a standard Lasso solver

3. For notational simplicity, we slightly abuse notation and use the true OPE and FPE objectives instead
of the sample-approximations at time t.

4. Warm-starts are valuable in policy iteration: The solution of the last policy can be used to substantially
speed-up the computation of the value function for the current policy.

837

Dann, Neumann and Peters

can be employed instead of specialized solution as for the Lasso-TD problem. Furthermore,
Lasso-TD has additional requirements on the A-matrix of LSTD5 which generally only hold
in on-policy learning. Approaches with `1-regularized operator problems do not have this
limitation and only make mild assumptions in off-policy settings. Despite these theoretical
benefits, empirical results indicate comparable performance to the Lasso-TD formulation
and, hence, `1-regularization for the FPE problem is a promising alternative.

Petrik et al. (2010) propose using `1-regularization in the linear program formulation of
dynamic programming for finding the value function. However, their analysis concentrates
on the case where the transition kernel Pπ is known or approximated by multiple samples.
Another family of methods considers the linear system formulation of LSTDAθ = b directly.
Pires (2011) suggests to solve this system approximately with additional `1-regularization

θ̂ = arg min
θ
‖Aθ − b‖22 +

β

t
‖θ‖1.

Again, this problem is a standard convex Lasso problem solvable by standard algorithms
and applicable to off-policy learning. Dantzig-LSTD (D-LSTD, Geist et al., 2012) takes a
similar approach and considers

θ̂ = arg min
θ
‖θ‖1 subject to ‖Aθ − b‖∞ ≤

β

t
.

This optimization problem, a standard linear program, is motivated by the Dantzig selector
of Candes and Tao (2005) and can be solved efficiently. It is also well-defined for off-policy
learning. The aim of this problem is to minimize the sum of all parameters while making
sure that the linear system of LSTD is not violated by more than βt−1 in each dimension.

All regularization approaches so far have treated each parameter dimension equally.
However, it might be helpful to give the parameter components different weights. Johns and
Mahadevan (2009) suggested to use the Laplacian L of the graph-based representation of the
MDP as weights and add βL‖LΦθ‖2D as an additional term to the MSPBE. Investigating
the benefits of other problem-dependent weighted norms are left for future work. The
performance of all regularization schemes strongly depends on the regularization strength
β, which has to be specified by hand, found by cross-validation or set with the method of
Farahmand and Szepesvári (2011).

Instead of regularizing the value-function estimation problem, we could also estimate
the value function directly with LSTD in a lower-dimensional feature space. Ghavamzadeh
et al. (2010) showed in a theoretical analysis that projecting the original high-dimensional
features to a low-dimensional space with a random linear transformation (LSTD with Ran-
dom Projections, LSTD-RP) has the same effect as regularization. However, no empirical
results for this algorithm are given. Alternatively, features can be selected explicitly to
form the lower-dimensional space. Hachiya and Sugiyama (2010) proposed to consider the
conditional mutual information between the rewards and the features of observed states and
provided an efficient approximation scheme to select a good subset as features.

There have also been efforts to regularize Bellman residual minimization. Loth et al.
(2007) added an `1-penalty to the MSBE and proposed a gradient-based technique to find

5. The matrix has to be a P-matrix. P-matrices, a generalization of positive definite matrices, are square
matrices with all of their principal minors positive.

838

Policy Evaluation with Temporal Differences

the minimum incrementally. In contrast, Farahmand et al. (2008) regularized with an `2-
term to obtain the optimum in closed form. Gradient-based TD-algorithms are less prone
to over-fitting than least-squares approaches when few transitions are observed as the norm
of the parameter vector is always limited for a small number of updates. However, if the
observed transitions are re-used by running several sweeps of stochastic gradient updates,
regularization becomes as relevant as for the least-squares approaches. In addition, if a
large number of features are irrelevant for the state value, the gradient and especially its
stochastic approximation becomes less reliable. Therefore, there has been recent interest
in promoting sparseness by adding a soft-threshold shrinkage operator to gradient-based
algorithms (Painter-Wakefield and Parr, 2012b; Meyer et al., 2012) and reformulating the
regularized objective as a convex-concave saddle-point problem (Liu et al., 2012).

Despite the extensive work on regularization schemes for LSTD, many directions still
need to be explored. For example, many feature spaces in practice have an inherent struc-
ture. They may for instance consist of multiple coverings of the input space with radial basis
functions of different widths. There has been work on exploiting such structures with hier-
archical regularization schemes in regression and classification problems (Zhao et al., 2009;
Jenatton et al., 2010). These approaches divide the parameters into groups and order the
groups in a hierarchical structure (e.g., trees), which determines the regularization in each
group. While such schemes have been successfully applied to images and text documents, it
is an open question whether they can be adapted to work online and to which extent policy
evaluation tasks could benefit from hierarchical regularization.

2.4 Important Extensions

In the previous sections, temporal-difference methods have been introduced in their most
basic form to reveal the underlying ideas and avoid cluttered notation. We now introduce
two extensions which are applicable to most methods. First, we briefly discuss eligibility
traces for improving the learning speed by considering the temporal difference of more than
one timestep. Subsequently, importance-reweighting is presented which enables temporal-
difference methods to estimate the value function from off-policy samples. While the aim
of this paper is giving a survey of existing methods, we will also present an alternative
implementation of importance reweighting for LSTD and TDC which considerably decreases
the variance of their estimates. We focus on the purpose and the functionality of eligibility
traces and importance reweighting and, hence, illustrate their actual implementation only
for selected TD methods.

2.4.1 Eligibility Traces

Eligibility traces (e-traces, Sutton, 1988) are an efficient implementation of blending between
TD methods and Monte-Carlo sampling. To understand the purpose of this blending, it is
beneficial to first identify the different sources of errors in TD methods. While we derived the
update rules of the algorithms based on observed samples directly from the underlying cost
functions such as MSE, MSBE or MSPBE, we now make the sample-based approximations
of the objective functions explicit. These approximations at a given timestep t are denoted
by a subscript t, for example, MSEt, MSBEt or MSPBEt (see also Figure 5).

839

Dann, Neumann and Peters

Optimization Error, e.g.

θt 6= arg min MSPBEt(θ)

Objective Bias, e.g.
arg min MSE(θ) 6=
arg min MSPBE(θ)

Sampling Error, e.g.
arg min MSPBEt(θ) 6=
arg min MSPBE(θ)

MC

GPTD, KTD

LSTD, BRM

LSPE, FPKF

TD, GTD, GTD2, TDC, RG

Figure 10: Visualization of Conceptual Error Sources for Policy Evaluation Methods: The
sampling error is always present and accounts for the approximation of the cho-
sen objective function with observed samples. The higher the variance of these
samples the higher the sampling error. If the objective of the method is not di-
rectly the MSE, the method will suffer from the objective bias. The optimization
error is present for methods which do not find the minimum of the approximated
objective function directly, for example, gradient-based approaches. The posi-
tions of the boxes and their overlap with the shaded areas denote the extent, to
which the respective methods suffer from each error source. Note that the actual
amount of each error source is not visualized and varies drastically between differ-
ent MDPs, feature representations, policies and number of time steps. MSPBEt
denotes the approximation of the MSPBE with samples observed at timesteps 1
to t.

Error Decomposition. Leaving numerical issues aside, there are three conceptual sources of
errors as illustrated in Figure 10. Consider for example Monte-Carlo sampling, which does
not rely on temporal differences, but simply takes the observed accumulated reward as a
sample for each state. Hence, at time t, it finds the parameter estimate by computing the
minimum of

MSEt(θ) =
t∑
i=0

(
φTi θ −

t∑
k=i

γk−irk

)2

.

After infinitely many time steps, this sample-based approximation of the MSE converges to
the true error prescribed by Equation (4), which can also be written as

MSE(θ) =

∥∥∥∥∥Φθ −
∞∑
k=0

γkP kR

∥∥∥∥∥
2

D

. (35)

840

Policy Evaluation with Temporal Differences

The difference between the approximation and the true objective function, referred to as
sampling error, is present for all methods. TD methods avoid estimating γkP kR for k > 0
directly by replacing these terms with the value function estimate, that is, use bootstrapping
with the Bellman operator T . As the replaced terms cause the high variance, the sampling
error decreases at the price of a possible increase in the objective bias. This bias denotes the
difference between the minimum of the TD objective function (such as MSPBE or MSBE)
and the true minimum of the MSE. The regularization with priors in GPTD and KTD is
an alternative for reducing the variance at the price of a temporary objective bias. Descent
approaches such as the gradient methods, LSPE or FPKF do not compute the minimum
of the current objective approximation analytically, but only make a step in its direction.
Hence, they suffer from an additional optimization error. Although the errors caused by
each source do not add up, but may counterbalance each other, it is a reasonable goal to
try to minimize the effect of each source.

The magnitude of each type of error depends on the actual MDP, feature representation,
policy and number of observed transitions. For example, the objective bias of MSPBE or
MSBE vanishes for features that allow representing the true value function exactly. On
the other hand, a setup where the MDP and policy are deterministic has zero variance for
γkP kR and hence, introducing a bias with bootstrapping does not pay off. By interpolating
between TD methods and Monte-Carlo estimates, we can often find an algorithm where the
effects of sampling error and objective bias is minimized. The natural way to do so is to
replace γkP kR only for terms k > h in Equation (35), which yields the h-step Bellman
operator

T hV = TT . . . T︸ ︷︷ ︸
h times

V = γhP hV +

h−1∑
k=0

γkP kR.

As it considers the h future rewards, it is also referred to as h-step look-ahead (Sutton and
Barto, 1998). If we used the h-step Bellman operator to redefine the objective functions
(e.g., MSBE or MSPBE), we would need to observe the rewards rt, rt+1, . . . rt+h−1 and state
st+h before we could use st for estimation, that is, approximating T hV (st) with a sample
corresponds to

T hV (st) ≈ γhV (st+h) +
h−1∑
k=0

γkrt+k.

Hence, online estimation is not possible for large h. Eligibility traces circumvent this problem
and allow taking each sample into account immediately.

Eligibility Traces. Eligibility traces rely on the λ-Bellman operator Tλ defined as a weighted
average over all T k

Tλ = (1− λ)

∞∑
k=0

λkT k+1. (36)

The term (1−λ) is a normalization factor which ensures that all weights sum to 1. TD meth-
ods extended with eligibility traces minimize objectives redefined on this average Bellman

841

Dann, Neumann and Peters

operator such as the MSPBEλ objective

MSPBEλ(θ) = ‖Vθ −ΠTλVθ‖2D.

For λ = 0 only T 1 = T is used and, hence, MSPBE0 corresponds to the standard MSPBE.
Only considering T∞ in the objective corresponds to the MSE from Equation (35). Due
to the discount factor γ, there exists a K such that ‖T kV ‖ deviates less than a small
constant from ‖T∞V ‖ for all k > K. For λ = 1, the terms k > K in Equation (36) are
given infinitely more weight than k ≤ K and hence limλ→1 Tλ = T∞. We realize that the
MSPBE1 is equivalent to the MSE.

The basic idea of eligibility traces is to approximate the k-step Bellman operators in the
weighted sum with samples as soon as possible. Thus, at timestep t, state st is used for
T 1, state st−1 for T 2, st−2 for T 3 and so on. The special choice of exponentially decreasing
weights allows storing the previously observed states efficiently as a summed vector, a so-
called eligibility trace.

Implementation for TD Learning. To illustrate the efficient approximation of Tλ and eligi-
bility traces as compact storage of previously observed features, we consider the extension
of the standard TD learning algorithm for multi-step temporal differences. Its extended
update rule is given by

θt+1 = θt + αtδt

t∑
k=0

(λγ)kφt−k. (37)

The parameter λ puts more weight on more recent states. As shown by Sutton and Barto
(1998), the multi-step look-ahead (forward view), that is, considering future rewards in
the Bellman operator, can also be understood as propagating the temporal-difference error
backwards in time (often called the backward view), that is, updating the value of states
observed before. The update in Equation (37) can be implemented efficiently by computing
the sum

∑t
k=0(λγ)kφt−k incrementally. More precisely, the eligibility trace vector zt stores

the past activations of the features and is updated by

zt+1 = φt + λγzt.

Updating the eligibility trace in such a way ensures that zt+1 =
∑t

k=0(λγ)kφt−k for all
timesteps. The update rule of TD learning can then be written more concisely with eligibility
traces as

θt+1 = θt + αtδtzt+1.

The TD learning algorithm with a certain setting of λ is often referred to as TD(λ) where
TD(0) corresponds to the standard TD learning algorithm without eligibility traces.

For λ > 0, the algorithm also updates the value function at states sh with h < t, which
is reasonable, as the value at state st−1 is very likely to change when V (st) changes. In
contrast, TD(0) learning does not reuse its data-points and would need to observe state st−1

again to update the value function at state st−1. Subsequently, st−2 needs to be visited
again to update V (st−2), and so on. Hence, eligibility traces not only allow one to find the
best trade-off between objective bias and sampling error, but also reduce the optimization
error for gradient based approaches.

842

Policy Evaluation with Temporal Differences

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.0

0.2

0.4

0.6

0.8

1.0

re
la
ti
ve
 a
vg

.
R
M
S
E

0.001

0.100

0.200

0.300

0.400

0.600

0.700

1.000

N
o
is
e

(a) Perfect feature representation. If we can
approximate the value function perfectly, the
bias between MSPBE and MSE is zero, and
hence LSTD(0) should always be preferred.

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.0

0.2

0.4

0.6

0.8

1.0

re
la
ti
ve
 a
vg

.
R
M
S
E

0.001

0.100

0.200

0.300

0.400

0.600

0.700

1.000

N
o
is
e

(b) Impoverished features. Here, we have to
choose a trade-off between minimizing the vari-
ance of the objective function with LSTD(0)
and minimizing the bias of the objective func-
tion with LSTD(1). The optimal trade-off de-
pends on the amount of noise in the MDP.

Figure 11: Eligibility-Traces implement a trade-off between minimizing the MSE and the
MSPBE: Consider Example 2 for the description of the experimental setting.
Each graph shows the average of the root of MSE (RMSE =

√
MSE) of LSTD(λ)-

estimates over all timesteps. All curves are normalized by subtracting the min-
imum and dividing by the maximum. The plots show which λ settings produce
lowest errors for for varying amount of stochasticity in the system, where we
compare perfect and impoverished features.

Eligibility Traces for Other Algorithms. Most algorithms presented in this paper have been
extended to use eligibility traces (see Table 1 for an overview). LSTD (Boyan, 2002), TDC
(originally named GTD(λ) in Maei, 2011, but here referred to as TDC(λ) for clarity), FPKF
(Scherrer and Geist, 2011; Geist and Scherrer, 2013) and BRM (Scherrer and Geist, 2011;
Geist and Scherrer, 2013) have been extended to use multistep-lookahead with eligibility
traces. LSPE(λ) (Nedic and Bertsekas, 2003) has been formulated with traces from the
beginning. Eligibility traces have also been introduced in GPTD by Engel (2005).6 Recently,
eligibility-traces-versions of GTD2 and the residual-gradient algorithm named GTD2(λ)
and gBRM(λ) (Geist and Scherrer, 2013) have been developed. All the algorithms above
converge to a minimum of the MSPBEλ objective or respectively MSBEλ, which is defined
analogously.

Example 2 We illustrate the benefit of interpolating between MSPBE and MSE in two
experiments using e-traces and LSTD. Consider a discrete 40 state / 40 action MDP where
actions of the agent deterministically determine its next state. In the first experiment, we
use a perfect feature representation, that is, the value function can be estimated perfectly,

6. In contrast to other methods, the basic version without e-traces corresponds to GPTD(1) and not
GPTD(0).

843

Dann, Neumann and Peters

while, in the second experiment, we use an incomplete feature representation by projecting the
states linearly on a random 20-dimensional feature space. In both experiments, we evaluated
the performance of different λ values for different policies. We varied the stochasticity of the
policy, by interpolating between a greedy policy, which visits one state after another, and the
uniform policy, which transitions to each state with equal probability.

In Figure 11a, we can see the results for the perfect feature representation. Here, the
MSPBEλ does not cause any bias and its minimum coincides with the MSE solution. The
plots show the relative MSE values for different λ settings for different levels of stochasticity
in the system controlled by the linear blending coefficient between the greedy and uniform pol-
icy. The results confirm our intuition that using λ = 0 is always optimal for perfect features
as the MSPBE minimization is unbiased. As the policy is the only source of stochasticity in
the system, it behaves deterministically for the greedy policy and the performance is invariant
to the choice of λ.

The picture changes for the imperfect feature representation where the minimization of
the MSPBEλ causes a bias for the MSE (cf. Figure 11b). Setting λ = 1 performs best for the
greedy policy as there is again no variance on the returns, and, hence, we avoid the bias of
the MSPBEλ by directly minimizing the MSE. When gradually increasing the stochasticity of
the policy, the optimal value of λ decreases and finally reaches the value of 0. This example
illustrates that eligibility traces cause significant speed-ups of learning speed for LSTD(λ)
and that the best trade-off between objective bias and sampling error highly depends on the
intrinsic stochasticity of the MDP and policy. Hence, λ should be considered as an additional
hyper-parameter to optimize for each setting.

2.4.2 Generalization to Off-Policy Learning by Importance Reweighting

In previous sections, we aimed at estimating state values V π while observing the agent
following policy π. However, in many applications we want to know V π, but only have
observed samples with actions chosen by a different policy. Estimating the state values of a
different policy than the observed one is referred to as off-policy value-function estimation
(cf. Section 1.2). For instance, we could be following an exploration policy while we want to
know the value function of the optimal greedy policy. In a policy iteration scenario, we can
employ off-policy policy evaluation to re-use data points collected with previous policies.
Hence, off-policy value-function estimation is an important ingredient for efficiently learning
control policies. A different application of off-policy estimation is intra-option learning
(Sutton et al., 1998), where we can use samples from different options to update the value
functions of the single options.

Importance Reweighting. Leveraging temporal-difference methods for off-policy estimation
is based on the idea of importance sampling (cf. Glynn and Iglehart, 1989). Importance
sampling is a well-known variance-reduction technique in statistics. It is used to approximate
the expectation Ep[f(X)] of a function f with input X ∼ p, when we cannot directly sample
from p(X) but have access to samples from another distribution q(X). In this case, the
expectation Ep[f(X)] can be approximated by

Ep[f(X)] = Eq
[
p(X)

q(X)
f(X)

]
≈ 1

M

M∑
i=1

p(xi)

q(xi)
f(xi),

844

Policy Evaluation with Temporal Differences

ρ1 < 1

x1

ρ2 > 1

x2

ρ3 = 1

x3

x ∈ X

P
ro
ba

bi
lit
y
M
as
s

p(x)
q(x)

Figure 12: Importance Reweighting: Samples drawn from q(x) are re-weighted by the im-
portance weight ρ to behave like samples from p(x). Data points x1 in regions,
where q is larger than p occur more frequently in the sample from q than from p
and are down-weighted. In the orthogonal case x2, the weights are larger than
one and give under-represented samples more weight.

where x1, . . . xM are realizations of q. The correctness of this statement in the limitM →∞
can be easily verified by writing out the expectations. Each sample drawn from q is re-
weighted with importance weights ρi = p(xi)/q(xi) to approximate Ep[f(X)]. See Figure 12
for a visualization. The reweighting is only well-defined, if q(X) 6= 0 for all X with non-zero
p(X).

Limitations of Off-Policy Estimation. Similar to on-policy estimation, the following ob-
servation model for off-policy transitions is assumed: the departing state st is distributed
according to the state distribution d′ while the action at is sampled from the behavior policy
πB and the entering state st+1 from the MDP dynamics P. For on-policy value-function es-
timation, behavior and target policy are the same (πG = πB) and d′ matches the stationary
distribution of the MDP with the policy to evaluate, that is, d′ = dπB = dπG . However, if
the policies differ, the state distribution d′ = dπB 6= dπG is not the stationary distribution
according to πG in general. The Example from Section 1.2 in Figure 1 shows such a case.

All approaches to off-policy learning consider the difference of πG and πB for the actions
at but leave the problem of the different stationary distributions unaddressed. Hence, off-
policy value-function estimation does not yield the same result as on-policy estimation with
samples taken from πG, even after convergence. For example, the fixpoint of methods
minimizing the MSPBE in the off-policy case can be written as

MSPBE(θ) = ‖Vθ −ΠT πGVθ‖2DπB
.

Hence, the difference of estimating the values with respect to policy πG from off-policy or
on-policy samples is the norm of the objective function. The distance metric DπG and
DπB may differ substantially and therefore yield different estimates, which may be a critical

845

Dann, Neumann and Peters

limitation of off-policy estimation. In the following, we use d = dπB to avoid cluttered
notation.

In addition, the use of importance reweighting on the policies requires πB(a|s) > 0 for
all a ∈ A and s ∈ S with πG(a|s) > 0. Thus, each possible sample of the target policy
should be observable with the behavior policy. In practice, the behavior policy is often an
exploration policy and we aim for value-function estimation of a greedy policy. In this case,
the restriction πB(a|s) > 0 is not violated.

Let us now discuss specific extensions of TD learning and LSTD for off-policy learning.
While we consider the algorithms without eligibility traces for notational simplicity, the
derivations hold similarly for algorithms with multi-step predictions. In order to investigate
the long-term behavior of algorithms, we have to consider their expected estimates, that
is, their update rules in expectation of a transition (defined by the state distribution, the
policy and the transition distribution).

Off-Policy TD Learning. First, consider TD learning (Algorithm 1) with the expected
parameter update for on-policy learning according to πG given by EπG,P,dπG [δtφ(st)]. The
same updates can be obtained with samples from πB by rewriting

EπG,P,dπG [δtφ(st)] =
∑
st+1

∑
at

∑
st

p(st, at, st+1)δtφ(st)

=
∑
st+1

∑
at

∑
st

P(st+1|st, at)πG(at|st)dπG(st) δtφ(st)

≈
∑
st+1

∑
at

∑
st

P(st+1|st, at)πG(at|st)dπB (st) δtφ(st)

=
∑
st+1

∑
at

∑
st

P(st+1|st, at)πB(at|st)dπB (st)
πG(at|st)
πB(at|st)

δtφ(st)

= EπB ,P,dπB [ρtδtφ(st)].

The expectation w.r.t. the target policy πG turned into the expectation according to the
behavior policy πB by including the importance weight ρt = πG(at|st)/πB(at|st). Hence,
the off-policy update rule of TD learning is given by

θt+1 = θt + αtρtδtφ(st).

Note that on-policy learning can be treated as a special case with πG = πB and ρt = 1 for
all timesteps t. As we will discuss in the following convergence analysis, TD learning might
become unstable in off-policy learning. Other gradient methods have also been extended
with off-policy weights and do not suffer from this drawback. The Algorithm listings in
Appendix C already contain the off-policy weights for all gradient-based and least-squares
algorithms.

Convergence Analysis. TD learning may be unstable, when used with a sampling distri-
bution for the states dπB that differs from the stationary state distribution dπG induced by
the Markov model to evaluate PπG . Consider a batch gradient version of TD learning which

846

Policy Evaluation with Temporal Differences

uses the expected gradient instead of the stochastic one. Results from stochastic approxi-
mation theory guarantee that the TD learning algorithm converges if batch gradient descent
converges and vice versa. In addition, their fixpoints are identical. A batch-gradient step
can be written as

θk+1 =θk + αE[δtφt]

=θk + αE[(rt + γφTt+1θk − φTt θk)φt]
=θk + αΦTD (R+ γP πGΦθk −Φθk)

= (I + αATD)θk + αbTD, (38)

with ATD = ΦTD (γP πG − I) Φ and bTD = ΦTDR.
The iterative update rule of Equation (38) converges if all eigenvalues of the matrix ATD

have only negative real parts (Schoknecht, 2002). It can be shown that if D corresponds
to the stationary distribution which has been generated by P πG this condition is satisfied,
and hence, TD learning converges. However, this property of ATD is lost if D does not
correspond to the stationary distribution, that is, dπB 6= P πGdπB and, hence, convergence
can not be guaranteed for off-policy TD learning. Intuitively, TD learning does not converge
because there is more weight on reducing the error of the value function for the starting states
st of a transition than for the successor states st+1. Hence, the Bellman error in the successor
states might increase, which again affects the estimation of the target values for the next
parameter update. If d = P πGd, the successor states have the same probability of being
updated, and this problem is hence alleviated.

The second order equivalent of batch-gradient TD learning is LSPE. While both methods
can be derived from the same nested optimization problem, LSPE is known to converge for
off-policy policy evaluation. Hence, it is interesting to briefly look at the reason for this
difference. The expected update of LSPE can be obtained from Equations (29) and (30)
and is given by

θk+1 =θk + α(ΦTDΦ)−1ΦTD (R+ γP πGΦθk −Φθk)

= (I + αALSPE)θk + αbLSPE,

with ALSPE = (ΦTDΦ)−1ATD and bLSPE = (ΦTDΦ)−1bTD. We realize that LSPE scales
the TD update with the inverse of a positive definite matrix. This scaling ensures that
the matrix ALSPE stays negative definite and, hence, the update converges (Schoknecht,
2002). More intuitively, the second order term (ΦTDΦ)−1 normalizes the TD update by
the average feature activation, and, hence, overrides the problem that the successor states
st+1 have less probability mass than the starting states st of a transition.

Off-policy LSTD. We will now discuss how to adapt least-squares approaches for off-policy
learning. While we show the off-policy extension for the LSTD algorithm, other methods
follow analogously. LSTD relies on the estimates At and bt from Equations (25) and (26)
to converge to the true values A and b in Equation (24). In expectation, the estimates at

847

Dann, Neumann and Peters

time t can be written as

Ed,πG,P [At] = Ed

[
t∑
i=0

φi
(
φi − γEπG,P

[
φi+1

])T] and

Ed,πG,P [bt] = Ed,πG,P

[
t∑
i=0

φiri

]
.

We realize that the only parts which depend on the policy πG are the terms EπG,P
[
φi+1

]
and Ed,πG,P

[∑t
i=0φiri

]
. If a behavior policy πB is used instead of πG, these parts have to

be re-weighted which results in

Ed,πG,P [At] = Ed

[
t∑
i=0

φi

(
φi − γEπB ,P

[
πG(ai|si)
πB(ai|si)

φi+1

])T]
and

Ed,πG,P [bt] = Ed,πB ,P

[
t∑
i=0

πG(ai|si)
πB(ai|si)

φiri

]
.

For the sample-based implementation, we arrive at the off-policy parameter estimates of
LSTD proposed by Bertsekas and Yu (2009)

At =

t∑
i=0

φi[φi − γρiφi+1]T , bt =

t∑
i=0

φiρiri.

We refer to this off-policy reweighting as Standard Off-Policy Reweighting. Taking eligibility
traces into account and making use of the Sherman-Morrison formula (Equation 27), the
recursive off-policy version of LSTD, shown in Algorithm 5 in Appendix C, can be derived
(Scherrer and Geist, 2011; Geist and Scherrer, 2013).

The φiφ
T
i terms in At are not re-weighted since it is not necessary to add importance

weights to terms which do not depend on the policy for ensuring convergence to the desired
solution. However, as our experiments presented in Section 3.4 show, such an approach
suffers from a severe drawback. To illustrate the reason, consider the effective number of
samples used to calculate the different terms. The effective number of samples for calculating
the first term of At is always t while, for the second term, the effective number is % =

∑t
i ρi.

In expectation, % is equal to t and the expected estimate of A is unbiased. However, for
a specific sample-based realization, % will in general be different from t. As both terms
in At are not normalized by the number of samples used for the estimate, a big part of
the variance in estimating At will just come from the difference of % to t. Despite positive
theoretical analysis of the convergence properties of this reweighting strategy (Bertsekas and
Yu, 2009; Yu, 2010), our experiments reveal that for more complex problems, for example,
in continuous domains, the performance of LSTD with this type of reweighting breaks down
due to the drastically increased variance in At. Instead, the matrix At can be estimated
more robustly by using the importance weight for the whole transition, that is,

At =

t∑
i=0

ρiφi[φi − γφi+1]T , bt =

t∑
i=0

φiρiri.

848

Policy Evaluation with Temporal Differences

A recursive method based on these updates, LSTD Transition Off-Policy Reweighting (LSTD-
TO), is shown in Algorithm 6. Similar reweighting strategies can be formulated for LSPE
which yields LSPE-TO shown in Algorithm 8. To the best of our knowledge, using a
transition-based reweighting for LSTD and LSPE has not been introduced in the literature
so far, but is crucial for the performance of off-policy learning with least-squares methods.

3. Comparison of Temporal-Difference Methods

In this section, we compare the performance and properties of the presented policy eval-
uation methods quantitatively in various experiments. All algorithms were implemented
in Python. The source code for each method and experiment is available at http://
github.com/chrodan/tdlearn. In addition, further supplementary material is available
at http://www.ias.tu-darmstadt.de/Research/PolicyEvaluationSurvey.

In Section 3.1, we present the experimental setting including the benchmark tasks and the
evaluation process. Subsequently, the most important insights gained from the experimental
evaluation are discussed. Section 3.2 focuses on results concerning cost functions, Section 3.3
concerning gradient-based methods and Section 3.4 covers results regarding least-squares
methods.

3.1 Benchmarks

To evaluate the properties of policy evaluation methods under various conditions, we selected
a number of representative benchmark tasks with different specifications. We computed the
algorithms’ predictions with an increasing number of training data points, and compared
their quality with respect to the MSE, MSBE and MSPBE. These experiments are performed
on six different Markov decision processes, three with discrete and three with continuous
state space. Most experiments were performed both with on-policy and off-policy samples.
We also evaluated different feature representations which altogether resulted in the following
12 settings.

1. 14-State Boyan Chain

2. Baird Star Example

3. 400-State Random MDP On-policy

4. 400-State Random MDP Off-policy

5. Linearized Cart-Pole Balancing On-policy Imperfect Features

6. Linearized Cart-Pole Balancing Off-policy Imperfect Features

7. Linearized Cart-Pole Balancing On-policy Perfect Features

8. Linearized Cart-Pole Balancing Off-policy Perfect Features

9. Cart-Pole Swingup On-policy

10. Cart-Pole Swingup Off-policy

849

http://github.com/chrodan/tdlearn
http://github.com/chrodan/tdlearn
http://www.ias.tu-darmstadt.de/Research/PolicyEvaluationSurvey

Dann, Neumann and Peters

2 4 6 8 10 12 14
State

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

F
e
a
tu
re
 A
ct
iv
a
ti
o
n

Figure 13: Feature Activation for the Boyan chain benchmark. The state space is densely
covered with triangle-shaped basis functions.

x

a

ψ

Figure 14: The Cart-Pole System. The pendulum has to be balanced around the peak by
moving the cart.

11. 20-link Linearized Pole Balancing On-policy

12. 20-link Linearized Pole Balancing Off-policy

3.1.1 Boyan’s Chain (Benchmark 1)

The first benchmark MDP is the classic chain example from Boyan (2002). We considered a
chain of 14 states S = {s1, . . . , s14} and one action. Each transition from state si results in
state si+1 or si+2 with equal probability and a reward of −3. If the agent is in the second
last state s13, it always proceeds to the last state with reward −2 and subsequently stays in
this state forever with zero reward. A visualization of a 7-state version of the Boyan chain
is given in Figure 6. We chose a discount factor of γ = 0.95 and four-dimensional feature
description with triangular-shaped basis functions covering the state space (Figure 13). The
true value function, which is linearly decreasing from s1 to s14, can be represented perfectly.

3.1.2 Baird’s Star Example (Benchmark 2)

Baird’s star (Baird, 1995) is a well known example for divergence of TD learning in off-
policy scenarios. It is often referred to as “star” MDP as its states can be ordered as a
star, one central state and six states at the edges, as shown in Figure 15. There are two

850

Policy Evaluation with Temporal Differences

s1 s2
1

1
6

s3

1

1
6s4

1

1
6

s5
1

1
6

s6

1

1
6

s7

1

1
6

Features:

φ(s1) = e1 + 2e7 = [1 0 0 0 0 0 0 2]T

φ(si) = 2ei + [0 0 0 0 0 0 0 1]T

for i = 2 . . . 7

Policies:

πB(· |si) =

{
1
7 for - -
6
7 for —

, for i = 1 . . . 7

πG(· |si) =

{
1 for - -
0 for —

, for i = 1 . . . 7

1

Figure 15: Baird’s Star: 7-State Star MDP, a classic off-policy example problem from Baird
(1995) in which TD learning diverges for all step-sizes. While the label of a
transition denotes its probability, the reward is always zero. The vector ei denotes
the i-th unit vector.

actions. The solid action chooses one of the solid edges with equal probability and the
dashed action always chooses the edge to the central state. We set the discount factor
γ = 0.99 and assume zero reward for each transition. Hence, the true value function is zero
in every state for all policies. The evaluation policy always takes the dashed action, and
hence, goes to the central state. However, the behavior policy, that is, the policy used to
generate the samples, chooses the solid action with probability 6/7. The feature vector has
eight components. For the outside-states si, i = 2, . . . , 7, the i-th entry has value 2 and the
last entry is 1 (cf. Figure 15). All other entries are zero. The central state sets the first
component of φ to 1 and the last component to 2. All other entries are again zero. We used
θ0 = [1 1 1 1 1 1 10 1]T as initial parameter vector for the methods that allow specifying a
start estimate. Although the true value function is zero everywhere, TD-learning is known
to diverge for this initialization of the parameter-vector.

3.1.3 Randomly Sampled MDP (Benchmarks 3 and 4)

To evaluate the prediction in MDPs with more states and of a less constructed nature, we
used a randomly generated discrete MDP with 400 states and 10 actions. The transition
probabilities were distributed uniformly with a small additive constant to ensure ergodicity
of the MDP, that is,

P(s′|a, s) ∝ pass′ + 10−5, pass′ ∼ U [0, 1].

The data-generating policy, the target policy as well as the start distribution are sampled in
a similar manner. The rewards are uniformly distributed, that is, r(si, aj) ∼ U [0, 1]. Each
state is represented by a 201-dimensional feature vector, 200 dimensions which have been
generated by sampling from a uniform distribution and one additional constant feature.
The MDP, the policies and the features are sampled once and then kept fix throughout
all experiments (all independent trials were executed in the same setting). As behavior-
and target-policy were generated independently and differ substantially for Benchmark 4,

851

Dann, Neumann and Peters

the algorithms were tested in a difficult off-policy setting. The discount factor is set to
γ = 0.95.

3.1.4 Linearized Cart-Pole-Balancing (Benchmarks 5- 8)

The Cart-Pole Balancing problem is a well known benchmark task which has been used
for various reinforcement learning algorithms. As we want to know the perfect feature
representation also for a continuous system, we linearized cart-pole dynamics and formulated
the task as a linear system with a quadratic reward function and Gaussian noise. Linear-
Quadratic-Gaussian (LQG) systems are one of the few continuous settings for which we can
compute the true value function exactly. The perfect features for the value function of a
LQG system are all first and second order terms of the state vector s.

Figure 14 visualizes the physical setting of the benchmark. A pole with mass m and
length l is connected to a cart of mass M . It can rotate 360◦ and the cart can move right
and left. The task is to balance the pole upright. The state s = [ψ, ψ̇, x, ẋ]T consists of
the angle of the pendulum ψ, its angular velocity ψ̇, the cart position x and its velocity ẋ.
The action a acts as a horizontal force on the cart. The system dynamics are given by (cf.
Deisenroth, 2010, Appendix C.2 with ψ = θ + π)

ψ̈ =
−3mlψ̇2 sin(ψ) cos(ψ) + 6(M +m)g sin(ψ)− 6(a− bψ̇) cos(ψ)

4l(M +m)− 3ml cos(ψ)
and (39)

ẍ =
−2mlψ̇2 sin(ψ) + 3mg sin(ψ) cos(ψ) + 4a− 4bψ̇

4(M +m)− 3m cos(ψ)
, (40)

where g = 9.81m
s2

and b is a friction coefficient of the cart on the ground (no friction
is assumed between pole and cart). If the pole is initialized at the upright position and
the policy is keeping the pole around this upright position, the system dynamics can be
approximated accurately by linearizing the system at ψ = 0. In this case, the linearization
yields sinψ ≈ ψ, ψ̇2 ≈ 0 and cosψ ≈ 1 and we obtain the linear system

st+1 =

ψt+1

ψ̇t+1

xt+1

ẋt+1

 =

ψt
ψ̇t
xt
ẋt

+ ∆t

ψ̇t

3(M+m)ψ−3a+3bψ̇
4Ml−ml
ẋt

3mgψ+4a−4bψ̇
4M−m

+

0
0
0
z

 ,
where the time difference between two transitions is denoted by ∆t = 0.1s and z is Gaussian
noise on the velocity of the cart with standard deviation 0.01. We set the length of the pole
l to 0.6m, the mass of the cart M to 0.5kg, the mass of the pole m to 0.5kg and the friction
coefficient of b to 0.1N(ms)−1. The reward function is given by

R(s, a) = R(ψ, ψ̇, x, ẋ, a) = −100ψ2 − x2 − 1

10
a2,

that is, deviations from the desired pole position are strongly penalized, while large offsets of
the cart and the magnitude of the current action cause only minor costs. As the transition
model is a Gaussian with a linear mean-function and the reward function is quadratic, the ex-
act value function and optimal policy can be computed by dynamic programming (Bertsekas

852

Policy Evaluation with Temporal Differences

ψ1

ψ2

ψ3

a1

a2

a3

Figure 16: Balancing setup of a 3-link actuated pendulum. Each joint i is actuated by the
signal ai. The state of each joint is denoted by its angle ψi against the vertical
direction. The pole is supposed to be balanced upright, that is, all ψi should be
as close to 0 as possible.

and Tsitsiklis, 1996). It is well known that the features of the true value function are given by
a constant plus all squared terms of the state7 φp(s) = [1, s2

1, s1s2, s1, s3, s1s4, s
2
2, . . . , s

2
4]T ∈

R11. The optimal policy π(a|s) = N (a|βTs, σ2) is linear. The target policy πG is set to the
optimal policy, that is, the gains β are obtained by dynamic programming and the explo-
ration rate σ2 is set to a low noise level. The data-generating policy πB uses the same β
but a higher noise level in the off-policy case.

To additionally compare the algorithms on a approximate feature representation, we used
φa(s) = [1, s2

1, s
2
2, s

2
3, s

2
4]T ∈ R5 as feature vector in Benchmarks 5 and 6. All evaluations

were generated with a discount factor of γ = 0.95.

3.1.5 Linearized 20-link Balancing (Benchmark 11 and 12)

To evaluate the algorithms on systems with higher-dimensional state- and action-spaces,
we considered a 20-link actuated inverted pendulum. Each of the 20 rotational joints are
controlled by motor torques a = [a1, . . . a20]T to keep the pendulum balanced upright. See
Figure 16 for a visualization of a pendulum with 3 links. The difference in the angle to the
upright position of link i is denoted by ψi. The state space is 40 dimensional and consists
of the angles of each joint q = [ψ1, . . . , ψ20]T and the angular velocities q̇ = [ψ̇1, . . . , ψ̇20]T .

The derivation of the linearized system dynamics can be found in the supplementary
material and yields[

qt+1

q̇t+1

]
=

[
I ∆t I

−∆t M−1U I

] [
qt
q̇t

]
+ ∆t

[
0

M−1

]
a + z,

7. The linear terms disappear as we have linearized at s = 0.

853

Dann, Neumann and Peters

where ∆t = 0.1s is the time difference of two time steps and M is the mass matrix in
the upright position. Its entries are computed by M ih = l2(21 −max(i, h))m with length
l = 5m and mass m = 1kg of each link. The matrix U is a diagonal matrix with entries
U ii = −gl(21 − i)m. Each component of z contains Gaussian noise. Again, we used a
quadratic reward function

R(q, q̇,a) = −qTq,

which penalizes deviations from the upright position. The target policy is given by the
optimal policy (obtained by dynamic programming) with Gaussian noise and analogously
the behavior policy but with increased noise level for the off-policy estimation case. A dis-
count factor of γ = 0.95 and a 41-dimensional approximate feature representation φ(q, q̇) =
[ψ2

1, ψ
2
2, . . . , ψ

2
20, ψ̇

2
1, ψ̇

2
2, . . . , ψ̇

2
20, 1]T were used in the experiments.

3.1.6 Cart-Pole Swing-up (Benchmarks 9 and 10)

Besides discrete and linear systems, we also include a non-linear problem, the cart-pole
swing-up task. The non-linear system dynamics from Equations (39) and (40) were used
and the constants were set to the same values as in the linearized task. The reward function
directly rewards the current height of the pole and mildly penalizes offsets of the cart

R(s, a) = R(ψ, ψ̇, x, ẋ, a) = cos(ψ)− 10−5|x|.

We used an approximately optimal policy learned with the PILCO-Framework (Deisenroth
and Rasmussen, 2011) and added Gaussian noise to each action a. The resulting policy
manages to swing-up and balance the pendulum in about 70% of the trials, depending on
the initial pole position which is sampled uniformly. Each episode consists of 200 timesteps
of 0.15s duration. A normalized radial basis function network and an additional constant
feature has been chosen as feature representation. To obtain a compact representation, we
first covered the four-dimensional state space with a grid of basis functions and then removed
all features for which the summed activations were below a certain threshold. Thus, we
omitted unused basis functions which are located in areas of the state space, which are not
visited. The resulting feature vector had 295 dimensions.

3.1.7 Hyper-Parameter Optimization

The behavior of policy evaluation methods can be influenced by adjusting their hyper-
parameters. We set those parameters by performing an exhaustive grid-search in the hyper-
parameter space minimizing the MSBE (for the residual-gradient algorithm and BRM) or
MSPBE. Optimizing for MSBE or MSPBE introduces a slight bias in the choice of the
optimal parameters. For example, smaller value of λ for the eligibility traces are preferred
as small values of λ as the objective bias is not taken into account. However, as opposed to
the MSE, these objectives can be computed without knowledge of the true values, and, hence,
can be evaluated also in practice on a small set of samples. We evaluated the algorithms
for an increasing number of observed time steps and computed a weighted average over the
errors of all considered time steps to obtain a single score per trial. We increased the weights
from 1 for the first to 2 for the last estimate and therefore put emphasis on a good final value
of the estimates but also promoted fast convergence. The scores of three independent trials

854

Policy Evaluation with Temporal Differences

Parameter Evaluated Values

α 2 · 10−4, 5 · 10−4, 10−3, 0.002, . . . , 0.009, 0.01,
0.02, . . . , 0.09, 0.1, 0.2, 0.3, 0.4, 0.5

αLSPE 0.001, 0.01, 0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 1

αFPKF 0.01, 0.1, 0.3, 0.5, 0.8, 1

βFPKF 1, 10, 100, 1000,

τFPKF 0, 500, 1000

µ 10−4, 10−3, 10−2, 0.05, 0.1, 0.5, 1, 2, 4, 8, 16

λ 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

ε 105, 103, 102, 10, 1, 0.1, 0.01

ζ 0.01, 0.02, . . . 0.09, 0.1, 0.2, . . . , 0.9, 1, 5, 10, 30

η 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.5

Table 3: Considered values in the grid-search parameter optimization for the algorithms
listed in Table 4.

were averaged to obtain a more stable cost function during hyper-parameter grid-search.
Table 4 provides a listing of all considered algorithms with their hyper-parameters. Each
parameter in Table 4 is evaluated in the grid-search at the values listed in Table 3.

All shown results are averages over 50 independent trials for continuous MDPs or 200
trials for discrete MDPs, if not stated otherwise. For discrete and linear continuous systems,
the MSBE / MSPBE / MSE values were calculated exactly, whereas the stationary state
distribution dπ is approximated by samples. For the non-linear continuous system, also
the expectations inside the MSBE and MSPBE were approximated by samples while the
true value function was estimated by exhaustive Monte-Carlo roll-outs.8 We often used the
square-root of costs to present results in the following, which are denoted by RMSE, RMSBE
or RMSPBE.

3.1.8 Normalization of Features

Two types of features were used in the continuous environments, the squared terms of
the state s in the linear case, and a radial basis function network in the non-linear case.
Both representations were normalized. For the squared terms, we subtracted the mean
feature vector and divided by the standard deviation of the individual features. Hence, each
feature was normalized to have zero-mean and unit variance. For the radial basis function
representation, we always divided the activations of the radial basis functions by their sum,

8. Ten roll-outs were used for each sample of the stationary distribution. We compared the Monte-Carlo
estimates from ten roll-outs against estimates from 20 roll-outs on a small subset of samples but did
not observe significant differences. Due to the high computational effort, we therefore settled for ten
roll-outs per state.

855

Dann, Neumann and Peters

(A) residual-gradient (RG)
algorithm
• constant step-sizes αt = α

(B) RG algorithm with double
samples (RG DS)
• constant step-sizes αt = α

(C) TD(λ) learning
• constant step-sizes αt = α
• bootstrapping trade-off λ

(D) TD learning decreasing
steps
• diminishing step-sizes
αt = ζt−η

(E) GTD
• constant step-sizes αt = α
• second step-size βt = αµ

(F) GTD2
• constant step-sizes αt = α
• second step-size βt = αµ

(G) TDC(λ)
• constant step-sizes αt = α
• second estimate step-size
βt = αµ
• bootstrapping trade-off λ

(H) LSTD(λ)
• `2 regularization ε
• bootstrapping trade-off λ

(I) LSTD(λ)-TO
• `2 regularization ε
• bootstrapping trade-off λ

(J) LSPE(λ)
• constant step-sizes αt = αLSPE
• bootstrapping trade-off λ

(K) LSPE(λ)-TO
• constant step-sizes αt = αLSPE
• bootstrapping trade-off λ

(L) FPKF(λ)
• constant step-sizes

αt =

{
αFPKF

βFPKF
βFPKF+t for τFPKF ≤ t

0 otherwise
• bootstrapping trade-off λ

(M) BRM
• `2 regularization ε
• bootstrapping trade-off λ

(N) BRM with double samples (BRM DS)
• `2 regularization ε

Table 4: Overview of all considered algorithms with their hyper-parameters. As GPTD(λ)
is equivalent to LSTD(λ) with `2 regularization, it is not included explicitly.

that is, the sum of their activations is always 1. Since the feature function includes an
additional constant feature 1, the total activation for each state s is ‖φ(s)‖1 = 2. Features
in discrete settings were not normalized.

3.2 Insights on the Algorithms-Defining Cost Functions

The objective function of the policy evaluation algorithm determines its fixpoint, and, hence,
largely influences the final quality of the predictions. As discussed in Section 2.1, only few
theoretical results such as loose bounds could be derived. Additionally, constructed examples
show that the quality of fixpoints with respect to the mean-squared error highly depends on
the problem setting. Therefore, empirical comparisons of the MSTDE, MSBE and MSPBE
fixpoints for common problems with different challenges are of particular interest.

Message 1 Empirically, the magnitudes of the biases of different objective functions with
respect to the MSE fixpoint are: bias(MSTDE) ≥ bias(MSBE) ≥ bias(MSPBE).

856

Policy Evaluation with Temporal Differences

bias of
MSTDE MSBE MSPBE

1. 14-State Boyan Chain 1.93 0.06 0.10
2. Baird Star Example 0.00 0.00 0.03

3. 400-State Random MDP On-policy 0.06 0.04 0.04
4. 400-State Random MDP Off-policy 0.06 0.08 0.05

5. Lin. Cart-Pole Balancing On-pol. Imp. Feat. 4.52 3.80 2.60
6. Lin. Cart-Pole Balancing Off-pol. Imp. Feat. 4.37 3.82 2.47
7. Lin. Cart-Pole Balancing On-pol. Perf. Feat. 1.92 0.05 0.03
8. Lin. Cart-Pole Balancing Off-pol. Perf. Feat. 1.94 0.13 0.04

9. Cart-Pole Swingup On-policy 3.83 3.82 1.99
10. Cart-Pole Swingup Off-policy 4.28 4.30 2.17

11. 20-link Lin. Pole Balancing On-pol. 7.71 7.45 4.27
12. 20-link Lin. Pole Balancing Off-pol. 0.08 0.08 0.04

Table 5: Mean squared error values of fixpoints of other cost-functions: The fixpoints are
estimated by the prediction of LSTD, BRM or BRM with double samples after
convergence. The MSPBE has the lowest bias in almost all experiments.

Table 5 shows the observed MSE value of each fixpoint for every benchmark problem. We
estimated the MSBE, MSTDE and MSPBE fixpoints by running either the Bellman residual
minimization algorithm with or without double sampling or LSTD until convergence (up to a
certain accuracy, without eligibility traces). While this procedure introduces approximation
errors, which are not entirely neglectable, it still allows us to compare the fixpoints of the
cost functions. We ensured that regularization did not impair with the results by comparing
the fixpoint estimations for different regularization parameters.

The results confirm the findings of Scherrer (2010) on discrete MDPs. The MSPBE
fixpoint yields a lower MSE than the MSBE in all continuous experiments. MSTDE and
MSBE are observed to generate substantially inferior predictions, often with errors almost
twice as big. While the MSTDE usually yields the worst predictions, the difference to the
MSBE depends on the amount of stochasticity in each transition. For example, both are
almost identical on the swing-up task due to low noise in the policy and the MDP. While the
MSPBE and MSBE fixpoints are identical to the MSE fixpoint for experiments with perfect
feature representations (up to numerical issues, Benchmarks 1,2,7,8), the MSTDE fixpoint is
often substantially different (Benchmarks 1,7,8). The problem of a potential dramatic failure
of the MSPBE solution, as sketched by Scherrer (2010), was not encountered throughout all
evaluations.

Message 2 Optimizing for the MSBE instead of MSTDE by using double samples introduces
high variance in the estimate. Particularly, Bellman residual minimization requires stronger
regularization which results in slower convergence than relying on one sample per transition.

The objective function does not only determine the objective bias but also affects the
sampling error (see Figure 10). Using double samples, that is, optimizing for MSBE instead
of MSTDE, decreases the objective bias, however, our experiments show that the second

857

Dann, Neumann and Peters

0 1k 2k 3k 4k 5k 6k 7k 8k
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

√ M
S
B
E

BRM DS
RG DS

RG
BRM

Figure 17: Comparison of double-sampling for BRM and the residual-gradient algorithm in
systems with high variance (4. 400-State Random MDP Off-policy). The error
bars indicating standard deviation of BRM with double-sampling (BRM DS) are
omitted for clarity.

sample per transition is not the only price to pay. To determine whether the sampling error
for the two objectives is different, we compared the online performance of residual-gradient
algorithm (RG) and Bellman residual minimization (BRM) with or without double sampling
(DS). We have observed that double-sampling variants converge significantly slower, that
is, their predictions have higher variance. The effect is particularly present in MDPs with
high variance such as the random discrete MDPs, see Figure 17. Double-sampling algorithms
require stronger regularization and therefore converge slower. Bellman residual minimization
suffers more from this effect than the residual-gradient algorithm.

Message 3 Interpolating between the MSPBE/MSTDE and the MSE with eligibility traces
can improve the performance of policy evaluation.

In Example 2 in Section 2.4.1, we illustrated the benefits of eligibility traces with a specially
tailored MDP for which we could control its stochasticity easily. The question remains
whether the interpolation between the MSE and MSPBE is also useful for noise levels in
MDPs encountered in practice. Is the noise so large that the variance is always the domi-
nant source of error or does reducing the bias with eligibility traces pays off? We therefore
compared the MSE of LSTD(λ) and TD(λ) predictions for different λ values on several
benchmark tasks. Representative results of LSTD, shown in Figure 18b, confirm that eligi-
bility traces are of no use if no bias is present in the MSPBE due to perfect features. The
same holds for systems with large stochasticity such as in the randomly sampled discrete
MDP shown in Figure 18c. Yet, interpolating between the MSPBE and MSE boosts the
performance significantly if the MSPBE introduces a bias due to an imperfect feature repre-
sentation and the variance of the MDP is not too high. Such behavior is shown in Figure 18a,
where we used the approximate features instead of the perfect feature representation.

Similar to LSTD, TD learning can be improved by eligibility traces as shown for the
linearized cart pole balancing benchmark with imperfect features in Figure 19a. Best pre-

858

Policy Evaluation with Temporal Differences

0.0 0.2 0.4 0.6 0.8 1.0
λ

-3.0

-1.65

-0.3

1.05

2.4

3.75

5.1

lo
g(
ǫ)

(a) Cart-Pole Balancing Imp. Feat.
Off-Policy (6.)

0.0 0.2 0.4 0.6 0.8 1.0
λ

(b) Pole Balancing Perf. Feat.
Off-Policy (8.)

0.0 0.2 0.4 0.6 0.8 1.0
λ

(c) Discrete Random MDP
On-Policy (3.)

Figure 18: Hyper-parameter space of LSTD(λ). Each point is the logarithm of the averaged
MSE. Darker colors denote low errors, while white indicates divergence. The
colormaps are log log-normalized, that is, the absolute difference in the dark
regions are smaller than those in the bright areas. The regularization parameter
ε is plotted logarithmically on the vertical axis and the eligibility traces parameter
λ on the horizontal one.

dictions are obtained with 0.1 < λ < 0.5 depending on the step-size α. Yet, different to
LSTD, TD learning also benefits from eligibility traces for perfect features (see Figure 19b).
They speed up learning by reducing the optimization error of gradient-based approaches
(cf. Figure 10) and make the algorithms more robust to the choice of the step-size. These
benefits are also present in systems with high stochasticity as Figure 19c indicates. While
eligibility traces diminishes the prediction quality of LSTD in such highly stochastic systems,
TD learning works best for all λ settings as long as the step-size is set appropriately.

3.2.1 Double Sampling vs. Eligibility Traces

Both, double sampling and eligibility-traces, can be used to reduce the bias of the MSTDE
objective at the price of higher variance. However, which approach works better in practice?
To shed some light on this matter, we compared BRM with and without double sampling
and BRM with eligibility traces. The results for the cart-pole balancing task with imperfect
features (Benchmark 5) are shown in Figure 20. We chose the λ-parameter such that both
approaches have the same convergence speed, that is, comparable variance. The plot shows
that eligibility traces can reduce the bias of the MSTDE more than double sampling at the
same increase of variance.

3.2.2 MSPBE vs. MSE Performance

During our evaluation, we often made the interesting observation that a prediction with
significantly lower MSPBE than another prediction does not necessarily have a significantly
lower MSE. See Figure 21 for such an example, which shows the MSE and MSPBE of
predictions for the randomly sampled discrete MDP (Benchmark 3). The performance of

859

Dann, Neumann and Peters

0.0 0.2 0.4 0.6 0.8 1.0
λ

-4.0

-3.7

-3.4

-3.1

-2.8

-2.5

-2.2

lo
g(
α
)

(a) Cart-Pole Balancing Imperf. Feat. Off-
Policy (6)

0.0 0.2 0.4 0.6 0.8 1.0
λ

-4.0

-3.67

-3.34

-3.01

-2.68

-2.35

-2.02

lo
g(
α
)

(b) Cart-Pole Balancing Perf. Feat. On-Policy
(7)

0.0 0.2 0.4 0.6 0.8 1.0
λ

-4.0

-3.58

-3.16

-2.74

-2.32

-1.9

-1.48

lo
g(
α
)

(c) Discrete Random MDP On-Policy (3)

0.0 0.2 0.4 0.6 0.8 1.0
λ

-3.0

-2.55

-2.1

-1.65

-1.2

-0.75

-0.3

lo
g(
α
)

(d) Boyan Chain (1)

Figure 19: Hyper-parameter space of TD(λ). The color of each point represents the averaged
MSE. Darker colors are denoted to low errors, while white indicates divergence.
The colormaps are log log-normalized, that is, the absolute difference in the dark
regions are smaller than those in the bright areas.

860

Policy Evaluation with Temporal Differences

0.0 500.0 1.0k 1.5k 2.0k 2.5k 3.0k 3.5k 4.0k
Timesteps

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

√ M
S
E

LSTD
BRM DS

BRM(0)
BRM(0.8)

Figure 20: Comparison of bias reduction with double-sampling or eligibility traces for BRM.
Eligibility traces introduce less or equal variance than double-sampling and de-
crease the bias more than double-sampling for linearized cart-pole balancing with
imperfect features. Still, LSTD produces less biased predictions at the same level
of variance.

0 1k 2k 3k 4k 5k 6k 7k 8k
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

√ M
S
P
B
E

400 State Random MDP On-Policy

GTD
TD

TDC
LSTD

RG

0 1k 2k 3k 4k 5k 6k 7k 8k
Timesteps

0

2

4

6

8

10

12

14

√ M
S
E

400 State Random MDP On-Policy

GTD
TD

TDC
LSTD

RG

Figure 21: Difference between MSE- and MSPBE-values of the same predictions on the
random discrete MDP. Differences w.r.t. MSPBE are not always present in the
MSE (see the RG performance).

LSTD and TDC or TD is very different with respect to the MSPBE but they perform
almost identically w.r.t. the MSE. While this observation does not always hold (compare
for example RG and LSTD), we experienced similar effects in many experiments including
continuous MDPs.

3.3 Results on Gradient-based Methods

In this section, we present the most important observations for gradient-based methods.

861

Dann, Neumann and Peters

Message 4 Normalization of the features is crucial for the prediction quality of gradient-
based temporal-difference methods.

Throughout all experiments, we observed that normalizing the feature representation im-
proves, or least does not harm, the performance of all temporal-difference methods. However,
for gradient-based approaches, feature normalization is crucial for a good performance. Fea-
tures can be normalized per time step, for example, all components of the feature vector φt
sum up to one, or per dimension, for example, each feature is shifted and scaled such that it
has mean zero and variance one. Per-time-step normalization is, for example, typically used
in radial basis function networks (see Benchmark 11 and 12) to ensure that each time step
has the same magnitude of activation and consequently all transition samples have the same
weight. As such, its effect resembles that of using natural gradients (Amari, 1998; a discus-
sion of the relation between using the Hessian and natural gradients is provided by Roux
and Fitzgibbon, 2010). Since the gradient varies less for different states with per-time-step
normalization, the actual distribution of states is less important and the estimate becomes
more robust for finitely many samples.

Per-dimension normalization gives each feature comparable importance. Under the as-
sumption that the value function changes similarly fast in each feature dimension, per-
dimension normalization causes the Hessian matrix to become more isotropic. It has there-
fore an effect similar to using the inverse of the Hessian to adjust the gradient as least-squares
methods do. However, least-squares methods still can benefit from such a normalization since
their regularization has more equate effect on all dimensions.

We compared per-dimension normalized (Figure 22a) and unnormalized features (Fig-
ure 22b) for the cart-pole balancing task. The results show that the performance of gradient-
based approaches degrade drastically without normalization. As this benchmark requires
only little regularization, the performance of least-squared methods is not significantly af-
fected by feature normalization. To understand why normalization plays such an important
role for gradient-based methods, consider the MSPBE function in an unnormalized feature
space. It may correspond to a quadratic loss function which is flat along some dimension and
steep in others, that is, its Hessian contains large and small eigenvalues. Hence, the optimal
step-size for gradient descent algorithms can vary significantly per dimension, resulting in
either slow convergence of gradient-based algorithms with small step-sizes or a bias if larger
step-sizes are used, see, for example, TDC in Figure 22b.

Message 5 GTD performs worse than its successors GTD2 and TDC. TDC minimizes the
MSPBE faster than the other gradient-based algorithms GTD, GTD2 and TD learning.

We assessed the ability of the gradient based methods TD learning, GTD, GTD2 and TDC
to minimize the MSPBE. The results are given in Table 6. Each entry corresponds to the
accumulated

√
MSPBE-values of the predictions for all time steps. Low numbers indicate ac-

curate estimates with small number of samples. We observe that the performance of GTD is
always worse than the performance of the other methods except for the Boyan chain (Bench-
mark 1) and the 20-link Pole Balancing Off-policy task (Benchmark 12). GTD2 converged
very slowly in these two experiments. Throughout all tasks, GTD performs significantly
worse than other approaches and yields unreliable results in general, that is, sometimes the

862

Policy Evaluation with Temporal Differences

0 2k 4k 6k 8k 10k 12k 14k
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
√ M

S
P
B
E

GTD2
TDC

LSTD
RG

BRM

(a) Normalized Features.

0 2k 4k 6k 8k 10k 12k 14k
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

√ M
S
P
B
E

GTD2
TDC

LSTD
RG

BRM

(b) Unnormalized Features.

Figure 22: Comparison for the cart pole balancing task (Benchmark 5) with normalized and
unnormalized features. Differences in the magnitude of features are particularly
harmful for gradient-based approaches.

GTD GTD2 TDC TD
1. 14-State Boyan Chain 58.11 48.65 16.51 16.51
2. Baird Star Example 1504.38 1520.09 1237.70 > 1010

3. 400-State Random MDP On-policy 39.58 31.06 25.90 33.62
4. 400-State Random MDP Off-policy 40.90 38.08 30.50 37.08

5. Lin. Cart-Pole Balancing On-pol. Imp. Feat. 8.56 5.37 3.84 3.84
6. Lin. Cart-Pole Balancing Off-pol. Imp. Feat. 35.86 21.05 13.31 13.31
7. Lin. Cart-Pole Balancing On-pol. Perf. Feat. 10.18 8.07 7.07 7.98
8. Lin. Cart-Pole Balancing Off-pol. Perf. Feat. 20.65 18.40 15.47 19.68

9. Cart-Pole Swingup On-policy 40.21 24.66 23.08 25.60
10. Cart-Pole Swingup Off-policy 41.09 30.44 25.28 30.14

11. 20-link Lin. Pole Balancing On-pol. 21.97 20.24 17.22 18.58
12. 20-link Lin. Pole Balancing Off-pol. 0.39 0.43 0.26 0.30

Table 6: Sum of square root MSPBE for all timesteps of GTD, GTD2, TDC and TD learning
(TD). GTD is observed to always yield the largest error except for Benchmark 2
and 12. TDC outperformed the other methods in all experiments. The values are
obtained after optimizing the hyper-parameters for the individual algorithms.

estimates have a drastically higher error (Benchmark 1, 5, 6). TDC outperformed all other
gradient-based methods in minimizing the MSPBE throughout all tasks.

Message 6 If we optimize the hyper-parameters of TDC, TDC is always at least as good
as TD-learning, but comes at the price of optimizing an additional hyper-parameter. Often,
hyper-parameter optimization yields very small values for the second learning rate β, in which
case TDC reduces to TD-learning.

863

Dann, Neumann and Peters

0.
00
02

0.
00
05

0.
00
1

0.
00
2

0.
00
3

0.
00
4

0.
00
5

0.
00
6

0.
00
7

0.
00
8

0.
00
9
0.
01
0.
02
0.
03
0.
04
0.
05
0.
06
0.
07
0.
08
0.
09 0.

1
0.
2
0.
3
0.
4
0.
5

Stepsize α

0.0001

0.001

0.01

0.05

0.1

0.5

1

2

4

8

16

µ
=
β
/α

(a) Cart-Pole Swingup On-Policy (9)

0.
00
02

0.
00
05

0.
00
1

0.
00
2

0.
00
3

0.
00
4

0.
00
5

0.
00
6

0.
00
7

0.
00
8

0.
00
9
0.
01
0.
02
0.
03
0.
04
0.
05
0.
06
0.
07
0.
08
0.
09 0.

1
0.
2
0.
3
0.
4
0.
5

Stepsize α

0.0001

0.001

0.01

0.05

0.1

0.5

1

2

4

8

16

µ
=
β
/α

(b) Cart-Pole Balancing Off-Policy (6)

0.
00
02

0.
00
05

0.
00
1

0.
00
2

0.
00
3

0.
00
4

0.
00
5

0.
00
6

0.
00
7

0.
00
8

0.
00
9
0.
01
0.
02
0.
03
0.
04
0.
05
0.
06
0.
07
0.
08
0.
09 0.

1
0.
2
0.
3
0.
4
0.
5

Stepsize α

0.0001

0.001

0.01

0.05

0.1

0.5

1

2

4

8

16

µ
=
β
/α

(c) 20-link Pole Balancing Off-Policy (12)

0.
00
02

0.
00
05

0.
00
1

0.
00
2

0.
00
3

0.
00
4

0.
00
5

0.
00
6

0.
00
7

0.
00
8

0.
00
9
0.
01
0.
02
0.
03
0.
04
0.
05
0.
06
0.
07
0.
08
0.
09 0.

1
0.
2
0.
3
0.
4
0.
5

Stepsize α

0.0001

0.001

0.01

0.05

0.1

0.5

1

2

4

8

16

µ
=
β
/α

(d) Baird’s Star Example (2)

Figure 23: Hyper-parameter space of TDC for λ = 0. The primary step-size of TDC is
denoted by α and µ = β/α is the ratio of secondary to primary step-size. Each
point is the logarithm of the averaged MSPBE. Darker colors are denoted to low
errors, while white indicates divergence.

As TDC is identical to TD if we set the second learning rate β for the vector w (or the
ratio µ = β/α) to zero, the performance of TDC is at least as good as that of TD if the
hyper-parameters are optimized. As the results in Table 6 show, the difference of TDC and
TD is negligible in some tasks (Tasks 1, 5, 6). In these cases, the optimal values for the ratio
µ are very small, as the results of the grid-search in Figure 23b indicate, and TDC reduces
to TD.

Large µ values were only observed to yield good performance for the Baird’s Star task
(Benchmark 2) where TD learning always diverged (see Figure 23d). Apart from this ex-
ample, which is specifically tailored to show divergence of TD learning, TD converged in all
off-policy benchmarks. However, even if TD learning converges, the use of the second step-
size can be beneficial in some scenarios (e.g., in Benchmark 3, 4, 8, 9 and 10), as the MSPBE
of the predictions can be reduced significantly. The grid search results of the Swing-up task
shown in Figure 23a as well as the prediction error over time shown in Figure 24b clearly
indicate an advantage of TDC. However, TDC comes at the price that we need to optimize
the second learning rate as an additional hyper-parameter despite that it may have almost
no effect in some problems (see Figure 23c).

864

Policy Evaluation with Temporal Differences

0.0 2k 4k 6k 8k 10k 12k 14k
Timesteps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
√ M

S
P
B
E

TD ց
TD →

TDC →

(a) Cart-pole Balancing With Imperfect Fea-
tures, On-policy. (Benchmark 6). The graphs
of TDC and TD with constant step-sizes are
identical.

0.0 1k 2k 3k 4k 5k 6k 7k 8k
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

√ M
S
P
B
E

TD ց
TD →

TDC →

(b) Discrete Random MDP, On-policy (Bench-
mark 3)

Figure 24: Convergence Speed for TD learning with decreasing (TD ↘) and constant step-
sizes (TD →) and TDC with constant step-sizes (TDC →).

3.3.1 Constant vs. Decreasing Learning Rates

We also evaluated whether using a decreasing learning rate—an assumption on which the
convergence proofs of stochastic gradient-based methods rely—improves the prediction per-
formance for a finite number of time steps. We compared constant learning rates against
exponentially decreasing ones (see C and D in Table 4) for TD learning. In most tasks, no
significant improvements with decreasing rates could be observed. Only for the cart pole
balancing with imperfect features (Benchmark 6) and the discrete random MDP (Bench-
mark 3), we could speed up the convergence to low-error predictions. Figure 24 illustrates
the difference. However, using decreasing learning rates is harder as at least two parameters
per learning rate need to be optimized, which we experienced to have high influence on
the prediction quality, and, hence, we do not recommend to use decreasing step-sizes for a
limited number of observations.

3.3.2 Influence of Hyper-Parameters

We can consider the prediction error of each method as a function of the method’s hyper-
parameters. As Figure 19 and Figure 23 indicate, these functions are smooth, uni-modal
and often even convex for gradient-based algorithms.9 Only parts of the hyper-parameter
spaces are shown, yet, we observed the functions to be well-behaved in general, and, hence,
local optimization strategies for selecting hyper-parameters can be employed successfully.

3.4 Results on Least-Squares Methods

In this section, we present the most important insights from the experimental evaluation of
least-squares methods.

9. The plots in Figure 19 seem non-convex due to the log-scale of the step-size parameter α.

865

Dann, Neumann and Peters

Task GTD GTD2 TD TDC RG RG DS BRM BRM DS LSPE LSTD FPKF
1 7.22 6.89 5.56 0.40 5.56 6.83 2.32 0.26 0.10 0.10 0.79
2 1.74 1.63 0.03 0.03 1.56 2.20 0.00 0.00 0.03 0.03 0.22
3 1.44 1.36 1.05 0.75 5.46 2.32 0.12 1.44 0.09 0.09 4.34
4 1.39 1.97 0.93 1.29 3.10 2.95 0.10 3.20 0.13 0.13 9.72
5 2.37 2.37 3.58 2.51 4.42 3.75 4.52 3.80 2.60 2.60 2.58
6 2.59 2.33 4.37 2.44 4.42 3.88 4.37 3.82 2.47 2.47 2.91
7 5.45 3.12 0.15 1.75 3.14 1.19 0.15 0.15 0.15 0.15 0.24
8 5.43 4.04 1.95 2.10 3.18 1.53 1.95 1.95 0.17 0.17 3.82
9 5.13 3.98 3.83 3.86 4.61 4.60 3.83 3.82 1.97 1.99 2.88
10 5.45 4.85 4.28 3.91 4.71 4.71 4.28 4.30 4.68 2.17 4.28
11 4.29 4.41 7.71 4.75 7.60 7.44 7.71 7.45 4.26 4.27 7.30
12 0.058 0.08 0.077 0.052 0.077 0.075 0.077 0.076 0.043 0.042 0.081

Table 7: Mean squared errors of final predictions. Task names and descriptions associated
with the numbers can be found in Section 3.1. LSPE and LSTD are shown with
transition-based off-policy reweighting (LSPE-TO and LSTD-TO).

Message 7 In general, LSTD and LSPE produce the predictions with lowest errors for
sufficiently many observations.

Table 7 shows the square roots of mean-squared errors (
√
MSE) of the estimate from each

method at the last timestep. The values are the final errors obtained with specific methods
for each benchmark. The best prediction is generated either by LSTD or LSPE for almost
all tasks. In cases where LSPE has the lowest error, LSTD is only marginally worse and
does not depend on a learning rate α to be optimized.

The Star Example of Baird has a true value function of constant 0 and is therefore
not suited to compare least-squares methods. Each least-squares method can yield perfect
results with overly strong regularization. The small difference between the errors of BRM
and LSTD in the second row of Table 7 are caused by numerical issues avoidable by stronger
regularization.

Interestingly, BRM outperforms all other methods in Benchmark 4, the randomly gen-
erated discrete MDP with off-policy samples. The MSTDE has a high bias but at the same
time a low variance which seems to be particularly advantageous here as this benchmark is
highly stochastic. We experienced unexpected results for the cart-pole balancing tasks with
imperfect features (Tasks 5 and 6). Here, the gradient-based approaches perform exceed-
ingly well and GTD even obtains the lowest final MSE value. However, Figure 25 reveals
that the reason for this effect is only an artifact of the optimization error introduced by
gradient methods. The two sources of error, objective bias and optimization error, coun-
terbalance each other in this example. The MSPBE fixpoint has an error of about 2.5
and LSTD converges to it quickly. The gradient methods, however, converge slower due to
their optimization error. Yet, when they approach the MSPBE fixpoint, the estimates pass
through regions with lower MSE. As GTD has not converged for the maximum number of
evaluated observations, it is still in the region with lower MSE. It therefore yields the best

866

Policy Evaluation with Temporal Differences

0 5k 10k 15k 20k 25k 30k
Timesteps

2.0

2.5

3.0

3.5

4.0

√ M
S
E

GTD2
TD ց

TDC
LSTD

Figure 25: Pole Balancing task with impoverished features. Slightly sub-optimal prediction
with respect to the MSPBE yield lowest MSE.

final prediction. However, it would eventually converge to the worse MSPBE fixpoint. Un-
fortunately, we typically do not have knowledge when such a coincidence happens without
actually evaluating the MSE, and, thus, can not exploit this effect. Apart from Tasks 4,
5 and 6, LSTD always yields the lowest or almost the lowest errors, while other methods
perform significantly worse on at least some benchmarks (e.g., Task 10 for LSPE). According
to the results of our experiments, LSTD is a very accurate and reliable method. It is the
method of our choice, although it may behave unstable in some cases, for example, when the
number of observations is less than the number of features or some features are redundant,
that is, linearly dependent.

Message 8 In practice, LSTD and LSPE perform well with off-policy samples only if the
newly introduced transition reweighting (proposed in Section 2.4.2) is used. The variance of
LSTD with standard reweighting makes the algorithm unusable in practice.

In Section 2.4.2, we proposed an off-policy reweighting based on the entire transition as an al-
ternative to the standard off-policy sample reweighting for LSTD and LSPE. Both reweight-
ing strategies converge to the same solution for infinitely many observations. However,
transition reweighting yields much faster convergence as Figure 26 illustrates. Figure 26a
compares the reweighting approaches on the linearized cart-pole problem (Benchmark 6).
Despite strong `2-regularization, LSTD yields very noisy estimates with standard reweight-
ing, rendering the algorithm inapplicable. The variance induced by the standard reweighting
prevents fast convergence, as the variance of 1.0 between different experiment runs indicates.
While the estimates of LSPE with standard reweighting show decreasing error over time (due
to a very small step size chosen by the hyper-parameter optimization), the increasing stan-
dard deviation indicates that the variance of the estimates is problematic. In contrast, LSPE
and LSTD with transition reweighting converge substantially faster and yield good estimates
after already 5,000 time steps. The benefit of transition reweighting is even more salient in
the results of the off-policy cart-pole swing-up task (Benchmark 10) shown in Figure 26b on
a logarithmic scale. The observations are consistent with all off-policy tasks (see Table 8).
The price for using off-policy samples instead of on-policy samples, in terms of convergence

867

Dann, Neumann and Peters

LSPE LSPE-TO LSTD LSTD-TO
4. 400-State Random MDP Off-policy 110.16 21.30 1727.10 15.50

6. Lin. Cart-Pole Balancing Off-pol. Imp. Feat. 22.08 6.88 223.64 6.79
8. Lin. Cart-Pole Balancing Off-pol. Perf. Feat. 15.52 4.38 49.27 3.52

10. Cart-Pole Swingup Off-policy 45.26 32.11 493.18 20.58
12. 20-link Lin. Pole Balancing Off-pol. 0.43 0.24 0.43 0.32

Table 8: Sum of square-roots of MSPBE for all timesteps of LSPE and LSTD with standard
importance reweighting and transition off-policy reweighting (LSPE-TO, LSTD-
TO). The Baird-Star Example (Task 2) is omitted as it is not suited well for
evaluating least-squares approaches since perfect estimates can be achieved with
overly strong regularization.

0 5k 10k 15k 20k 25k 30k
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

√ M
S
P
B
E

LSTD
LSPE

LSPE-TO
LSTD-TO

(a) Cart pole balancing with 5 features, off-
policy (Benchmark 6). The error-bars of LSTD
with standard reweighting are omitted for vis-
ibility.

0 10000 20000 30000 40000 50000 60000
Timesteps

10-1

100

101

102

√ M
S
P
B
E

LSPE
LSPE-TO

LSTD-TO
LSTD

(b) Cart pole swingup, off-policy (Bench-
mark 10) on a logarithmic scale.

Figure 26: Comparison of the standard off-policy reweighting scheme and the transition
reweighting (TO) proposed in this paper.

speed, is similar to other methods if LSTD and LSPE are used with transition reweight-
ing. LSTD and LSPE with transition reweighting obtain the most accurate estimates of all
methods as Table 7 indicates.

Message 9 For a modest number of features, least-squares methods are superior to gradient-
based approaches both in terms of data-efficiency and even CPU-time if we want to reach the
same error level. For a very large number of features (e.g., ≥ 20,000), gradient-based meth-
ods should be preferred as least-squares approaches become prohibitively time- and memory-
consuming.

Except for the artifact in the linearized cart-pole balancing task with imperfect features
(Benchmarks 5 and 6), least-squares methods yield the most accurate final predictions (see
Table 7). However, least-squares approaches may behave very unstable for a small number of

868

Policy Evaluation with Temporal Differences

observations. A strong regularization is usually required if the number of samples is smaller
than the number of features. An example is given in Figure 17 that shows the increase of
the error of BRM predictions for the first 500 samples. However, Figures 22a, 21, 17 and 25
show that least-squares approaches converge much faster than gradient-based methods after
this stage of potential instability. Least-squares methods are therefore more data efficient
than gradient-based methods.

However, the required CPU-time per transition is quadratic in the number of features
instead of linear as for the gradient approaches. Hence, it is also interesting to compare both
approaches from a computational viewpoint with a fixed budget of CPU-time. Figure 27
compares the prediction quality of LSTD and TDC, the best-performing representatives
of both classes, for a given budget of CPU-time. In order to compare the performance
on a task with a vast number of features, we changed the number of dimensions in the
pendulum balancing task from 20 to 100 and used the perfect feature representation of
20101 dimensions.10 LSTD requires more CPU time to converge since TDC can do several
sweeps through the provided transition samples (7000 in total) while LSTD can update the
parameters only a few times due to the high-dimensional features. Yet, TDC converges faster
only up to an error level of approximately 8, both for constant and decreasing step-sizes.
The prediction error of TDC with decreasing step-sizes still decreases, and will eventually
reach the same minimum as the one of LSTD, but very slowly. This observation is consistent
with results on stochastic gradient methods in general (see Sra et al., 2012, Chapter 4.1.2).
Additionally, we evaluated the methods on a 30-link pendulum with a moderate number of
1830 features. The results are shown in Figure 27b. Due to the smaller number of features
LSTD converges faster from the beginning on. However, as the stagnant prediction error up
to second 30 shows, LSTD may still yield unstable results as it has not processed enough
observations to ensure that its At-matrix (cf. Equation 25) is invertible and needs strong
regularization.

Least-squares methods clearly outperform gradient-based approaches for problems with
few features. The quadratic run-time and memory consumption as well as the unstable
behavior with few observations become more problematic for increasing numbers of features
but, as our results show, least-squares methods may still be a good option for up to 20.000
features

3.4.1 Alternative Regularization Approaches

We implemented and evaluated alternative regularization approaches for LSTD in prelimi-
nary experiments, including LARS-TD, LSTD with `2, `1, LSTD-`1 and D-LSTD. However,
we observed no performance gain for our benchmarks in comparison to `2-regularization. We
attribute this result to the fact that most of the features in our benchmarks had sufficient
quality. The sparse solutions produced by alternative regularization schemes had thus no
significant advantage as the noise introduced by active low-quality features in non-sparse
solutions was not large enough. We also did not observe the theoretically derived benefits
of LSTD with random projections (LSTD-RP), which only become important for extremely
many features.

10. The features include the products of all state variables, cf. the features of Benchmark 7.

869

Dann, Neumann and Peters

0 20 40 60 80 100
Runtime in s

0

5

10

15

20

25

30

35

40
√ M

S
E

LSTD
TDC →
TDC ց

(a) 100-link Pole Balancing with 20101 features
(400 dim. state, 20100 squared state features
+ 1 constant dim.)

0 20 40 60 80 100
Runtime in s

0

1

2

3

4

5

6

√ M
S
E

LSTD
TDC →
TDC ց

(b) 30-link Pole Balancing with 1831 features
(60 dim. state, 1830 squared state features +
1 constant dim.)

Figure 27: Comparison of the prediction quality for given CPU times of LSTD and TDC
with constant (TDC →) and decreasing step-sizes (TDC ↘). The methods are
evaluated on multi-link Pole Balancing tasks (in analogy to Benchmark 11) with
perfect feature representations. The methods are provided with a total of 7000
transitions. The results are averages of 10 independent runs executed on a single
core of an i7 Intel CPU.

3.4.2 Dependency on Hyper-Parameters

Most least-squares methods are robust against a poor choice of the hyper-parameters. LSTD
and BRM, in particular, which are controlled only by the regularization parameter ε and
the parameter λ of the eligibility-traces, converge for almost all values (cf. Figure 18).
In contrast, FPKF has four hyper-parameters to optimize, the eligibility-trace parameter
λ; a general scaling factor αFPKF for the step-sizes; βFPKF delaying the decrease of the
step-length and τFPKF which controls the minimum number of observations necessary to
update the estimate. In particular, αFPKF and βFPKF need to be set correctly to prevent
FPKF from diverging as the large white areas in Figure 28a indicate. Also, τFPKF has large
influence on the performance and may cause divergence (Figure 28b). Hence, descent-based
optimization strategies such as block gradient descent (with finite differences) are difficult to
use for hyper-parameter search as choosing an initial hyper-parameter setting that works is
not trivial. On the contrary, LSPE does not rely as much on well-chosen hyper-parameters.
As LSTD and BRM, it has an eligibility-traces parameter λ and a regularization-intensity
ε, but also incorporates a step-size α, which affects the prediction in a similar way as ε, that
is, it controls the amount of learning. Representative results, given in Figure 29, illustrate
that LSPE performs well and stable up to a certain step-size but then diverges. Still, LSTD
does not require any step-size at all and performs similarly or better than LSPE (see also
Message 7).

870

Policy Evaluation with Temporal Differences

-3.0 -2.2 -1.4 -0.6 0.2 1.0
log10(α)

0.0

0.8

1.6

2.4

3.2

4.0

lo
g
1
0
(β

)

(a) Step-size scale αFPKF and length-
decreasing parameter βFPKF

-3.0 -2.2 -1.4 -0.6 0.2 1.0
log10(α)

0
100
200
300
400
500
750

1000
2000

τ
(b) Step-size scale αFPKF and the initial update
delay τFPKF

Figure 28: Hyper-parameter space of FPKF(λ) for Benchmark 5. Each point is the loga-
rithm of the averaged MSE. Darker colors show lower errors, while white indicates
divergence. The color-maps are log-normalized. Each plot shows a slice of the
4-dimensional hyper-parameter space around the setting used in our experiments
(optimal w.r.t. the MSPBE).

-3.0 -2.2 -1.4 -0.6 0.2 1.0
log10(α)

0.0

0.4

0.8

λ

Figure 29: Hyper-parameter space of LSPE(λ) for Benchmark 5. Each point is the logarithm
of the averaged MSE. Darker colors show lower errors, while white indicates di-
vergence. The color-maps are log-normalized. The step-size α has little influence
on the performance, while e-traces may speed-up learning significantly.

871

Dann, Neumann and Peters

4. Conclusion and Outlook

We conclude the paper with a short summary of its main contributions and a brief outlook
on possible directions for future research on temporal-difference methods.

4.1 Conclusion

With this paper, we aimed at giving an exhaustive survey of past and current research
activities on value-function estimation with temporal differences—both from a theoretical
and an empirical point of view. Almost all important methods originated in this area
of research have been presented from a unifying viewpoint of function optimization. The
algorithms have been systematically categorized based on their underlying cost functions
and the employed optimization technique: stochastic gradient descent, analytic least-squares
solutions or a probabilistic problem formulation. We aimed for a concise, yet comprehensive
and coherent presentation to make these algorithms available to novices and practitioners.

In addition, we provide an overview over recent work on feature representations for value
function approximation. These developments aim either at an automatic generation of state
features or at more robust methods that can deal with very large numbers of irrelevant
features. We also have provided a qualitative analysis of conceptual error sources that aids
novices in understanding the effects of eligibility traces which implicitly perform multi-step
look-ahead. Discerning the sources of errors is important for choosing the most suitable
estimation method given a new task at hand and for identifying reasons why a particular
approach might not work. Furthermore, we have discussed the use of importance reweighting
for implementing off-policy value estimation. We have shown that the commonly employed
importance reweighting strategy of least-squares methods such as LSTD and LSPE is un-
suitable for non-trivial tasks due to its high variance. To alleviate this problem, we have
introduced a novel importance reweighting strategy with drastically reduced variance. Our
importance reweighting strategy works well in practice—even where the standard reweight-
ing strategy exhibits strong instabilities and yields unsuitable results.

One of the most important contribution of this paper is that it is one of the first com-
prehensive experimental comparisons of the different value-function estimation methods,
including the recent developments. Their performance was evaluated on 12 different bench-
mark tasks that exhibited different characteristics, including MDPs with continuous and
discrete state spaces as well as on- and off-policy transition samples. Our work also provides
further evidence on relevant future research questions, such as, which objective function has
the lowest bias in practice or which algorithms are preferable in terms of data efficiency or
computational demands. Moreover, the experimental evaluation reveals the behavior and
the limitations of each temporal-difference method in various scenarios. These findings will
hopefully give insights for improving the state of the art in policy evaluation.

4.2 Outlook

Efficient estimation of value functions is a corner stone of reinforcement learning as the
value function is needed in the policy improvement step of the many reinforcement learning
algorithms. Temporal-difference methods have been used since the late 1980s to estimate
the value function of a policy and have since then been an active field of research. In recent

872

Policy Evaluation with Temporal Differences

years, the research concentrated on overcoming the instability of the TD learning method
with off-policy samples, improving the sample efficiency, or value-function estimation in
high-dimensional feature spaces. This research resulted in the development of the current
state of the art, such as LSTD or TD learning with Gradient Correction. In addition, the
theoretical analysis from different view-points has led to a good theoretical understanding
of the foundations of temporal-difference methods.

However, the use of temporal-difference methods has been restricted by several limita-
tions of the methods. In many domains, the assumption of having a compact and informative
feature representation is not realistic. Such features are often difficult to define by hand,
for example, in real world robotic systems, in health care diagnosis or for controlling of
prostheses. We therefore expect the recent efforts of learning the feature representation (cf.
Section 2.3) to continue and increase substantially.

Additionally, the number of samples necessary for learning value functions is still pro-
hibitively large for many real-world scenarios, especially those that involve hardware such as
robots or other complex, expensive equipment. One way for addressing this shortcoming is
to make the learning problem easier by incorporating prior knowledge. Domain knowledge
can usually be incorporated most easily in model-based methods that learn the underlying
forward dynamics of the task. Such models can be used to create samples in simulation with-
out hardware or by directly using dynamic programming with the learned model. Deisenroth
and Rasmussen (2011) successfully learned complex robot control policies by simultaneously
learning a system model and using this model to optimize the policy (direct model-based
policy search). As their work show, it is crucial to include the uncertainty about the learned
model into the actual estimation problem. Value-function estimation methods that can in-
corporate a learned model and its uncertainty efficiently are therefore a promising direction
for future research.

In this paper, we have treated minimizing the mean squared error of a value function
estimate as the ultimate goal. However, in most cases the value function is only an inter-
mediate result used for improving the policy. What counts in the end is not the quality of
the value function approximation but the quality of the policy after the policy improvement
step. Other objective functions might exist that are easier to minimize and do not harm
the convergence properties of policy iteration schemes. Characterizing such objectives can
prospectively lead to algorithms with faster convergence to an optimal or at least viable
policy.

This survey and comparison solely concentrated on policy evaluation. A comprehensive
survey and experimental evaluation of temporal differences in policy iteration which builds
on the results of this paper is left as future work and strongly needed by the reinforcement
learning community.

Acknowledgments

The research leading to these results has received funding from the European Community’s
Framework Programme CompLACS (FP7-ICT-2009-6 Grant.No.270327).

873

Dann, Neumann and Peters

Appendix A. Derivation of Least-Squares Temporal-Difference Learning

The derivation of the LSTD algorithm begins with rewriting the MSPBE from Equation (9)
in terms of a different norm. While this formulation is, strictly speaking, not necessary,
it helps to understand the connection to the TDC, GTD and GTD2 algorithms and let us
derive subsequent steps more concisely

MSPBE(θ) = ‖V θ −ΠT πV θ‖2D
= ‖Π(V θ − T πV θ)‖2D (since V θ is parametrizable)

= [Π(V θ − T πV θ)]TD[Π(V θ − T πV θ)]

= [V θ − T πV θ]TΠTDΠ[V θ − T πV θ]

= [V θ − T πV θ]TDΦ(ΦTDΦ)−1ΦTDΦ(ΦTDΦ)−1ΦTD[V θ − T πV θ]

= [V θ − T πV θ]TDΦ(ΦTDΦ)−1ΦTD[V θ − T πV θ]

= [ΦTD(V θ − T πV θ)]T (ΦTDΦ)−1[ΦTD(V θ − T πV θ)]

= ‖ΦTD(V θ − T πV θ)‖2
(ΦTDΦ)−1 (41)

= ‖Ed,π,P [φtδt]‖2(ΦTDΦ)−1 . (42)

The matrix ΦTDΦ and its inverseM = (ΦTDΦ)−1 are symmetric positive definite matrices
(for independent features and d(s) > 0,∀s ∈ S). Hence, ‖ · ‖M is a norm and θ minimizes
the MSPBE if and only if Ed,π,P [φtδt] = 0. Equation (42) also allows us to rewrite the
MSPBE as a product of expectations

MSPBE(θ) = Ed,π,P [φtδt]
TEd[φtφTt]−1Ed,π,P [φtδt], (43)

which is the basis for the GTD2 and TDC algorithms. Since Vθ is parameterized linearly,
we can replace T πV θ with

T πV θ = R+ γΦ′θ,

where R ∈ Rn is the expected intermediate reward Ri = Eπ[r(si, a)] in state si and Φ′ =
P πΦ is the matrix containing the expected feature for the successor states, that is, Φ′i =
EP,π[φTt+1|st = si]. Equation (41) can then be written as

MSPBE(θ) = ‖ΦTD(Φθ − γΦ′θ −R)‖2M
= ‖ΦTD[Φ− γΦ′]θ −ΦTDR)‖2M
= ‖ΦTD∆Φθ −ΦTDR)‖2M
= ‖Aθ − b‖2M ,

where ∆Φ = Φ − γΦ′ and b = ΦTDR. The matrix A = ΦTD∆Φ has been shown to
be positive definite and thus invertible (Bertsekas and Tsitsiklis, 1996, Proposition 6.3.3).
Minimizing this MSPBE formulation directly by setting the gradient to 0 yields

θ = (ATMA)−1ATMb = A−1M−1A−TATMb = A−1b = (ΦTD∆Φ)−1ΦTDR.

874

Policy Evaluation with Temporal Differences

Appendix B. Parametric GPTD Whitening Transformation

Equation (32) can also be written in matrix form in terms of the reward, that is,

rt−1 = ΓtV t + nt, Γt =

1 −γ 0 . . . 0
0 1 −γ . . . 0
...

...
0 . . . 0 1 −γ

 ,
where Γt connects the values of subsequent timesteps, rt−1 = [r1, . . . , rt−1] and V t =
[v1 . . . vt]. The noise term nt is now given as nt = Γt∆vt, and hence is distributed as
nt ∼ N (0,Σt), with

Σt = σ2ΓtΓ
T
t = σ2

1 + γ2 −γ 0 . . . 0
−γ 1 + γ2 −γ . . . 0
...

...
0 0 . . . −γ 1 + γ2

 .
We realize that the required whitening transformation is given by

Zt = Γ−1
t =

1 γ γ2 . . . γt

0 1 γ . . . γt−1

...
...

0 0 0 . . . 1

 ,
and hence, we get the following regression problem

Ztrt−1 = ZtΓtV t +Ztnt.

Appendix C. Algorithms

The following pseudo-code listings show the update rules of all discussed temporal-difference
algorithms. These updates are executed for each transition from st to st+1 performing action
at and getting the reward rt.

Algorithm 1 TD(λ) Learning

zt+1 =ρt(φt + λγzt)

θt+1 =θt + αtδtzt+1

Algorithm 2 GTD

θt+1 =θt + αtρt(φt − γφt+1)φTt wt

wt+1 =wt + βtρt(δtφt −wt)

Algorithm 3 GTD2

θt+1 =θt + αtρt(φt − γφt+1)φTt wt

wt+1 =wt + βt(ρtδt − φTt wt)φt

Algorithm 4 TDC(λ)

zt+1 =ρt(φt + λγzt)

θt+1 =θt + αt(δtzt − γ(1− λ)(zTt wt)φt+1)

wt+1 =wt + βt(ρtδtzt − φTt wtφt)

875

Dann, Neumann and Peters

Algorithm 5 recursive LSTD(λ) (Init:
M0 = εI)

∆φt+1 =φt − ρtγφt+1

zt =γλρt−1zt−1 + φt

Kt+1 =
M tzt

1 + ∆φT
t+1M tzt

θt+1 =θt +Kt+1(ρtrt −∆φt+1)Tθt)

M t+1 =M t −Kt+1(MT
t ∆φt+1)T

Algorithm 6 recursive LSTD-TO(λ)
(Init: M0 = εI)

∆φt+1 =φt − γφt+1

zt =γλρt−1zt−1 + φt

Kt+1 =ρt
M tzt

1 + ρt∆φ
T
t+1M tzt

θt+1 =θt +Kt+1(rt −∆φT
t+1θt)

M t+1 =M t −Kt+1(MT
t ∆φt+1)T

Algorithm 7 recursive LSPE(λ) (Init:
N0 = εI,A0 = 0, b0 = 0)

zt =γλρt−1zt−1 + φt

N t+1 =N t −
N tφtφ

T
t N t

1 + (φTt N tφt)

At+1 =At + zt(φt − γρtφt+1))T

bt+1 =bt + ρtrtzt

θt+1 =θt + αtN t(bt −Atθt)

Algorithm 8 recursive LSPE-TO(λ)
(Init: N0 = εI,A0 = 0, b0 = 0)

zt =γλρt−1zt−1 + φt

N t+1 =N t −
N tφtφ

T
t N t

1 + (φTt N tφt)

At+1 =At + ρtzt(φt − γφt+1))T

bt+1 =bt + ρtrtzt

θt+1 =θt + αtN t(bt −Atθt)

Algorithm 9 FPKF(λ) (Init: N0 = 0, Z0 =

0, z0 = 0)

zt =γλρt−1zt−1 + φt

Zt =γλρt−1Zt−1 + φtθ
T
t

N t+1 =N t −
N tφtφ

T
t N t

1 + (φTt N tφt)

θt+1 =θt + αtN t(ztρtrt −Zt(φt − γρtφt+1))

Algorithm 10 recursive BRM with dou-
ble samples (Init: M0 = εI, b0 = 0)

∆φ′t+1 =φt − γφ
′
t+1

∆φ′′t+1 =φt − γφ
′′
t+1

bt+1 =bt +
1

2
ρ′tρ
′′
t (∆φ′′t+1r

′
t + ∆φ′t+1r

′′
t)

M t+1 =M t −
ρ′tρ
′′
tM t∆φ

′
t+1∆φ′′Tt+1M t

1 + ρ′tρ
′′
t ∆φ′Tt+1M t∆φ

′′
t+1

θt+1 =M t+1bt+1

876

Policy Evaluation with Temporal Differences

Algorithm 11 recursive BRM(λ)
(Init: M0 = εI,x0 = 0, y0 = 1, z0 = 0)
Compute auxiliary values:

∆φt+1 =φt − γρtφt+1

pt+1 =
γλρt−1√

yt

U t+1 =
[√
yt∆φt+1 + pt+1xt, pt+1xt

]
V t+1 =

[√
yt∆φt+1 + pt+1xt, −pt+1xt

]T
W t+1 = [

√
ytρtrt + pt+1zt, −pt+1zt]

T

Bt+1 =M tU t+1[I + V t+1M tU t+1]−1

Update traces:

M t+1 =M t −Bt+1V t+1M t

yt+1 =(γλρt)
2yt + 1

xt+1 =(γλρt−1)xt + yt∆φt+1

zt+1 =(γλρt−1)zt + rtρtyt

Update estimate:

θt+1 =θt +Bt+1(W t+1 − V t+1θt)

Algorithm 12 parametric GPTD (Init:
P 0 = I, po = 0, d0 = 0, s−10 = 0)

∆φt+1 =φt − γφt+1

pt+1 =pt
γσ2

t

st
+ P t∆φt+1

dt+1 =dt
γσ2

t

st
+ rt −∆φTt+1θt

st+1 =σ2
t + γ2σ2

t+1 −
γ2σ4

t

st

+

[
pt+1 +

γσ2
t

st
pt

]T
∆φt+1

θt+1 =θt +
1

st+1
pt+1dt+1

P t+1 =P t −
1

st+1
pt+1p

T
t+1

Algorithm 13 Residual-gradient algorithm
without double-samples

θt+1 =θt + αtρtδt(φt − γφt+1)

References

J. S. Albus. A new approach to manipulator control: The cerebellar model articulation con-
troller (CMAC). Journal of Dynamic Systems Measurement and Control, 97(September):
220–227, 1975.

S.-i. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):
251–276, Feb. 1998.

A. Antos, C. Szepesvári, and R. Munos. Learning near-optimal policies with Bellman-
residual minimization based fitted policy iteration and a single sample path. Machine
Learning, 71(1):89–129, 2008.

F. Bach and E. Moulines. Non-asymptotic analysis of stochastic approximation algorithms
for machine learning. In Advances in Neural Information Processing Systems 24, 2011.

877

Dann, Neumann and Peters

L. Baird. Residual algorithms : Reinforcement learning with function approximation. In
Proceedings of the Twelfth International Conference on Machine Learning, 1995.

P. Balakrishna, R. Ganesan, and L. Sherry. Accuracy of reinforcement learning algorithms for
predicting aircraft taxi-out times: A case-study of Tampa Bay departures. Transportation
Research Part C: Emerging Technologies, 18(6):950–962, 2010.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, Bel-
mont, Massachusetts, 1996. ISBN 1-886529-10-8.

D. P. Bertsekas and H. Yu. Projected equation methods for approximate solution of large
linear systems. Journal of Computational and Applied Mathematics, 227(1):27–50, 2009.

J. A. Boyan. Technical update: Least-squares temporal difference learning. Machine Learn-
ing, 49(2):233–246, 2002.

S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference
learning. Machine Learning, 22(1-3):33–57, 1996.

E. Candes and T. Tao. The Dantzig selector: statistical estimation when p is much larger
than n. The Annals of Statistics, 35(6):2313–2351, 2005.

D. Choi and B. Roy. A generalized Kalman filter for fixed point approximation and efficient
temporal-difference learning. Discrete Event Dynamic Systems, 16(2):207–239, 2006.

R. W. Cottle, J.-S. Pang, and R. E. Stone. The Linear Complementarity Problem. Computer
Science and Scientific Computing. Academic Press, 1992. ISBN 0121923509.

R. H. Crites and A. G. Barto. Elevator group control using multiple reinforcement learning
agents. Machine Learning, 33(2-3):235–262, 1998.

W. Dabney and A. G. Barto. Adaptive step-size for online temporal difference learning. In
Proceedings of the 26th AAAI Conference on Artificial Intelligence, 2012.

P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. A tutorial on the cross-
entropy method. Annals of Operations Research, (1):19–67, 2010.

M. P. Deisenroth. Efficient Reinforcement Learning using Gaussian Processes. PhD thesis,
Karlsruhe Institute of Technology, 2010.

M. P. Deisenroth and C. E. Rasmussen. PILCO: A model-based and data-efficient approach
to policy search. In Proceedings of the 28th International Conference on Machine Learning,
2011.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The Annals of
Statistics, 32(2):407–499, 2004.

Y. Engel. Algorithms and Representations for Reinforcement Learning. PhD thesis, Hebrew
University, 2005.

878

Policy Evaluation with Temporal Differences

Y. Engel, S. Mannor, and R. Meir. Bayes meets Bellman: The Gaussian process approach
to temporal difference learning. In Proceedings of the Twentieth International Conference
on Machine Learning, 2003.

Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with Gaussian processes. In
Proceedings of the 22nd International Conference on Machine Learning, 2005.

A.-m. Farahmand and C. Szepesvári. Model selection in reinforcement learning. Machine
Learning, 85(3):299–332, 2011.

A.-m. Farahmand, M. Ghavamzadeh, C. Szepesvári, and S. Mannor. Regularized policy
iteration. In Advances in Neural Information Processing Systems 21, 2008.

J. Frank, S. Mannor, and D. Precup. Reinforcement learning in the presence of rare events.
In Proceedings of the 25th International Conference on Machine Learning, 2008.

M. Geist and O. Pietquin. Kalman temporal differences. Journal of Artificial Intelligence
Research, 39(1):483–532, 2010.

M. Geist and B. Scherrer. l1-penalized projected Bellman residual. In Proceedings of the
Nineth European Workshop on Reinforcement Learning, 2011.

M. Geist and B. Scherrer. Off-policy learning with eligibility traces : A survey. Technical
report, INRIA Lorraine - LORIA, 2013.

M. Geist, B. Scherrer, A. Lazaric, and M. Ghavamzadeh. A Dantzig selector approach
to temporal difference learning. In Proceedings of the 29th International Conference on
Machine Learning, 2012.

S. Gelly and D. Silver. Achieving master level play in 9 x 9 computer go. In Proceedings of
the 23th AAAI Conference on Artificial Intelligence, 2008.

A. Geramifard, M. Bowling, and R. S. Sutton. Incremental least-squares temporal difference
learning. Proceedings of the 21th AAAI Conference on Artificial Intelligence, 2006a.

A. Geramifard, M. Bowling, M. Zinkevich, and R. S. Sutton. iLSTD: Eligibility traces and
convergence analysis. In Advances in Neural Information Processing Systems 19, 2006b.

A. Geramifard, F. Doshi, J. Redding, N. Roy, and J. P. How. Online discovery of feature
dependencies. In Proceedings of the 28th International Conference on Machine Learning,
2011.

A. Geramifard, T. J. Walsh, and J. P. How. Batch-iFDD for representation expansion in
large MDPs. In Conference on Uncertainty in Artificial Intelligence, 2013.

M. Ghavamzadeh, A. Lazaric, O.-A. Maillard, and R. Munos. LSTD with random projec-
tions. In Advances in Neural Information Processing Systems 23, 2010.

M. Ghavamzadeh, A. Lazaric, R. Munos, and M. Hoffman. Finite-sample analysis of Lasso-
TD. In Proceedings of the 28th International Conference on Machine Learning, 2011.

879

Dann, Neumann and Peters

P. W. Glynn and D. L. Iglehart. Importance sampling for stochastic simulations. Manage-
ment Science, 35(11):1367–1392, 1989.

H. Hachiya and M. Sugiyama. Feature selection for reinforcement learning: Evaluating im-
plicit state-reward dependency via conditional mutual information. In European Con-
ference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases, 2010.

M. Hoffman, A. Lazaric, M. Ghavamzadeh, and R. Munos. Regularized least squares tem-
poral difference learning with nested l2 and l1 penalization. In Proceedings of the Nineth
European Workshop on Reinforcement Learning, 2011.

M. Hutter and S. Legg. Temporal difference updating without a learning rate. In Advances
in Neural Information Processing Systems 20, 2007.

R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical
dictionary learning. In Proceedings of the 27th International Conference on Machine
Learning, 2010.

J. Johns and S. Mahadevan. Sparse approximate policy evaluation using graph-based basis
functions. Technical report, University of Massachusetts Amherst, 2009.

J. Johns, C. Painter-Wakefield, and R. Parr. Linear complementarity for regularized policy
evaluation and improvement. In Advances in Neural Information Processing Systems 23,
2010.

T. Jung and D. Polani. Least squares SVM for least squares TD learning. In European
Conference on Artificial Intelligence, 2006.

P. W. Keller, S. Mannor, and D. Precup. Automatic basis function construction for ap-
proximate dynamic programming and reinforcement learning. In Proceedings of the 23rd
International Conference on Machine Learning, 2006.

J. Z. Kolter and A. Y. Ng. Regularization and feature selection in least-squares temporal dif-
ference learning. In Proceedings of the 26th Annual International Conference on Machine
Learning, 2009.

R. M. Kretchmar and C. W. Anderson. Comparison of CMACs and radial basis functions
for kocal function approximators in reinforcement learning. In International Conference
on Neural Networks, 1997.

M. G. Lagoudakis and R. Parr. Least-squares policy iteration. The Journal of Machine
Learning Research, 4(Dec):1107–1149, 2003.

A. Lazaric, M. Ghavamzadeh, and R. Munos. Finite-sample analysis of LSTD. In Proceedings
of the 27th International Conference on Machine Learning, 2010.

L. Li. A worst-case comparison between temporal difference and residual gradient with linear
function approximation. In Proceedings of the 25th International Conference on Machine
Learning, 2008.

880

Policy Evaluation with Temporal Differences

B. Liu, S. Mahadevan, and J. Liu. Regularized off-policy TD-learning. In Advances in
Neural Information Processing Systems 25, 2012.

M. Loth, M. Davy, and P. Preux. Sparse temporal difference learning using LASSO. In IEEE
Symposium on Adaptive Dynamic Programming And Reinforcement Learning, 2007.

H. R. Maei. Gradient Temporal-Difference Learning Algorithms. PhD thesis, University of
Alberta, 2011.

S. Mahadevan and M. Maggioni. Proto-value functions: A Laplacian framework for learning
representation and control in Markov decision processes. Journal of Machine Learning
Research, 8(Oct):2169–2231, 2007.

A. R. Mahmood, R. S. Sutton, T. Degris, and P. M. Pilarski. Tuning-free step-size adap-
tation. In IEEE International Conference on Acoustics, Speech and Signal Processing,
2012.

I. Menache, S. Mannor, and N. Shimkin. Basis function adaptation in temporal difference
reinforcement learning. Annals of Operations Research, 134(1):215–238, 2005.

D. Meyer, H. Shen, and K. Diepold. l1-regularized gradient temporal-difference learning. In
Proceedings of the Tenth European Workshop on Reinforcement Learning, 2012.

A. Nedic and D. P. Bertsekas. Least squares policy evaluation algorithms with linear function
approximation. Discrete Event Dynamic Systems, 13(1-2):79–110, 2003.

C. Painter-Wakefield and R. Parr. Greedy algorithms for sparse reinforcement learning. In
Proceedings of the 29th International Conference on Machine Learning, 2012a.

C. Painter-Wakefield and R. Parr. L1 regularized linear temporal difference learning. Tech-
nical report, Duke University, Durham, NC, 2012b.

R. Parr, C. Painter-Wakefield, L. Li, and M. Littman. Analyzing feature generation for
value-function approximation. In Proceedings of the 24th International Conference on
Machine Learning, 2007.

R. Parr, L. Li, G. Taylor, C. Painter-Wakefield, and M. L. Littman. An analysis of lin-
ear models, linear value-function approximation, and feature selection for reinforcement
learning. In Proceedings of the 25th International Conference on Machine Learning, 2008.

Y. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogonal matching pursuit: recursive func-
tion approximation with applications to wavelet decomposition. In Proceedings of the 27th
Asilomar Conference on Signals, Systems and Computers, 1993.

M. Petrik, G. Taylor, R. Parr, and S. Zilberstein. Feature selection using regularization in
approximate linear programs for Markov decision processes. In Proceedings of the 27th
International Conference on Machine Learning, 2010.

B. A. Pires. Statistical Analysis of L1-penalized Linear Estimation with Applications. Master
thesis, University of Alberta, 2011.

881

Dann, Neumann and Peters

C. E. Rasmussen and M. Kuss. Gaussian processes in reinforcement learning. In Advances
in Neural Information Processing Systems 16, 2003.

M. Riedmiller and T. Gabel. On experiences in a complex and competitive gaming do-
main: Reinforcement learning meets robocup. In IEEE Symposium on Computational
Intelligence and Games, 2007.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400–407, 1951.

M. Rosenblatt. Markov Processes. Structure and Asymptotic Behavior. Springer, 1971. ISBN
978-3642652400.

N. L. Roux and A. Fitzgibbon. A fast natural Newton method. In Proceedings of the 27th
International Conference on Machine Learning, 2010.

A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal
of Research and Development, 3(3):210–229, 1959.

B. Scherrer. Should one compute the temporal difference fix point or minimize the Bellman
residual? the unified oblique projection view. In Proceedings of the 27th International
Conference on Machine Learning, 2010.

B. Scherrer and M. Geist. Recursive least-squares learning with eligibility traces. In Pro-
ceedings of the Nineth European Workshop on Reinforcement Learning, 2011.

R. Schoknecht. Optimality of reinforcement learning algorithms with linear function ap-
proximation. In Advances in Neural Information Processing Systems 15, 2002.

P. J. Schweitzer and A. Seidmann. Generalized polynomial approximations in Markovian
decision processes. Journal of Mathematical Analysis and Applications, 110(2):568–582,
1985.

D. Silver, R. Sutton, and M. Müller. Reinforcement learning of local shape in the game of
go. In International Joint Conference on Artificial Intelligence, 2007.

S. Sra, S. Nowozin, and S. J. Wright. Optimization for Machine Learning. MIT Press, 2012.
ISBN 9780262016469.

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3(1):9–44, 1988.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Adaptive compu-
tation and machine learning. MIT Press, 1998. ISBN 9780262193986.

R. S. Sutton, D. Precup, and S. Singh. Intra-option learning about temporally abstract
actions. In Proceedings of the 15th International Conference on Machine Learning, 1998.

R. S. Sutton, C. Szepesvári, and H. R. Maei. A convergent O(n) algorithm for off-policy
temporal-difference learning with linear function approximation. In Advances in Neural
Information Processing Systems 21, 2008.

882

Policy Evaluation with Temporal Differences

R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvári, and
E. Wiewiora. Fast gradient-descent methods for temporal-difference learning with lin-
ear function approximation. In Proceedings of the 26th Annual International Conference
on Machine Learning, 2009.

G. Taylor and R. Parr. Kernelized value function approximation for reinforcement learning.
In Proceedings of the 26th Annual International Conference on Machine Learning, 2009.

G. Tesauro. TD-gammon, a self-teaching backgammon program, achieves master-level play.
Neural Computation, 6(2):215–219, 1994.

J. N. Tsitsiklis and B. van Roy. An analysis of temporal-difference learning with function
approximation. IEEE Transactions On Automatic Control, 42(5):674–690, 1997.

R. J. Williams and L. C. Baird. Tight performance bounds on greedy policies based on
imperfect value functions. In Yale Workshop on Adaptive and Learning Systems, 1993.

X. Xu, T. Xie, D. Hu, and X. Lu. Kernel least-squares temporal difference learning. Inter-
national Journal of Information Technology, 11(9):54–63, 2005.

H. Yu. Convergence of least squares temporal difference methods under general conditions.
In Proceedings of the 27th International Conference on Machine Learning, 2010.

P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and
hierarchical variable selection. The Annals of Statistics, 37(6A):3468–3497, 2009.

883

Journal of Machine Learning Research 15 (2014) 885-920 Submitted 9/12; Revised 6/13; Published 3/14

Active Learning Using Smooth Relative Regret
Approximations with Applications

Nir Ailon nailon@cs.technion.ac.il
Ron Begleiter ronbeg@cs.technion.ac.il
Department of Computer Science
Taub Building
Technion Israel Institute of Technology
Haifa 32000, Israel

Esther Ezra esther@cims.nyu.edu

Coutrant Institute of Mathematical Science

New York University

251 Mercer Street

New York, NY, 10012 USA

Editor: Yoav Freund

Abstract

The disagreement coefficient of Hanneke has become a central data independent invariant
in proving active learning rates. It has been shown in various ways that a concept class
with low complexity together with a bound on the disagreement coefficient at an optimal
solution allows active learning rates that are superior to passive learning ones.

We present a different tool for pool based active learning which follows from the exis-
tence of a certain uniform version of low disagreement coefficient, but is not equivalent to
it. In fact, we present two fundamental active learning problems of significant interest for
which our approach allows nontrivial active learning bounds. However, any general purpose
method relying on the disagreement coefficient bounds only, fails to guarantee any useful
bounds for these problems. The applications of interest are: Learning to rank from pairwise
preferences, and clustering with side information (a.k.a. semi-supervised clustering).

The tool we use is based on the learner’s ability to compute an estimator of the difference
between the loss of any hypothesis and some fixed “pivotal” hypothesis to within an absolute
error of at most ε times the disagreement measure (`1 distance) between the two hypotheses.
We prove that such an estimator implies the existence of a learning algorithm which, at
each iteration, reduces its in-class excess risk to within a constant factor. Each iteration
replaces the current pivotal hypothesis with the minimizer of the estimated loss difference
function with respect to the previous pivotal hypothesis. The label complexity essentially
becomes that of computing this estimator.

Keywords: active learning, learning to rank from pairwise preferences, semi-supervised
clustering, clustering with side information, disagreement coefficient, smooth relative regret
approximation

1. Introduction

An active learner selects the instances from which it learns, contrary to standard PAC
learning. In the streaming setting, active learners may reject labels for instances arriving

c©2014 Nir Ailon, Ron Begleiter and Esther Ezra.

Ailon, Begleiter and Ezra

in a stream, and in the pool setting they may collect a pool of instances and then choose
a subset from which labels are requested. Although a relatively young field compared
to traditional (passive) learning, there is by now a significant body of literature on the
subject (see, e.g., Freund et al., 1997; Dasgupta, 2005; Castro et al., 2005; Kääriäinen,
2006; Balcan et al., 2006; Sugiyama, 2006; Hanneke, 2007; Balcan et al., 2007; Dasgupta
et al., 2007; Bach, 2007; Castro and Nowak, 2008; Balcan et al., 2008; Dasgupta and Hsu,
2008; Cavallanti et al., 2008; Hanneke, 2009; Beygelzimer et al., 2009, 2010; Koltchinskii,
2010; Cesa-Bianchi et al., 2010; Yang et al., 2010; Hanneke and Yang, 2010; El-Yaniv and
Wiener, 2010; Hanneke, 2011; Orabona and Cesa-Bianchi, 2011; Cavallanti et al., 2011;
Yang et al., 2011; Wang, 2011; Minsker, 2012). Refer to the survey by Settles (2009) for a
further discussion about active learning.

The disagreement coefficient of Hanneke (2007) has become a central data independent
invariant in proving active learning rates. It has been shown in various ways that a concept
class with low complexity together with a bound on the disagreement coefficient at an
optimal solution allow active learning rates that are superior to passive rates under certain
low noise conditions (see, e.g., Hanneke, 2007; Balcan et al., 2007; Dasgupta et al., 2007;
Castro and Nowak, 2008; Beygelzimer et al., 2010). The best results assuming only bounded
VC dimension d and disagreement coefficient θ can roughly be stated as follows: If the sought
(in-class) excess risk µ has the same order of magnitude as the optimal error ν or larger,
then the number of required queries is roughly Õ(θd log(1/µ)).1 Otherwise, the number
is roughly Õ(θdν2/µ2). Note that this results makes no assumption on the noise (except
maybe for its magnitude). Better results can be achieved by assuming certain statistical
properties of the noise (especially the model of Mammen and Tsybakov, 1999; Tsybakov,
2004).

The idea behind the disagreement coefficient is intuitive and simple: If a hypothesis h
is r-close to the optimum, then the difference between their losses (the regret of h) can be
computed from instances in the disagreement region only, defined as the set of instances on
which the r-ball around the optimum is not unanimous on. This means that for minimiz-
ing regret, one may restrict attention to hypotheses laying in iteratively shrinking version
spaces and to instances in the corresponding disagreement regions, which are shrinking in
tandem with the version spaces if the disagreement coefficient is small. As pointed out in
Beygelzimer et al. (2010), ignoring hypotheses outside the version space is brittle business,
because an error in computation of the version space results in a failure of the algorithm.
They propose a scheme in which no version space is computed. Instead, a certain impor-
tance weighted scheme is used. We also use importance weighting, but in the pool based
setting and not in the streaming setting as they do.2

Analyzing the difference between losses of hypotheses (“relative regrets”) is used vastly
in numerous theoretical work on active learning, but not attached directly. In this work we
argue that a careful construction of empirical processes uniformly estimating the relative
regret of all hypotheses with respect to a fixed “pivotal” hypothesis yields fast active learning
rates. We call such constructions “SRRA” (Smooth Relative Regret Approximations).

1. The Õ notation suppresses polylogarithmic terms.
2. Note that a practitioner can pretend that any pool based input is a stream, though that approach would

probably not take full advantage of the data.

886

Active Learning Using SRRAs

We also show that low disagreement coefficient and VC dimension assumptions imply
such efficient constructions, and give rise to yet another proof for the usefulness of the dis-
agreement coefficient in active learning. Nevertheless, our SRRA-based iterative method
does not need to compute or restrict itself to shrinking version spaces. This is supported by
presenting two fundamental pool based learning problems for which direct SRRA construc-
tions yield superior active learning rates, whereas approaches that exploit the disagreement
coefficient only (in the sense presented in Section 3), requires the practitioner to obtain
labels for the entire pool (!) even for moderately chosen parameters. We conclude that
the SRRA method is, up to minor factors, at least as good as the disagreement coefficient
method, but can be significantly better in certain cases.

We note that another important line of design and analysis of active learning algorithms
makes certain structural or Bayesian assumptions on the noise (e.g., Balcan et al., 2007;
Castro and Nowak, 2008; Hanneke, 2009; Koltchinskii, 2010; Yang et al., 2010; Wang, 2011;
Yang et al., 2011; Minsker, 2012). We expect that one can get yet improved analysis in our
framework under these assumptions. We leave this to future work.

The rest of the paper is laid out as follows: In Section 2 we present notations and ba-
sic definitions, including an introduction to our method. In Section 3 we show that low
disagreement coefficients imply efficient SRRAs. Then, we present our two main applica-
tions of SRRA that lie beyond the scope of disagreement coefficients: (i) learning to rank
from pairwise preferences (LRPP) (Section 4), and (ii) clustering with side information in
(Section 5). In Section 6 we present additional results and practical considerations, and,
in particular, the application of our method with convex relaxation in case the correspond-
ing ERM problems are too difficult (computationally) to optimally solve. We conclude in
Section 7 and suggest future directions.

2. Definitions, Notations, and Core Results

We follow the notation of Hanneke (2011): Let X be an instance space, and let Y = {0, 1} be
a label space. Denote by D the distribution over X ×Y, with corresponding marginals DX
and DY . In this work we assume for convenience (only) that each label Y is a deterministic
function of X, so that if X ∼ DX then (X,Y (X)) is distributed according to D.

By C we denote a concept class of functions mapping X to Y. The error rate of a
hypothesis h ∈ C equals

erD(h) = E(X,Y)∼D[h(X) 6= Y (X)] .

The noise rate ν of C is defined as ν = infh∈C erD(h). We will focus on the scenario in
which ν is attained at an optimal hypothesis h∗, so that erD(h∗) = ν. Define the distance
dist(h1, h2) between two hypotheses h1, h2 ∈ C as PrX∼DX [h1(X) 6= h2(X)]; observe that
dist(·, ·) is a pseudo-metric over pairs of hypotheses. For a hypothesis h ∈ C and a number
r ≥ 0, the ball B(h, r) around h of radius r is defined as {h′ ∈ C : dist(h, h′) ≤ r}. For a
set V ⊆ C of hypotheses, let DIS(V) denote

DIS(V) = {x ∈ X : ∃h1, h2 ∈ V such that h1(x) 6= h2(x)} .

887

Ailon, Begleiter and Ezra

2.1 The Disagreement Coefficient

The disagreement coefficient of h with respect to C under DX is defined as

θh = sup
r>0

PrDX [DIS (B(h, r))]

r
, (1)

where PrDX [W] forW ⊆ X denotes the probability measure with respect to the distribution
DX . Define the uniform disagreement coefficient θ as suph∈C θh, namely

θ = sup
h∈C

sup
r>0

PrDX [DIS (B(h, r))]

r
. (2)

Remark 1 A useful slight variation of the definitions of θh and θ can be obtained by re-
placing supr>0 with supr≥ν in (1) and (2). We will explicitly say when we refer to this
variation in what follows.

2.2 Smooth Relative Regret Approximations (SRRA)

Fix h ∈ C (which we call the pivotal hypothesis). Denote by regh : C 7→ R the function
defined as

regh(h′) = erD(h′)− erD(h) .

We call regh the relative regret function with respect to h. Note that for h = h∗ this is
simply the usual regret, or (in-class) excess risk function.

Definition 2 Let f : C 7→ R be any function, and 0 < ε < 1/5 and 0 < µ ≤ 1. We say that
f is an (ε, µ)-smooth relative regret approximation ((ε, µ)-SRRA) with respect to h if for
all h′ ∈ C,

|f(h′)− regh(h′)| ≤ ε ·
(
dist(h, h′) + µ

)
.

If µ = 0 we simply call f an ε-smooth relative regret approximation with respect to h.

Although the definition is general, we focus here on the pool based active learning setting.
Intuitively, think of f as an empirical version of regh. The definition guides us to query
labels such that we cover the whole spectrum of disagreement-instances w.r.t. the pivot h,
while assuring corresponding estimation accuracies with granularity proportional to inverse
distances from h. Intuitively, the condition supports holistic explore-exploit query strate-
gies: We cover the whole range of error ”types” (exploration), and at the same time put
more querying efforts “near” the intermediate solution (exploitation). The following theo-
rem and corollary constitute the main ingredient in our work. They show that a sequence
of (ε, µ)-SRRA estimators define a competitive hypothesis.

Theorem 3 Let h ∈ C and f be an (ε, µ)-SRRA with respect to h. Let h1 = argminh′∈C f(h′).
Then

erD(h1) = (1 +O(ε)) ν +O (ε · erD(h)) +O(εµ) .

888

Active Learning Using SRRAs

Proof Applying the definition of (ε, µ)-SRRA we have:

erD(h1)≤erD(h) + f(h1) + ε · dist(h, h1) + εµ

≤erD(h) + f(h∗) + ε · dist(h, h1) + εµ

≤erD(h) + ν − erD(h) + ε · dist(h, h∗) + ε · dist(h, h1) + 2εµ

≤ν + ε
(

2dist(h, h∗) + dist(h1, h
∗)
)

+ 2εµ . (3)

The first inequality is from the definition of (ε, µ)-SRRA, the second is from the fact that
h1 minimizes f(·) by construction, the third is again from the definition of (ε, µ)-SRRA,
and the definitions of h∗ and regh, the fourth is by the triangle inequality. The proof
is completed by plugging dist(h, h∗) ≤ erD(h) + ν, and dist(h1, h

∗) ≤ erD(h1) + ν into
Equation 3, subtracting ε · erD(h1) from both sides, and dividing by (1− ε).

A simple inductive use of Theorem 3 proves the following corollary, bounding the excess risk
of an ERM based active learning algorithm (see Algorithm 1 for corresponding pseudocode).
The algorithm’s query-complexity depends on the specific constructions of (ε, µ)-SRRA
estimators. Note that this algorithm never restricts itself to a shrinking version space.

Corollary 4 Let h0, h1, h2, . . . be a sequence of hypotheses in C such that for all i ≥ 1,
hi = argminh′∈C fi−1(h′), where fi−1 is an (ε, µ)-SRRA with respect to hi−1. Then for all
i ≥ 0,

erD(hi) = (1 +O(ε)) ν +O(εi)erD(h0) +O(εµ) .

Proof Applying Theorem 3 with hi and hi−1, we have

erD(hi) = (1 +O(ε)) ν +O (ε · erD(hi−1)) +O(εµ) .

Solving this recursion, one gets

erD(hi) =

i∑
j=1

εj−1 (1 +O(ε)) ν +O(εi) · erD(h0) +O

 i∑
j=1

εj

µ .

The result follows easily by bounding geometric sums.

Algorithm 1 An Active Learning Algorithm from SRRA’s

Input: an initial solution h0 ∈ C, estimation parameters ε ∈ (0, 1/5), µ > 0, and number
of iterations T

1: for i = 0, 1, . . . , T − 1 do
2: hi+1 ← argminh′∈C f(h′), where f is an (ε, µ)-smooth relative regret approximation

with respect to hi
3: end for
4: return hT

We will show below problems of interest in which (ε, µ)-SRRA’s with respect to a given
hypothesis h can be obtained using labels at few randomly (and adaptively) selected points

889

Ailon, Begleiter and Ezra

X from the pool X , if the uniform disagreement coefficient θ is small. This will constitute
another proof for the usefulness of the disagreement coefficient in design and analysis of
active learning algorithms. We then present two problems for which a direct construction
of an SRRA yields a significantly better query complexity than that guaranteed using the
disagreement coefficient alone.

3. Constant Uniform Disagreement Coefficient Implies Efficient SRRAs

We show that a bounded uniform disagreement coefficient implies existence of query effi-
cient (ε, µ)-SRRAs. This constitutes yet another proof of the usefulness of the disagreement
coefficient in design of active learning algorithms, via Algorithm 1. Plugging the resulting
query efficient (ε, µ)-SRRAs into our iterative SRRA method (Algorithm 1) provides an ac-
tive learning algorithm with query complexity that matches the state-of-the-art, yet does not
improve it. In the following sections, however, we design two other (ε, µ)-SRRAs construc-
tions that yield active learning algorithms which beats the corresponding state-of-the-art
query complexity guarantees.

3.1 The Construction

Returning to our problem, assume the uniform disagreement coefficient θ corresponding to
C is finite and ν > 0. Fix h ∈ C and let L = dlogµ−1e. Define X0 = DIS(B(h, µ)) and for
i = 1, . . . , L define Xi to be

Xi = DIS(B(h, µ2i)) \DIS(B(h, µ2i−1)) .

Let ηi = PrDX [Xi] be the measure of Xi, and δ a failure probability hyper-parameter. For
each i ≥ 0 draw a sample Xi,1, . . . , Xi,m of

m = O
(
ε−2θ

(
d log θ + log

(
δ−1 log(1/µ)

)))
examples in Xi, each of which drawn independently from the distribution DX |Xi (with
repetitions). (By DX |Xi we mean, the distribution DX conditioned on Xi.) We will now
define an estimator function f : C 7→ R of regh, as follows. For any h′ ∈ C and i = 0, 1, . . . , L
let

fi(h
′) = ηim

−1
m∑
j=1

(
1Y (Xi,j)6=h′(Xi,j) − 1Y (Xi,j)6=h(Xi,j)

)
.

Our estimator is now defined as f(h′) =
∑L

i=0 fi(h
′). The estimator f(h′) is an unbiased em-

pirical counterpart of the relative regret in which each empirical error(
1Y (Xi,j) 6=h′(Xi,j) − 1Y (Xi,j)6=h(Xi,j)

)
is weighted with respect to ηi. The weights are de-

picted as different element sizes. Observe that the weight is inverse proportional to the
probability of drawing Xi,j .

We next show that f is an (ε, µ)-SRRA with respect to h. This allows us to incorporate
f into Algorithm 1 and gain a (1 + ε)ν competitive hypothesis. Thus, the query complexity
will boil down to the size of the sample defining the empirical relative-regret minimizer f .

Theorem 5 Let f , h, h′, m be as above. With probability at least 1−δ, f is an (ε, µ)-SRRA
with respect to h.

890

Active Learning Using SRRAs

Proof A main tool to be exploited in the proof is called relative ε-approximations due to
Haussler (1992) and Li et al. (2000). It is defined as follows. Let h ∈ X 7→ R+ be some
function, and let µh = EX∼DX [h(X)]. Let X1, . . . , Xm denote i.i.d. draws from DX , and let
µ̂h = 1

m ·
∑m

i=1 h(Xi) denote the empirical average. Let κ > 0 be an adjustable parameter.
We are going to use the following measure of distance between the true expectation µh and
its estimator µ̂h: dκ(µh, µ̂h) = |µh−µ̂h|

µh+µ̂h+κ .

This measure corresponds to a relative error when approximating µh by µ̂h. Indeed, let
ε > 0 be our approximation ratio, and put dκ(µh, µ̂h) < ε. This easily yields

|µh − µ̂h| <
2ε

1− ε
· µh +

ε

1− ε
· κ . (4)

In other words, this implies that |µh − µ̂h| < O(ε)
(
µh + κ

)
.

Let us fix a parameter 0 < δ < 1. Assume C is a set of {0, 1} valued functions on X of
VC dimension d. Li et al. (2000) show that if one samples

m = O
(
ε−2κ−1(d log κ−1 + log δ−1)

)
examples as above (with a sufficiently large constant of proportionality), then (4) holds
uniformly for all h ∈ C with probability at least 1− δ.

We consider the range space (X , C∗), defined by

C∗ =

(⋃
h′∈C

{
{X ∈ X : h′(X) = 0}

})
∪

(⋃
h′∈C

{
{X ∈ X : h′(X) = 1}

})
.

In words, C∗ is the collection of all subsets S ⊆ X , whose elements X ∈ S are mapped to
the same value (0 or 1) by h′, for some h′ ∈ C. Assume (X , C∗) has VC dimension3 d, and
fix h ∈ C. Let L = dlogµ−1e, and recall the definition of the disagreement sets Xi.

We now apply this definition of relative ε-approximations, and the corresponding results
within our context. For any h′, we define the following four sets of instances:

R++
h′ = {X ∈ X : h′(X) = Y (X) = 1, and h(X) = 0} ,

R+−
h′ = {X ∈ X : h′(X) = 1, and h(X) = Y (X) = 0} ,

R−+
h′ = {X ∈ X : h′(X) = 0, and h(X) = Y (X) = 1} ,

R−−h′ = {X ∈ X : h′(X) = Y (X) = 0, and h(X) = 1} .

Observe that the set {X ∈ X : h(X) 6= h′(X)} equals the disjoint union of R++
h′ , R+−

h′ ,
R−+
h′ and R−−h′ . For each i = 0, . . . , L and b ∈ {++,+−,−+,−−} let Rbh′,i = Rbh′ ∩ Xi.

Let R b
i = {Rbh′,i : h′ ∈ C}. It is easy to verify that the VC dimension of the range spaces(

Xi,R b
i

)
is at most d. Each set in R b

i is an intersection of a set in C∗ with some fixed set.

For any R ⊆ Xi let ρi(R) = PrX∼DX |Xi [X ∈ R], and ρ̂i(R) = m−1
∑m

j=1 1Xi,j∈R. Note
that ρ̂i(R) is an unbiased estimator of ρi(R).

3. The VC dimension of (X , C∗) is the maximum cardinality of a subset A ⊆ X for which {A ∩ r : r ∈ C∗}
contains all subsets of A.

891

Ailon, Begleiter and Ezra

By the choice of m, inequality (4), and the assumptions on θ and ν we have that with
probability at least 1− δ/L, for all R ⊆ R++

i ∪R+−
i ∪R−+

i ∪R−−i ,

|ρi(R)− ρ̂i(R)| = O(ε) ·
(
ρi(R) + θ−1

)
, (5)

and by the probability union bound we obtain that this uniformly holds for all i = 0, . . . , L
with probability at least 1− δ.

Now fix h′ ∈ C and let r = dist(h, h′). Let ir = dlog(r/µ)e. By the definition of Xi,
h(X) = h′(X) for all X ∈ Xi whenever i > ir. We can therefore decompose regh(h′) as:

regh(h′) = erD(h′)− erD(h)

=
L∑
i=0

ηi ·
(

Pr
X∼DX |Xi

[Y (X) 6= h′(X)]− Pr
X∼DX |Xi

[Y (X) 6= h(X)]

)

=

ir∑
i=0

ηi ·
(

Pr
X∼DX |Xi

[Y (X) 6= h′(X)]− Pr
X∼DX |Xi

[Y (X) 6= h(X)]

)

=

ir∑
i=0

ηi ·
(
− ρi(R++

h′) + ρi(R
+−
h′) + ρi(R

−+
h′)− ρi(R−−h′)

)
.

On the other hand, we similarly have that

f(h′) =

ir∑
i=0

ηi ·
(
− ρ̂i(R++

h′) + ρ̂i(R
+−
h′) + ρ̂i(R

−+
h′)− ρ̂i(R−−h′)

)
.

Combining, we conclude using (5) that

|regh(h′)− f(h′)| ≤ O

(
ε

ir∑
i=0

ηi ·
(
ρi(R

++
h′) + ρi(R

+−
h′) + ρi(R

−+
h′) + ρi(R

−−
h′) + 4θ−1

))
. (6)

But now notice that
∑ir

i=0 ηi ·
(
ρi(R

++
h′) +ρi(R

+−
h′) +ρi(R

−+
h′) +ρi(R

−−
h′)

)
equals r, since it

corresponds to those elements X ∈ X on which h, h′ disagree. Also note that
∑ir

i=0 ηi is at
most 2 max {PrDX [DIS (B(h, r))] ,PrDX [DIS (B(h, µ))]}. By the definition of θ, this implies
that the RHS of (6) is bounded by ε(r + µ), as required by the definition of (ε, µ)-SRRA.4

Corollary 6 An (ε, µ)-SRRA with respect to h can be constructed, with probability at least
1− δ, using at most

m (1 + dlog(1/µ)e) = O
(
θε−2 (log(1/µ))

(
d log θ + log(δ−1 log(1/µ))

))
label queries.

4. The O-notation disappeared because we assume that the constants are properly chosen in the definition
of the sample size m.

892

Active Learning Using SRRAs

Combining Corollaries 4 and 6 (Algorithm 1), we obtain an active learning algorithm in
the ERM setting, with query complexity depending on the uniform disagreement coefficient
and the VC dimension. Assume δ is a constant. If we are interested in excess risk of order
at least that of the optimal error ν, then we may take ε to be, say, 1/5 and achieve the
sought bound by constructing (1/5, ν)-SRRA’s using O(θd(log(1/ν))(log θ)), once for each
of O(log(1/ν)) iterations of Algorithm 1. If we seek a solution with error (1 + ε)ν, we
would need to construct (ε, ν)-SRRA’s using O(θdε−2(log(1/ν))(log θ)) query labels, one
for each of O(log(1/ν)) iterations of the algorithm. The total label query complexity is
O(θd(log2(1/ν))(log θ)), which is O(log(1/ν)) times the best known bounds using disagree-
ment coefficient and VC dimension bounds only (e.g., Dasgupta et al., 2007; Beygelzimer
et al., 2009).

Remark 7 (Using the uniform disagreement coefficient) We first note that in known
arguments bounding query complexity using the disagreement coefficient, the disagreement
coefficient θh∗ with respect to the optimal hypothesis h∗ is used in the analysis, and not
the uniform coefficient θ. Also note that in both previously known results bounding query
complexity using disagreement coefficient and VC dimension bounds as well as our result,
the slight improvement described in Remark 1 applies. In other words, all arguments remain
valid if we replace the supremums in (1) and (2) with supr≥ν .

Remark 8 (Computing the Xi’s) Note that we show how to compute Xi exactly in poly-
nomial time when dealing with linear hypotheses spaces. This is shown in Section 6.1.2 in
the context of a ranking problem. Yet, it indicates that in certain cases Xi can be computed
efficiently. Additionally note that the sets Xi are defined w.r.t. a pivot (i.e., given) hypoth-
esis; thus, it is possible to estimate it, for example, using ideas similar to the nice works of
Balcan et al. (2006) and Dasgupta et al. (2007).

4. Application #1: Learning to Rank from Pairwise Preferences (LRPP)

“Learning to Rank” takes various forms in theory and practice of learning, as well as
in combinatorial optimization. In such problems, the goal is to order a set V based on
constraints.

A large body of learning literature considers the following scenario: For each v ∈ V
there is a label on some discrete ordinal scale, and the goal is to learn how to order V
so as to respect induced pairwise preferences. For example, a scale of {1, 2, 3, 4, 5}, as in
hotel/restaurant star quality; where, if u has a label of 5 (“very good”) and v has a label
of 1 (“very bad”), then any ordering that places v ahead of u is penalized. Note that even
if the labels are noisy, the induced pairwise preferences here are always transitive, hence no
combinatorial problem arises. Our work does not deal with this setting.

When the basic unit of information consists of preferences over pairs u, v ∈ V , then
the problem becomes combinatorially interesting. In case all quadratically many pairwise
preferences are given for free, the corresponding optimization problem is known as Minimum
Feedback Arc-Set in Tournaments (MFAST).5 MFAST has been shown to be NP-hard (Alon,
2006). Recently, Kenyon-Mathieu and Schudy (2007) showed a PTAS for this (passive

5. A maximization version of this problem exists as well.

893

Ailon, Begleiter and Ezra

learning) problem. Several important recent works address the challenge of approximating
the minimum feedback arc-set problem (Ailon et al., 2008; Braverman and Mossel, 2008;
Coppersmith et al., 2010).

Here we consider a query efficient variant of the problem, in which each preference comes
at a cost, and the goal is to produce a competitive solution while reducing the preference-
query overhead. Other very recent work consider similar settings (Jamieson and Nowak,
2011; Ailon, 2012). Jamieson and Nowak (2011) consider a common scenario in which the
alternatives can be characterized in terms of d real-valued features and the ranking obeys
the structure of the Euclidean distances between such embeddings. They present an active
learning algorithm that requires, using average case analysis, as few as O(d log n) labels in
the noiseless case, and O(d log2 n) labels under a certain parametric noise model. Our work
uses worst-case analysis, and assumes an adversarial noise model. In this Section we analyze
the pure combinatorial problem (not assuming any feature embeddings). In Section 6 we
tackle the problem with linearly induced permutation over feature space embeddings.

Ailon (2012) consider the same setting as ours. Our main result Corollary 13 is a slight
improvement over the main result of Ailon (2012) in query complexity, but it provides an-
other significant improvement. Ailon (2012) uses a querying method that is based on a
divide and conquer strategy. The weakness of such a strategy can be explained by con-
sidering an example in which we want to search a restricted set of permutations (e.g., the
setting of Section 6.1). When dividing and conquering, the algorithm in Ailon (2012) is
doomed to search a Cartesian product of two permutations spaces (left and right). There
is no guarantee that there even exists a permutation in the restricted space that respects
this division. In our querying algorithm this limitation is lifted.

4.1 Problem Definition

Let V be a set of n elements (alternatives). The instance space X is taken to be the set of
all distinct pairs of elements in V , namely V ×V \

{
(u, u) : u ∈ V

}
. The distribution DX is

uniform on X . The label function Y : X 7→ {0, 1} encodes a preference function satisfying
Y
(
(u, v)

)
= 1 − Y

(
(v, u)

)
for all u, v ∈ V .6 By convention, we think of Y

(
(u, v)

)
= 1 as a

stipulation that u is preferred over v. For convenience we will drop the double-parentheses
in what follows.

The class of solution functions C we consider is all h : X → {0, 1} such that it is
skew-symmetric: h(u, v) = 1 − h(v, u), and transitive: h(u, z) ≤ h(u, v) + h(v, z) for all
distinct u, v, z ∈ V . This is equivalent to the space of permutations over V , and we will
use the notation π, σ, . . . instead of h, h′, . . . in the remainder of the section. We also use
notation u ≺π v as a predicate equivalent to π(u, v) = 1. Endowing X with the uniform
measure, dist(π, σ) turns out to be (up to normalization) the well known kendall-τ distance:
dist(π, σ) = N−1

∑
u6=v 1π(u,v)6=σ(u,v), where N = n(n−1) is the number of all ordered pairs.

4.2 The Weakness of Using Disagreement Coefficient Arguments

We first demonstrate the weakness of a disagreement coefficient approach with respect to
this problem. It has been shown in Ailon (2012) that the uniform disagreement coefficient

6. Note that we could have defined X to be unordered pairs of elements in V without making any assumption
on Y . We chose this definition for convenience in what follows.

894

Active Learning Using SRRAs

of C is Ω(n). To see this simple fact, notice that if we start from some permutation π and
swap the positions of any two elements u, v ∈ V , then we obtain a permutation of distance
at most O(1/n) away from π, hence the disagreement region of the ball of radius O(1/n)
around π is the entire space X . It is also known that the VC dimension of C is n− 1 (e.g.,
Radinsky and Ailon, 2011). This is simply because there is always a labeling Y (·) over any
set of n = |V | pairs that defines preference cycles. Thus, the set of permutations C cannot
shatter n pairs. Using Corollary 6, we conclude that we would need Ω(n2) preference labels
to obtain an (ε, µ)-SRRA for any meaningful pair (ε, µ). This is uninformative because the
cardinality of X is O(n2). A similar bound is obtained using any known active learning
bound using disagreement coefficient and VC-dimension bounds only.

Remark 9 A slight improvement can be obtained using the refined definition of disagree-
ment coefficients of Remark 1. Observe that the uniform disagreement coefficient, as well
as the disagreement coefficient at the optimal solution h∗ becomes θ = θh∗ = O(1/ν), if
ν ≥ 1

n .7 This improves the query complexity bound to O(nν−1). If ν tends to n−1 from
above, in the limit this becomes a quadratic (in n) query complexity.

Remark 10 A natural question in this context is why the optimal hypothesis cannot be
approximated by sampling preference-pairs uniformly at random. In other words, is it suf-
ficient for our setting to apply a passive learning method? Do we really need to apply the
more sophisticated active-learning machinery? Ailon (2012, Section 2) shows that applying
plain Empirical Risk Minimization approach is doomed to query the entire pool. Moreover,
he shows that even when the noise is zero the uniform sampling approach will w.h.p. have
to query all O(n2) possible labels.

We next show how to construct more useful (in terms of query complexity) SRRA’s for
LRPP, for arbitrarily small ν.

4.3 Better SRRA for LRPP

Consider the following idea for creating an ε-SRRA for LRPP,8 with respect to some fixed
π ∈ C. We start by defining the following sample size parameter:

p = O
(
ε−3 log3 n

)
. (7)

For all u ∈ V and for all i = 0, 1, . . . , dlog ne, let Iu,i Denote the set of elements v such
that (2i − 1)p < |π(u)− π(v)| < 2i+1p where, abusing notation, π(u) is the position of u in
π. For example, π(u) is 1 if u beats all other elements, and n if it is beaten by all others.
From this set, choose a random sequence Ru,i = (vu,i,1, vu,i,2, . . . , vu,i,p) of p elements, each
chosen uniformly and independently from Iu,i.

9

7. Due to symmetry, the uniform disagreement coefficient here equals θh for any h ∈ C.
8. Note that we can neglect the parameter µ because taking its value equal 1/n tantamount to zero.
9. A variant of this sampling scheme is as follows: For each pair (u, v), add it to the query-set with

probability proportional to min{1, p/|π(u) − π(v)|}. A similar scheme can be found in Ailon et al.
(2007), Halevy and Kushilevitz (2007) and Ailon (2012) but the strong properties proven here were not
known.

895

Ailon, Begleiter and Ezra

For distinct u, v ∈ V and a permutation σ ∈ C, let costu,v(σ) denote the contribution
of the pair u, v to erD(σ), namely: costu,v(σ) = N−11σ(u,v)6=Y (u,v) . Let regu,v|σ denote the
contribution of {u, v} ∈ X to regπ(σ), that is

regu,v|σ = 2 (costu,v(σ)− costu,v(π)) . (8)

Note the notation discards the dependency on π because it is assumed to be fixed. The use
of factor 2 is because costu,v ≡ costv,u.

Our estimator f(σ) of regπ(σ) = erD(σ)− erD(π) is defined as

f(σ) =
1

2

∑
u∈V

dlogne∑
i=0

|Iu,i|
p

p∑
t=1

regu,vu,i,t|σ .

Clearly, f(σ) is an unbiased estimator of regπ(σ) for any σ. Our goal is to prove that f(σ)
is an ε-SRRA.

Theorem 11 With probability at least 1 − n−3, the function f is an ε-SRRA with re-
spect to π.

Proof The main idea is to decompose the difference |f(σ)−regπ(σ)| vis-a-vis corresponding
pieces of dist(σ, π). The first half of the proof is devoted to definition of such distance
“pieces.” Then using counting and standard deviation-bound arguments we show that the
decomposition is, with high probability, an ε-SRRA.

We start with a few definitions. Recall that for any π ∈ C and u ∈ V , π(u) denotes the
position of u in the unique permutation that π defines. For example, π(u) = 1 if u beats
all other alternatives: π(u, v) = 1 for all v 6= u; Similarly π(u) = n if u is beaten by all
other alternatives. For any permutation σ ∈ C, we define the corresponding profile of σ as
the vector:10

prof(σ) =
(
σ(u1)− π(u1), σ(u2)− π(u2), . . . , σ(un)− π(un)

)
.

Note that ‖prof(σ)‖1 is dSF(σ, π), the Spearman footrule distance between σ and π. For a
subset V ′ of V , we let prof(σ)[V ′] denote the restriction of the vector prof(σ) to V ′. Namely,
the vector obtained by zeroing in prof(σ) all coordinates v 6∈ V ′.

Now fix σ ∈ C and two distinct u, v ∈ V . Assume u, v is an inversion in σ with respect
to π, and that |π(u) − π(v)| = b for some integer b. Then either |π(u) − σ(u)| ≥ b/2 or
|π(v)− σ(v)| ≥ b/2. We will “charge” the inversion to argmaxz∈{u,v}

{
|π(z)− σ(z)|

}
.11 For

any u ∈ V , let chargeσ(u) denote the set of elements v ∈ V such that (u, v) is an inversion
in σ with respect to π, which is charged to u based on the above rule. The function regπ(σ)
can now be written as

regπ(σ) =
∑
u∈V

∑
v∈chargeσ(u)

regu,v|σ ,

10. For the sake of definition assume an arbitrary indexing such that V =
{
ui : i = 1, . . . , n

}
.

11. Breaking ties using some canonical rule, for example, charge to the greater of u, v viewed as integers.

896

Active Learning Using SRRAs

where regu,v|σ is defined in Equation 8. Indeed, any pair that is not inverted contributes
nothing to the difference. Similarly, our estimator f(σ) can be written as

f(σ) =
∑
u∈U

dlogne∑
i=0

|Iu,i|
p

p∑
t=1

regu,vu,i,t|σ · 1vu,i,t∈chargeσ(u) .

Observe that we dropped the factor 1/2 above because we count each pair {u, v} only once.
For any even integer M let Uσ,M denote the set of all elements u ∈ V such that

M/2 < |π(u)− σ(u)| ≤M .

Let Uσ,≤M denote: ⋃
M ′≤M

Uσ,M ′ .

From now on, we shall remove the subscript π, because it is held fixed. Consider the
following restrictions of reg(σ) and f(σ):

reg(σ,M) =
∑

u∈Uσ,M

∑
v∈chargeσ(u)

regu,v|σ , (9)

f(σ,M) =
∑

u∈Uσ,M

dlogne∑
i=0

p∑
t=1

|Iu,i|
p

(
regu,vu,i,t|σ · 1vu,i,t∈chargeσ(u)

)
. (10)

Clearly, f(σ,M) is an unbiased estimator of reg(σ,M). Let Tσ,M denote the set of all
elements u ∈ V such that |π(u)− σ(u)| ≤ εM . We further split the expressions in (9)-(10)
as follows:

reg(σ,M) = A(σ,M) +B(σ,M), and f(σ,M) = Â(σ,M) + B̂(σ,M),

where,

A(σ,M) =
∑

u∈Uσ,M

∑
v∈chargeσ(u)∩Tσ,M

regu,v|σ ,

Â(σ,M) =
∑

u∈Uσ,M

dlogne∑
i=0

|Iu,i|
p

p∑
t=1

regu,vu,i,t|σ · 1vu,i,t∈chargeσ(u)∩Tσ,M ,

(·) is set complement in V , and B(σ,M), B̂(σ,M) are analogous with Tσ,M instead of Tσ,M ,
as follows:

B(σ,M) =
∑

u∈Uσ,M

∑
v∈chargeσ(u)∩Tσ,M

regu,v|σ ,

B̂(σ,M) =
∑

u∈Uσ,M

dlogne∑
i=0

|Iu,i|
p

p∑
t=1

regu,vu,i,t|σ · 1vu,i,t∈chargeσ(u)∩Tσ,M .

897

Ailon, Begleiter and Ezra

We now estimate the deviation of Â(σ,M) from A(σ,M). FixM . Notice that the expres-
sion A(σ,M) is completely determined by non-zero elements of the vector
prof(σ)[Uσ,≤M ∩ Tσ,M]. Let Jσ,M denote the number of nonzeros in prof(σ)[Uσ,M]. Each
nonzero coordinate of prof(σ)[Uσ,≤M ∩ Tσ,M] is bounded below by εM in absolute value by
definition. Let P (d,M) denote the number of possibilities for the vector prof(σ)[Tσ,M] for
σ running over all permutations satisfying dSF(σ, π) = d. We claim that

P (d,M) ≤ n2d/(εM) .

Indeed, there can be at most d/(εM) nonzeros in prof(σ)[Tσ,M], and each nonzero coordinate
can trivially take at most n values. The bound follows.

Now fix integers d and J , and consider the subspace of permutations σ such that
Jσ,M = J and dSF(σ, π) = d. Define for each u ∈ Uσ,M , i ∈ dlog ne and t = 1, . . . , p
a random variable Xu,i,t as follows

Xu,i,t =
|Iu,i|
p

regu,vu,i,t|σ · 1vu,i,t∈chargeσ(u)∩Tσ,M .

Clearly Â(σ,M) =
∑

u∈Uσ,M Xu,i,t . For any u ∈ V , let iu = argmaxi {|Iu,i| ≤ 4M}, and
observe that, by our charging scheme, Xu,i,t = 0 almost surely, for all i > iu and t = 1 . . . p.
Also observe that for all u, i, t, |Xu,i,t| ≤ 2N−1|Iu,i|/p ≤ 2i+1/p almost surely. For a random
variable X, we denote by ‖X‖∞ the infimum over numbers α such that X ≤ α almost surely.
We conclude:

∑
u∈Uσ,M

iu∑
i=0

p∑
t=1

‖Xu,i,t‖2∞ ≤
∑

u∈Uσ,M

iu∑
i=0

N−2p22i+2/p2 ≤ c2p
−1N−2JM2

for some global c2 > 0. (We used a bound on the sum of a geometric series.) Using
Hoeffding bound, we conclude that the probability that Â(σ,M) deviates from its ex-
pected value of A(σ,M) by more than some s > 0 is at most exp{−s2p/(2c2JM

2N−2)}.
We conclude that the probability that A(σ,M) deviates from its expected value by more
than εd/(N log n) is at most exp{−c1ε

2d2p/(JM2 log2 n)}, for some global c1 > 0. Hence,
by taking p = O(ε−3d−1MJ log3 n), by union bounding over all P (d,M) possibilities for
prof(σ)[Tσ,M], with probability at least 1−n−7 simultaneously for all σ satisfying Jσ,M = J
and dSF(σ, π) = d,

|A(σ,M)− Â(σ,M)| ≤ εd/(N log n) . (11)

But note that, trivially, JM ≤ d, hence our choice of p in (7) is satisfactory. Finally,
union bound over the O(n3 log n) possibilities for the values of J and d and M = 1, 2, 4, ..
to conclude that (11) holds for all permutations σ simultaneously, with probability at least
1− n−3.

Consider now B̂(σ,M) and B(σ,M). We will need to further decompose these two ex-
pressions as follows. For u ∈ Uσ,M , we define a disjoint cover (T 1

u,σ,M , T
2
u,σ,M) of

chargeσ(u) ∩ Tσ,M as follows. If π(u) < σ(u), then

T 1
u,σ,M = {v ∈ Tσ,M : π(u) + εM < π(v) < σ(u)− εM} .

898

Active Learning Using SRRAs

Otherwise,
T 1
u,σ,M = {v ∈ Tσ,M : σ(u) + εM < π(v) < π(u)− εM} .

Note that by definition, T 1
u,σ,M ⊆ chargeσ(u). The set T 2

u,σ,M is thus taken to be

T 2
u,σ,M = (chargeσ(u) ∩ Tσ,M) \ T 1

u,σ,M .

The expressionsB(σ,M), B̂(σ,M) now decompose asB1(σ,M)+B2(σ,M) and B̂1(σ,M)+
B̂2(σ,M), respectively, as follows:

B1(σ,M) =
∑

u∈Uσ,M

∑
v∈T 1

u,σ,M

regu,v|σ ,

B2(σ,M) =
∑

u∈Uσ,M

∑
v∈T 2

u,σ,M

regu,v|σ ,

B̂1(σ,M) =
∑

u∈Uσ,M

dlogne∑
i=0

|Iu,i|
p

p∑
t=1

regu,vu,i,t|σ · 1vu,i,t∈T 1(u,σ,M) ,

B̂2(σ,M) =
∑

u∈Uσ,M

dlogne∑
i=0

|Iu,i|
p

p∑
t=1

regu,vu,i,t|σ · 1vu,i,t∈T 2(u,σ,M) .

Now notice that B1(σ,M) can be uniquely determined from prof(σ)[Tσ,M]. Indeed,
in order to identify T 1

u,σ,M for some u ∈ Uσ,M , it suffices to identify zeros in a subset of

coordinates of prof(σ)[Tσ,M], where the subset depends only on prof(σ)[{u}]. Additionally,
the value of Cu,v(σ) − Cu,v(π) can be “read” from prof(σ)[Tσ,M] (and, of course, Y (u, v))
if v ∈ T 1

u,σ,M . Hence, a Hoeffding bound and a union bound similar to the one used for

bounding |Â(σ,M)−A(σ,M)| can be used to bound (with high probability) the difference
|B̂1(σ,M)−B1(σ,M)| uniformly for all σ and M = 1, 2, 4, ..., as well.

Bounding |B̂2(σ,M)−B2(σ,M)| can be done using the following simple claim.

Claim 12 For u ∈ V and an integer q, we say that the sampling is successful at (u, q) if
the random variable∣∣{(i, t) : π(vu,i,t) ∈ [π(u) + (1− ε)q, π(u) + (1 + ε)q] ∪ [π(u)− (1 + ε)q, π(u)− (1− ε)q]

}∣∣
is at most twice its expected value. We say that the sampling is successful if it is successful
at all u ∈ V and q ≤ n. If the sampling is successful, then uniformly for all σ and all
M = 1, 2, 4, ...,

|B̂2(σ,M)−B2(σ,M)| = O(εJσ,MM/N) .

The sampling is successful with probability at least 1− n−3 if p = O(ε−1 log n) .

The last assertion in the claim follows from Chernoff bounds. Note that our bound (7) on
p is satisfactory, in virtue of the claim.

Summing up the errors |Â(σ,M)− A(σ,M)|, |B̂(σ,M)− B(σ,M)| over all M gives us
the following assertion: With probability at least 1− n−2, uniformly for all σ,

|f(σ)− regπ(σ)| ≤ εN−1dSF(π, σ) ≤ 2εdist(π, σ) ,

899

Ailon, Begleiter and Ezra

where the last inequality is by Diaconis and Graham (1977). This concludes the proof.

Algorithm 2 summarizes our specific ε-SRRA construction for LRPP. Note that by the
choice of the sample size p, the number of preference queries needed for computing f is
O(ε−3n log4 n). Observe that given a pivot π, our LRPP-SRRA construction is simple to
implement, and is (obviously) computationally efficient.

Algorithm 2 SRRA for LRPP

Input: V , C, a pivot π ∈ C, estimation parameter ε ∈ (0, 1/5)
1: p← O

(
ε−3 log3 n

)
2: for u ∈ V do
3: for i = 0, 1, . . . , dlog ne do
4: Iu,i ←

{
v : (2i − 1)p < |π(u)− π(v)| < 2i+1p

}
5: for t = 1, . . . , p do
6: vu,i,t ← a uniformly and independently sampled alternative from Iu,i
7: end for
8: end for
9: end for

10: return f : C −→ R, defined by

f(σ) =
∑
u∈V

dlogne∑
i=0

|Iu,i|
p

p∑
t=1

(
costu,vu,i,t(σ)− costu,vu,i,t(π)

)
,

We can now combine these LRPP ε-SRRA constructions in Algorithm 1, the SRRA’s
method meta-algorithm defined in Corollary 4. This provides the following bound on the
number of preference queries.

Corollary 13 There exists an active learning algorithm for obtaining a solution π ∈ C
for LRPP with erD(π) ≤ (1 +O(ε)) ν with total query complexity of O

(
ε−3n log5 n

)
. The

algorithm succeeds with probability at least 1− n−2.

Corollary 13 tells us that the method of SRRA provides a solution of cost (1 + ε)ν
with query complexity that is slightly above linear in n (for constant ε), regardless of the
magnitude of ν. In comparison, we saw in Section 4.2 that any known active learning results
that used bounded disagreement coefficient and VC dimension arguments only guaranteed a
query complexity of O(nν−1), tending to the pool size of n(n−1) as ν becomes small. Note
that ν = o(1) is quite realistic for this problem. For example, consider the following noise
model. A ground truth permutation π∗ exists, Y (u, v) is obtained as a human response
to the question of preference between u and v with respect to π∗, and the human errs
with probability proportional to |π∗(u) − π∗(v)|−ρ. Namely, closer pairs of item in the
ground truth permutation are more prone to confuse a human labeler. The resulting noise
is ν = n−ρ for some ρ > 0. (Note, however, our work does not assume Bayesian noise, and
we present this scenario for illustration purposes only.)

In terms of query complexity it turns out that our bound provides only a slight im-
provement over the divide-and-conquer active learning algorithm for LRPP of Ailon (2012).

900

Active Learning Using SRRAs

Specifically, we improve the dependency on ε from ε−6 to ε−3. Although our method pro-
vides only a minor improvement it still defines the current state-of-the-art for query efficient
LRPP. However, more importantly it defines the first query-efficient LRPP algorithm that
is applicable over arbitrary set of permutations, C ⊆ V !. We take advantage of this fact
in the Section 6.1, where we instantiate ε-SRRA’s for the set of permutations induced by
half-spaces in Rd.

5. Application #2: Clustering with Side Information

Clustering with side information is a fairly new variant of clustering first described, inde-
pendently, by Demiriz et al. (1999), and Ben-Dor et al. (1999). In the machine learning
community it is also widely known as semi-supervised clustering. There are a few alterna-
tives for the form of feedback providing the side-information. The most natural ones are the
single item labels (e.g., Demiriz et al., 1999), and the pairwise constraints (e.g., Ben-Dor
et al., 1999).

Here we consider pairwise side information: “must”/“cannot” link for pairs of elements
u, v ∈ V . Each such information bit comes at a cost, and must be treated frugally. In
a combinatorial optimization theoretical setting known as correlation clustering there is
no input cost overhead, and similarity information for all (quadratically many) pairs is
available. The goal there is to optimally clean the noise (nontransitivity). Correlation
clustering was defined in Bansal et al. (2004), and also in Shamir et al. (2004) under the
name cluster editing. Constant factor approximations are known for various minimization
versions of this problems (Charikar and Wirth, 2004; Ailon et al., 2008). A PTAS is known
for a minimization version in which the number of clusters is fixed to be k (Giotis and
Guruswami, 2006), as in our setting.

In machine learning, there are two main approaches for using pairwise side information.
In the first approach, this information is used to fine tune or learn a distance function,
which is then passed on to any standard clustering algorithm such as k-means or k-medians
(see, e.g., Klein et al., 2002; Xing et al., 2002; Cohn et al., 2000; Balcan et al., 2009;
Shamir and Tishby, 2011; Voevodski et al., 2012). The second approach, which is more
related to our work, modifies the clustering algorithms’s objective so as to incorporate the
pairwise constraints (see, e.g., Basu, 2005; Eriksson et al., 2011; Cesa-Bianchi et al., 2012).
Basu (2005) in his thesis, which also serves as a comprehensive survey, has championed
this approach in conjunction with k-means, and hidden Markov random field clustering
algorithms. In our work we isolate the use of information coming from pairwise clustering
constraints, and separate it from the geometry of the problem. In future work it would
be interesting to analyze our framework in conjunction with the geometric structure of the
input. Interestingly Eriksson et al. (2011) studies active learning for clustering using the
geometric input structure. Unlike our setting, they assume either no noise or Bayesian
noise.

5.1 Problem Definition

Let V be a set of points of size n. Our goal now is to partition V into k sets (clusters), where
k is fixed. In most applications, V is endowed with some metric, and the practitioner uses
this metric in order to evaluate the quality of a clustering solution. In some cases, known

901

Ailon, Begleiter and Ezra

as semi-supervised clustering, or clustering with side information, additional information
comes in the form of pairwise constraints. Such a constraint tells us for a pair u, v ∈ V
whether they should be in the same cluster or in separate ones. We concentrate on using
such information.

Using the notation of our framework, X denotes the set of distinct pairs of elements
in V (same as in Section 4), and DX is the corresponding uniform measure. The label
Y
(
(u, v)

)
= 1 means that u and v should be clustered together, and Y

(
(u, v)

)
= 0 means

the opposite. Assume that Y
(
(u, v)

)
= Y

(
(v, u)

)
for all u, v.12

The concept class C is the set of equivalence relations over V with at most k equivalence
classes. More precisely, Every h ∈ C is identified with a disjoint cover V1, . . . , Vk of V (some
Vi’s possible empty), with h

(
(u, v)

)
= 1 if and only if u, v ∈ Vj for some j. As usual, Y may

induce a non-transitive relation. (For example, we could have Y
(
(u, v)

)
= Y

(
(v, z)

)
= 1 and

Y
(
(u, z)

)
= 0.) In what follows, we will drop the double parentheses. Also, we will abuse

notation by viewing h as both an equivalence relation and a disjoint cover {V1, . . . , Vk}
of V . We take D to be the uniform measure on X . The error of h ∈ C is given as
erD(h) = N−1

∑
(u,v)∈X 1h(u,v) 6=Y (u,v) where, as before, N = |X | = n(n− 1). We will define

costu,v(h) to be the contribution N−11h(u,v) 6=Y (u,v) of (u, v) ∈ X to erD. The distance
dist(h, h′) is given as dist(h, h′) = N−1

∑
(u,v)∈X 1h(u,v)6=h′(u,v).

5.2 The Ineffectiveness of Using Disagreement Coefficient Arguments

We demonstrate once again the weakness of a disagreement coefficient approach. It is easy
to verify that the uniform disagreement coefficient of C is Θ(n). Indeed, starting from any
solution h ∈ C with corresponding partitioning {V1, . . . , Vk}, consider the partition obtained
by moving an element u ∈ V from its current part Vj to some other part Vj′ for j′ 6= j. In
other words, consider the clustering h′ ∈ C given by

{
Vj′ ∪ {u}, Vj \ {u}

}
∪
⋃
i 6∈{j,j′} {Vi}.

Observe that dist(h, h′) = O(1/max{|Vi|}) which for a fixed k = o(n) matches O(1/n) .
On the other hand, for any v ∈ V and for any u ∈ V there is a choice of j′ so that h and h′

obtained as above would disagree on (u, v) ∈ X . Hence, PrDX [DIS (B (h,O(1/n)))] = 1.

It is also not hard to see that the VC dimension of C is Θ(n). Indeed, any full matching
over V constitutes a set which is shattered in C (as long as k ≥ 2, of course). On the
other hand, any set S ⊆ X of size n must induce an undirected cycle on the elements of V .
Clearly the edges of a cycle cannot be shattered by functions in C, because if h(u1, u2) =
h(u2, u3) = · · · = h(u`−1, u`) = 1 for h ∈ C, then also h(u1, u`) = 1.

Using Corollary 6, we conclude that we would need Ω(n2) preference labels to obtain an
(ε, µ)-SRRA for any meaningful pair (ε, µ). This is uninformative as the cardinality of X
is O(n2). As in the problem discussed in Section 4, this can be improved using Remark 4
to Ω(nν−1), which tends to quadratic in n as ν becomes smaller.

We note that also here, uniform sampling is doomed to query the entire pool; this can
be easily shown using similar arguments to the ones appear in Ailon (2012, Section 2.4).
We next show how to construct more useful SRRA’s for the problem, for arbitrarily small
ν.

12. Equivalently, assume that X contains only unordered distinct pairs without any constraint on Y . For
notational purposes we preferred to define X as the set of ordered distinct pairs.

902

Active Learning Using SRRAs

5.3 Better SRRA for Semi-Supervised k-Clustering

Fix h ∈ C, with h = {V1, . . . , Vk} (we allow empty Vi’s). Order the Vi’s with respect to
their sizes so that |V1| ≥ |V2| ≥ · · · ≥ |Vk|. We construct an ε-SRRA with respect to h as
follows. For each cluster Vi ∈ h and for each element u ∈ Vi we draw k− i+ 1 independent
samples Sui, Su(i+1), . . . , Suk as follows. Each sample Suj is a subset of Vj of size q (to be
defined below), chosen uniformly with repetitions from Vj , where

q = c2 max
{
ε−2k2, ε−3k

}
log n (12)

for some global c2 > 0. Note that the collection of pairs {(u, v) ∈ X : v ∈ Sui for some i}
is, roughly speaking, biased in such a way that pairs containing elements in smaller clusters
(with respect to h) are more likely to be selected.

We define our estimator f to be, for any h′ ∈ C,

f(h′) =
k∑
i=1

|Vi|
q

∑
u∈Vi

∑
v∈Sui

fu,v(h
′) + 2

k∑
i=1

∑
u∈Vi

k∑
j=i+1

|Vj |
q

∑
v∈Suj

fu,v(h
′) , (13)

where fu,v(h
′) = costu,v(h

′)− costu,v(h) and costu,v(h) = N−11h(u,v)6=Y (u,v). Note that the
summations over Sui above takes into account multiplicity of elements in the multiset Sui.

Theorem 14 With probability at least 1 − n−3 the function f is an ε-SRRA with respect
to h.

Consider another k-clustering h′ ∈ C, with corresponding partitioning {V ′1 , . . . , V ′k} of
V . We can write dist(h, h′) as

dist(h, h′) =
∑

(u,v)∈X

distu,v(h, h
′) ,

where distu,v(h, h
′) = N−1(1h′(u,v)=11h(u,v)=0 + 1h(u,v)=11h′(u,v)=0).

Let ni denote |Vi|, and recall that n1 ≥ n2 ≥ · · · ≥ nk. In what follows, we remove
the subscript in regh and rename it reg (h is held fixed). The function reg(h′) will now be
written as:

reg(h′) =
k∑
i=1

∑
u∈Vi

 ∑
v∈Vi\{u}

regu,v(h
′) + 2

k∑
j=i+1

∑
v∈Vj

regu,v(h
′)

 ,

where
regu,v(h

′) = costu,v(h
′)− costu,v(h) .

Clearly for each h′ it holds that f(h′) from (13) is an unbiased estimator of reg(h′). We
now analyze its error. For each i, j ∈ [k] let Vij denote Vi ∩ V ′j . This captures exactly the
set of elements in the i’th cluster in h and the j’th cluster in h′. The distance dist(h, h′)
can be written as follows:

dist(h, h′) = N−1

 k∑
i=1

k∑
j=1

|Vij × (Vi \ Vij)|+ 2

k∑
j=1

∑
1≤i1<i2≤k

|Vi1j × Vi2j |

 . (14)

903

Ailon, Begleiter and Ezra

We call each Cartesian set product in (14) a distance contributing rectangle. Note that unless
a pair (u, v) appears in one of the distance contributing rectangles, we have regu,v(h

′) =
fu,v(h

′) = 0. Hence we can decompose reg(h′) and f(h′) in correspondence with the
distance contributing rectangles, as follows:

reg(h′) =
k∑
i=1

k∑
j=1

Gi,j(h
′) + 2

k∑
j=1

∑
1≤i1<i2≤k

Gi1,i2,j(h
′) , (15)

f(h′) =
k∑
i=1

k∑
j=1

Fi,j(h
′) + 2

k∑
j=1

∑
1≤i1<i2≤k

Fi1,i2,j(h
′) , (16)

where

Gi,j(h
′) =

∑
u∈Vij

∑
v∈Vi\Vij

regu,v(h
′) ,

Fi,j(h
′) =

|Vi|
q

∑
u∈Vij

∑
v∈(Vi\Vij)∩Sui

fu,v(h
′) , (17)

Gi1,i2,j(h
′) =

∑
u∈Vi1j

∑
v∈Vi2j

fu,v(h
′) ,

Fi1,i2,j(h
′) =

|Vi2 |
q

∑
u∈Vi1j

∑
v∈Vi2j∩Sui2

fu,v(h
′) . (18)

(Note that the Sui’s are multisets, and the inner sums in (17) and (18) may count elements
multiple times.)

Lemma 15 With probability at least 1 − n−3, the following holds simultaneously for all
h′ ∈ C and all i, j ∈ [k]:

|Gi,j(h′)− Fi,j(h′)| ≤ εN−1 · |Vij × (Vi \ Vij)| . (19)

Proof The predicate (19) (for a given i, j) depends only on the set Vij = Vi ∩ V ′j . Given a
subset B ⊆ Vi, we say that h′ (i, j)-realizes B if Vij = B.

Now fix i, j and B ⊆ Vi. Assume h′ (i, j)-realizes B. Let β = |B| and γ = |Vi|. Consider
the random variable Fi,j(h

′). Think of the sample Sui as a sequence Sui(1), . . . , Sui(q),
where each Sui(s) is chosen uniformly at random from Vi for s = 1, . . . , q. We can now
rewrite Fi,j(h

′) as follows:

Fi,j(h
′) =

γ

q

∑
u∈B

q∑
s=1

Z
(
Sui(s)

)
,

where

Z(v) =

{
fu,v(h

′) v ∈ Vi \ Vij
0 otherwise

.

904

Active Learning Using SRRAs

For all s = 1, . . . q the random variable Z
(
Sui(s)

)
is bounded by 2N−1 almost surely, and

its moments satisfy:

E
[
Z
(
Sui(s)

)]
=

1

γ

∑
v∈(Vi\Vij)

fu,v(h
′) ,

E
[
Z
(
Sui(s)

)2] ≤4N−2(γ − β)

γ
.

From this we conclude using Bernstein inequality that for any t ≤ 6N−1β(γ − β),

Pr
[∣∣Fi,j(h′)−Gi,j(h′)∣∣ ≥ t] ≤ exp

{
− qt2

16γβ(γ − β)N−2

}
.

Plugging in t = εN−1β(γ − β), we conclude

Pr
[∣∣Fi,j(h′)−Gi,j(h′)∣∣ ≥ εN−1β(γ − β)

]
≤ exp

{
−qε

2β(γ − β)

16γ

}
.

Now note that the number of possible sets B ⊆ Vi of size β is at most nmin{β,γ−β}. Using
union bound and recalling our choice of q, the lemma follows.

Proving the following is more involved.

Lemma 16 With probability at least 1 − n−3, the following holds uniformly for all h′ ∈ C
and for all i1, i2, j ∈ [k] with i1 < i2:

|Fi1,i2,j(h
′)−Gi1,i2,j(h

′)| ≤ εN−1 max

{
|Vi1j × Vi2j |,

|Vi1j × (Vi1 \ Vi1j)|
k

,
|Vi2j × (Vi2 \ Vi2j)|

k

}
.

(20)

Proof The predicate (20) (for a given i1, i2, j) depends only on the sets Vi1j = Vi1 ∩ V ′j
and Vi2j = Vi2 ∩ V ′j . Given subsets B1 ⊆ Vi1 and B2 ⊆ Vi2 , we say that h′ (i1, i2, j)-realizes
(B1, B2) if Vi1j = B1 and Vi2j = B2.

We now fix i1 < i2, j and B1 ⊆ Vi1 , B2 ⊆ Vi2 . Assume h′ (i1, i2, j)-realizes (B1, B2).
For brevity, denote βι = |Bι| and γι = |Viι | for ι = 1, 2. Using Bernstein inequality as in
Lemma 15, we conclude the following two inequalities:

Pr
[∣∣Gi1,i2,j(h′)− Fi1,i2,j(h′)∣∣ > t

]
≤ exp

{
− c3t

2q

β1β2γ2N−2

}
(21)

for any t in the range
[
0, N−1β1β2

]
, and some global c3 > 0 . For t in the range (N−1β1β2,∞)

and some global c4 we have

Pr
[∣∣Gi1,i2,j(h′)− Fi1,i2,j(h′)∣∣ > t

]
≤ exp

{
− c4tq

γ2N−1

}
. (22)

Consider the following three cases.

905

Ailon, Begleiter and Ezra

1. β1β2 ≥ max{β1(γ1−β1)/k, β2(γ2−β2)/k}. Hence, β1 ≥ (γ2−β2)/k, β2 ≥ (γ1−β1)/k.
In this case, we can plug t = εN−1β1β2 in (21) to get

Pr
[∣∣Gi1,i2,j(h′)− Fi1,i2,j(h′)∣∣ > εN−1β1β2

]
≤ exp

{
−c3ε

2β1β2q

γ2

}
. (23)

Consider two subcases: (i) If β2 ≥ γ2/2 then the RHS of (23) is at most exp
{
− c3ε2β1q

2

}
.

The number of possible subsets B1, B2 of sizes β1, β2 respectively is clearly at most
nβ1+(γ2−β2) ≤ nβ1+kβ1 . Therefore, as long as q = O(ε−2k log n) then with probability
at least 1−n−6 this case is taken care of in the following sense: Simultaneously for all
j, i1 < i2, all possible β1 ≤ γ1 = |Vi1 |, β2 ≤ γ2 = |Vi2 | satisfying the assumptions and
for all B1 ⊆ Vi1j , B2 ⊆ Vi2j of sizes β1, β2 respectively and for all h′ (i1, i2, j)-realizing
(B1, B2) we have that |Gi1,i2,j(h′)− Fi1,i2,j(h′)| ≤ εβ1β2 .

(ii) If β2 < γ2/2 then by our assumption, β1 ≥ γ2/2k. Hence the RHS of (23) is

at most exp
{
− c3ε2β2q

2k

}
. The number of sets B1, B2 of sizes β1, β2 respectively is

clearly at most n(γ1−β1)+β2 ≤ nβ2(1+k) . Therefore, as long as q = O(ε−2k2 log n)
then with probability at least 1−n−6 this case is taken care of in the following sense:
Simultaneously for all j, i1 < i2, all possible β1 < γ1 = |Vi1 |, β2 < γ2 = |Vi2 | satisfying
the assumptions and for all B1 ⊆ Vi1j , B2 ⊆ Vi2j of sizes β1, β2 respectively and for
all h′ (i1, i2, j)-realizing (B1, B2) we have that |Gi1,i2,j(h′)− Fi1,i2,j(h′)| ≤ εβ1β2 .

The requirement q = O(ε−2k log n) is satisfied by our choice, Equation 12.

2. β2(γ2 − β2)/k ≥ max{β1β2, β1(γ1 − β1)/k}. We consider two subcases.

(a) εβ2(γ2 − β2)/k ≤ β1β2. Using (21), we get

Pr[|Gi1,i2,j(h
′)− Fi1,i2,j(h

′)| > εN−1β2(γ2 − β2)/k] ≤ exp

{
−c3ε

2β2(γ2 − β2)2q

k2β1γ2

}
.

(24)

Again consider two subcases. (i) β2 ≤ γ2/2. In this case we conclude from
Equation 24

Pr[|Gi1,i2,j(h′)−Fi1,i2,j(h′)| > εN−1β2(γ2−β2)/k] ≤ exp

{
−c3ε

2β2γ2q

4k2β1

}
. (25)

Now note that by our assumption

β1 ≤ (γ2 − β2)/k ≤ γ2/k ≤ γ1/k , (26)

the last inequality is in virtue of our assumption γ1 ≥ γ2. Also by assumption,

β1 ≤ β2(γ2 − β2)/(γ1 − β1) ≤ β2γ2/(γ1 − β1) . (27)

Plugging (26) in the RHS of (27), we conclude that

β1 ≤ β2γ2/(γ1(1− 1/k)) ≤ 2β2γ2/γ1 ≤ 2β2 .

From here we conclude that the RHS of (25) is at most exp
{
− c3ε2γ2q

8k2

}
.

906

Active Learning Using SRRAs

The number of sets B1, B2 of sizes β1, β2 respectively is clearly at most
nβ1+β2 ≤ n2β2+β2 ≤ n3γ2 . Hence, as long as q = O(ε−2k2 log n) (satisfied by our
assumption), with probability at least 1 − n−6 simultaneously for all j, i1 < i2,
all possible β1 ≤ γ1 = |Vi1 |, β2 ≤ γ2 = |Vi2 | satisfying the assumptions and for all
B1 ⊆ Vi1j , B2 ⊆ Vi2j of sizes β1, β2 respectively and for all h′ (i1, i2, j)-realizing
(B1, B2) we have that |Gi1,i2,j(h′)−Fi1,i2,j(h′)| ≤ εβ2(γ2 − β2)/k . In the second

subcase (ii) β2 > γ2/2. The RHS of (24) is at most exp
{
−2c3ε2(γ2−β2)2q

k2β1

}
. By our

assumption, (γ2−β2)/(kβ1) ≥ 1, hence this is at most exp
{
−2c3ε2(γ2−β2)q

k

}
. The

number of sets B1, B2 of sizes β1, β2 respectively is clearly at most nβ1+(γ2−β2) ≤
n(γ2−β2)/k+(γ2−β2) ≤ n2(γ2−β2). Therefore, as long as q = O(ε−2k log n) (satis-
fied by our assumption), then with probability at least 1 − n−6, using a similar
counting and union bound argument as above, this case is taken care of in the
sense that: |Gi1,i2,j(h′)−Gi1,i2,j(h′)| ≤ εβ2(γ2 − β2)/k .

(b) εβ2(γ2 − β2)/k > β1β2. We now use (22) to conclude

Pr[|Gi1,i2,j(h′)−Fi1,i2,j(h′)| > εN−1β2(γ2−β2)/k] ≤ exp

{
−c4εβ2(γ2 − β2)q

kγ2

}
.

(28)
We again consider the cases (i) β2 ≤ γ2/2 and (ii) β2 > γ2/2 as above. In (i),

we get that the RHS of (28) is at most exp
{
− c4εβ2q

2k

}
. Now notice that by our

assumptions,

β1 < ε(γ2 − β2)/k ≤ γ2/2 ≤ γ1/2 . (29)

Also by our assumptions, β1 < β2(γ2 − β2)/(γ1 − β1), which by (29) is at most
2β2γ2/γ1 ≤ 2β2. Hence the number of possibilities for B1, B2 is at most nβ1+β2 ≤
n3β2 . In (ii), we get that the RHS of (28) is at most exp

{
− c4ε(γ2−β2)q

2k

}
, and

the number of possibilities for B1, B2 is at most nβ1+(γ2−β2) which is bounded by
n2(γ2−β2) by our assumptions. For both (i) and (ii) taking q = O(ε−1k log n) en-
sures with probability at least 1−n−6, using a similar counting and union bound-
ing argument as above, case (b) is taken care of in the sense that: |Gi1,i2,j(h′)−
Fi1,i2,j(h

′)| ≤ εN−1β2(γ2 − β2)/k .

3. β1(γ1 − β1)/k ≥ max{β1β2, β2(γ2 − β2)/k}. We consider two subcases.

(a) εβ1(γ1 − β1)/k ≤ β1β2. Using (21), we get

Pr
[
|Gi1,i2,j(h

′)− Fi1,i2,j(h
′)| > εN−1β1(γ1 − β1)/k

]
≤ exp

{
−c3ε

2β1(γ1 − β1)2q

k2β2γ2

}
.

(30)

As before, consider case (i) in which β2 ≤ γ2/2 and (ii) in which β2 > γ2/2. For
case (i), we use the fact that β1(γ1−β1) ≥ β2(γ2−β2) by assumption and notice

that the RHS of (30) is at most exp
{
− c3ε2β2(γ2−β2)(γ1−β1)q

k2β2γ2

}
. This is hence at

most exp
{
− c3ε2(γ1−β1)q

2k2

}
. The number of possibilities of B1, B2 of sizes β1, β2 is

clearly at most

907

Ailon, Begleiter and Ezra

n(γ1−β1)+β2 ≤ n(γ1−β1)+(γ1−β1)/k ≤ n2(γ1−β1). From this we conclude that q =
O(ε−2k2 log n) suffices for this case. For case (ii), we bound the RHS of (30) by

exp
{
− c3ε2β1(γ1−β1)2q

2k2β2
2

}
. Using the assumption that (γ1 − β1)/β2 ≥ k, the latter

expression is upper bounded by exp
{
− c3ε2β1q

2

}
. Again by our assumptions,

β1 ≥ β2(γ2 − β2)/(γ1 − β1) ≥ (ε(γ1 − β1)/k)(γ2 − β2)/(γ1 − β1) = ε(γ2 − β2)/k .
(31)

The number of possibilities of B1, B2 of sizes β1, β2 is clearly at most nβ1+(γ2−β2)

which by (31) is bounded by nβ1+kβ1/ε ≤ n2kβ1/ε. From this we conclude that as
long as q = O(ε−3k log n) (satisfied by our choice), this case is taken care of in
sense repeatedly explained above.

(b) εβ1(γ1 − β1)/k > β1β2. Using (22), we get

Pr
[∣∣Gi1,i2,j(h′)− Fi1,i2,j(h′)∣∣ > εN−1β1(γ1 − β1)/k

]
≤ exp

{
−c4εβ1(γ1 − β1)q

kγ2

}
.

(32)
We consider two sub-cases, (i) β1 ≤ γ1/2 and (ii) β1 > γ1/2. In case (i), we have
that

β1(γ1 − β1)

γ2
=

1

2

β1(γ1 − β1)

γ2
+

1

2

β1(γ1 − β1)

γ2

≥ 1

2

β1γ1

2γ2
+

1

2

β2(γ2 − β2)

γ2

≥ β1/4 + min{β2, γ2 − β2}/2 .

(The last step used γ1 ≥ γ2.) Hence, the RHS of (32) is bounded above by

exp

{
−c4εq(β1/4 + min{β2, γ2 − β2}/2)

k

}
.

The number of possibilities ofB1, B2 of sizes β1, β2 is clearly at most nβ1+min{β2,γ2−β2},
hence as long as q = O(ε−1k log n) (satisfied by our choice), this case is taken
care of in the sense repeatedly explained above. In case (ii), we can upper bound

the RHS of (32) by exp
{
− c4εγ1(γ1−β1)q

2kγ2

}
≥ exp

{
− c4ε(γ1−β1)q

2k

}
. The number of

possibilities of B1, B2 of sizes β1, β2 is clearly at most n(γ1−β1)+β2 which, using
our assumptions, is bounded above by n(γ1−β1)+(γ1−β1)/k ≤ n2(γ1−β1). Hence,
as long as q = O(ε−1k log n), this case is taken care of in the sense repeatedly
explained above.

This concludes the proof of the lemma.

As a consequence, we get the following:

Lemma 17 with probability at least 1 − n−3, the following holds simultaneously for all
k-clusterings C′: |reg(h′)− f(h′)| ≤ 5εdist(h′, h) .

908

Active Learning Using SRRAs

Proof By the triangle inequality,

|reg(h′)− f(h′)| ≤
k∑
i=1

k∑
j=1

|Gi,j(h′)− Fi,j(h′)|+ 2
k∑
j=1

∑
1≤i1<i2≤k

|Gi1,i2,j(h′)− Fi1,i2,j(h′)| .

Using (15)-(16), then Lemmas 15 and 16 (assuming success of a high probability event),
and rearranging the sum and finally using (14), we get:

|reg(h′)− f(h′)| ≤
k∑
i=1

k∑
j=1

εN−1|Vij × (Vi \ Vij)|

+ 2εN−1
k∑
j=1

∑
i1<i2

(
|Vi1j × Vi2j |+ k−1|Vi1j × (Vi1 \ Vi1j)|+ k−1|Vi2j × (Vi2 \ Vi2j)|

)
≤

k∑
i=1

k∑
j=1

εN−1|Vij × (Vi \ Vij)|+ 2εN−1
k∑
j=1

∑
i1<i2

|Vi1j × Vi2j |

+ 2εN−1
k∑
j=1

k∑
i1<i2

k−1|Vi1j × (Vi1 \ Vi1j)|+ 2εN−1
k∑
j=1

k∑
i1<i2

k−1|Vi2j × (Vi2 \ Vi2j)|

≤
k∑
i=1

k∑
j=1

εN−1|Vij × (Vi \ Vij)|+ 2εN−1
k∑
j=1

∑
i1<i2

|Vi1j × Vi2j |

+ 2εN−1
k∑
j=1

k∑
i1=1

kk−1|Vi1j × (Vi1 \ Vi1j)|+ 2εN−1
k∑
j=1

k∑
i2=1

kk−1|Vi2j × (Vi2 \ Vi2j)|

≤ 5εN−1
k∑
i=1

k∑
j=1

|Vij × (Vi \ Vij)|+ εN−1
k∑
j=1

∑
i1<i2

|Vi1j × Vi2j | ≤ 5εdist(h, h′) ,

as required.

We conclude that f is an ε-SRRA estimator. Its construction pseudo code is presented
for convenience in Algorithm 3. Clearly the number of label queries required for obtaining
this ε-SRRA estimator is O(nmax{ε−2k3, ε−3k2} log n). Combining Theorem 14 with this
bound and the iterative algorithm described in Corollary 4 (Algorithm 1), we obtain the
following:

Corollary 18 There exists an active learning algorithm for obtaining a solution h ∈ C
for semi-supervised k-clustering with erD(h) ≤ (1 +O(ε)) ν with total query complexity of
O
(
nmax

{
ε−2k3, ε−3k2

}
log2 n

)
. The algorithm succeeds with success probability at least

1− n−2.

We do not believe the ε−3 factor in the corollary is tight, and speculate that it should
be reduced to ε−2 using more advanced measure concentration tools. Note that we assume
k is fixed. Indeed, in practice, k is often taken to be constant (or at most o(n)). Thus, the
sample complexity of our active learning method using these direct SRRA constructions is
almost linear in n. As in the case of Corollary 13 and the ensuing discussion around LRPP,
the result in Corollary 18 significantly beats known active learning results depending only
on disagreement coefficient and VC dimension bounds, for small ν.

909

Ailon, Begleiter and Ezra

Algorithm 3 SRRA for Semi-Supervised k-Clustering

Input: V , k, C, a pivot h = {Vi}ki=1 ∈ C, estimation parameter ε ∈ (0, 1/5)
1: q ← O(max

{
ε−2k2, ε−3k

}
log n)

2: Index the clusters of h such that |V1| ≥ |V2| ≥ . . . ≥ |Vk|
3: for u ∈ Vi, i = 1, . . . , k do
4: for j = i, . . . , k do
5: Su,j ← sample q elements from Vj independently and uniformly with repetitions
6: end for
7: end for
8: return f : C −→ R, defined by

f(h′) =

k∑
i=1

|Vi|
q

∑
u∈Vi

∑
v∈Sui

(
costu,v(h

′)− costu,v(h)
)

+ 2
k∑
i=1

∑
u∈Vi

k∑
j=i+1

|Vj |
q

∑
v∈Suj

(
costu,v(h

′)− costu,v(h)
)

6. Additional Results and Practical Considerations

We discuss two practical extensions of our results.

6.1 LRPP over Linearly Induced Permutations in Constant Dimensional
Feature Space

A special class of interest is known as LRPP over linearly induced permutations in constant
dimensional feature space. We use the same definition of X as in Section 4, except that
now each point v ∈ V is associated with a feature vector, which we denote using bold face:
v ∈ Rd. The concept space C now consists only of permutations π such that there exists a
vector wπ ∈ Rd satisfying

π(u, v) = 1 ⇐⇒ 〈wπ,u− v〉 > 0 . (33)

We are assuming familiarity with the theory of geometric arrangements, and refer
the reader to de Berg et al. (2008) for further details. Geometrically, each (u, v) ∈ X
is viewed as a halfspace Hu,v = {x : 〈x,u− v〉 > 0}, whose (closure) supporting hyper-
plane is hu,v = {x : 〈x,u− v〉 = 0}. Let H be the collection of these

(
n
2

)
hyperplanes

{hu,v : (u, v) ∈ X}.13 The collection C corresponds to the maximal dimensional cells in the
underlying arrangement A(H). We thus call A(H) from now on the permutation arrange-
ment, and we naturally identify full dimensional cells with their induced permutations. We
denote by Cπ ⊆ Rd the unique cell corresponding to a permutation π ∈ C.

13. Note that hu,v = hv,u.

910

Active Learning Using SRRAs

6.1.1 Bounding the VC Dimension and Disagreement Coefficient

Using standard tools from combinatorial geometry, the VC dimension of C is at most d −
1. Roughly speaking, this property follows from the fact that in an arrangement of m
hyperplanes in d-space, each of which meeting the origin, the overall number of cells is at
most O(md−1), see de Berg et al. (2008).

As for the uniform disagreement coefficient, we show below that it is bounded by O(n).
Let π ∈ C be a permutation with a corresponding cell Cπ in A(H). The ball B(π, r) is, geo-
metrically, the closure of the union of all cells corresponding to “realizable” permutations σ
satisfying dist(σ, π) ≤ r. The corresponding disagreement region DIS(B(π, r)) corresponds
to the set of ordered pairs (halfspaces) intersecting B(π, r). In fact, in this case, all these
halfspaces have the property that their bounding hyperplane h meets B(π, r). Indeed, if
that hyperplane is located outside B(π, r) then there is a clear agreement among all cells
(hypeotheses) of B(π, r) with respect to H, as all of them are located at the same side of
h. We next show:

Proposition 19 The measure of DIS (B(π, r)) in DX is at most 8rn.

Proof By Diaconis and Graham (1977), the Spearman Footrule distance between any two
permutations π and σ is at most twice Ndist(π, σ), where N = n(n−1). Hence, if dist(π, σ)
is r, then any element u could only swap locations with a set of elements located up to 2rN
positions away to the right or to the left. This yields a total of 4rN ‘swap-candidates’ for
each u. Thus, at most 4rNn inversions are possible. Note that each inversion corresponds
to a hyperplane (unordered pair) that we cross, and thus the total number of ordered pairs
is at most 8rNn. The probability measure of this set is at most 8rn, because we assign
equal probability of N−1 for each possible pair in X . The result follows.

By the proposition we have that the disagreement coefficient θ is always bounded by
O(n), establishing our bound. We now invoke Corollary 6 with µ = O(1/n2) (which is
tantamount to µ = 0 for this problem, because |X | = O(n2) and we are using the uniform
measure), and conclude:

Theorem 20 An ε-SRRA for LRPP in linearly induced permutations in d dimensional
feature space can be constructed, with respect to any π ∈ C, with probability at least 1 − δ,
using at most O

(
ndε−2 log2 n+ nε−2(log n)

(
log(δ−1 log n)

))
label queries.

Combining Theorem 20, and the iterative algorithm described in Corollary 4:

Corollary 21 There exists an algorithm for obtaining a solution π ∈ C for LRPP in linearly
induced permutations in d dimensional feature space with erD(π) ≤ (1 +O(ε)) ν with total
query complexity of

O
(
ε−2nd log3 n+ nε−2(log2 n)

(
log(δ−1 log n)

))
. (34)

The algorithm succeeds with success probability at least 1− δ.

911

Ailon, Begleiter and Ezra

We compare this bound to that of Corollary 13. For the sake of comparison, assume
δ = n−2, so that (34) takes the simpler form of O

(
ε−2nd log3 n/ log (1/ε)

)
. This bound is

better than that of Corollary 13 as long as the feature space dimension d is O(ε−2 log2 n).
For larger dimensions, Corollary 13 gives a better bound. It would be interesting to obtain
a smoother interpolation between the geometric structure coming from the feature space
and the combinatorial structure coming from permutations.

We conclude the discussion with a polynomial time algorithm to construct the disagree-
ment region obtained in this setting.

6.1.2 An Algorithm for Constructing the Disagreement Region

We first recall that the disagreement region DIS(B(π, r)) corresponds to the set of bounding
hyperplanes h that meet B(π, r). Our goal is thus to compute this set of hyperplanes, their
side of space containing π will then correspond to the desired set of halfspaces.

We next introduce, for the sake of analysis, another (absolute) measure related to our
previous definitions: We define the absolute distance of a hyperplane h from a point p in a
cell Cπ of A(H) to be the smallest number of hyperplanes, whose removal makes h visible
to p, implying that h appears on the boundary of the cell containing p in the arrangement
of this subset of hyperplanes. In what follows, and with a slight abuse of notation, we will
sometimes refer to the absolute distance of h from a permutation π (instead of a point p in
the cell Cπ).

By the definition of the measure r it follows that when a hyperplane h intersects B(π, r)
this implies that the absolute distance between h and any point in Cπ is at most r̄ := Nr,
where N = n(n − 1). We also observe that, by definition, at least one cell in B(π, r) must
have h on its boundary.

In order to compute all hyperplanes meeting B(π, r) we construct this set iteratively.
At the first iteration, we compute all hyperplanes with (absolute) distance 0 from π—
these hyperplanes are precisely those that define the boundary of Cπ. Then we remove
them from further consideration, and recursively compute the next set of hyperplanes at
(absolute) distance 0 from π in the arrangement of the residual hyperplanes. We stop after
r̄ iterations. By definition, at the ith step, we compute the set of hyperplanes at absolute
distance i from π. Clearly, the number of iterations is at most |H| =

(
n
2

)
, so it is sufficient

to show that each iteration can be performed in polynomial time.

We thus face the following problem. Given a set of hyperplanes H and a point p,
determine in polynomial time the subset of hyperplanes in H that define the cell Cp of p in
the arrangement A(H). This task can easily be done by constructing the entire arrangement
A(H) or even just the cell containing p. Nevertheless, these constructions take time nΘ(d)

(see, e.g., Sharir and Agarwal 1995), and thus may be inefficient for large values of d.
We thus present below a simple approach that circumvents the need to construct these
structures, our key idea is to use linear programming solvers, and is a variant of the analysis
in Ezra and Fine (2007).

To this end, fix a hyperplane h ∈ H. In order to determine whether h appears on the
boundary of the cell containing p, we proceed as follows. For each hyperplane h′ ∈ H \ {h}
we assign the corresponding halfspace H ′ bounded by h′ and containing p, so p lies at
the same side (positive or negative) of these hyperplanes (after, e.g., applying a proper

912

Active Learning Using SRRAs

(a) (b)

Figure 1: (a) The hyperplane h (depicted by the dashed line in the figure) does not meet
the cell containing the point p. (b) The hyperplane h meets that cell. In this case
p lies in the portion of that cell located above h.

orientation). LetH′ be the set of these halfspaces. Then we create two additional halfspaces,
H+ and H− containing the corresponding positive and negative sides of h. We now observe
that if h does not appear on the boundary of Cp, then either

⋂
H′∈H′ H

′⋂H+ = ∅ or⋂
H′∈H′ H

′⋂H− = ∅. Indeed,
⋂
H′∈H′ H

′ is precisely the cell containing p in A(H \ {h}),
and if h does not appear on the boundary of Cp (the cell containing p in A(H)) then we
must have that h and

⋂
H′∈H′ H

′ are disjoint, and thus
⋂
H′∈H′ H

′ is fully contained in one
side of h. If h appears on the boundary of Cp then both intersections

⋂
H′∈H′ H

′⋂H+,⋂
H′∈H′ H

′⋂H− must not be empty. In fact, in this case h splits the cell containing p in
A(H\{h}) into the two portions

⋂
H′∈H′ H

′⋂H+,
⋂
H′∈H′ H

′⋂H−, one of which contains
p. See Figure 1 for an illustration. In order to determine if each of these intersections is
empty, we construct the corresponding linear programming system, where the constraints
are the halfspaces and the objective function is arbitrary, and solve it in polynomial time,
using, for example, the ellipsoid method or the interior point method (Grötschel et al., 1988;
Karmarkar, 1984; Khačiyan, 1979).

It thus follows that for each hyperplane h ∈ H we need to solve two linear programming
systems in order to determine whether h defines Cp. When we terminate iterating over all
h ∈ H we have at hand the desired set of hyperplanes of H that define Cp. Thus the running
time of the entire process is polynomial, since at each iteration we spend polynomial time.
We have thus obtained:

Theorem 22 Given a set H of hyperplanes and a point p in d-space, one can determine
in polynomial time the subset of hyperplanes that define the cell in the arrangement A(H)
containing p, where the degree of the polynomial is an absolute constant that does not depend
on the dimension d.

Based on the iterative algorithm presented above, we thus conclude:

Corollary 23 Given a set H of hyperplanes in d-space, a permutation π corresponding
to a cell Cπ in the arrangement A(H), and a parameter 0 ≤ r ≤ 1, one can determine

913

Ailon, Begleiter and Ezra

in polynomial time the subset of hyperplanes intersecting B(π, r), where the degree of the
polynomial is an absolute constant that does not depend on the dimension d.

Remark: We note that since the degree of the polynomial at the running time does not
depend on d, we can assume the dimension d is arbitrarily large.

6.2 Convex Relaxations

So far we focused on theoretical ERM aspects only. Doing so, we made no assumptions
about the computability of the step hi = argminh′∈C fhi−1

(h′) in Corollary 4 (Step 2 in
Algorithm 1). Although ERM results are interesting in their own right, we take an additional
step and consider convex relaxations.

Instead of optimizing erD(h) over the set C, assume we are interested in optimizing
erD(h̃) over h̃ ∈ C̃, where C̃ is a convex set of functions from X to R. Also assume there is
a mapping φ : C̃ 7→ C which is used as a “rounding” procedure. For example, in the setting
of Section 6.1 the set C̃ consists of all vectors w ∈ Rd, and the rounding method φ : C̃ 7→ C
converts w to a permutation π satisfying (33). When optimizing in C̃, one conveniently
works with a convex relaxation ẽrD : C̃ → R+ as surrogate for the discrete loss erD, defined
as follows

ẽrD(h̃) = E(X,Y)∼D

[
L̃
(
h̃(X), Y

)]
. (35)

where L̃ : R× {0, 1} 7→ R+ is some function convex in the first argument, and satisfying

1(φ(h̃))(X) 6=Y ≤ cL̃
(
h̃(X), Y

)
for all h̃ ∈ C and X ∈ X , where c > 0 is some constant. In words, this means that L̃
upper bounds the discrete loss (up to a factor of c). A typical choice for the example in
Section 6.1 would be to define for all w ∈ C̃ and x = (u, v) ∈ X : w(x) = 〈w,u − v〉, and
L̃(a, b) = max{1−a(2b−1), 0}. Using this choice, optimizing over (35) becomes the famous
SVMRank with the hinge loss relaxation (Herbrich et al., 2000; Joachims, 2002):

Minimize F (w, ξ) =
∑
u,v

ξu,v

s.t., ∀u, v, Y (u, v) = 1 : (u− v) ·w ≥ 1− ξu,v
∀u, v : ξu,v ≥ 0 ,

‖w‖ ≤ c.

(Note: c is a regularization parameter.)
We now have a natural extension of relative regret: r̃egh̃(h̃′) = ẽrD(h̃′)− ẽrD(h̃). By our

assumptions on convexity, r̃egh̃ : C̃ 7→ R+ can be efficiently optimized. We now say that

f : C̃ 7→ R+ is an (ε, µ)-SRRA with respect to h̃ ∈ C̃ if for all h̃′ ∈ C̃,∣∣∣regh̃′(h̃
′)− f(h̃′)

∣∣∣ ≤ ε(dist
(
φ(h̃), φ(h̃′)

)
+ µ

)
.

If µ = 0 then we simply say that f is an ε-SRRA. The following is an analogue to Corollary 4:

914

Active Learning Using SRRAs

Theorem 24 Let h̃0, h̃1, h̃2, . . . be a sequence of hypotheses in C̃ such that for all i ≥ 1,
h̃i = argmin

h̃′∈C̃ fi−1(h̃′), where fi−1 is an (ε, µ)-SRRA with respect to h̃i−1. Then for all
i ≥ 1,

ẽrD(hi) = (1 +O(ε)) ν̃ +O(εi)ẽrD(h0) +O(εµ) ,

where ν̃ = inf
h̃∈C̃ ẽrD(h̃) and the O-notations may hide constants that depend on c.

The proof is very similar to that of Corollary 4, and we omit the details. It turns out
that the sampling techniques used for constructing an ε-SRRA from Section 4.3 can be
used for constructing an ε-SRRA for the SVMRank relaxed version as well, as long as C is
restricted to bounded vectors w and all the feature vectors v corresponding to v ∈ V are
bounded as well. It is easy to confirm that under such bounded-norm setting all arguments
of Section 4.3 follows through. The conclusion is that we can solve SVMRank, in polynomial
time, to within an error of (1 + ε)ν̃ using only O

(
n poly(log n, ε−1)

)
preference queries.

6.2.1 Discussion

1. It is worth mentioning the empirically evidence for the success of learning to rank methods
that are focused on using relaxed rather than exact constraints on the solution function (see,
e.g., Mcfee and Lanckriet, 2010; Long et al., 2010). Another possible empirically viable
direction is to make structural assumptions on the preference noise, we refer the reader to
the work of Jamieson and Nowak (2011) for a recent result with improved query complexity
under certain Bayesian noise assumptions.
2. We note that while disagreement coefficients are brittle, SRRAs are more robust, as
demonstrated by the results reported in this paper. Specifically, the application of SRRAs
yields efficient solutions to problems on which a disagreement coefficient approach fails,
as described in Sections 4.2 and 5.2, and thus we believe SRRAs should be applied more
broadly than a stand-alone disagreement coefficient approach.

7. Conclusions and Future Work

In this work we showed that being able to estimate the relative regret function using carefully
biased sampling methods can yield query efficient active learning algorithms. We showed
that such estimations can be obtained when the only assumptions we make are bounds on
the disagreement coefficient and the VC dimension. This leads to active learning algorithms
that almost match the best known using the same assumptions. On the other hand, we
presented two problems of vast interest (currently in the margin but gradually moving inside
the active learning literature), for which a direct analysis of the relative regret function
produced better active learning strategies. The two problems we studied are concerned
with learning relations over a ground set, where one problem dealt order relations and the
other with equivalence relations (with bounded number of equivalence classes). In both
problems our query complexity bounds had an undesirable factors of ε−3 which we believe
should be reduced to ε−2 using more advanced measure concentration tools. We leave
this to future work. It would also be interesting to identify other problems for which our
approach yields active learning algorithms with faster than previously known convergence
rates. Immediate candidates are hierarchical clustering and metric learning. Finally, for
LRPP, we discussed a practical scenario in which the ground set is endowed with feature

915

Ailon, Begleiter and Ezra

vectors. We showed how to take the underlying geometry into account in our framework.
We did not do so for clustering with side information. The work of Eriksson et al. (2011)
indicates that incorporating geometric information into our analysis is a fruitful direction
to pursue.

Our work made no assumptions on the noise, except maybe for its magnitude. An-
other promising future research direction would be to incorporate various standard noise
assumptions known to improve active learning rates (especially the model of Mammen and
Tsybakov, 1999; Tsybakov, 2004) within our setting.

Acknowledgments

We thank Alekh Agarwal, Nina Balcan, Miroslav Dudik, Ran El-Yaniv, Sariel Har-Peled,
John Langford, Rob Schapire, Masashi Sugiyama, and Yair Weiner for helpful discussions.
Nir Ailon acknowledges the support of a Marie Curie International Reintegration Grant
PIRG07-GA-2010-268403. Esther Ezra acknowledges the support of a National Science
Foundation Grant CCF-12-16689.

References

Nir Ailon. An active learning algorithm for ranking from pairwise preferences with an
almost optimal query complexity. Journal of Machine Learning Research, 13:137–164,
2012.

Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the distance
to a monotone function. Random Struct. Algorithms, 31(3):371–383, 2007.

Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:
Ranking and clustering. Journal of the ACM, 55(5):23:1–23:27, October 2008.

Noga Alon. Ranking tournaments. SIAM Journal on Discrete Mathematics, 20, 2006.

Francis R. Bach. Active learning for misspecified generalized linear models. In B. Schölkopf,
J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems
19, pages 65–72. MIT Press, Cambridge, MA, 2007.

Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic active learning. In
ICML, pages 65–72, 2006.

Maria-Florina Balcan, Andrei Z. Broder, and Tong Zhang. Margin based active learning.
In COLT, pages 35–50, 2007.

Maria-Florina Balcan, Steve Hanneke, and Jennifer Wortman. The true sample complexity
of active learning. In COLT, pages 45–56, 2008.

Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. Approximate clustering without
the approximation. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’09, pages 1068–1077, 2009.

916

Active Learning Using SRRAs

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning,
56:89–113, 2004.

Sugato Basu. Semi-supervised Clustering: Probabilistic Models, Algorithms and Experi-
ments. PhD thesis, Department of Computer Sciences, University of Texas at Austin,
2005.

Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression patterns. Jour-
nal of Computational Biology, 6(3/4):281–297, 1999.

Alina Beygelzimer, Sanjoy Dasgupta, and John Langford. Importance weighted active learn-
ing. In Proceedings of the 26th Annual International Conference on Machine Learning,
ICML ’09, 2009.

Alina Beygelzimer, Daniel Hsu, John Langford, and Tong Zhang. Agnostic active learning
without constraints. In NIPS, 2010.

Mark Braverman and Elchanan Mossel. Noisy sorting without resampling. In SODA, pages
268–276, 2008.

Rui Castro and Robert Nowak. Minimax bounds for active learning. IEEE Transactions
on Information Theory, 54(5):2339–2353, 2008.

Rui Castro, Rebecca Willett, and Robert Nowak. Faster rates in regression via active
learning. In NIPS, 2005.

Giovanni Cavallanti, Nicolò Cesa-Bianchi, and Claudio Gentile. Linear classification and
selective sampling under low noise conditions. In NIPS, pages 249–256, 2008.

Giovanni Cavallanti, Nicolò Cesa-Bianchi, and Claudio Gentile. Learning noisy linear clas-
sifiers via adaptive and selective sampling. Machine Learning, 83(1):71–102, 2011.

Nicolò Cesa-Bianchi, Claudio Gentile, Fabio Vitale, and Giovanni Zappella. Active learning
on trees and graphs. In COLT, pages 320–332, 2010.

Nicolò Cesa-Bianchi, Claudio Gentile, Fabio Vitale, and Giovanni Zappella. A correlation
clustering approach to link classification in signed networks. In Proceedings of the 25th
Annual Conference on Learning Theory. JMLR Workshop and Conference Proceedings,
volume 23 of JMLR Workshop and Conference Proceedings, pages 34.1–34.20, 2012.

Moses Charikar and Anthony Wirth. Maximizing quadratic programs: Extending
grothendieck’s inequality. In FOCS, pages 54–60. IEEE Computer Society, 2004.

David Cohn, Rich Caruana, and Andrew Mccallum. Semi-supervised clustering with user
feedback. unpublished manuscript, 2000. URL http://www.cs.umass.edu/~mccallum/

papers/semisup-aaai2000s.ps.

Don Coppersmith, Lisa K. Fleischer, and Atri Rurda. Ordering by weighted number of wins
gives a good ranking for weighted tournaments. ACM Trans. Algorithms, 6:55:1–55:13,
July 2010.

917

http://www.cs.umass.edu/~mccallum/papers/semisup-aaai2000s.ps
http://www.cs.umass.edu/~mccallum/papers/semisup-aaai2000s.ps

Ailon, Begleiter and Ezra

Sanjoy Dasgupta. Coarse sample complexity bounds for active learning. In NIPS, 2005.

Sanjoy Dasgupta and Daniel Hsu. Hierarchical sampling for active learning. In ICML, pages
208–215, 2008.

Sanjoy Dasgupta, Daniel Hsu, and Claire Monteleoni. A general agnostic active learning
algorithm. In NIPS, 2007.

Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 3rd edition, 2008.

Ayhan Demiriz, Kristin Bennett, and Mark J. Embrechts. Semi-supervised clustering using
genetic algorithms. In In Artificial Neural Networks in Engineering (ANNIE-99, pages
809–814. ASME Press, 1999.

Persi Diaconis and R. L. Graham. Spearman’s Footrule as a measure of disarray. Journal
of the Royal Statistical Society, 39(2):262–268, 1977.

Ran El-Yaniv and Yair Wiener. On the foundations of noise-free selective classification.
Journal of Machine Learning Research, 11:1605–1641, 2010.

Brian Eriksson, Gautam Dasarathy, Aarti Singh, and Robert D. Nowak. Active clustering:
Robust and efficient hierarchical clustering using adaptively selected similarities. Journal
of Machine Learning Research - Proceedings Track, 15:260–268, 2011.

Esther Ezra and Shai Fine. On the cover of convex polyhedra in d-space. Unpublished
manuscript, 2007.

Yoav Freund, Sebastian H. Seung, Eli Shamir, and Naftali Tishby. Selective sampling using
the query by committee algorithm. Machine Learning, 28:133–168, September 1997.

Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed number of
clusters. Theory of Computing, 2(1):249–266, 2006.

Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and Com-
binatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer-Verlag,
1988.

Shirley Halevy and Eyal Kushilevitz. Distribution-free property-testing. SIAM J. Comput.,
37(4):1107–1138, 2007.

Steve Hanneke. A bound on the label complexity of agnostic active learning. In ICML,
2007.

Steve Hanneke. Adaptive rates of convergence in active learning. In COLT, 2009.

Steve Hanneke. Rates of convergence in active learning. Annals of Statistics, 39(1):333–361,
2011.

Steve Hanneke and Liu Yang. Negative results for active learning with convex losses. Journal
of Machine Learning Research - Proceedings Track, 9:321–325, 2010.

918

Active Learning Using SRRAs

David Haussler. Decision theoretic generalizations of the PAC model for neural net and
other learning applications. Information and Control, 100(1):78–150, September 1992.

Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large margin ranking boundaries for
ordinal regression. In Advances in Large Margin Classifiers, chapter 7, pages 115–132.
The MIT Press, 2000.

Kevin G. Jamieson and Rob Nowak. Active ranking using pairwise comparisons. In NIPS
24, pages 2240–2248, 2011.

Thorsten Joachims. Optimizing search engines using clickthrough data. In KDD, 2002.

Matti Kääriäinen. Active learning in the non-realizable case. In ALT, pages 63–77, 2006.

Narendra Karmarkar. A new polynomial–time algorithm for linear programming. Combi-
natorica, 4:373–395, 1984.

Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In Proceedings
of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC ’07, pages
95–103, 2007.

Leonid Khačiyan. Polynomial algorithm for linear programming. Soviet Doklady, 244:
1093–1096, 1979.

Dan Klein, Sepandar D. Kamvar, and Christopher D. Manning. From instance-level con-
straints to space-level constraints: Making the most of prior knowledge in data clustering.
In ICML, pages 307–314, 2002.

Vladimir Koltchinskii. Rademacher complexities and bounding the excess risk in active
learning. Journal of Machine Learning Research, 11:2457–2485, 2010.

Yi Li, Philip M. Long, and Aravind Srinivasan. Improved bounds on the sample complexity
of learning. Journal of Computer and System Sciences, 62:2001, 2000.

Bo Long, Olivier Chapelle, Ya Zhang, Yi Chang, Zhaohui Zheng, and Belle Tseng. Active
learning for ranking through expected loss optimization. In Proceedings of the 33rd Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 267–274, 2010.

Enno Mammen and Alexandre B. Tsybakov. Smooth discrimination analysis. Annals of
Statistics, 27:1808–1829, 1999.

Brian Mcfee and Gert Lanckriet. Metric learning to rank. In In Proceedings of the 27th
Annual International Conference on Machine Learning (ICML), 2010.

Stanislav Minsker. Plug-in approach to active learning. Journal of Machine Learning
Research, 13:67–90, 2012.

Francesco Orabona and Nicolò Cesa-Bianchi. Better algorithms for selective sampling. In
ICML, pages 433–440, 2011.

919

Ailon, Begleiter and Ezra

Kira Radinsky and Nir Ailon. Ranking from pairs and triplets: information quality, evalu-
ation methods and query complexity. In WSDM, pages 105–114, 2011.

Burr Settles. Active learning literature survey. Technical Report 1648, University of
Wisconsin–Madison, 2009.

Ohad Shamir and Naftali Tishby. Spectral clustering on a budget. Journal of Machine
Learning Research - Proceedings Track, 15:661–669, 2011.

Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification problems. Discrete
Applied Math, 144:173–182, nov 2004.

Micha Sharir and Pankaj K. Agarwal. Davenport-Schinzel Sequences and Their Geometric
Applications. Cambridge University Press, 1995.

Masashi Sugiyama. Active learning in approximately linear regression based on conditional
expectation of generalization error. Journal of Machine Learning Research, 7:141–166,
2006.

Alexandre B. Tsybakov. Optimal aggregation of classifiers in statistical learning. Annals
of Statistics, 32:135–166, 2004.

Konstantin Voevodski, Maria-Florina Balcan, Heiko Röglin, Shang-Hua Teng, and Yu Xia.
Active clustering of biological sequences. Journal of Machine Learning Research, 13:
203–225, 2012.

Liwei Wang. Smoothness, disagreement coefficient, and the label complexity of agnostic
active learning. Journal of Machine Learning Research, 12:2269–2292, 2011.

Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart Russell. Distance metric
learning, with application to clustering with side-information. In Advances in Neural
Information Processing Systems 15, pages 505–512. MIT Press, 2002.

Liu Yang, Steve Hanneke, and Jaime G. Carbonell. Bayesian active learning using arbitrary
binary valued queries. In ALT, pages 50–58, 2010.

Liu Yang, Steve Hanneke, and Jaime G. Carbonell. The sample complexity of self-verifying
bayesian active learning. Journal of Machine Learning Research - Proceedings Track, 15:
816–822, 2011.

920

Journal of Machine Learning Research 15 (2014) 921-947 Submitted 11/08, revised 9/13; Published 3/14

An Extension of Slow Feature Analysis for
Nonlinear Blind Source Separation

Henning Sprekeler∗ h.sprekeler@eng.cam.ac.uk

Tiziano Zito tiziano.zito@bccn-berlin.de

Laurenz Wiskott† laurenz.wiskott@ini.rub.de

Institute for Theoretical Biology and Bernstein Center for Computational Neuroscience Berlin

Humboldt-Universität zu Berlin

Unter den Linden 6

10099 Berlin, Germany

Editor: Aapo Hyvärinen

Abstract

We present and test an extension of slow feature analysis as a novel approach to nonlinear
blind source separation. The algorithm relies on temporal correlations and iteratively re-
constructs a set of statistically independent sources from arbitrary nonlinear instantaneous
mixtures. Simulations show that it is able to invert a complicated nonlinear mixture of two
audio signals with a high reliability. The algorithm is based on a mathematical analysis
of slow feature analysis for the case of input data that are generated from statistically
independent sources.

Keywords: slow feature analysis, nonlinear blind source separation, statistical indepen-
dence, independent component analysis, slowness principle

1. Introduction

Independent Component Analysis (ICA) as a technique for blind source separation (BSS)
has attracted a fair amount of research activity over the past three decades. By now a num-
ber of techniques have been established that reliably reconstruct the underlying sources
from linear mixtures (Hyvärinen et al., 2001). The key insight for linear BSS is that the
statistical independence of the sources is usually sufficient to constrain the unmixing func-
tion up to trivial transformations like permutation and scaling. Therefore, linear BSS is
essentially equivalent to linear ICA.

An obvious extension of the linear case is the task of reconstructing the sources from
nonlinear mixtures. Unfortunately, the problem of nonlinear BSS is much harder than lin-
ear BSS, because the statistical independence of the instantaneous values of the estimated
sources is no longer a sufficient constraint for the unmixing (Hyvärinen and Pajunen, 1999).
For example, arbitrary point-nonlinear distortions of the sources are still statistically inde-
pendent. Additional constraints are needed to resolve these ambiguities.

∗. H.S. is now also at the Computational and Biological Learning Laboratory, Department of Engineering,
University of Cambridge, UK.

†. L.W. is now at the Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany.

c©2014 Henning Sprekeler, Tiziano Zito and Laurenz Wiskott.

Sprekeler, Zito and Wiskott

One approach is to exploit the temporal structure of the sources (e.g., Harmeling et al.,
2003; Blaschke et al., 2007). Blaschke et al. (2007) have proposed to use the tendency of
nonlinearly distorted versions of the sources to vary more quickly in time than the original
sources. A simple illustration of this effect is the frequency doubling property of a quadratic
nonlinearity when applied to a sine wave. This observation opens the possibility of finding
the original source (or a good representative thereof) among all the nonlinearly distorted
versions by choosing the one that varies most slowly in time. An algorithm that has been
specifically designed for extracting slowly varying signals is Slow Feature Analysis (SFA,
Wiskott, 1998; Wiskott and Sejnowski, 2002). SFA is intimately related to ICA techniques
like TDSEP (Ziehe and Müller, 1998; Blaschke et al., 2006) and differential decorrelation
(Choi, 2006) and is therefore an interesting starting point for developing nonlinear BSS
techniques.

Here, we extend a previously developed mathematical analysis of SFA (Franzius et al.,
2007) to the case where the input data are generated from a set of statistically independent
sources. The theory makes predictions as to how the sources are represented by the output
signals of SFA, based on which we develop a new algorithm for nonlinear blind source
separation. Because the algorithm is an extension of SFA, we refer to it as xSFA.

The structure of the paper is as follows. In Section 2, we introduce the optimization
problem for SFA and give a brief sketch of the SFA algorithm. In Section 3, we develop
the theory that underlies the xSFA algorithm. In Section 4, we present the xSFA algorithm
and evaluate its performance. Limitations and possible reasons for failures are discussed in
section 5. Section 6 discusses the relation of xSFA to other nonlinear BSS algorithms. We
conclude with a general discussion in Section 7.

2. Slow Feature Analysis

In this section, we briefly present the optimization problem that underlies slow feature
analysis and sketch the algorithm that solves it.

2.1 The Optimization Problem

Slow Feature Analysis is based on the following optimization task: For a given multi-dimen-
sional input signal we want to find a set of scalar functions that generate output signals
that vary as slowly as possible. To ensure that these signals carry significant information
about the input, we require them to be uncorrelated and have zero mean and unit variance.
Mathematically, this can be stated as follows:

Optimization problem 1: Given a function space F and an N -dimensional input
signal x(t), find a set of J real-valued input-output functions gj(x) ∈ F such that the output
signals yj(t) := gj(x(t)) minimize

∆(yj) = 〈ẏ2j 〉t (1)

under the constraints

〈yj〉t = 0 (zero mean) , (2)

〈y2j 〉t = 1 (unit variance) , (3)

∀i < j : 〈yiyj〉t = 0 (decorrelation and order) , (4)

922

Extending SFA for Nonlinear BSS

with 〈·〉t and ẏ indicating temporal averaging and the derivative of y, respectively.
Equation (1) introduces the ∆-value, which is small for slowly varying signals y(t). The

constraints (2) and (3) avoid the trivial constant solution. The decorrelation constraint (4)
forces different functions gj to encode different aspects of the input. Note that the decor-
relation constraint is asymmetric: The function g1 is the slowest function in F , while the
function g2 is the slowest function that fulfills the constraint of generating a signal that is
uncorrelated to the output signal of g1. The resulting sequence of functions is therefore
ordered according to the slowness of their output signals on the training data.

It is important to note that although the objective is the slowness of the output signal,
the functions gj are instantaneous functions of the input, so that slowness cannot be achieved
by low-pass filtering. As a side effect, SFA is not suitable for inverting convolutive mixtures.

2.2 The SFA Algorithm

If F is finite-dimensional, the problem can be solved efficiently by the SFA algorithm
(Wiskott and Sejnowski, 2002; Berkes and Wiskott, 2005). The full algorithm can be split
in two parts: a nonlinear expansion of the input data, followed by a linear generalized
eigenvalue problem.

For the nonlinear expansion, we choose a set of functions fi(x) that form a basis of the
function space F . The optimal functions gj can then be expressed as linear combinations
of these basis functions: gj(x) =

∑
iWjifi(x). By applying the basis functions to the input

data x(t), we get a new and generally high-dimensional set of signals zi(t) = fi(x(t)). With-
out loss of generality, we assume that the functions fi are chosen such that the expanded
signals zi have zero mean on the input data x. Otherwise, this can be achieved easily by
subtracting the mean.

After the nonlinear expansion, the coefficients Wji for the optimal functions can be
found from a generalized eigenvalue problem:

ĊW = CWΛ . (5)

Here, Ċ is the matrix of the second moments of the temporal derivative żi of the expanded
signals: Ċij = 〈żi(t)żj(t)〉t. C is the covariance matrix C = 〈zi(t)zj(t)〉t of the expanded
signals (since z has zero mean), W is a matrix that contains the weights Wji for the
optimal functions and Λ is a diagonal matrix that contains the generalized eigenvalues on
the diagonal.

If the function space F is the set of linear functions, the algorithm reduces to solving
the generalized eigenvalue problem (5) without nonlinear expansion. Therefore, the second
step of the algorithm is in the following referred to as linear SFA.

3. Theoretical Foundations

In this section we extend previous analytical results for SFA to the case of nonlinear blind
source separation, more precisely, to the case where the input data x(t) are generated
from a set of statistically independent sources s(t) by means of a nonlinear, instantaneous,
and invertible (or at least injective) function: x(t) = F(s(t)). For readers that are more
interested in the algorithm than in its mathematical foundations, a summary of the relevant
theoretical results can be found at the end of the section.

923

Sprekeler, Zito and Wiskott

3.1 SFA With Unrestricted Function Spaces

The central assumption of the theory is that the function space F that SFA can access
is unrestricted apart from the necessary mathematical requirements of integrability and
differentiability.1 This has important conceptual consequences.

3.1.1 Conceptual Consequences of an Unrestricted Function Space

Let us for the moment assume that the mixture x = F(s) has the same dimensionality as
the source vector. Let g be an arbitrary function g ∈ F , which generates an output signal
y(t) = g(x(t)) when applied to the mixture x(t). Then, for every such function g, there is
another function g̃ = g ◦ F that generates the same output signal y(t) when applied to the
sources s(t) directly. Because the function space F is unrestricted, this function g̃ is also
an element of the function space F . Because this is true for all functions g ∈ F , the set of
output signals that can be generated by applying the functions in F to the mixture x(t) is
the same as the set of output signals that can be generated by applying the functions to
the sources s(t) directly. Because the optimization problem of SFA is formulated purely in
terms of output signals, the output signals when applying SFA to the mixture are the same
as when applied directly to the sources. In other words: For an unrestricted function space,
the output signals of SFA are independent of the structure of the mixing function F. This
statement can be generalized to the case where the mixture x has a higher dimensionality
than the sources, as long as the mixing function F is injective.

Given that the output signals are independent of the mixture, we can make analytical
predictions about the dependence of the output signals on the sources, when the input
signals are not a mixture, but the sources themselves. These predictions generalize to the
case where the input signals are a nonlinear mixture of the sources instead.

Of course, an unrestricted function space cannot be implemented in practice. Therefore,
in any application the output signals depend on the mixture and on the function space used.
Nevertheless, the idealized case provides important theoretical insights, which we use as the
basis for the blind source separation algorithm presented later.

3.1.2 Earlier Results for SFA with an Unrestricted Function Space

In a previous article (Franzius et al., 2007, Theorems 1-5), we have shown that the optimal
functions gj(x) for SFA in the case of an unrestricted function space are given by the
solutions of an eigenvalue equation for a partial differential operator D

Dgj(x) = λjgj(x)

with von Neumann boundary conditions∑
αβ

nαpx(x)Kαβ(x)∂βgj(x) = 0 .

1. More precisely, we assume that the function space F is the Sobolev space of functions for which both
the functions themselves as well as all their partial derivatives with respect to the input signals are
square-integrable with respect to the probability measure of the input signals.

924

Extending SFA for Nonlinear BSS

Here, D denotes the operator

D = − 1

px(x)

∑
α,β

∂αpx(x)Kαβ(x)∂β , (6)

px(x) is the probability density of the input data x (which we assumed to be non-zero
within the range of x) and ∂α the partial derivative with respect to the α-th component xα
of the input data. Kαβ(x) = 〈ẋαẋβ〉ẋ|x is the matrix of the second moments of the velocity
distribution p(ẋ|x) of the input data, conditioned on their value x and nα(x) is the α-th
component of the normal vector on the boundary point x. Note that the partial derivative
∂α acts on all terms to its right, so that D is a partial differential operator of second order.
The optimal functions for SFA are the J eigenfunctions gj with the smallest eigenvalues λj .

3.2 Factorization Of The Optimal Functions

As discussed above, the dependence of the output signals on the sources can be studied by
using the sources themselves as input data. However, because the sources are assumed to be
statistically independent, we have additional knowledge about their probability distribution
and consequently also about the matrix Kαβ. The joint probability density for the sources
and their derivatives factorizes:

ps,ṡ(s, ṡ) =
∏
α

psα,ṡα(sα, ṡα) .

Clearly, the marginal probability density ps also factorizes into the individual probability
densities pα(sα)

ps(s) =
∏
α

pα(sα) , (7)

and the matrix Kαβ of the second moments of the velocity distribution of the sources is
diagonal

Kαβ(s) := 〈ṡαṡβ〉ṡ|s = δαβKα(sα) with Kα(sα) := 〈ṡ2α〉ṡα|sα . (8)

The latter is true, because the mean temporal derivative of 1-dimensional stationary and
continuously differentiable stochastic processes vanishes for any sα for continuity reasons
(for a mathematical argument see Appendix), so that Kαβ is not only the matrix of the
second moments of the derivatives, but actually the conditional covariance matrix of the
derivatives of the sources given the sources. As the sources are statistically independent,
their derivatives are uncorrelated and Kαβ has to be diagonal.

We can now insert the specific form (7,8) of the probability distribution ps and the
matrix Kαβ into the definition (6) of the operator D. A brief calculation shows that this
leads to a separation of the operator D into a sum of operators Dα, each of which depends
on only one of the sources:

D(s) =
∑
α

Dα(sα)

with

Dα = − 1

pα
∂αpαKα∂α . (9)

This has the important implication that the solution to the full eigenvalue problem for D
can be constructed from the 1-dimensional eigenvalue problems for the individual sources:

925

Sprekeler, Zito and Wiskott

Figure 1: Schematic ordering of the optimal functions for SFA. For an unrestricted function
space and statistically independent sources, the optimal functions for SFA are
products of harmonics, each of which depends on one of the sources only. In the
case of two sources, the optimal functions can therefore be arranged schematically
on a 2-dimensional grid, where every grid point represents one function and its
coordinates in the grid are the indices of the harmonics that are multiplied to
form the function. Because the 0-th harmonic is the constant, the functions on
the axes are simply the harmonics themselves and therefore depend on one of the
sources only. Moreover, the grid points (1,0) and (0,1) are monotonic functions of
the sources and therefore a good representative thereof. It is these solutions that
the xSFA algorithm is designed to extract. Note that the scheme also contains
an ordering by slowness: All functions to the upper right of a given function have
higher ∆-values and therefore vary more quickly.

Theorem 1 Let gαi (i ∈ N) be the normalized eigenfunctions of the operators Dα, that is,
the set of functions gαi that fulfill the eigenvalue equations

Dαgαi = λαigαi (10)

with the boundary conditions
pαKα∂αgαi = 0 (11)

and the normalization condition

(gαi, gαi)α := 〈g2αi〉sα = 1 .

Then, the product functions

gi(s) :=
∏
α

gαiα(sα)

form a set of (normalized) eigenfunctions to the full operator D with the eigenvalues

λi =
∑
α

λαiα

926

Extending SFA for Nonlinear BSS

and thus those gi with the smallest eigenvalues λi are the optimal functions for SFA. Here,
i = (i1, ..., iS) ∈ NS denotes a multi-index that enumerates the eigenfunctions of the full
eigenvalue problem.

In the following, we assume that the eigenfunctions gαi are ordered by their eigenvalue
and refer to them as the harmonics of the source sα. This is motivated by the observation
that in the case where pα and Kα are independent of sα, that is, for a uniform distribution,
the eigenfunctions gαi are harmonic oscillations whose frequency increases linearly with i
(see below). Moreover, we assume that the sources sα are ordered according to slowness, in
this case measured by the eigenvalue λα1 of their lowest non-constant harmonic gα1. These
eigenvalues are the ∆-values of the slowest possible nonlinear point transformations of the
sources.

The key result of theorem 1 is that in the case of statistically independent sources,
the output signals are products of harmonics of the sources. Note that the constant func-
tion gα0(sα) = 1 is an eigenfunction with eigenvalue 0 to all the eigenvalue problems (10).
As a consequence, the harmonics gαi of the single sources are also eigenfunctions to the full
operator D (with the index i = (0, ..., 0, iα = i, 0, ..., 0)) and can thus be found by SFA.
Importantly, the lowest non-constant harmonic of the slowest source (i.e., g(1,0,0,...) = g11)
is the function with the smallest overall ∆-value (apart from the constant) and thus the
first function found by SFA. In the next sections, we show that the lowest non-constant
harmonics gα1 reconstruct the sources up to a monotonic and thus invertible point trans-
formation and that in the case of sources with Gaussian statistics they even reproduce the
sources exactly.

3.3 The First Harmonic Is A Monotonic Function Of The Source

The eigenvalue problem (10,11) has the form of a Sturm-Liouville problem (Courant and
Hilbert, 1989) and can easily be rewritten to have the standard form for these problems:

∂αpαKα ∂αgαi + λαipαgαi
(10,9)

= 0 , (12)

with pαKα∂αgαi
(11)
= 0 for sα ∈ {a, b} . (13)

Here, we assume that the source sα is bounded and takes on values on the interval sα ∈ [a, b].
Note that both pα and pαKα are positive for all sα. Sturm-Liouville theory states that (i) all
eigenvalues are positive (Courant and Hilbert, 1989), (ii) the solutions gαi, i ∈ N0 of this
problem are oscillatory and (iii) gαi has exactly i zeros on]a, b[if the gαi are ordered by
increasing eigenvalue λαi (Courant and Hilbert, 1989, Chapter VI, §6). In particular, gα1
has only one zero ξ ∈]a, b[. Without loss of generality we assume that gα1 < 0 for sα < ξ
and gα1 > 0 for sα > ξ. Then Equation (12) implies that

∂αpαKα∂αgα1 = −λαpαgα1 < 0 for sα > ξ

=⇒ pαKα∂αgα1 is monotonically decreasing on]ξ, b]

(13)
=⇒ pαKα ∂αgα1 > 0 on]ξ, b[

=⇒ ∂αgα1 > 0 on]ξ, b[, because pαKα > 0

⇐⇒ gα1 is monotonically increasing on]ξ, b[.

927

Sprekeler, Zito and Wiskott

A similar consideration for s < ξ shows that gα1 is also monotonically increasing on]a, ξ[.
Thus, gα1 is monotonic and invertible on the whole interval [a, b]. Note that the monotony
of gα1 is important in the context of blind source separation, because it ensures that not
only some of the output signals of SFA depend on only one of the sources (the harmonics),
but that there should actually be some (the lowest non-constant harmonics) that are very
similar to the source itself.

3.4 Gaussian Sources

We now consider the situation that the sources are reversible Gaussian stochastic processes,
(i.e., that the joint probability density of s(t) and s(t+ dt) is Gaussian and symmetric with
respect to s(t) and s(t+ dt)). In this case, the instantaneous values of the sources and their
temporal derivatives are statistically independent, that is, pṡα|sα(ṡα|sα) = pṡα(ṡα). Thus,
Kα is independent of sα, that is, Kα(sα) = Kα = const. Without loss of generality we
assume that the sources have unit variance. Then the probability density of the source is
given by

pα(sα) =
1√
2π

e−s
2
α/2

and the eigenvalue Equations (12) for the harmonics can be written as

∂αe
−s2α/2∂αgαi +

λαi
Kα

e−s
2
α/2gαi = 0 .

This is a standard form of Hermite’s differential equation (see Courant and Hilbert, 1989,
Chapter V, § 10). Accordingly, the harmonics gαi are given by the (appropriately normal-
ized) Hermite polynomials Hi of the sources:

gαi(sα) =
1√
2ii!

Hi

(
sα√

2

)
.

The Hermite polynomials can be expressed in terms of derivatives of the Gaussian distri-
bution:

Hn(x) = (−1)nex
2
∂nx e−x

2
.

It is clear that Hermite polynomials fulfill the boundary condition

lim
sα→∞

Kαpα∂αgαi = 0 ,

because the derivative of a polynomial is again a polynomial and the Gaussian distribution
decays faster than polynomially as |sα| → ∞. The eigenvalues depend linearly on the
index i:

λαi = iKα . (14)

The most important consequence is that the lowest non-constant harmonics simply repro-
duce the sources: gα1(sα) = 1/

√
2H1(sα/

√
2) = sα. Thus, for Gaussian sources, some of the

output signals of SFA with an unrestricted function space reproduce the sources exactly.

928

Extending SFA for Nonlinear BSS

3.5 Uniformly Distributed Sources

Another canonical example for which the eigenvalue Equation (10) can be solved analyt-
ically is the case of uniformly distributed sources, that is, the case where the probability
distribution ps,ṡ is independent of s on a finite interval and zero elsewhere. Consequently,
neither pα(sα) nor Kα(sα) can depend on sα, that is, they are constants. Note that such a
distribution may be difficult to implement by a real differentiable process, because the veloc-
ity distribution should be different at boundaries that cannot be crossed. Nevertheless, this
case provides an approximation to cases, where the distribution is close to homogeneous.

Let sα take values in the interval [0, Lα]. The eigenvalue Equation (12) for the harmonics
is then given by

Kα∂
2
αgαi + λαigαi = 0

and readily solved by harmonic oscillations:

gαi(sα) =
√

2 cos

(
iπ
sα
Lα

)
.

The ∆-value of these functions is given by

∆(gαi) = λαi = Kα

(
π

Lα
i

)2

.

Note the similarity of these solutions with the optimal free responses derived by Wiskott
(2003b).

3.6 Summary: Results Of The Theory

The following key results of the theory form the basis of the xSFA algorithm:

• For an unrestricted function space, the output signals generated by the optimal func-
tions of SFA are independent of the nonlinear mixture, given the same original sources.

• The optimal functions of SFA are products of functions gαi(sα), each of which depends
on only one of the sources. We refer to the function gαi as the i-th harmonic of the
source sα.

• The slowest non-constant harmonic is a monotonic function of the associated source.
It can therefore be considered a good representative of the source.

• If the sources have stationary Gaussian statistics, the harmonics are Hermite poly-
nomials of the sources. In particular, the lowest harmonic is then simply the source
itself.

• The slowest function found by SFA is the lowest harmonic of the slowest source and
therefore a good representative thereof.

929

Sprekeler, Zito and Wiskott

4. An Algorithm For Nonlinear Blind Source Separation

According to the theory, some of the output signals of SFA should be very similar to the
sources. Therefore, the problem of nonlinear BSS can be reduced to selecting those output
signals of SFA that correspond to the first non-constant harmonics of the sources. In this
section, we propose and test an algorithm that should ideally solve this problem. In the
following, we sometimes refer to the first non-constant harmonics simply as the “sources”,
because they should ideally be very similar.

4.1 The xSFA Algorithm

The extraction of the slowest source is rather simple: According to the theory, it is well
represented by the first (i.e., slowest) output signal of SFA. Unfortunately, extracting the
second source is more complicated, because higher order harmonics of the first source may
vary more slowly that the second source.

The idea behind the algorithm we propose here is that once we know the first source,
we also know all its possible nonlinear transformations, that is, its harmonics. We can thus
remove all aspects of the first source from the SFA output signals by projecting the latter
to the space that is uncorrelated to all nonlinear versions of the first source. In the grid
arrangement shown in Figure 1, this corresponds to removing all solutions that lie on one
of the axes. The remaining signals must have a dependence on the second or even faster
sources. The slowest possible signal in this space is then generated by the first harmonic
of the second source, which we can therefore extract by means of linear SFA. Once we
know the first two sources, we can proceed by calculating all the harmonics of the second
source and all products of the harmonics of the first and the second source and remove
those signals from the data. The slowest signal that remains then is the first harmonic of
the third source. Iterating this scheme should in principle yield all the sources.

The structure of the algorithm is the following (see also Figure 2):

1. Start with the first source: i = 1.

2. Apply a polynomial expansion of degree NSFA to the mixture to obtain the expanded
mixture z.

3. Apply linear SFA to the expanded mixture z and store the slowest output signal as
an estimate s̃i of source i.

4. Stop if the desired number of sources has been extracted (i = S).

5. Apply a polynomial expansion of degree Nnl to the estimated sources s̃1,...,i and whiten
the resulting signals. We refer to the resulting nonlinear versions of the first sources
as nk, k ∈ {1, ..., N exp}, where N exp denotes the dimension of a polynomial expansion
of degree Nnl of i signals.

6. Remove the nonlinear versions of the first i sources from the expanded mixture z

zj(t)← zj(t)−
Nexp∑
k=1

cov(zj , nk)nk(t)

930

Extending SFA for Nonlinear BSS

Figure 2: Illustration of the xSFA algorithm. The mixture of the input signals is first
subjected to a nonlinear expansion that should be chosen sufficiently powerful to
allow (a good approximation of) the inversion of the mixture. An estimate of
the first source is then obtained by applying linear SFA to the expanded data.
The remaining sources are estimated iteratively by removing nonlinear versions
of the previously estimated sources from the expanded data and reapplying SFA.
If the number of sources is known, the algorithm terminates when estimates of
all sources have been extracted. If the number of sources is unknown, other
termination criteria might be more suitable (not investigated here).

and remove principal components with a variance below a given threshold ε.

7. To extract the next source, increase i by one and go to step 2, using the new expanded
signals z.

Note that the algorithm is a mere extension of SFA in that it does not include new objectives
or constraints. We therefore term it xSFA for eXtended SFA.

4.2 Simulations

We test the algorithm on two different tasks. The first one is the separation of two audio
signals that are subject to a rather complicated mixture. In the second task, we test if the
algorithm is able to separate more than two sources.

931

Sprekeler, Zito and Wiskott

4.2.1 Sources

Audio signals: We first evaluated the performance of the algorithm on two different test sets
of audio signals. Data set A consists of excerpts from 14 string quartets by Béla Bartók.
Note that these sources are from the same CD and the same composer and contain the same
instruments. They can thus be expected to have similar statistics. Differences in the ∆-
values should mainly be due to short-term nonstationarities. This data set provides evidence
that the algorithm is able to distinguish between signals with similar global statistics based
on short-term fluctuations in their statistics.

Data set B consists of 20 excerpts from popular music pieces from various genres, ranging
from classical music over rock to electronic music. The statistics of this set is more variable
in their ∆-values, in particular they remain different even for long sampling times.

All sources were sampled at 44,100 Hz and 16 bit, that is, with CD-quality. The length
of the samples was varied to assess how the amount of training data affects the performance
of the algorithm.

Artificial data: To test how the algorithm would perform in tasks where more than two
sources need to be extracted, we generated 6 artificial source signals with different temporal
statistics. The sources were colored noise, generated by (i) applying a fast Fourier transform
to white noise signals of length T , (ii) multiplying the resulting signals with exp(−f2/2σ2i)
(where f denotes the frequency) and (iii) inverting the Fourier transform. The parameter σi
controls the ∆-values of the sources (∆ ≈ σ2i) and was chosen such that the ∆-values were
roughly equidistant: σi =

√
i T50 + 1.

4.2.2 Nonlinear Mixtures

Audio signals: We subjected all possible pairs of sources within a data set to a nonlinear
invertible mixture that was previously used by Harmeling et al. (2003) and Blaschke et al.
(2007):

x1(t) = (s2(t) + 3s1(t) + 6) cos(1.5πs1(t)) ,
x2(t) = (s2(t) + 3s1(t) + 6) sin(1.5πs1(t)) .

(15)

Figure 3 illustrates the spiral-shaped structure of this nonlinearity. This mixture is only
invertible if the sources are bounded between -1 and 1, which is the case for the audio data
we used. The mixture (15) is not symmetric in s1 and s2. Thus, for every pair of sources,
there are two possible mixtures and we have tested both for each source pair.

We have also tested the other nonlinearities that Harmeling et al. (2003) have applied to
two sources, as well as post-nonlinear mixtures, that is, linear mixture followed by a point
nonlinearity. The performance was similar for all mixtures tested without any tuning of
parameters (data not shown). Moreover, the performance remained practically unchanged
when we used linear mixtures or no mixture at all. This is in line with the argument that
the mixture should be irrelevant to SFA if the function space F is sufficiently rich (see
section 3).

Separation of more than two sources: For the simulations with more than two sources, we
created a nonlinear mixture by applying a post-nonlinear mixture twice. The basic post-
nonlinear mixture is generated by first applying a random rotation Oij to the sources si
and then applying a point-nonlinearity to each of the linearly mixed signals. We used an

932

Extending SFA for Nonlinear BSS

Figure 3: The spiral-shaped structure of the nonlinear mixture. Panel A shows a scatter
plot of two sources from data set A. Panel B shows a scatter plot of the nonlinear
mixture we used to test the algorithm.

arctangent as a nonlinearity:

Mi(s) = arctan

ζ−1
∑

j

Oijsj

 ,

with a parameter ζ that controls the strength of the nonlinearity. We normalized the sources
to have zero mean and unit variance to ensure that the degree of nonlinearity is roughly
the same for all combinations of sources and chose ζ = 2.

This nonlinearity was applied twice, with independently generated rotations, and a
normalization step to zero mean and unit variance before each application.

4.2.3 Simulation Parameters

There are three parameters in the algorithm: the degree NSFA of the expansion used for the
first SFA step, the degree Nnl of the expansion for the source removal and the threshold ε
for the removal of directions with negligible variance.

Degree of the expansion in the first SFA step: For the simulations with two sources, we
used a polynomial expansion of degree NSFA = 7, because it has previously been shown
that this function space is sufficient to invert the mixture (15) (Blaschke et al., 2007). For
2-dimensional input signals, this expansion generates a 35-dimensional function space. We
kept all J = 35 output signals of SFA. It is worth noting that the success rate of the
algorithm is practically unchanged when polynomials of higher order are used. From the
theoretical perspective, this is not surprising, because once the function space is sufficiently
rich to extract the first harmonics of the sources, the system performs just as good as it
could with an unrestricted function space.

933

Sprekeler, Zito and Wiskott

For the simulations with more than two sources, we used a polynomial expansion of
degree NSFA = 3.

Degree of the expansion for source removal: For the simulations with two sources, we
expanded the estimate for the first source in polynomials of degree Nnl = 20, that is, we
projected out 20 nonlinear versions of the first source. Using fewer nonlinear versions does
not alter the results significantly, as long as the expansion is sufficiently complex to remove
those harmonics of the first source that have smaller ∆-values than the second source. Using
higher expansion degrees sometimes leads to numerical instabilities, which we accredit to
the extremely sparse distribution that results from the application of very high monomials.

For the separation of more than two sources, all polynomials of degree Nnl = 4 of the
already estimated sources were projected out.

Variance threshold: After the removal of the nonlinear versions of the first source, there
is at least one direction with vanishing variance. To avoid numerical problems caused
by singularities in the covariance matrices, directions with variance below ε = 10−7 were
removed. For almost all source pairs, the only dimension that had a variance below ε after
the removal was the trivial direction of the first estimated source.

The simulations were done in Python using the modular toolkit for data processing
(MDP) developed by Zito et al. (2008). The xSFA algorithm is included in the current
version of MDP (http://mdp-toolkit.sourceforge.net).

4.2.4 Performance Measure

For stationary Gaussian sources, the theory predicts that the algorithm should reconstruct
the sources exactly. In most applications, however, the sources are neither Gaussian nor
stationary (at least not on the time scales we used for training). In this case the algorithm
cannot be expected to find the sources themselves, but rather a nonlinearly transformed
version of the sources, ideally their lowest harmonics. Thus, the correlation between the
output signals of the algorithm and the sources is not necessarily the appropriate measure for
the quality of the source separation. Therefore, we also calculated the lowest harmonics gα1
of the sources by applying SFA with a polynomial expansion of degree 11 to the individual
sources separately and then calculated the correlations between the output signals of the
algorithm and both the output signals of the harmonics yα1(t) = gα1(sα(t)) and the sources
themselves. In addition to the correlation coefficient, we also calculated the signal-to-noise
ratio.

4.2.5 Simulation Results

Figure 4 shows the performance of the algorithm depending on the duration of the training
data. To provide an idea of the statistics of the performance, we plot the median as well
as the 25th and 75th percentile of the distribution of the correlation coefficient and the
signal-to-noise ratio. For data set A, the algorithm requires on the order of 0.5s of training
data to extract the first source with a median signal-to-noise ratio (SNR) of about 18
(corresponding to a correlation coefficient (CC) larger than 0.99) and the second source
with a median SNR of about 13 (CC> 0.95). Although the median performance increases
slowly as the duration of the training data increases to several seconds, the growing distance
between the percentiles indicates a larger inhomogeneity in the results, suggesting that for

934

Extending SFA for Nonlinear BSS

0 1 2 3 4 5

training data duration [s]

S
N

R
 [
d

B
]

0

10

20

A B

C D

c
o

rre
la

tio
n

 c
o

e
ffic

ie
n

t

0.999

0.99

0.9

0.5

c
o

rre
la

tio
n

 c
o

e
ffic

ie
n

t

0.999

0.99

0.9

0.5

c
o

rre
la

tio
n

 c
o

e
ffic

ie
n

t

0.999

0.99

0.9

0.5

c
o

rre
la

tio
n

 c
o

e
ffic

ie
n

t

0.999

0.99

0.9

0.5

S
N

R
 [
d

B
]

0

10

20

S
N

R
 [
d

B
]

0

10

20

S
N

R
 [
d

B
]

0

10

20

0 1 2 3 4 5

training data duration [s]

0 2 4 6 8 10

training data duration [s]

0 2 4 6 8 10

training data duration [s]

dataset A, sources dataset A, harmonics

dataset B, sources dataset B, harmonics

source 1

source 2

Figure 4: Performance of the algorithm as a function of the duration of the training data.
The curves show the median of the distribution of correlation coefficients between
the reconstructed and the original sources, as well as the corresponding signal-to-
noise ratio (SNR). Grey-shaded areas indicate the region between the 25th and
the 75th percentile of the distribution of the correlation/SNR. Statistics cover all
possible source pairs that can be simulated (data set A: 14 sources → 182 source
pairs, data set B: 20 sources → 380 source pairs). Panels A and B show results
for data set A, panels C and D for data set B. Panels A and C show the ability
of the algorithm to reconstruct the sources themselves, while B and D show the
performance when trying to reconstruct the slowest harmonics of the sources.
Note the difference in time scales.

long durations, the algorithm either performs very well or fails completely. We attribute
this behavior to the fact that all sources were string quartets whose temporal statistics are
relatively similar in the long term. The SNR is only slightly higher when comparing the
extracted sources to the slowest harmonics of the original sources. This may serve as an
indication that the sources were close to Gaussian, so that the harmonics and the sources
were similar.

935

Sprekeler, Zito and Wiskott

c
o

rre
la

tio
n

 c
o

e
ffic

ie
n

t
S

N
R

 [
d

B
]

training data duration [10 samples]4

2 6 8 1040

0.99

0.9

0.5

0.1

0

10

-10

-20

source 1

source 6

Figure 5: Performance of the algorithm for multiple sources. The curves show the median
of the distribution of correlation coefficients between the reconstructed and the
orginal six sources, as well as the corresponding signal-to-noise ratio (SNR). The
grey-shaded area indicates the region between the 25th and the 75th percentile
of the distribution of the correlation/SNR for the 4th source. The percentiles
for the other sources are similar but not shown for reasons of graphical clarity.
Statistics cover 50 repetitions with independently generated sources. The dashed
grey line indicates the performance of a linear regression.

For data set B, longer training times of at least 2s were necessary to reach a similar
performance as for data set A. Further research is necessary to assess the reasons for this.
Again, the estimated sources are more similar to the slowest harmonics of the sources than
to the sources themselves. The reconstruction performance increases with the duration of
the training data. For this data set, the prominent divergence of the percentiles for data
set A is not observed.

The performance of xSFA is significantly better than that of independent slow feature
analysis (ISFA; Blaschke et al., 2007), which also relies on temporal correlations and was
reported to reconstruct both sources with CC> 0.9 for about 70% of the source pairs. For
our data sets, both sources were reconstructed with a correlation of more than 0.9 for more
than 90% of the source pairs, if the duration of the training data was sufficiently large.
Moreover, it is likely that the performance of xSFA can be further improved, for example,
by using more training data or different function spaces.

The algorithm is relatively fast: On a notebook with 1.7GHz, the simulation of the 182
source pairs for data set A with 0.2s training sequences takes about 380 seconds, which
corresponds to about 2.1s for the unmixing of a single pair.

Figure 5 shows the performance of the algorithm for the problem where six artificial
sources were to be extracted from a nonlinear mixture. The slowest source is extracted
with the highest SNR, and the SNR decreases with increasing ∆-value of the sources. This
is most likely due to an accumulation of error that arises from the iterative structure of
the xSFA algorithm (see discussion in section 5). The performance increases monotonically

936

Extending SFA for Nonlinear BSS

with increasing amount of training data. For 105 training data points, four of six estimated
sources have a correlation coefficient with the original source that is larger than 0.9. The
performance of a supervised linear regression between the sources and the mixture happens
to be close to 0.9. For the first four extracted sources, xSFA is thus performing better than
any linear technique could.

5. Practical Limitations

There are several reasons why the algorithm can fail, because some of the assumptions
underlying the theory are not necessarily fulfilled in simulations. In the following, we
discuss some of the reasons for failures. The main insights are summarized at the end of
the section.

5.1 Limited Sampling Time

The theory predicts that some of the output signals reproduce the harmonics of the sources
exactly. However, problems can arise if eigenfunctions have (approximately) the same eigen-
value. For example, assume that the sources have the same temporal statistics, so that the
∆-value of their slowest harmonics gµ1 is equal. Then, there is no reason for SFA to prefer
one signal over the other.

Of course, in practice, two signals are very unlikely to have exactly the same ∆-value.
However, the difference may be so small that it cannot be resolved because of limited
sampling. To get a feeling for how well two sources can be distinguished, assume there were
only two sources that are drawn independently from probability distributions with ∆-values
∆ and ∆ + δ. Then linear SFA should ideally reproduce the sources exactly. However, if
there is only a finite amount of data, say of total duration T , the ∆-values of the signals
can only be estimated with finite precision. Qualitatively, we can distinguish the sources
when the standard deviation of the estimated ∆-value is smaller than the difference δ in
the “exact” ∆-values. It is clear that this standard deviation depends on the number of
data points roughly as 1/

√
T . Thus the smallest difference δmin in the ∆-values that can

be resolved has the functional dependence

δmin ∼ ∆α 1√
T
.

The reason why the smallest distinguishable difference δ must depend on the ∆-value is
that subsequent data points are not statistically independent, because the signals have a
temporal structure. For slow signals, that is, signals with a small ∆-values, the estimate
of the ∆-value is less precise than for quickly varying signals, because the finite correlation
time of the signals impairs the quality of the sampling. For dimensionality reasons, the
exponent α has to take the value α = 3/4, yielding the criterion

δmin

∆
∼ 1√

T
√

∆
.

For an interpretation of this equation note that the ∆-value can be interpreted as a (quadratic)
measure for the width of the power spectrum of a signal (assuming a roughly unimodal power

937

Sprekeler, Zito and Wiskott

spectrum centered at zero):

∆(y) =
1

T

∫
ẏ2dt =

1

T

∫
ω2|y(ω)|2dω , (16)

where y(ω) denotes the Fourier transform of y(t). However, the inverse width of the power
spectrum is an operative measure for the correlation time τ of the signal, leaving us with a
correlation time τ ∼ 1/

√
∆. With this in mind, the criterion (16) takes a form that is much

easier to interpret:
δmin

∆
∼
√
τ

T
=

1√
Nτ

. (17)

The correlation time τ characterizes the time scale on which the signal varies, so intuitively,
we can cut the signal into Nτ = T/τ “chunks” of duration τ , which are approximately
independent. Equation (17) then states that the smallest relative difference in the ∆-value
that can be resolved is inversely proportional to the square root of the number Nτ of
independent data “chunks”.

If the difference in the ∆-value of the predicted solutions is smaller than δmin, SFA is
likely not to find the predicted solutions but rather an arbitrary mixture thereof, because
the removal of random correlations and not slowness is the essential determinant for the
solution of the optimization problem. Equation (17) may serve as an estimate of how much
training time is needed to distinguish two signals. Note however, that the validity of (17)
is questionable for nonstationary sources, because the statistical arguments used above are
not valid.

Using these considerations, we can estimate the order of magnitude of training data
that is needed for the data sets we used to evaluate the performance of the algorithm. For
both data sets, the ∆-values of the sources were on the order of 0.01, which corresponds
to an autocorrelation time of approximately 1/

√
0.01 = 10 samples. Those sources of

data set A that were most similar differed in ∆-value by δ/∆ ∼ 0.05, which requires
Nτ = (1/0.05)2 = 400. This corresponds to ∼ 4000 samples that are required to distinguish
the sources, which is similar to what was observed in simulations. In data set B, the
problem is not that the sources are too similar, but rather that they are too different in
∆-value, which makes it difficult to distinguish between the products of the second source
and harmonics of the first and the second source alone. The ∆-values often differ by a
factor of 20 or more, so that the relative difference between the relevant ∆-values is again
on the order of 5%. In theory, the same amount of training data should therefore suffice.
However, if the sources strongly differ in ∆-value, many harmonics need to be projected
out before the second source is accessible, which presumably requires a higher precision in
the estimate of the first source. This might be one reason why significantly more training
data is needed for data set B.

5.2 Sampling Rate

The theory is derived under the assumption that all signals are continuous in time. Real
data are generally discretized. Therefore, the theory is only valid if the data are sampled
at a sampling rate sufficient to generate quasi-continuous data. As the sampling rate de-
creases, so do the correlations between subsequent data points. In the limit of extremely

938

Extending SFA for Nonlinear BSS

low sampling rates this renders techniques like SFA that are based on short-term temporal
correlations useless.

For discrete data, the temporal derivative is usually replaced by a difference quotient:

ẏ(t) ≈ y(t+ ∆t)− y(t)

∆t
,

where y(t + ∆t) and y(t) are neighboring sample points and ∆t is given by the inverse of
the sampling rate r. The ∆-value can then be expressed in terms of the variance of the
signal and its autocorrelation function:

∆(y) = 〈ẏ2〉t ≈
2

∆t2
(
〈y2〉t − 〈y(t+ ∆t)y(t)〉t

)
= 2r2

(
〈y2〉t − 〈y(t+ ∆t)y(t)〉t

)
. (18)

If the sampling is too low, the signal effectively becomes white noise. In this case,
the term that arises from the time-delayed correlation vanishes, while the variance remains
constant. Thus, for small sampling rates, the ∆-value depends quadratically on the sampling
rate, while it saturates to its “real” value if the sampling rate is increased. This behavior
is illustrated in Figure 6A. Note that two signals with different ∆-values for sufficient
sampling rate may have very similar ∆-value when the sampling is decreased too drastically.
Intuitively, this is the case if the sampling rate is so low that both signals are (almost) white
noise. In this case, there are no temporal correlations that could be exploited, so that SFA
returns a random mixture of the signals.

The number of samples N that can be used for training is limited by the working
memory of the computer and/or the available CPU time. Thus, for a fixed maximal number
of training samples N , the sampling rate implicitly determines the maximal training time
T = N/r. The training time, in turn, determines the minimal relative difference in ∆-value
that can be distinguished (cf. Equation (17)). Thus, for a fixed number of sample points, the
minimal relative difference in ∆-value that can be resolved is proportional to 1/

√
T ∼

√
r.

But why do low sampling rates lead to a better resolution? The reason is that for high
sampling rates, neighboring data points have essentially the same value. Thus, they do not
help in estimating the ∆-value, because they do not carry new information.

In summary, the sampling rate should ideally be in an intermediate regime. If the
sampling rate is too low, the signals become white noise and cannot be distinguished, while
too high sampling rates lead to high computational costs without delivering additional
information. This is illustrated in Figure 6B.

5.3 Density Of Eigenvalues

The problem of getting random mixtures instead of the optimal solutions is of course most
relevant in the case where the sources, or more precisely, the slowest non-constant harmonics
of the sources have similar ∆-values. However, even when the sources are sufficiently differ-
ent, this problem eventually arises for the higher-order solutions. To quantify the expected
differences in ∆-value between the solutions, we define a density ρ(∆) of the ∆-values as the
number of eigenvalues expected in an interval [∆,∆ + δ], divided by the interval length δ.
A convenient way to determine this density is to calculate the number R(∆) of solutions
with eigenvalues smaller than ∆ and then take the derivative with respect to ∆.

939

Sprekeler, Zito and Wiskott

A B

Figure 6: Influence of the sampling rate. (A) Qualitative dependence of the ∆-value of two
different signals on the sampling rate. For very low sampling rates, both signals
become white noise and the ∆-value quadratically approaches zero. Signals that
have different ∆-values for sufficiently high sampling rates may therefore not be
distinguished if the sampling rate is too low. The dotted lines indicate the “real”
∆-values of the signals. Note: It may sound counterintuitive that the ∆-value
drops to zero with decreasing sampling rate, as white noise should be regarded as
a quickly varying signal. This arises from taking the sampling rate into account in
the temporal derivative (18). If the derivative is simply replaced by the difference
between adjacent data points, the ∆-value approaches 2 as the sampling rate
goes to zero and decreases with the inverse square of the sampling rate as the
sampling rate becomes large. (B) Sampling rate dependence of the “resolution”
of the algorithm for a fixed number of training samples. The solid line shows the
qualitative dependence of the relative difference in ∆-value of two signals as a
function of the sampling rate and the dashed line shows the qualitative behavior
of the minimal relative difference in ∆-value that can be resolved. The signals
can only be separated by SFA if the resolvable difference (dashed) is below the
expected relative difference (solid). Therefore an intermediate sampling is more
efficient. The dotted line indicates the “real” ratio of the ∆-values.

In the Gaussian approximation, the ∆-values of the harmonics are equidistantly spaced,
cf. Equation (14). As the ∆-value ∆i of the full product solution gi is the sum of the ∆-
values of the harmonics, the condition ∆i < ∆ restricts the index i to lie below a hyperplane
with the normal vector n = (λ11, ..., λS1) ∈ RS :∑

µ

iµλµ1 = i · n < ∆ . (19)

Because the indices are homogeneously distributed in index space with density one, the
expected number of solutions with ∆ < ∆0 is simply the volume of the subregion in index
space for which Equation (19) is fulfilled:

R(∆) =
1

S!

S∏
µ=1

∆

λµ1
.

940

Extending SFA for Nonlinear BSS

The density of the eigenvalues is then given by

ρ(∆) =
∂R(∆)

∂∆
=

1

(S − 1)!

[∏
µ

1

λµ1

]
∆S−1 .

As the density of the eigenvalues can be interpreted as the inverse of the expected distance
between the ∆-values, the distance and thus the separability of the solutions with a given
amount of data declines as 1/∆S−1. In simulations, we can expect to find the theoretically
predicted solutions only for the slowest functions, higher order solutions tend to be linear
mixtures of the theoretically predicted functions. This is particularly relevant if there are
many sources, that is, if S is large.

If the sources are not Gaussian, the dependence of the density on the ∆-value may have
a different dependence on ∆ (e.g., for uniformly distributed sources ρ(∆) ∼ ∆S/2−1). The
problem of decreasing separability, however, remains.

5.4 Function Space

An assumption of the theory is that the function space accessible to SFA is unlimited.
However, any application has to restrict the function space to a finite dimensionality. If the
function space is ill-chosen in that it cannot invert the mixture that generated the input
data from the sources, it is clear that the theory can no longer be valid.

Because the nature of the nonlinear mixture is not known a priori, it is difficult to choose
an appropriate function space. We used polynomials with relatively high degree. A problem
with this choice is that high polynomials generate extremely sparse data distributions.
Depending on the input data at hand, it may be more robust to use other basis functions
such as radial basis functions or kernel approaches (Böhmer et al., 2012), although for SFA,
these tend to be computationally more expensive.

The suitability of the function space is one of the key determinants for the quality
of the estimation of the first source. If this estimate is not accurate but has significant
contributions from other sources, the nonlinear versions of the estimate that are projected
out are not accurate, either. The projection step may thus remove aspects of the second
source and thereby impair the estimate of the second source. For many sources, these
errors accumulate so that estimates for faster sources will not be trustworthy, an effect
that is clearly visible in the simulations with more sources. This problem might be further
engraved by the increasing eigenvalue density discussed above.

5.5 Summary

In summary, we have discussed four factors that have an influence on simulation results:

• Limited sampling time: Whether the algorithm can distinguish two sources with
similar ∆-values depends on the amount of data that is available. More precisely, to
separate two sources with ∆-values ∆ and ∆ + δ, the duration T of the training data
should be on the order of T ∼ τ (∆/δ)2 or more. Here, τ is the autocorrelation time
of the signals, which can be estimated from the ∆-value of the sources: τ ≈ 1/

√
∆.

• Sampling rate: Because the algorithm is based on temporal correlations, the sam-
pling rate should of course be sufficiently high to have significant correlations between

941

Sprekeler, Zito and Wiskott

subsequent data points. If the number T of samples that can be used is limited by the
memory capacity of the computer, very high sampling rates can be a disadvantage, be-
cause the correlation time τ (measured in samples) of the data is long. Consequently,
the number T/τ of “independent data chunks” is smaller than with lower sampling
rates, which may impair the ability of the algorithm to separate sources with similar
∆-values (see previous point).

• Density of eigenvalues: The problem of similar ∆-values is not only relevant
when the sources are similar, because the algorithm also needs to distinguish the
faster sources from products of these sources with higher-order harmonics of the lower
sources. To estimate how difficult this is, we have argued that, for the case of Gaussian
sources, the expected difference between the ∆-values of the output of SFA declines
as 1/∆S−1, where S is the number of sources. Separating a source from the prod-
uct solutions of lower-order sources therefore becomes more difficult with increasing
number of sources.

• Function space: Another important influence on the performance of the system is
the choice of the function space F for SFA. Of course, F has to be chosen sufficiently
rich to allow the inversion of the nonlinear mixture. According to the theory additional
complexity of the function spaces should not alter the results and we have indeed
found that the system is rather robust to the particular choice of F , as long as it
is sufficiently complex to invert the mixture. We expect, however, that an extreme
increase in complexity leads to (a) numerical instabilities (in particular for polynomial
expansions as used here) and (b) overfitting effects.

6. Relation To Other Nonlinear BSS Algorithms

Because xSFA is based on temporal correlations, in a very similar way as the kernel-TDSEP
(kTSDEP) algorithm presented by Harmeling et al. (2003), one could expect the two
algorithms to have similar performance. By using the implementation of the kTDSEP
algorithm made available by the authors,2 we compared kTDSEP with xSFA on the audio
signals from data set A in the case of the spiral mixture (15). For the best parameter setting
we could identify, kTDSEP was able to recover both sources (with correlation >0.9) for only
20% of the signal pairs, while xSFA recovered both sources for more than 90% of the source
pairs with the same training data. This result was obtained using a training data duration
of 0.9 s, 25 time-shifted covariance matrices, a polynomial kernel of degree 7, and k-means
clustering with a maximum of 10000 points considered. Results depended strongly but not
systematically on training data duration. A regression analysis for a few of the failure cases
revealed that the sources were present among the extracted components, but not properly
selected, suggesting that the poor performance was primarily caused by a failure of the
automatic source selection approach of Harmeling et al. (2003). The kTDSEP algorithm
would resemble xSFA even more if kernel PCA were used instead of k-means clustering for
finding a basis in the kernel feature space. Using kernel PCA, however, yields worse results:
both sources were recovered at best in 5% of the signal pairs. The influence of the kernel

2. The code is available on http://people.kyb.tuebingen.mpg.de/harmeling/code/ktdsep-0.2.tar.

942

http://people.kyb.tuebingen.mpg.de/harmeling/code/ktdsep-0.2.tar

Extending SFA for Nonlinear BSS

choice (kernel PCA/k-means) on the performance could be due to numerical instabilities
and small eigenvalues, which we avoid in xSFA by using singular value decomposition with
thresholding in the SFA dimensionality reduction step.

Almeida (2003) has suggested a different approach (MISEP) that uses a multilayer per-
ceptron to extend the maximum entropy ansatz of Bell and Sejnowski (1995) to the nonlinear
case. MISEP has been shown to work in an application to real data (Almeida, 2005). In
our hands, MISEP was not able to solve the spiral-shaped nonlinear mixture described in
Section 4, however, exactly because of the problems described by Hyvärinen and Pajunen
(1999): it converges to a nonlinear mixture of the sources that generates statistically in-
dependent output signals. Conversely, xSFA fails to solve the image unmixing problem
on which MISEP was successful (Almeida, 2005), probably because of low-frequency com-
ponents that introduce correlations between the images (Ha Quang and Wiskott, 2013).
Whether an information-theoretic ansatz like MISEP or a temporal approach like xSFA is
more suitable therefore seems to depend on the problem at hand.

Zhang and Chan (2008) have suggested that the indeterminacies of the nonlinear BSS
problem could be solved by a minimal nonlinear distortion (MND) principle, which assumes
that the mixing function is smooth. To exploit this, they added a regularization term to
common nonlinear ICA objective functions (including that of MISEP). They investigated
both a global approach that punishes deviations of the unmixing nonlinearity from the
best linear solution and a local approach that favors locally smooth mappings. The latter
is remotely related to xSFA, which also tries to enforce smooth mappings, but measures
smoothness in time rather than directly in the unmixing function. The MND ansatz applies
to arbitrary functions, while xSFA is limited to time-varying data. On the other hand, the
temporal smoothness constraint of xSFA could extend to problems where the original sources
are smooth, but the mixing function is not.

A nonlinear BSS approach that is even more akin to SFA is the diffusion-map ansatz of
Singer and Coifman (2008). Diffusion maps and Laplacian eigenmaps are closely related to
SFA (Sprekeler, 2011). A key difference lies in the choice of the local metrics of the data,
which is dictated by the temporal structure for SFA (the matrix Kαβ can be thought of
as an inverse metric tensor), but hand-chosen for diffusion maps. Singer & Coifman made
a data-driven choice for the metric tensor through local inspection of the data manifold,
and showed that the resulting diffusion maps can reconstruct the original sources in a toy
example (Singer and Coifman, 2008) and extract slowly varying manifolds in time series
data (Singer et al., 2009).3

7. Discussion

In this article, we have extended previous theoretical results on SFA to the case where
the input data are generated from a set of statistically independent sources. The theory
shows that (a) the optimal output of SFA consists of products of signals, each of which
depends on a single source only and that (b) some of these harmonics should be monotonic
functions of the sources themselves. Based on these predictions, we have introduced the
xSFA algorithm to iteratively reconstruct the sources, in theory from arbitrary invertible
mixtures. Simulations have shown that the performance of xSFA is substantially higher

3. An SFA-based approach to a similar problem has been suggested by Wiskott (2003a).

943

Sprekeler, Zito and Wiskott

than the performance of independent slow feature analysis (ISFA; Blaschke et al., 2007)
and kTDSEP (Harmeling et al., 2003), other algorithms for nonlinear BSS that also rely on
temporal correlations.

xSFA is relatively robust to changes of parameters. Neither the degree of the expansion
before the first SFA step nor the number of removed nonlinear versions of the first source
need to be finely tuned, though both need to be within a certain range, so that the BSS
problem can be solved without running into the overfitting or error accumulation problems
discussed above. It should be noted, moreover, that polynomial expansions - as used here
- become problematic if the degree of the expansion is too high. The resulting expanded
data contain directions with very sparse distributions, which can lead (a) to singularities
in the covariance matrix (e.g., for Gaussian signals with limited sampling, x20 and x22 are
almost perfectly correlated) and (b) to sampling problems for the estimation of the required
covariances because the data are dominated by few data points with high values. Note, that
this problem is not specific to the algorithm itself, but rather to the expansion type used.
Other expansions such as radial basis functions may be more robust. The relative insensi-
tivity of xSFA to parameters is a major advantage over ISFA, whose performance depended
crucially on the right choice of a trade-off parameter between slowness and independence.

Many algorithms for nonlinear blind source separation are designed for specific types of
mixtures, for example, for post-nonlinear mixtures (for an overview of methods for post-
nonlinear mixtures see Jutten and Karhunen, 2003). In contrast, our algorithm should
work for arbitrary instantaneous mixtures. As previously mentioned, we have performed
simulations for a set of instantaneous nonlinear mixtures and the performance was similar
for all mixtures. The only requirements are that the sources are distinguishable based on
their ∆-value and that the function space accessible to SFA is sufficiently complex to invert
the mixture. Note that the algorithm is restricted to instantaneous mixtures. It cannot
invert convolutive mixtures because SFA processes its input instantaneously and is thus not
suitable for a deconvolution task.

It would be interesting to see if the theory for SFA can be extended to other algorithms.
For example, given the close relation of SFA to TDSEP (Ziehe and Müller, 1998), a variant
of the theory may apply to the kernel version of TDSEP (Harmeling et al., 2003). In
particular, it would be interesting to see whether the theory would suggest an alternative
source selection algorithm for kTDSEP that is more robust.

In summary, we have presented a new algorithm for nonlinear blind source separation
that is (a) independent of the mixture type, (b) robust to parameters, (c) underpinned by a
rigorous mathematical framework, and (d) relatively reliable, as shown by the reconstruction
performance for the examined cases.

Acknowledgments

We want to thank Stefan Harmeling for his valuable help in the comparison of xSFA with
kTDSEP. This work was supported by the Volkswagen Foundation through a junior research
group to L.W.. H.S. was supported by the German ministry for Science and Education
(grant no. 01GQ1201).

944

Extending SFA for Nonlinear BSS

Appendix A. Proof Of Theorem 1

The proof that all product functions gi =
∏
α gαiα(sα) are eigenfunctions of the operatorD =∑

β Dβ can be carried out directly:

Dgi(s) =

∑
β

Dβ

∏
α

gαiα(sα)

=
∑
β

Dβ
∏
α

gαiα(sα)

=
∑
β

(
Dβgβiβ (sβ)

) ∏
α 6=β

gαiα(sα)

(because Dβ is a differential operator w.r.t. sβ only)

=
∑
β

λβiβgβiβ (sβ)
∏
α 6=β

gαiα(sα)

=

∑
β

λβiβ

∏
α

gαiα(sα)

= λigi(s) .

Because the product functions are eigenfunctions of the full operator D, the theory of
Franzius et al. (2007, Theorems 1-5) applies, stating that the J product functions with
the smallest eigenvalue, ordered by their eigenvalue, are the solutions of the optimization
problem of SFA. The proof of this theory requires that the eigenfunctions form a complete
set. Because the set of eigenfunctions for the individual operators Dα form a complete set
for the individual Sobolev space of functions depending on sα only, however (Courant and
Hilbert, 1989, §14), the product set gi is also a complete set for the product space.

Appendix B. Proof That Kαβ Is Diagonal

To prove that the matrix Kαβ(s) is diagonal, we first need to prove that the mean temporal
derivative of any 1-dimensional signal given its value vanishes: 〈ṡ〉ṡ|s =

∫
ṡp(ṡ|s)dṡ = 0.

To do so, we assume that the distribution of the signal is stationary and that the signal is
continuously differentiable. Because of the stationarity, the probability that the signal is
smaller than a given value s0 is constant:

0 =
d

dt

∫ s0

−∞

∫ ∞
−∞

p(s, ṡ)dsdṡ

=

∫ s0

−∞

∫ ∞
−∞

∂tp(s, ṡ)dsdṡ

= −
∫ s0

−∞

∫ ∞
−∞

∂s [ṡp(s, ṡ)] + ∂ṡ [s̈p(s, ṡ))] dsdṡ

where we used the continuity equation ∂tp(s, ṡ) + ∂s [ṡp(s, ṡ)] + ∂ṡ [s̈p(s, ṡ))] = 0. Using the
divergence theorem and assuming that the probability distribution vanishes as ṡ → ∞ for

945

Sprekeler, Zito and Wiskott

all s < s0, we get the desired result:

0 = −
∫ ∞
−∞

ṡp(s, ṡ)dṡ

= −p(s)〈ṡ〉ṡ|s .

Because the mean temporal derivative 〈ṡα〉 ˙sα|sα is zero for each signal, the matrix Kαβ =
〈ṡαṡβ〉ṡ|s is not only the matrix of the second moments of the velocity distribution given the
signal values s but its covariance matrix. Because the signals are statistically independent,
they are necessarily uncorrelated, that is, their covariance matrix is diagonal.

References

L. Almeida. MISEP: Linear and nonlinear ICA based on mutual information. Journal of
Machine Learning Research, 4:1297–1318, 2003.

L. Almeida. Separating a real-life nonlinear image mixture. Journal of Machine Learning
Research, 6:1199–1229, 2005.

A. Bell and T. Sejnowski. An information maximization approach to blind separation and
blind deconvolution. Neural Computation, 7:1129–1159, 1995.

P. Berkes and L. Wiskott. Slow feature analysis yields a rich repertoire of complex cells.
Journal of Vision, 5(6):579–602, 2005.

T. Blaschke, P. Berkes, and L. Wiskott. What is the relation between slow feature analysis
and independent component analysis? Neural Computation, 18(10):2495–2508, 2006.

T. Blaschke, T. Zito, and L. Wiskott. Independent slow feature analysis and nonlinear blind
source separation. Neural Computation, 19(4):994–1021, 2007.

W. Böhmer, S. Grünewälder, H. Nickisch, and K. Obermayer. Generating feature spaces for
linear algorithms with regularized sparse kernel slow feature analysis. Machine Learning,
89:67–86, 2012.

S. Choi. Differential learning algorithms for decorrelation and independent component
analysis. Neural Networks, 19(10):1558–1567, Dec 2006.

R. Courant and D. Hilbert. Methods of Mathematical Physics, Part I. Wiley, 1989.

M. Franzius, H. Sprekeler, and L. Wiskott. Slowness and sparseness lead to place, head-
direction, and spatial-view cells. PLoS Computational Biology, 3(8):e166, 2007.

M. Ha Quang and L. Wiskott. Multivariate slow feature analysis and decorrelation filtering
for blind source separation. Image Processing, IEEE Transactions on, 22(7):2737–2750,
2013.

S. Harmeling, A. Ziehe, M. Kawanabe, and K.-R. Müller. Kernel-based nonlinear blind
source separation. Neural Computation, 15:1089–1124, 2003.

946

Extending SFA for Nonlinear BSS

A. Hyvärinen and P. Pajunen. Nonlinear independent component analysis: Existence and
uniqueness results. Neural Networks, 12(3):429–439, 1999.

A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. Wiley, 2001.

C. Jutten and J. Karhunen. Advances in nonlinear blind source separation. Proc. of the 4th
Int. Symp. on Independent Component Analysis and Blind Signal Separation (ICA2003),
pages 245–256, 2003.

A. Singer and R. Coifman. Non-linear independent component analysis with diffusion maps.
Applied and Computational Harmonic Analysis, 25(2):226–239, 2008.

A. Singer, R. Erban, I. G. Kevrekidis, and R. R. Coifman. Detecting intrinsic slow variables
in stochastic dynamical systems by anisotropic diffusion maps. Proceedings of the National
Academy of Sciences, 106(38):16090–16095, 2009.

H. Sprekeler. On the relation of slow feature analysis and Laplacian eigenmaps. Neural
Computation, 23:3287–3302, 2011.

L. Wiskott. Learning invariance manifolds. In L. Niklasson, M. Bodén, and T. Ziemke,
editors, Proceedings of the 8th International Conference on Artificial Neural Networks,
ICANN’98, Skövde, Perspectives in Neural Computing, pages 555–560, London, Sept.
1998. Springer. ISBN 3-540-76263-9.

L. Wiskott. Estimating driving forces of nonstationary time series with slow feature analysis.
arXiv.org e-Print archive, http://arxiv.org/abs/cond-mat/0312317/, Dec. 2003a.

L. Wiskott. Slow feature analysis: A theoretical analysis of optimal free responses. Neural
Computation, 15(9):2147–2177, 2003b.

L. Wiskott and T. Sejnowski. Slow feature analysis: unsupervised learning of invariances.
Neural Computation, 14:715–770, 2002.

K. Zhang and L. Chan. Minimal nonlinear distortion principle for nonlinear independent
component analysis. Journal of Machine Learning Research, 9:2455–2487, 2008.

A. Ziehe and K.-R. Müller. TDSEP–an efficient algorithm for blind separation using time
structure. Proc. Int. Conf. on Artificial Neural Networks (ICANN ’98), pages 675–680,
1998.

T. Zito, N. Wilbert, L. Wiskott, and P. Berkes. Modular toolkit for data processing (MDP):
A python data processing framework. Frontiers in Neuroinformatics, 2:8, 2008.

947

http://arxiv.org/abs/cond-mat/0312317/

Journal of Machine Learning Research 15 (2014) 949-980 Submitted 4/11; Revised 5/13; Published 3/14

Natural Evolution Strategies

Daan Wierstra daan@deepmind.com
Tom Schaul tom@deepmind.com
DeepMind Technologies Ltd.
Fountain House, 130 Fenchurch Street
London, United Kingdom

Tobias Glasmachers tobias.glasmachers@ini.rub.de
Institute for Neural Computation
Universitätsstrasse 150
Ruhr-University Bochum, Germany

Yi Sun yi@idsia.ch
Google Inc.
1600 Amphitheatre Pkwy
Mountain View, United States

Jan Peters mail@jan-peters.net
Intelligent Autonomous Systems Institute
Hochschulstrasse 10
Technische Universität Darmstadt, Germany

Jürgen Schmidhuber juergen@idsia.ch

Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA)

University of Lugano (USI)/SUPSI

Galleria 2

Manno-Lugano, Switzerland

Editor: Una-May O’Reilly

Abstract

This paper presents Natural Evolution Strategies (NES), a recent family of black-box opti-
mization algorithms that use the natural gradient to update a parameterized search distri-
bution in the direction of higher expected fitness. We introduce a collection of techniques
that address issues of convergence, robustness, sample complexity, computational complex-
ity and sensitivity to hyperparameters. This paper explores a number of implementations
of the NES family, such as general-purpose multi-variate normal distributions and separa-
ble distributions tailored towards search in high dimensional spaces. Experimental results
show best published performance on various standard benchmarks, as well as competitive
performance on others.

Keywords: natural gradient, stochastic search, evolution strategies, black-box optimiza-
tion, sampling

1. Introduction

Many real world optimization problems are too difficult or complex to model directly. There-
fore, they might best be solved in a ‘black-box’ manner, requiring no additional information

c©2014 Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters and Jürgen Schmidhuber.

Wierstra, Schaul, Glasmachers, Sun, Peters and Schmidhuber

on the objective function (i.e., the ‘fitness’ or ‘cost’) to be optimized besides fitness eval-
uations at certain points in parameter space. Problems that fall within this category are
numerous, ranging from applications in health and science (Winter et al., 2005; Shir and
Bäck, 2007; Jebalia et al., 2007) to aeronautic design (Hasenjäger et al., 2005; Klockgether
and Schwefel, 1970) and control (Hansen et al., 2009).

Numerous algorithms in this vein have been developed and applied in the past fifty
years, in many cases providing good and even near-optimal solutions to hard tasks, which
otherwise would have required domain experts to hand-craft solutions at substantial cost
and often with worse results. The near-infeasibility of finding globally optimal solutions
resulted in a fair amount of heuristics in black-box optimization algorithms, leading to a
proliferation of complicated yet frequently highly performant methods.

In this paper, we introduce Natural Evolution Strategies (NES), a novel black-box opti-
mization framework which boasts a relatively clean derivation, yet achieves state-of-the-art
performance (with the help of well-chosen heuristic methods). The core idea, similar to the
framework of estimation of distribution algorithms (EDAs) (Mühlenbein and Paass, 1996;
Larrañaga, 2002; Pelikan et al., 2000) and many evolution strategies approaches (e.g., Os-
termeier et al. 1994), is to maintain and iteratively update a search distribution from which
search points are drawn and subsequently evaluated. However, NES updates the search
distribution in the direction of higher expected fitness using the natural gradient (whereas
EDAs, for example, typically use maximum likelihood methods to fit the distribution of
search points).

1.1 Continuous Black-Box Optimization

The problem of black-box optimization has spawned a wide variety of approaches. A first
class of methods was inspired by classic optimization methods, including simplex methods
such as Nelder-Mead (Nelder and Mead, 1965), as well as members of the quasi-Newton
family of algorithms. Simulated annealing (Kirkpatrick et al., 1983), a popular method
introduced in 1983, was inspired by thermodynamics, and is in fact an adaptation of the
Metropolis-Hastings algorithm. Other methods, such as those inspired by evolution, have
been developed from the early 1950s on. These include the broad class of genetic algorithms
(Holland, 1975; Goldberg, 1989), differential evolution (Storn and Price, 1997), estimation
of distribution algorithms (Larrañaga, 2002; Pelikan et al., 2000; Bosman and Thierens,
2000; Bosman et al., 2007; Pelikan et al., 2006), particle swarm optimization (Kennedy and
Eberhart, 2001), and the cross-entropy method (Rubinstein and Kroese, 2004).

Evolution strategies (ES), introduced by Ingo Rechenberg and Hans-Paul Schwefel in the
1960s and 1970s (Rechenberg and Eigen, 1973; Schwefel, 1977), were designed to cope with
high-dimensional continuous-valued domains and have remained an active field of research
for more than four decades (Beyer and Schwefel, 2002). ESs involve evaluating the fitness of
real-valued genotypes in batch (‘generation’), after which the best genotypes are kept, while
the others are discarded. Survivors then procreate (by slightly mutating all of their genes)
in order to produce the next batch of offspring. This process, after several generations, was
shown to lead to reasonable to excellent results for many difficult optimization problems.
The algorithm framework has been developed extensively over the years to include the
representation of correlated mutations by the use of a full covariance matrix. This allowed

950

Natural Evolution Strategies

the framework to capture interrelated dependencies by exploiting the covariances while
‘mutating’ individuals for the next generation. The culminating algorithm, the covariance
matrix adaptation evolution strategy (CMA-ES; Hansen and Ostermeier, 2001), has proven
successful in numerous studies (e.g., Friedrichs and Igel, 2005; Muller et al., 2002; Shepherd
et al., 2006). While evolution strategies have shown to be effective at black-box optimization,
analyzing the actual dynamics of the procedure turns out to be difficult, the considerable
efforts of various researchers notwithstanding (Beyer, 2001; Jägersküpper, 2007; Jebalia
et al., 2010; Auger, 2005; Schaul, 2012f).

1.2 The NES Family

Natural Evolution Strategies (NES) are a family of evolution strategies which iteratively
update a search distribution by using an estimated gradient on its distribution parameters.

The general procedure is as follows: the parameterized search distribution is used to
produce a batch of search points, and the fitness function is evaluated at each such point.
The distribution’s parameters (which include strategy parameters) allow the algorithm to
adaptively capture the (local) structure of the fitness function. For example, in the case
of a Gaussian distribution, this comprises the mean and the covariance matrix. From
the samples, NES estimates a search gradient on the parameters towards higher expected
fitness. NES then performs a gradient ascent step along the natural gradient, a second-order
method which, unlike the plain gradient, renormalizes the update w.r.t. uncertainty. This
step is crucial, since it prevents oscillations, premature convergence, and undesired effects
stemming from a given parameterization (see Section 2.3 and Figure 2 for an overview
on how the natural gradient addresses those issues). The entire process reiterates until a
stopping criterion is met.

All members of the ‘NES family’ operate based on the same principles. They differ in the
type of distribution and the gradient approximation method used. Different search spaces
require different search distributions; for example, in low dimensionality it can be highly
beneficial to model the full covariance matrix. In high dimensions, on the other hand,
a more scalable alternative is to limit the covariance to the diagonal only. In addition,
highly multi-modal search spaces may benefit from more heavy-tailed distributions (such as
Cauchy, as opposed to the Gaussian). A last distinction arises between distributions where
we can analytically compute the natural gradient, and more general distributions where we
need to estimate it from samples.

1.3 Paper Outline

This paper builds upon and extends our previous work on Natural Evolution Strategies
(Wierstra et al., 2008; Sun et al., 2009a,b; Glasmachers et al., 2010a,b; Schaul et al., 2011),
and is structured as follows: Section 2 presents the general idea of search gradients as
described in Wierstra et al. (2008), explaining stochastic search using parameterized distri-
butions while doing gradient ascent towards higher expected fitness. The limitations of the
plain gradient are exposed in Section 2.2, and subsequently addressed by the introduction
of the natural gradient (Section 2.3), resulting in the canonical NES algorithm.

Section 3 then regroups a collection of techniques that enhance NES’s performance and
robustness. This includes fitness shaping (designed to render the algorithm invariant w.r.t.

951

Wierstra, Schaul, Glasmachers, Sun, Peters and Schmidhuber

order-preserving fitness transformations (Wierstra et al., 2008), Section 3.1), and adapta-
tion sampling which is a novel technique for adjusting learning rates online (Section 3.2).
We provide a novel formulation of NES for the whole class of multi-variate versions of distri-
butions with rotation symmetries (Section 3.3). As special cases we summarize techniques
for multivariate Gaussian search distributions, constituting the most common case (Sec-
tion 3.4). Finally, in Section 3.5, we develop the breadth of the framework, motivating its
usefulness and deriving a number of NES variants with different search distributions.

The ensuing experimental investigations show the competitiveness of the approach on a
broad range of benchmarks (Section 5). The paper ends with a discussion on the effective-
ness of the different techniques and types of distributions and an outlook towards future
developments (Section 6).

2. Search Gradients

The core idea of Natural Evolution Strategies is to use search gradients (first introduced
in Berny, 2000, 2001) to update the parameters of the search distribution. We define the
search gradient as the sampled gradient of expected fitness. The search distribution can
be taken to be a multinormal distribution, but could in principle be any distribution for
which we can find derivatives of its log-density w.r.t. its parameters. For example, useful
distributions include Gaussian mixture models and the Cauchy distribution with its heavy
tail.

If we use θ to denote the parameters of density π(z | θ) and f(z) to denote the fitness
function for samples z, we can write the expected fitness under the search distribution as

J(θ) = Eθ[f(z)] =

∫
f(z) π(z | θ) dz. (1)

The so-called ‘log-likelihood trick’ enables us to write

∇θJ(θ) = ∇θ
∫
f(z) π(z | θ) dz

=

∫
f(z) ∇θπ(z | θ) dz

=

∫
f(z) ∇θπ(z | θ) π(z | θ)

π(z | θ)
dz

=

∫ [
f(z) ∇θ log π(z | θ)

]
π(z | θ) dz

= Eθ [f(z) ∇θ log π(z | θ)] .

From this form we obtain the estimate of the search gradient from samples z1 . . . zλ as

∇θJ(θ) ≈ 1

λ

λ∑
k=1

f(zk) ∇θ log π(zk | θ), (2)

where λ is the population size. This gradient on expected fitness provides a search direction
in the space of search distributions. A straightforward gradient ascent scheme can thus

952

Natural Evolution Strategies

iteratively update the search distribution

θ ← θ + η∇θJ(θ),

where η is a learning rate parameter. Algorithm 1 provides the pseudocode for this very
general approach to black-box optimization by using a search gradient on search distribu-
tions.

Algorithm 1: Canonical Search Gradient algorithm

input: f , θinit
repeat

for k = 1 . . . λ do
draw sample zk ∼ π(·|θ)
evaluate the fitness f(zk)
calculate log-derivatives ∇θ log π(zk|θ)

end

∇θJ ←
1

λ

λ∑
k=1

∇θ log π(zk|θ) · f(zk)

θ ← θ + η · ∇θJ
until stopping criterion is met

Using the search gradient in this framework is similar to evolution strategies in that it
iteratively generates the fitnesses of batches of vector-valued samples—the ES’s so-called
candidate solutions. It is different however, in that it represents this ‘population’ as a
parameterized distribution, and in the fact that it uses a search gradient to update the
parameters of this distribution, which is computed using the fitnesses.

2.1 Search Gradient for Gaussian Distributions

In the case of the ‘default’ d-dimensional multi-variate normal distribution, the parameters
of the Gaussian are the mean µ ∈ Rd (candidate solution center) and the covariance ma-
trix Σ ∈ Rd×d (mutation matrix). Let θ denote these parameters: θ = 〈µ,Σ〉. To sample
efficiently from this distribution we need a square root of the covariance matrix, that is, a
matrix A ∈ Rd×d fulfilling A>A = Σ. Then z = µ + A>s transforms a standard normal
vector s ∼ N (0, I) into a sample z ∼ N (µ,Σ). Here, I = diag(1, . . . , 1) ∈ Rd×d denotes the
identity matrix. Let

π(z | θ) =
1

(
√

2π)d| det(A)|
· exp

(
−1

2

∥∥∥A−1 · (z− µ)
∥∥∥2)

=
1√

(2π)d det(Σ)
· exp

(
−1

2
(z− µ)>Σ−1(z− µ)

)
denote the density of the multinormal search distribution N (µ,Σ).

In order to calculate the derivatives of the log-likelihood with respect to individual
elements of θ for this multinormal distribution, first note that

log π (z|θ) = −d
2

log(2π)− 1

2
log det Σ− 1

2
(z− µ)>Σ−1 (z− µ) .

953

Wierstra, Schaul, Glasmachers, Sun, Peters and Schmidhuber

We will need its derivatives, that is, ∇µ log π (z|θ) and ∇Σ log π (z|θ). The first is trivially

∇µ log π (z|θ) = Σ−1 (z− µ) , (3)

while the latter is

∇Σ log π (z|θ) =
1

2
Σ−1 (z− µ) (z− µ)>Σ−1 − 1

2
Σ−1. (4)

Using these derivatives to calculate ∇θJ , we can then update parameters θ = 〈µ,Σ〉 as θ ←
θ+η∇θJ using learning rate η. This produces a new center µ for the search distribution, and
simultaneously adapts its associated covariance matrix Σ. To summarize, we provide the
pseudocode for following the search gradient in the case of a multinormal search distribution
in Algorithm 2.

Algorithm 2: Search Gradient algorithm: Multinormal distribution

input: f , µinit,Σinit

repeat
for k = 1 . . . λ do

draw sample zk ∼ N (µ,Σ)
evaluate the fitness f(zk)
calculate log-derivatives:
∇µ log π (zk|θ) = Σ−1 (zk − µ)

∇Σ log π (zk|θ) = −1
2Σ−1 + 1

2Σ
−1

(zk − µ) (zk − µ)>Σ−1

end

∇µJ ← 1
λ

∑λ
k=1∇µ log π(zk|θ) · f(zk)

∇ΣJ ← 1
λ

∑λ
k=1∇Σ log π(zk|θ) · f(zk)

µ← µ + η · ∇µJ
Σ← Σ + η · ∇ΣJ

until stopping criterion is met

2.2 Limitations of Plain Search Gradients

As the attentive reader will have realized, there exists at least one major issue with applying
the search gradient as-is in practice: It is impossible to precisely locate a (quadratic) opti-
mum, even in the one-dimensional case. Let d = 1, θ = 〈µ, σ〉, and samples z ∼ N (µ, σ).
Equations (3) and (4), the gradients on µ and σ, become

∇µJ =
z − µ
σ2

,

∇σJ =
(z − µ)2 − σ2

σ3
,

and the updates, assuming simple hill-climbing (i.e., a population size λ = 1) read:

µ ← µ+ η
z − µ
σ2

,

σ ← σ + η
(z − µ)2 − σ2

σ3
.

954

Natural Evolution Strategies

opt

opt

opt

1

2

3

200 400 600 800 1000

Generation

10
-3

10
-2

10
-1

10
0

µ

σ

Figure 1: Left: Schematic illustration of how the search distribution adapts in the one-
dimensional case: from (1) to (2), µ is adjusted to make the distribution cover
the optimum. From (2) to (3), σ is reduced to allow for a precise localization
of the optimum. The step from (3) to (1) then is the problematic case, where
a small σ induces a largely overshooting update, making the search start over
again. Right: Progression of µ (black) and σ (red, dashed) when following the
search gradient towards minimizing f(z) = z2, executing Algorithm 2. Plotted
are median values over 1000 runs, with a small learning rate η = 0.01 and λ = 10,
both of which mitigate the instability somewhat, but still show the failure to
precisely locate the optimum (for which both µ and σ need to approach 0).

For any objective function f that requires locating an (approximately) quadratic optimum
with some degree of precision (e.g., f(z) = z2), σ must decrease, which in turn increases the
variance of the updates, as ∆µ ∝ 1

σ and ∆σ ∝ 1
σ for a typical sample z. In fact, the updates

become increasingly unstable, the smaller σ becomes, an effect which a reduced learning
rate or an increased population size can only delay but not avoid. Figure 1 illustrates this
effect. Conversely, whenever σ � 1 is large, the magnitude of a typical update is severely
reduced.

Clearly, this update is not at all scale-invariant : Starting with σ � 1 makes all updates
minuscule, whereas starting with σ � 1 makes the first update huge and therefore unstable.

This effect need not occur in gradient-based search in general. Here it is rather a
consequence of the special situation that the gradient controls both position and variance
of a distribution over the same search space dimension. Note that this situation is generic for
all translation and scale-invariant families of search distributions. We conjecture that this
limitation constitutes one of the main reasons why search gradients have not been developed
before: typically, with a naive parameterization, the plain search gradient’s performance
can be both unstable and unsatisfying; however, the natural gradient extension (introduced
in Section 2.3) tackles these issues, and renders search gradients into a viable optimization
method by making updates invariant with respect to the particular parameterization used.

955

Wierstra, Schaul, Glasmachers, Sun, Peters and Schmidhuber

2.3 Using the Natural Gradient

Instead of using the plain stochastic gradient for updates, NES follows the natural gradient.
The natural gradient was first introduced into the field of machine learning by Amari in
1998, and has been shown to possess numerous advantages over the plain gradient (Amari,
1998; Amari and Douglas, 1998). Natural gradients help mitigate the slow convergence of
plain gradient ascent in optimization landscapes with ridges and plateaus.

The plain gradient ∇J simply follows the steepest ascent in the space of the actual
parameters θ of the distribution. This means that for a given small step-size ε, following
it will yield a new distribution with parameters chosen from the hypersphere of radius ε
and center θ that maximizes J . In other words, the Euclidean distance in parameter space
is used to measure the distance between subsequent distributions. Clearly, this makes the
update dependent on the particular parameterization of the distribution, therefore a change
of parameterization leads to different gradients and different updates. See also Figure 2 for
an illustration of how this effectively renormalizes updates w.r.t. uncertainty.

The key idea of the natural gradient is to remove this dependence on the parameter-
ization by relying on a more ‘natural’ measure of distance D(θ′||θ) between probability
distributions π (z|θ) and π (z|θ′). One such natural distance measure between two proba-
bility distributions is the Kullback-Leibler divergence (Kullback and Leibler, 1951). The
natural gradient can then be formalized as the solution to the constrained optimization
problem

max
δθ

J (θ + δθ) ≈ J (θ) + δθ>∇θJ,

s.t. D (θ + δθ||θ) = ε, (5)

where J (θ) is the expected fitness of Equation (1), and ε is a small increment size. Now,
we have for lim δθ → 0,

D (θ + δθ||θ) =
1

2
δθ>F (θ) δθ,

where

F =

∫
π (z|θ)∇θ log π (z|θ)∇θ log π (z|θ)> dz

= E
[
∇θ log π (z|θ)∇θ log π (z|θ)>

]
is the Fisher information matrix of the given parametric family of search distributions.
The solution to the constrained optimization problem in Equation (5) can be found using
a Lagrangian multiplier (Peters, 2007), yielding the necessary condition

Fδθ = β∇θJ,

for some constant β > 0. The direction of the natural gradient ∇̃θJ is given by δθ thus
defined. If F is invertible,1 the natural gradient amounts to

∇̃θJ = F−1∇θJ(θ).

1. Care has to be taken because the Fisher matrix estimate may not be (numerically) invertible even if the
exact Fisher matrix is.

956

Natural Evolution Strategies

mu

sigma

mu

sigma

Figure 2: Illustration of plain versus natural gradient in parameter space. Consider two
parameters, for example, θ = (µ, σ), of the search distribution. In the plot on the
left, the solid (black) arrows indicate the gradient samples ∇θ log π(z | θ), while
the dotted (blue) arrows correspond to f(z) · ∇θ log π(z | θ), that is, the same
gradient estimates, but scaled with fitness. Combining these, the bold (green)
arrow indicates the (sampled) fitness gradient ∇θJ , while the bold dashed (red)
arrow indicates the corresponding natural gradient ∇̃θJ .

Being random variables with expectation zero, the distribution of the black arrows
is governed by their covariance, indicated by the gray ellipse. Notice that this
covariance is a quantity in parameter space (where the θ reside), which is not to
be confused with the covariance of the distribution in the search space (where the
samples z reside).

In contrast, solid (black) arrows on the right represent ∇̃θ log π(z | θ), and dotted
(blue) arrows indicate the natural gradient samples f(z) · ∇̃θ log π(z | θ), resulting
in the natural gradient (dashed red).

The covariance of the solid arrows on the right hand side turns out to be the
inverse of the covariance of the solid arrows on the left. This has the effect that
when computing the natural gradient, directions with high variance (uncertainty)
are penalized and thus shrunken, while components with low variance (high cer-
tainty) are boosted, since these components of the gradient samples deserve more
trust. This makes the (dashed red) natural gradient a much more trustworthy
update direction than the (green) plain gradient.

957

Wierstra, Schaul, Glasmachers, Sun, Peters and Schmidhuber

The Fisher matrix can be estimated from samples, reusing the log-derivatives ∇θ log π(z|θ)
that we already computed for the gradient ∇θJ . Then, updating the parameters following
the natural gradient instead of the steepest gradient leads us to the general formulation of
NES, as shown in Algorithm 3.

Algorithm 3: Canonical Natural Evolution Strategies

input: f , θinit
repeat

for k = 1 . . . λ do
draw sample zk ∼ π(·|θ)
evaluate the fitness f(zk)
calculate log-derivatives ∇θ log π(zk|θ)

end

∇θJ ← 1
λ

∑λ
k=1∇θ log π(zk|θ) · f(zk)

F← 1

λ

λ∑
k=1

∇θ log π (zk|θ)∇θ log π (zk|θ)>

θ ← θ + η · F−1∇θJ
until stopping criterion is met

3. Performance and Robustness Techniques

In the following we will present and introduce crucial heuristics to improves NES’s perfor-
mance and robustness. Fitness shaping (Wierstra et al., 2008) is designed to make the algo-
rithm invariant w.r.t. arbitrary yet order-preserving fitness transformations (Section 3.1).
Adaptation sampling, a novel technique for adjusting learning rates online, is introduced in
Section 3.2.

In sections 3.3 and 3.4 we describe two crucial techniques to enhance performance of
the NES algorithm as applied to multinormal distributions: Exponential parameterization
guarantees that the covariance matrix stays positive-definite, and second, a novel method for
changing the coordinate system into a “natural” one is laid out, which makes the algorithm
computationally efficient.

3.1 Fitness Shaping

NES uses rank-based fitness shaping in order to render the algorithm invariant under mono-
tonically increasing (i.e., rank preserving) transformations of the fitness function. For this
purpose, the fitness of the population is transformed into a set of utility values u1 ≥ · · · ≥ uλ.
Let zi denote the ith best individual (the ith individual in the population, sorted by fitness,
such that z1 is the best and zλ the worst individual). Replacing fitness with utility, the
gradient estimate of Equation (2) becomes, with slight abuse of notation,

∇θJ(θ) =

λ∑
k=1

uk ∇θ log π(zk | θ).

958

Natural Evolution Strategies

The choice of utility function can in fact be seen as a free parameter of the algorithm.
Throughout this paper we will use the following

uk =
max

(
0, log(λ2 + 1)− log(k)

)∑λ
j=1 max

(
0, log(λ2 + 1)− log(j)

) − 1

λ
,

which is directly related to the one employed by CMA-ES (Hansen and Ostermeier, 2001),
for ease of comparison. In our experience, however, this choice has not been crucial to
performance, as long as it is monotonous and based on ranks instead of raw fitness (e.g., a
function which simply increases linearly with rank).

3.2 Adaptation Sampling

To reduce the burden of determining appropriate hyper-parameters such as the learning rate,
we develop a new online adaptation or meta-learning technique (Schaul and Schmidhuber,
2010), called adaptation sampling, that can automatically adapt the settings.

We model this situation as follows: Let πθ be a distribution with hyper-parameter θ and
ψ(z) a quality measure for each sample z ∼ πθ. Our goal is to adapt θ such as to maximize
the quality ψ. A straightforward method to achieve this, henceforth dubbed adaptation
sampling, is to evaluate the quality of the samples z′ drawn from πθ′ , where θ′ 6= θ is a
slight variation of θ, and then perform hill-climbing: Continue with the new θ′ if the quality
of its samples is significantly better (according, for example, to a Mann-Whitney U-test),
and revert to θ otherwise. Note that this proceeding is similar to the NES algorithm itself,
but applied at a meta-level to algorithm parameters instead of the search distribution. The
goal of this adaptation is to maximize the pace of progress over time, which is slightly
different from maximizing the fitness function itself.

Virtual adaptation sampling is a lightweight alternative to adaptation sampling that is
particularly useful whenever evaluating ψ is expensive :

• do importance sampling on the existing samples zi, according to πθ′ :

w′i =
π(z|θ′)
π(z|θ)

(this is always well-defined, because z ∼ πθ ⇒ π(z|θ) > 0).

• compare {ψ(zi)} with weights {wi = 1,∀i} and {ψ′ = ψ(zi),∀i} with weights {w′i},
using a weighted generalization of the Mann-Whitney test.

Beyond determining whether θ or θ′ is better, choosing a non-trivial confidence level ρ
allows us to avoid parameter drift, as θ is only updated if the improvement is significant
enough. There is one caveat, however: the rate of parameter change needs to be adjusted
such that the two resulting distributions are not too similar (otherwise the difference won’t
be statistically significant), but also not too different, (otherwise the weights w′ will be
too small and again the test will be inconclusive). If, however, we explicitly desire large
adaptation steps on θ, we have the possibility of interpolating between adaptation sampling
and virtual adaptation sampling by drawing a few new samples from the distribution πθ′

(each assigned weight 1), where it is overlapping least with πθ.

959

Wierstra, Schaul, Glasmachers, Sun, Peters and Schmidhuber

0 1000 2000 3000 4000 5000 6000 7000 8000
10

-10
10

-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2
10

-1
10

0
10

1
10

2
10

3

−
f

Sphere-10

xNES(0.1)
xNES(0.5)
xNES-as

0 1000 2000 3000 4000 5000 6000 7000 8000

Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

η

0 5000 10000 15000 20000
10

-10
10

-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2
10

-1
10

0
10

1
10

2
10

3

−
f

Rosenbrock-10

xNES(0.1)
xNES(0.5)
xNES-as

0 5000 10000 15000 20000

Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

η

Figure 3: Illustration of the effect of adaptation sampling. We show the increase in fitness
during a NES run (above) and the corresponding learning rates (below) on two
setups: 10-dimensional sphere function (left), and 10-dimensional Rosenbrock
function (right). Plotted are three variants of xNES (Algorithm 5): fixed default
learning rate of η = 0.1 (dashed, red) fixed large learning rate of η = 0.5 (dotted,
yellow), and an adaptive learning rate starting at η = 0.1 (green). We see that
for the (simple) Sphere function, it is advantageous to use a large learning rate,
and adaptation sampling automatically finds that one. However, using the overly
greedy updates of a large learning rate fails on harder problems (right). Here
adaptation sampling really shines: it boosts the learning rate in the initial phase
(entering the Rosenbrock valley), then quickly reduces it while the search needs
to carefully navigate the bottom of the valley, and boosts it again at the end
when it has located the optimum and merely needs to zoom in precisely.

For NES algorithms, the most important parameter to be adapted by adaptation sam-
pling is the learning rate η, starting with a conservative guess. This is because half-way
into the search, after a local attractor has been singled out, it may well pay off to increase
the learning rate in order to more quickly converge to it.

In order to produce variations η′ which can be judged using the above-mentioned U-
test, we propose a procedure similar in spirit to Rprop-updates (Riedmiller and Braun,
1993; Igel and Hüsken, 2003), where the learning rates are either increased or decreased by
a multiplicative constant whenever there is evidence that such a change will lead to better
samples.

More concretely, when using adaptation sampling for NES we test for an improvement
with the hypothetical distribution θ′ generated with η′ = 1.5η. Each time the statistical
test is successful with a confidence of at least ρ = 1

2 −
1

3(d+1) (this value was determined

empirically) we increase the learning rate by a factor of 1+c′, up to at most η = 1. Otherwise
we bring it closer to its initial value: η ← (1 − c′)η + c′ηinit. We use c′ = 1

10 (again, an
empirically robust choice). The final procedure is summarized in algorithm 4. We append
the ending “-as” to denote algorithm variants using adaptation sampling.

960

Natural Evolution Strategies

Figure 3 illustrates the effect of the virtual adaptation sampling strategy on two different
10-dimensional unimodal benchmark functions, the Sphere function f1 and the Rosenbrock
function f8 (see Section 5.2 for details). We find that, indeed, adaptation sampling boosts
the learning rates to the appropriate high values when quick progress can be made (in the
presence of an approximately quadratic optimum), but keeps them at carefully low values
otherwise.

Algorithm 4: Adaptation sampling

input : ησ,t,ησ,init, θt, θt−1, {(zk, f(zk))}, c′, ρ
output: ησ,t+1

compute hypothetical θ′, given θt−1 and using 3/2ησ,t
for k = 1 . . . λ do

w′k =
π(zk|θ′)
π(zk|θ)

end
S ← {rank(zk)}
S′ ← {w′k · rank(zk)}
if weighted-Mann-Whitney(S, S′) < ρ then

return (1− c′) · ησ + c′ · ησ,init
else

return min((1 + c′) · ησ, 1)
end

3.3 Rotationally Symmetric Distributions

In this section we derive the computation of the natural gradient for a rather general
class of distributions, namely multi-variate distributions arising from linear transformations
of rotationally symmetric distributions. For many important cases, such as multi-variate
Gaussians, this allows us to obtain the Fisher matrix in closed form. The resulting strategy
updates are computationally efficient.

For a sample z ∈ Rd let r = ‖z‖ denote its radial component. Let Qτ (z) be a family
of rotationally symmetric distributions with parameter vector τ . From this invariance
property we deduce that the density can be written as Qτ (z) = qτ (r2) for some family of
functions qτ : R≥0 → R≥0. In the following we consider classes of search distributions with
densities

π
(
z
∣∣µ,A, τ) =

1

| det(A)|
· qτ
(
‖
(
A−1

)>
(z− µ)‖2

)
=

1√
det(A>A)

· qτ
(
(z− µ)>(A>A)−1(z− µ)

)
(6)

with additional transformation parameters µ ∈ Rd and invertible A ∈ Rd×d. If needed,
A can be restricted to any continuous sub-group of the invertible matrices like, for ex-
ample, diagonal matrices. The function qτ is the accordingly transformed density of the

random variable s =
(
A−1

)>
(z−µ). This setting is rather general. It covers many impor-

961

Wierstra, Schaul, Glasmachers, Sun, Peters and Schmidhuber

tant families of distributions and their multi-variate forms, most prominently multi-variate
Gaussians. In addition, properties of the radial distribution such as its tail (controlling
whether large mutations are common or rare) can be controlled with the parameter τ .

3.3.1 Local “Natural” Coordinates

In principle the computation of the natural gradient, involving the computation of gradient
and Fisher matrix, is straight-forward. However, the parameters µ and A have d and
d(d + 1)/2 dimensions, which makes a total of d(d + 3)/2 ∈ O(d2). Let d′ denote the
dimensionality of the radial parameters τ , and for simplicity we assume that d′ is fixed and
does not grow with the dimensionality of the search space. Then the Fisher matrix has
O(d4) entries, and its inversion costs O(d6) operations. It turns out that we can do much
better. The following derivation is a generalization of the proceeding found in Glasmachers
et al. (2010b).

The above encoding by means of transformations of a rotation invariant normal form of
the distribution hints at the introduction of a canonical local coordinate system in which
the normal form becomes the current search distribution. It turns out from Equation (6)
that the dependency of the distribution on A is only in terms of the symmetric positive
definite matrix A>A. In the Gaussian case this matrix coincides with the covariance ma-
trix. Instead of performing natural gradient steps on the manifolds of invertible or positive
definite symmetric matrices we introduce a one-to-one encoding with a vector space repre-
sentation. The matrix exponential, restricted to the vector space of symmetric matrices,
is a global map for the manifold of symmetric positive definite matrices. Thus, we intro-
duce “exponential” local coordinates (δ,M) 7→ (µnew,Anew) =

(
µ + A>δ,A exp

(
1
2M

))
.

These coordinates are local in the sense that the current search distribution is encoded by
(δ,M) = (0, 0). It turns out that in these coordinates the Fisher matrix takes the rather
simple form

F =

(
I v
v> c

)
with v =

∂2 log π(z)

∂(δ,M)∂τ
∈ R(m−d′)×d′ and c =

∂2 log π(z)

∂τ 2
∈ Rd

′×d′ . (7)

Note that for distributions without radial parameters τ , such as Gaussians, we obtain
F = I. Thus, in local coordinates the otherwise computationally intensive operations of
computing and inverting the Fisher matrix are trivial, and the vanilla gradient coincides
with the natural gradient. For this reason we call the above local coordinates also natural
exponential coordinates. For non-trivial parameters τ we use the Woodbury identity to
compute the inverse of the Fisher matrix as

F−1 =

(
I v
v> c

)−1
=

(
I +Hvv> −Hv
−Hv> H

)

with H = (c − v>v)−1, and exploiting H> = H. It remains to compute the gradient. We
obtain the three components of derivatives of log-probabilities

∇δ,M,τ |δ=0,M=0
log π (z |µ,A, τ , δ,M) = g = (gδ, gM, gτ) ,

962

Natural Evolution Strategies

gδ =− 2 · q
′
τ (‖s‖2)
qτ (‖s‖2)

· s,

gM =− 1

2
I− q′τ (‖s‖2)

qτ (‖s‖2)
· ss>,

gτ =
1

qτ (‖s‖2)
· ∇τ qτ (‖s‖2),

where q′τ = ∂
∂(r2)

qτ denotes the derivative of qτ with respect to r2, and ∇τ qτ denotes the

gradient w.r.t. τ . The sample-wise natural gradient becomes

F−1 · g =

(
(gδ, gM)−Hv(v>(gδ, gM)− gτ)

H(v>(gδ, gM)− gτ)

)
,

which can be computed efficiently in only O(d2) operations (assuming fixed d′). This is in
contrast to O(d6) operations required for a näıve inversion of the full Fisher matrix.

3.3.2 Sampling from Radial Distributions

In order to use this class of distributions for search we need to be able to draw samples
from it. The central idea is to first draw a sample s from the ‘standard’ density π(s |µ =
0,A = I, τ), which is then transformed into the sample z = A>s + µ, corresponding to
the density π(z |A,µ, τ). In general, sampling s can be decomposed into sampling the
(squared) radius component r2 = ‖z‖2 and a unit vector v ∈ Rd, ‖v‖ = 1. The squared
radius has the density

q̃τ (r2) =

∫
‖z‖2=r2

Qτ (z) dz =
2πd/2

Γ(d/2)
· (r2)(d−1)/2 · qτ (r2),

where Γ(·) denotes the gamma function. In the following we assume that we have an efficient
method of drawing samples from this one-dimensional density. Besides the radius we draw
a unit vector u ∈ Rd uniformly at random, for example by normalizing a standard normally
distributed vector. Then s = r · u is effectively sampled from π(s |µ = 0,A = I, τ), and
the composition z = rA>u + µ follows the density π(z |µ,A, τ). In many special cases,
however, there are more efficient ways of sampling s = r · u directly.

3.4 Techniques for Multinormal Distributions

Multi-variate Gaussians are the most prominent class of search distributions for evolution
strategies. An advantageous property of Gaussians is that the Fisher information matrix
is known analytically. A large share of the previous work on NES has dealt with the
development of efficient techniques for this important special case.

963

Wierstra, Schaul, Glasmachers, Sun, Peters and Schmidhuber

Here we deal with this prominent case in the above introduced framework. The natural
gradient is

∇δJ =
λ∑
k=1

f(zk) · sk,

∇MJ =
λ∑
k=1

f(zk) · (sks>k − I),

where sk is the k-th best sample in the batch in local coordinates, and zk is the same
sample in task coordinates. The resulting algorithm, outlined in Algorithm 5 is known as
exponential NES (xNES). It is demonstrated in the algorithm how the covariance factor
A can be decomposed into a scalar step size σ > 0 and a normalized covariance factor B
fulfilling det(B) = 1. This decoupling of shape (B) from scale (σ) information allows for
adaptation of the two orthogonal components with independent learning rates. All NES
variants for multi-variate Gaussians have a complexity ofO(d3) computations per covariance
matrix update. This complexity can be reduced to O(d2) by computing the updates in local
non-exponential coordinates.

It was shown that the NES principle is also compatible with elitist selection (Glasmachers
et al., 2010a), resulting in the natural gradient hillclimber (1+1)-xNES. We refer to the
papers by Sun et al. (2009a,b) and Glasmachers et al. (2010b,a) for further technical details
on these algorithms.

Algorithm 5: Exponential Natural Evolution Strategies (xNES) (multinormal case)

input: f , µinit, Σinit = A>A

initialize
σ ← d

√
| det(A)|

B← A/σ

repeat
for k = 1 . . . λ do

draw sample sk ∼ N (0, I)
zk ← µ + σB>sk
evaluate the fitness f(zk)

end
sort {(sk, zk)} with respect to f(zk) and compute utilities uk

compute gradients
∇δJ ←

∑λ
k=1 uk · sk ∇MJ ←

∑λ
k=1 uk · (sks>k − I)

∇σJ ← tr(∇MJ)/d ∇BJ ← ∇MJ −∇σJ · I

update parameters
µ← µ + ηδ · σB · ∇δJ
σ ← σ · exp(ησ/2 · ∇σJ)
B← B · exp(ηB/2 · ∇BJ)

until stopping criterion is met

964

Natural Evolution Strategies

3.5 Beyond Multinormal Distributions

The large share of literature on the multinormal case does not properly reflect the generality
of the NES algorithm. It was shown by Schaul et al. (2011) that certain classes of problems
can profit from tailored search distributions.

One simple yet important variant, inspired by Ros and Hansen (2008), is to use separable
search distributions to improve the update complexity from cubic or quadratic to linear.
This is compatible with the exponential parameterization of xNES. Cheap updates are a
prerequisite for search in high-dimensional spaces, for example, for training recurrent neural
networks. The resulting algorithm is called separable NES (SNES). Within our framework of
linearly transformed rotationally symmetric distributions we obtain this case by restricting
A to the group of (invertible) diagonal transformation matrices.

Another direction is the extension of NES to multivariate Cauchy distributions. These
heavy-tailed distributions have undefined expectation and infinite variance. In this case
the natural gradient is not defined. Still, the NES principle can be generalized by means
of invariance properties. This is because three seemingly unrelated properties coincide for
local natural coordinates. Let us assume the absence of radial parameters τ , then (i) due to
Equation (7) the Fisher matrix is the identity, (ii) plain and natural gradient coincide, and
(iii) by construction the current search distribution is invariant under orthogonal transfor-
mations. We obtain the following alternative characterization of NES: The NES algorithm
performs its gradient updates based on a local coordinate system in which the orthogonal
group (induced by the standard inner product) leaves the search distribution invariant.

This characterization for multi-variate distributions turns out to be robust. The argu-
ment stays valid while we iteratively grow the distribution’s tail. In the limit of infinite
variance the natural gradient interpretation breaks down, while the characterization by
invariance is unaffected.

NES with heavy-tailed distributions are most useful as (1+1) hillclimbers: Assume
a lucky exploratory sample from the distribution’s heavy tail has managed to escape a
bad local optimum. In a population-based algorithm this effect would be “corrupted” by
weighted averaging and the better attractor may be missed, while a hillclimber can jump
to the new position. It has been demonstrated in Schaul et al. (2011) that heavy-tailed
distributions can improve the performance of NES on highly multi-modal problems.

4. Connection to CMA-ES

It turns out that xNES is closely related to the seminal Covariance Matrix Adaptation
Evolution Strategy (CMA-ES; Hansen and Ostermeier, 2001) algorithm. It has been noticed
by Glasmachers et al. (2010b) that in first order Taylor approximation the exponential xNES
update coincides with the so-called rank-µ update of CMA-ES. Akimoto et al. (2010) have
show rigorously that CMA-ES is in fact following an approximate natural gradient, and
thus, arguably, can be seen as a member of the NES family. In the remainder of this
section, we will point out similarities and differences between it and xNES.

The relation between CMA-ES and xNES is clearest when considering the CMA-ES
variant with rank-µ update (in the terminology of this study, rank-λ-update), since this
one does not feature evolution paths. Both xNES and CMA-ES parameterize the search
distribution with three functionally different parameters for mean, scale, and shape of the

965

Wierstra, Schaul, Glasmachers, Sun, Peters and Schmidhuber

Algorithm 6: Separable NES (SNES)

input: f , µinit, σinit
repeat

for k = 1 . . . λ do
draw sample sk ∼ N (0, I)
zk ← µ + σsk
evaluate the fitness f(zk)

end
sort {(sk, zk)} with respect to f(zk) and compute utilities uk

compute gradients
∇µJ ←

∑λ
k=1 uk · sk

∇σJ ←
∑λ

k=1 uk · (s2k − 1)

update parameters
µ← µ + ηµ · σ · ∇µJ
σ ← σ · exp(ησ/2 · ∇σJ)

until stopping criterion is met ;

distribution. xNES uses the parameters µ, σ, and B, while the covariance matrix is rep-
resented as σ2 · C in CMA-ES, where C can be any positive definite symmetric matrix.
Thus, the representation of the scale of the search distribution is shared among σ and C
in CMA-ES, and the role of the additional parameter σ is to allow for an adaptation of
the step size on a faster time scale than the full covariance update. In contrast, the NES
updates of scale and shape parameters σ and B are decoupled.

The update of the center parameter µ is very similar to the update of the center of the
search distribution in CMA-ES, see Hansen and Ostermeier (2001). The utility function
exactly takes the role of the weights in CMA-ES, which assumes a fixed learning rate of
one.

For the covariance matrix, the situation is more complicated. We deduce the update
rule

Σnew =(Anew)> ·Anew

=A> · exp

(
ηΣ ·

λ∑
k=1

uk

(
sks
>
k − I

))
·A

for the covariance matrix, with learning rate ηΣ = ηA. This term is closely connected
to the exponential parameterization of the natural coordinates in xNES, while CMA-ES
is formulated in global linear coordinates. The connection of these updates can be shown
either by applying the xNES update directly to the natural coordinates without the expo-
nential parameterization (Akimoto et al., 2010), or by approximating the exponential map
by its first order Taylor expansion. Akimoto et al. (2010) established the same connection
directly in coordinates based on the Cholesky decomposition of Σ, see Sun et al. (2009a,b).
The arguably simplest derivation of the equivalence relies on the invariance of the natural
gradient under coordinate transformations, which allows us to perform the computation,
w.l.o.g., in natural coordinates. We use the first order Taylor approximation of the matrix

966

Natural Evolution Strategies

exponential to obtain

exp

(
ηΣ ·

λ∑
k=1

uk

(
sks
>
k − I

))
≈ I + ηΣ ·

λ∑
k=1

uk

(
sks
>
k − I

)
,

so the first order approximate update yields

Σ′new =A> ·

(
I + ηΣ ·

λ∑
k=1

uk

(
sks
>
k − I

))
·A

= (1− U · ηΣ) ·A>A + ηΣ ·
λ∑
k=1

uk

(
A>sk

)(
A>sk

)>
= (1− U · ηΣ) ·Σ + ηΣ ·

λ∑
k=1

uk (zk − µ) (zk − µ)>

with U =
∑λ

k=1 uk, from which the connection to the CMA-ES rank-µ-update is obvious
(see Hansen and Ostermeier, 2001, and note that U = 1 for CMA-ES.).

It is interesting to note that both xNES and CMA-ES use different learning rates for the
mean and covariance components of the search distribution. Thus, in a strict sense they do
not follow the natural gradient. Instead they follow a systematically transformed direction
with altered (typically reduced) covariance component. This makes intuitive sense since the
d components of the mean can be estimated more robustly from a fixed size sample than
the O(d2) covariance parameters. The theoretical implications of using differently scaled
updates for the two components are yet to be explored.

CMA-ES uses the well-established technique of evolution paths to smooth out random
effects over multiple generations. This technique is particularly valuable when working with
minimal population sizes, which is the default for both algorithms. Thus, evolution paths
are expected to improve stability; further interpretations have been provided by Hansen
and Ostermeier (2001). However, the presence of evolution paths complicates matters since
the state of the CMA-ES algorithms is not completely described by its search distribution.
Another difference between xNES and CMA-ES is the exponential parameterization of
the updates in xNES, which results in a multiplicative update equation for the covariance
matrix, in contrast to the additive update of CMA-ES. The multiplicative covariance update
is coherent with the multiplicative (and also exponential) update of the step size σ.

A valuable perspective offered by the natural gradient updates in xNES is the derivation
of the updates of the center µ, the step size σ, and the normalized transformation matrix B,
all from the same principle of natural gradient ascent. In contrast, the updates applied in
CMA-ES result from different heuristics for each parameter. This connection might provide
an interesting perspective on some of the methods employed by CMA-ES.

5. Experiments

In this section, we empirically validate the new algorithms, to determine how NES algo-
rithms perform compared to state-of-the-art evolution strategies, identifying specific strengths
and limitations of the different variants.

967

Wierstra, Schaul, Glasmachers, Sun, Peters and Schmidhuber

We conduct a broad series of experiments on standard benchmarks, as well as more spe-
cific experiments testing special capabilities. In total, four different algorithm variants are
tested and their behaviors compared qualitatively as well as quantitatively, w.r.t. different
modalities.

We start by detailing and justifying the choices of hyperparameters, then we proceed
to evaluate the performance of a number of different variants of NES (with and without
adaptation sampling) on a broad collection of benchmarks. We also conduct experiments
using the separable variant on high-dimensional problems.

5.1 Experimental Setup and Hyperparameters

Across all NES variants, we distinguish three hyperparameters: the population size λ, the
learning rates η and the utility function u (because we always use fitness shaping, see
Section 3.1). In particular, for the multivariate Gaussian case (xNES) we have the three
learning rates ηµ, ησ, and ηB.

It is highly desirable to have good default settings that scale with the problem dimension
and lead to robust performance on a broad class of benchmark functions. Table 1 provides
such default values as functions of the problem dimension d for xNES. We borrowed several
of the settings from CMA-ES (Hansen and Ostermeier, 2001), which seems natural due to
the apparent similarity. Both the population size λ and the learning rate ηµ are the same as
for CMA-ES, even if this learning rate never explicitly appears in CMA-ES. For the utility
function we copied the weighting scheme of CMA-ES, but we shifted the values such that
they sum to zero, which is the simplest form of implementing a fitness baseline; Jastrebski
and Arnold (2006) proposed a similar approach for CMA-ES. The remaining parameters
were determined via an empirical investigation, aiming for robust performance. In addition,
in the separable case (SNES) the number of parameters in the covariance matrix is reduced
from d(d+ 1)/2 ∈ O(d2) to d ∈ O(d), which allows us to increase the learning rate ησ by a
factor of d/3 ∈ O(d), a choice which has proven robust in practice (Ros and Hansen, 2008).

The algorithm variants that we will be evaluating below are xNES (Algorithm 5),
“xNES-as”, that is xNES using adaptation sampling (Section 3.2), and the separable SNES
(Algorithm 6). A Python implementation of all these is available within the open-source
machine learning library PyBrain (Schaul et al., 2010), and implementations in different
languages can be found at http://www.idsia.ch/~tom/nes.html.

5.2 Black-box Optimization Benchmarks

For a practitioner it is important to understand how NES algorithms compare to other
methods on a wide range black-box optimization scenarios. Thus, we evaluate our algorithm
on all the benchmark functions of the ‘Black-Box Optimization Benchmarking’ collection
(BBOB) from the GECCO Workshop for Real-Parameter Optimization. The collection
consists of 24 noise-free functions (12 unimodal, 12 multimodal; Hansen et al., 2010a) and
30 noisy functions (Hansen et al., 2010b). In order to make our results fully comparable, we
also use the identical setup (Hansen and Auger, 2010), which transforms the pure benchmark
functions to make the parameters non-separable (for some) and avoid trivial optima at the
origin. The framework permits restarts until the budget of function evaluations (105d) is

968

http://www.idsia.ch/~tom/nes.html

Natural Evolution Strategies

parameter default value

λ 4 + b3 log(d)c
ηµ 1

ησ = ηB
(9 + 3 log(d))

5d
√
d

ησ
(3 + log(d))

5
√
d

uk
max

(
0, log(λ2 + 1)− log(i)

)∑λ
j=1 max

(
0, log(λ2 + 1)− log(j)

) − 1

λ

c′
1

10

Table 1: Default parameter values for xNES, xNES-as and SNES (including the utility
function) as a function of problem dimension d.

used up, which we trigger whenever the variance of the distribution becomes too small, that
is, when d

√
det Σ < 10−20.

The results in this subsection are very similar2 to those published in the 2012 edition
of the BBOB Workshop at GECCO, we refer the interested reader to Schaul (2012b,c,e,d)
for additional results and analysis. Figure 4 provides a compounded overview of the results
on dimensions 5 and 20, on noisy or noiseless functions, and a direct comparison to all
algorithms benchmarked in the 2009 edition of BBOB, which shows that xNES is among the
best algorithms, assuming that the budget of function evaluations surpasses 100 times the
dimension. We find (Schaul, 2012c) that xNES-as significantly outperforms all algorithms
from the BBOB 2009 competition on function f115 and for limited budgets on f18, f118 and
f119, while underperforming compared to the winners on a set of other functions.

Figures 5 (noise-free functions) and Figure 6 (noisy functions) show how performance
scales with dimension, on a detailed function-by-function level, for both xNES and xNES-as.
Using adaptation sampling improves performance most significantly on simple benchmarks
like the sphere function or its noisy siblings (f1, f101, f102, f103, f107) and only hurts
significantly on f13, in high dimensions (see Schaul, 2012e for the full comparison, and result
tables with statistical significance tests). While the presented default settings are weak for
highly multi-modal functions like f3, f4 or f15, larger population sizes and sophisticated
restart strategies may alleviate this issue.

Figure 7 compares the loss ratios (in terms of expected running time) given fixed budgets
of evaluations, for xNES, xNES-as, and BIPOP-CMA-ES (Hansen, 2009a,b), the winner of
the 2009 BBOB edition as reference point. BIPOP-CMA-ES is significantly better on most
noisy functions, but the differences are much more subtle on the noiseless ones. In fact, a

2. The difference lies with the stopping criterion used for restarts, which was not compliant in the 2012
results.

969

Wierstra, Schaul, Glasmachers, Sun, Peters and Schmidhuber

5-D 20-D
al

l
n

oi
se

le
ss

fu
n

ct
io

n
s

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0
p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-24+1

-1

-4

-8

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-24+1

-1

-4

-8

al
l

n
oi

sy
fu

n
ct

io
n

s

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f101-130+1

-1

-4

-8

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f101-130+1

-1

-4

-8

Figure 4: Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios
in 5-D (left) and 20-D (right), over all noiseless functions (top row) and all
noisy functions (bottom row). The ECDF is taken of the number of function
evaluations divided by dimension d to reach a target value fopt + 10k, where
k ∈ {1,−1,−4,−8} is given by the first value in the legend, for xNES (◦) and
xNES as (O). Light beige lines show the ECDF for target precision 10−8 of all
algorithms benchmarked during BBOB-2009. From this high-level perspective,
both xNES variants appear among the best tested algorithms, with a small ad-
vantage for using adaptation sampling.

direct comparison (Schaul, 2012d) found that xNES-as is close in performance to BIPOP-
CMA-ES across a large fraction of the benchmark functions; but there is some diversity as
well, with xNES-as being significantly better on 6 of the functions and significantly worse
on 18 of them.

5.3 Separable NES for Neuroevolution

The SNES algorithm is expected to perform at least as well as xNES on separable problems,
while it should show considerably worse performance in the presence of highly dependent
variables. These are indeed the the findings in Schaul (2012a), where SNES was bench-

970

Natural Evolution Strategies

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

1 Sphere

xNES

xNES_as

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

2 Ellipsoid separable

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

3 Rastrigin separable

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

4 Skew Rastrigin-Bueche separ

2 3 5 10 20 40

0

1

2

3

ftarget=1e-08

5 Linear slope

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

6 Attractive sector

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

7 Step-ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

8 Rosenbrock original

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

9 Rosenbrock rotated

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

10 Ellipsoid

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

11 Discus

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

12 Bent cigar

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

13 Sharp ridge

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

14 Sum of different powers

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

15 Rastrigin

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

16 Weierstrass

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

17 Schaffer F7, condition 10

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

18 Schaffer F7, condition 1000

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

19 Griewank-Rosenbrock F8F2

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

20 Schwefel x*sin(x)

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

21 Gallagher 101 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

22 Gallagher 21 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

23 Katsuuras

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

24 Lunacek bi-Rastrigin

xNES

xNES_as

Figure 5: Expected running time (ERT, as log10 value of the number of f -evaluations di-
vided by dimension) on all noise-free functions (f1 and f24) for target precision
10−8, versus dimension on the horizontal axis. Blue circles ◦ refer to xNES, red
triangles O refer to xNES as, and the light beige lines show the performance of
the best-performing algorithm from the BBOB-2009 entrants (the best, individu-
ally for each dimension-function pair). Light symbols give the maximum number
of function evaluations from the longest trial divided by dimension. Black stars
indicate statistically better result compared to all other algorithms with p < 0.01.

971

Wierstra, Schaul, Glasmachers, Sun, Peters and Schmidhuber

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

101 Sphere moderate Gauss

xNES

xNES_as

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

104 Rosenbrock moderate Gauss

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

107 Sphere Gauss

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

110 Rosenbrock Gauss

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

113 Step-ellipsoid Gauss

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

102 Sphere moderate unif

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

105 Rosenbrock moderate unif

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

108 Sphere unif

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

111 Rosenbrock unif

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

114 Step-ellipsoid unif

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

103 Sphere moderate Cauchy

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

106 Rosenbrock moderate Cauchy

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

109 Sphere Cauchy

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

112 Rosenbrock Cauchy

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

115 Step-ellipsoid Cauchy

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

116 Ellipsoid Gauss

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

119 Sum of diff powers Gauss

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

122 Schaffer F7 Gauss

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

125 Griewank-Rosenbrock Gauss

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

128 Gallagher Gauss

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

117 Ellipsoid unif

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

120 Sum of diff powers unif

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

123 Schaffer F7 unif

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

126 Griewank-Rosenbrock unif

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

129 Gallagher unif

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

118 Ellipsoid Cauchy

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

121 Sum of diff powers Cauchy

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

124 Schaffer F7 Cauchy

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

127 Griewank-Rosenbrock Cauchy

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

130 Gallagher Cauchy

xNES

xNES_as

Figure 6: Expected running time (ERT in number of f -evaluations, divided by dimension)
on all noisy functions (f101 and f130) for target precision 10−8, versus dimen-
sion (see Figure 5 for details). We observe that, despite using small population
sizes and the same parameter settings than on the noise-free benchmarks, xNES
achieves state-of-the art performance on a subset of the functions.

972

Natural Evolution Strategies

noiseless functions f1–f24
xNES xNES-as BIPOP-CMA-ES

d
=

5

1 2 3 4 5
log10 of FEvals / dimension

-2

-1

0

1

2

3

4

lo
g
1
0
 o

f
E
R

T
 l
o
ss

 r
a
ti

o

CrE = 0 f1-24

1 2 3 4 5
log10 of FEvals / dimension

-2

-1

0

1

2

3

4

lo
g
1
0
 o

f
E
R

T
 l
o
ss

 r
a
ti

o

CrE = 0 f1-24

1 2 3 4 5 6
log10 of FEvals / dimension

-2

-1

0

1

2

3

4

lo
g
1
0
 o

f
E
R

T
 l
o
ss

 r
a
ti

o

CrE = 0 f1-24

d
=

2
0

1 2 3 4 5
log10 of FEvals / dimension

-2

-1

0

1

2

3

4

lo
g
1
0
 o

f
E
R

T
 l
o
ss

 r
a
ti

o

CrE = 0 f1-24

1 2 3 4 5
log10 of FEvals / dimension

-2

-1

0

1

2

3

4

lo
g
1
0
 o

f
E
R

T
 l
o
ss

 r
a
ti

o

CrE = 0 f1-24

1 2 3 4 5 6
log10 of FEvals / dimension

-2

-1

0

1

2

3

4

lo
g
1
0
 o

f
E
R

T
 l
o
ss

 r
a
ti

o

CrE = 0 f1-24

noisy functions f101–f130
xNES xNES-as BIPOP-CMA-ES

d
=

5

1 2 3 4 5
log10 of FEvals / dimension

-2

-1

0

1

2

3

4

lo
g
1
0
 o

f
E
R

T
 l
o
ss

 r
a
ti

o

CrE = 0 f101-130

1 2 3 4 5
log10 of FEvals / dimension

-2

-1

0

1

2

3

4

lo
g
1
0
 o

f
E
R

T
 l
o
ss

 r
a
ti

o

CrE = 0 f101-130

1 2 3 4 5 6
log10 of FEvals / dimension

-2

-1

0

1

2

3

4

lo
g
1
0
 o

f
E
R

T
 l
o
ss

 r
a
ti

o
CrE = 0 f101-130

d
=

20

1 2 3 4 5
log10 of FEvals / dimension

-2

-1

0

1

2

3

4

lo
g
1
0
 o

f
E
R

T
 l
o
ss

 r
a
ti

o

CrE = 0 f101-130

1 2 3 4 5
log10 of FEvals / dimension

-2

-1

0

1

2

3

4

lo
g
1
0
 o

f
E
R

T
 l
o
ss

 r
a
ti

o

CrE = 0 f101-130

1 2 3 4 5 6
log10 of FEvals / dimension

-2

-1

0

1

2

3

4

lo
g
1
0
 o

f
E
R

T
 l
o
ss

 r
a
ti

o

CrE = 0 f101-130

Figure 7: Loss ratio of expected running time (ERT), given a budget of function evaluations
(here, smaller is better), for xNES (left column), xNES-as (middle column) and
BIPOP-CMA-ES (right column). The target value ft used for a given budget is
the smallest (best) recorded function value such that ERT(ft) ≤ FEvals for the
presented algorithm. Shown is FEvals divided by the respective best ERT(ft)
from BBOB-2009 for all functions (noiseless f1–f24, top rows, and noisy f101–
f130, bottom rows) in 5-D and 20-D. Black line: geometric mean. Box-Whisker
error bar: 25-75%-ile (box) with median (red), 10-90%-ile (caps), and minimum
and maximum ERT loss ratio (black points).

973

Wierstra, Schaul, Glasmachers, Sun, Peters and Schmidhuber

marked on the entire BBOB suite. In contrast to the BBOB setups, which are based on
tricky fitness functions in small problem dimensions, this section illustrates how SNES
scales with dimension, on a classical neuro-evolutionary controller design problem.

10
2

10
3

Number of evaluations

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
s
u
c
c
e
s
s
ra
te

Number of weights: 4

SNES

xNES

xNES-im-as

10
1

10
2

10
3

Number of weights

10
2

10
3

10
4

10
5

M
e
d
ia
n
n
u
m
b
e
r
o
f
e
v
a
lu
a
ti
o
n
s

CoSyNE

SNES

xNES

xNES-im-as

1 2 4 8 16 32
Number of hidden neurons

Figure 8: Left: Plotted are the cumulative success rates on the non-Markovian double-pole
balancing task after a certain number of evaluations, empirically determined over
100 runs for each algorithm, using a single tanh-unit (n = 1) (i.e., optimizing
4 weights). We find that all three algorithm variants give state-of-the-art results,
with a slightly faster but less robust performance for xNES-as. Right: Median
number of evaluations required to solve the same task, but with increasing number
of neurons (and corresponding number of weights). We limited the runtime to
one hour per run, which explains why no results are available for xNES on higher
dimensions (cubic time complexity). The fact that SNES quickly outperforms
xNES, also in number of function evaluations, indicates that the benchmark is
(sufficiently close to) separable, and it is unnecessary to use the full covariance
matrix. For reference we also plot the corresponding results of the previously
best performing algorithm CoSyNE (Gomez et al., 2008).

SNES is well-suited for neuroevolution problems because they tend to be high-dimensional,
multi-modal, but with highly redundant global optima (there is not a unique set of weights
that defines the optimal behavior). We use it to find a controller for non-Markovian dou-
ble pole balancing, a task which involves balancing two differently sized poles hinged on
a cart that moves on a finite track. The single control consists of the force F applied to
the cart, and observations include the cart’s position and the poles’ angles, but no velocity
information, which makes this task partially observable. It provides a perfect testbed for
algorithms focusing on learning fine control with memory in continuous state and action
spaces (Wieland, 1991). The controller is represented by a simple recurrent neural network,
with three inputs, (position x and the two poles’ angles β1 and β2), and a variable number
n of tanh units in the output layer, which are fully connected (recurrently), resulting in
a total of n(n + 3) weights to be optimized. The activation of the first of these recurrent

974

Natural Evolution Strategies

neurons directly determines the force to be applied. We use the implementation found in
PyBrain (Schaul et al., 2010).

An evaluation is considered a success if the poles do not fall over for 100, 000 time
steps. We experimented with recurrent layers of sizes n = 1 to n = 32 (corresponding to
between 4 and 1120 weights). It turns out that a single recurrent neuron is sufficient to
solve the task (Figure 8, left). In fact, both the xNES and SNES results are state-of-the-art,
outperforming the previously best algorithm (CoSyNE; Gomez et al., 2008, with a median
of 410 evaluations) by a factor two.

In practical scenarios however, we cannot know the best network size a priori, and
thus the prudent choice consists in overestimating the required size. An algorithm that
graciously scales with problem dimension is therefore highly desirable, and we find (Figure 8,
right) that SNES is exhibiting precisely that behavior. The fact that SNES outperforms
xNES with increasing dimension, also in number of function evaluations, indicates that the
benchmark is not ill-conditioned, and it is unnecessary to use the full covariance matrix.
We conjecture that this is a property shared with the majority of neuroevolution problems
that have enough weights to exhibit redundant global optima (some of which can be found
without considering all parameter covariances).

Additional SNES results, for example, on the Lennard-Jones benchmark for atom clus-
ters (with dimension d > 200) can be found in Schaul et al. (2011).

6. Discussion and Conclusion

Our results on the BBOB benchmarks show that NES algorithms perform well across a
wide variety of black-box optimization problems. We have demonstrated advantages and
limitations of specific variants, and as such established the generality and flexibility of the
NES framework. Experiments with heavy-tailed and separable distributions demonstrate
the viability of the approach on high-dimensional domains. We obtained best reported
results on the difficult task of training a neural controller for double pole-balancing.

Technique Issue addressed Applicability Relevant
limited to section

Natural gradient Scale-invariance, many more - 2.3
Fitness shaping Robustness - 3.1

Adaptation sampling Performance, sensitivity - 3.2
Exponential parameterization Covariance constraints Multivariate 3.4

Natural coordinate system Computational efficiency Multivariate 3.4

Table 2: Summary of enhancing techniques

Table 2 summarizes the various techniques we introduced. The plain search gradient
suffers from premature convergence and lack of scale invariance (see Section 2.2). Therefore,
we use the natural gradient instead, which turns NES into a viable optimization method.
To improve performance and robustness, we introduced several novel techniques. Fitness
shaping makes the NES algorithm invariant to order-preserving transformations of the fit-
ness function, thus increasing robustness. Adaptation sampling adjusts the learning rates
online, which yields highly performant results on standard benchmarks. Finally, the ex-

975

Wierstra, Schaul, Glasmachers, Sun, Peters and Schmidhuber

ponential parameterization is crucial for maintaining positive-definite covariance matrices,
and the use of the natural coordinate system guarantees computational feasibility.

NES applies to general parameterizable distributions. In this paper, we have experimen-
tally investigated two variants, adjusted to the particular properties of different problem
classes. We demonstrated the power of the xNES variant using a full multinormal distribu-
tion, which is invariant under arbitrary translations and rotations, on the canonical suite of
standard benchmarks. Additionally, we showed that the restriction of the covariance matrix
to a diagonal parameterization (SNES) allows for scaling to very high dimensions, on the
difficult non-Markovian double pole balancing task.

Acknowledgments

This research was funded through the 7th framework program of the European Union, under
grant number 231576 (STIFF project) and ICT-270327 CompLACS, SNF grants 200020-
116674/1, 200021-111968/1 and 200020-122124/1, and SSN grant Sinergia CRSIK0-122697.
We thank Faustino Gomez for helpful suggestions and his CoSyNE data, as well as Andreas
Krause for insightful discussions. We particularly thank the anonymous reviewers for their
many constructive remarks.

References

Y. Akimoto, Y. Nagata, I. Ono, and S. Kobayashi. Bidirectional relation between CMA
evolution strategies and natural evolution strategies. In Parallel Problem Solving from
Nature (PPSN), 2010.

S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–
276, 1998.

S. Amari and S. C. Douglas. Why natural gradient? In Proceedings of the 1998 IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’98),
volume 2, pages 1213–1216, 1998.

A. Auger. Convergence results for the (1,λ)-SA-ES using the theory of φ-irreducible Markov
chains. Theoretical Computer Science, 334(1-3):35 – 69, 2005.

A. Berny. Selection and reinforcement learning for combinatorial optimization. In Parallel
Problem Solving from Nature PPSN VI, volume 1917, pages 601–610. Springer Berlin /
Heidelberg, 2000.

A. Berny. Statistical machine learning and combinatorial optimization, pages 287–306.
Springer-Verlag, London, UK, 2001.

H.-G. Beyer. The Theory of Evolution Strategies. Springer-Verlag, New York, USA, 2001.

H.-G. Beyer and H.-P. Schwefel. Evolution strategies: a comprehensive introduction. Natural
Computing, 1:3–52, 2002.

976

Natural Evolution Strategies

P. A. N. Bosman and D. Thierens. Expanding from discrete to continuous estimation of
distribution algorithms: the IDEA. In Proceedings of the 6th International Conference
on Parallel Problem Solving from Nature, pages 767–776, London, UK, 2000. Springer-
Verlag.

P. A. N. Bosman, J. Grahl, and D. Thierens. Adapted maximum-likelihood Gaussian models
for numerical optimization with continuous EDAs. Technical report, 2007.

F. Friedrichs and C. Igel. Evolutionary tuning of multiple svm parameters. Neurocomputing,
64:107–117, 2005.

T. Glasmachers, T. Schaul, and J. Schmidhuber. A natural evolution strategy for multi-
objective optimization. In Parallel Problem Solving from Nature (PPSN), 2010a.

T. Glasmachers, T. Schaul, Y. Sun, D. Wierstra, and J. Schmidhuber. Exponential natural
evolution strategies. In Genetic and Evolutionary Computation Conference (GECCO),
Portland, USA, 2010b.

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.
ISBN 0201157675.

F. Gomez, J. Schmidhuber, and R. Miikkulainen. Accelerated neural evolution through
cooperatively coevolved synapses. Journal of Machine Learning Research, 2008.

N. Hansen. Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed.
In GECCO (Companion), pages 2389–2396, 2009a.

N. Hansen. Benchmarking a BI-population CMA-ES on the BBOB-2009 noisy testbed. In
GECCO (Companion), pages 2397–2402, 2009b.

N. Hansen and A. Auger. Real-parameter black-box optimization benchmarking 2010: Ex-
perimental setup. Technical report, INRIA, 2010.

N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strate-
gies. Evolutionary Computation, 9(2):159–195, 2001.

N. Hansen, A. S. P. Niederberger, L. Guzzella, and P. Koumoutsakos. A method for han-
dling uncertainty in evolutionary optimization with an application to feedback control of
combustion. Transactions on Evolutionary Computation, 13:180–197, 2009.

N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization bench-
marking 2010: Noiseless function definitions. Technical report, INRIA, 2010a.

N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization bench-
marking 2010: Noisy functions definitions. Technical report, INRIA, 2010b.

M. Hasenjäger, B. Sendhoff, T. Sonoda, and T. Arima. Three dimensional evolutionary
aerodynamic design optimization with CMA-ES. In Proceedings of the 2005 Conference
on Genetic and Evolutionary Computation, pages 2173–2180, New York, NY, USA, 2005.
ACM.

977

Wierstra, Schaul, Glasmachers, Sun, Peters and Schmidhuber

J. H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan
Press, Ann Arbor, 1975.

C. Igel and M. Hüsken. Empirical evaluation of the improved Rprop learning algorithm.
Neurocomputing, 50:2003, 2003.

J. Jägersküpper. Analysis of a simple evolutionary algorithm for minimization in Euclidean
spaces. Theoretical Computer Science, 379(3):329–347, 2007.

G. A. Jastrebski and D. V. Arnold. Improving evolution strategies through active covariance
matrix adaptation. In IEEE Congress on Evolutionary Computation, 2006.

M. Jebalia, A. Auger, M. Schoenauer, F. James, and M. Postel. Identification of the
isotherm function in chromatography using CMA-ES. In IEEE Congress on Evolutionary
Computation, pages 4289–4296, 2007.

M. Jebalia, A. Auger, and N. Hansen. Log-linear convergence and divergence of the scale-
invariant (1+1)-ES in noisy environments. Algorithmica, pages 1–36, 2010.

J. Kennedy and R. Eberhart. Swarm Intelligence. Morgan Kaufmann, San Francisco, CA,
2001.

S. Kirkpatrick, C. D. Gelatt, Jr, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220:671–680, 1983.

J. Klockgether and H. P. Schwefel. Two-phase nozzle and hollow core jet experiments. In
Proc. 11th Symp. Engineering Aspects of Magnetohydrodynamics, pages 141–148, 1970.

S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of Mathematical
Statistics, 22(1):79–86, 1951. ISSN 00034851.

P. Larrañaga. Estimation of Distribution Algorithms. A New Tool for Evolutionary Com-
putation. Kluwer Academic Publishers, 2002.

H. Mühlenbein and G. Paass. From recombination of genes to the estimation of distributions
I. binary parameters. In Proceedings of the 4th International Conference on Parallel
Problem Solving from Nature, PPSN IV, pages 178–187, London, UK, 1996. Springer-
Verlag.

S. D. Muller, J. Marchetto, S. Airaghi, and P. Koumoutsakos. Optimization based on
bacterial chemotaxis. IEEE Transactions on Evolutionary Computation, 6:6–16, 2002.

J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer
Journal, 7(4):308–313, 1965.

A. Ostermeier, A. Gawelczyk, and N. Hansen. Step-size adaption based on non-local use of
selection information. In The Third Conference on Parallel Problem Solving from Nature,
pages 189–198, London, UK, 1994. Springer-Verlag.

978

Natural Evolution Strategies

M. Pelikan, D. Goldberg, and F. Lobo. A survey of optimization by building and using
probabilistic models. In American Control Conference, volume 5, pages 3289 –3293 vol.5,
2000.

M. Pelikan, K. Sastry, and E. C. Paz. Scalable Optimization via Probabilistic Modeling: From
Algorithms to Applications (Studies in Computational Intelligence). Springer-Verlag New
York, Inc., 2006.

J. Peters. Machine Learning of Motor Skills for Robotics. PhD thesis, Department of
Computer Science, University of Southern California, 2007.

I. Rechenberg and M. Eigen. Evolutionsstrategie: Optimierung Technischer Systeme nach
Prinzipien der Biologischen Evolution. Frommann-Holzboog Stuttgart, 1973.

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning:
The RPROP algorithm. In IEEE International Conference on Neural Networks, pages
586–591. IEEE Press, 1993.

R. Ros and N. Hansen. A simple modification in CMA-ES achieving linear time and space
complexity. In R. et al., editor, Parallel Problem Solving from Nature, PPSN X, pages
296–305. Springer, 2008.

R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A Unified Approach to
Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning (Informa-
tion Science and Statistics). Springer, 2004.

T. Schaul. Benchmarking separable natural evolution strategies on the noiseless and noisy
black-box optimization testbeds. In Black-box Optimization Benchmarking Workshop,
Genetic and Evolutionary Computation Conference, Philadelphia, PA, 2012a.

T. Schaul. Benchmarking exponential natural evolution strategies on the noiseless and noisy
black-box optimization testbeds. In Black-box Optimization Benchmarking Workshop,
Genetic and Evolutionary Computation Conference, Philadelphia, PA, 2012b.

T. Schaul. Benchmarking natural evolution strategies with adaptation sampling on the
noiseless and noisy black-box optimization testbeds. In Black-box Optimization Bench-
marking Workshop, Genetic and Evolutionary Computation Conference, Philadelphia,
PA, 2012c.

T. Schaul. Comparing natural evolution strategies to BIPOP-CMA-ES on noiseless and
noisy black-box optimization testbeds. In Black-box Optimization Benchmarking Work-
shop, Genetic and Evolutionary Computation Conference, Philadelphia, PA, 2012d.

T. Schaul. Investigating the impact of adaptation sampling in natural evolution strategies
on black-box optimization testbeds. In Black-box Optimization Benchmarking Workshop,
Genetic and Evolutionary Computation Conference, Philadelphia, PA, 2012e.

T. Schaul. Natural evolution strategies converge on sphere functions. In Genetic and
Evolutionary Computation Conference, Philadelphia, PA, 2012f.

979

Wierstra, Schaul, Glasmachers, Sun, Peters and Schmidhuber

T. Schaul and J. Schmidhuber. Metalearning. Scholarpedia, 5(6):4650, 2010.

T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke, T. Rückstieß, and J. Schmid-
huber. PyBrain. Journal of Machine Learning Research, 11:743–746, 2010.

T. Schaul, T. Glasmachers, and J. Schmidhuber. High dimensions and heavy tails for natural
evolution strategies. In Genetic and Evolutionary Computation Conference, 2011.

H.-P. Schwefel. Numerische optimierung von computer-modellen mittels der evolution-
sstrategie, 1977.

J. Shepherd, D. McDowell, and K. Jacob. Modeling morphology evolution and mechanical
behavior during thermo-mechanical processing of semi-crystalline polymers. Journal of
the Mechanics and Physics of Solids, 54(3):467 – 489, 2006.

O. M. Shir and T. Bäck. The second harmonic generation case-study as a gateway for ES
to quantum control problems. In Proceedings of the 9th annual conference on Genetic
and evolutionary computation, GECCO ’07, pages 713–721, New York, NY, USA, 2007.
ACM.

R. Storn and K. Price. Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. J. of Global Optimization, 11:341–359, December
1997. ISSN 0925-5001.

Y. Sun, D. Wierstra, T. Schaul, and J. Schmidhuber. Stochastic search using the natural
gradient. In International Conference on Machine Learning (ICML), 2009a.

Y. Sun, D. Wierstra, T. Schaul, and J. Schmidhuber. Efficient natural evolution strategies.
In Genetic and Evolutionary Computation Conference (GECCO), 2009b.

A. Wieland. Evolving neural network controllers for unstable systems. In Proceedings of the
International Joint Conference on Neural Networks (Seattle, WA), pages 667–673, 1991.

D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber. Natural evolution strategies. In
Proceedings of the Congress on Evolutionary Computation (CEC08), Hongkong. IEEE
Press, 2008.

S. Winter, B. Brendel, and C. Igel. Registration of bone structures in 3D ultrasound and
CT data: Comparison of different optimization strategies. International Congress Series,
1281:242 – 247, 2005.

980

Journal of Machine Learning Research 15 (2014) 981-1009 Submitted 10/12; Revised 9/13; Published 3/14

Conditional Random Field with High-order Dependencies for
Sequence Labeling and Segmentation

Nguyen Viet Cuong nvcuong@comp.nus.edu.sg
Nan Ye yenan@comp.nus.edu.sg
Wee Sun Lee leews@comp.nus.edu.sg
Department of Computer Science
National University of Singapore
13 Computing Drive
Singapore 117417

Hai Leong Chieu chaileon@dso.org.sg

DSO National Laboratories

20 Science Park Drive

Singapore 118230

Editor: Kevin Murphy

Abstract

Dependencies among neighboring labels in a sequence are important sources of informa-
tion for sequence labeling and segmentation. However, only first-order dependencies, which
are dependencies between adjacent labels or segments, are commonly exploited in practice
because of the high computational complexity of typical inference algorithms when longer
distance dependencies are taken into account. In this paper, we give efficient inference
algorithms to handle high-order dependencies between labels or segments in conditional
random fields, under the assumption that the number of distinct label patterns used in the
features is small. This leads to efficient learning algorithms for these conditional random
fields. We show experimentally that exploiting high-order dependencies can lead to sub-
stantial performance improvements for some problems, and we discuss conditions under
which high-order features can be effective.

Keywords: conditional random field, semi-Markov conditional random field, high-order
feature, sequence labeling, segmentation, label sparsity

1. Introduction

Many problems can be cast as the problem of labeling or segmenting a sequence of observa-
tions. Examples include natural language processing tasks, such as part-of-speech tagging
(Lafferty et al., 2001), phrase chunking (Sha and Pereira, 2003), named entity recognition
(McCallum and Li, 2003), and tasks in bioinformatics such as gene prediction (Culotta
et al., 2005) and RNA secondary structure prediction (Durbin, 1998).

Conditional random field (CRF) (Lafferty et al., 2001) is a discriminative, undirected
Markov model which represents a conditional probability distribution of a structured out-
put variable y given an observation x. Conditional random fields have been successfully
applied in sequence labeling and segmentation. Compared to generative models such as
hidden Markov models (Rabiner, 1989), CRFs model only the conditional distribution of y

c©2014 Nguyen Viet Cuong, Nan Ye, Wee Sun Lee and Hai Leong Chieu.

Cuong, Ye, Lee and Chieu

Type of CRF Feature example

First-order (Lafferty et al., 2001) author year
Semi-CRF (Sarawagi and Cohen, 2004) author+ year+
High-order (Ye et al., 2009, this paper) author year title title
High-order semi-CRF (this paper) author+ year+ title+

Table 1: Examples of the information that can be captured by different types of CRFs for
the bibliography extraction task. The x+ symbol represents a segment of “1 or
more” labels of class x.

given x, and do not model the observations x. Hence, CRFs can be used to encode complex
dependencies of y on x without significantly increasing the inference and learning costs.
However, inference for CRFs is NP-hard in general (Istrail, 2000), and most CRFs have
been restricted to consider very local dependencies. Examples include the linear-chain CRF
which considers dependencies between at most two adjacent labels (Lafferty et al., 2001)
and the first-order semi-Markov CRF (semi-CRF) which considers dependencies between at
most two adjacent segments (Sarawagi and Cohen, 2004), where a segment is a contiguous
sequence of identical labels. In linear-chain CRF and semi-CRF, a kth-order feature is a
feature that encodes the dependency between x and (k+ 1) consecutive labels or segments.
Existing inference algorithms for CRFs such as the Viterbi and the forward-backward algo-
rithms can only handle up to first-order features, and inference algorithms for semi-CRFs
(Sarawagi and Cohen, 2004) can only handle up to first-order features between segments.
These algorithms can be easily generalized to handle high-order features, but will require
time exponential in k. In addition, a general inference algorithm such as the clique tree al-
gorithm (Huang and Darwiche, 1996) also requires time exponential in k to handle kth-order
features (k > 1).

In this paper, we exploit a form of sparsity that is often observed in real data to design
efficient algorithms for inference and learning with high-order label or segment dependencies.
Our algorithms are presented for high-order semi-CRFs in its most general form. Algorithms
for high-order CRFs are obtained by restricting the segment lengths to 1, and algorithms
for linear-chain CRFs and first-order semi-CRFs are obtained by restricting the maximum
order to 1.

We use a bibliography extraction task in Table 1 to show examples of features that can
be used with different classes of CRFs. In this task, different fields are often arranged in
a fixed order, hence using high-order features can be advantageous. The sparsity property
that we exploit is the following label pattern sparsity: the number of observed sequences
of k consecutive segment labels (e.g., “author+ year+ title+” is one such sequence where
k = 3) is much smaller than nk, where n is the number of distinct labels. This assumption
often holds in real problems. Under this assumption, we give algorithms for computing
marginals, partition functions, and Viterbi parses for high-order semi-CRFs. The partition
function and the marginals can be used to efficiently compute the log-likelihood and its gra-
dient. In turn, the log-likelihood and its gradient can be used with quasi-Newton methods
to efficiently find the maximum likelihood parameters (Sha and Pereira, 2003). The algo-

982

CRF with High-order Dependencies for Sequence Labeling and Segmentation

rithm for Viterbi parsing can also be used with cutting plane methods to train max-margin
solutions for sequence labeling problems in polynomial time (Tsochantaridis et al., 2004).
Our inference and learning algorithms run in time polynomial in the maximum segment
length as well as the number and length of the label patterns that the features depend on.

We demonstrate that modeling high-order dependencies can lead to significant perfor-
mance improvements in various problems. In our first set of experiments, we focus on
high-order CRFs and demonstrate that using high-order features can improve performance
in sequence labeling problems. We show that in handwriting recognition, using even sim-
ple high-order indicator features improves performance over using linear-chain CRFs, and
significant performance improvement is observed when the maximum order of the indica-
tor features is increased. We also use a synthetic data set to discuss the conditions under
which high-order features can be helpful. In our second set of experiments, we demonstrate
that using high-order semi-Markov features can be helpful in some applications. More
specifically, we show that high-order semi-CRFs outperform high-order CRFs and first-
order semi-CRFs on three segmentation tasks: relation argument detection, punctuation
prediction, and bibliography extraction.1

2. Algorithms for High-order Dependencies

Our algorithms are presented for high-order semi-CRFs in its most general form. These al-
gorithms generalize the algorithms for linear-chain CRFs and first-order semi-CRFs, which
are special cases of our algorithms when the maximum order is set to 1. They also generalize
the algorithms for high-order CRFs (Ye et al., 2009), which are special cases of our algo-
rithms when the segment lengths are set to 1. Thus, only the general algorithms described
in this section need to be implemented to handle all these different cases.2

2.1 High-order Semi-CRFs

Let Y = {1, 2, . . . , n} denote the set of distinct labels, x = (x1, . . . , x|x|) denote an input
sequence of length |x|, and xa:b denote the sub-sequence (xa, . . . , xb). A segment of x is de-
fined as a triplet (u, v, y), where y is the common label of the segment xu:v. A segmentation
for xa:b is a segment sequence s = (s1, . . . , sp), with sj = (uj , vj , yj) such that uj+1 = vj + 1
for all j, u1 = a and vp = b. A segmentation for xa:b is a partial segmentation for x.

A semi-CRF defines a conditional distribution over all possible segmentations s of an
input sequence x such that

P (s|x) =
1

Zx
exp(

m∑
i=1

|s|∑
t=1

λifi(x, s, t))

1. This paper is an extended version of a previous paper (Ye et al., 2009) published in NIPS 2009. Some
of the additional material presented here has also been presented as an abstract (Nguyen et al., 2011)
at the ICML Workshop on Structured Sparsity: Learning and Inference, 2011. The source code for our
algorithms is available at https://github.com/nvcuong/HOSemiCRF.

2. In an earlier paper (Ye et al., 2009), we give algorithms for high-order CRFs which are similar to those
presented here. The main difference lies in the backward algorithm. The version presented here is
a conditional version which uses properties of labels before the suffix labels being considered, making
extension to the high-order semi-Markov features simpler.

983

https://github.com/nvcuong/HOSemiCRF

Cuong, Ye, Lee and Chieu

where Zx =
∑

s exp(
∑

i

∑
t λifi(x, s, t)) is the partition function with the summation over

all segmentations of x, and {fi(x, s, t)}1≤i≤m is the set of semi-Markov features, each of
which has a corresponding weight λi.

We shall work with features of the following form

fi(x, s, t) =

{
gi(x, ut, vt) if yt−|zi|+1 . . . yt = zi

0 otherwise
(1)

where zi ∈ Y |zi| is a segment label pattern associated with fi, and s is a segmentation or a
partial segmentation for x. The function fi(x, s, t) depends on the t-th segment as well as
the label pattern zi and is said to be of order |zi| − 1. The order of the resulting semi-CRF
is the maximal order of the features.

We will give exact inference algorithms for high-order semi-CRFs in the following sec-
tions. As in exact inference algorithms for linear-chain CRFs and semi-CRFs, our algorithms
perform forward and backward passes to obtain the necessary information for inference.

2.2 Notations

Without loss of generality, let Z = {z1, . . . , zM} be the segment label pattern set, that is,
the set of distinct segment label patterns of the m features (M ≤ m). For our forward
algorithm, the forward-state set P = {p1, . . . ,p|P|} consists of distinct elements in the set
of all the labels and proper prefixes (including the empty sequence ε) of the segment label
patterns. Thus, P = Y ∪ {zj1:k}0≤k<|zj |,1≤j≤M . For the backward algorithm, the backward-

state set S = {s1, . . . , s|S|} consists of distinct elements in PY, that is, the set consisting of
elements in P concatenated with a label in Y.

Transitions between states in our algorithm are defined using the suffix relationships
between them. We use z1 ≤s z2 to denote that z1 is a suffix of z2. The longest suffix
relation on a set A is denoted by z1 ≤sA z2. This relation holds true if and only if z1, among
all the elements of A, is the longest suffix of z2. More formally, z1 ≤sA z2 if and only if
z1 ∈ A and z1 ≤s z2 and ∀z ∈ A, z ≤s z2 ⇒ z ≤s z1.

2.3 Training

Given a training set T , we estimate the model parameters ~λ = (λ1, . . . , λm) by maximizing
the regularized log-likelihood function

LT (~λ) =
∑

(x,s)∈T logP (s|x)−
∑m

i=1
λ2i

2σ2
reg

where σreg is a regularization parameter. This function is convex, and thus can be maximized
using any convex optimization algorithm. In our implementation, we use the L-BFGS
method (Liu and Nocedal, 1989). The method requires computation of the value of LT (~λ)
and its partial derivatives

∂LT
∂λi

= Ẽ(fi)− E(fi)−
λi
σ2reg

where Ẽ(fi) =
∑

(x,s)∈T
∑

t fi(x, s, t) is the empirical feature sum of the feature fi, and

E(fi) =
∑

(x,s)∈T
∑

s′ P (s′|x)
∑

t fi(x, s
′, t) is the expected feature sum of fi. To compute

984

CRF with High-order Dependencies for Sequence Labeling and Segmentation

LT (~λ) and its partial derivatives, we need to efficiently compute the partition function Zx

and the expected feature sum of fi’s.

2.3.1 Partition Function

For any pi ∈ P, let pj,pi be the set of all segmentations for x1:j whose segment label
sequences contain pi as the longest suffix among all elements in P. We define the forward
variables αx(j,pi) as follows

αx(j,pi) =
∑

s∈pj,pi

exp(
∑
k

∑
t

λkfk(x, s, t)).

The above definition of the forward variable αx is the same as the usual definition of for-
ward variable for first-order semi-CRFs when only zeroth-order and first-order semi-Markov
features are used. The forward variables can be computed by dynamic programming:

αx(j,pi) =

L−1∑
d=0

∑
(pk,y):pi≤s

Pp
ky

Ψx(j − d, j,pky)αx(j − d− 1,pk)

where L is the longest possible length of a segment,
∑

i:Pred(i) denotes summation over
all i’s satisfying the predicate Pred(i), and Ψx(u, v,p) counts the contribution of features
activated when there is a segment label sequence p with its last segment having boundary
(u, v). The factor Ψx(u, v,p) is defined as

Ψx(u, v,p) = exp(
∑

i:zi≤sp

λigi(x, u, v)).

The correctness of the above recurrence is shown in Appendix A. The partition function
can be computed from the forward variables by

Zx =
∑
i

αx(|x|,pi).

2.3.2 Expected Feature Sum

Let sj be the set of all partial segmentations for xj:|x|. For s ∈ sj and sk ∈ S, we define for

each feature fi a conditional feature function fi(x, s, t|sk), which takes the value of fi(x, s, t)
when sk is the longest suffix (in S) of the segment label sequence for x1:j−1. Otherwise, its
value is 0. For example, if s = (s1, . . . , sp) ∈ sj and s1 = (u1, v1, y1), then

fi(x, s, 1|sk) =

{
gi(x, u1, v1) if zi ≤s sky1
0 otherwise

.

For each si ∈ S, we define the backward variables βx(j, si) as follows

βx(j, si) =
∑
s∈sj

exp(
∑
k

∑
t

λkfk(x, s, t|si)).

985

Cuong, Ye, Lee and Chieu

.

j j+1 j-1 1 2 |x| |x|-1 |x|-2

*si s sj

x

y

Figure 1: An illustration of the backward variable βx(j, si). Each rectangular box corre-
sponds to a segment. The regular expression ∗si means that si is the suffix of the
segment label sequence for x1:j−1. In fact, si is the longest suffix of the segment
label sequence for x1:j−1. The summation in the definition of βx(j, si) is over all
the partial segmentations s of xj:|x|.

Figure 1 gives an illustration of the backward variable βx(j, si). Note that our definition
of βx uses the conditional feature function and does not generalize the usual definitions of
the backward variables in first-order semi-CRFs (Sarawagi and Cohen, 2004) or high-order
CRFs (Ye et al., 2009).

Similar to the case of forward variables, we can compute βx(j, si) by dynamic program-
ming:

βx(j, si) =

L−1∑
d=0

∑
(sk,y):sk≤s

Ss
iy

Ψx(j, j + d, siy)βx(j + d+ 1, sk).

In Appendix A, we show the correctness proof for the recurrence. We can now compute
the marginals P (u, v, z|x) for each z ∈ Z and u ≤ v, where P (u, v, z|x) denotes the proba-
bility that a segmentation of x contains label pattern z and has (u, v) as z’s last segment
boundaries. These marginals can be computed by

P (u, v, z|x) =
1

Zx

∑
(pi,y):z≤spiy

αx(u− 1,pi)Ψx(u, v,piy)βx(v + 1,piy).

We compute the expected feature sum for fi by

E(fi) =
∑

(x,s)∈T

∑
u≤v

P (u, v, zi|x)gi(x, u, v).

In Appendix B, we give an example to illustrate our algorithms for the second-order CRF
model.

Using the conditional feature function to define the backward variables βx can help to
simplify the computation of the marginals for high-order semi-CRF models. If we directly
generalized the usual definition of the backward variables (Ye et al., 2009) to high-order
semi-CRFs (which can be done easily), computing the marginals using these backward vari-
ables would be complicated. The main reason is that the semi-Markov features in Equation

986

CRF with High-order Dependencies for Sequence Labeling and Segmentation

(1) only know the correct position (ut, vt) of the last segment. In other words, although
they know the label sequence of the previous segments, the features do not know the actual
boundaries of these segments. So, to compute the marginal P (u, v, z|x) using the usual
extension of the backward variables, we need to sum over all possible segmentations near
(u, v) that contain (u, v) as a segment. This may result in an algorithm that is exponential
in the order of the semi-CRFs. Note that this problem does not occur for high-order CRFs
(Ye et al., 2009) since in these models, the segment length is 1 and thus we can always
determine the boundaries of the segments.

2.4 Decoding

We compute the most likely segmentation for high-order semi-CRF by a Viterbi-like decod-
ing algorithm. It is the same as the forward algorithm with the sum operator replaced by
the max operator. Define

δx(j,pi) = max
s∈pj,pi

exp(
∑
k

∑
t

λkfk(x, s, t)).

These variables can be computed by

δx(j,pi) = max
(d,pk,y):pi≤s

Pp
ky

Ψx(j − d, j,pky)δx(j − d− 1,pk).

Note that the value of d is inclusively between 0 and L−1 in the above equation. The most
likely segmentation can be obtained using backtracking from maxi δx(|x|,pi).

2.5 Time Complexity

We now give rough time bounds for the above algorithm. It is important to note that the
bounds given in this part are pessimistic, and the computation can be done more quickly in
practice. For simplicity, we assume that the features gi(·, ·, ·) can be computed in O(1) time
for all i ∈ {1, 2, . . . ,m} and the algorithm would pre-compute all the values of Ψx before
doing the forward and backward passes. This assumption often holds for features used in
practice, although one can define gi’s which are arbitrarily difficult to compute.

Since the total number of different patterns of the last argument of Ψx is O(|S||Y|) =
O(|P||Y|2), the time complexity to pre-compute all the values of Ψx in the worst case is
O(mT 2|P||Y|2) = O(mn2T 2|P|), where T is the maximum length of an input sequence.
After pre-computing the values of Ψx, we can compute all the values of αx in O(T 2|Y||P|)
time. Similarly, the time complexity to compute all the values of βx is O(T 2|Y||S|). Then,
with these values, we can compute all the marginal probabilities in O(T 2|Z||P|). Finally,
the time complexity for decoding is O(T 2|Y||P|).

3. Experiments

In this section, we describe experiments comparing CRFs, semi-CRFs, high-order CRFs,
and high-order semi-CRFs. The experiments in Section 3.1 show the advantages of the
high-order CRFs, while those in Section 3.2 show the advantages of the high-order semi-
CRFs.

987

Cuong, Ye, Lee and Chieu

3.1 Experiments with High-order CRFs

The practical feasibility of making use of high-order features based on our algorithm lies
in the observation that the label pattern sparsity assumption often holds. Our algorithm
can be applied to take those high-order features into consideration: high-order features now
form a component that one can play with in feature engineering.

Now, the question is whether high-order features are practically significant. We first use
a synthetic data set to explore conditions under which high-order features can be expected
to help. We then use a handwritten character recognition problem to demonstrate that even
incorporating simple high-order features can lead to impressive performance improvement
on a naturally occurring data set.3

3.1.1 Synthetic Data Generated Using kth-order Markov Model

We randomly generate an order k Markov model with n states s1, . . . , sn as follows. To
increase pattern sparsity, we allow at most r randomly chosen possible next states given the
previous k states. This limits the number of possible label sequences in each length (k+ 1)
segment from nk+1 to nkr. The conditional probabilities of these r next states are generated
by randomly selecting a vector from the uniform distribution over [0, 1]r and normalizing
them. Each state si generates an observation (a1, . . . , am) such that aj follows a Gaussian
distribution with mean µij and standard deviation σ. Each µi,j is independently randomly
generated from the uniform distribution over [0, 1]. In the experiments, we use values of
n = 5, r = 2 and m = 3.

The standard deviation σ controls how much information the observations reveal about
the states. If σ is very small as compared to most µij ’s, then using the observations alone
as features is likely to be good enough to obtain a good classifier of the states; the label
correlations become less important for classification. However, if σ is large, then it is
difficult to distinguish the states based on the observations alone and the label correlations,
particularly those captured by higher order features are likely to be helpful.

We use the current, previous, and next observations, rather than just the current obser-
vation as features, exploiting the conditional probability modeling strength of CRFs. For
higher order features, we simply use all indicator features that appeared in the training
data up to a maximum order. We considered the case k = 2 and k = 3, and varied σ and
the maximum order. We run the experiment with training sets that contain 300, 400, and
500 sequences, and evaluate the models on a test set that contains 500 sequences. All the
sequences are of length 20; each sequence was initialized with a random sequence of length
k and generated using the randomly generated order k Markov model. Training was done
by maximizing the regularized log-likelihood with regularization parameter σreg = 1 in all
experiments in this paper. The experimental results are shown in Figures 2.

Figure 2 shows that the high-order indicator features are useful in all cases. In particular,
we can see that it is beneficial to increase the order of the high-order features when the
underlying model has longer distance correlations. As expected, increasing the order of the
features beyond the order of the underlying model is not helpful. The results also suggest

3. The results given in the earlier version of this work (Ye et al., 2009) are significantly lower than the
results presented here due to a bug in the decoding algorithm. We have fixed the bug and reported the
corrected results in this paper.

988

CRF with High-order Dependencies for Sequence Labeling and Segmentation

86

88

90

92

94

96

98

100

1 2 3 4 5

A
cc

u
ra

cy

Maximum Order of Features

Generated by 2nd-Order Markov Model

Training set size = 300

Sigma=0.01

Sigma=0.05

Sigma=0.10

83

85

87

89

91

93

95

97

99

1 2 3 4 5

A
cc

u
ra

cy

Maximum Order of Features

Generated by 3rd-Order Markov Model

Training set size = 300

Sigma=0.01

Sigma=0.05

Sigma=0.10

86

88

90

92

94

96

98

100

1 2 3 4 5

A
cc

u
ra

cy

Maximum Order of Features

Generated by 2nd-Order Markov Model

Training set size = 400

Sigma=0.01

Sigma=0.05

Sigma=0.10

83

85

87

89

91

93

95

97

99

1 2 3 4 5

A
cc

u
ra

cy

Maximum Order of Features

Generated by 3rd-Order Markov Model

Training set size = 400

Sigma=0.01

Sigma=0.05

Sigma=0.10

86

88

90

92

94

96

98

100

1 2 3 4 5

A
cc

u
ra

cy

Maximum Order of Features

Generated by 2nd-Order Markov Model

Training set size = 500

Sigma=0.01

Sigma=0.05

Sigma=0.10

83

85

87

89

91

93

95

97

99

1 2 3 4 5

A
cc

u
ra

cy

Maximum Order of Features

Generated by 3rd-Order Markov Model

Training set size = 500

Sigma=0.01

Sigma=0.05

Sigma=0.10

Figure 2: Accuracy of high-order CRFs as a function of maximum order on synthetic data
sets.

that in general, if the observations are closely coupled with the states (in the sense that
different states correspond to very different observations), then feature engineering on the
observations is generally enough to perform well, and it is less important to use high-order
features to capture label correlations. On the other hand, when such coupling is not clear, it
becomes important to capture the label correlations, and high-order features can be useful.

We also study the effects of spurious, rare high-order patterns, and show that such
patterns in the training or test set do not significantly impair performance of high-order
CRFs in our experiments. For this purpose, we tabulate the proportion of fourth-order
patterns (i.e., length 5 patterns) exclusive to the training or test sets in Table 2. The
statistics show that around 10% of the patterns are exclusive to the training or test data.
On the other hand, the results in Figure 2 show that when these patterns are used in the
fourth-order model, the performance only drops slightly. Even if we increase the number of
spurious, rare high-order patterns (by reducing the training data size), there is no significant
drop in accuracies for high-order CRFs.

989

Cuong, Ye, Lee and Chieu

Size 300 400 500

Order Train Test Train Test Train Test

2 16/173 13/170 17/175 12/170 17/177 10/170
3 34/393 58/417 37/406 48/417 42/424 35/417

Table 2: Proportions of length 5 patterns exclusive to training and test data where the data
sets are generated by 2nd-order and 3rd-order Markov models. For each proportion,
the denominator shows the number of patterns in the data set, and the numerator
shows the number of patterns exclusive to it. Nearly all of these patterns occur for
less than 5 times (mostly once or twice). Note that the labels are first generated
independently of σ in our data sets, thus the statistics are the same for all σ values.

In practical problems, regularization may work well as a means for avoiding overfitting
spurious high-order features. But this depends on how heavily the training process is
regularized, and some tuning may be needed. For example, for a regularizer like Gaussian

regularizer
∑

i
λ2i

2σ2
reg

, the parameter σreg is often determined using a validation data set or

cross-validation on the training data.

3.1.2 Handwriting Recognition

We used the handwriting recognition data set (Taskar et al., 2004), consisting of around 6100
handwritten words with an average length of around 8 characters. The data was originally
collected by Kassel (1995) from around 150 human subjects. The words were segmented
into characters, and each character was converted into an image of 16 by 8 binary pixels.
In this labeling problem, each xi is the image of a character, and each yi is a lower-case
letter. The experimental setup is the same as that used by Taskar et al. (2004): the data
set was divided into 10 folds with each fold having approximately 600 training and 5500
test examples and the zero-th order features for a character are the pixel values.

For high-order features, we again used all indicator features that appeared in the training
data up to a maximum order. The average accuracies over the 10 folds are shown in Figure 3,
where strong improvements are observed as the maximum order increases. Figure 3 also
shows the number of label patterns, the total training time, and the running time per
iteration of the L-BFGS algorithm (which requires computation of the gradient and value
of the function at each iteration). Both the number of patterns and the running time appear
to grow no more than linearly with the maximum order of the features for this data set.

3.2 Experiments with High-order Semi-CRFs

We now show that high-order semi-CRFs are also practically useful by evaluating their per-
formance on three different sequence labeling tasks: relation argument detection, punctua-
tion prediction in movie transcripts, and bibliography extraction. We compare high-order
semi-CRFs with CRFs of different orders on the same tasks. In our tables, Ck and SCk

990

CRF with High-order Dependencies for Sequence Labeling and Segmentation

76

78

80

82

84

86

88

90

92

94

96

98

1 2 3 4 5
A

cc
u

ra
cy

Maximum Order of Features

Handwritten Character Recognition

0

200

400

600

800

1000

1200

2 3 4 5

N
u

m
b

e
r

o
f

P
a

tt
e

rn
s

 Maximum Order of Features

 Number of Patterns for

Character Recognition

0

500

1000

1500

2000

2500

3000

3500

0

10

20

30

40

50

60

70

80

90

2 3 4 5

T
im

e
 (

s)

T
im

e
 (

s)

Maximum Order of Features

Runtimes for Character Recognition Training

Per Iteration Time (Left Axis)

Total Time (Right axis)

Figure 3: Accuracy (top), number of label patterns (bottom left), and running time (bottom
right) as a function of maximum order for the handwriting recognition data set.

refer to kth-order CRF and semi-CRF respectively. We also give the number of segment
label patterns and the running time of high-order semi-CRFs on the tasks.

To test if the results obtained by high-order semi-CRFs are significantly better than
lower order ones in terms of F1-measure, we perform the randomization tests described
by Noreen (1989) and Yeh (2000). In such tests, we shuffle the responses by randomly
reassigning the outputs of two systems we are comparing, and see how likely such a shuffle
produces a difference in the metric of interest (in our case, the F1-measure). An exact
randomization test will iterate through all possible shuffles, but due to the large data sizes,
we use an approximate randomization test where for each comparison, we perform 10000
random shuffles, and we repeat this for 999 times. It can be shown (Noreen, 1989; Yeh, 2000)
that the significance level p is at most p′ = (nc+1)/(nt+1), where nc is the number of trials
in which the difference between the F1-measures is greater than the original difference, and
nt is the total number of iterations (in our case, 999). In Table 4, 7, and 9, we summarize
the p′ obtained in the significance tests. We will comment on these results for each of the
three data sets in the following sections.

991

Cuong, Ye, Lee and Chieu

3.2.1 Relation Argument Detection

In this experiment, we consider the problem of relation argument detection, which identifies
and labels arguments of relations in English sentences. More specifically, we construct the
label sequence for each sentence as follows: If a word in a sentence is the first argument of
a relation, we label it as Arg1. If it is the second argument, we label it as Arg2. If the word
is the first argument of a relation and it is also the second argument of another relation
of the same type, we label it as Arg1Arg2. Otherwise, we label it as O, which means the
word is not part of any relation. For example, in the labeled sentence “Peter/Arg1 is/O
working/O for/O IBM/Arg2 ./O”, Peter and IBM are arguments of a relation.

It is important to note that if a sentence contains many Arg1 ’s and Arg2 ’s, we do
not know which pairs of Arg1 and Arg2 would be the actual arguments of a relation.
Furthermore, the matching of Arg1 ’s and Arg2 ’s is not one-to-one either, since a word
may participate in many different relations of the same type. Thus, to actually extract the
relations in a sentence, we would need a separate classifier to determine which pairs of Arg1
and Arg2 are the true mentions of a relation. In this experiment, however, we only focus
and report on the sentence labeling task.

The relation argument detection problem can be thought of as part of the relation
extraction task, which requires extracting some prespecified relationships between named
entity mentions. For example, if a person works for an organization, then the person and
the organization form an organization-affiliation relation. Previous works on the relation
extraction problem usually involve building a classifier to decide whether two named entity
mentions are the actual arguments of the relation (GuoDong et al., 2005; Zhang et al.,
2006). It may also be beneficial for the classifiers if they can make use of the information
obtained from relation argument detection.

We compared the models on the English portion of the Automatic Content Extraction
(ACE) 2005 corpus (Walker et al., 2006). The corpus contains articles from six source
domains and we group the labeled relations into six types. For the experiment, we trained
a separate tagger for each type of relations. The training set contains 70% of the sentences
from each source domain. The remaining 30% of the sentences are used for testing. Most
sentences do not contain a relation and they make the trained tagger less likely to predict an
argument. Hence, we randomly sampled from these negative examples so that the numbers
of positive and negative examples are the same. We also assumed the manually annotated
named entity mentions are known.

For linear-chain CRF, the zeroth-order features are: surrounding words before and after
the current word and their capitalization patterns; letter n-grams in words; surrounding
named entity mentions, part-of-speeches before and after the current word and their com-
binations. The first-order features are: transitions without any observation, transitions
with the current or previous words or combinations of their capitalization patterns. The
high-order CRFs and semi-CRFs include additional high-order Markov and high-order semi-
Markov transition features.

From the results in Table 3, SC2 gives an improvement of 5.52% on F1 score when
compared to SC1 on average. SC3 further improves the performance of SC2 by 0.75%
F1 score. High-order CRFs show significant improvement on all except for PHYS, which
has arguments located further apart compared to other relations. In Table 4, we see that

992

CRF with High-order Dependencies for Sequence Labeling and Segmentation

Type C1 C2 C3 SC1 SC2 SC3

Part-Whole 38.68 41.41 46.52 38.57 42.56 44.30
Phys 33.24 33.60 35.20 33.35 42.04 42.46

Org-Aff 60.56 63.28 64.93 60.77 63.72 64.86
Gen-Aff 31.00 35.84 40.16 31.19 35.85 38.09
Per-Soc 53.67 58.62 58.31 53.46 57.66 57.07

Art 40.30 43.80 46.35 40.61 49.21 48.78

Average 42.91 46.09 48.58 42.99 48.51 49.26

Table 3: F1 scores of different CRF taggers for relation argument detection on six types of
relations.

C2 C3 SC1 SC2 SC3

C1 0.001< 0.001< 0.226< 0.001< 0.001<
C2 – 0.001< 0.001> 0.001< 0.001<
C3 – – 0.001> 0.441> 0.074<

SC1 – – – 0.001< 0.001<
SC2 – – – – 0.017<

Table 4: The values of p′ obtained in the statistical significance tests comparing CRFs and
semi-CRFs of different orders in the relation argument detection task, where the
p-value of the significance test is smaller than p′. Figures in bold are where the
difference is statistically significant at the 1% confidence level. The symbol <
(respectively >) at position (i, j) means that the system on row i performs worse
(respectively better) than the system on column j.

for this task, first-order semi-CRF does not perform significantly better than simple linear-
chain CRF. We also observe that SC3 outperforms C1, C2, and SC1 significantly, while it
outperforms C3 and SC2 with p-values at most 7.4% and 1.7% respectively. Figure 4 shows
the average number of segment label patterns and the average running time of high-order
semi-CRFs as a function of the maximum order.

The CRFs in Table 3 do not use begin-inside-outside (BIO) encoding of the labels. In
the labeling protocol described above for this problem, although the label O indicates the
outside of any argument, we do not differentiate between the beginning and the insides of
an argument. In Table 5, we report the F1 scores of C1, C2, and C3 using BIO encoding
(C1-BIO, C2-BIO, and C3-BIO respectively). We use Arg1-B, Arg2-B, and Arg1Arg2-B to
indicate the beginning of an argument and use Arg1-I, Arg2-I, and Arg1Arg2-I to indicate
the insides of an argument. The scores are computed after removing the B and I suffixes
in the labels. From the results in Table 5, BIO encoding does not help C1-BIO and C2-
BIO much, but it helps to improve C3-BIO substantially. Overall, C3-BIO achieves the
best average F1 score (51.11%) for the relation argument detection problem. Comparing
C3-BIO and SC3 on each individual relation, we note that SC3 is useful for PHYS where

993

Cuong, Ye, Lee and Chieu

0

20

40

60

80

100

120

140

160

2 3 4 5

N
u

m
b

e
r

o
f

P
a

tt
e

rn
s

Maximum Order of Features

Average Number of Patterns for

Relation Argument Detection

0

20000

40000

60000

80000

100000

120000

140000

160000

0

500

1000

1500

2000

2500

3000

2 3 4 5

T
im

e
 (

s)

T
im

e
 (

s)

Maximum Order of Features

Average Runtimes for Relation

Argument Detection

Per Iteration Time (Left axis)

Total Time (Right axis)

Figure 4: Average number of segment label patterns (left) and average running time (right)
of high-order semi-CRFs as a function of maximum order for relation argument
detection.

Type C1 C2 C3 SC3 C1-BIO C2-BIO C3-BIO

Part-Whole 38.68 41.41 46.52 44.30 38.66 41.23 50.30
Phys 33.24 33.60 35.20 42.46 33.81 34.77 36.88

Org-Aff 60.56 63.28 64.93 64.86 61.33 64.33 67.50
Gen-Aff 31.00 35.84 40.16 38.09 30.38 35.03 43.37
Per-Soc 53.67 58.62 58.31 57.07 55.07 58.50 59.37

Art 40.30 43.80 46.35 48.78 40.62 43.01 49.25

Average 42.91 46.09 48.58 49.26 43.31 46.15 51.11

Table 5: F1 scores of different (non-semi) CRF taggers for relation argument detection using
BIO encoding of the labels (C1-BIO, C2-BIO, and C3-BIO). The scores of C1, C2,
C3, and SC3 are copied from Table 3 for comparison.

the arguments are located further apart. C3-BIO, on the other hand, is useful for other
relations where the arguments are located near to each other.

3.2.2 Punctuation Prediction

In this experiment, we evaluated the performance of high-order semi-CRFs on the punc-
tuation prediction task. This task is usually used as a post-processing step for automatic
speech recognition systems to add punctuations to the transcribed conversational speech
texts (Liu et al., 2005; Lu and Ng, 2010). Previous evaluations on the IWSLT corpus (Paul,
2009) have shown that capturing long-range dependencies is useful for the task (Lu and Ng,
2010). In the experiment, we used high-order CRFs and high-order semi-CRFs to capture
long-range dependencies in the labels and showed that they outperform linear-chain CRF
and first-order semi-CRF on movie transcripts data, which contains 5450 conversational
speech texts with annotated punctuations from various movie transcripts online. We used

994

CRF with High-order Dependencies for Sequence Labeling and Segmentation

Tag C1 C2 C3 SC1 SC2 SC3

Comma 59.29 59.70 59.90 61.13 60.89 60.35
Period 75.37 75.37 75.46 75.03 78.97 78.82
QMark 58.18 59.54 60.57 57.61 74.05 73.56

All 66.21 66.53 66.85 66.73 70.85 70.47

Table 6: F1 scores for punctuation prediction task. The last row contains the micro-
averaged scores.

C2 C3 SC1 SC2 SC3

C1 0.155< 0.048< 0.043< 0.001< 0.001<
C2 – 0.153< 0.289< 0.001< 0.001<
C3 – – 0.378> 0.001< 0.001<

SC1 – – – 0.001< 0.001<
SC2 – – – – 0.044>

Table 7: The values of p′ obtained in the statistical significance tests comparing CRFs and
semi-CRFs of different orders in the punctuation prediction task, where the p-value
of the significance test is smaller than p′. Figures in bold are where the difference
is statistically significant at the 1% confidence level. The symbol < (respectively
>) at position (i, j) means that the system on row i performs worse (respectively
better) than the system on column j.

60% of the texts for training and the remaining 40% for testing. The punctuation and case
information are removed, and the words are tagged with different labels.

Originally, there are 4 labels: None, Comma, Period, and QMark, which respectively
indicate that no punctuation, a comma, a period, or a question mark comes immediately
after the current word. To help capture the long-range dependencies, we added 6 more
labels: None-Comma, None-Period, None-QMark, Comma-Comma, QMark-QMark, and
Period-Period. The left parts of these labels serve the same purpose as the original four
labels. The right parts of the labels indicate that the current word is the beginning of a text
segment which ends in comma, period, or question mark. This part is used to capture useful
information at the beginning of the segment. For example, the sentence “no, she is working.”
would be labeled as “no/Comma-Comma she/None-Period is/None working/Period”. In
this case, she is working is a text segment (with length 3) that ends with a period. This
information is marked in the label of the word working and the right part of the label of
the word she. The text segment no (with length 1) is also labeled in a similar way.

We reported the F1 scores of the models in Table 6. We used the combinations of words
and their positions relatively to the current position as zeroth-order features. For first-order
features, we used transitions without any observation, and transitions with the current or
previous words, as well as their combinations. Ck uses kth-order Markov features, while

995

Cuong, Ye, Lee and Chieu

0

200

400

600

800

1000

1200

1400

1600

2 3 4 5

N
u

m
b

e
r
 o

f
P

a
t
t
e

r
n

s

Maximum Order of Features

Number of Patterns for

Punctuation Prediction

0

20000

40000

60000

80000

100000

120000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 3 4 5

T
im

e
 (

s)

T
im

e
 (

s)

Maximum Order of Features

 Runtimes for Punctuation Prediction

Per Iteration Time (Left axis)

Total Time (Right axis)

Figure 5: Number of segment label patterns (left) and running time (right) of high-order
semi-CRFs as a function of maximum order for the punctuation prediction data
set.

SCk uses kth-order semi-Markov transition features with the observed words in the last
segment.

The scores reported in Table 6 are lower than those of the IWSLT corpus (Lu and Ng,
2010) because online movie transcripts are usually annotated by different people, and they
tend to put the punctuations slightly differently. Besides, in movies, people sometimes use
declarative sentences as questions. Hence, the punctuations are harder to predict. Never-
theless, the results have clearly shown that high-order semi-CRFs can capture long-range
dependencies with the help of additional labels and can achieve more than 3.6% improve-
ment in F1 score compared to the CRFs and first-order semi-CRF. SCk also outperforms
Ck for all k. For this task, using third-order semi-Markov features decrease the performance
of SC3 slightly compared to SC2. From Table 7, we see that the p-value of the statistical
significance test comparing SC2 and SC3 is at most 4.4%, while both SC2 and SC3 signif-
icantly outperform the other models. Figure 5 shows the number of segment label patterns
and the running time of high-order semi-CRFs as a function of the maximum order.

3.2.3 Bibliography Extraction

In this experiment, we consider the problem of bibliography extraction in scientific papers.
For this problem, we need to divide a reference, such as those appearing in the References
section of this paper, into the following 13 types of segments: Author, Booktitle, Date,
Editor, Institution, Journal, Location, Note, Pages, Publisher, Tech, Title, or Volume. The
problem can be naturally considered as a sequence labeling problem with the above labels.
We evaluated the performance of high-order semi-CRFs and CRFs on the bibliography
extraction problem with the Cora Information Extraction data set.4 In the data set, there
are 500 instances of references. We used 300 instances for training and the remaining 200
instances for testing.

We reported in Table 8 the F1 scores of the models. In C1, zeroth-order features include
the surrounding words at each position and letter n-grams, and first-order features include

4. The data set is available at http://people.cs.umass.edu/~mccallum/data.html.

996

http://people.cs.umass.edu/~mccallum/data.html

CRF with High-order Dependencies for Sequence Labeling and Segmentation

Tag C1 C2 C3 SC1 SC2 SC3

Author 94.21 91.65 93.67 93.97 94.74 94.00
Booktitle 73.05 75.00 72.39 75.74 78.11 76.47

Date 95.67 96.68 94.36 95.19 95.43 95.70
Editor 68.57 72.73 66.67 57.14 58.82 54.55

Institution 68.57 64.71 64.71 70.27 70.27 64.86
Journal 78.08 78.32 78.32 77.55 77.55 75.68
Location 70.33 69.66 68.13 68.13 67.39 65.22

Note 66.67 57.14 57.14 57.14 66.67 66.67
Pages 84.82 87.83 85.34 85.96 86.96 87.18

Publisher 84.62 84.62 83.54 84.62 86.08 86.08
Tech 77.78 80.00 80.00 77.78 77.78 77.78
Title 89.62 85.42 86.73 90.18 92.23 90.95

Volume 66.23 75.68 72.60 71.90 72.37 75.00

All 85.34 85.47 84.77 85.67 86.67 86.07

Table 8: F1 scores for bibliography extraction task. The last row contains the micro-
averaged scores.

C2 C3 SC1 SC2 SC3

C1 0.393< 0.174> 0.198< 0.004< 0.095<
C2 – 0.073> 0.351< 0.019< 0.161<
C3 – – 0.095< 0.002< 0.030<

SC1 – – – 0.003< 0.200<
SC2 – – – – 0.025>

Table 9: The values of p′ obtained in the statistical significance tests comparing CRFs and
semi-CRFs of different orders in the bibliography extraction task, where the p-
value of the significance test is smaller than p′. Figures in bold are where the
difference is statistically significant at the 1% confidence level. The symbol <
(respectively >) at position (i, j) means that the system on row i performs worse
(respectively better) than the system on column j.

transitions with words at the current or previous positions. Ck and SCk (1 ≤ k ≤ 3) use
additional kth-order Markov and semi-Markov transition features.

From Table 8, high-order semi-CRFs perform generally better than high-order CRFs
and first-order semi-CRF. SC2 achieves the best overall performance with 86.67% F1 score.
From Table 9, SC2 outperforms C2 and SC3 with a p-value at most 1.9% and 2.5% re-
spectively, while it outperforms other models significantly. Figure 6 shows the number of
segment label patterns and the running time of high-order semi-CRFs as a function of the
maximum order.

997

Cuong, Ye, Lee and Chieu

0

100

200

300

400

500

600

700

2 3 4 5

N
u

m
b

e
r

o
f

P
a

tt
e

rn
s

Maximum Order of Features

Number of Patterns for

 Bibliography Extraction

0

22000

44000

66000

88000

110000

132000

154000

176000

198000

220000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

2 3 4 5

T
im

e
 (

s)

T
im

e
 (

s)

Maximum Order of Features

 Runtimes for Bibliography Extraction

Per Iteration Time (Left axis)

Total Time (Right axis)

Figure 6: Number of segment label patterns (left) and running time (right) of high-order
semi-CRFs as a function of maximum order for the bibliography extraction data
set.

3.3 Discussions

From Figures 4, 5, and 6, the number of segment label patterns of high-order features
grows about linearly in the maximum order of features. The running time of high-order
semi-CRFs on the bibliography extraction task is also nearly linear in the maximum order
of the features, while the running times on the relation argument detection task and the
punctuation prediction task grow more than linearly in the maximum order of features. We
also note that from the time complexity discussions in Section 2.5 and the setup for these
experiments, the time complexity of our algorithm is O(|Z|2), where |Z| is the number of
segment label patterns.

From Tables 6 and 8, there is a drop in F1 scores for the punctuation prediction task
and the bibliography extraction task when we increase the order of the semi-CRFs from
2 to 3. For the punctuation task, the drop is not very significant and the third-order
semi-CRF still performs significantly better than the CRFs or the first-order semi-CRFs.
For the bibliography extraction task, there is a big drop in the F1 scores for some of the
labels and the third-order semi-CRF does not significantly outperform the other models.
However, it does not indicate that the third-order semi-CRF is not useful for this task since
we fixed the regularization parameter σreg = 1 for all the models in this experiment. If we
set σreg = 10 for the third-order semi-CRF, it can achieve 87.45% F1 score and outperform
all the other models. In practice, if we have enough data, we can choose a suitable σreg for
each individual model using a validation data set or cross-validation on the training data.
We can also allow different regularizers for features of different orders5 and use a validation
set to determine the most suitable combination of regularizers.

An important question in practice is which features (or equivalently, label patterns)
should be included in the model. In our experiments, we used all the label patterns that
appear in the training data. This simple approach is usually reasonable with a suitable
value of the regularization parameter σreg. For applications where the pattern sparsity
assumption is not satisfied, but certain patterns do not appear frequently enough and are

5. This would require a slight change to our regularized log-likelihood function.

998

CRF with High-order Dependencies for Sequence Labeling and Segmentation

not really important, then it is useful to see how we can select a subset of features with few
distinct label patterns automatically. One possible approach would be to use boosting type
methods (Dietterich et al., 2004) to sequentially select useful features.

For high-order CRFs, it should be possible to use kernels within the approach here. On
the handwritten character problem, Taskar et al. (2004) reported substantial improvement
in performance with the use of kernels. Use of kernels together with high-order features
may lead to further improvements. However, we note that the advantage of the higher
order features may become less substantial as the observations become more powerful in
distinguishing the classes. Whether the use of higher order features together with kernels
brings substantial improvement in performance is likely to be problem dependent.

4. Related Work

A commonly used inference algorithm for CRFs is the clique tree algorithm (Huang and
Darwiche, 1996). Defining a feature depending on k (not necessarily consecutive) labels
will require forming a clique of size k, resulting in a clique-tree with tree-width greater or
equal to k. Inference on such a clique tree will be exponential in k. For sequence models, a
feature of order k can be incorporated into a kth-order Markov chain, but the complexity
of inference is again exponential in k. Under the label pattern sparsity assumption, our
algorithm achieves efficiency by maintaining only information related to a few occurred
patterns, while previous algorithms maintain information about all (exponentially many)
possible patterns.

Long distance dependencies can also be captured using hierarchical models such as
Hierarchical Hidden Markov Model (HHMM) (Fine et al., 1998) or Probabilistic Context
Free Grammar (PCFG) (Heemskerk, 1993). The time complexity of inference in an HHMM
is O(min{nl3, n2l}) (Fine et al., 1998; Murphy and Paskin, 2002), where n is the number of
states and l is the length of the sequence. Discriminative versions such as hierarchical semi-
CRF have also been studied (Truyen et al., 2008). Inference in PCFG and its discriminative
version can also be efficiently done in O(ml3) where m is the number of productions in
the grammar (Jelinek et al., 1992). These methods are able to capture dependencies of
arbitrary lengths, unlike kth-order Markov chains. However, to do efficient learning with
these methods, the hierarchical structure of the examples needs to be provided. For example,
if we use PCFG to do character sequence labeling, we need to provide the parse trees for
efficient learning; providing the labels for each character is not sufficient. Hence, a training
set that has not been labeled with hierarchical labels will need to be relabeled before it
can be trained efficiently. Alternatively, methods that employ hidden variables can be used
(e.g., to infer the hidden parse tree) but the optimization problem is no longer convex
and local optima can sometimes be a problem. The high-order semi-CRF presented in
this paper allows us to capture a different class of dependencies that does not depend
on hierarchical structures in the data, while keeping the high-order semi-CRF objective a
convex optimization problem.

Another work on using high-order features for CRFs was independently done by Qian
et al. (2009). Their work applies to a larger class of CRFs, including those requiring
exponential time for inference, and they did not identify subclasses for which inference is
guaranteed to be efficient. For sequence labeling with high-order features, Qian and Liu

999

Cuong, Ye, Lee and Chieu

(2012) developed an efficient decoding algorithm under the assumption that all the high-
order features have non-negative weights. Their decoding algorithm requires quadratic
running time on the number of high-order features in the worst case.

There are other models similar to the high-order CRF with pattern sparsity assumption
(Ye et al., 2009), a special case of the high-order semi-CRF presented in this paper. They
include the CRFs that use the sparse higher-order potentials (Rother et al., 2009) or the
pattern-based potentials (Komodakis and Paragios, 2009). Rother et al. (2009) proposed a
method for minimization of sparse higher order energy functions by first transforming them
into a quadratic functions and then employing efficient inference algorithms to minimize
these resulting functions. For the pattern-based potentials, Komodakis and Paragios (2009)
derived an efficient message-passing algorithm for inference. The algorithm is based on the
master-slave framework where the original high-order optimization problem is decomposed
into smaller subproblems that can be solved easily. Other tractable inference algorithms
with high-order potentials include the α-expansion and αβ-swap algorithms for the Pn
Potts model (Kohli et al., 2007) and the MAP message passing algorithm for cardinality
and order potentials (Tarlow et al., 2010). A special case of the order potentials, the
before-after potential (Tarlow et al., 2010), can also be used to capture some semi-Markov
structures in the data labelings.

5. Conclusion

The label pattern sparsity assumption often holds in real applications, and we give efficient
inference algorithms for CRFs using high-order dependencies between labels or segments
when the pattern sparsity assumption is satisfied. This allows high-order features to be
explored in feature engineering for real applications. We studied the conditions that are
favorable for using high-order features in CRFs with a synthetic data set, and demonstrated
that using simple high-order features can lead to performance improvement on a handwriting
recognition problem. We also demonstrated that high-order semi-CRFs outperform high-
order CRFs and first-order semi-CRF in segmentation problems like relation argument
detection, punctuation prediction, and bibliography extraction.

Acknowledgments

This material is based on research sponsored by DSO under grant DSOCL11102 and by
the Air Force Research Laboratory, under agreement number FA2386-09-1-4123. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of the Air Force Research
Laboratory or the U.S. Government. The authors also would like to thank Sumit Bhag-
wani for his help with the HOSemiCRF package and the anonymous reviewers for their
constructive comments.

1000

CRF with High-order Dependencies for Sequence Labeling and Segmentation

Appendix A. Correctness of the Forward and Backward Algorithms

In this appendix, we will prove the correctness of the forward and backward algorithms
described in Section 2. We shall prove two lemmas and then provide the proofs for the
correctness of the forward and backward algorithms as well as the marginal computation.

Lemma 1 below gives the key properties that can be used in an inductive proof. Lemma
1(a) shows that we can partition the segmentations using the forward states. Lemma 1(b-
c) show that considering all (pk, y) : pi ≤sP pky is sufficient for obtaining the sum over
all sequences pi ≤sP zy, while Lemma 1(d) is used to show that the features are counted
correctly.

Lemma 1 Let s be a segmentation for a prefix of x. Let ω(s, t) = exp(
∑m

k=1 λkfk(x, s, t))

and ω(s) = exp(
∑m

k=1

∑|s|
t=1 λkfk(x, s, t)) =

∏|s|
t=1 ω(s, t).

(a) For any segment label sequence z, there exists a unique pi ∈ P such that pi ≤sP z.
(b) For any segment label sequence z and y ∈ Y, if pk ≤sP z and pi ≤sP pky, then pi ≤sP zy.
(c) For any za ∈ Z, y ∈ Y, and any segment label sequence z, if za ≤s zy, and pk ≤sP z,
then za ≤s pky.
(d) Let s = ((u1, v1, y1), . . . , (u|s|, v|s|, y|s|)) and let pkt ≤sP y1y2 . . . yt for t = 1, . . . , |s|. Then

ω(s) =
∏|s|
t=1 Ψx(ut, vt,p

kt−1yt) = ω(s1:|s|−1)Ψx(u|s|, v|s|,p
k|s|−1y|s|).

A.1 Proof of Lemma 1

(a) The intersection of P and the set of prefixes of z contains at least one element ε, and
is finite.

(b) We have pi ≤s pky ≤s zy. Furthermore, if pj ≤s zy, then we have pj
1:|pj |−1 ≤

s z. Thus,

pj
1:|pj |−1 ≤

s pk since pk ≤sP z. Hence, pj = pj
1:|pj |−1y ≤

s pky. Since pi ≤sP pky, we

have pj ≤s pi. Therefore, pi ≤sP zy.

(c) Since za1:|za|−1 ≤
s z and pk ≤sP z, we have za1:|za|−1 ≤

s pk. Thus, za ≤s pky.

(d) Straightforward from part (c) and definition of Ψx.

Lemma 2 below serves the same purpose as Lemma 1 for showing correctness.

Lemma 2 Let s be a segmentation for a suffix of x. Let ω(s, t|si) = exp(
∑m

k=1 λkfk(x, s, t|si))
and ω(s|si) = exp(

∑m
k=1

∑|s|
t=1 λkfk(x, s, t|si)) =

∏|s|
t=1 ω(s, t|si).

(a) For all si ∈ S and y ∈ Y, there exists a unique sk ∈ S such that sk ≤sS siy.
(b) For any za ∈ Z and any segment label sequences z1, z2, if za ≤s z1z2, and si ≤sS z1,
then za ≤s siz2.
(c) If sk ≤sS siy, and (u, v, y) · s is a segmentation for xu:|x|, then ω((u, v, y) · s|si) =

Ψx(u, v, siy)ω(s|sk).

A.2 Proof of Lemma 2

(a) Note that y ∈ S and y ≤s siy and the number of suffixes of siy is finite.

1001

Cuong, Ye, Lee and Chieu

(b) This is clearly true if za is not longer than z2. If za is longer than z2, let p be the
prefix of za obtained by stripping off the suffix z2. Then p is a suffix of z1 and p ∈ S.
Since si is the longest suffix of z1 in S, p is a suffix of si, thus za = pz2 is a suffix of
siz2.

(c) From part (b), we have ω(s|siy) = ω(s|sk). Thus, ω((u, v, y)·s|si) = Ψx(u, v, siy)ω(s|siy) =
Ψx(u, v, siy)ω(s|sk).

A.3 Correctness of the Forward Algorithm

Given the forward variables αx(j,pi) as defined in Section 2

αx(j,pi) =
∑

s∈pj,pi

exp(

m∑
k=1

|s|∑
t=1

λkfk(x, s, t)) =
∑

s∈pj,pi

ω(s),

we prove that the following recurrence can be used to compute αx(j,pi)’s by induction on
j,

αx(j,pi) =
L−1∑
d=0

∑
(pk,y):pi≤s

Pp
ky

Ψx(j − d, j,pky)αx(j − d− 1,pk). (2)

Base case: If j = 1, for any pi ∈ P, we can initialize the values of αx(1,pi) such that

αx(1,pi) =
∑

s∈p1,pi

exp(
m∑
k=1

|s|∑
t=1

λkfk(x, s, t)) =
∑

s∈p1,pi

ω(s).

Inductive step: Assume that for all j′ < j and pi ∈ P, we have

αx(j′,pi) =
∑

s∈pj′,pi

exp(
m∑
k=1

|s|∑
t=1

λkfk(x, s, t)) =
∑

s∈pj′,pi

ω(s).

Then, using Lemma 1,

αx(j,pi) =
∑

s∈pj,pi
ω(s)

=
∑L−1

d=0

∑
(pk,y):pi≤s

Pp
ky

∑
s∈p

j−d−1,pk
ω(s · (j − d, j, y))

=
∑L−1

d=0

∑
(pk,y):pi≤s

Pp
ky

∑
s∈p

j−d−1,pk
[Ψx(j − d, j,pky)

∏|s|
t=1 ω(s, t)]

=
∑L−1

d=0

∑
(pk,y):pi≤s

Pp
ky Ψx(j − d, j,pky)

∑
s∈p

j−d−1,pk

∏|s|
t=1 ω(s, t)

=
∑L−1

d=0

∑
(pk,y):pi≤s

Pp
ky Ψx(j − d, j,pky)αx(j − d− 1,pk).

Hence, by induction, Recurrence (2) correctly computes the forward variables αx(j,pi)’s.

1002

CRF with High-order Dependencies for Sequence Labeling and Segmentation

A.4 Correctness of the Backward Algorithm

Given the backward variables βx(j, si) as defined in Section 2

βx(j, si) =
∑
s∈sj

exp(
m∑
k=1

|s|∑
t=1

λkfk(x, s, t|si)) =
∑
s∈sj

ω(s|si),

we prove that the following recurrence can be used to compute βx(j, si)’s by induction on
j,

βx(j, si) =
L−1∑
d=0

∑
(sk,y):sk≤s

Ss
iy

Ψx(j, j + d, siy)βx(j + d+ 1, sk). (3)

Base case: If j = |x|, for any si ∈ S, we can initialize the values of βx(|x|, si) such that

βx(|x|, si) =
∑
s∈s|x|

exp(
m∑
k=1

|s|∑
t=1

λkfk(x, s, t|si)) =
∑
s∈s|x|

ω(s|si).

Inductive step: Assume that for all j′ > j and si ∈ S, we have

βx(j′, si) =
∑
s∈sj′

exp(

m∑
k=1

|s|∑
t=1

λkfk(x, s, t|si)) =
∑
s∈sj′

ω(s|si).

Then, using Lemma 2,

βx(j, si) =
∑

s∈sj ω(s|si)
=

∑L−1
d=0

∑
(sk,y):sk≤s

Ss
iy

∑
s∈sj+d+1

ω((j, j + d, y) · s|si)
=

∑L−1
d=0

∑
(sk,y):sk≤s

Ss
iy

∑
s∈sj+d+1

Ψx(j, j + d, siy)ω(s|sk)
=

∑L−1
d=0

∑
(sk,y):sk≤s

Ss
iy Ψx(j, j + d, siy)βx(j + d+ 1, sk).

Hence, by induction, Recurrence (3) correctly computes the backward variables βx(j, si)’s.

A.5 Correctness of the Marginal Computation

Consider a segmentation s such that the segment label sequence of s contains z as a sub-
sequence with the last segment of z having boundaries (u, v). Suppose s = s1 · (u, v, y) · s2
and let y1 be the segment label sequence of s1. If pi ≤sP y1, then we have piy ≤sS y1y. In
this case, it can be verified that ω(s) = ω(s1)Ψ(u, v,piy)ω(s2|piy). The marginal formula
thus follows easily.

Appendix B. An Example for the Algorithms

In this appendix, we give an example to illustrate our algorithms. For simplicity, we use the
second-order CRF as our model. Extensions to higher-order CRFs or semi-CRFs should
be straightforward by respectively expanding the set of segment label patterns or summing
over all the possible lengths d of the segments.

1003

Cuong, Ye, Lee and Chieu

i fi(x, s, t)

1 xt = Peter ∧ st = P
2 xt = goes ∧ st = O
3 xt = to ∧ st = O
4 xt = Britain ∧ st = L
5 xt = and ∧ st = O
6 xt = France ∧ st = L
7 xt = annually ∧ st = O
8 xt = . ∧ st = O
9 st−2st−1st = LOL

Table 10: List of features for the example in Appendix B.

t\z P O L LOL

1 1 0 0 0
2 0 1 0 0
3 0 1 0 0
4 0 0 1 0
5 0 1 0 0
6 0 0 1 1
7 0 1 0 0
8 0 1 0 0

Table 11: The values of
∑

i:zi=z λigi(x, ut, vt) =
∑

i:zi=z λigi(x, t, t).

In this example, let x be the sentence “Peter goes to Britain and France annually.”.
Assume there are 9 binary features defined by Boolean predicates as in Table 10, and each
λi = 1. The label set is {P,O,L} where P represents Person, L represents Location and
O represents Others. Note that for second-order CRFs, the length of all the segments is 1
and thus st = yt for all t.

The segment label pattern set is Z = {P,O,L, LOL}. Table 11 shows the sum of the
weights for features with the same segment label pattern at each position. We have P =
{ε, P,O, L, LO} and S = {P,O,L, PP, PO, PL,OP,OO,OL,LP,LO,LL,LOP,LOO,LOL}.
The tables for lnαx and lnβx are shown in Table 12 and Table 13 respectively.

In Figure 7, we give a diagram to show the messages passed from step j − 1 to step j
to compute the forward variables αx. We also give a diagram in Figure 8 to show some
messages passed from step j + 1 to step j to compute the backward variables βx.

We illustrate the computation of αx with αx(6, L). The condition (pk, y) : pi ≤sP pky
with pi = L gives us the following 5 pairs as (pk, y): {(ε, L), (P,L), (O,L), (L,L), (LO,L)}.
Thus,

αx(6, L) = αx(5, ε)Ψx(6, 6, L) + αx(5, P)Ψx(6, 6, PL) + αx(5, O)Ψx(6, 6, OL) +

αx(5, L)Ψx(6, 6, LL) + αx(5, LO)Ψx(6, 6, LOL)

= 0Ψx(6, 6, L) + αx(5, P)e+ αx(5, O)e+ αx(5, L)e+ αx(5, LO)e2.

1004

CRF with High-order Dependencies for Sequence Labeling and Segmentation

),1(x Oj),1(x Pj),1(x j),1(x Lj),1(x LOj

),(x Oj),(x Pj),(x j),(x Lj),(x LOj

Figure 7: Messages passed from step j − 1 to step j in order to compute the forward
variables. For example, αx(j,O) is computed from αx(j − 1, ε), αx(j − 1, P),
αx(j − 1, O), and αx(j − 1, LO).

),(x OLj),(x LLj),(x LOLj. . .),(x PLj),(x Lj

),1(x LPj),1(x LOj),1(x LLj

.

.

Figure 8: Some messages passed from step j + 1 to step j in order to compute the back-
ward variables. In this example, all the variables βx(j, L), βx(j, PL), βx(j,OL),
βx(j, LL), and βx(j, LOL) are computed from βx(j + 1, LP), βx(j + 1, LO), and
βx(j + 1, LL).

j\pi ε P O L LO

1 -∞ 1.00 0.00 0.00 -∞
2 -∞ 1.55 2.31 1.55 1.00
3 -∞ 3.10 3.87 3.12 2.55
4 -∞ 4.65 4.42 5.65 3.10
5 -∞ 6.21 6.35 6.21 6.65
6 -∞ 7.76 7.52 9.21 6.21
7 -∞ 9.60 9.45 9.59 10.21
8 -∞ 11.14 11.91 11.14 10.59

Table 12: The values of lnαx(j,pi).

We also have Zx = αx(8, ε) + αx(8, P) + αx(8, O) + αx(8, L) + αx(8, LO) = e12.696.

We now illustrate the computation of βx with βx(5, OL). The condition (sk, y) : sk ≤sS siy
with si = OL gives us the following 3 pairs as (sk, y): {(LP,P), (LO,O), (LL,L)}. Thus,

βx(5, OL) = βx(6, LP)Ψx(5, 5, OLP) + βx(6, LO)Ψx(5, 5, OLO) +

βx(6, LL)Ψx(5, 5, OLL)

= βx(6, LP)e0 + βx(6, LO)e+ βx(6, LL)e0.

The values of the marginals P (j, j, z|x) are shown in Table 14. We illustrate the
computation of P (6, 6, LOL|x) from the forward and backward variables. The condition

1005

Cuong, Ye, Lee and Chieu

j\si P O L PP PO PL OP OO OL LP LO LL LOP LOO LOL

1 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70
2 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14
3 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59
4 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04
5 6.21 6.21 6.66 6.21 6.21 6.66 6.21 6.21 6.66 6.21 6.21 6.66 6.21 6.21 6.66
6 4.65 4.65 4.65 4.65 4.65 4.65 4.65 4.65 4.65 4.65 5.34 4.65 4.65 4.65 4.65
7 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10
8 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55

Table 13: The values of lnβx(j, si).

(pi, y) : z ≤s piy with z = LOL gives us the only pair (LO,L) as (pi, y). Hence,

P (6, 6, LOL|x) =
αx(5, LO)βx(7, LOL)Ψx(6, 6, LOL)

Zx

=
αx(5, LO)βx(7, LOL)e2

Zx
.

j\z P O L LOL

1 0.58 0.21 0.21 0.00
2 0.21 0.58 0.21 0.00
3 0.21 0.58 0.21 0.03
4 0.16 0.16 0.68 0.08
5 0.16 0.68 0.16 0.01
6 0.16 0.16 0.68 0.39
7 0.21 0.58 0.21 0.01
8 0.21 0.58 0.21 0.08

Table 14: The marginals P (j, j, z|x).

References

Aron Culotta, David Kulp, and Andrew McCallum. Gene prediction with conditional
random fields. Technical Report UM-CS-2005-028, University of Massachusetts, Amherst,
2005.

Thomas G. Dietterich, Adam Ashenfelter, and Yaroslav Bulatov. Training conditional ran-
dom fields via gradient tree boosting. In Proceedings of the 21st International Conference
on Machine Learning, 2004.

Richard Durbin. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic
Acids. Cambridge University Press, 1998.

Shai Fine, Yoram Singer, and Naftali Tishby. The hierarchical hidden Markov model:
analysis and applications. Machine Learning, 32(1):41–62, 1998.

1006

CRF with High-order Dependencies for Sequence Labeling and Segmentation

Zhou GuoDong, Su Jian, Zhang Jie, and Zhang Min. Exploring various knowledge in
relation extraction. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics, pages 427–434, 2005.

Josée S. Heemskerk. A probabilistic context-free grammar for disambiguation in morpho-
logical parsing. In Proceedings of the 6th Conference of the European Chapter of the
Association for Computational Linguistics, pages 183–192, 1993.

Cecil Huang and Adnan Darwiche. Inference in belief networks: a procedural guide. Inter-
national Journal of Approximate Reasoning, 15(3):225–263, 1996.

Sorin Istrail. Statistical mechanics, three-dimensionality and NP-completeness: I. Univer-
sality of intractability for the partition function of the Ising model across non-planar
lattices. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing,
pages 87–96, 2000.

Frederick Jelinek, John D. Lafferty, and Robert L. Mercer. Basic methods of probabilis-
tic context free grammars. In Speech Recognition and Understanding. Recent Advances,
Trends, and Applications. Springer, 1992.

Robert H. Kassel. A Comparison of Approaches to On-line Handwritten Character Recog-
nition. PhD thesis, Massachusetts Institute of Technology, 1995.

Pushmeet Kohli, M. Pawan Kumar, and Philip H. S. Torr. P3 & beyond: solving ener-
gies with higher order cliques. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–8, 2007.

Nikos Komodakis and Nikos Paragios. Beyond pairwise energies: efficient optimization for
higher-order MRFs. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 2985–2992, 2009.

John Lafferty, Andrew McCallum, and Fernando C.N. Pereira. Conditional random fields:
probabilistic models for segmenting and labeling sequence data. In Proceedings of the
18th International Conference on Machine Learning, 2001.

Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45(3):503–528, 1989.

Yang Liu, Andreas Stolcke, Elizabeth Shriberg, and Mary Harper. Using conditional random
fields for sentence boundary detection in speech. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics, pages 451–458, 2005.

Wei Lu and Hwee Tou Ng. Better punctuation prediction with dynamic conditional ran-
dom fields. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pages 177–186, 2010.

Andrew McCallum and Wei Li. Early results for named entity recognition with conditional
random fields, feature induction and web-enhanced lexicons. In Proceedings of the 7th
Conference on Computational Natural Language Learning, pages 188–191, 2003.

1007

Cuong, Ye, Lee and Chieu

Kevin P. Murphy and Mark A. Paskin. Linear-time inference in hierarchical HMMs. In
Advances in Neural Information Processing Systems, pages 833–840, 2002.

Viet Cuong Nguyen, Nan Ye, Wee Sun Lee, and Hai Leong Chieu. Semi-Markov condi-
tional random field with high-order features. In ICML Workshop on Structured Sparsity:
Learning and Inference, 2011.

Eric W. Noreen. Computer Intensive Methods for Testing Hypotheses: An Introduction.
Wiley, 1989.

Michael Paul. Overview of the IWSLT 2009 evaluation campaign. In Proceedings of the
International Workshop on Spoken Language Translation, pages 3–27, 2009.

Xian Qian and Yang Liu. Sequence labeling with non-negative weighted higher order fea-
tures. In Proceedings of the 26th Conference on Artificial Intelligence, 2012.

Xian Qian, Xiaoqian Jiang, Qi Zhang, Xuanjing Huang, and Lide Wu. Sparse higher order
conditional random fields for improved sequence labeling. In Proceedings of the 26th
International Conference on Machine Learning, pages 849–856, 2009.

Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

Carsten Rother, Pushmeet Kohli, Wei Feng, and Jiaya Jia. Minimizing sparse higher order
energy functions of discrete variables. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1382–1389, 2009.

Sunita Sarawagi and William W. Cohen. Semi-Markov conditional random fields for infor-
mation extraction. In Advances in Neural Information Processing Systems, pages 1185–
1192, 2004.

Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In Proceed-
ings of the Human Language Technology Conference of the North American Chapter of
the Association for Computational Linguistics, pages 134–141, 2003.

Daniel Tarlow, Inmar E. Givoni, and Richard S. Zemel. HOP-MAP: efficient message
passing with high order potentials. In International Conference on Artificial Intelligence
and Statistics, pages 812–819, 2010.

Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin Markov networks. In Ad-
vances in Neural Information Processing Systems, 2004.

Tran T. Truyen, Dinh Q. Phung, Hung H. Bui, and Svetha Venkatesh. Hierarchical semi-
Markov conditional random fields for recursive sequential data. In Advances in Neural
Information Processing Systems, pages 1657–1664, 2008.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support
vector machine learning for interdependent and structured output spaces. In Proceedings
of the 21st International Conference on Machine Learning, 2004.

1008

CRF with High-order Dependencies for Sequence Labeling and Segmentation

Christopher Walker, Stephanie Strassel, Julie Medero, and Kazuaki Maeda. ACE 2005
multilingual training corpus. Linguistic Data Consortium, Philadelphia, 2006.

Nan Ye, Wee Sun Lee, Hai Leong Chieu, and Dan Wu. Conditional random fields with
high-order features for sequence labeling. In Advances in Neural Information Processing
Systems, pages 2196–2204, 2009.

Alexander Yeh. More accurate tests for the statistical significance of result differences. In
Proceedings of the 18th International Conference on Computational Linguistics, pages
947–953, 2000.

Min Zhang, Jie Zhang, and Jian Su. Exploring syntactic features for relation extraction
using a convolution tree kernel. In Proceedings of the Human Language Technology Con-
ference of the North American Chapter of the Association for Computational Linguistics,
pages 288–295, 2006.

1009

Journal of Machine Learning Research 15 (2014) 1011-1039 Submitted 9/13; Published 3/14

Ellipsoidal Rounding for Nonnegative Matrix Factorization
Under Noisy Separability

Tomohiko Mizutani mizutani@kanagawa-u.ac.jp

Department of Information Systems Creation

Kanagawa University

Yokohama, 221-8686, Japan

Editor: Nathan Srebro

Abstract

We present a numerical algorithm for nonnegative matrix factorization (NMF) problems
under noisy separability. An NMF problem under separability can be stated as one of
finding all vertices of the convex hull of data points. The research interest of this paper is
to find the vectors as close to the vertices as possible in a situation in which noise is added
to the data points. Our algorithm is designed to capture the shape of the convex hull of
data points by using its enclosing ellipsoid. We show that the algorithm has correctness and
robustness properties from theoretical and practical perspectives; correctness here means
that if the data points do not contain any noise, the algorithm can find the vertices of their
convex hull; robustness means that if the data points contain noise, the algorithm can find
the near-vertices. Finally, we apply the algorithm to document clustering, and report the
experimental results.

Keywords: nonnegative matrix factorization, separability, robustness to noise, enclosing
ellipsoid, document clustering

1. Introduction

This paper presents a numerical algorithm for nonnegative matrix factorization (NMF)
problems under noisy separability. The problem can be regarded as a special case of an
NMF problem. Let Rd×m+ be the set of d-by-m nonnegative matrices, and N be the set of
nonnegative integer numbers. A nonnegative matrix is a real matrix whose elements are
all nonnegative. For a given A ∈ Rd×m+ and r ∈ N, the nonnegative matrix factorization

(NMF) problem is to find F ∈ Rd×r+ and W ∈ Rr×m+ such that the product FW is as close
to A as possible. The nonnegative matrices F and W give a factorization of A of the form,

A = FW + N ,

where N is a d-by-m matrix. This factorization is referred to as the NMF of A.

Recent studies have shown that NMFs are useful for tackling various problems such
as facial image analysis (Lee and Seung, 1999), topic modeling (Arora et al., 2012b, 2013;
Ding et al., 2013), document clustering (Xu et al., 2003; Shahnaz et al., 2006), hyperspectral
unmixing (Nascimento and Dias, 2005; Miao and Qi, 2007; Gillis and Vavasis, 2014), and
blind source separation (Cichocki et al., 2009). Many algorithms have been developed in
the context of solving such practical applications. However, there are some drawbacks in

c©2014 Tomohiko Mizutani.

Mizutani

the use of NMFs for such applications. One of them is in the hardness of solving an NMF
problem. In fact, the problem has been shown to be NP-hard by Vavasis (2009).

As a remedy for the hardness of the problem, Arora et al. (2012a) proposed to exploit
the notion of separability, which was originally introduced by Donoho and Stodden (2003)
for the uniqueness of NMF. An NMF problem under separability becomes a tractable one.
Separability assumes that A ∈ Rd×m+ can be represented as

A = FW for F ∈ Rd×r+ and W = (I,K)Π ∈ Rr×m+ , (1)

where I is an r-by-r identity matrix, K is an r-by-(m − r) nonnegative matrix, and Π is
an m-by-m permutation matrix. This means that each column of F corresponds to that
of A up to a scaling factor. A matrix A is said to be a separable matrix if it can be
represented in the form (1). In this paper, we call F the basis matrix of a separable matrix,
and W , as well as its submatrix K, the weight matrix. Noisy separability assumes that
a separable matrix A contains a noise matrix N such that Ã = A + N , where N is a
d-by-m matrix. Arora et al. showed that there exists an algorithm for finding the near-basis
matrix of a noisy separable one if the noise is small in magnitude. Although a separability
assumption restricts the fields of application for NMFs, it is known to be reasonable at
least, in the contexts of document clustering (Kumar et al., 2013), topic modeling (Arora
et al., 2012a,b, 2013), and hyperspectral unmixing (Gillis and Vavasis, 2014). In particular,
this assumption is widely used as a pure-pixel assumption in hyperspectral unmixing (see,
for instance, Nascimento and Dias, 2005; Miao and Qi, 2007; Gillis and Vavasis, 2014).

An NMF problem under noisy separability is to seek for the basis matrix of a noisy
separable one. The problem is formally described as follows:

Problem 1 Let a data matrix M be a noisy separable matrix of size d-by-m. Find an
index set I with cardinality r on {1, . . . ,m} such that M(I) is as close to the basis matrix
F as possible.

Here, M(I) denotes a submatrix of M that consists of every column vector with an index
in I. We call the column vector of M a data point and that of the basis matrix F a
basis vector. An ideal algorithm for the problem should have correctness and robustness
properties; correctness here means that, if the data matrix M is just a separable one, the
algorithm can find the basis matrix; robustness means that, if the data matrix M is a noisy
separable one, the algorithm can find the near-basis matrix. A formal description of the
properties is given in Section 2.1

We present a novel algorithm for Problem 1. The main contribution of this paper is
to show that the algorithm has correctness and robustness properties from theoretical and
practical perspectives. It is designed on the basis of the geometry of a separable matrix.
Under reasonable assumptions, the convex hull of the column vectors of a separable matrix
forms a simplex, and in particular, the basis vectors correspond to the vertices. Therefore, if
all vertices of a simplex can be found, we can obtain the basis matrix of the separable matrix.
Our algorithm uses the fact that the vertices of simplex can be found by an ellipsoid. That
is, if we draw the minimum-volume enclosing ellipsoid (MVEE) for a simplex, the ellipsoid
only touches its vertices. More precisely, we give plus and minus signs to the vertices of a
simplex, and take the convex hull; it becomes a crosspolytope having the simplex as one of

1012

Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy Separability

the facets. Then, the MVEE for the crosspolytope only touches the vertices of the simplex
with plus and minus signs.

Consider Problem 1 without noise. In this case, the data matrix is just a separable
one. Our algorithm computes the MVEE for the data points and outputs the points on the
boundary of the ellipsoid. Then, the obtained points correspond to the basis vectors for a
separable matrix. We show in Theorem 5 that the correctness property holds. Moreover, the
algorithm works well even when the problem contains noise. We show in Theorem 9 that,
if the noise is lower than a certain level, the algorithm correctly identifies the near-basis
vectors for a noisy separable matrix, and hence, the robustness property holds. The existing
algorithms (Arora et al., 2012a; Bittorf et al., 2012; Gillis, 2013; Gillis and Luce, 2013;
Gillis and Vavasis, 2014; Kumar et al., 2013) are formally shown to have these correctness
and robustness properties. In Section 2.4, our correctness and robustness properties are
compared with those of the existing algorithms.

It is possible that noise will exceed the level that Theorem 9 guarantees. In such a
situation, the MVEE for the data points may touch many points. Hence, r points need
to be selected from the points on the boundary of the ellipsoid. We make the selection by
using existing algorithms such as SPA (Gillis and Vavasis, 2014) and XRAY (Kumar et al.,
2013). Our algorithm thus works as a preprocessor which filters out basis vector candidates
from the data points and enhance the performance of existing algorithms.

We demonstrated the robustness of the algorithms to noise through experiments with
synthetic data sets. In particular, we experimentally compared our algorithm with SPA
and XRAY. We synthetically generated data sets with various noise levels, and measured
the robustness of an algorithm by its recovery rate. The experimental results indicated that
our algorithm can improve the recovery rates of SPA and XRAY.

Finally, we applied our algorithm to document clustering. Separability for a document-
term matrix means that each topic has an anchor word. An anchor word is a word which
is contained in one topic but not contained in the other topics. If an anchor word is
found, it suggests the existence of its associated topic. We conducted experiments with
document corpora and compared the clustering performances of our algorithm and SPA.
The experimental results indicated that our algorithm would usually outperform SPA and
can extract more recognizable topics.

The rest of this paper is organized as follows. Section 2 gives an outline of our algorithm
and reviews related work. Then, the correctness and robustness properties of our algorithm
are given, and a comparison with existing algorithms is described. Section 3 reviews the
formulation and algorithm of computing the MVEE for a set of points. Sections 4 and
5 are the main part of this paper. We show the correctness and robustness properties of
our algorithm in Section 4, and discuss its practical implementation in Section 5. Section 6
reports the numerical experiments for the robustness of algorithms and document clustering.
Section 7 gives concluding remarks.

1.1 Notation and Symbols

We use Rd×m to denote a set of real matrices of size d-by-m, and Rd×m+ to denote a set of
nonnegative matrices of d-by-m. Let A ∈ Rd×m. The symbols A> and rank(A) respectively
denote the transposition and the rank. The symbols ||A||p and ||A||F are the matrix p-norm

1013

Mizutani

and the Frobenius norm. The symbol σi(A) is the ith largest singular value. Let ai be
the ith column vector of A, and I be a subset of {1, . . . ,m}. The symbol A(I) denotes a
d-by-|I| submatrix of A such that (ai : i ∈ I). The convex hull of all the column vectors of
A is denoted by conv(A), and referred to as the convex hull of A for short. We denote an
identity matrix and a vector of all ones by I and e, respectively.

We use Sd to denote a set of real symmetric matrices of size d. Let A ∈ Sd. If the
matrix is positive definite, we represent it as A � 0. Let A1 ∈ Sd and A2 ∈ Sd. We denote
by 〈A1,A2〉 the Frobenius inner product of the two matrices which is given as the trace of
matrix A1A2.

We use a MATLAB-like notation. Let A1 ∈ Rd×m1 and A2 ∈ Rd×m2 . We denote by
(A1,A2) the horizontal concatenation of the two matrices, which is a d-by-(m1+m2) matrix.
Let A1 ∈ Rd1×m and A2 ∈ Rd2×m. We denote by (A1;A2) the vertical concatenation of
the two matrices, and it is a matrix of the form,(

A1

A2

)
∈ R(d1+d2)×m.

Let A be a d-by-m rectangular diagonal matrix having diagonal elements a1, . . . , at where
t = min{d,m}. We use diag(a1, . . . , at) to denote the matrix.

2. Outline of Proposed Algorithm and Comparison with Existing
Algorithms

Here, we formally describe the properties mentioned in Section 1 that an algorithm is
expected to have, and also describe the assumptions we place on Problem 1. Next, we give
a geometric interpretation of a separable matrix under these assumptions, and then, outline
the proposed algorithm. After reviewing the related work, we describe the correctness and
robustness properties of our algorithm and compare with those of the existing algorithms.

2.1 Preliminaries

Consider Problem 1 whose data matrix M is a noisy separable one of the form A + N .
Here, A is a separable matrix of (1) and N is a noise matrix. We can rewrite it as

M = A + N

= F (I,K)Π + N

= (F + N (1),FK + N (2))Π (2)

where N (1) and N (2) are d-by-r and d-by-` submatrices of N such that NΠ−1 = (N (1),N (2)).
Hereinafter, we use the notation ` to denote m− r. The goal of Problem 1 is to identify an
index set I such that M(I) = F + N (1).

As mentioned in Section 1, it is ideal that an algorithm for Problem 1 has correctness
and robustness properties. These properties are formally described as follows:

• Correctness. If the data matrix M does not contain a noise matrix N and is just
a separable matrix, the algorithm returns an index set I such that M(I) = F .

1014

Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy Separability

• Robustness. If the data matrix M contains a noise matrix N and is a noisy separable
matrix such that ||N ||p < ε, the algorithm returns an index set I such that ||M(I)−
F ||p < τε for some constant real number τ .

In particular, the robustness property has τ = 1, if an algorithm can identify an index set I
such that M(I) = F+N (1) where F and N (1) are of (2) since ||M(I)−F ||p = ||N (1)||p < ε.

In the design of the algorithm, some assumptions are usually placed on a separable
matrix. Our algorithm uses Assumption 1.

Assumption 1 A separable matrix A of (1) consists of an basis matrix F and a weight
matrix W satisfying the following conditions.

1-a) Every column vector of weight matrix W has unit 1-norm.

1-b) The basis matrix F has full column rank.

Assumption 1-a can be invoked without loss of generality. If the ith column of W is zero,
so is the ith column of A. Therefore, we can construct a smaller separable matrix having
W with no zero column. Also, since we have

A = FW ⇔ AD = FWD,

every column of W can have unit 1-norm. Here, D denotes a diagonal matrix having the
(i, i)th diagonal element dii = 1/||wi||1.

The same assumption is used by the algorithm in Gillis and Vavasis (2014). We may
get the feeling that 1-b is strong. The algorithms (Arora et al., 2012a; Bittorf et al., 2012;
Gillis, 2013; Gillis and Luce, 2013; Kumar et al., 2013) instead assume simpliciality, wherein
no column vector of F can be represented as a convex hull of the remaining vectors of F .
Although 1-b is a stronger assumption, it still seems reasonable for Problem 1 from the
standpoint of practical application. This is because, in such cases, it is less common for the
column vectors of the basis matrix F to be linearly dependent.

2.2 Outline of Proposed Algorithm

Let us take a look at Problem 1 from a geometric point of view. For simplicity, consider
the noiseless case first. Here, a data matrix is just a separable matrix A. Separability
implies that A has a factorization of the form (1). Under Assumption 1, conv(A) becomes
an (r − 1)-dimensional simplex in Rd. The left part of Figure 1 visualizes a separable data
matrix. The white points are data points, and the black ones are basis vectors. The key
observation is that the basis vectors f1, . . . ,fr of A correspond to the vertices of conv(A).
This is due to separability. Therefore, if all vertices of conv(A) can be found, we can obtain
the basis matrix F of A. This is not hard task, and we can design an efficient algorithm
for doing it. But, if noise is added to a separable matrix, the task becomes hard. Let us
suppose that the data matrix of Problem 1 is a noisy separable matrix Ã of the form A+N .
The vertices of conv(Ã) do not necessarily match the basis vectors f1, . . . ,fr of A. The
right part of Figure 1 visualizes a noisy separable data matrix. This is the main reason why
it is hard to identify the basis matrix from noisy separable one.

Our algorithm is designed on the basis of Proposition 3 in Section 4.1; it states that all
vertices of a simplex can be found by using an ellipsoid. We here describe the proposition

1015

Mizutani

: Basis vector

: Data point

Figure 1: Convex hull of a separable data matrix with r = 3 under Assumption 1. (Left)
Noiseless case. (Right) Noisy case.

from a geometric point of view. Consider an (r − 1)-dimensional simplex ∆ in Rr. Let
g1, . . . , gr ∈ Rr be the vertices of ∆, and b1, . . . , b` ∈ Rr be the points in ∆. We draw
the MVEE centered at the origin for a set S = {±g1, . . . ,±gr,±b1, . . . ,±b`}. Then, the
proposition says that the ellipsoid only touches the points ±g1, . . . ,±gr among all the points
in S. Therefore, the vertices of ∆ can be found by checking whether the points in S lie
on the boundary of ellipsoid. We should mention that the convex hull of the points in
S becomes a full-dimensional crosspolytope in Rr. Figure 2 illustrates the MVEE for a
crosspolytope in R3.

Figure 2: Minimum-volume enclosing ellipsoid for a full-dimensional crosspolytope in R3.

Under Assumption 1, the convex hull of a separable matrix A becomes an (r − 1)-
dimensional simplex in Rd. Therefore, we rotate and embed the simplex in Rr by using
an orthogonal transformation. Such a transformation can be obtained by singular value
decomposition (SVD) of A.

Now let us outline our algorithm for Problem 1. In this description, we assume for sim-
plicity that the data matrix is a separable one A ∈ Rd×m+ . First, the algorithm constructs
an orthogonal transformation through the SVD of A. By applying the transformation, it
transforms A into a matrix P ∈ Rr×m such that the conv(P) is an (r−1)-dimensional sim-

1016

Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy Separability

plex in Rr. Next, it draws the MVEE centered at the origin for a set S = {±p1, . . . ,±pm},
where p1, . . . ,pm are the column vectors of P , and outputs r points lying on the ellipsoid.

We call the algorithm ellipsoidal rounding, abbreviated as ER. The main computational
costs of ER are in computing the SVD of A and the MVEE for S. The MVEE compu-
tation can be formulated as a tractable convex optimization problem with m variables. A
polynomial-time algorithm exists, and it is also known that a hybrid of the interior-point
algorithm and cutting plane algorithm works efficiently in practice.

In later sections, we will see that ER algorithm works well even if noise is added. In
particular, we show that ER correctly identifies the near-basis vectors of a noisy separable
matrix if the noise is smaller than some level. We consider a situation in which the noise
exceeds that level. In such a situation, the shape of crosspolytope formed by the data points
is considerably perturbed by the noise, and it is possible that the MVEE touches many
points. We thus need to select r points from the points on the boundary of the ellipsoid.
In this paper, we perform existing algorithms such as SPA (Gillis and Vavasis, 2014) and
XRAY (Kumar et al., 2013) to make the selection. Hence, ER works as a preprocessor
which filters out basis vector candidates from data points and enhances the performance of
existing algorithms.

2.3 Related Work

First, we will review the algorithms for NMF of general nonnegative matrices. There are an
enormous number of studies. A commonly used approach is to formulate it as a nonconvex
optimization problem and compute the local solution. Let A be a d-by-m nonnegative
matrix, and consider an optimization problem with matrix variables F ∈ Rd×r and W ∈
Rr×m,

minimize ||FW −A||2F subject to F ≥ 0 and W ≥ 0.

This is an intractable nonconvex optimization problem, and in fact, it was shown to be
NP-hard by Vavasis (2009). Therefore, the research target is in how to compute the local
solution efficiently. It is popular to use the block coordinate descent (BCD) algorithm for
this purpose. The algorithm solves the problem by alternately fixing the variables F and
W . The problem obtained by fixing either of F and W becomes a convex optimization
problem. The existing studies propose to use, for instance, the projected gradient algorithm
(Lin, 2007) and its variant (Lee and Seung, 2001), active set algorithm (Kim and Park, 2008,
2011), and projected quasi-Newton algorithm (Gong and Zhang, 2012). It is reported that
the BCD algorithm shows good performance on average in computing NMFs. However, its
performance depends on how we choose the initial point for starting the algorithm. We
refer the reader to Kim et al. (2014) for a survey on the algorithms for NMF.

Next, we will survey the algorithms that work on noisy separable matrices. Four types
of algorithm can be found:

• AGKM (Arora et al., 2012a). The algorithm constructs r sets of data points such
that all of the basis vectors are contained in the union of the sets and each set has one
basis vector. The construction entails solving m linear programming (LP) problems
with m− 1 variables. Then, it chooses one element from each set, and outputs them.

1017

Mizutani

• Hottopixx (Bittorf et al., 2012; Gillis, 2013; Gillis and Luce, 2013). Let A
be a separable matrix of the form F (I,K)Π. Consider a matrix C such that

C = Π−1

(
I K
0 0

)
Π ∈ Rm×m.

It satisfies A = AC, and also, if the diagonal element is one, the position of its
diagonal element indicates the index of basis vector in A. The algorithm models C
as the variable of an LP problem. It entails solving a single LP problem with m2

variables.

• SPA (Gillis and Vavasis, 2014). Let A be a separable matrix of size d-by-m, and
S be the set of the column vectors of A. The algorithm is based on the following
observation. Under Assumption 1, the maximum of a convex function over the ele-
ments in S is attained at the vertex of conv(A). The algorithm finds one element a
in S that maximizes a convex function, and then, projects all elements in S into the
orthogonal space to a. This procedure is repeated until r elements are found.

• XRAY (Kumar et al., 2013). The algorithm has a similar spirit as SPA, but it
uses a linear function instead of a convex one. Let A be a separable matrix of size
d-by-m and S be the set of the column vectors of A. Let Ik be the index set obtained
after the kth iteration. This is a subset of {1, . . . ,m} with cardinality k. In the
(k + 1)th iteration, it computes a residual matrix R = A(Ik)X∗ −A, where

X∗ = arg min
X≥0

||A(Ik)X −A||22,

and picks up one of the column vectors ri of R. Then, it finds one element from
S which maximizes a linear function having ri as the normal vector. Finally, Ik is
updated by adding the index of the obtained element. This procedure is repeated
until r indices are found. The performance of XRAY depends on how we select the
column vector of the residual matrix R for making the linear function. Several ways
of selection, called “rand”, “max”, “dist” and “greedy”, have been proposed by the
authors.

The next section describes the properties of these algorithms.

2.4 Comparison with Existing Algorithm

We compare the correctness and robustness properties of ER with those of AGKM, Hot-
topixx, SPA, and XRAY. ER is shown to have the two properties in Theorems 5 and 9.
In particular, our robustness property in Theorem 9 states that ER correctly identifies the
near-basis matrix of a noisy separable one Ã, and a robustness property with τ = 1 holds
if we set

ε =
σ(1− µ)

4
(3)

and p = 2 under Assumption 1. Here, σ is the minimum singular value of the basis matrix
F of a separable one A in the Ã, that is, σ = σr(F), and µ is µ(K):

µ(K) = max
i=1,...,`

||ki||2

1018

Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy Separability

for a weight matrix K of A. Under Assumption 1-a, we have µ ≤ 1, and in particular,
equality holds if and only if ki has only one nonzero element.

All four of the existing algorithms have been shown to have a correctness property,
whereas every one except XRAY has a robustness property. Hottopixx is the most similar
to ER. Bittorf et al. (2012) showed that it has the correctness and robustness with τ = 1
properties if one sets

ε =
αmin{d0, α}

9(r + 1)
(4)

and p = 1 under simpliciality and other assumptions. Here, α and d0 are as follows. α is
the minimum value of δF (j) for j = 1, . . . , r, where δF (j) denotes an `1-distance between
the jth column vector fj of F and the convex hull of the remaining column vectors in F .
d0 is the minimum value of ||ai − fj ||1 for every i such that ai is not a basis vector, and
every j = 1, . . . , r. The robustness of Hottopixx is further analyzed (Gillis, 2013; Gillis and
Luce, 2013).

It can be interpreted that the ε of ER (3) is given by the multiplication of two parameters
representing flatness and closeness of a given data matrix since σ measures the flatness of
the convex hull of data points, and 1− µ measures the closeness between basis vectors and
data points. Intuitively, we may say that an algorithm becomes sensitive to noise when a
data matrix has the following features; one is that the convex hull of data points is close to
a flat shape, and another is that there are data points close to basis vectors. The ε of (3)
well matches the intuition. We see a similar structure in the ε of Hottopixx (4) since α and
d0 respectively measure the flatness and closeness of a given data.

Compared with Hottopixx, the ε of ER (3) does not contain 1/r, and hence, it does not
decrease as r increases. However, Assumption 1-b of ER is stronger than the simpliciality of
Hottopixx. In a practical implementation, ER can handle a large matrix, while Hottopixx
may have limitations on the size of the matrix it can handle. Hottopixx entails solving
an LP problem with m2 variables. In the NMFs arising in applications, m tends to be a
large number. Although an LP is tractable, it becomes harder to solve as the size increases.
Through experiments, we assessed the performance of Hottopixx with the CPLEX LP solver.
The experiments showed that the algorithm had out of memory issues when m exceeded
2,000 with d = 100. Bittorf et al. (2012) proposed a parallel implementation to resolve
these computational issues.

AGKM and SPA were shown to have a robustness property with τ ≥ 1 for some ε in
Arora et al. (2012a) and Gillis and Vavasis (2014), respectively. In practical implemen-
tations, SPA and XRAY are scalable to the problem size and experimentally show good
robustness. Section 6 reports a numerical comparison of ER with SPA and XRAY.

3. Review of Formulation and Algorithm for MVEE Computation

We review the formulation for computing the MVEE for a set of points, and survey the
existing algorithms for the computation.

First of all, let us recall the terminology related to an ellipsoid. An ellipsoid in Rd is
defined as a set E(L, z) = {x ∈ Rd : (x − z)>L(x − z) ≤ 1} for a positive definite matrix
L of size d and a vector z ∈ Rd. Here, L determines the shape of the ellipsoid and z is
the center. Let x be a point in an ellipsoid E(L, z). If the point x satisfies the equality

1019

Mizutani

(x− z)>L(x− z) = 1, we call it an active point of the ellipsoid. In other words, an active
point is one lying on the boundary of the ellipsoid.

The volume of the ellipsoid is given as c(d)/
√

detL, where c(d) represents the volume
of a unit ball in Rd and it is a real number depending on the dimension d. ER algorithm
considers d-dimensional ellipsoids containing a set S of points in Rd, and in particular,
finds the minimum volume ellipsoid centered at the origin. In this paper, such an ellipsoid
is referred to as an origin-centered MVEE for short.

Now, we are ready to describe a formulation for computing the origin-centered MVEE for
a set of points. For m points p1, . . . ,pm ∈ Rd, let S = {±p1, . . . ,±pm}. The computation
of the origin-centered MVEE for S is formulated as

Q(S) : minimize − log detL,
subject to 〈pip>i ,L〉 ≤ 1, i = 1, . . . ,m,

L � 0,

where the matrix L of size d is the decision variable. The optimal solution L∗ of Q gives
the origin-centered MVEE for S as E(L∗) = {x : x>L∗x ≤ 1}. We here introduce some
terminology. An active point of E(L∗) is a vector pi ∈ Rd satisfying p>i L

∗pi = 1. We call
pi an active point of Q(S), and the index i of pi an active index of Q(S). The ellipsoid
E(L∗) is centrally symmetric, and if a vector pi is an active point, so is −pi. The dual of
Q reads

Q∗(S) : maximize log det Ω(u),
subject to e>u = 1,

u ≥ 0,

where the vector u is the decision variable. Here, Ω : Rm → Sd is a linear function given
as Ω(u) =

∑m
i=1 pip

>
i ui; equivalently, Ω(u) = Pdiag(u)P> for P = (p1, . . . ,pm) ∈ Rd×m.

It follows from the Karush-Kuhn-Tucker (KKT) conditions for these problems that the
optimal solution L∗ of Q is represented by 1

dΩ(u∗)−1 for the optimal solution u∗ of Q∗. We
make the following assumption to ensure the existence of an optimal solution of Q.

Assumption 2 rank(P) = d for P = (p1, . . . ,pm) ∈ Rd×m.

Later, the KKT conditions will play an important role in our discussion of the active
points of Q. Here though, we will describe the conditions: L∗ ∈ Sd is an optimal solution
for Q and z∗ ∈ Rm is the associated Lagrange multiplier vector if and only if there exist
L∗ ∈ Sd and z∗ ∈ Rm such that

−(L∗)−1 + Ω(z∗) = 0, (5)

z∗i (〈pip>i ,L∗〉 − 1) = 0, i = 1, . . . ,m, (6)

〈pip>i ,L∗〉 ≤ 1, i = 1, . . . ,m, (7)

L∗ � 0, (8)

z∗i ≥ 0, i = 1, . . . ,m. (9)

Many algorithms have been proposed for solving problems Q and Q∗. These can be
categorized into mainly two types: conditional gradient algorithms (also referred to as

1020

Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy Separability

Frank-Wolfe algorithms) and interior-point algorithms. Below, we survey the studies on
these two algorithms.

Khachiyan (1996) proposed a barycentric coordinate descent algorithm, which can be
interpreted as a conditional gradient algorithm. He showed that the algorithm has a
polynomial-time iteration complexity. Several researchers investigated and revised
Khachiyan’s algorithm. Kumar and Yildirim (2005) showed that the iteration complex-
ity of Khachiyan’s algorithm can be slightly reduced if it starts from a well-selected initial
point. Todd and Yildirim (2007) and Ahipasaoglu et al. (2008) incorporated a step called as
a Wolfe’s away-step. The revised algorithm was shown to have a polynomial-time iteration
complexity and a linear convergence rate.

A dual interior-point algorithm was given by Vandenberghe et al. (1998). A primal-
dual interior-point algorithm was given by Toh (1999), and numerical experiments showed
that this algorithm is efficient and can provide accurate solutions. A practical algorithm
was designed by Sun and Freund (2004) for solving large-scale problems. In particular, a
hybrid of the interior-point algorithm and cutting plane algorithm was shown to be effi-
cient in numerical experiments. For instance, the paper reported that the hybrid algorithm
can solve problems with d = 30 and m = 30, 000 in under 30 seconds on a personal com-
puter. Tsuchiya and Xia (2007) considered generalized forms of Q and Q∗ and showed
that a primal-dual interior-point algorithm for the generalized forms has a polynomial-time
iteration complexity.

Next, let us discuss the complexity of these two sorts of algorithms for Q and Q∗. In
each iteration, the arithmetic operations of the conditional gradient algorithms are less than
those of the interior-point algorithms. Each iteration of a conditional gradient algorithm
(Khachiyan, 1996; Kumar and Yildirim, 2005; Todd and Yildirim, 2007; Ahipasaoglu et al.,
2008) requires O(md) arithmetic operations. On the other hand, assuming that the num-
ber of data points m is sufficiently larger than the dimension of data points d, the main
complexity of interior-point algorithms (Vandenberghe et al., 1998; Toh, 1999) comes from
solving an m-by-m system of linear equations in each iteration. The solution serves as the
search direction for the next iteration. Solving these linear equations requires O(m3) arith-
metic operations. In practice, the number of iterations of conditional gradient algorithms is
much larger than that of interior-point algorithms. Ahipasaoglu et al. (2008) reports that
conditional gradient algorithms take several thousands iterations to solve problems such
that d runs from 10 to 30 and m from 10, 000 to 30, 000. On the other hand, Sun and
Freund (2004) reports that interior-point algorithms usually terminate after several dozen
iterations and provide accurate solutions.

One of the concerns about interior-point algorithms is the computational cost of each
iteration. It is possible to reduce the cost considerably by using a cutting plane strategy.
A hybrid of interior-point algorithm and cutting plane algorithm has an advantage over
conditional gradient algorithms. In fact, Ahipasaoglu et al. (2008) reports that the hybrid
algorithm is faster than the conditional gradient algorithms and works well even on large
problems. Therefore, we use the hybrid algorithm to solve Q in our practical implementation
of ER. The details are in Section 5.1.

Here, it should be mentioned that this paper uses a terminology “cutting plane strategy”
for what other papers (Sun and Freund, 2004; Ahipasaoglu et al., 2008) have called the

1021

Mizutani

“active set strategy”, since it might be confused with “active set algorithm” for solving a
nonnegative least square problem.

4. Description and Analysis of the Algorithm

The ER algorithm is presented below. Throughout of this paper, we use the notation N to
denote a set of nonnegative integer numbers.

Algorithm 1 Ellipsoidal Rounding (ER) for Problem 1

Input: M ∈ Rd×m+ and r ∈ N.
Output: I.

1: Compute the SVD of M , and construct the reduced matrix P ∈ Rr×m associated
with r.

2: Let S = {±p1, . . . ,±pm} for the column vectors p1, . . . ,pm of P . Solve Q(S), and
construct the active index set I.

Step 1 needs to be explained in detail. Let M be a noisy separable matrix of size d-by-
m. In general, the M is a full-rank due to the existence of a noise matrix. However, the
rank is close to r when the amount of noise is small, and in particular, it is r in the noiseless
case. Accordingly, we construct a low-rank approximation matrix to M and reduce the
redundancy in the space spanned by the column vectors of M .

We use an SVD for the construction of the low-rank approximation matrix. The SVD
of M gives a decomposition of the form,

M = UΣV >.

Here, U and V are d-by-d and m-by-m orthogonal matrices, respectively. In this paper, we
call the U a left orthogonal matrix of the SVD of M . Let t = min{d,m}. Σ is a rectangular
diagonal matrix consisting of the singular values σ1, . . . , σt of M , and it is of the form,

Σ = diag(σ1, . . . , σt) ∈ Rd×m

with σ1 ≥ · · · ≥ σt ≥ 0. By choosing the top r singular values while setting the others to 0
in Σ, we construct

Σr = diag(σ1, . . . , σr, 0, . . . , 0) ∈ Rd×m

and let
M r = UΣrV >.

M r is the best rank-r approximation to M as measured by the matrix 2-norm and satisfies
||M −M r||2 = σr+1 (see, for instance, Theorem 2.5.3 of Golub and Loan, 1996). By
applying the left orthogonal matrix U> to M r, we have

U>M r =

(
P
0

)
∈ Rd×m,

where P is an r-by-m matrix with rank(P) = r. We call such a matrix P a reduced matrix
of M associated with r. Since Assumption 2 holds for the P , it is possible to perform an
MVEE computation for a set of the column vectors.

1022

Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy Separability

4.1 Correctness for a Separable Matrix

We analyze the correctness property of Algorithm 1. Let A be a separable matrix of size
d-by-m. Assume that Assumption 1 holds for A. We run Algorithm 1 for (A, rank(A)).
Step 1 computes the reduced matrix P of A. Since r = rank(A), we have A = Ar, where
Ar is the best rank-r approximation matrix to A. Let U ∈ Rd×d be the left orthogonal
matrix of the SVD of A. The reduced matrix P ∈ Rr×m of A is obtained as(

P
0

)
= U>A

= U>F (I,K)Π. (10)

From the above, we see that

U>F =

(
G
0

)
∈ Rd×m, where G ∈ Rr×r. (11)

Here, we have rank(G) = r since rank(F) = r by Assumption 1-b and U is an orthogonal
matrix. By using G, we rewrite P as

P = (G,GK)Π.

From Assumption 1-a, the column vectors ki of the weight matrix K ∈ Rr×` satisfy the
conditions

||ki||1 = 1 and ki ≥ 0, i = 1, . . . , `. (12)

In Step 2, we collect the column vectors of P and construct a set S of them. Let
B = GK, and let gj and bi be the column vector of G and B, respectively. S is a set of
vectors ±g1, . . . ,±gr,±b1, . . . ,±b`. The following proposition guarantees that the active
points of Q(S) are g1, . . . , gr. We can see from (10) and (11) that the index set of the
column vectors of G is identical to that of of F . Hence, the basis matrix F of a separable
one A can be obtained by finding the active points of Q(S).

Proposition 3 Let G ∈ Rr×r and B = GK ∈ Rr×` for K ∈ Rr×`. For the column vectors
gj and bi of G and B, respectively, let S = {±g1, . . . ± gr,±b1, . . . ,±b`}. Suppose that
rank(G) = r and K satisfies the condition (12). Then, the active point set of Q(S) is
{g1, . . . , gr}.

Proof We show that an optimal solution L∗ of Q(S) is (GG>)−1 and its associated
Lagrange multiplier z∗ is (e; 0), where e is an r-dimensional all-ones vector and 0 is
an `-dimensional zero vector. Here, the Lagrange multipliers are one for the constraints
〈gjg>j ,L〉 ≤ 1, and these are zero for 〈bib>i ,L〉 ≤ 1.

Since G is nonsingular, the inverse of GG> exists and it is positive definite. Now we
check that L∗ = (GG>)−1 and z∗ = (e; 0) satisfy the KKT conditions (5)-(9) for the
problem. It was already seen that the conditions (5), (8), and (9) are satisfied. For the
remaining conditions, we have

〈gjg>j , (GG>)−1〉 = (G>(GG>)−1G)jj = 1 (13)

1023

Mizutani

and

〈bib>i , (GG>)−1〉 = (B>(GG>)−1B)ii

= (K>G>(GG>)−1GK)ii

= k>i ki

≤ ||ki||21 = 1. (14)

Here, (·)ii for a matrix denotes the (i, i)th element of the matrix. The inequality in (14)
follows from condition (12). Also, the Lagrange multipliers are zero for the inequality
constraints 〈bib>i , (GG>)−1〉 ≤ 1. Thus, conditions (6) and (7) are satisfied. Accordingly,
(GG>)−1 is an optimal solution of Q(S).

We can see from (13) that g1, . . . , gr are the active points of the problem. Moreover,
we may have equality in (14). In fact, equality holds if and only if ki has only one nonzero
element. For such ki, bi = Gki coincides with some vector in g1, . . . , gr.

From the above discussion, we can immediately notice that this proposition holds if for
a matrix K ∈ Rr×`, the column vectors ki satisfy

||ki||2 < 1, i = 1, . . . ,m. (15)

Note that in contrast with condition (12), this condition does not require the matrix to be
nonnegative.

Corollary 4 Proposition 3 holds even if we suppose that K ∈ Rr×` satisfies condition (15),
instead of condition (12).

Note that this corollary is used to show the robustness of Algorithm 1 on a noisy
separable matrix. The correctness of Algorithm 1 for a separable matrix follows from the
above discussion and Proposition 3.

Theorem 5 Let A be a separable matrix. Assume that Assumption 1 holds for A. Then,
Algorithm 1 for (A, rank(A)) returns an index set I such that A(I) = F .

4.2 Robustness for a Noisy Separable Matrix

Next, we analyze the robustness property of Algorithm 1. Let A be a separable matrix of
size d-by-m. Assume that Assumption 1 holds for A. Let Ã be a noisy separable matrix
of the form A + N . We run Algorithm 1 for (Ã, rank(A)). Step 1 computes the reduced
matrix P of Ã. Let U ∈ Rd×d be the left orthogonal matrix of the SVD of Ã, and Ãr be
the best rank-r approximation matrix to Ã. We denote the residual matrix Ã− Ãr by Ãr

�.

1024

Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy Separability

For the reduced matrix P of Ã, we have(
P
0

)
= U>Ãr

= U>(Ã− Ãr
�) (16)

= U>(A + N − Ãr
�)

= U>(A + N) (17)

= U>((F ,FK)Π + N)

= U>(F + N (1),FK + N (2))Π (18)

= U>(F̂ , F̂K + N̂)Π. (19)

The following notation is used in the above: N = N − Ãr
� in (17); N (1) and N (2) in (18)

are the d-by-r and d-by-` submatrices of N such that NΠ−1 = (N (1),N (2)); F̂ = F +N (1)

and N̂ = −N (1)K + N (2) in (19). This implies that

U>F̂ =

(
Ĝ
0

)
, where Ĝ ∈ Rr×r, (20)

and

U>N̂ =

(
R
0

)
, where R ∈ Rr×`. (21)

Hence, we can rewrite P as
P = (Ĝ, ĜK + R)Π.

Ã is represented by (2) as

Ã = (F̃ , F̃K + Ñ)Π,

where F̃ and Ñ denote F + N (1) and −N (1)K + N (2), respectively. From (16), we have(
(Ĝ, ĜK + R)Π

0

)
= U>((F̃ , F̃K + Ñ)Π− Ãr

�).

Therefore, the index set of the column vectors of Ĝ is identical to that of F̃ . If all the
column vectors of Ĝ are found in P , we can identify F̃ hidden in Ã.

In Step 2, we collect the column vectors of P and construct a set S of them. Let

B̂ = ĜK + R, (22)

and let ĝj and b̂i respectively be the column vectors of Ĝ and B̂. S is a set of vectors

±ĝ1, . . . ,±ĝr,±b̂1, . . . ,±b̂`. We can see from Corollary 4 that, if rank(Ĝ) = r and b̂i is
written as b̂i = Ĝk̂i by using k̂i ∈ Rr with ||k̂i||2 < 1, the active points of Q(S) are given
as the column vectors ĝ1, . . . , ĝr of Ĝ. Below, we examine the amount of noise N such that
the conditions of Corollary 4 still hold.

Lemma 6 Let Ã = A + N ∈ Rd×m. Then, |σi(Ã)− σi(A)| ≤ ||N ||2 for each i = 1, . . . , t
where t = min{d,m}.

1025

Mizutani

Proof See Corollary 8.6.2 of Golub and Loan (1996).

Lemma 7 Let n = ||N ||2 and µ = µ(K).

7-a) The matrix N of (17) satisfies ||N ||2 ≤ 2n.

7-b) The column vectors ri of matrix R of (21) satisfy ||ri||2 ≤ 2n(µ+ 1) for i = 1, . . . ,m.

7-c) The singular values of matrix Ĝ of (20) satisfy |σi(Ĝ)− σi(F)| ≤ 2n for i = 1, . . . , r.

Proof 7-a) Since N = N − Ãr
�,

||N ||2 ≤ ||N ||2 + ||Ãr
�||2.

We have ||Ãr
�||2 ≤ n since ||Ãr

�||2 = σr+1(Ã) and from Lemma 6, |σr+1(Ã)−σr+1(A)| ≤ n.

Therefore, ||N ||2 ≤ 2n.

7-b) Let n̂i be the column vector of the matrix N̂ of (19). Since U>n̂i = (ri; 0) for an
orthogonal matrix U , we have ||n̂i||2 = ||ri||2. Therefore, we will evaluate ||n̂i||2. Let ki

and n
(2)
i be the column vectors of K and N (2), respectively. Then, n̂i can be represented

as −N (1)ki + n
(2)
i . Thus, by Lemma 7-a, we have

||ri||2 = ||n̂i||2 ≤ ||N (1)||2||ki||2 + ||n(2)
i ||2 ≤ 2n(µ+ 1).

7-c) Since U>F̂ = (Ĝ; 0) for an orthogonal matrix U , the singular values of F̂ and Ĝ

are identical. Also, since F̂ = F + N (1) and Lemma 6, we have

|σi(Ĝ)− σi(F)| = |σi(F̂)− σi(F)| ≤ ||N (1)||2 ≤ 2n.

The following lemma ensures that the conditions of Corollary 4 hold if the amount of
noise is smaller than a certain level.

Lemma 8 Let Ĝ be the matrix of (20), and let b̂i be the column vector of B̂ of (22).
Suppose that ||N ||2 < ε for ε = 1

4σ(1− µ) where σ = σr(F) and µ = µ(K). Then,

8-a) rank(Ĝ) = r.

8-b) b̂i is represented as Ĝk̂i = b̂i by using k̂i such that ||k̂i||2 < 1.

In the proof below, n denotes ||N ||2.
Proof 8-a) From Lemma 7-c, the minimum singular value of Ĝ satisfies

σr(Ĝ) ≥ σ − 2n

> σ − 2ε =
1

2
σ(1 + µ) > 0.

1026

Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy Separability

The final inequality follows from σ > 0 due to Assumption 1-b. Hence, we have rank(Ĝ) = r.

8-b) Let ki and ri be the column vectors of K and R, respectively. Then, we have
b̂i = Ĝki + ri. Since Lemma 8-a guarantees that Ĝ has an inverse, it can be represented
as b̂i = Ĝk̂i by k̂i = ki + Ĝ−1ri. It follows from Lemmas 7-b and 7-c that

||k̂i||2 ≤ ||ki||2 + ||Ĝ−1||2||ri||2

≤ µ+
2n(µ+ 1)

σ − 2n
.

Since n < 1
4σ(1− µ), we have ||k̂i||2 < 1.

The robustness of Algorithm 1 for a noisy separable matrix follows from the above
discussion, Corollary 4, and Lemma 8.

Theorem 9 Let Ã be a noisy separable matrix of the form A+N . Assume that Assumption
1 holds for the separable matrix A in Ã. Set ε = 1

4σ(1−µ) where σ = σr(F) and µ = µ(K)

for the basis and weight matrices F and K of A. If ||N ||2 < ε, Algorithm 1 for (Ã, rank(A))
returns an index set I such that ||Ã(I)− F ||2 < ε.

In Theorem 9, let F ∗ = Ã(I), and W ∗ be an optimal solution of the convex optimization
problem,

minimize ||Ã(I)X − Ã||2F subject to X ≥ 0,

where the matrix X of size r-by-m is the decision variable. Then, (F ∗,W ∗) serves as the
NMF factor of Ã. It is possible to evaluate the residual error of this factorization in a
similar way to the proof of Theorem 4 by Gillis and Vavasis (2014).

Corollary 10 Let w∗i and ãi be the column vectors of W ∗ and Ã, respectively. Then,
||F ∗w∗i − ãi||2 < 2ε for i = 1, . . . ,m.

Proof From Assumption 1-a, the column vectors wi of W satisfy ||wi||2 ≤ 1 for i =
1, . . . ,m. Therefore, for i = 1, . . . ,m,

||F ∗w∗i − ãi||2 ≤ ||F ∗wi − ãi||2
= ||F ∗wi − Fwi + Fwi − ai − ni||2
= ||(F ∗ − F)wi − ni||2
≤ ||F ∗ − F ||2||wi||2 + ||ni||2 < 2ε,

where ai and ni denote the ith column vector of A and N , respectively.

5. Implementation in Practice

Theorem 9 guarantees that Algorithm 1 correctly identifies the near-basis matrix of a noisy
separable matrix if the noise is smaller than some level. But in the NMFs of matrices arising
from practical applications, it seems that the noise level would likely exceed the level for

1027

Mizutani

which the theorem is valid. In such a situation, the algorithm might generate more active
points than hoped. Therefore, we need to add a selection step in which r points are selected
from the active points. Also, the number of active points depends on which dimension we
choose in the computation of the reduced matrix P . Algorithm 1 computes the reduced
matrix P of the data matrix and draws an origin-centered MVEE for the column vectors
p1, . . . ,pm of P . As we will see in Lemma 11, the number of active points depends on
the dimension of p1, . . . ,pm. Therefore, we introduce an input parameter ρ to control the
dimension. By taking account of these considerations, we design a practical implementation
of Algorithm 1.

Algorithm 2 Practical Implementation of Algorithm 1

Input: M ∈ Rd×m+ , r ∈ N, and ρ ∈ N.
Output: I.

1: Run Algorithm 1 for (M , ρ). Let J be the index set returned by the algorithm.

2: If |J | < r, increase ρ by 1 and go back to Step 1. Otherwise, select r elements from
J and construct the set I of these elements.

One may wonder whether Algorithm 2 infinitely loops or not. In fact, we can show that
under some conditions, infinite loops do not occur.

Lemma 11 For p1, . . . ,pm ∈ Rρ, let S = {±p1, . . . ,±pm}. Suppose that Assumption 2
holds. Then, Q(S) has at least ρ active points.

Proof Consider the KKT conditions (5)-(9) for Q(S). Condition (5) requires Ω(z∗) to be
nonsingular. Since rank(P) = ρ from the assumption, at least ρ nonzero z∗i exist. There-
fore, we see from condition (6) that Q(S) has at least ρ active points.

Proposition 12 Suppose that we choose r such that r ≤ rank(M). Then, Algorithm 2
terminates after a finite number of iterations.

Proof For the active index set J constructed in Step 1, Lemma 11 guarantees that |J | ≥ ρ.
The parameter ρ increases by 1 if |J | < r in Step 2 and can continue to increase up to
ρ = rank(M). Since r ≤ rank(M), it is necessarily to satisfy |J | ≥ ρ ≥ r after a finite
number of iterations.

Proposition 12 implies that ρ may not be an essential input parameter since Algorithm
2 always terminates under r ≤ rank(M) even if starting with ρ = 1.

There are some concerns about Algorithm 2. One is in how to select r elements from an
active index set J in Step 2. It is possible to have various ways to make the selection. We
rely on existing algorithms, such as XRAY and SPA, and perform these existing algorithms
for (M(J), ρ). Thus, Algorithm 1 can be regarded as a preprocessor which filters out basis
vector candidates from the data points and enhance the performance of existing algorithms.
Another concern is in the computational cost of solving Q. In the next section, we describe
a cutting plane strategy for efficiently performing an interior-point algorithm.

1028

Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy Separability

5.1 Cutting Plane Strategy for Solving Q

Let S be a set of m points in Rd. As mentioned in Section 3, O(m3) arithmetic operations
are required in each iteration of an interior-point algorithm for Q(S). A cutting plane
strategy is a way to reduce the number of points which we need to deal with in solving
Q(S). The strategy was originally used by Sun and Freund (2004). In this section, we
describe the details of our implementation.

The cutting plane strategy for solving Q has a geometric interpretation. It is thought of
that active points contribute a lot to the drawing the MVEE for a set of points but inactive
points make less of a contribution. This geometric intuition can be justified by the following
proposition. Let L be a d-by-d matrix. We use the notation δL(p) to denote 〈pp>,L〉 for
an element p ∈ Rd of S.

Proposition 13 Let S̄ be a subset of S. If an optimal solution L̄∗ of Q(S̄) satisfies
δL̄∗(p) ≤ 1 for all p ∈ S \ S̄, then L̄∗ is an optimal solution of Q(S).

The proof is omitted since it is obvious. The proposition implies that Q(S) can be solved
by using its subset S̄ instead of S. The cutting plane strategy offers a way of finding such a
S̄, in which a smaller problem Q(S̄) has the same optimal solution as Q(S). In this strategy,
we first choose some points from S and construct a set S1 containing these points. Let Sk
be the set constructed in the kth iteration. In the (k+1)th iteration, we choose some points
from S \ Sk and expand Sk to Sk+1 by adding these points to Sk. Besides expanding, we
also shrink Sk by discarding some points which can be regarded as useless for drawing the
origin-centered MVEE. These expanding and shrinking phases play an important role in
constructing a small set. Algorithm 3 describes a cutting plane strategy for solving Q(S).

Algorithm 3 Cutting Plane Strategy for Solving Q(S)

Input: S = {p1, . . . ,pm}.
Output: L∗.

1: Choose an initial set S1 from S and let k = 1.

2: Solve Q(Sk) and find the optimal solution Lk. If δLk(p) ≤ 1 holds for all p ∈ S \ Sk,
let L∗ = Lk, and stop.

3: Choose a subset F of Sk and a subset G of {p ∈ S \ Sk : δLk(p) > 1}. Update Sk as
Sk+1 = (Sk \ F) ∪ G and increase k by 1. Then, go back to Step 2.

Now, we give a description of our implementation of Algorithm 3. To construct the initial
set S1 in Step 1, our implementation employs the algorithm used in the papers (Kumar
and Yildirim, 2005; Todd and Yildirim, 2007; Ahipasaoglu et al., 2008). The algorithm
constructs a set S1 by greedily choosing 2d points in a step-by-step manner such that the
convex hull is a d-dimensional crosspolytope containing as many points in S as possible. We
refer the reader to Algorithm 3.1 of Kumar and Yildirim (2005) for the precise description.

To shrink and expand Sk in Step 3, we use a shrinking threshold parameter θ such that
θ < 1, and an expanding size parameter η such that η ≥ 1. These parameters are set before
running Algorithm 3. For shrinking, we construct F = {p ∈ Sk : δLk(p) ≤ θ} by using θ.

1029

Mizutani

For expanding, we arrange the points of {p ∈ S \ Sk : δLk(p) > 1} in descending order,
as measured by δLk(·), and construct G by choosing the top (m − 2d)/η points. If the set
{p ∈ S \ Sk : δLk(p) > 1} has less than (m − 2d)/η points, we choose all the points and
construct G.

6. Experiments

We experimentally compared Algorithm 2 with SPA and the variants of XRAY. These two
existing algorithms were chosen because their studies (Bittorf et al., 2012; Gillis and Luce,
2013; Kumar et al., 2013) report that they outperform AGKM and Hottopixx, and scale to
the problem size. Two types of experiments were conducted: one is the evaluation for the
robustness of the algorithms to noise on synthetic data sets, and the other is the application
of the algorithms to clustering of real-world document corpora.

We implemented Algorithm 2, and three variants of XRAY, “max”, “dist” and “greedy”,
in MATLAB. We put Algorithm 3 in Algorithm 2 so it would solve Q efficiently. The
software package SDPT3 (Toh et al., 1999) was used for solving Q(Sk) in Step 2 of Algorithm
3. The shrinking parameter θ and expanding size parameter η were set as 0.9999 and 5,
respectively. The implementation of XRAY formulated the computation of the residual
matrix R = A(Ik)X∗ −A as a convex optimization problem,

X∗ = arg min
X≥0

||A(Ik)X −A||2F .

For the implementation of SPA (Gillis and Vavasis, 2014), we used code from the first
author’s website. Note that SPA and XRAY are sensitive to the normalization of the
column vectors of the data matrix (see, for instance, Kumar et al., 2013), and for this
reason, we used a data matrix whose column vectors were not normalized. All experiments
were done in MATLAB on a 3.2 GHz CPU processor and 12 GB memory.

We will use the following abbreviations to represent the variants of algorithms. For
instance, Algorithm 2 with SPA for an index selection of Step 2 is referred to as ER-SPA.
Also, the variant of XRAY with “max” selection policy is referred to as XRAY(max).

6.1 Synthetic Data

Experiments were conducted for the purpose of seeing how well Algorithm 2 could im-
prove the robustness of SPA and XRAY to noise. Specifically, we compared it with SPA,
XRAY(max), XRAY(dist), and XRAY(greedy). The robustness of algorithm was measured
by a recovery rate. Let I be an index set of basis vectors in a noisy separable matrix,
and I∗ be an index set returned by an algorithm. The recovery rate is the ratio given by
|I ∩ I∗| / |I|.

We used synthetic data sets of the form F (I,K)Π + N with d = 250, m = 5, 000, and
r = 10. The matrices F ,K,Π and N were synthetically generated as follows. The entries
of W ∈ Rd×r+ were drawn from a uniform distribution on the interval [0, 1]. The column

vectors of K ∈ Rr×`+ were from a Dirichlet distribution whose r parameters were uniformly
from the interval [0, 1]. The permutation matrix Π was randomly generated. The entries
of the noise matrix N ∈ Rd×m were from a normal distribution with mean 0 and standard
deviation δ. The parameter δ determined the intensity of the noise, and it was chosen from

1030

Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy Separability

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise Level (δ)

R
ec
o
v
er
y
R
a
te

ER−SPA

SPA

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise Level (δ)

R
ec
o
v
er
y
R
a
te

ER−XRAY(max)

XRAY(max)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise Level (δ)

R
ec
o
v
er
y
R
a
te

ER−XRAY(dist)

XRAY(dist)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise Level (δ)

R
ec
o
v
er
y
R
a
te

ER−XRAY(geedy)

XRAY(greedy)

Figure 3: Comparison of the recovery rates of Algorithm 2 with SPA and XRAY.

1031

Mizutani

Recovery rate 100% 90% 80% 70%

ER-SPA 0.06 0.24 0.32 0.37
SPA 0.05 0.21 0.27 0.31

ER-XRAY(max) 0.06 0.24 0.32 0.37
XRAY(max) 0.05 0.21 0.27 0.31

ER-XRAY(dist) 0.07 0.23 0.29 0.36
XRAY(dist) 0.03 0.10 0.13 0.16

ER-XRAY(greedy) 0.07 0.23 0.29 0.35
XRAY(greedy) 0.00 0.08 0.12 0.14

Table 1: Maximum values of noise level δ for different recovery rates in percentage.

0 to 0.5 in 0.01 increments. A single data set consisted of 51 matrices with various amounts
of noise, and we made 50 different data sets. Algorithm 2 was performed in the setting that
M is a matrix in the data set and r and ρ are each 10.

Figure 3 depicts the average recovery rate on the 50 data sets for Algorithm 2, SPA and
XRAY. Table 1 summarizes the maximum values of noise level δ for different recovery rates
in percentage. The noise level was measured by 0.01, and hence, for instance, the entry
“0.00” at XRAY(greedy) for 100% recovery rate means that the maximum value is in the
interval [0.00, 0.01). We see from the figure that Algorithm 2 improved the recovery rates of
the existing algorithms. In particular, the recovery rates of XRAY(dist) and XRAY(greedy)
rapidly decrease as the noise level increases, but Algorithm 2 significantly improved them.
Also, the figure shows that Algorithm 2 tended to slow the decrease in the recovery rate.
We see from the table that Algorithm 2 is more robust to noise than SPA and XRAY.

Table 2 summarizes the average number of active points and elapsed time for 50 data
sets taken by Algorithm 2 with δ = 0, 0.25 and 0.5. We read from the table that the
elapsed time increases with the number of active points. The average elapsed times of SPA,
XRAY(max), XRAY(dist), and XRAY(greedy) was respectively 0.03, 1.18, 16.80 and 15.85
in seconds. Therefore, we see that the elapsed time of Algorithm 2 was within a reasonable
range.

δ Active points Elapsed time (second)
ER-SPA ER-XRAY(max) ER-XRAY(dist) ER-XRAY(greedy)

0 10 1.05 1.07 1.07 1.07
0.25 12 3.08 3.10 3.10 3.10
0.5 23 4.70 4.71 4.71 4.71

Table 2: Average number of active points and elapsed time of Algorithm 2.

6.2 Application to Document Clustering

Consider a set of d documents. Let m be the total number of words appearing in the
document set. We represent the documents by a bag-of-words. That is, the ith document is
represented as an m-dimensional vector ai, whose elements are the appearance frequencies
of words in the document. A document vector ai can be assumed to be generated by a

1032

Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy Separability

convex combination of several topic vectors w1, . . .wr. This type of generative model has
been used in many papers (for instance, Xu et al., 2003; Shahnaz et al., 2006; Arora et al.,
2012b, 2013; Ding et al., 2013; Kumar et al., 2013).

Let W be an r-by-m topic matrix such that w>1 , . . . ,w
>
r are stacked from top to bottom

and are of the form (w1; . . . ;wr). The model allows us to write a document vector in the
form a>i = f>i W by using a coefficient vector fi ∈ Rr such that e>fi = 1 and fi ≥ 0. This
means that we have A = FW for a document-by-word matrix A = (a1; . . . ;ad) ∈ Rd×m+ , a

coefficient matrix F = (f1; . . . ;fd) ∈ Rd×r+ , and a topic matrix W = (w1; . . . ;wr) ∈ Rr×m+ .
In the same way as the papers (Arora et al., 2012b, 2013; Ding et al., 2013; Kumar et al.,
2013), we assume that a document-by-word matrix A is separable. This requires that W
is of (I,K)Π, and it means that each topic has an anchor word. An anchor word is a word
that is contained in one topic but not contained in the other topics. If an anchor word is
found, it suggests that the associated topic exists.

Algorithms for Problem 1 can be used for clustering documents and finding topics for
the above generative model. The algorithms for a document-word matrix A return an index
set I. Let F = A(I). The row vector elements fi1, . . . , fir of F can be thought of as the
contribution rate of topics w1, . . . ,wr for generating a document ai. The highest value
fij∗ among the elements implies that the topic wj∗ contributes the most to the generation
of document ai. Hence, we assign document ai to a cluster having the topic wj∗ . There
is an alternative to using F for measuring the contribution rates of the topics. Step 1
of Algorithm 1 produces a rank-r approximation matrix Ar to A as a by-product. Let
F ′ = Ar(I), and use it as an alternative to F . We say that clustering with F is clustering
with the original data matrix, and that clustering with F ′ is clustering with a low-rank
approximation data matrix.

Experiments were conducted in the purpose of investigating clustering performance of
algorithms and also checking whether meaningful topics could be extracted. To investigate
the clustering performance, we used only SPA since our experimental results implied that
XRAY would underperform. We assigned the values of the document-word matrix on the
basis of the tf-idf weighting scheme, for which we refer the reader to Manning et al. (2008),
and normalized the row vectors to the unit 1-norm.

To evaluate the clustering performance, we measured the accuracy (AC) and normalized
mutual information (NMI). These measures are often used for this purpose (see, for instance,
Xu et al., 2003; Manning et al., 2008). Let Ω1, . . . ,Ωr be the manually classified classes and
C1, . . . , Cr be the clusters constructed by an algorithm. Both Ωi and Cj are the subsets of
the document set {a1, . . . ,am} such that each subset does not share any documents and
the union of all subsets coincides with the document set. AC is computed as follows. First,
compute the correspondence between classes Ω1, . . . ,Ωr and clusters C1, . . . , Cr such that
the total number of common documents Ωi ∩ Cj is maximized. This computation can be
done by solving an assignment problem. After that, rearrange the classes and clusters in
the obtained order and compute

1

d

r∑
k=1

|Ωk ∩ Ck|.

1033

Mizutani

This value is the AC for the clusters constructed by an algorithm. NMI is computed as

I(Ω, C)
1
2(E(Ω) + E(C))

.

I and E denote the mutual information and entropy for the class family Ω and cluster
family C where Ω = {Ω1, . . . ,Ωr} and C = {C1, . . . , Cr}. We refer the reader to Section 16.3
of Manning et al. (2008) for the precise forms of I and E.

Two document corpora were used for the clustering-performance evaluation: Reuters-
21578 and 20 Newsgroups. These corpora are publicly available from the UCI Knowledge
Discovery in Databases Archive (http://kdd.ics.uci.edu). In particular, we used the
data preprocessing of Deng Cai, in which multiple classes are discarded. The data sets are
available from the website (http://www.cad.zju.edu.cn/home/dengcai). The Reuters-
21578 corpus consists of 21,578 documents appearing in the Reuters newswire in 1987, and
these documents are manually classified into 135 classes. The text corpus is reduced by the
preprocessing to 8,293 documents in 65 classes. Furthermore, we cut off classes with less
than 5 documents. The resulting corpus contains 8,258 documents with 18,931 words in
48 classes, and the sizes of the classes range from 5 to 3,713. The 20 Newsgroups corpus
consists of 18,846 documents with 26,213 words appearing in 20 different newsgroups. The
size of each class is about 1,000.

We randomly picked some classes from the corpora and evaluated the clustering per-
formance 50 times. Algorithm 2 was performed in the setting that M is a document-word
matrix and r and ρ each are the number of classes. In clustering with a low-rank ap-
proximation data matrix, we used the rank-r approximation matrix to a document-word
matrix.

AC NMI

Original Low-rank approx. Original Low-rank approx.
Classes ER-SPA SPA ER-SPA SPA ER-SPA SPA ER-SPA SPA

6 0.605 0.586 0.658 0.636 0.407 0.397 0.532 0.466
8 0.534 0.539 0.583 0.581 0.388 0.387 0.491 0.456
10 0.515 0.508 0.572 0.560 0.406 0.393 0.511 0.475
12 0.482 0.467 0.532 0.522 0.399 0.388 0.492 0.469

Table 3: (Reuters-21578) Average AC and NMI of ER-SPA and SPA with the original data
matrix and low-rank approximation data matrix.

Tables 3 and 4 show the results for Reuters-21578 and 20 Newsgroups, respectively.
They summarize the average ACs and NMIs of ER-SPA and SPA. The column with “#
Classes” lists the number of classes we chose. The columns labeled “Original” and “Low-
rank approx.” are respectively the averages of the corresponding clustering measurements
with the original data matrix and low-rank approximation data matrix. The tables suggest
that clustering with a low-rank approximation data matrix performed better than clustering
with the original data matrix. We see from Table 3 that ER-SPA could achieve improve-
ments in the AC and NMI of SPA on Reuters-21578 when the clustering was done with a

1034

http://kdd.ics.uci.edu
http://www.cad.zju.edu.cn/home/dengcai

Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy Separability

AC NMI

Original Low-rank approx. Original Low-rank approx.
Classes ER-SPA SPA ER-SPA SPA ER-SPA SPA ER-SPA SPA

6 0.441 0.350 0.652 0.508 0.314 0.237 0.573 0.411
8 0.391 0.313 0.612 0.474 0.306 0.242 0.555 0.415
10 0.356 0.278 0.559 0.439 0.291 0.228 0.515 0.397
12 0.319 0.240 0.517 0.395 0.268 0.205 0.486 0.372

Table 4: (20 Newsgroups) Average AC and NMI of ER-SPA and SPA with the original data
matrix and low-rank approximation data matrix.

low-rank approximation data matrix. Table 4 indicates that ER-SPA outperformed SPA in
AC and NMI on 20 Newsgroups.

Finally, we compared the topics obtained by ER-SPA and SPA. We used the BBC
corpus of Greene and Cunningham (2006), which is available from the website (http:
//mlg.ucd.ie/datasets/bbc.html). The documents in the corpus have been subjected
by preprocessed such as stemming, stop-word removal, and low word frequency filtering. It
consists of 2,225 documents with 9,636 words that appeared on the BBC news website in
2004-2005. The documents were news on 5 topics: “business”, “entertainment”, “politics”,
“sport” and “tech”.

AC NMI

ER-SPA SPA ER-SPA SPA

0.939 0.675 0.831 0.472

Table 5: AC and NMI of ER-SPA and SPA with low-rank approximation data matrix for
BBC.

Anchor word 1 2 3 4 5

ER-SPA film award best oscar nomin actor
SPA film award best oscar nomin star

ER-SPA mobil phone user softwar microsoft technolog
SPA mobil phone user microsoft music download

ER-SPA bank growth economi price rate oil
SPA bank growth economi price rate oil

ER-SPA game plai player win england club
SPA fiat sale profit euro japan firm

ER-SPA elect labour parti blair tori tax
SPA blog servic peopl site firm game

Table 6: Anchor words and top-5 frequent words in topics grouped by ER-SPA and SPA
for BBC.

1035

http://mlg.ucd.ie/datasets/bbc.html
http://mlg.ucd.ie/datasets/bbc.html

Mizutani

Table 5 shows the ACs and NMIs of ER-SPA and SPA on the low-rank approximation
data matrix for the BBC corpus. The table indicates that the AC and NMI of ER-SPA
are higher than those of SPA. Table 6 summarizes the words in the topics obtained by ER-
SPA and SPA. The topics were computed by using a low-rank approximation data matrix.
The table lists the anchor word and the 5 most frequent words in each topic from left to
right. We computed the correspondence between topics obtained by ER-SPA and SPA and
grouped the topics for each algorithm. Concretely, we measured the 2-norm of each topic
vector and computed the correspondence by solving an assignment problem. We can see
from the table that the topics obtained by these two algorithms are almost the same from
the first to the third panel, and they seem to correspond to “entertainment”, “tech” and
“business”. The topics in the fourth and fifth panels, however, are different. The topic in
the fifth panel by ER-SPA seems to correspond to “politics”. In contrast, it is difficult to
find the topic corresponding to “politics” in the panels by SPA. These show that ER-SPA
could extract more recognizable topics than SPA.

Remark 14 Sparsity plays an important role in computing the SVD for a large document
corpus. In general, a document-word matrix arising from a text corpus is quite sparse. Our
implementation of Algorithm 2 used the MATLAB command svds that exploits the sparsity
of a matrix in the SVD computation. The implementation could work on all data of 20
Newsgroups corpus, which formed a document-word matrix of size 18,846-by-26,213.

7. Concluding Remarks

We presented Algorithm 1 for Problem 1 and formally showed that it has correctness and
robustness properties. Numerical experiments on synthetic data sets demonstrated that
Algorithm 2, which is the practical implementation of Algorithm 1, is robustness to noise.
The robustness of the algorithm was measured in terms of the recovery rate. The results
indicated that Algorithm 2 can improve the recovery rates of SPA and XRAY. The algo-
rithm was then applied to document clustering. The experimental results implied that it
outperformed SPA and extracted more recognizable topics.

We will conclude by suggesting a direction for future research. Algorithm 2 needs to do
two computations: one is the SVD of the data matrix and the other is the MVEE for a set
of reduced-dimensional data points. It would be ideal to have a single computation that
could be parallelized. The MVEE computation requires that the convex hull of data points
is full-dimensional. Hence, the SVD computation should be carried out on data points.
However, if we could devise an alternative convex set for MVEE, it would possible to avoid
SVD computation. It would be interesting to investigate the possibility of algorithms that
find near-basis vectors by using the other type of convex set for data points.

Acknowledgments

The author would like to thank Akiko Takeda of the University of Tokyo for her insightful
and enthusiastic discussions, and thank the referees for careful reading and helpful sugges-
tions that considerably improved the quality of this paper.

1036

Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy Separability

References

S. D. Ahipasaoglu, P. Sun, and M. J. Todd. Linear convergence of a modified Frank-Wolfe
algorithm for computing minimum-volume enclosing ellipsoids. Optimization Methods
and Software, 23(1):5–19, 2008.

S. Arora, R. Ge, R. Kannan, and A. Moitra. Computing a nonnegative matrix factorization
– Provably. In Proceedings of the 44th Symposium on Theory of Computing (STOC),
pages 145–162, 2012a.

S. Arora, R. Ge, and A. Moitra. Learning topic models – Going beyond SVD. In Proceedings
of the 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS),
pages 1–10, 2012b.

S. Arora, R. Ge, Y. Halpern, D. Mimno, and A. Moitra. A practical algorithm for topic
modeling with provable guarantees. In Proceedings of the 30th International Conference
on Machine Learning (ICML), 2013.

V. Bittorf, B. Recht, C. Re, and J. A. Tropp. Factoring nonnegative matrices with linear
programs. In Advances in Neural Information Processing Systems 25 (NIPS), pages
1223–1231, 2012.

A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari. Nonnegative Matrix and Tensor
Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source
Separation. Wiley, 2009.

W. Ding, M. H. Rohban, P. Ishwar, and V. Saligrama. Topic discovery through data
dependent and random projections. In Proceedings of the 30th International Conference
on Machine Learning (ICML), 2013.

D. Donoho and V. Stodden. When does non-negative matrix factorization give a correct
decomposition into parts? In Advances in Neural Information Processing Systems 16
(NIPS), pages 1141–1148, 2003.

N. Gillis. Robustness analysis of Hottopixx, a linear programming model for factoring
nonnegative matrices. SIAM Journal on Matrix Analysis and Applications, 34(3):1189–
1212, 2013.

N. Gillis and R. Luce. Robust near-separable nonnegative matrix factorization using linear
optimization. arXiv:1302.4385v1, 2013.

N. Gillis and S. A. Vavasis. Fast and robust recursive algorithms for separable nonnegative
matrix factorization. IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(4):698–714, 2014.

G. H. Golub and C. F. Van Loan. Matrix Computation. The Johns Hopkins University
Press, 3rd edition, 1996.

P. Gong and C. Zhang. Efficient nonnegative matrix factorization via projected newton
method. Pattern Recognition, 45(9):3557–3565, 2012.

1037

Mizutani

D. Greene and P. Cunningham. Practical solutions to the problem of diagonal dominance
in kernel document clustering. In Proceedings of the 23th International Conference on
Machine Learning (ICML), 2006.

L. G. Khachiyan. Rounding of polytopes in the real number model of computation. Math-
ematics of Operations Research, 21(2):307–320, 1996.

H. Kim and H. Park. Non-negative matrix factorization based on alternating non-negativity
constrained least squares and active set method. SIAM Journal on Matrix Analysis and
Applications, 30(2):713–730, 2008.

H. Kim and H. Park. Fast nonnegative matrix factorization: An active-set-like method and
comparisons. SIAM Journal on Scientific Computing, 33(6):3261–3281, 2011.

J. Kim, Y. He, and H. Park. Algorithms for nonnegative matrix and tensor factoriza-
tions: a unified view based on block coordinate descent framework. Journal of Global
Optimization, 58(2):285–319, 2014.

A. Kumar, V. Sindhwani, and P. Kambadur. Fast conical hull algorithms for near-separable
non-negative matrix factorization. In Proceedings of the 30th International Conference
on Machine Learning (ICML), 2013.

P. Kumar and E. A. Yildirim. Minimum-volume enclosing ellipsoids and core sets. Journal
of Optimization Theory and Applications, 126(1), 2005.

D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factoriza-
tion. Nature, 401:788–791, 1999.

D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In Advances
in Neural Information Processing Systems 13 (NIPS), pages 556–562, 2001.

C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Com-
putation, 19(10):2756–2779, 2007.

C. D. Manning, P. Raghavan, and H. Schuetze. Introduction to Information Retrieval.
Cambridge University Press, 2008.

L. Miao and H. Qi. Endmember extraction from highly mixed data using minimum volume
constrained nonnegative matrix factorization. IEEE Transactions on Geoscience and
Remote Sensing, 45(2):765–777, 2007.

J. M. P. Nascimento and J. M. B. Dias. Vertex component analysis: A fast algorithm to
unmix hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 43
(4):898–910, 2005.

F. Shahnaz, M. W. Berry, V. P. Pauca, and R. J. Plemmons. Document clustering using
nonnegative matrix factorization. Information Processing and Management, 42(2):373–
386, 2006.

P. Sun and R. M. Freund. Computation of minimum-volume covering ellipsoids. Operations
Research, 52(5):690–706, 2004.

1038

Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy Separability

M. J. Todd and E. A. Yildirim. On Khachiyan’s algorithm for the computation of minimum-
volume enclosing ellipsoids. Discrete Applied Mathematics, 155(13):1731–1744, 2007.

K.-C. Toh. Primal-dual path-following algorithms for determinant maximization problems
with linear matrix inequalities. Computational Optimization and Applications, 14(3):
309–330, 1999.

K.-C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3 – a MATLAB software package for
semidefinite programming. Optimization Methods and Software, 11:545–581, 1999.

T. Tsuchiya and Y. Xia. An extension of the standard polynomial-time primal-dual path-
following algorithm to the weighted determinant maximization problem with semidefinite
constraints. Pacific Journal of Optimization, 3(1):165–182, 2007.

L. Vandenberghe, S. Boyd, and S. P. Wu. Determinant maximization with linear matrix
inequality constraints. SIAM Journal on Matrix Analysis and Applications, 19(2):499–
533, 1998.

S. A. Vavasis. On the complexity of nonnegative matrix factorization. SIAM Journal of
Optimization, 20(3):1364–1377, 2009.

W. Xu, X. Liu, and Y. Gong. Document clustering based on non-negative matrix fac-
torization. In Proceedings of the 26th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR), pages 267–273, 2003.

1039

Journal of Machine Learning Research 15 (2014) 1041-1071 Submitted 2/13; Revised 11/13; Published 3/14

Improving Prediction from Dirichlet Process Mixtures via
Enrichment∗†

Sara Wade sara.wade@eng.cam.ac.uk
Department of Engineering
University of Cambridge
Cambridge, CB2 1PZ, UK

David B. Dunson dunson@stat.duke.edu
Department of Statistical Science
Duke University
Durham, NC 27708-0251, USA

Sonia Petrone sonia.petrone@unibocconi.it
Department of Decision Sciences
Bocconi University
Milan, 20136, Italy

Lorenzo Trippa ltrippa@jimmy.harvard.edu
Department of Biostatistics
Harvard University
Boston, MA 02115, USA

Editor: David Blei

Abstract

Flexible covariate-dependent density estimation can be achieved by modelling the joint
density of the response and covariates as a Dirichlet process mixture. An appealing aspect
of this approach is that computations are relatively easy. In this paper, we examine the
predictive performance of these models with an increasing number of covariates. Even for
a moderate number of covariates, we find that the likelihood for x tends to dominate the
posterior of the latent random partition, degrading the predictive performance of the model.
To overcome this, we suggest using a different nonparametric prior, namely an enriched
Dirichlet process. Our proposal maintains a simple allocation rule, so that computations
remain relatively simple. Advantages are shown through both predictive equations and
examples, including an application to diagnosis Alzheimer’s disease.

Keywords: Bayesian nonparametrics, density regression, predictive distribution, random
partition, urn scheme

∗. For the Alzheimer’s Disease Neuroimaging Initiative.
†. Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI con-
tributed to the design and implementation of ADNI and/or provided data but did not participate
in analysis or writing of this report. A complete listing of ADNI investigators can be found at:
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

c©2014 Sara Wade, David B. Dunson, Sonia Petrone and Lorenzo Trippa.

adni.loni.ucla.edu
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Wade, Dunson, Petrone and Trippa

1. Introduction

Dirichlet process (DP) mixture models have become popular tools for Bayesian nonparamet-
ric regression. In this paper, we examine their behavior in prediction and aim to highlight
the difficulties that emerge with increasing dimension of the covariate space. To overcome
these difficulties, we suggest a simple extension based on a nonparametric prior developed
in Wade et al. (2011) that maintains desirable conjugacy properties of the Dirichlet process
and leads to improved prediction. The motivating application is to Alzheimer’s disease
studies, where the focus is prediction of the disease status based on biomarkers obtained
from neuroimages. In this problem, a flexible nonparametric approach is needed to account
for the possible nonlinear behavior of the response and complex interaction terms, resulting
in improved diagnostic accuracy.

DP mixtures are widely used for Bayesian density estimation, see, for example, Ghosal
(2010) and references therein. A common way to extend these methods to nonparametric
regression and conditional density estimation is by modelling the joint distribution of the
response and the covariates (X,Y) as a mixture of multivariate Gaussians (or more general
kernels). The regression function and conditional density estimates are indirectly obtained
from inference on the joint density, an idea which is similarly employed in classical kernel
regression (Scott, 1992, Chapter 8).

This approach, which we call the joint approach, was first introduced by Müller et al.
(1996), and subsequently studied by many others including Kang and Ghosal (2009); Shah-
baba and Neal (2009); Hannah et al. (2011); Park and Dunson (2010); and Müller and
Quintana (2010). The DP model uses simple local linear regression models as building
blocks and partitions the observed subjects into clusters, where within clusters, the linear
regression model provides a good fit. Even though within clusters the model is parametric,
globally, a wide range of complex distributions can describe the joint distribution, leading
to a flexible model for both the regression function and the conditional density.

Another related class of models is based on what we term the conditional approach.
In such models, the conditional density of Y given x, f(y|x), is modelled directly, as a
convolution of a parametric family f(y|x, θ) with an unknown mixing distribution Px for
θ. A prior is then given on the family of distributions {Px, x ∈ X} such that the Px’s
are dependent. Examples for the law of {Px, x ∈ X} start from the dependent DPs of
MacEachern (1999); Gelfand et al. (2005) and include Griffin and Steel (2006); Dunson
and Park (2008); Ren et al. (2011); Chung and Dunson (2009); and Rodriguez and Dunson
(2011), just to name a few. Such conditional models can approximate a wide range of
response distributions that may change flexibly with the covariates. However, computations
are often quite burdensome. One of the reasons the model examined here is so powerful is
its simplicity. Together, the joint approach and the clustering of the DP provide a built-in
technique to allow for changes in the response distribution across the covariate space, yet it
is simple and generally less computationally intensive than the nonparametric conditional
models based on dependent DPs.

The random allocation of subjects into groups in joint DP mixture models is driven by
the need to obtain a good approximation of the joint distribution of X and Y . This means
that subjects with similar covariates and similar relationship between the response and
covariates will tend to cluster together. However, difficulties emerge as p, the dimension of

1042

Prediction via Enriched Dirichlet Process Mixtures

the covariate space, increases. As we will detail, even for moderately large p the likelihood
of x tends to dominate the posterior of the random partition, so that clusters are based
mainly on similarity in the covariate space. This behaviour is quite unappealing if the
marginal density of X is complex, as is typical in high dimensions, because it causes the
posterior to concentrate on partitions with many small clusters, as many kernels are needed
to describe f(x). This occurs even if the conditional density of Y given x is more well
behaved, meaning, a few kernels suffice for its approximation. Typical results include poor
estimates of the regression function and conditional density with unnecessarily wide credible
intervals due to small clusters and, consequently, poor prediction.

This inefficient performance may not disappear with increasing samples. On one hand,
appealing to recent theoretical results (Wu and Ghosal, 2008, 2010; Tokdar, 2011), one
could expect that as the sample size increases, the posterior on the unknown density f(x, y)
induced by the DP joint mixture model is consistent at the true density. In turn, posterior
consistency of the joint is likely to have positive implications for the behavior of the random
conditional density and regression function; see Rodriguez et al. (2009); Hannah et al.
(2011); and Norets and Pelenis (2012) for some developments in this direction. However, the
unappealing behaviour of the random partition that we described above could be reflected
in worse convergence rates. Indeed, recent results by Efromovich (2007) suggest that if the
conditional density is smoother than the joint, it can be estimated at a faster rate. Thus,
improving inference on the random partition to take into account the different degree of
smoothness of f(x) and f(y|x) appears to be a crucial issue.

Our goal in this paper is to show that a simple modification of the nonparametric prior
on the mixing distribution, that better models the random partition, can more efficiently
convey the information present in the sample, leading to more efficient conditional density
estimates in term of smaller errors and less variability, for finite samples. To achieve this
aim, we consider a prior that allows local clustering, that is, the clustering structure for the
marginal ofX and the regression of Y on xmay be different. We achieve this by replacing the
DP with the enriched Dirichlet process (EDP) developed in Wade et al. (2011). Like the DP,
the EDP is a conjugate nonparametric prior, but it allows a nested clustering structure that
can overcome the above issues and lead to improved predictions. An alternative proposal
is outlined in Petrone and Trippa (2009) and in unpublished work by Dunson et al. (2011).
However, the EDP offers a richer parametrization. In a Bayesian nonparametric framework,
several extensions of the DP have been proposed to allow local clustering (see, e.g., Dunson
et al. 2008; Dunson 2009; Petrone et al. 2009). However, the greater flexibility is often
achieved at the price of more complex computations. Instead, our proposal maintains an
analytically computable allocation rule, and therefore, computations are a straightforward
extension of those used for the joint DP mixture model. Thus, our main contributions are to
highlight the problematic behavior in prediction of the joint DP mixture model for increasing
p and also offer a simple solution based on the EDP that maintains computational ease.
In addition, we give results on random nested partitions that are implied by the proposed
prior.

This paper is organized as follows. In Section 2, we review the joint DP mixture model,
discuss the behavior of the random partition, and examine the predictive performance.
In Section 3, we propose a joint EDP mixture model, derive its random partition model,
and emphasize the predictive improvements of the model. Section 4 covers computational

1043

Wade, Dunson, Petrone and Trippa

procedures. We provide a simulated example in Section 5 to demonstrate how the EDP
model can lead to more efficient estimators by making better use of information contained
in the sample. Finally, in Section 6, we apply the model to predict Alzheimer’s disease
status based on measurements of various brain structures.

2. Joint DP Mixture Model

A joint DP mixture model for multivariate density estimation and nonparametric regression
assumes that

(Xi, Yi)|P
iid∼ f(x, y|P) =

∫
K(x, y|ξ)dP (ξ),

where Xi is p-dimensional, Y is usually univariate, and the mixing distribution P is given
a DP prior with scale parameter α > 0 and base measure P0, denoted by P ∼ DP(αP0).
Due to the a.s. discrete nature of the DP, the model reduces to a countable mixture

f(x, y|P) =

∞∑
j=1

wjK(x, y|ξ̃j),

where the mixing weights wj have a stick breaking prior with parameter α and ξ̃j
iid∼ P0,

independently of the wj . This model was first developed for Bayesian nonparametric re-
gression by Müller et al. (1996), who assume multivariate Gaussian kernels Np+1(µ,Σ) with
ξ = (µ,Σ) and use a conjugate normal inverse Wishart prior as the base measure of the DP.
However, for even moderately large p, this approach is practically unfeasible. Indeed, the
computational cost of dealing with the full p+1 by p+1 covariance matrix greatly increases
with large p. Furthermore, the conjugate inverse Wishart prior is known to be too poorly
parametrized; in particular, there is a single parameter ν to control variability, regardless
of p (see Consonni and Veronese, 2001).

A more effective formulation of this model has been recently proposed by Shahbaba
and Neal (2009), based on two simple modifications. First, the joint kernel is decomposed
as the product of the marginal of X and the conditional of Y |x, and the parameter space
consequently expressed in terms of the parameters ψ of the marginal and the parameters θ of
the conditional. This is a classic reparametrization which, in the Gaussian case, is the basis
of generalizations of the inverse Wishart conjugate prior; see Brown et al. (1994). Secondly,
they suggest using simple kernels, assuming local independence among the covariates, that
is, the covariance matrix of the kernel for X is diagonal. These two simple modifications
allow several important improvements. Computationally, reducing the covariance matrix
to p variances can greatly ease calculations. Regarding flexibility of the base measure, the
conjugate prior now includes a separate parameter to control variability for each of the
p variances. Furthermore, the model still allows for local correlations between Y and X
through the conditional kernel of Y |x and the parameter θ. In addition, the factorization
in terms of the marginal and conditional and the assumption of local independence of
the covariates allow for easy inclusion of discrete or other types of response or covariates.
Note that even though, within each component, we assume independence of the covariates,
globally, there may be dependence.

1044

Prediction via Enriched Dirichlet Process Mixtures

This extended model, in full generality, can be described through latent parameter
vectors as follows:

Yi|xi, θi
ind∼ Fy(·|xi, θi), Xi|ψi

ind∼ Fx(·|ψi), (1)

(θi, ψi)|P
iid∼ P, P ∼ DP(αP0θ × P0ψ).

Here the base measure P0θ × P0ψ of the DP assumes independence between the θ and the
ψ parameters, as this is the structurally conjugate prior for (θ, ψ), and thus, results in
simplified computations, but the model could be extended to more general choices. We
further assume that P0θ and P0ψ are absolutely continuous, with densities p0θ and p0ψ.
Since P is discrete a.s., integrating out the subject-specific parameters (θi, ψi), the model
for the joint density is

f(yi, xi|P) =

∞∑
j=1

wjK(yi|xi, θ̃j)K(xi|ψ̃j), (2)

where the kernels K(y|x, θ) and K(x|ψ) are the densities associated to Fy(·|x, θ) and Fx(·|ψ).
In the Gaussian case, K(x|ψ) is the product of N(µx,h, σ

2
x,h) Gaussians, h = 1, . . . , p, and

K(y|x, θ) is N(xβ, σ2
y|x), where x = (1, x′). Shahbaba and Neal (2009) focus on the case

when Y is categorical and the local model for Y |x is a multinomial logit. Hannah et al.
(2011) extend the model to the case when, locally, the conditional distribution of Y |x
belongs to the class of generalized linear models (GLM), that is, the distribution of the
response belongs to the exponential family and the mean of the response can be expressed
a function of a linear combination of the covariates.

Model (2) allows for flexible conditional densities

f(y|x, P) =

∑∞
j=1wjK(x|ψ̃j)K(y|x, θ̃j)∑∞

j′=1wj′K(x|ψ̃j′)
≡
∑
j

wj(x)K(y|x, θ̃j),

and nonlinear regression

E[Y |x, P] =
∞∑
j=1

wj(x) E[Y |x, θ̃j],

with E[Y |x, θ̃j] = xβ∗j for Gaussian kernels. Thus, the model provides flexible kernel based
density and regression estimation, and MCMC computations are standard. However, the DP
only allows joint clusters of the parameters (θi, ψi), i = 1, . . . , n. We underline drawbacks
of such joint clustering in the following subsections.

2.1 Random Partition and Inference

One of the crucial features of DP mixture models is the dimension reduction and clustering
obtained due to the almost sure discreteness of P. In fact, this implies that a sample (θi, ψi),
i = 1, . . . , n from a DP presents ties with positive probability and can be conveniently
described in terms of the random partition and the distinct values. Using a standard
notation, we denote the random partition by a vector of cluster allocation labels ρn =

1045

Wade, Dunson, Petrone and Trippa

(s1, . . . , sn), with si = j if (θi, ψi) is equal to the jth unique value observed, (θ∗j , ψ
∗
j), for

j = 1, . . . , k, where k = k(ρn) is the number of groups in the partition ρn. Additionally,
we will denote by Sj = {i : si = j} the set of subject indices in the jth cluster and use the
notation y∗j = {yi : i ∈ Sj} and x∗j = {xi : i ∈ Sj}. We also make use of the short notation
x1:n = (x1, . . . , xn).

Often, the random probability measure P is integrated out and inference is based on
the posterior of the random partition ρn and the cluster-specific parameters (θ∗, ψ∗) ≡
(θ∗j , ψ

∗
j)
k
j=1;

p(ρn, θ
∗, ψ∗|x1:n, y1:n) ∝ p(ρn)

k∏
j=1

p0θ(θ
∗
j)p0ψ(ψ∗j)

k∏
j=1

∏
i∈Sj

K(xi|ψ∗j)K(yi|xi, θ∗j).

As is well known (Antoniak, 1974), the prior induced by the DP on the random partition
is p(ρn) ∝ αk

∏k
j=1 Γ(nj), where nj is the size of Sj . Marginalizing out the θ∗, ψ∗, the

posterior of the random partition is

p(ρn|x1:n, y1:n) ∝ αk
k∏
j=1

Γ(nj)hx(x∗j)hy(y
∗
j |x∗j). (3)

Notice that the marginal likelihood component in (3), say h(x1:n, y1:n|ρn), is factorized as
the product of the cluster-specific marginal likelihoods hx(x∗j)hy(y

∗
j |x∗j) where hx(x∗j) =∫

Ψ

∏
i∈Sj

K(xi|ψ)dP0ψ(ψ) and hy(y
∗
j |x∗j) =

∫
Θ

∏
i∈Sj

K(yi|xi, θ)dP0θ(θ).
Given the partition and the data, the conditional distribution of the distinct values is

simple, as they are independent across clusters, with posterior densities

p(θ∗j |ρn, x1:n, y1:n) ∝ p0θ(θ
∗
j)
∏
i∈Sj

K(yi|xi, θ∗j),

p(ψ∗j |ρn, x1:n, y1:n) ∝ p0ψ(ψ∗j)
∏
i∈Sj

K(xi|ψ∗j). (4)

Thus, given ρn, the cluster-specific parameters (θ∗j , ψ
∗
j) are updated based only on the

observations in cluster Sj . Computations are simple if p0θ and p0ψ are conjugate priors.
The above expressions show the crucial role of the random partition. From Equation (3),

we have that given the data, subjects are clustered in groups with similar behaviour in the
covariate space and similar relationship with the response. However, even for moderate p the
likelihood for x tends to dominate the posterior of the random partition, so that clusters are
determined only by similarity in the covariate space. This is particularly evident when the
covariates are assumed to be independent locally, that is, K(xi|ψ∗j) =

∏p
h=1K(xi,h|ψ∗j,h).

Clearly, for large p, the scale and magnitude of changes in
∏p
h=1K(xi,h|ψ∗j,h) will wash

out any information given in the univariate likelihood K(yi|θ∗j , xi). Indeed, this is just the
behavior we have observed in practice in running simulations for large p (results not shown).

For a simple example demonstrating how the number of components needed to approxi-
mate the marginal of X can blow up with p, imagine X is uniformly distributed on a cuboid
of side length r > 1. Consider approximating

f0(x) =
1

rp
1(x ∈ [0, r]p) by fk(x) =

k∑
j=1

wjNp(x|µj , σ2
j Ip).

1046

Prediction via Enriched Dirichlet Process Mixtures

Since the true distribution of x is uniform on the cube [0, r]p, to obtain a good approxima-
tion, the weighted components must place most of their mass on values of x contained in
the cuboid. Let Bσ(µ) denote a ball of radius σ centered at µ. If a random vector V is
normally distributed with mean µ and variance σ2Ip, then for 0 < ε < 1,

P (V ∈ Bσz(ε)(µ)) = 1− ε, where z(ε)2 = (χ2
p)
−1(1− ε),

that is, the square of z(ε) is the (1 − ε) quantile of the chi-squared distribution with p
degrees of freedom. For small ε, this means that the density of V places most of its mass
on values contained in a ball of radius σz(ε) centered at µ. For ε > 0, define

f̃k(x) =

k∑
j=1

wjN(x;µj , σ
2
j Ip) ∗ 1(x ∈ Bσjz(εj)(µj)),

where εj = ε/(kwj). Then, f̃k is close to fk (in the L1 sense):∫
Rp

|fk(x)− f̃k(x)|dx =

∫
Rp

k∑
j=1

wjN(x;µj , σ
2
j Ip) ∗ 1(x ∈ Bc

σjz(εj)(µj))dx = ε.

For f̃k to be close to f0, the parameters µj , σj , wj need to be chosen so that the balls
Bσjz(ε/(kwj))(µj) are contained in the cuboid. That means that centers of the balls are
contained in the cuboid,

µj ∈ [0, r]p, (5)

with further constraints on σ2
j and wj , so that the radius is small enough. In particular,

σjz

(
ε

kwj

)
≤ min(µ1, r − µ1, . . . , µp, r − µp) ≤

r

2
. (6)

However, as p increases the volume of the cuboid goes to infinity, but the volume of any ball
Bσjz(ε/(kwj))(µj) defined by (5) and (6) goes to 0 (see Clarke et al., 2009, Section 1.1). Thus,
just to reasonably cover the cuboid with the balls of interest, the number of components
will increase dramatically, and more so, when we consider the approximation error of the
density estimate. Now, as an extreme example, imagine that f0(y|x) is a linear regression
model. Even though one component is sufficient for f0(y|x), a large number of components
will be required to approximate f0(x), especially as p increases.

It appears evident from (4) this behavior of the random partition also negatively affects
inference on the cluster-specific parameters. In particular, when many kernels are required
to approximate the density of X with few observations within each cluster, the posterior
for θ∗j may be based on a sample of unnecessarily small size, leading to a flat posterior with
an unreliable posterior mean and large influence of the prior.

2.2 Covariate-dependent Urn Scheme and Prediction

Difficulties associated to the behavior of the random partition also deteriorate the predictive
performance of the model. Prediction in DP joint mixture models is based on a covariate-
dependent urn scheme (Park and Dunson, 2010; Müller and Quintana, 2010), such that

1047

Wade, Dunson, Petrone and Trippa

conditionally on the partition ρn and x1:n+1, the cluster allocation sn+1 of a new subject
with covariate value xn+1 is determined as

sn+1|ρn, x1:n+1 ∼
ωk+1(xn+1)

c0
δk+1 +

k∑
j=1

ωj(xn+1)

c0
δj , (7)

where

ωk+1(xn+1) =
αh0,x(xn+1)

α+ n
,

ωj(xn+1) =
nj
∫
K(xn+1|ψ)p(ψ|x∗j)dψ

α+ n
≡ nj hj,x(xn+1)

α+ n
,

and c0 = p(xn+1|ρn, x1:n) is the normalizing constant. This urn scheme is a generalization
of the classic Pólya urn scheme that allows the cluster allocation probability to depend on
the covariates; the probability of allocation to cluster j depends on the similarity of xn+1 to
the xi in cluster j as measured by the predictive density hj,x. See Park and Dunson (2010)
for more details.

From the urn scheme (7) one obtains the structure of the prediction. The predictive
density at y for a new subject with a covariate of xn+1 is computed as

f(y|y1:n, x1:n+1)

=
∑
ρn

∑
sn+1

f(y|y1:n, x1:n+1, ρn, sn+1)p(sn+1|y1:n, x1:n+1, ρn) p(ρn|y1:n, x1:n+1)

=
∑
ρn

ωk+1(xn+1)

c0
h0,y(y|xn+1) +

k∑
j=1

ωj(xn+1)

c0
hj,y(y|xn+1)

 c0p(ρn|x1:n, y1:n)

p(xn+1|x1:n, y1:n)

=
∑
ρn

ωk+1(xn+1)

c
h0,y(y|xn+1) +

k∑
j=1

ωj(xn+1)

c
hj,y(y|xn+1)

 p(ρn|x1:n, y1:n), (8)

where c = p(xn+1|x1:n, y1:n). Thus, given the partition, the conditional predictive density is
a weighted average of the prior guess h0,y(y|x) ≡

∫
K(y|x, θ)dP0θ(θ) and the cluster-specific

predictive densities of y at xn+1,

hj,y(y|xn+1) =

∫
K(y|xn+1, θ)p(θ|x∗j , y∗j)dθ,

with covariate-dependent weights. The predictive density is obtained by averaging with
respect to the posterior of ρn. However, for moderate to large p, the posterior of the
random partition suffers the drawbacks discussed in the previous subsection. In particular,
too many small x-clusters lead to unreliable within cluster predictions based on small sample
sizes. Furthermore, the measure which determines similarity of xn+1 and the jth cluster
will be too rigid. Consequently, the resulting overall prediction may be quite poor.

1048

Prediction via Enriched Dirichlet Process Mixtures

These drawbacks will also affect the point prediction, which, under quadratic loss, is

E[Yn+1|y1:n, x1:n+1]

=
∑
ρn

ωk+1(xn+1)

c
E0[Yn+1|xn+1] +

k∑
j=1

ωj(xn+1)

c
Ej [Yn+1|xn+1]

 p(ρn|x1:n, y1:n), (9)

where E0[Yn+1|xn+1] is the expectation of Yn+1 with respect to h0,y and Ej [Yn+1|xn+1] ≡
E[E[Yn+1|xn+1, θ

∗
j]|x∗j , y∗j] is the expectation of Yn+1 with respect to hj,y.

Example. When K(y|x, θ) = N(y;xβ, σ2) and the prior for (β, σ2) is the multivariate normal
inverse gamma with parameters (β0, C

−1, ay, by), (9) is

∑
ρn

ωk+1(xn+1)

c
xn+1β0 +

k∑
j=1

ωj(xn+1)

c
xn+1β̂j

 p(ρn|x1:n, y1:n),

where β̂j = Ĉ−1
j (Cβ0 + X ′jy

∗
j), Ĉj = C + X ′jXj , Xj is a nj by p + 1 matrix with rows xi

for i ∈ Sj , and (8) is

ωk+1(xn+1)

c
T
(
y|xn+1β0,

by
ay
W−1, 2ay

)
+

k∑
j=1

ωj(xn+1)

c
T
(
y|xn+1β̂j ,

b̂y,j
ây,j

W−1
j , 2ây,j

)
,

where T (·;µ, σ2, ν) denotes the density of a random variable V such that (V − µ)/σ has a
t-distribution with ν degrees of freedom; ây,j = ay + nj/2;

b̂y,j = by +
1

2
(y∗j −Xjβ0)′(Inj −XjĈ

−1
j X ′j)(y

∗
j −Xjβ0);

W = 1− xn+1(C + x′n+1xn+1)−1x′n+1;

and Wj is defined as W with C replaced by Ĉj .

3. Joint EDP Mixture Model

As seen, the global clustering of the DP prior on P(Θ×Ψ), the space of probability measures
on Θ×Ψ, does not allow one to efficiently model the types of data discussed in the previous
section. Instead, it is desirable to use a nonparametric prior that allows many ψ-clusters,
to fit the complex marginal of X, and fewer θ-clusters. At the same time, we want to
preserve the desirable conjugacy properties of the DP, in order to maintain fairly simple
computations. To these aims, our proposal is to replace the DP with the more richly
parametrized enriched Dirichlet process (Wade et al., 2011). The EDP is conjugate and has
an analytically computable urn scheme, but it gives a nested partition structure that can
model the desired clustering behavior.

Recall that the model (1) was obtained by decomposing the joint kernel as the product
of the marginal and conditional kernels. The EDP is a natural alternative for the mixing
distribution of this model, as it is similarly based on the idea of expressing the unknown

1049

Wade, Dunson, Petrone and Trippa

random joint probability measure P of (θ, ψ) in terms of the random marginal and con-
ditionals. This requires the choice of an ordering of θ and ψ, and this choice is problem
specific. In the situation described here, it is natural to consider the random marginal dis-
tribution Pθ and the random conditional Pψ|θ, to obtain the desired clustering structure.
Then, the EDP prior is defined by

Pθ ∼ DP(αθP0θ),

Pψ|θ(·|θ) ∼ DP(αψ(θ)P0ψ|θ(·|θ)), ∀θ ∈ Θ,

and Pψ|θ(·|θ) for θ ∈ Θ are independent among themselves and from Pθ. Together these
assumptions induce a prior for the random joint P through the joint law of the marginal and
conditionals and the mapping (Pθ, Pψ|θ)→

∫
Pψ|θ(·|θ)dPθ(θ). The prior is parametrized by

the base measure P0, expressed as

P0(A×B) =

∫
A
P0ψ|θ(B|θ)dP0θ(θ)

for all Borel sets A and B, and by a precision parameter αθ associated to θ and a collection
of precision parameters αψ(θ) for every θ ∈ Θ associated to ψ|θ. Note the contrast with
the DP, which only allows one precision parameter to regulate the uncertainty around P0.

The proposed EDP mixture model for regression is as in (1), but with

P ∼ EDP(αθ, αψ(θ), P0)

in place of P ∼ DP(αP0θ × P0ψ). In general, P0 is such that θ and ψ are dependent, but
here we assume the same structurally conjugate base measure as for the DP model (1), so
P0 = P0θ × P0ψ. Using the square breaking representation of the EDP (Wade et al., 2011,
Proposition 4) and integrating out the (θi, ψi) parameters, the model for the joint density
is

f(x, y|P) =
∞∑
j=1

∞∑
l=1

wjwl|jK(x|ψ̃l|j)K(y|x, θ̃j).

This gives a mixture model for the conditional densities with more flexible weights

f(y|x, P) =
∞∑
j=1

∑∞
l=1wl|jK(x|ψ̃l|j)∑∞

j′=1wj′
∑∞

l′=1wl′|j′K(x|ψ̃l′|j′)
K(y|x, θ̃j′) ≡

∞∑
j=1

w̃j(x)K(y|x, θ̃j).

3.1 Random Partition and Inference

The advantage of the EDP is the implied nested clustering. The EDP partitions subjects
in θ-clusters and ψ-subclusters within each θ-cluster, allowing the use of more kernels to
describe the marginal of X for each kernel used for the conditional of Y |x. The random
partition model induced from the EDP can be described as a nested Chinese Restaurant
Process (nCRP).

First, customers choose restaurants according to the CRP induced by Pθ ∼ DP(αθP0θ),
that is, with probability proportional to the number nj of customers eating at restaurant j,

1050

Prediction via Enriched Dirichlet Process Mixtures

the (n+1)th customer eats at restaurant j, and with probability proportional to αθ, she eats

at a new restaurant. Restaurant are then colored with colors θ∗j
iid∼ P0θ. Within restaurant

j, customers sit at tables as in the CRP induced by the Pψ|θ∗j ∼ DP(αψ(θ∗j)P0ψ|θ(·|θ∗j)).

Tables in restaurant j are then colored with colors ψ∗l|j
iid∼ P0ψ|θ(·|θ∗j).

This differs from the nCRP proposed by Blei et al. (2010), which had the alternative
aim of learning topic hierarchies by clustering parameters (topics) hierarchically along a
tree of infinite CRPs. In particular, each subject follows a path down the tree according to
a sequence of nested CRPs and the parameters of subject i are associated with the cluster
visited at a latent subject-specific level l of this path. Although related, the EDP is not a
special case with the tree depth fixed to 2; the EDP defines a prior on a multivariate random
probability measure on Θ×Ψ and induces a nested partition of the multivariate parameter
(θ, ψ), where the first level of the tree corresponds to the clustering of the θ parameters
and the second corresponds to the clustering of the ψ parameters. A generalization of
the EDP to a depth of D ≤ ∞ is related to Blei et al.’s nCRP with depth D ≤ ∞, but
only if one regards the parameters of each subject as the vector of parameters (ξ1, . . . , ξD)
associated to each level of the tree. Furthermore, this generalization of the EDP would
allow a more flexible specification of the mass parameters and possible correlation among
the nested parameters.

The nested partition of the EDP is described by ρn = (ρn,y, ρn,x), where ρn,y =
(sy,1, ..., sy,n) and ρn,x = (sx,1, ..., sx,n) with sy,i = j if θi = θ∗j , the jth distinct θ-value

in order of appearance, and sx,i = l if ψi = ψ∗l|j , the lth color that appeared inside the jth

θ-cluster. Additionally, we use the notation Sj+ = {i : sy,i = j}, with size nj , j = 1, . . . , k,
and Sl|j = {i : sy,i = j, sx,i = l}, with size nl|j , l = 1, . . . , kj . The unique parameters will be

denoted by θ∗ = (θ∗j)
k
j=1 and ψ∗ = (ψ∗1|j , . . . , ψ

∗
kj |j)

k
j=1. Furthermore, we use the notation

ρnj ,x = (sx,i : i ∈ Sj+) and y∗j = {yi : i ∈ Sj+}, x∗j = {xi : i ∈ Sj+}, x∗l|j = {xi : i ∈ Sl|j}.

Proposition 1 The probability law of the nested random partition defined from the EDP
is

p(ρn) =
Γ(αθ)

Γ(αθ + n)
αkθ

k∏
j=1

∫
Θ
αψ(θ)kj

Γ(αψ(θ))Γ(nj)

Γ(αψ(θ) + nj)
dP0θ(θ)

kj∏
l=1

Γ(nl|j).

Proof From independence of random conditional distributions among θ ∈ Θ,

p(ρn, θ
∗) = p(ρn,y)

k∏
j=1

p0θ(θ
∗
j)p(ρn,x|ρn,y, θ∗) = p(ρn,y)

k∏
j=1

p0θ(θ
∗
j)p(ρnj ,x|θ∗j).

Next, using the results of the random partition model of the DP (Antoniak, 1974), we have

p(ρn, θ
∗) =

Γ(αθ)

Γ(αθ + n)
αkθ

k∏
j=1

p0θ(θ
∗
j)αψ(θ∗j)

kj
Γ(αψ(θ∗j))Γ(nj)

Γ(αψ(θ∗j) + nj)

kj∏
l=1

Γ(nl|j).

Integrating out θ∗ leads to the result.

From Proposition 1, we gain an understanding of the types of partitions preferred by the

1051

Wade, Dunson, Petrone and Trippa

EDP and the effect of the parameters. If for all θ, αψ(θ) = αθP0θ({θ}), that is αψ(θ) = 0
if P0θ is non-atomic, we are back to the DP random partition model, see Proposition 2 of
Wade et al. (2011). In the case when P0θ is non-atomic, this means that the conditional
Pψ|θ is degenerate at some random location with probability one (for each restaurant—one
table).

In general, αψ(θ) may be a flexible function of θ, reflecting the fact that within some
θ-clusters more kernels may be required for good approximation of the marginal of X. In
practice, a common situation that we observe is a high value of αψ(θ) for average values
of θ and lower values of αψ(θ) for more extreme θ values, capturing homogeneous outlying
groups. In this case, a small value of αθ will encourage few θ-clusters, and, given θ∗, a large

αψ(θ∗j) will encourage more ψ-clusters within the jth θ-cluster. The term
∏k
j=1

∏kj
l=1 Γ(nl|j)

will encourage asymmetrical (θ, ψ)-clusters, preferring one large cluster and several small
clusters, while, given θ∗, the term involving the product of beta functions contains parts
that both encourage and discourage asymmetrical θ-clusters. In the special case when
αψ(θ) = αψ for all θ ∈ Θ, the random partition model simplifies to

p(ρn) =
Γ(αθ)

Γ(αθ + n)
αkθ

k∏
j=1

α
kj
ψ

Γ(αψ)Γ(nj)

Γ(αψ + nj)

kj∏
l=1

Γ(nl|j).

In this case, the tendency of the term involving the product of beta functions is to slightly
prefer asymmetrical θ-clusters with large values of αψ boosting this preference.

As discussed in the previous section, the random partition plays a crucial role, as its pos-
terior distribution affects both inference on the cluster-specific parameters and prediction.
For the EDP, it is given by the following proposition.

Proposition 2 The posterior of the random partition of the EDP model is

p(ρn| x1:n, y1:n) ∝ αkθ
k∏
j=1

∫
Θ

Γ(αψ(θ))Γ(nj)

Γ(αψ(θ) + nj)
αψ(θ)kjdP0θ(θ)hy(y

∗
j |x∗j)

kj∏
l=1

Γ(nl|j)hx(x∗l|j).

The proof relies on a simple application of Bayes theorem. In the case of constant αψ(θ),
the expression for the posterior of ρn simplifies to

p(ρn| x1:n, y1:n) ∝αkθ
k∏
j=1

Γ(αψ)Γ(nj)

Γ(αψ + nj)
α
kj
ψ hy(y

∗
j |x∗j)

kj∏
l=1

Γ(nl|j)hx(x∗l|j).

Again, as in (3), the marginal likelihood component in the posterior distribution of ρn
is the product of the cluster-specific marginal likelihoods, but now the nested clustering
structure of the EDP separates the factors relative to x and y|x, being h(x1:n, y1:n|ρn) =∏k
j=1 hy(y

∗
j |x∗j)

∏kj
l=1 hx(x∗l|j). Even if the x-likelihood favors many ψ-clusters, now these

can be obtained by subpartitioning a coarser θ-partition, and the number k of θ-clusters
can be expected to be much smaller than in (3).

Further insights into the behavior of the random partition are given by the induced
covariate-dependent random partition of the θi parameters given the covariates, which is
detailed in the following propositions. We will use the notation Pn to denote the set of all
possible partitions of the first n integers.

1052

Prediction via Enriched Dirichlet Process Mixtures

Proposition 3 The covariate-dependent random partition model induced by the EDP prior
is

p(ρn,y|x1:n) ∝ αkθ

k∏
j=1

∑
ρnj,x∈Pnj

∫
Θ

Γ(αψ(θ))Γ(nj)

Γ(αψ(θ) + nj)
αψ(θ)kjdP0θ(θ)

kj∏
l=1

Γ(nl|j)hx(x∗l|j).

Proof An application of Bayes theorem implies that

p(ρn|x1:n) ∝αkθ
k∏
j=1

∫
Θ

Γ(αψ(θ))Γ(nj)

Γ(αψ(θ) + nj)
αψ(θ)kjdP0θ(θ)

kj∏
l=1

Γ(nl|j)hx(x∗l|j). (10)

Integrating over ρn,x, or equivalently summing over all ρnj ,x in Pnj ,x for j = 1, . . . , k leads
to,

p(ρn,y|x1:n) ∝
∑
ρn1+,x

. . .
∑
ρnk+,x

αkθ

k∏
j=1

∫
Θ

Γ(αψ(θ))Γ(nj)

Γ(αψ(θ) + nj)
αψ(θ)kjdP0θ(θ)

kj∏
l=1

Γ(nl|j)hx(x∗l|j),

and, finally, since (10) is the product over the j terms, we can pull the sum over ρnj ,x within
the product.

This covariate-dependent random partition model will favor θ-partitions of the subjects
which can be further partitioned into groups with similar covariates, where a partition with
many desirable subpartitions will have higher mass.

Proposition 4 The posterior of the random covariate-dependent partition induced from
the EDP model is

p(ρn,y|x1:n, y1:n) ∝αkθ
k∏
j=1

hy(y
∗
j |x∗j)

×
∑

ρnj,x∈Pnj

∫
Θ

Γ(αψ(θ))Γ(nj)

Γ(αψ(θ) + nj)
αψ(θ)kjdP0θ(θ)

kj∏
h=1

Γ(nl|j)hx(x∗l|j).

The proof is similar in spirit to that of Proposition 3. Notice the preferred θ-partitions
will consist of clusters with a similar relationship between y and x, as measured by marginal
local model hy for y|x and similar x behavior, which is measured much more flexibly as a
mixture of the previous marginal local models.

The behavior of the random partition, detailed above, has important implications for
the posterior of the unique parameters. Conditionally on the partition, the cluster-specific
parameters (θ∗, ψ∗) are still independent, their posterior density being

p(θ∗, ψ∗|y1:n, x1:n, ρn) =
k∏
j=1

p(θ∗j |y∗j , x∗j)
kj∏
l=1

p(ψ∗l|j |x
∗
l|j),

1053

Wade, Dunson, Petrone and Trippa

where

p(θ∗j |y∗j , x∗j) ∝ p0θ(θ
∗
j)
∏
i∈Sj+

K(yi|θ∗j , xi), p(ψ∗l|j |x
∗
l|j) ∝ p0ψ(ψ∗l|j)

∏
i∈Sj,l

K(xi|ψ∗l|j).

The important point is that the posterior of θ∗j can now be updated with much larger
sample sizes if the data determines that a coarser θ-partition is present. This will result
in a more reliable posterior mean, a smaller posterior variance, and larger influence of the
data compared with the prior.

3.2 Covariate-dependent Urn Scheme and Prediction

Similar to the DP model, computation of the predictive estimates relies on a covariate-
dependent urn scheme. For the EDP, we have

sy,n+1|ρn, x1:n+1, y1:n) ∼ ωk+1(xn+1)

c0
δk+1 +

k∑
j=1

ωj(xn+1)

c0
δj , (11)

where c0 = p(xn+1|ρn, x1:n), but now the expression of the ωj(xn+1) takes into account the
possible allocation of xn+1 in subgroups, being

ωj(xn+1) =
∑
sx,n+1

p(xn+1|ρn, x1:n, y1:n, sy,n+1 = j, sx,n+1)p(sx,n+1|ρn, x1:n, y1:n, sy,n+1 = j).

From this, it can be easily found that

ωk+1(xn+1) =
αθ

αθ + n
h0,x(xn+1),

ωj(xn+1) =
nj

αθ + n

πkj+1|jh0,x(xn+1) +

kj∑
l=1

πl|jhl|j,x(xn+1)

 ,

where

πl|j =

∫
nl|j

αψ(θ) + nj
dP0θ(θ|x∗j , y∗j), πkj+1|j =

∫
αψ(θ)

αψ(θ) + nj
dP0θ(θ).

In the case of constant αψ(θ) = αψ, these expressions simplify to

πl|j =
nl|j

αψ + nj
, πkj+1|j =

αψ
αψ + nj

.

Notice that (11) is similar to the covariate-dependent urn scheme of the DP model. The
important difference is that the weights, which measure the similarity between xn+1 and
the jth cluster, are much more flexible.

It follows, from similar computations as in Section 2.2, that the predictive density at y
for a new subject with a covariate value of xn+1 is

f(y|y1:n, x1:n+1)

=
∑
ρn

ωk+1(xn+1)

c
h0,y(y|xn+1) +

k∑
j=1

ωj(xn+1)

c
hj,y(y|xn+1)

 p(ρn|x1:n, y1:n), (12)

1054

Prediction via Enriched Dirichlet Process Mixtures

where c = p(xn+1|x1:n, y1:n).

Under the squared error loss function, the point prediction of yn+1 is

E[Yn+1|y1:n, x1:n+1]

=
∑
ρn

ωk+1(xn+1)

c
E0[Yn+1|xn+1] +

k∑
j=1

ωj(xn+1)

c
Ej [Yn+1|xn+1]

 p(ρn|x1:n, y1:n). (13)

The expressions for the prediction density (12) and point prediction (13) are quite similar
to those of the DP, (8) and (9), respectively; in both cases, the cluster-specific predictive
estimates are averaged with covariate-dependent weights. However, there are two important
differences for the EDP model. The first is that the weights in (11) are defined with a more
flexible kernel; in fact, it is a mixture of the original kernels used in the DP model. This
means that we have a more flexible measure of similarity in the covariate space. The second
difference is that k will be smaller and nj will be larger with a high posterior probability,
leading to a more reliable posterior distribution of θ∗j due to larger sample sizes and better
cluster-specific predictive estimates. We will demonstrate the advantage of these two key
differences in simulated and applied examples of Sections 5 and 6.

4. Computations

Inference for the EDP model cannot be obtained analytically and must therefore be approx-
imated. To obtain approximate inference, we rely on Markov Chain Monte Carlo (MCMC)
methods and consider an extension of Algorithm 2 of Neal (2000) for the DP mixture model.
In this approach, the random probability measure, P, is integrated out, and the model is
viewed in terms of (ρn, θ

∗, ψ∗). This algorithm requires the use of conjugate base measures
P0θ and P0ψ. To deal with non-conjugate base measures, the approach used in Algorithm
8 of Neal (2000) can be directly adapted to the EDP mixture model.

Algorithm 2 is a Gibbs sampler which first samples the cluster label of each subject
conditional on the partition of all other subjects, the data, and (θ∗, ψ∗), and then samples
(θ∗, ψ∗) given the partition and the data. The first step can be easily performed thanks to
the Pólya urn which marginalizes the DP.

Extending Algorithm 2 for the EDP model is straightforward, since the EDP maintains
a simple, analytically computable urn scheme. In particular, the conditional probabilities
p(si|ρ−in−1, θ

∗, ψ∗, x1:n, y1:n) (provided in the Appendix) have a simple closed form, which

allows conditional sampling of the individual cluster membership indicators si, where ρ−in−1

denotes the partition of the n−1 subjects with the ith subject removed. To improve mixing,
we include an additional Metropolis-Hastings step; at each iteration, after performing the
n Gibbs updates for each si, we propose a shuffle of the nested partition structure obtained
by moving a ψ-cluster to be nested within a different or new θ-cluster. This move greatly
improves mixing. A detailed description of the sampler, including the Metropolis-Hastings
step, can be found in the Appendix.

1055

Wade, Dunson, Petrone and Trippa

MCMC produces approximate samples, {ρsn, ψ∗s, θ∗s}Ss=1 , from the posterior. The pre-
diction given in Equation (13) can be approximated by

1

S

S∑
s=1

ωsk+1(xn+1)

ĉ
Ehy [Yn+1|xn+1] +

ks∑
j=1

ωsj (xn+1)

ĉ
EFy [Yn+1|xn+1, θ

∗s
j],

where ωsj (xn+1) for j = 1, . . . , ks + 1, are as previously defined in (11) with (ρn, ψ
∗, θ∗)

replaced by (ρsn, ψ
∗s, θ∗s) and

ĉ =
1

S

S∑
s=1

ωsk+1(xn+1) +
ks∑
j=1

ωsj (xn+1).

For the predictive density estimate at xn+1, we define a grid of new y values and for each
y in the grid, we compute

1

S

S∑
s=1

ωsk+1(xn+1)

ĉ
hy(y|xn+1) +

ks∑
j=1

ωsj (xn+1)

ĉ
K(y|xn+1, θ

∗s
j). (14)

Note that hyperpriors may be included for the precision parameters, αθ and αψ(·), and
the parameters of the base measures. For the simulated examples and application, a Gamma
hyperprior is assigned to αθ, and αψ(θ) for θ ∈ Θ are assumed to be i.i.d. from a Gamma
hyperprior. At each iteration, αsθ and αsψ(θ) at θ∗sj for j = 1, . . . , ks are approximate samples
from the posterior using the method described in Escobar and West (1995).

5. Simulated Example

We consider a toy example that demonstrates two key advantages of the EDP model; first,
it can recover the true coarser θ-partition; second, improved prediction and smaller credible
intervals result. The example shows that these advantages are evident even for a moderate
value of p, with more drastic differences as p increases. A data set of n = 200 points were
generated where only the first covariate is a predictor for Y . The true model for Y is
a nonlinear regression model obtained as a mixture of two normals with linear regression
functions and weights depending only on the first covariate;

Yi|xi
ind∼ p(xi,1)N(yi|β1,0 + β1,1xi,1, σ

2
1) + (1− p(xi,1))N(yi|β2,0 + β2,1xi,1, σ

2
2),

where

p(xi,1) =
τ1 exp

(
− τ21

2 (x1,i − µ1)2
)

τ1 exp
(
− τ21

2 (x1,i − µ1)2
)

+ τ2 exp
(
− τ22

2 (x1,i − µ2)2
) ,

with β1 = (0, 1)′, σ2
1 = 1/16, β2 = (4.5, 0.1)′, σ2

2 = 1/8 and µ1 = 4, µ2 = 6, τ1 = τ2 = 2.
The covariates are sampled from a multivariate normal,

Xi = (Xi,1, . . . , Xi,p)
′ iid∼ N(µ,Σ), (15)

1056

Prediction via Enriched Dirichlet Process Mixtures

centered at µ = (4, . . . , 4)′ with a standard deviation of 2 along each dimension, that is,
Σh,h = 4. The covariance matrix Σ models two groups of covariates: those in the first group
are positively correlated among each other and the first covariate, but independent of the
second group of covariates, which are positively correlated among each other but indepen-
dent of the first covariate. In particular, we take Σh,l = 3.5 for h 6= l in {1, 2, 4, . . . , 2bp/2c}
or h 6= l in {3, 5, . . . , 2b(p− 1)/2c+ 1} and Σh,l = 0 for all other cases of h 6= l.

We examine both the DP and EDP mixture models;

Yi|xi, βi, σ2
y,i

ind∼ N(xiβi, σ
2
y,i), Xi|µi, σ2

x,i
ind∼

p∏
h=1

N(µi,h, σ
2
x,h,i),

(βi, σ
2
y,i, µi, σ

2
x,i)|P

iid∼ P

with P ∼ DP or P ∼ EDP. The conjugate base measure is selected; P0θ is a multivariate
normal inverse gamma prior and P0ψ is the product of p normal inverse gamma priors, that
is

p0θ(β, σ
2
y) = N(β;β0, σ

2
yC
−1)IG(σ2

y ; ay, by),

and

p0ψ(µ, σ2
x) =

p∏
h=1

N(µh;µ0,h, σ
2
x,hc

−1
h)IG(σ2

x,h; ax,h, bx,h).

For both models, we use the same subjective choice of the parameters of the base
measure. In particular, we center the base measure on an average of the true parameters
values with enough variability to recover the true model. A list of the prior parameters can
be found in the Appendix. We assign hyperpriors to the mass parameters, where for the

DP model, α ∼ Gamma(1, 1), and for the EDP model, αθ ∼ Gamma(1, 1), αψ(β, σ2
y)

iid∼
Gamma(1, 1) for all β, σ2

y ∈ Rp+1 × R+.

The computational procedures described in Section 4 were used to obtain posterior
inference with 20,000 iterations and burn in period of 5,000. An examination of the trace and
autocorrelation plots for the subject-specific parameters (βi, σ

2
y,i, µi, σ

2
x,i) provided evidence

of convergence. Additional criteria for assessing the convergence of chain, in particular, the
Geweke diagnostic, also suggested convergence, and the results are given in Table 6 of the
Appendix (see the R package coda for implementation and further details of the diagnostic).
It should be noted that running times for both models are quite similar, although slightly
faster for the DP.

The first main point to emphasize is the improved behavior of the posterior of the
random partition for the EDP. We note that for both models, the posterior of the partition
is spread out. This is because the space of partitions is very large and many partitions are
very similar, differing only in a few subjects; thus, many partitions fit the data well. We
depict representative partitions of both models with increasing p in Figure 1. Observations
are plotted in the x1–y space and colored according to the partition for the DP and the
θ-partition for the EDP. As expected, for p = 1 the DP does well at recovering the true
partition, but as clearly seen from Figure 1, for large values of p, the DP partition is
comprised of many clusters, which are needed to approximate the multivariate density of
X. In fact, the density of Y |x can be recovered with only two kernels regardless of p, and

1057

Wade, Dunson, Petrone and Trippa

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

p(rho |y,x)= 0.0001

x1

y

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●●●

●
●● ●

●
●

●

●

●

●

●
●

●

●

●
●

●●
●

●
●

●

●

●

●
●

●
●

●

●● ●

●

●
●

●

●

●
●

●

●● ●

●

●

●

●
●

●●
●●

●

●

●
●

●
●●

(a) DP, p=1

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

0 2 4 6 8 10
0

2
4

6

p(rho |y,x)= 0.00005

x1
y

●
●

●

●
●●●

●

●

●●●●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●●
●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●●

●
●

●

●

●
● ●●

●

●

●

●●
●

●

●

●

●
●

● ●
●

●
●●●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●●●

●

●
●●●

●

●

●●

●
●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●
●

●●

(b) DP, p=5

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

p(rho |y,x)= 0.0001

x1

y

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●
●

●
●

●●

●
●

●
●

●●●●●

●●

●

●

●

● ●

●
●

●

●

●
●

●

●●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●●

●●

●

●

●

● ●
●

●

●

● ●
●

●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●●

●●
●

●

●
●●

●

●
●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●
●

●
●

●

(c) DP, p=10

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

p(rho |y,x)= 0.00015

x1

y ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

● ●

●

●●●

●
●●●
●

●

●

●

●

●●●

●
●

●

●

● ●●
●

●

●

●

●
●

●●

●

●
●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●
●

● ●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●

●

●
●

●

●
●●

●

●
●

●

●

●

●●

●
●

●

●

●

●
●●

●

●

● ●
●

●●

●

●

●
●

●

●

●
●

●

●
●

● ●

●

●

●
●

●

●

●
●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

(d) DP, p=15

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

p(rho_y |y,x)= 0.0001

x1

y

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●●
●●●

●
●● ●

●
●●

●

●

●
●
●

●

●

●
●

●●
●

●
●

●
●

●●

●

●
●

●
●

●

●

(e) EDP, p=1

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

p(rho_y |y,x)= 0.0178

x1

y

●
● ●

●

●●

●

●

● ●
●

●
●●

●

●
●

●
● ● ●

●
●

● ●
●

●

●
●

●

●● ●

●
●

● ●
●

●

●

●● ●

●

●●
●

●
●

●
●
●

●●

●

●

●
●

●
●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(f) EDP, p=5

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

p(rho_y |y,x)= 0.0194

x1

y

●● ● ●
●

●●

●

●

● ●
●

●
●●

●

●
●

●

●● ● ●
●

●
● ●

●

●
●

●
●

●

● ●

●
●

● ●

●

●● ●

●

●●
●

●
●

●
●
●

●●

●

●
●

●
●

●
●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(g) EDP, p=10

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

p(rho_y |y,x)= 0.0296

x1

y

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●
●

●●

●●
●

●
●●

●

●
●

●

●● ● ●
●

●
● ●

●

●
●

●
●

●

● ●

●
●

● ●

●

●● ●

●

●●
●

●
●

●
●
●

●●

●

●
●

●
●

●
●● ●

●
●

●

(h) EDP, p=15

Figure 1: The y partition with the highest estimated posterior probability. Data points are
plotted in the x1 vs. y space and colored by cluster membership with estimated
posterior probability included in the plot title.

p = 1 p = 5 p = 10 p = 15

k̂ α̂ k̂ α̂ k̂ α̂ k̂ α̂

DP 3 0.51 14 2.75 16 3.25 15 3.09
EDP 3 0.56 2 0.35 2 0.39 2 0.36

Table 1: The posterior mode number of y clusters, denoted k̂ for both models, and the
posterior mean of α, αθ, denoted α̂ for both models, as p increases.

the θ-partitions of the EDP depicted in Figure 1, with only two θ-clusters, are very similar
to the true configuration, even for increasing p. On the other hand, the (θ, ψ)-partition
of the EDP (not shown) consists of many clusters and resembles the partition of the DP
model.

This behavior is representative of the posterior distribution of the random partition
that, for the DP, has a large posterior mode of k and large posterior mean of α for larger
values of p, while most of the EDP θ-partitions are composed of only 2 clusters with only
a handful of subjects placed in the incorrect cluster and the posterior mean of αθ is much
smaller for large p. Table 1 summarizes the posterior of k for both models and the posterior
of the precision parameters α, αθ. It is interesting to note that posterior samples of αψ(θ)

1058

Prediction via Enriched Dirichlet Process Mixtures

* *

** * * ******* *

0 2 4 6 8

−
4

−
2

0
2

4
6

8

x1

E
[y

|x
]

●
●

●
●

●
●●

●
●

●
●

● ●● ● ●●● ● ●

(a) DP, p=1

* *

** * * ******* *

0 2 4 6 8

−
4

−
2

0
2

4
6

8
x1

E
[y

|x
]

●

●

●

●●

●●
●

● ●

●
● ●

● ●
●●

●
● ●

(b) DP, p=5

* *

** * * ******* *

0 2 4 6 8

−
4

−
2

0
2

4
6

8

x1

E
[y

|x
]

●

●

● ●●
●

●●

● ●

● ●
●
●

●
●●

●

●
●

(c) DP, p=10

* *

** * * ******* *

0 2 4 6 8

−
4

−
2

0
2

4
6

8

x1

E
[y

|x
]

●

●

● ●●
●●

● ●

●

● ● ●
●

●

●
●

●
● ●

(d) DP, p=15

* *

** * * ******* *

0 2 4 6 8

−
4

−
2

0
2

4
6

8

x1

E
[y

|x
]

●
●

●
●

●
●●

●
●

●
●

● ●● ● ●●● ● ●

(e) EDP, p=1

* *

** * * ******* *

0 2 4 6 8

−
4

−
2

0
2

4
6

8

x1

E
[y

|x
]

●
●

●
●

●
●●

●
●

●
●

● ●
●

● ●●● ● ●

(f) EDP, p=5

* *

** * * ******* *

0 2 4 6 8

−
4

−
2

0
2

4
6

8

x1

E
[y

|x
]

●
●

●
●

●
●●

●
●

●

●
● ●

● ● ●●● ● ●

(g) EDP, p=10

* *

** * * ******* *

0 2 4 6 8

−
4

−
2

0
2

4
6

8

x1

E
[y

|x
]

●
●

●
●

●
●●

●
●

●

●
● ●

● ● ●●● ● ●

(h) EDP, p=15

Figure 2: The point predictions for 20 test samples of the covariates are plotted against x1

and represented with circles (DP in blue and EDP in red) with true prediction
as black stars. The bars about the prediction depict the 95% credible intervals.

p = 1 p = 5 p = 10 p = 15

l̂1 l̂2 l̂1 l̂2 l̂1 l̂2 l̂1 l̂2
DP 0.03 0.05 0.16 0.2 0.25 0.34 0.26 0.34

EDP 0.04 0.05 0.06 0.1 0.09 0.16 0.12 0.21

Table 2: Prediction error for both models as p increases.

for θ characteristic of the first cluster tend to be higher than posterior samples of αψ(θ)
for the second cluster; that is, more clusters are needed to approximate the density of X
within the first cluster. A non-constant αψ(θ) allows us to capture this behavior.

As discussed in Section 3, a main point of our proposal is the increased finite sample
efficiency of the EDP model. To illustrate this, we create a test set with m = 200 new co-
variates values simulated from (15) with maximum dimension p = 15 and compute the true
regression function E[Yn+j |xn+j] and conditional density f(y|xn+j) for each new subject.
To quantify the gain in efficiency of the EDP model, we calculate the point prediction and
predictive density estimates from both models and compare them with the truth.

Judging from both the empirical l1 and l2 prediction errors, the EDP model outperforms
the DP model, with greater improvement for larger p; see Table 2. Figure 2 displays the
prediction against x1 for 20 new subjects. Recall that each new x1 is associated with
different values of (x2, . . . , xp), which accounts for the somewhat erratic behavior of the

1059

Wade, Dunson, Petrone and Trippa

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

y

f(
y|

x)

(a) p=1

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

y
f(

y|
x)

(b) p=5

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

y

f(
y|

x)

(c) p=10

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

y

f(
y|

x)

(d) p=15

Figure 3: Predictive density estimate (DP in blue and EDP in red) for the first new subject
with true conditional density in black. The pointwise 95% credible intervals are
depicted with dashed lines (DP in blue and EDP in red).

3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

y

f(
y|

x)

(a) p=1

3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

y

f(
y|

x)

(b) p=5

3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

y

f(
y|

x)

(c) p=10

3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

y
f(

y|
x)

(d) p=15

Figure 4: Predictive density estimate (DP in blue and EDP in red) for the fifth new subject
with true conditional density in black. The pointwise 95% credible intervals are
depicted with dashed lines (DP in blue and EDP in red).

p = 1 p = 5 p = 10 p = 15

DP 0.13 0.5 0.66 0.68
EDP 0.12 0.15 0.24 0.29

Table 3: l1 density regression error for both models as p increases.

prediction as a function of x1 for increasing p. The comparison of the credible intervals is
quite interesting. For p > 1, the unnecessarily wide credible intervals for the DP regression
model stand out in the first row of Figure 2. This is due to small cluster samples sizes for
the DP model with p > 1.

The density regression estimates for all new subjects were computed by evaluating (14)
at a grid of y-values. As a measure of the performance of the models, the empirical l1
distance between the true and estimated conditional densities for each of the new covariate
values is shown in Table 3. Again the EDP model outperforms the DP model. Figures

1060

Prediction via Enriched Dirichlet Process Mixtures

3 and 4 display the true conditional density (in black) for two new covariate values with
the estimated conditional densities in blue for the DP and red for the EDP. It is evident
that for p > 1 the density regression estimates are improved and that the pointwise 95%
credible intervals are almost uniformly wider both in y and x for the DP model, sometimes
drastically so. It is important to note that while the credible intervals of the EDP model
are considerably tighter, they still contain the true density.

6. Alzheimer’s Disease Study

Our primary goal in this section is to show that the EDP model leads to improved inference
in a real data study with the important goal of diagnosing Alzheimer’s disease (AD). In
particular, EDP leads to improved predictive accuracy, tighter credible intervals around the
predictive probability of having the disease, and a more interpretable clustering structure.

Alzheimer’s disease is a prevalent form of dementia that slowly destroys memory and
thinking skills, and eventually even the ability to carry out the simplest tasks. Unfortu-
nately, a definitive diagnosis cannot be made until autopsy. However, the brain may show
severe evidence of neurobiological damage even at early stages of the disease before the
onset of memory disturbances. As this damage may be difficult to detect visually, improved
methods for automatically diagnosing disease based on MRI neuroimaging is needed.

Data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database,
which is publicly accessible at UCLA’s Laboratory of Neuroimaging.1 The data set consists
of summaries of fifteen brain structures computed from structural MRI obtained at the first
visit for 377 patients, of which 159 have been diagnosed with AD and 218 are cognitively
normal (CN). The covariates include whole brain volume (BV), intracranial volume (ICV),
volume of the ventricles (VV), left and right hippocampal volume (LHV, RHV), volume of
the left and right inferior lateral ventricle (LILV, RILV), thickness of the left and right mid-
dle temporal cortex (LMT, RMT), thickness of the left and right inferior temporal cortex
(LIT, RIT), thickness of the left and right fusiform cortex (LF, RF), and thickness of the
left and right entorhinal cortex (LE, RE). Volume is measured in cm3 and cortical thickness
is measured in mm.

The response is a binary variable with 1 indicating a cognitively normal subject and 0
indicating a subject who has been diagnosed with AD. The covariate is the 15-dimensional

1. The ADNI was launched in 2003 by the National Institute on Ageing (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies and non-profit organizations, as a $ 60 million, 5-year public-private partner-
ship. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers, and clinical and neuropsychological as-
sessment can be combined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). Determination of sensitive and specific markers of very early AD progression
is intended to aid researchers and clinicians to develop new treatments and monitor their effectiveness,
as well as lessen the time and cost of clinical trials. The Principal Investigator of this initiative is Michael
W. Weiner, MD, VA Medical Center and University of California-San Francisco. ADNI is the result of
efforts of many co-investigators from a broad range of academic institutions and private corporations,
and subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal of ADNI
was to recruit 800 adults, ages 55 to 90, to participate in the research, approximately 200 cognitively
normal older individuals to be followed for 3 years, 400 people with MCI to be followed for 3 years and
200 people with early AD to be followed for 2 years. For up-to-date information, see www.adni-info.org.

1061

www.adni-info.org

Wade, Dunson, Petrone and Trippa

vector of measurements of various brain structures. Our model builds on local probit models
and can be stated as follows:

Yi|xi, βi
ind∼ Bern(Φ(xiβi)), Xi|µi, σ2

i
ind∼

p∏
h=1

N(µi,h, σ
2
i,h),

(βi, µi, σ
2
i)|P

iid∼ P, P ∼ Q.

The analysis is first carried using a DP prior for P with mass parameter α and base
measure P0β × P0ψ, with P0β = N(0p, C

−1) and P0ψ defined as the product of p normal
inverse gamma measures. A list of the prior parameters can be found in the Appendix. The
mass parameter is given a hyperprior of α ∼ Gamma(1, 1).

The prior parameters were carefully selected based on prior knowledge of the brain
structures and their relationship with the disease and empirical evidence. The base measure
for β was chosen to be centered on zero because even though we have prior belief about how
each structure is related to AD individually, the joint relationship may be more complex.
For simplicity, the covariance matrix is diagonal. The variances were chosen to reflect
belief in the maximum range of the coefficient for each brain structure. We also explored
the idea of defining C through a g-prior, where C−1 = g(X ′X)−1 with g fixed or given
a hyperprior. However, this proposal was unsatisfactory because prior information about
the maximum range of the coefficient for each brain structure is condensed in a single
parameter g. For example, there was no way to incorporate the belief that while the
variability of hippocampal volume and inferior lateral ventricular volume are similar, the
correlation between hippocampal volume and disease status is stronger. The parameters
of the base measure for X were chosen based on prior knowledge and exploratory analysis
of the average volume and cortical thickness of the brain structures (µ0) and variability
(bx). The parameter ax was chosen to equal 2, so that mean of the inverse gamma prior is
properly defined and the variance is relatively large. The parameter cx is equal to 1/2 to
increase variability of µ given σx.

In this example, correlation between the measurements of the brain structures is ex-
pected. Furthermore, univariate histograms of the covariates show non-normal behavior.
These facts suggest that many Gaussian kernels with local independence of the covariates
will be needed to approximate the density of X. The conditional density of the response,
on the other hand, may not be so complicated. This motivates the choice of an EDP prior.
We emphasize that the same conjugate base measure is used with the identical subjective
choice of parameters. The hyperpriors for the mass parameter of

αβ ∼ Gamma(1, 1), αψ(β)
iid∼ Gamma(1, 1) ∀β ∈ Rp+1.

If αψ(β) ≈ 0 for all β ∈ Rp+1 the model converges to a DP mixture model, suggesting that
the extra flexibility of the EDP is unnecessary. On the other hand, αβ ≈ 0 suggests that a
linear model is sufficient for modelling the conditional response distribution.

The data were randomly split into a training sample of size 185 and a test sample of
size 192. Inference is based on the algorithm explained in Section 4 with the added step of
sampling a latent normal variable to deal with the binary response. For both results the
number of iterations is 50,000 with burn in period of 10,000. An examination of the trace

1062

Prediction via Enriched Dirichlet Process Mixtures

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1200 1400 1600 1800

70
0

80
0

90
0

10
00

11
00

12
00

13
00

ICV

B
V

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

1200 1400 1600 1800

20
40

60
80

10
0

12
0

ICV

V
V

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●

●● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

2.0 2.5 3.0 3.5 4.0 4.5

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

LHV

R
H

V

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●
●●

●●

●

●

●●●

●

●

●●

●

●●

●

●●

●
●
●

●

●
●

●

●●

●

●●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●● ●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

1 2 3 4 5

1
2

3
4

5
6

LILV

R
IL

V

●
●

● ●

●

●●
●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●
●

●
●

●●

●
●

●

●

●

●●
●

●

●

●

●

●●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

1.6 1.8 2.0 2.2 2.4 2.6 2.8

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

LMT

R
M

T

●
●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●● ●

●

●
●

● ● ●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
● ●

2.0 2.2 2.4 2.6 2.8

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

LIT

R
IT ●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
● ●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●●

●
●

●
●● ●

●

●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

● ●

●

●

● ●
●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

1.8 2.0 2.2 2.4 2.6 2.8

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

LF

R
F ●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

1.5 2.0 2.5 3.0 3.5

2.
0

2.
5

3.
0

3.
5

4.
0

LE

R
E

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

Figure 5: Data points are plotted in the covariate space and colored by the partition with
the highest posterior probability for the DP model.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1200 1400 1600 1800

70
0

80
0

90
0

10
00

11
00

12
00

13
00

ICV

B
V

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

1200 1400 1600 1800

20
40

60
80

10
0

12
0

ICV

V
V

●

●

●

●

●
● ●●

●
●

● ●
●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

2.0 2.5 3.0 3.5 4.0 4.5

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

LHV

R
H

V

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●
●

●

●

●

●
●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●● ●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

1 2 3 4 5

1
2

3
4

5
6

LILV

R
IL

V

●

●

●

●●

●

●●

●
●
●

●●
●

●

●
●

●
●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

1.6 1.8 2.0 2.2 2.4 2.6 2.8

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

LMT

R
M

T

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
● ●

2.0 2.2 2.4 2.6 2.8

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

LIT

R
IT

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

1.8 2.0 2.2 2.4 2.6 2.8

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

LF

R
F

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

1.5 2.0 2.5 3.0 3.5

2.
0

2.
5

3.
0

3.
5

4.
0

LE

R
E

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●
●

Figure 6: Data points are plotted in the covariate space and colored by the β-partition with
the highest posterior probability for the EDP model.

and autocorrelation plots for the subject-specific parameters (βi, µi, σ
2
i) provided evidence

of convergence, which was further checked via the Geweke and Raftery and Lewis methods.
Computation times are quite similar for both models, although slightly faster for the DP.

The DP based model requires many kernels to approximate the joint distribution, while
the EDP prefers a coarser β-partition for the conditional density of Y |x. The posterior of k
and the precision parameters α and αβ are summarized and compared for the two models in

1063

Wade, Dunson, Petrone and Trippa

k̂ k̃ [kl, ku] α̂ [αl, αu]

DP 16 16 [14,19] 3.41 [1.79, 5.59]
EDP 3 4 [2,7] 0.71 [0.11, 1.76]

Table 4: The posterior of k for both models is summarized through the posterior mode,
denoted k̂; the posterior median, denoted k̃; and the 95% credible intervals, de-
noted [kl, ku]. The posterior of the precision parameter α for the DP and αβ for
the EDP is summarized through the posterior mode, denoted α̂, and 95% credible
intervals, denoted [αl, αu].

Accuracy AUC MXE

DP 82.81% 0.88 0.42
EDP 86.46% 0.90 0.38

Table 5: Predictive accuracy, area under the ROC curve (AUC), and mean cross entropy
(MXE) for the test set.

Table 4. Posterior samples of αψ(β) tend to be higher for average values of β, meaning that
more kernels are needed for the density of X within such β-clusters. The added flexibility
of a β-dependent precision parameter for ψ allows us to capture this behavior.

The posterior of the partition is quite spread out across many similar partitions for the
DP and EDP models. A representative partition, the partition with the highest estimated
posterior probability, for the DP mixture models is depicted in Figure 5, where the data
points are plotted in the covariate space and colored by the partition. Notice the high
number of kernels with small sample sizes within each cluster. Figure 6 depicts a repre-
sentative β-partition for the EDP mixture model, where the data points are colored by the
β-partition. Not only are there fewer clusters with larger sample sizes, but the clusters
are much more interpretable as well. In particular, the posterior concentrates on partitions
similar to the one depicted in Figure 6 with a general cluster and two extreme clusters
of 100% AD and 100% non-AD patients (the green and black clusters, respectively). The
black cluster of non-AD patients display high brain volume compared to intracranial vol-
ume, low ventricular volume, high hippocampal volume, and high cortical thickness; this
behavior could be expected as AD is associated with shrinking brain tissue and increased
cerebrospinal fluid, while intracranial volume remained fixed. The green cluster of AD pa-
tients display lower hippocampal volume and interestingly, low intracranial volume and low
cortical thickness with a “right-less-than-left” pattern.

To quantify the gain in efficiency with the EDP model, we computed the predictive
accuracy, area under the ROC curve (AUC), and mean cross entropy (MXE) for the test
set, using the ROCR package in R. The larger sample sizes of the EDP model improve all
predictive criteria when compared to the DP model (Table 5).

Finally, we note that by allowing for a coarser β-partition when appropriate, the in-
creased cluster sample sizes not only result in improved accuracy for the EDP model but
also allow for much tighter credible intervals. This is shown in Figure 7 which depicts the

1064

Prediction via Enriched Dirichlet Process Mixtures

* * *

* * * * * * *

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Subject

p(
y=

1|
x)

● ●

●

●
● ●

●

●

● ●

(a) DP

* * *

* * * * * * *

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Subject

p(
y=

1|
x)

●

●

●

●
● ● ● ●

● ●

(b) EDP

Figure 7: Predicted probability of being healthy against subject index for 10 new subjects
represented with circles (DP in blue and EDP in red) with the true outcome as
black stars. The bars about the prediction depict the 95% credible intervals.

estimated probability of being healthy for 10 subjects along with lower and upper bounds for
95% credible intervals, as a function of subject index. Notice the tighter credible intervals
for the EDP model with some dramatic examples given by subjects 1 and 8.

We also compared with Gaussian process (GP), support vector machine (SVM), and
random forest (RF) models, which are implemented in the kernlab and randomForest pack-
ages in R. The results of the EDP are comparable with these other standard nonparametric
classification methods, in particular the predictive accuracy of the GP, SVM, and RF models
are 85.42%, 86.46%, and 86.46%, respectively. The results remain quite comparable with
different random splits into training and test sets, which also confirmed the conclusions
suggested by Figures 5, 6, and 7 and Tables 4 and 5.

7. Discussion

In this paper, we have highlighted a drawback of DP mixture models when the aim is
estimation of the regression function and conditional distribution. We have proposed a
simple, but efficient, solution based on the EDP, which overcomes the problems of the DP
mixture model by introducing a nested partition structure. An important feature of the
proposed EDP mixture model is that computations remain relatively simple; unlike other
modifications of the DP for conditional distribution modeling we maintain the ability to
marginalize out the random measure and induce a simple urn scheme. In scaling up to
larger numbers of predictors p, this simplified structure should be advantageous.

1065

Wade, Dunson, Petrone and Trippa

Acknowledgments

We thank the referees and associate editor for their helpful comments. Data collection and
sharing for the application in Section 6 of this work was funded by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). We
acknowledge the funding contributions of ADNI supporters (adni-info.org/Scientists/
ADNISponsors.aspx).

Appendix A. Computations

This appendix contains further details of the MCMC algorithm described in Section 4.
The conditional distribution of si = (si,y, si,x), which denotes the vector containing the

y-cluster and x-cluster membership for subject i, is

si|ρ−in−1, θ
∗, ψ∗, x1:n, y1:n ∼

ωk−i+1,1(yi, xi)

c1
δ(k−i+1,1)

+

k−i∑
j=1

ωj,k−i
j +1(yi, xi)

c1
δ(j,k−i

j +1) +

k−i
j∑
l=1

ωj,l(yi, xi)

c1
δ(j,l)

 , (16)

where for j = 1, . . . , k−i and l = 1, . . . , k−ij ,

ωj,l(yi, xi) =
n−ij n

−i
l|j

αψ(θ∗−ij) + n−ij
K(yi|xi, θ∗−ij)K(xi|ψ∗−il|j),

for j = 1, . . . , k−i ,

ωj,k−i
j +1(yi, xi) =

n−ij αψ(θ∗−ij)

αψ(θ∗−ij) + n−ij
K(yi|xi, θ∗−ij)hx(xi),

ωk−i+1,1(yi, xi) = αθhy(yi|xi)hx(xi),

and

c1 = ωk−i+1,1(yi, xi) +
k−i∑
j=1

ωj,k−i
j +1(yi, xi) +

k−i
j∑
l=1

ωj,l(yi, xi)

 .

Here, ρ−in−1 represents the partition of the n−1 subjects with the ith subject removed where

k−i, k−ij , n−ij , n
−i
l|j are defined from ρ−in−1. Similarly, θ∗−ij and ψ∗−il|j are the unique cluster

parameters associated to the clusters of ρ−in−1.
Next, we describe the Metropolis-Hastings step, which proposes to move a ψ-cluster to

be nested with a different or new θ-cluster. This step is separated into three possible moves:
1) a ψ-cluster, among those within θ-clusters with more than one ψ-cluster, is moved to
a different θ-cluster; 2) a ψ-cluster, among those within θ-clusters with more than one ψ-
cluster, is moved to a new θ-cluster; 3) a ψ-cluster, among those within θ-clusters with only
one ψ-cluster, is moved to a different θ-cluster.

1066

adni-info.org/Scientists/ADNISponsors.aspx
adni-info.org/Scientists/ADNISponsors.aspx

Prediction via Enriched Dirichlet Process Mixtures

Let kx,2+ be the number of ψ-clusters within a θ-cluster with more than one ψ-cluster
and kx,1 be the number of ψ-clusters within a θ-cluster with only one ψ-cluster. The
proposal distributions for the three moves are as follows. For the first move, the ψ-cluster
is uniformly selected with probability k−1

x,2+ and moved within a different θ-cluster selected

uniformly with probability (k − 1)−1. For the second, the ψ-cluster is again uniformly
selected with probability k−1

x,2+ and moved to a new cluster. Lastly, for the third, the ψ-

cluster is uniformly selected with probability k−1
x,1 and moved within a different θ-cluster

selected uniformly with probability (k − 1)−1.
Let ρ∗n be the proposed partition defined by moving ψ-cluster l in θ-cluster j to θ-

cluster h. For the first move, h ∈ {1, . . . , j − 1, j + 1, . . . , k} and the acceptance probability
is min(1, p), where

p =
Γ(nj − nl|j)Γ(nh + nl|j)

Γ(nj)Γ(nh)

Γ(αψ(θ∗j) + nj)Γ(αψ(θ∗h) + nh)

Γ(αψ(θ∗j) + nj − nl|j)Γ(αψ(θ∗h) + nh + nl|j)

αψ(θ∗h)

αψ(θ∗j)∏
i∈Sl|j

K(yi|xi, θ∗h)∏
i∈Sl|j

K(yi|xi, θ∗j)
kx,2+

k∗x,2+

,

and k∗x,2+ is the number of ψ-clusters within a θ-cluster with more than one ψ-cluster under
the proposed partition. For the second move, h = k+ 1 and let θ∗k+1 ∼ P (θ|y∗l|j , x

∗
l|j) be the

proposed parameter of the k + 1 θ-cluster. The acceptance probability is min(1, p), where

p =
Γ(nj − nl|j)Γ(nl|j)

Γ(nj)

Γ(αψ(θ∗j) + nj)Γ(αψ(θ∗k+1))

Γ(αψ(θ∗j) + nj − nl|j)Γ(αψ(θ∗k+1) + nl|j)
αθ
αψ(θ∗k+1)

αψ(θ∗j)

hy(y
∗
l|j |x

∗
l|j)∏

i∈Sl|j
K(yi|xi, θ∗j)

kx,2+

k∗x,1k
,

and k∗x,1 is the number of ψ-clusters within a θ-cluster with only one ψ-cluster under the
proposed partition. Finally, for the third move, h ∈ {1, . . . , j − 1, j + 1, . . . , k} and the
acceptance probability is min(1, p), where

p =
Γ(nh + nl|j)

Γ(nl|j)Γ(nh)

Γ(αψ(θ∗j) + nl|j)Γ(αψ(θ∗h) + nh)

Γ(αψ(θ∗j))Γ(αψ(θ∗h) + nh + nl|j)

1

αθ

αψ(θ∗h)

αψ(θ∗j)

∏
i∈Sl|j

K(yi|xi, θ∗h)

hy(y∗l|j |x
∗
l|j)

kx,1k − 1

k∗x,2+

.

Each iteration of the MCMC algorithm is summarized as follows:

• For i = 1, . . . , n,

– if si,y = j and n−ij = 0,

∗ then remove θ∗j and ψ∗l|j from (θ∗, ψ∗).

– Otherwise, if si,y = j, si,x = l and n−il|j = 0,

∗ then remove ψ∗l|j from ψ∗.

– Next, sample si given ρ−in−1, θ
∗, ψ∗, x1:n, y1:n as defined by Equation (16).

– If si,y = k−i + 1,

1067

Wade, Dunson, Petrone and Trippa

p = 1 p = 5 p = 10 p = 15

β0,i
DP -0.91 -0.13 -1.22 -3.15

EDP -1.86 0.59 1.24 -0.67

β1,i
DP 0.61 -0.22 0.79 3.25

EDP 1.54 -0.64 2.08 -0.42

σ2
y,i

DP -1.51 1.35 -0.13 1.06
EDP 0.49 1.1 -2.09 -3.51

Table 6: The Z-score from Geweke diagnostic for the subject-specific θ-parameters of one
subject.

∗ sample θ∗
k−i+1

given yi, xi and ψ∗
1|k−i+1

given xi and concatenate them to

(θ∗, ψ∗).

– Otherwise, if si,y = j and si,x = k−ij + 1,

∗ sample ψ∗
k−i
j +1|j given xi and concatenate it to ψ∗.

• Carry out the first move described in the Metropolis-Hastings step.

• Sample u ∼ U(0, 1). If u < 0.5, perform move 2, otherwise perform move 3.

• For j = 1, . . . , k,

– sample θ∗j given (y∗j , x
∗
j), that is, from the posterior based on p0θ(θ

∗
j) and∏

i∈Sj+
K(yi|xi, θ∗j),

– and for l = 1, . . . , kj ,

∗ sample ψ∗l|j given x∗l|j , that is, from the posterior based on p0ψ(ψ∗l|j) and∏
i∈Sj,l

K(xi|ψ∗l|j).

Appendix B. Simulation Study

The prior parameters used for the simulation study in Section 5 are β0 = (2.25, 0.55, 0, . . . , 0)′,
C = diag (0.05, 1, . . . , 1); ay = 2, by = 0.1, µ0 = (4, . . . , 4)′, c = (0.25, . . . , 0.25)′; ax =
(2, . . . , 2)′, bx = (1, . . . , 1)′.

Table 6 lists the Z-scores for the θ parameters of the one subject from the Geweke
diagnostic for assessing convergence of the MCMC chain, which are slightly high for p = 10
and p = 15 but a thinning of 2 improves the scores.

Appendix C. Alzheimer’s Disease Study

For the prior parameters for the AD study in Section 6, C−1 is a diagonal matrix with
diagonal elements (400, .0001, .0001, 0.0004, 4, 4, .25, .25, 4, 4, 4, 4, 1, 1, 1, 1), and
µ0 = (1000, 1450, 45, 3.25, 3.25, 2, 2, 2.4, 2.4, 2.5, 2.5, 2.3, 2.3, 2.75, 2.75)′; cx,h = 1/2, ax,h =
2 ∀h; and bx = (10000, 10000, 150, .25, .25, .25, .25, .04, .04, .04, .04, .04, .04, .1, .1)′.

1068

Prediction via Enriched Dirichlet Process Mixtures

References

C.E. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric
problems. Annals of Statistics, 2:1152–1174, 1974.

D.M. Blei, T.L. Griffiths, and M.I. Jordan. The nested Chinese restaurant process and
Bayesian nonparametric inference of topic hierarchies. Journal of the ACM, 57:1–30,
2010.

P.J. Brown, N.D. Le, and J.V. Zidek. Inference for a covariance matrix. In P.R. Freeman
and A.F.M. Smith, editors, Aspects of Uncertainty. A Tribute to D.V. Lindley, pages
77–92. Wiley, Chichester, 1994.

Y. Chung and D.B. Dunson. Nonparametric Bayes conditional distribution modeling with
variable selection. Journal of the American Statistical Association, 104:1646–1660, 2009.

B.S. Clarke, E. Fokoué, and H.H. Zhang. Principles and Theory for Data Mining and
Machine Learning. Springer Series in Statistics, New York, 2009.

G. Consonni and P. Veronese. Conditionally reducible natural exponential families and
enriched conjugate priors. Scandinavian Journal of Statistics, 28:377–406, 2001.

D.B. Dunson. Nonparametric Bayes local partition models for random effects. Biometrika,
96:249–262, 2009.

D.B. Dunson and J.H. Park. Kernel stick-breaking processes. Biometrika, 95:307–323, 2008.

D.B. Dunson, J. Xue, and L. Carin. The matrix stick breaking process: Flexible Bayes
meta analysis. Journal of the American Statistical Association, 103:317–327, 2008.

D.B. Dunson, S. Petrone, and L. Trippa. Partially hierarchical Dirichlet mixtures for flexible
clustering and regression. 2011. Unpublished manuscript.

S. Efromovich. Conditional density estimation in a regression setting. Annals of Statistics,
35:2504–2535, 2007.

M.D. Escobar and M. West. Bayesian density estimation and inference using mixtures.
Journal of the American Statistical Association, 90:577–588, 1995.

A.E. Gelfand, A. Kottas, and S.N. MacEachern. Bayesian nonparametric spatial modeling
with Dirichlet process mixing. Journal of the American Statistical Association, pages
1021–1035, 2005.

S. Ghosal. Dirichlet process, related priors, and posterior asymptotics. In N.L. Hjort,
C. Holmes, P. Müller, and S.G. Walker, editors, Bayesian Nonparametrics: Principles
and Practice. Cambridge University Press, 2010.

J.E. Griffin and M.F.J. Steel. Order-based dependent Dirichlet processes. Journal of the
American Statistical Association, 10:179–194, 2006.

1069

Wade, Dunson, Petrone and Trippa

L.A. Hannah, D.M. Blei, and W.B. Powell. Dirichlet process mixtures of generalized linear
models. Journal of Machine Learning Research, 12:1923–1953, 2011.

C. Kang and S. Ghosal. Clusterwise regression using Dirichlet process mixtures. In A. Sen-
gupta, editor, Advances in Multivariate Statistical Methods, pages 305–325. 2009.

S.N. MacEachern. Dependent nonparametric processes. In ASA Proceedings of the Section
on Bayesian Statistical Science, pages 50–55, Alexandria, VA, 1999. American Statistical
Association.

P. Müller and F.A. Quintana. Random partition models with regression on covariates.
Journal of Statistical Planning and Inference, 140:2801–2808, 2010.

P. Müller, A. Erkanli, and M. West. Bayesian curve fitting using multivariate normal
mixtures. Biometrika, 88:67–79, 1996.

R.M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal
of Computational and Graphical Statistcs, 9:249–265, 2000.

A. Norets and J. Pelenis. Bayesian modeling of joint and conditional distributions. Journal
of Econometrics, 168:332–346, 2012.

J.H. Park and D.B. Dunson. Bayesian generalized product partition model. Statistica
Sinica, 20:1203–1226, 2010.

S. Petrone and L. Trippa. Bayesian modeling via nested random partitions. In Proceedings of
the International Conference on Complex Data Modelling and Computationally Intensive
Statistical Methods, Milan, Italy, 2009. Politecnico di Milano.

S. Petrone, M. Guindani, and A.E. Gelfand. Hybrid Dirichlet mixture models for functional
data. Journal of the Royal Statistical Society, Series B, 71:755–782, 2009.

L. Ren, L. Du, D.B. Dunson, and L. Carin. The logistic stick-breaking process. Journal of
Machine Learning and Research, 12:203–239, 2011.

A. Rodriguez and D.B. Dunson. Nonparametric Bayesian models through probit stick-
breaking processes. Bayesian Analysis, 6:145–178, 2011.

A. Rodriguez, D.B. Dunson, and A.E. Gelfand. Bayesian nonparametric functional data
analysis through density estimation. Biometrika, 96:149–162, 2009.

D.W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization. John
Wiley & Sons, Inc., Hoboken, NJ, 1992.

B. Shahbaba and R.M. Neal. Nonlinear models using Dirichlet process mixtures. Journal
of Machine Learning Research, 10:1829–1850, 2009.

S.T. Tokdar. Adaptive convergence rates of a Dirichlet process mixture of multivariate
normals. 2011. arXiv:1111.4148 [math.ST].

1070

Prediction via Enriched Dirichlet Process Mixtures

S.K. Wade, S. Mongelluzzo, and S. Petrone. An enriched conjugate prior for Bayesian
nonparametric inference. Bayesian Analysis, 6:359–386, 2011.

Y. Wu and S. Ghosal. Kullback Leibler property of kernel mixture priors in Bayesian density
estimation. Electronic Journal of Statistics, 2:298–331, 2008.

Y. Wu and S. Ghosal. The L1-consistency of Dirichlet mixtures in multivariate density
estimation. Journal of Multivariate Analysis, 101:2411–2419, 2010.

1071

Journal of Machine Learning Research 15 (2014) 1073-1110 Submitted 3/13; Revised 9/13; Published 3/14

Gibbs Max-margin Topic Models with Data Augmentation

Jun Zhu dcszj@mail.tsinghua.edu.cn

Ning Chen ningchen@mail.tsinghua.edu.cn

Hugh Perkins ngls11@mails.tsinghua.edu.cn

Bo Zhang dcszb@mail.tsinghua.edu.cn

State Key Lab of Intelligent Technology and Systems

Tsinghua National Lab for Information Science and Technology

Department of Computer Science and Technology

Tsinghua University

Beijing, 100084, China

Editor: David Blei

Abstract

Max-margin learning is a powerful approach to building classifiers and structured output
predictors. Recent work on max-margin supervised topic models has successfully integrated
it with Bayesian topic models to discover discriminative latent semantic structures and
make accurate predictions for unseen testing data. However, the resulting learning prob-
lems are usually hard to solve because of the non-smoothness of the margin loss. Existing
approaches to building max-margin supervised topic models rely on an iterative procedure
to solve multiple latent SVM subproblems with additional mean-field assumptions on the
desired posterior distributions. This paper presents an alternative approach by defining a
new max-margin loss. Namely, we present Gibbs max-margin supervised topic models, a
latent variable Gibbs classifier to discover hidden topic representations for various tasks,
including classification, regression and multi-task learning. Gibbs max-margin supervised
topic models minimize an expected margin loss, which is an upper bound of the existing
margin loss derived from an expected prediction rule. By introducing augmented variables
and integrating out the Dirichlet variables analytically by conjugacy, we develop simple
Gibbs sampling algorithms with no restrictive assumptions and no need to solve SVM
subproblems. Furthermore, each step of the “augment-and-collapse” Gibbs sampling algo-
rithms has an analytical conditional distribution, from which samples can be easily drawn.
Experimental results on several medium-sized and large-scale data sets demonstrate sig-
nificant improvements on time efficiency. The classification performance is also improved
over competitors on binary, multi-class and multi-label classification tasks.

Keywords: supervised topic models, max-margin learning, Gibbs classifiers, regularized
Bayesian inference, support vector machines

1. Introduction

As the availability and scope of complex data increase, developing statistical tools to dis-
cover latent structures and reveal hidden explanatory factors has become a major theme in
statistics and machine learning. Topic models represent one type of such useful tools to dis-
cover latent semantic structures that are organized in an automatically learned latent topic
space, where each topic (i.e., a coordinate of the latent space) is a unigram distribution over

c©2014 Jun Zhu, Ning Chen, Hugh Perkins and Bo Zhang.

Zhu, Chen, Perkins and Zhang

the terms in a vocabulary. Due to its nice interpretability and extensibility, the Bayesian
formulation of topic models (Blei et al., 2003) has motivated substantially broad extensions
and applications to various fields, such as document analysis, image categorization (Fei-Fei
and Perona, 2005), and network data analysis (Airoldi et al., 2008). Besides discovering
latent topic representations, many models usually have a goal to make good predictions,
such as relational topic models (Chang and Blei, 2009; Chen et al., 2013) whose major goal
is to make accurate predictions on the link structures of a document network. Another
example is supervised topic models, our focus in this paper, which learn a prediction model
for regression and classification tasks. As supervising information (e.g., user-input rating
scores for product reviews) gets easier to obtain on the Web, developing supervised latent
topic models has attracted a lot of attention. Both maximum likelihood estimation (MLE)
and max-margin learning have been applied to learn supervised topic models. Different from
the MLE-based approaches (Blei and McAuliffe, 2007), which define a normalized likelihood
model for response variables, max-margin supervised topic models, such as maximum en-
tropy discrimination LDA (MedLDA) (Zhu et al., 2012), directly minimize a margin-based
loss derived from an expected (or averaging) prediction rule.

By performing discriminative learning, max-margin supervised topic models can discover
predictive latent topic representations and have shown promising performance in various
prediction tasks, such as text document categorization (Zhu et al., 2012) and image anno-
tation (Yang et al., 2010). However, their learning problems are generally hard to solve due
to the non-smoothness of the margin-based loss function. Most existing solvers rely on a
variational approximation scheme with strict mean-field assumptions on posterior distribu-
tions, and they normally need to solve multiple latent SVM subproblems in an EM-type
iterative procedure. By showing a new interpretation of MedLDA as a regularized Bayesian
inference method, the recent work (Jiang et al., 2012) successfully developed Monte Carlo
methods for such max-margin topic models, with a weaker mean-field assumption. Though
the prediction performance is improved because of more accurate inference, the Monte Carlo
methods still need to solve multiple SVM subproblems. Thus, their efficiency could be lim-
ited as learning SVMs is normally computationally demanding. Furthermore, due to the
dependence on SVM solvers, it is not easy to parallelize these algorithms for large-scale data
analysis tasks, although substantial efforts have been made to develop parallel Monte Carlo
methods for unsupervised topic models (Newman et al., 2009; Smola and Narayanamurthy,
2010; Ahmed et al., 2012).

This paper presents Gibbs MedLDA, an alternative formulation of max-margin super-
vised topic models, for which we can develop simple and efficient inference algorithms.
Technically, instead of minimizing the margin loss of an expected (averaging) prediction
rule as adopted in existing max-margin topic models, Gibbs MedLDA minimizes the ex-
pected margin loss of many latent prediction rules, of which each rule corresponds to a
configuration of topic assignments and the prediction model, drawn from a post-data poste-
rior distribution. Theoretically, the expected margin loss is an upper bound of the existing
margin loss of an expected prediction rule. Computationally, although the expected margin
loss can still be hard to optimize using variational algorithms, we successfully develop simple
and fast Gibbs sampling algorithms without any restrictive assumptions on the posterior
distribution and without solving multiple latent SVM subproblems. By introducing a set
of auxiliary variables and integrating out the Dirichlet variables by conjugacy, each of the

1074

Gibbs Max-margin Topic Models with Data Augmentation

sampling substeps has a closed-form conditional distribution, from which samples can be
efficiently drawn.

Our algorithms represent an extension of the classical ideas of data augmentation
(Dempster et al., 1977; Tanner and Wong, 1987; van Dyk and Meng, 2001) and its recent
developments in learning fully observed max-margin classifiers (Polson and Scott, 2011) to
learn the sophisticated latent topic models. On the other hand, Gibbs MedLDA repre-
sents a generalization of Gibbs (or stochastic) classifiers (McAllester, 2003; Catoni, 2007;
Germain et al., 2009) to incorporate a hierarchy of latent variables for discovering latent
topic representations. We further generalize the ideas to develop a Gibbs MedLDA re-
gression model and a multi-task Gibbs MedLDA model, for which we also develop efficient
“augment-and-collapse” Gibbs sampling algorithms by exploring the same ideas of data
augmentation. Empirical results on real data sets demonstrate significant improvements
in time efficiency. The classification performance is also significantly improved in binary,
multi-class, and multi-label classification tasks.

The rest of the paper is structured as follows. Section 2 summarizes some related
work. Section 3 reviews MedLDA and its EM-type algorithms. Section 4 presents Gibbs
MedLDA and its sampling algorithms for classification. Section 5 presents two extensions of
Gibbs MedLDA for regression and multi-task learning. Section 6 presents empirical results.
Finally, Section 7 concludes and discusses future directions.

2. Related Work

Max-margin learning has been very successful in building classifiers (Vapnik, 1995) and
structured output prediction models (Taskar et al., 2003) in the last decade. Recently, re-
search on learning max-margin models in the presence of latent variable models has received
increasing attention because of the promise of using latent variables to capture the underly-
ing structures of the complex problems. Deterministic approaches (Yu and Joachims, 2009)
fill in the unknown values of the hidden structures by using some estimates (e.g., MAP
estimates), and then a max-margin loss function is defined with the filled-in hidden struc-
tures, while probabilistic approaches aim to infer an entire distribution profile of the hidden
structures given evidence and some prior distribution, following the Bayes’ way of thinking.
Though the former works well in practice, we focus on Bayesian approaches, which can nat-
urally incorporate prior beliefs, maintain the entire distribution profile of latent structures,
and be extensible to nonparametric methods. One representative work along this line is
maximum entropy discrimination (MED) (Jaakkola et al., 1999; Jebara, 2001), which learns
a distribution of model parameters given a set of labeled training data.

MedLDA (Zhu et al., 2012) is one extension of MED to infer hidden topical structures
from data and MMH (max-margin Harmoniums) (Chen et al., 2012) is another extension
that infers the hidden semantic features from multi-view data. Along similar lines, recent
work has also successfully developed nonparametric Bayesian max-margin models, such as
infinite SVMs (iSVM) (Zhu et al., 2011) for discovering clustering structures when building
SVM classifiers and infinite latent SVMs (iLSVM) (Zhu et al., 2014) for automatically
learning predictive features for SVM classifiers. Both iSVM and iLSVM can automatically
resolve the model complexity, for example, the number of components in a mixture model or
the number of latent features in a factor analysis model. The nonparametric Bayesian max-

1075

Zhu, Chen, Perkins and Zhang

margin ideas have been proven to be effective in dealing with more challenging problems,
such as link prediction in social networks (Zhu, 2012) and low-rank matrix factorization for
collaborative recommendation (Xu et al., 2012, 2013).

One common challenge of these Bayesian max-margin latent variable models is on the
posterior inference, which is normally intractable. Almost all the existing work adopts a
variational approximation scheme, with some mean-field assumptions. Very little research
has been done on developing Monte Carlo methods, except the work (Jiang et al., 2012)
which still makes mean-field assumptions. The work in the present paper provides a novel
way to formulate Bayesian max-margin models and we show that these new formulations can
have very simple and efficient Monte Carlo inference algorithms without making restrictive
assumptions. The key step to deriving our algorithms is a data augmentation formulation
of the expected margin-based loss. Other work on inferring the posterior distributions of
latent variables includes max-margin min-entropy models (Miller et al., 2012) which learn
a single set of model parameters, different from our focus of inferring the model posterior
distribution.

Data augmentation refers to methods of augmenting the observed data so as to make
it easy to analyze with an iterative optimization or sampling algorithm. For deterministic
algorithms, the technique has been popularized in the statistics community by the seminal
expectation-maximization (EM) algorithm (Dempster et al., 1977) for maximum likelihood
estimation (MLE) with missing values. For stochastic algorithms, the technique has been
popularized in statistics by Tanner and Wong’s data augmentation algorithm for posterior
sampling (Tanner and Wong, 1987) and in physics by Swendsen and Wang’s sampling al-
gorithms for Ising and Potts models (Swendsen and Wang, 1987). When using the idea to
solve estimation or posterior inference problems, the key step is to find a set of augmented
variables, conditioned on which the distribution of our models can be easily sampled. The
speed of mixing or convergence is another important concern when designing a data augmen-
tation method. While the conflict between simplicity and speed is a common phenomenon
with many standard augmentation schemes, some work has demonstrated that with more
creative augmentation schemes it is possible to construct EM-type algorithms (Meng and
van Dyk, 1997) or Markov Chain Monte Carlo methods (known as slice sampling) (Neal,
1997) that are both fast and simple. We refer the readers to van Dyk and Meng (2001)
for an excellent review of the broad literature of data augmentation and an effective search
strategy for selecting good augmentation schemes.

For our focus on max-margin classifiers, the recent work (Polson and Scott, 2011) pro-
vides an elegant data augmentation formulation for support vector machines (SVM) with
fully observed input data, which leads to analytical conditional distributions that are easy
to sample from and fast to mix. Our work in the present paper builds on the method of
Polson et al. and presents a successful implementation of data augmentation to deal with
the challenging posterior inference problems of Bayesian max-margin latent topic models.
Our approach can be generalized to deal with other Bayesian max-margin latent variable
models, for example, max-margin matrix factorization (Xu et al., 2013), as reviewed above.

Finally, some preliminary results were presented in a conference paper (Zhu et al.,
2013a). This paper presents a full extension.

1076

Gibbs Max-margin Topic Models with Data Augmentation

3. MedLDA

We begin with a brief overview of MedLDA and its learning algorithms, which motivate our
developments of Gibbs MedLDA.

3.1 MedLDA: A Regularized Bayesian Model

We consider binary classification with a labeled training set D = {(wd, yd)}Dd=1, where wd =

{wdn}Nd
n=1 denotes the bag-of-words appearing in document d and the response variable Y

takes values from the output space Y = {−1,+1}. D is the data set size. Basically, MedLDA
consists of two parts—an LDA model for describing input documents W = {wd}Dd=1, and an
expected classifier for considering the supervising signal y = {yd}Dd=1. Below, we introduce
each of them in turn.

LDA: Latent Dirichlet allocation (LDA) (Blei et al., 2003) is a hierarchical Bayesian
model that posits each document as an admixture of K topics, where each topic Φk is a
multinomial distribution over a V -word vocabulary. For document d, the generating process
can be described as

1. draw a topic proportion θd ∼ Dir(α)

2. for each word n (1 ≤ n ≤ Nd):

(a) draw a topic assignment1 zdn|θd ∼ Mult(θd)

(b) draw the observed word wdn|zdn,Φ ∼ Mult(Φzdn)

where Dir(·) is a Dirichlet distribution; Mult(·) is multinomial; and Φzdn denotes the topic
selected by the non-zero entry of zdn. For a fully-Bayesian LDA, the topics are random
samples drawn from a prior, for example, Φk ∼ Dir(β).

Given a set of documents W, we let zd = {zdn}Nd
n=1 denote the set of topic assignments

for document d and let Z = {zd}Dd=1 and Θ = {θd}Dd=1 denote all the topic assignments
and mixing proportions for the whole corpus, respectively. Then, LDA infers the posterior
distribution using Bayes’ rule

p(Θ,Z,Φ|W) =
p0(Θ,Z,Φ)p(W|Z,Φ)

p(W)
,

where p0(Θ,Z,Φ) =
∏K
k=1 p0(Φk|β)

∏D
d=1 p0(θd|α)

∏Nd
n=1 p(zdn|θd) according to the gener-

ating process of LDA; and p(W) is the marginal evidence. We can show that the posterior
distribution by Bayes’ rule is the solution of an information theoretical optimization problem

min
q(Θ,Z,Φ)

KL [q(Θ,Z,Φ)‖p0(Θ,Z,Φ)]− Eq [log p(W|Z,Φ)]

s.t. : q(Θ,Z,Φ) ∈ P, (1)

where KL(q||p) is the Kullback-Leibler divergence and P is the space of probability distribu-
tions with an appropriate dimension. In fact, if we add the constant log p(W) to the objec-
tive, the problem is the minimization of the KL-divergence KL(q(Θ,Z,Φ)‖p(Θ,Z,Φ|W)),

1. zdn is a K-dimensional binary vector with only one nonzero entry.

1077

Zhu, Chen, Perkins and Zhang

whose solution is the desired posterior distribution by Bayes’ rule. One advantage of this
variational formulation of Bayesian inference is that it can be naturally extended to include
some regularization terms on the desired post-data posterior distribution q. This insight
has been taken to develop regularized Bayesian inference (RegBayes) (Zhu et al., 2014), a
computational framework for doing Bayesian inference with posterior regularization.2 As
shown in Jiang et al. (2012) and detailed below, MedLDA is one example of RegBayes
models. Moreover, as we shall see in Section 4, our Gibbs max-margin topic models follow
this similar idea too.

Expected Classifier: Given a training set D, an expected (or averaging) classifier chooses
a posterior distribution q(h|D) over a hypothesis space H of classifiers such that the q-
weighted (expected) classifier

hq(w) = sign Eq[h(w)]

will have the smallest possible risk. MedLDA follows this principle to learn a posterior
distribution q(η,Θ,Z,Φ|D) such that the expected classifier

ŷ = sign F (w) (2)

has the smallest possible risk, approximated by the training errorRD(q) =
∑D

d=1 I(ŷd 6= yd).
The discriminant function is defined as

F (w) =Eq(η,z|D)[F (η, z; w)],

F (η, z; w) = η>z̄,

where z̄ is the average topic assignment associated with the words w, a vector with element
z̄k = 1

N

∑N
n=1 z

k
n, and η is the classifier weights. Note that the expected classifier and the

LDA likelihood are coupled via the latent topic assignments Z. The strong coupling makes
it possible for MedLDA to learn a posterior distribution that can describe the observed
words well and make accurate predictions.

Regularized Bayesian Inference: To integrate the above two components for hybrid
learning, MedLDA regularizes the properties of the topic representations by imposing the
following max-margin constraints derived from the classifier (2) to a standard LDA inference
problem (1)

ydF (wd) ≥ `− ξd, ∀d,

where ` (≥ 1) is the cost of making a wrong prediction; and ξ = {ξd}Dd=1 are non-negative
slack variables for inseparable cases. Let L(q) = KL(q||p0(η,Θ,Z,Φ))−Eq[log p(W|Z,Φ)]
be the objective for doing standard Bayesian inference with the classifier η and p0(η,Θ,Z,Φ) =
p0(η)p0(Θ,Z,Φ). MedLDA solves the regularized Bayesian inference (Zhu et al., 2014)
problem

min
q(η,Θ,Z,Φ)∈P,ξ

L (q(η,Θ,Z,Φ)) + 2c

D∑
d=1

ξd (3)

s.t.: ydF (wd) ≥ `− ξd, ξd ≥ 0, ∀d,
2. Posterior regularization was first used in Ganchev et al. (2010) for maximum likelihood estimation and

was later extended in Zhu et al. (2014) to Bayesian and nonparametric Bayesian methods.

1078

Gibbs Max-margin Topic Models with Data Augmentation

where the margin constraints directly regularize the properties of the post-data distribution
and c is the positive regularization parameter. Equivalently, MedLDA solves the uncon-
strained problem3

min
q(η,Θ,Z,Φ)

L (q(η,Θ,Z,Φ)) + 2cR (q(η,Θ,Z,Φ)) , (4)

where R(q) =
∑D

d=1 max(0, ` − ydF (wd)) is the hinge loss that upper-bounds the training
error RD(q) of the expected classifier (2). Note that the constant 2 is included simply for
convenience.

3.2 Existing Iterative Algorithms

Since it is difficult to solve problem (3) or (4) directly because of the non-conjugacy (between
priors and likelihood) and the max-margin constraints, corresponding to a non-smooth
posterior regularization term in (4), both variational and Monte Carlo methods have been
developed for approximate solutions. It can be shown that the variational method (Zhu
et al., 2012) is a coordinate descent algorithm to solve problem (4) with the fully-factorized
assumption that

q(η,Θ,Z,Φ) = q(η)

(
D∏
d=1

q(θd)

Nd∏
n=1

q(zdn)

)
K∏
k=1

q(Φk);

while the Monte Carlo methods (Jiang et al., 2012) make a weaker assumption that

q(η,Θ,Z,Φ) = q(η)q(Θ,Z,Φ).

All these methods have a similar EM-type iterative procedure, which solves many latent
SVM subproblems, as outlined below.

Estimate q(η): Given q(Θ,Z,Φ), we solve problem (4) with respect to q(η). In the
equivalent constrained form, this step solves

min
q(η),ξ

KL (q(η)‖p0(η)) + 2c

D∑
d=1

ξd (5)

s.t. : ydEq[η]>Eq[z̄d] ≥ `− ξd, ξd ≥ 0, ∀d.

This problem is convex and can be solved with Lagrangian methods. Specifically, let µd
be the Lagrange multipliers, one per constraint. When the prior p0(η) is the commonly
used standard normal distribution, we have the optimum solution q(η) = N (κ, I), where
κ =

∑D
d=1 ydµdEq[z̄d]. It can be shown that the dual problem of (5) is the dual of a

standard binary linear SVM and we can solve it or its primal form efficiently using exist-
ing high-performance SVM learners. We denote the optimum solution of this problem by
(q∗(η),κ∗, ξ∗,µ∗).

3. If not specified, q is subject to the constraint q ∈ P.

1079

Zhu, Chen, Perkins and Zhang

Estimate q(Θ,Z,Φ): Given q(η), we solve problem (4) with respect to q(Θ,Z,Φ). In
the constrained form, this step solves

min
q(Θ,Z,Φ),ξ

L (q(Θ,Z,Φ)) + 2c

D∑
d=1

ξd (6)

s.t. : yd(κ
∗)>Eq[z̄d] ≥ `− ξd, ξd ≥ 0,∀d.

Although we can solve this problem using Lagrangian methods, it would be hard to derive
the dual objective. An effective approximation strategy was used in Zhu et al. (2012) and
Jiang et al. (2012), which updates q(Θ,Z,Φ) for only one step with ξ fixed at ξ∗. By fixing
ξ at ξ∗, we have the solution

q(Θ,Z,Φ) ∝ p(W,Θ,Z,Φ) exp

{
(κ∗)>

∑
d

µ∗dz̄d

}
,

where the second term indicates the regularization effects due to the max-margin posterior
constraints. For those data with non-zero Lagrange multipliers (i.e., support vectors),
the second term will bias MedLDA towards a new posterior distribution that favors more
discriminative representations on these “hard” data points. The Monte Carlo methods
(Jiang et al., 2012) directly draw samples from the posterior distribution q(Θ,Z,Φ) or
its collapsed form using Gibbs sampling to estimate Eq[z̄d], the expectations required to
learn q(η). In contrast, the variational methods (Zhu et al., 2012) solve problem (6) using
coordinate descent to estimate Eq[z̄d] with a fully factorized assumption.

4. Gibbs MedLDA

Now, we present Gibbs max-margin topic models for binary classification and their “augment-
and-collapse” sampling algorithms. We will discuss further extensions in the next section.

4.1 Learning with an Expected Margin Loss

As stated above, MedLDA chooses the strategy to minimize the hinge loss of an expected
classifier. In learning theory, an alternative approach to building classifiers with a posterior
distribution of models is to minimize an expected loss, under the framework known as Gibbs
classifiers (or stochastic classifiers) (McAllester, 2003; Catoni, 2007; Germain et al., 2009)
which have nice theoretical properties on generalization performance.

For our case of inferring the distribution of latent topic assignments Z = {zd}Dd=1 and
the classification model η, the expected margin loss is defined as follows. If we have drawn a
sample of the topic assignments Z and the prediction model η from a posterior distribution
q(η,Z), we can define the linear discriminant function

F (η, z; w) = η>z̄

as before and make prediction using the latent prediction rule

ŷ(η, z) = sign F (η, z; w). (7)

1080

Gibbs Max-margin Topic Models with Data Augmentation

Note that the prediction is a function of the configuration (η, z). Let ζd = ` − ydη>z̄d,
where ` is a cost parameter as defined before. The hinge loss of the stochastic classifier is

R(η,Z) =

D∑
d=1

max(0, ζd),

a function of the latent variables (η,Z), and the expected hinge loss is

R′(q) = Eq[R(η,Z)] =
D∑
d=1

Eq [max(0, ζd)] ,

a functional of the posterior distribution q(η,Z). Since for any (η,Z), the hinge lossR(η,Z)
is an upper bound of the training error of the latent Gibbs classifier (7), that is,

R(η,Z) ≥
D∑
d=1

I (yd 6= ŷd(η, zd)) ,

we have

R′(q) ≥
D∑
d=1

Eq [I(yd 6= ŷd(η, zd))] ,

where I(·) is an indicator function that equals to 1 if the predicate holds otherwise 0. In
other words, the expected hinge loss R′(q) is an upper bound of the expected training
error of the Gibbs classifier (7). Thus, it is a good surrogate loss for learning a posterior
distribution which could lead to a low training error in expectation.

Then, with the same goal as MedLDA of finding a posterior distribution q(η,Θ,Z,Φ)
that on one hand describes the observed data and on the other hand predicts as well as
possible on training data, we define Gibbs MedLDA as solving the new regularized Bayesian
inference problem

min
q(η,Θ,Z,Φ)

L (q(η,Θ,Z,Φ)) + 2cR′ (q(η,Θ,Z,Φ)) . (8)

Note that we have written the expected margin loss R′ as a function of the complete
distribution q(η,Θ,Z,Φ). This does not conflict with our definition of R′ as a function of
the marginal distribution q(η,Z) because the other irrelevant variables (i.e., Θ and Φ) are
integrated out when we compute the expectation.

Comparing to MedLDA in problem (4), we have the following lemma by applying
Jensen’s inequality.

Lemma 1 The expected hinge loss R′ is an upper bound of the hinge loss of the expected
classifier (2):

R′(q) ≥ R(q) =

D∑
d=1

max (0,Eq[ζd]) ;

and thus the objective in (8) is an upper bound of that in (4) when c values are the same.

1081

Zhu, Chen, Perkins and Zhang

4.2 Formulation with Data Augmentation

If we directly solve problem (8), the expected hinge loss R′ is hard to deal with because of
the non-differentiable max function. Fortunately, we can develop a simple collapsed Gibbs
sampling algorithm with analytical forms of local conditional distributions, based on a data
augmentation formulation of the expected hinge-loss.

Let φ(yd|zd,η) = exp{−2cmax(0, ζd)} be the unnormalized likelihood of the response
variable for document d. Then, problem (8) can be written as

min
q(η,Θ,Z,Φ)

L (q(η,Θ,Z,Φ))− Eq [log φ(y|Z,η)] , (9)

where φ(y|Z,η) =
∏D
d=1 φ(yd|zd,η). Solving problem (9) with the constraint that

q(η,Θ,Z,Φ) ∈ P, we can get the normalized posterior distribution

q(η,Θ,Z,Φ) =
p0(η,Θ,Z,Φ)p(W|Z,Φ)φ(y|Z,η)

ψ(y,W)
,

where ψ(y,W) is the normalization constant that depends on the observed data only. Due
to the complicated form of φ, it will not have simple conditional distributions if we want to
derive a Gibbs sampling algorithm for q(η,Θ,Z,Φ) directly. This motivates our exploration
of data augmentation techniques. Specifically, using the ideas of data augmentation (Tanner
and Wong, 1987; Polson and Scott, 2011), we have Lemma 2.

Lemma 2 (Scale Mixture Representation) The unnormalized likelihood can be
expressed as

φ(yd|zd,η) =

∫ ∞
0

1√
2πλd

exp

(
−(λd + cζd)

2

2λd

)
dλd.

Proof Due to the fact that amax(0, x) = max(0, ax) if a ≥ 0, we have −2cmax(0, ζd) =
−2 max(0, cζd). Then, we can follow the proof in Polson and Scott (2011) to get the results.

Lemma 2 indicates that the posterior distribution of Gibbs MedLDA can be expressed as
the marginal of a higher-dimensional distribution that includes the augmented variables
λ = {λd}Dd=1, that is,

q(η,Θ,Z,Φ) =

∫ ∞
0
· · ·
∫ ∞
0

q(η,λ,Θ,Z,Φ)dλ1 · · · dλD =

∫
RD
+

q(η,λ,Θ,Z,Φ)dλ,

where R+ = {x : x ∈ R, x > 0} is the set of positive real numbers; the complete posterior
distribution is

q(η,λ,Θ,Z,Φ) =
p0(η,Θ,Z,Φ)p(W|Z,Φ)φ(y,λ|Z,η)

ψ(y,W)
;

and the unnormalized joint distribution of y and λ is

φ(y,λ|Z,η) =
D∏
d=1

1√
2πλd

exp

(
−(λd + cζd)

2

2λd

)
.

1082

Gibbs Max-margin Topic Models with Data Augmentation

In fact, we can show that the complete posterior distribution is the solution of the data
augmentation problem of Gibbs MedLDA

min
q(η,λ,Θ,Z,Φ)

L (q(η,λ,Θ,Z,Φ))− Eq [log φ(y,λ|Z,η)] ,

which is again subject to the normalization constraint that q(η,λ,Θ,Z,Φ) ∈ P. The first
term in the objective is L(q(η,λ,Θ,Z,Φ)) = KL(q(η,λ,Θ,Z,Φ)||p0(η,Θ,Z,Φ)p0(λ)) −
Eq[log p(W|Z,Φ)], where a prior distribution is imposed on the augmented variables λ.
One good choice of p0(λ) is the noninformative uniform prior.

Remark 3 The objective of this augmented problem is an upper bound of the objective
in (9) (thus, also an upper bound of MedLDA’s objective due to Lemma 1). This is because
by using the data augmentation we can show that

Eq(V)[log φ(y|Z,η)]=Eq(V)

[
log

∫
RD
+

φ(y,λ|Z,η)dλ

]

=Eq(V)

[
log

∫
RD
+

q(λ|V)

q(λ|V)
φ(y,λ|Z,η)dλ

]
≥Eq(V)

[
Eq(λ|V) [log φ(y,λ|Z,η)]− Eq(λ|V) [log q(λ|V)]

]
=Eq(V,λ) [log φ(y,λ|Z,η)]− Eq(V,λ) [log q(λ|V)] ,

where V = {η,Θ,Z,Φ} denotes all the random variables in MedLDA. Therefore, we have

L(q(V))− Eq(V)[log φ(y|Z,η)]≤L(q(V))− Eq(V,λ) [log φ(y,λ|Z,η)] + Eq(V,λ) [log q(λ|V)]

=L(q(V,λ))− Eq[log φ(y,λ|Z,η)].

4.3 Inference with Collapsed Gibbs Sampling

Although with the above data augmentation formulation we can do Gibbs sampling to infer
the complete posterior distribution q(η,λ,Θ,Z,Φ) and thus q(η,Θ,Z,Φ) by ignoring λ,
the mixing speed would be slow because of the large sample space of the latent variables.
One way to effectively reduce the sample space and improve mixing rates is to integrate out
the intermediate Dirichlet variables (Θ,Φ) and build a Markov chain whose equilibrium
distribution is the resulting marginal distribution q(η,λ,Z). We propose to use collapsed
Gibbs sampling, which has been successfully used in LDA (Griffiths and Steyvers, 2004).
With the data augmentation representation, this leads to our “augment-and-collapse” sam-
pling algorithm for Gibbs MedLDA, as detailed below.

For the data augmented formulation of Gibbs MedLDA, by integrating out the Dirichlet
variables (Θ,Φ), we get the collapsed posterior distribution:

q(η,λ,Z) ∝ p0(η)p(W,Z|α,β)φ(y,λ|Z,η)

= p0(η)

[
D∏
d=1

δ(Cd +α)

δ(α)

]
K∏
k=1

δ(Ck + β)

δ(β)

D∏
d=1

1√
2πλd

exp

(
−(λd + cζd)

2

2λd

)
,

where

δ(x) =

∏dim(x)
i=1 Γ(xi)

Γ(
∑dim(x)

i=1 xi)
;

1083

Zhu, Chen, Perkins and Zhang

Γ(·) is the Gamma function; Ctk is the number of times that the term t is assigned to topic k
over the whole corpus; Ck = {Ctk}Vt=1 is the set of word counts associated with topic k; Ckd is
the number of times that terms are associated with topic k within the d-th document; and
Cd = {Ckd}Kk=1 is the set of topic counts for document d. Then, the conditional distributions
used in collapsed Gibbs sampling are as follows.

For η: Let us assume its prior is the commonly used isotropic Gaussian distribution
p0(η) =

∏K
k=1N (ηk; 0, ν2), where ν is a non-zero parameter. Then, we have the conditional

distribution of η given the other variables:

q(η|Z,λ) ∝ p0(η)
D∏
d=1

exp

(
−(λd + cζd)

2

2λd

)

∝ exp

(
−

K∑
k=1

η2k
2ν2
−

D∑
d=1

(λd + cζd)
2

2λd

)

= exp

−1

2
η>

(
1

ν2
I + c2

D∑
d=1

z̄dz̄
>
d

λd

)
η +

(
c
D∑
d=1

yd
λd + c`

λd
z̄d

)>
η

= N (η;µ,Σ), (10)

a K-dimensional Gaussian distribution, where the posterior mean and the covariance matrix
are

µ = Σ

(
c
D∑
d=1

yd
λd + c`

λd
z̄d

)
, and Σ =

(
1

ν2
I + c2

D∑
d=1

z̄dz̄
>
d

λd

)−1
.

Therefore, we can easily draw a sample from this multivariate Gaussian distribution. The
inverse can be robustly done using Cholesky decomposition, an O(K3) procedure. Since K
is normally not large, the inversion can be done efficiently, especially in applications where
the number of documents is much larger than the number of topics.

For Z: The conditional distribution of Z given the other variables is

q(Z|η,λ) ∝
D∏
d=1

δ(Cd +α)

δ(α)
exp

(
−(λd + cζd)

2

2λd

) K∏
k=1

δ(Ck + β)

δ(β)
.

By canceling common factors, we can derive the conditional distribution of one variable zdn
given others Z¬ as:

q(zkdn = 1|Z¬,η,λ, wdn = t) ∝
(Ctk,¬n + βt)(C

k
d,¬n + αk)∑V

t=1C
t
k,¬n +

∑V
t=1 βt

exp
(γyd(c`+ λd)ηk

λd

−c2γ
2η2k + 2γ(1− γ)ηkΛ

k
dn

2λd

)
, (11)

where C ··,¬n indicates that term n is excluded from the corresponding document or topic;

γ = 1
Nd

; and

Λkdn =
1

Nd − 1

K∑
k′=1

ηk′C
k′
d,¬n

1084

Gibbs Max-margin Topic Models with Data Augmentation

Algorithm 1 collapsed Gibbs sampling algorithm for Gibbs MedLDA classification models

1: Initialization: set λ = 1 and randomly draw zdk from a uniform distribution.
2: for m = 1 to M do
3: draw the classifier from the normal distribution (10)
4: for d = 1 to D do
5: for each word n in document d do
6: draw a topic from the multinomial distribution (11)
7: end for
8: draw λ−1d (and thus λd) from the inverse Gaussian distribution (12).
9: end for

10: end for

is the discriminant function value without word n. We can see that the first term is from
the LDA model for observed word counts and the second term is from the supervised signal
y.

For λ: Finally, the conditional distribution of the augmented variables λ given the other
variables is factorized and we can derive the conditional distribution for each λd as

q(λd|Z,η) ∝ 1√
2πλd

exp

(
−(λd + cζd)

2

2λd

)
∝ 1√

2πλd
exp

(
−c

2ζ2d
2λd

− λd
2

)
= GIG

(
λd;

1

2
, 1, c2ζ2d

)
,

where

GIG(x; p, a, b) = C(p, a, b)xp−1 exp

(
−1

2

(
b

x
+ ax

))
is a generalized inverse Gaussian distribution (Devroye, 1986) and C(p, a, b) is a normaliza-
tion constant. Therefore, we can derive that λ−1d follows an inverse Gaussian distribution

p(λ−1d |Z,η) = IG
(
λ−1d ;

1

c|ζd|
, 1

)
, (12)

where

IG(x; a, b) =

√
b

2πx3
exp

(
−b(x− a)2

2a2x

)
for a > 0 and b > 0.

With the above conditional distributions, we can construct a Markov chain which itera-
tively draws samples of the classifier weights η using Equation (10), the topic assignments
Z using Equation (11) and the augmented variables λ using Equation (12), with an initial
condition. To sample from an inverse Gaussian distribution, we apply the transformation
method with multiple roots (Michael et al., 1976) which is very efficient with a constant
time complexity. Overall, the per-iteration time complexity is O(K3 + NtotalK), where
Ntotal =

∑D
d=1Nd is the total number of words in all documents. If K is not very large

1085

Zhu, Chen, Perkins and Zhang

(e.g., K � √Ntotal), which is the common case in practice as Ntotal is often very large,
the per-iteration time complexity is O(NtotalK); if K is large (e.g., K � √Ntotal), which
is not common in practice, drawing the global classifier weights will dominate and the per-
iteration time complexity is O(K3). In our experiments, we initially set λd = 1, ∀d and
randomly draw Z from a uniform distribution. In training, we run this Markov chain to
finish the burn-in stage with M iterations, as outlined in Algorithm 1. Then, we draw a
sample η̂ as the Gibbs classifier to make predictions on testing data.

In general, there is no theoretical guarantee that a Markov chain constructed using
data augmentation can converge to the target distribution; see Hobert (2011) for a failure
example. However, for our algorithms, we can justify that the Markov transition distribution
of the chain satisfies the condition K from Hobert (2011), that is, the transition probability
from one state to any other state is larger than 0. Condition K implies that the Markov chain
is Harris ergodic (Tan, 2009, Lemma 1). Therefore, no matter how the chain is started,
our sampling algorithms can be employed to effectively explore the intractable posterior
distribution. In practice, the sampling algorithm as well as the ones to be presented require
only a few iterations to get stable prediction performance, as we shall see in Section 6.5.1.
More theoretical analysis such as convergence rates requires a good bit of technical Markov
chain theory and is our future work.

4.4 Prediction

To apply the Gibbs classifier η̂, we need to infer the topic assignments for testing document,
denoted by w. A fully Bayesian treatment needs to compute an integral in order to get
the posterior distribution of the topic assignment given the training data D and the testing
document content w:

p(z|w,D) ∝
∫
PK
V

p(z,w,Φ|D)dΦ =

∫
PK
V

p(z,w|Φ)p(Φ|D)dΦ,

where PV is the V −1 dimensional simplex; and the second equality holds due to the condi-
tional independence assumption of the documents given the topics. Various approximation
methods can be applied to compute the integral. Here, we take the approach applied in
Zhu et al. (2012), which uses a point estimate of topics Φ from training data and makes
predictions based on them. Specifically, we use a point estimate Φ̂ (a Dirac measure)
to approximate the probability distribution p(Φ|D). For the collapsed Gibbs sampler, an
estimate of Φ̂ using the samples is the posterior mean

φ̂kt ∝ Ctk + βt.

Then, given a testing document w, we infer its latent components z using Φ̂ by drawing
samples from the local conditional distribution

p(zkn = 1|z¬n,w,D) ∝ φ̂kwn

(
Ck¬n + αk

)
, (13)

where Ck¬n is the number of times that the terms in this document w assigned to topic k
with the n-th term excluded. To start the sampler, we randomly set each word to one topic.
Then, we run the Gibbs sampler for a few iterations until some stop criterion is satisfied,

1086

Gibbs Max-margin Topic Models with Data Augmentation

for example, after a few burn-in steps or the relative change of data likelihood is lower
than some threshold. Here, we adopt the latter, the same as in Jiang et al. (2012). After
this burn-in stage, we keep one sample of z for prediction using the stochastic classifier.
Empirically, using the average of a few (e.g., 10) samples of z could lead to slightly more
robust predictions, as we shall see in Section 6.5.4.

5. Extensions to Regression and Multi-task Learning

The above ideas can be naturally generalized to develop Gibbs max-margin supervised topic
models for various prediction tasks. In this section, we present two examples for regression
and multi-task learning, respectively.

5.1 Gibbs MedLDA Regression Model

We first discuss how to generalize the above ideas to develop a regression model, where
the response variable Y takes real values. Formally, the Gibbs MedLDA regression model
also has two components—an LDA model to describe input bag-of-words documents and a
Gibbs regression model for the response variables. Since the LDA component is the same
as in the classification model, we focus on presenting the Gibbs regression model.

5.1.1 The Models with Data Augmentation

If a sample of the topic assignments Z and the prediction model η are drawn from the
posterior distribution q(η,Z), we define the latent regression rule as

ŷ(η, z) = η>z̄. (14)

To measure the goodness of the prediction rule (14), we adopt the widely used ε-insensitive
loss

Rε(η,Z) =
D∑
d=1

max (0, |∆d| − ε) ,

where ∆d = yd − η>z̄d is the margin between the true score and the predicted score.
The ε-insensitive loss has been successfully used in learning fully observed support vector
regression (Smola and Scholkopf, 2003). In our case, the loss is a function of predictive
model η as well as the topic assignments Z which are hidden from the input data. To
resolve this uncertainty, we define the expected ε-insensitive loss

Rε(q) = Eq [Rε(η,Z)] =
D∑
d=1

Eq [max(0, |∆d| − ε)] ,

a function of the desired posterior distribution q(η,Z).

With the above definitions, we can follow the same principle as Gibbs MedLDA to define
the Gibbs MedLDA regression model as solving the regularized Bayesian inference problem

min
q(η,Θ,Z,Φ)

L (q(η,Θ,Z,Φ)) + 2cRε (q(η,Θ,Z,Φ)) . (15)

1087

Zhu, Chen, Perkins and Zhang

Note that as in the classification model, we have put the complete distribution q(η,Θ,Z,Φ)
as the argument of the expected loss Rε, which only depends on the marginal distribution
q(η,Z). This does not affect the results because we are taking the expectation to compute
Rε and any irrelevant variables will be marginalized out.

As in the Gibbs MedLDA classification model, we can show thatRε is an upper bound of
the ε-insensitive loss of MedLDA’s expected prediction rule, by applying Jensen’s inequality
to the convex function h(x) = max(0, |x| − ε).

Lemma 4 We have Rε ≥
∑D

d=1 max(0, |Eq[∆d]| − ε).

We can reformulate problem (15) in the same form as problem (9), with the unnormalized
likelihood

φ(yd|η, zd) = exp (−2cmax(0, |∆d| − ε)) .

Then, we have the dual scale of mixture representation, by noting that

max(0, |x| − ε) = max(0, x− ε) + max(0,−x− ε). (16)

Lemma 5 (Dual Scale Mixture Representation) For regression, the unnormalized like-
lihood can be expressed as

φ(yd|η, zd) =

∫ ∞
0

1√
2πλd

exp

(
−(λd + c(∆d − ε))2

2λd

)
dλd

×
∫ ∞
0

1√
2πωd

exp

(
−(ωd − c(∆d + ε))2

2ωd

)
dωd.

Proof By the equality (16), we have φ(yd|η, zd) = exp{−2cmax(0,∆d − ε)}
exp{−2cmax(0,−∆d − ε)}. Each of the exponential terms can be formulated as a scale
mixture of Gaussians due to Lemma 2.

Then, the data augmented learning problem of the Gibbs MedLDA regression model is

min
q(η,λ,ω,Θ,Z,Φ)

L (q(η,λ,ω,Θ,Z,Φ))− Eq [log φ(y,λ,ω|Z,η)] ,

where φ(y,λ,ω|Z,η) =
∏D
d=1 φ(yd, λd, ωd|Z,ω) and

φ(yd, λd, ωd|Z,η) =
1√

2πλd
exp

(
−(λd + c(∆d − ε))2

2λd

)
1√

2πωd
exp

(
−(ωd − c(∆d + ε))2

2ωd

)
.

Solving the augmented problem and integrating out (Θ,Φ), we can get the collapsed pos-
terior distribution

q(η,λ,ω,Z) ∝ p0(η)p(W,Z|α,β)φ(y,λ,ω|Z,η).

1088

Gibbs Max-margin Topic Models with Data Augmentation

Algorithm 2 collapsed Gibbs sampling algorithm for Gibbs MedLDA regression models

1: Initialization: set λ = 1 and randomly draw zdk from a uniform distribution.
2: for m = 1 to M do
3: draw the classifier from the normal distribution (17)
4: for d = 1 to D do
5: for each word n in document d do
6: draw a topic from the multinomial distribution (18)
7: end for
8: draw λ−1d (and thus λd) from the inverse Gaussian distribution (19).
9: draw ω−1d (and thus ωd) from the inverse Gaussian distribution (20).

10: end for
11: end for

5.1.2 A Collapsed Gibbs Sampling Algorithm

Following similar derivations as in the classification model, the Gibbs sampling algorithm to
infer the posterior has the following conditional distributions, with an outline in Algorithm 2.

For η: Again, with the isotropic Gaussian prior p0(η) =
∏K
k=1N (ηk; 0, ν2), we have

q(η|Z,λ,ω)∝ p0(η)
D∏
d=1

exp

(
−(λd + c(∆d − ε))2

2λd

)
exp

(
−(ωd − c(∆d + ε))2

2ωd

)

∝ exp

(
−

K∑
k=1

η2k
2ν2
−

D∑
d=1

(
(λd + c(∆d − ε))2

2λd
+

(ωd − c(∆d + ε))2

2ωd

))

= exp

−1

2
η>

(
1

ν2
I + c2

D∑
d=1

ρdz̄dz̄
>
d

)
η + c

(
D∑
d=1

ψdz̄d

)>
η

= N (η;µ,Σ), (17)

where the posterior covariance matrix and the posterior mean are

Σ =

(
1

ν2
I + c2

D∑
d=1

ρdz̄dz̄
>
d

)−1
, µ = cΣ

(
D∑
d=1

ψdz̄d

)
,

and ρd = 1
λd

+ 1
ωd

and ψd = yd−ε
λd

+ yd+ε
ωd

are two parameters. We can easily draw a sample
from a K-dimensional multivariate Gaussian distribution. The inverse can be robustly done
using Cholesky decomposition.

For Z: We can derive the conditional distribution of one variable zdn given others Z¬
as:

q(zkdn = 1|Z¬,η,λ,ω, wdn = t) ∝
(Ctk,¬n + βt)(C

k
d,¬n + αk)∑V

t=1C
t
k,¬n +

∑V
t=1 βt

exp
(
cγψdηk

−c2(γ
2ρdη

2
k

2
+ γ(1− γ)ρdηkΥ

k
dn)
)
, (18)

1089

Zhu, Chen, Perkins and Zhang

where γ = 1
Nd

; and Υk
dn = 1

Nd−1
∑K

k′=1 ηk′C
k′
d,¬n is the discriminant function value without

word n. The first term is from the LDA model for observed word counts. The second term
is from the supervised signal y.

For λ and ω: Finally, we can derive that λ−1d and ω−1d follow the inverse Gaussian
distributions:

q(λ−1d |Z,η,ω) = IG
(
λ−1d ;

1

c|∆d − ε|
, 1

)
, (19)

q(ω−1d |Z,η,λ) = IG
(
ω−1d ;

1

c|∆d + ε| , 1
)
. (20)

The per-iteration time complexity of this algorithm is similar to that of the binary Gibbs
MedLDA model, that is, linear to the number of documents and the number of topics if K
is not too large.

5.2 Multi-task Gibbs MedLDA

The second extension is a multi-task Gibbs MedLDA. Multi-task learning is a scenario where
multiple potentially related tasks are learned jointly with the hope that their performance
can be boosted by sharing some statistic information among these tasks, and it has attracted
a lot of research attention. In particular, learning a common latent representation shared by
all the related tasks has proven to be an effective way to capture task relationships (Ando
and Zhang, 2005; Argyriou et al., 2007; Zhu et al., 2014). Here, we take the similar approach
to learning multiple predictive models which share the common latent topic representations.
As we shall see in Section 6.3.2, one natural application of our approach is to do multi-
label classification (Tsoumakas et al., 2010), where each document can belong to multiple
categories, by defining each task as a binary classifier to determine whether a data point
belongs to a particular category; and it can also be applied to multi-class classification,
where each document belongs to only one of the many categories, by defining a single
output prediction rule (See Section 6.3.2 for details).

5.2.1 The Model with Data Augmentation

We consider L binary classification tasks and each task i is associated with a classifier with
weights ηi. We assume that all the tasks work on the same set of input data W = {wd}Dd=1,
but each data d has different binary labels {yid}Li=1 in different tasks. A multi-task Gibbs
MedLDA model has two components—an LDA model to describe input words (the same as
in Gibbs MedLDA); and multiple Gibbs classifiers sharing the same topic representations.
When we have the classifier weights η and the topic assignments Z, drawn from a posterior
distribution q(η,Z), we follow the same principle as in Gibbs MedLDA and define the latent
Gibbs rule for each task as

∀i = 1, . . . L : ŷi(ηi, z) = sign F (ηi, z; w) = sign(η>i z̄). (21)

Let ζid = `− yidη>i z̄d. The hinge loss of the stochastic classifier i is

Ri(ηi,Z) =

D∑
d=1

max(0, ζid)

1090

Gibbs Max-margin Topic Models with Data Augmentation

and the expected hinge loss is

R′i(q) = Eq[Ri(ηi,Z)] =

D∑
d=1

Eq
[
max(0, ζid)

]
.

For each task i, we can follow the argument as in Gibbs MedLDA to show that the expected
lossR′i(q) is an upper bound of the expected training error

∑D
d=1 Eq[I(yid 6= ŷid(ηi, zd))] of the

Gibbs classifier (21). Thus, it is a good surrogate loss for learning a posterior distribution
which could lead to a low expected training error.

Then, following a similar procedure of defining the binary GibbsMedLDA classifier, we
define the multi-task GibbsMedLDA model as solving the following RegBayes problem:

min
q(η,Θ,Z,Φ)

L (q(η,Θ,Z,Φ)) + 2cR′MT (q(η,Θ,Z,Φ)) ,

where the multi-task expected hinge loss is defined as a summation of the expected hinge
loss of all the tasks:

R′MT (q(η,Θ,Z,Φ)) =

L∑
i=1

R′i (q(η,Θ,Z,Φ)) .

Due to the separability of the multi-task expected hinge loss, we can apply Lemma 2 to
reformulate each task-specific expected hinge loss R′i as a scale mixture by introducing a set
of augmented variables {λid}Dd=1. More specifically, let φi(y

i
d|zd,η) = exp{−2cmax(0, ζid)}

be the unnormalized likelihood of the response variable for document d in task i. Then, we
have

φi(y
i
d|zd,η) =

∫ ∞
0

1√
2πλid

exp

(
−(λid + cζid)

2

2λid

)
dλid.

5.2.2 A Collapsed Gibbs Sampling Algorithm

Similar to the binary Gibbs MedLDA classification model, we can derive the collapsed Gibbs
sampling algorithm, as outlined in Algorithm 3. Specifically, let

φi(y
i,λi|Z,η) =

D∏
d=1

1√
2πλid

exp

(
−(λid + cζid)

2

2λid

)

be the joint unnormalized likelihood of the class labels yi = {yid}Dd=1 and the augmentation
variables λi = {λid}Dd=1. Then, for the multi-task Gibbs MedLDA, we can integrate out the
Dirichlet variables (Θ, Φ) and get the collapsed posterior distribution

q(η,λ,Z) ∝ p0(η)p(W,Z|α,β)

L∏
i=1

φi(y
i,λi|Z,η)

= p0(η)

[
D∏
d=1

δ(Cd +α)

δ(α)

]
K∏
k=1

δ(Ck + β)

δ(β)

L∏
i=1

D∏
d=1

1√
2πλid

exp

(
−(λid + cζid)

2

2λid

)
.

1091

Zhu, Chen, Perkins and Zhang

Algorithm 3 collapsed Gibbs sampling algorithm for multi-task Gibbs MedLDA

1: Initialization: set λ = 1 and randomly draw zdk from a uniform distribution.
2: for m = 1 to M do
3: for i = 1 to L do
4: draw the classifier ηi from the normal distribution (22)
5: end for
6: for d = 1 to D do
7: for each word n in document d do
8: draw a topic from the multinomial distribution (23)
9: end for

10: for i = 1 to L do
11: draw (λid)

−1 (and thus λid) from the inverse Gaussian distribution (24).
12: end for
13: end for
14: end for

Then, we can derive the conditional distributions used in collapsed Gibbs sampling as
follows.

For η: We also assume its prior is an isotropic Gaussian p0(η) =
∏L
i=1

∏K
k=1N (ηik; 0, ν2).

Then, we have the factorized form q(η|Z,λ) =
∏L
i=1 q(ηi|Z,λ), and each individual distri-

bution is

q(ηi|Z,λ) ∝ p0(ηi)
D∏
d=1

exp

(
−(λid + cζid)

2

2λid

)
= N (ηi;µi,Σi), (22)

where the posterior covariance matrix and posterior mean are

Σi =

(
1

ν2
I + c2

D∑
d=1

z̄dz̄
>
d

λid

)−1
, and µi = Σi

(
c
D∑
d=1

yid
λid + c`

λid
z̄d

)
.

Similarly, the inverse can be robustly done using Cholesky decomposition, an O(K3) pro-
cedure. Since K is normally not large, the inversion can be done efficiently.

For Z: The conditional distribution of Z is

q(Z|η,λ) ∝
D∏
d=1

δ(Cd +α)

δ(α)

[
L∏
i=1

exp

(
−(λid + cζid)

2

2λid

)] K∏
k=1

δ(Ck + β)

δ(β)
.

By canceling common factors, we can derive the conditional distribution of one variable zdn
given others Z¬ as:

q(zkdn = 1|Z¬,η,λ, wdn = t) ∝
(Ctk,¬n + βt)(C

k
d,¬n + αk)∑V

t=1C
t
k,¬n +

∑V
t=1 βt

L∏
i=1

exp
(γyid(c`+ λid)ηik

λid

−c2γ
2η2ik + 2γ(1− γ)ηikΛ

i
dn

2λid

)
, (23)

1092

Gibbs Max-margin Topic Models with Data Augmentation

where Λidn = 1
Nd−1

∑K
k′=1 ηik′C

k′
d,¬n is the discriminant function value without word n. We

can see that the first term is from the LDA model for observed word counts and the second
term is from the supervised signal {yid} from all the multiple tasks.

For λ: Finally, the conditional distribution of the augmented variables λ is fully fac-
torized, q(λ|Z,η) =

∏L
i=1

∏D
d=1 q(λ

i
d|Z,η), and each variable follows a generalized inverse

Gaussian distribution

q(λid|Z,η) ∝ 1√
2πλid

exp

(
−(λid + cζid)

2

2λid

)
= GIG

(
λid;

1

2
, 1, c2(ζid)

2

)
.

Therefore, we can derive that (λid)
−1 follows an inverse Gaussian distribution

p((λid)
−1|Z,η) = IG

(
(λid)

−1;
1

c|ζid|
, 1

)
, (24)

from which a sample can be efficiently drawn with a constant time complexity.
The per-iteration time complexity of the algorithm is O(LK3 + NtotalK + DL). For

common large-scale applications where K and L are not too large while D (thus Ntotal) is
very large, the step of sampling latent topic assignments takes most of the time. If L is very
large, for example, in the PASCAL large-scale text/image categorization challenge tasks
which have tens of thousands of categories,4 the step of drawing global classifier weights
may dominate. A nice property of the algorithm is that we can easily parallelize this step
since there is no coupling among these classifiers once the topic assignments are given. A
preliminary investigation of the parallel algorithm is presented in Zhu et al. (2013b).

6. Experiments

We present empirical results to demonstrate the efficiency and prediction performance of
Gibbs MedLDA (denoted by GibbsMedLDA) on the 20Newsgroups data set for classifi-
cation, a hotel review data set for regression, and a Wikipedia data set with more than 1
million documents for multi-label classification. We also analyze its sensitivity to key param-
eters and examine the learned latent topic representations qualitatively. The 20Newsgroups
data set contains about 20K postings within 20 groups. We follow the same setting as in
Zhu et al. (2012) and remove a standard list of stop words for both binary and multi-class
classification. For all the experiments, we use the standard normal prior p0(η) (i.e., ν2 = 1)
and the symmetric Dirichlet priors α = α

K1, β = 0.01 × 1, where 1 is a vector with all
entries being 1. For each setting, we report the average performance and standard devia-
tion with five randomly initialized runs. All the experiments, except the those on the large
Wikipedia data set, are done on a standard desktop computer.

6.1 Binary Classification

The binary classification task is to distinguish postings of the newsgroup alt.atheism and
postings of the newsgroup talk.religion.misc. The training set contains 856 documents, and

4. See the websites: http://lshtc.iit.demokritos.gr/;
and http://www.image-net.org/challenges/LSVRC/2012/index.

1093

http://lshtc.iit.demokritos.gr/
http://www.image-net.org/challenges/LSVRC/2012/index

Zhu, Chen, Perkins and Zhang

5 10 15 20 25 30
0.65

0.7

0.75

0.8

0.85

Topics

A
c
c
u

ra
c
y

5 10 15 20 25 30

10
0

10
1

10
2

Topics

T
ra

in
−

ti
m

e
 (

s
e

c
o

n
d

s
)

GibbsMedLDA gMedLDA vMedLDA GibbsLDA+SVM

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

Topics

T
e

s
t−

ti
m

e
 (

s
e

c
o

n
d

s
)

Figure 1: Classification accuracy, training time (in log-scale) and testing time (in linear
scale) on the 20Newsgroups binary classification data set.

the test set contains 569 documents. We compare Gibbs MedLDA with the MedLDA model
that uses variational methods (denoted by vMedLDA) (Zhu et al., 2012) and the MedLDA
that uses collapsed Gibbs sampling algorithms (denoted by gMedLDA) (Jiang et al., 2012).
We also include unsupervised LDA using collapsed Gibbs sampling as a baseline, denoted
by GibbsLDA. For GibbsLDA, we learn a binary linear SVM on its topic representations
using SVMLight (Joachims, 1999). The results of other supervised topic models, such as
sLDA and DiscLDA (Lacoste-Jullien et al., 2009), were reported in Zhu et al. (2012). For
Gibbs MedLDA, we set α = 1, ` = 164 and M = 10. As we shall see in Section 6.5,
Gibbs MedLDA is insensitive to α, ` and M in a wide range. Although tuning c (e.g., via
cross-validation) can produce slightly better results, we fix c = 1 for simplicity.

Figure 1 shows the accuracy, training time, and testing time of different methods with
various numbers of topics. We can see that by minimizing an expected hinge-loss and making
no restrictive assumptions on the posterior distributions, GibbsMedLDA achieves higher
accuracy than other max-margin topic models, which make some restrictive mean-field
assumptions. Similarly, as gMedLDA makes a weaker mean-field assumption, it achieves
slightly higher accuracy than vMedLDA, which assumes that the posterior distribution is
fully factorized. For the training time, GibbsMedLDA is about two orders of magnitudes
faster than vMedLDA, and about one order of magnitude faster than gMedLDA. This
is partly because both vMedLDA and gMedLDA need to solve multiple SVM problems.
For the testing time, GibbsMedLDA is comparable with gMedLDA and the unsupervised
GibbsLDA, but faster than the variational algorithm used by vMedLDA, especially when
the number of topics K is large. There are several possible reasons for the faster testing
than vMedLDA, though they use the same stopping criterion. For example, vMedLDA
performs mean-field inference in a full space which leads to a low convergence speed, while
GibbsMedLDA carries out Gibbs sampling in a collapsed space. Also, the sparsity of the

1094

Gibbs Max-margin Topic Models with Data Augmentation

0 3 5 10 15 20 25 30

0.35

0.4

0.45

0.5

0.55

0.6

Topics

P
re

d
ic

ti
v
e

 R
2

0 3 5 10 15 20 25 30
10

0

10
1

10
2

10
3

10
4

Topics

T
ra

in
−

ti
m

e
 (

s
e

c
o

n
d

s
)

0 3 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

Topics

T
e

s
t−

ti
m

e
 (

s
e

c
o

n
d

s
)

GibbsMedLDA vMedLDA sLDA

Figure 2: Predictive R2, training time and testing time on the hotel review data set.

sampled topics in GibbsMedLDA could save time, while vMedLDA needs to carry out
computation for each dimension of the variational parameters.

6.2 Regression

We use the hotel review data set (Zhu and Xing, 2010) built by randomly crawling hotel
reviews from the TripAdvisor website,5 where each review is associated with a global rating
score ranging from 1 to 5. In these experiments, we focus on predicting the global rating
scores for reviews using the bag-of-words features only, with a vocabulary of 12,000 terms,
though the other manually extracted features (e.g., part-of-speech tags) are provided. All
the reviews have character lengths between 1,500 and 6,000. The data set consists of 5,000
reviews, with 1,000 reviews per rating. The data set is uniformly partitioned into training
and testing sets. We compare the Gibbs MedLDA regression model with the MedLDA
regression model that uses variational inference and supervised LDA (sLDA) which also uses
variational inference. For Gibbs MedLDA and vMedLDA, the precision is set at ε = 1e−3

and c is selected via 5 fold cross-validation during training. Again, we set the Dirichlet
parameter α = 1 and the number of burn-in M = 10.

Figure 2 shows the predictive R2 (Blei and McAuliffe, 2007) of different methods. We
can see that GibbsMedLDA achieves comparable prediction performance with vMedLDA,
which is better than sLDA. Note that vMedLDA uses a full likelihood model for both input
words and response variables, while GibbsMedLDA uses a simpler likelihood model for
words only.6 For training time, GibbsMedLDA is about two orders of magnitudes faster
than vMedLDA (as well as sLDA), again due to the fact that GibbsMedLDA does not need
to solve multiple SVM problems. For testing time, GibbsMedLDA is also much faster than
vMedLDA and sLDA, especially when the number of topics is large, due to the same reasons
as stated in Section 6.1.

5. See the website: http://www.tripadvisor.com/.
6. The MedLDA with a simple likelihood on words only doesn’t perform well for regression.

1095

http://www.tripadvisor.com/

Zhu, Chen, Perkins and Zhang

6.3 Multi-class Classification

We perform multi-class classification on 20Newsgroups with all 20 categories. The data set
has a balanced distribution over the categories. The test set consists of 7,505 documents,
in which the smallest category has 251 documents and the largest category has 399 docu-
ments. The training set consists of 11,269 documents, in which the smallest and the largest
categories contain 376 and 599 documents, respectively. We consider two approaches to do-
ing multi-class classification—one is to build multiple independent binary Gibbs MedLDA
models, one for each category, and the other one is to build multiple dependent binary Gibbs
MedLDA models under the framework of multi-task learning, as presented in Section 5.2.

6.3.1 Multiple One-vs-All Classifiers

Various methods exist to apply binary classifiers to do multi-class classification, includ-
ing the popular “one-vs-all” and “one-vs-one” strategies. Here we choose the “one-vs-all”
strategy, which has shown effective (Rifkin and Klautau, 2004), to provide some preliminary
analysis. Let η̂i be the sampled classifier weights of the 20 “one-vs-all” binary classifiers af-
ter the burn-in stage. For a test document w, we need to infer the latent topic assignments
zi under each “one-vs-all” binary classifier using a Gibbs sampler with the conditional dis-
tribution (13). Then, we predict the document as belonging to the single category which
has the largest discriminant function value, that is,

ŷ = argmax
i=1,...,L

(η̂>i z̄i),

where L is the number of categories (i.e., 20 in this experiment). Again, since GibbsMedLDA
is insensitive to α and `, we set α = 1 and ` = 64. We also fix c = 1 for simplicity. The
number of burn-in iterations is set as M = 20, which is sufficiently large as will be shown
in Figure 7.

Figure 3 shows the classification accuracy and training time, where GibbsMedLDA
builds 20 binary Gibbs MedLDA classifiers. Note that for GibbsMedLDA the horizontal
axis denotes the number of topics used by each single binary classifier. Since there is no
coupling among these 20 binary classifiers, we can learn them in parallel, which we denote by
pGibbsMedLDA. We can see that GibbsMedLDA clearly improves over other competitors
on the classification accuracy, which may be due to the different strategies on building the
multi-class classifiers.7 However, given the performance gain on the binary classification
task, we believe that the Gibbs sampling algorithm without any restrictive factorization
assumptions is another factor leading to the improved performance. For training time,
GibbsMedLDA takes slightly less time than the variational MedLDA as well as gMedLDA.
But if we train the 20 binary GibbsMedLDA classifiers in parallel, we can save a lot of
training time. These results are promising since it is now not uncommon to have a desktop
computer with multiple processors or a cluster with tens or hundreds of computing nodes.

6.3.2 Multi-class Classification as a Multi-task Learning Problem

The second approach to performing multi-class classification is to formulate it as a multiple
task learning problem, with a single output prediction rule. Specifically, let the label space

7. MedLDA learns multi-class SVM (Zhu et al., 2012).

1096

Gibbs Max-margin Topic Models with Data Augmentation

20 40 60 80 100
0.55

0.6

0.65

0.7

0.75

0.8

0.85

Topics

A
c
c
u
ra

c
y

GibbsMedLDA

gMedLDA

vMedLDA

GibbsLDA+SVM

(a)

20 40 60 80 100
10

1

10
2

10
3

10
4

10
5

Topics

T
ra

in
−

ti
m

e
 (

s
e

c
o

n
d

s
)

GibbsMedLDA

gMedLDA

vMedLDA

GibbsLDA+SVM

pGibbsMedLDA

(b)

Figure 3: (a) classification accuracy and (b) training time of the one-vs-all Gibbs MedLDA
classifiers for multi-class classification on the whole 20Newsgroups data set.

be Y = {1, . . . , L}. We can define one binary classification task for each category i and the
task is to distinguish whether a data example belongs to the class i (with binary label +1)
or not (with binary label −1). All the binary tasks share the same topic representations.
To apply the model as we have presented in Section 5.2, we need to determine the true
binary label of each document in a task. Given the multi-class label yd of document d, this
can be easily done by defining

∀i = 1, . . . , L : yid =

{
+1 if yd = i
−1 otherwise

.

Then, we can learn a multi-task Gibbs MedLDA model using the data with transferred
multiple labels. Let η̂i be the sampled classifier weights of task i after the burn-in stage.
For a test document w, once we have inferred the latent topic assignments z using a Gibbs
sampler with the conditional distribution (13), we compute the discriminant function value
η̂>i z̄ for each task i, and predict the document as belonging to the single category which
has the largest discriminant function value, that is,

ŷ = argmax
i=1,...,L

(η̂>i z̄).

Figure 4 shows the performance of the multi-task Gibbs MedLDA with comparison to
the high-performance methods of the one-vs-all GibbsMedLDA and gMedLDA. Note again
that for the one-vs-all GibbsMedLDA the horizontal axis denotes the number of topics used
by each single binary classifier. We can see that although the multi-task GibbsMedLDA uses
20 times fewer topics than the one-vs-all GibbsMedLDA, their prediction accuracy scores
are comparable when the multi-task GibbsMedLDA uses a reasonable number of topics (e.g.,
larger than 40). Both implementations of Gibbs MedLDA yield higher performance than
gMedLDA. Looking at training time, when there is only a single processor core available, the
multi-task GibbsMedLDA is about 3 times faster than the one-vs-all GibbsMedLDA. When
there are multiple processor cores available, the naive parallel one-vs-all Gibbs MedLDA is

1097

Zhu, Chen, Perkins and Zhang

20 40 60 80 100
0.55

0.6

0.65

0.7

0.75

0.8

0.85

Topics

A
c
c
u

ra
c
y

GibbsMedLDA

gMedLDA

Multi−task GibbsMedLDA

(a)

20 40 60 80 100
10

1

10
2

10
3

10
4

Topics
T

ra
in

−
ti
m

e
 (

s
e
c
o
n

d
s
)

GibbsMedLDA

Multi−task GibbsMedLDA

pGibbsMedLDA

(b)

20 40 60 80 100

10
2

10
3

10
4

Topics

T
e

s
t−

ti
m

e
 (

s
e

c
o

n
d

s
)

GibbsMedLDA

Multi−task GibbsMedLDA

pGibbsMedLDA

(c)

Figure 4: (a) classification accuracy; (b) training time; and (c) testing time of the multi-
task Gibbs MedLDA classifiers for multi-class classification on the whole 20News-
groups data set.

faster. In this case, using 20 processor cores, the parallel one-vs-all GibbsMedLDA is about
7 times faster than the multi-task GibbsMedLDA. In some scenarios, the testing time is
significant. We can see that using a single core, the multi-task GibbsMedLDA is about 20
times faster than the one-vs-all GibbsMedLDA. Again however, in the presence of multiple
processor cores, in this case 20, the parallel one-vs-all GibbsMedLDA tests at least as fast,
at the expense of using more processor resources. So, depending on the processor cores
available, both the parallel one-vs-all GibbsMedLDA and the multi-task GibbsMedLDA
can be excellent choices. Where high efficiency single-core processing is key, then the multi-
task GibbsMedLDA is a great choice. When there are many processor cores available, then
the parallel one-vs-all GibbsMedLDA might be an appropriate choice.

6.4 Multi-label Classification

We also present some results on a multi-label classification task. We use the Wiki data set
which is built from the large Wikipedia set used in the PASCAL LSHC challenge 2012, and
where each document has multiple labels. The original data set is extremely imbalanced.8

We built our data set by selecting the 20 categories that have the largest numbers of docu-
ments and keeping all the documents that are labeled by at least one of these 20 categories.
The training set consists of 1.1 millions of documents and the testing set consists of 5,000
documents. The vocabulary has 917,683 terms in total. To examine the effectiveness of
Gibbs MedLDA, which performs topic discovery and classifier learning jointly, we compare
it with a linear SVM classifier built on the raw bag-of-words features and a two-step ap-
proach denoted by GibbsLDA+SVM. The GibbsLDA+SVM method first uses LDA with
collapsed Gibbs sampling to discover latent topic representations for all the documents and
then builds 20 separate binary SVM classifiers using the training documents with their

8. The data set is available at: http://lshtc.iit.demokritos.gr/.

1098

http://lshtc.iit.demokritos.gr/

Gibbs Max-margin Topic Models with Data Augmentation

200 400 600
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Topics

P
re

c
is

io
n

Multi−task GibbsMedLDA GibbsLDA+SVM SVM

200 400 600
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Topics

R
e

c
a

ll

200 400 600
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Topics

F
1

−
M

e
a

s
u

re

Figure 5: Precision, recall and F1-measure of the multi-label classification using different
models on the Wiki data set.

discovered topic representations. For multi-task Gibbs MedLDA, we use 40 burn-in steps,
which is sufficiently large. The model is insensitive to other parameters, similar to the
multi-class classification task.

Figure 5 shows the precision, recall and F1 measure (i.e., the harmonic mean of precision
and recall) of various models running on a distributed cluster with 20 nodes (each node is
equipped with two 6-core CPUs).9 We can see that the multi-task Gibbs MedLDA performs
much better than other competitors. There are several reasons for the improvements. Since
the vocabulary has about 1 million terms, the raw features are in a high-dimensional space
and each document gives rise to a sparse feature vector, that is, only a few elements are
nonzero. Thus, learning SVM classifiers on the raw data leads not just to over-fitting but a
wider failure to generalize. For example, two documents from the same category might con-
tain non-intersecting sets of words, yet contain similar latent topics. Using LDA to discover
latent topic representations can produce dense features. Building SVM classifiers using the
latent topic features improves the overall F1 measure, by improving the ability to generalize,
and reducing overfitting. But, due to its two-step procedure, the discovered topic repre-
sentations may not be very predictive. By doing max-margin learning and topic discovery
jointly, the multi-task GibbsMedLDA can discover more discriminative topic features, thus
improving significantly over the two-step GibbsLDA+SVM algorithm.

6.5 Sensitivity Analysis

We now provide a more careful analysis of the various Gibbs MedLDA models on their
sensitivity to some key parameters in the classification tasks. Specifically, we will look at

9. For GibbsLDA, we use the parallel implementation in Yahoo-LDA, which is publicly available at: https:
//github.com/shravanmn/Yahoo_LDA. For Gibbs MedLDA, the parallel implementation of our Gibbs
sampler is presented in Zhu et al. (2013b).

1099

https://github.com/shravanmn/Yahoo_LDA
https://github.com/shravanmn/Yahoo_LDA

Zhu, Chen, Perkins and Zhang

0 10 20
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Burn−in steps

A
c
c
u

ra
c
y

K=5

K=10

K=15

K=20

0 10 20
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Burn−in steps

T
ra

in
 A

c
c
u

ra
c
y

K=5

K=10

K=15

K=20

0 10 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Burn−in steps

T
ra

in
−

ti
m

e
 (

s
e

c
o

n
d

s
)

K=5

K=10

K=15

K=20

Figure 6: (Left) testing accuracy, (Middle) training accuracy, and (Right) training time of
GibbsMedLDA with different numbers of burn-in steps for binary classification.

the effects of the number of burn-in steps, the Dirichlet prior α, the loss penalty `, and the
number of testing samples.

6.5.1 Burn-in Steps

Figure 6 shows the classification accuracy, training accuracy and training time of Gibb-
sMedLDA with different numbers of burn-in samples in the binary classification task. When
M = 0, the model is essentially random, for which we draw a classifier with the randomly
initialized topic assignments for training data. We can see that both the training accuracy
and testing accuracy increase very quickly and converge to their stable values with 5 to 10
burn-in steps. As expected, the training time increases about linearly in general when using
more burn-in steps. Moreover, the training time increases linearly as K increases. In the
previous experiments, we have chosen M = 10, which is sufficiently large.

Figure 7 shows the performance of GibbsMedLDA for multi-class classification with
different numbers of burn-in steps when using the one-vs-all strategy. We show the total
training time as well as the training time of the naive parallel implementation of pGibb-
sMedLDA. We can see that when the number of burn-in steps is larger than 20, the per-
formance is quite stable, especially when K is large. Again, the training time grows about
linearly as the number of burn-in steps increases. Even if we use 40 or 60 steps of burn-in,
the training time is still competitive, compared with the variational MedLDA, especially
considering that GibbsMedLDA can be naively parallelized by learning different binary
classifiers simultaneously.

Figure 8 shows the testing classification accuracy, training accuracy and training time of
the multi-task Gibbs MedLDA for multi-class classification with different numbers of burn-
in steps. We can see that again both the training accuracy and testing accuracy increase
fast and converge to their stable scores after about 30 burn-in steps. Also, the training time
increases about linearly as the number of burn-in steps increases.

1100

Gibbs Max-margin Topic Models with Data Augmentation

5 10 20 30 40 50 60
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Burn−in steps

A
c
c
u

ra
c
y

K=30

K=40

K=50

K=60

5 10 20 30 40 50 60

10
3

10
4

Burn−in steps

T
ra

in
−

ti
m

e
 (

s
e

c
o

n
d

s
)

K=30

K=40

K=50

K=60

5 10 20 30 40 50 60

10
2

10
3

10
4

Burn−in steps

T
ra

in
−

ti
m

e
 (

s
e

c
o

n
d

s
)

K=30

K=40

K=50

K=60

Figure 7: (Left) classification accuracy of GibbsMedLDA, (Middle) training time of Gibb-
sMedLDA and (Right) training time of the parallel pGibbsMedLDA with different
numbers of burn-in steps for multi-class classification.

10
0

10
1

10
2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Burn−in steps

A
c
c
u
ra

c
y

K=60

K=70

K=80

K=90

10
0

10
1

10
2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Burn−in steps

T
ra

in
 A

c
c
u
ra

c
y

K=60

K=70

K=80

K=90

10
0

10
1

10
2

10
2

10
3

10
4

Burn−in steps

T
ra

in
−

ti
m

e
 (

s
e
c
o
n
d
s
)

K=60

K=70

K=80

K=90

Figure 8: (Left) test accuracy, (Middle) training accuracy, and (Right) training time of the
multi-task GibbsMedLDA with different numbers of burn-in steps for multi-class
classification.

6.5.2 Dirichlet Prior

For topic models with a Dirichlet prior, the Dirichlet hyper-parameter can be automatically
estimated, such as using the Newton-Raphson method (Blei et al., 2003). Here, we analyze
its effects on the performance by setting different values. Figure 9 shows the classification
performance of GibbsMedLDA on the binary task with different α values for the symmetric
Dirichlet prior α = α

K1. For the three different topic numbers, we can see that the perfor-
mance is quite stable in a wide range of α values, for example, from 0.1 to 10. We can also

1101

Zhu, Chen, Perkins and Zhang

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

α

A
c
c
u

ra
c
y

K = 5

K = 10

K = 15

Figure 9: Classification accuracy of GibbsMedLDA on the binary classification data set
with different α values.

1 3 5 7 9 11 13 15 17 19 21 23 25
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

√
ℓ

A
c
c
u
ra

c
y

K = 5

K = 10

K = 15

Figure 10: Classification accuracy of GibbsMedLDA on the binary classification data set
with different ` values.

see that it generally needs a larger α in order to get the best results when K becomes larger.
For example, when α < 0.1, using fewer topics results in slightly higher performance. This
is mainly because a large K tends to produce sparse topic representations and an appro-
priately large α is needed to smooth the representations, as the effective Dirichlet prior is
αk = α/K.

6.5.3 Loss Penalty `

Figure 10 shows the classification performance of GibbsMedLDA on the binary classification
task with different ` values. Again, we can see that in a wide range, for example, from
25 to 625, the performance is quite stable for all the three different K values. In the

1102

Gibbs Max-margin Topic Models with Data Augmentation

0 5 10 15 20
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

samples of z

A
c
c
u
ra

c
y

K = 5

K = 10

K = 15

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

samples of z

T
e
s
t−

ti
m

e
 (

s
e
c
o
n
d
s
)

K = 5

K = 10

K = 15

Figure 11: (Left) classification accuracy and (Right) testing time of GibbsMedLDA on the
binary classification data set with different numbers of z samples in making
predictions.

above experiments, we set ` = 164. For the multi-class classification task, we have similar
observations, and we set ` = 64 in the previous experiments.

6.5.4 The Number of Testing Samples

Figure 11 shows the classification performance and testing time of GibbsMedLDA in the
binary classification task with different numbers of z samples when making predictions, as
stated in Section 4.4. We can see that in a wide range, for example, from 1 to 19, the
classification performance is quite stable for all the three different K values we have tested;
and the testing time increases about linearly as the number of z samples increases. For the
multi-class classification task, we have similar observations.

6.6 Topic Representations

Finally, we also visualize the discovered latent topic representations of Gibbs MedLDA on
the 20Newsgroup data set. We choose the multi-task Gibbs MedLDA, since it learns a
single common topic space shared by multiple classifiers. We set the number of topics
at 40. Figure 12 shows the average topic representations of the documents from each
category, and Table 1 presents the 10 most probable words in each topic. We can see that
for different categories, the average representations are quite different, indicating that the
topic representations are good at distinguishing documents from different classes. We can
also see that on average the documents in each category have very few salient topics, that
is, the topics with a high probability of describing the documents. For example, the first
two most salient topics for describing the documents in the category alt.atheism are topic
20 and topic 29, whose top-ranked words (see Table 1) reflect the semantic meaning of
the category. For graphics category, the documents have the most salient topic 23, which

1103

Zhu, Chen, Perkins and Zhang

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
v
g
−

T
h
e
ta

Topics

(a) alt.atheism

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
v
g

−
T

h
e

ta

Topics

(b) graphics

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
v
g

−
T

h
e

ta

Topics

(c) ms-windows.misc

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
v
g

−
T

h
e

ta

Topics

(d) ibm.pc.hardware

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
v
g

−
T

h
e

ta

Topics

(e) sys.mac.hardware

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
A

v
g

−
T

h
e

ta

Topics

(f) windows.x

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
v
g
−

T
h
e
ta

Topics

(g) misc.forsale

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
v
g
−

T
h
e
ta

Topics

(h) rec.autos

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
v
g
−

T
h
e
ta

Topics

(i) rec.motorcycles

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
v
g
−

T
h
e
ta

Topics

(j) rec.sport.baseball

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
A

v
g
−

T
h
e
ta

Topics

(k) rec.sport.hockey

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
v
g

−
T

h
e

ta

Topics

(l) sci.crypt

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
v
g
−

T
h
e
ta

Topics

(m) sci.electronics

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
v
g
−

T
h
e
ta

Topics

(n) sci.med

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
v
g

−
T

h
e

ta

Topics

(o) sci.space

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
A

v
g
−

T
h
e
ta

Topics

(p) religion.christian

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
v
g
−

T
h
e
ta

Topics

(q) politics.guns

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
v
g
−

T
h
e
ta

Topics

(r) politics.mideast

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
v
g
−

T
h
e
ta

Topics

(s) politics.misc

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
v
g

−
T

h
e

ta

Topics

(t) religion.misc

Figure 12: (a-t) per-class average topic representations on the 20Newsgroups data set.

has topic words image, graphics, file, jpeg, and etc., all of which are closely related to the
semantic of graphics. For other categories, we have similar observations.

1104

Gibbs Max-margin Topic Models with Data Augmentation

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

data sale woman space team writes mr db windows file
mission offer told nasa game don president cs writes congress
center shipping afraid launch hockey time stephanopoulos mov article january

sci dos building writes play article jobs bh file centers
jpl mail couldn earth season information russian si files bill

planetary price floor article nhl number administration al problem quotes
mass condition beat orbit ca people meeting byte dos hr
probe good standing moon games make george theory don states
ames interested immediately shuttle players work russia bits run march

atmosphere sell crowd gov year part working larson win included

Topic 11 Topic 12 Topic 13 Topic 14 Topic 15 Topic 16 Topic 17 Topic 18 Topic 19 Topic 20

organizations gun msg jesus mac drive ma wiring writes writes
began people health god apple scsi nazis supply power people

security guns medical people writes mb mu boxes article article
terrible weapons food christian drive card conflict bnr don don

association firearms article bible problem system ql plants ground god
sy writes disease sandvik mb controller te reduce good life

publication article patients christians article bus ne corp current things
helped government writes objective system hard eu relay work apr

organized fire doctor ra bit ide cx onur circuit evidence
bullock law research christ don disk qu damage ve time

Topic 21 Topic 22 Topic 23 Topic 24 Topic 25 Topic 26 Topic 27 Topic 28 Topic 29 Topic 30

ms pub image internet fallacy window key unit god bike
myers ftp graphics anonymous conclusion server encryption heads jesus dod

os mail file privacy rule motif chip master people writes
vote anonymous files posting innocent widget clipper multi church article
votes archive software email perfect sun government led christians ride
santa electronic jpeg anonymity assertion display keys vpic christ don

fee server images users true application security dual christian apr
impression faq version postings ad mit escrow ut bible ca

issued eff program service consistent file secure ratio faith motorcycle
voting directory data usenet perspective xterm nsa protected truth good

Topic 31 Topic 32 Topic 33 Topic 34 Topic 35 Topic 36 Topic 37 Topic 38 Topic 39 Topic 40

matthew israel courtesy car didn year south entry open people
wire people announced writes apartment writes war output return government

neutral turkish sequence cars sumgait article tb file filename article
judas armenian length article started game nuclear program read tax

reported jews rates don mamma team rockefeller build input make
acts israeli molecular good father baseball georgia um char health

island armenians sets engine karina good military entries write state
safety article pm speed ll don bay ei enter don

hanging writes automatic apr guy games acquired eof judges money
outlets turkey barbara oil knew runs ships printf year cramer

Table 1: The ten most probable words in the topics discovered by Multi-task Gibbs
MedLDA (K = 40) on the 20Newsgroups data set.

7. Conclusions and Discussions

We have presented Gibbs MedLDA, an alternative approach to learning max-margin super-
vised topic models by minimizing an expected margin loss. We have applied Gibbs MedLDA
to various tasks including text categorization, regression, and multi-task learning. By using
data augmentation techniques, we have presented simple and highly efficient “augment-
and-collapse” Gibbs sampling algorithms, without making any restricting assumptions on
posterior distributions. Empirical results on the medium-sized 20Newsgroups and hotel re-

1105

Zhu, Chen, Perkins and Zhang

view data sets and a large-scale Wikipedia data set demonstrate significant improvements
on time efficiency and classification accuracy over existing max-margin topic models. Our
approaches are applicable to building other max-margin latent variable models, such as the
max-margin nonparametric latent feature models for link prediction (Zhu, 2012) and matrix
factorization (Xu et al., 2012). Finally, we release the code for public use.10

The new data augmentation formulation without any need to solve constrained sub-
problems has shown great promise on improving the time efficiency of max-margin topic
models. For future work, we are interested in developing highly scalable sampling algorithms
(e.g., using a distributed architecture) (Newman et al., 2009; Smola and Narayanamurthy,
2010; Ahmed et al., 2012) to deal with large scale data sets. One nice property of the
sampling algorithms is that the augmented variables are local to each document. Therefore,
they can be effectively handled in a distributed architecture. But, the global prediction
model weights bring in new challenges. Some preliminary work has been investigated in Zhu
et al. (2013b). Another interesting topic is to apply the data augmentation technique to deal
with the multiclass max-margin formulation, which was proposed by Crammer and Singer
(2001) and used in MedLDA for learning multi-class max-margin topic models. Intuitively,
it can be solved following an iterative procedure that infers the classifier weights associated
with each category by fixing the others, similar as in polychomotous logistic regression
(Holmes and Held, 2006), in which each substep may involve solving a binary hinge loss
and thus our data augmentation techniques can be applied. A systematical investigation is
our future work.

Acknowledgments

The work was supported by the National Basic Research Program (973 Program) of China
(Nos. 2013CB329403, 2012CB316301), National Natural Science Foundation of China (Nos.
61322308, 61332007, 61305066), Tsinghua University Initiative Scientific Research Program
(No. 20121088071), a Microsoft Research Asia Research Fund (No. 20123000007), and a
China Postdoctoral Science Foundation Grant (No. 2013T60117) to NC.

References

Amr Ahmed, Mohamed Aly, Joseph Gonzalez, Shravan Narayanamurthy, and Alex Smola.
Scalable inference in latent variable models. In International Conference on Web Search
and Data Mining (WSDM), pages 123–132, 2012.

Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing. Mixed mem-
bership stochastic blockmodels. Journal of Machine Learning Research (JMLR), 9:1981–
2014, 2008.

Rie K. Ando and Tong Zhang. A framework for learning predictive structures from multiple
tasks and unlabeled data. Journal of Machine Learning Research (JMLR), (6):1817–1853,
2005.

10. The code is available at: http://www.ml-thu.net/~jun/gibbs-medlda.shtml.

1106

http://www.ml-thu.net/~jun/gibbs-medlda.shtml

Gibbs Max-margin Topic Models with Data Augmentation

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Multi-task feature learn-
ing. In Advances in Neural Information Processing Systems (NIPS), pages 41–48, 2007.

David M. Blei and John D. McAuliffe. Supervised topic models. In Advances in Neural
Information Processing Systems (NIPS), pages 121–128, 2007.

David M. Blei, Andrew Ng, and Michael I. Jordan. Latent Dirichlet allocation. Journal of
Machine Learning Research (JMLR), 3:993–1022, 2003.

Olivier Catoni. PAC-Bayesian supervised classification: The thermodynamics of statistical
learning. Monograph Series of the Institute of Mathematical Statistics, 2007.

Jonathan Chang and David Blei. Relational topic models for document networks. In
Artificial Intelligence and Statistics (AISTATS), pages 81–88, 2009.

Ning Chen, Jun Zhu, Fuchun Sun, and Eric P. Xing. Large-margin predictive latent subspace
learning for multiview data analysis. IEEE Trans. on Pattern Analysis and Machine
Intelligence (TPAMI), 34(12):2365–2378, 2012.

Ning Chen, Jun Zhu, Fei Xia, and Bo Zhang. Generalized relational topic models with
data augmentation. In International Joint Conference on Artificial Intelligence (IJCAI),
pages 1273–1279, 2013.

Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine Learning Research (JMLR), (2):265–292,
2001.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood estimation
from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Ser.
B, (39):1–38, 1977.

Luc Devroye. Non-uniform Random Variate Generation. Springer-Verlag, 1986.

Li Fei-Fei and Pietro Perona. A Bayesian hierarchical model for learning natural scene
categories. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 524–531, 2005.

Kuzman Ganchev, Joao Graça, Jennifer Gillenwater, and Ben Taskar. Posterior regular-
ization for structured latent variable models. Journal of Machine Learning Research
(JMLR), 11:2001–2049, 2010.

Pascal Germain, Alexandre Lacasse, Francois Laviolette, and Mario Marchand. PAC-
Bayesian learning of linear classifiers. In International Conference on Machine Learning
(ICML), pages 353–360, 2009.

Thomas Griffiths and Mark Steyvers. Finding scientific topics. Proceedings of National
Academy of Science (PNAS), pages 5228–5235, 2004.

James P. Hobert. The Data Augmentation Algorithm: Theory and Methodology. In Hand-
book of Markov Chain Monte Carlo (S. Brooks, A. Gelman, G. Jones and X.-L. Meng,
eds.). Chapman & Hall/CRC Press, Boca Raton, FL., 2011.

1107

Zhu, Chen, Perkins and Zhang

Chris C. Holmes and Leonhard Held. Bayesian auxiliary variable models for binary and
multinomial regression. Bayesian Analysis, 1(1):145–168, 2006.

Tommi Jaakkola, Marina Meila, and Tony Jebara. Maximum entropy discrimination. In
Advances in Neural Information Processing Systems (NIPS), 1999.

Tony Jebara. Discriminative, Generative and Imitative Learning. PhD thesis, Media Lab-
oratory, MIT, Dec 2001.

Qixia Jiang, Jun Zhu, Maosong Sun, and Eric P. Xing. Monte Carlo methods for maximum
margin supervised topic models. In Advances in Neural Information Processing Systems
(NIPS), pages 1601–1609, 2012.

Thorsten Joachims. Making Large-scale SVM Learning Practical. MIT press, 1999.

Simons Lacoste-Jullien, Fei Sha, and Michael I. Jordan. DiscLDA: Discriminative learn-
ing for dimensionality reduction and classification. In Advances in Neural Information
Processing Systems (NIPS), pages 897–904, 2009.

David McAllester. PAC-Bayesian stochastic model selection. Machine Learning, 51:5–21,
2003.

Xiao-Li Meng and David A. van Dyk. The EM algorithm – an old folk song sung to a fast
new tune. Journal of the Royal Statistical Society, Ser. B, (59):511–567, 1997.

John R. Michael, William R. Schucany, and Roy W. Haas. Generating random variates
using transformations with multiple roots. The American Statistician, 30(2):88–90, 1976.

Kevin Miller, M. Pawan Kumar, Ben Packer, Danny Goodman, and Daphne Koller. Max-
margin min-entropy models. In Artificial Intelligence and Statistics (AISTATS), pages
779–787, 2012.

Radford M. Neal. Markov chain Monte Carlo methods based on ‘slicing’ the density function.
Technical Report No. 9722, Department of Statistics, University of Toronto, 1997.

David Newman, Arthur Asuncion, Padhraic Smyth, and Max Welling. Distributed algo-
rithms for topic models. Journal of Machine Learning Research (JMLR), (10):1801–1828,
2009.

Nicholas G. Polson and Steven L. Scott. Data augmentation for support vector machines.
Bayesian Analysis, 6(1):1–24, 2011.

Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. Journal of
Machine Learning Research (JMLR), (5):101–141, 2004.

Alex Smola and Shravan Narayanamurthy. An architecture for parallel topic models. Very
Large Data Base (VLDB), 3(1-2):703–710, 2010.

Alex Smola and Bernhard Scholkopf. A tutorial on support vector regression. Statistics and
Computing, 14(3):199–222, 2003.

1108

Gibbs Max-margin Topic Models with Data Augmentation

Robert H. Swendsen and Jian-Sheng Wang. Nonuniversal critical dynamics in Monte Carlo
simulations. Physical Review Letters, (58):86–88, 1987.

Aixin Tan. Convergence Rates and Regeneration of the Block Gibbs Sampler for Bayesian
Random Effects Models. PhD thesis, Department of Statistics, University of Florida,
2009.

Martin A. Tanner and Wing-Hung Wong. The calculation of posterior distributions by data
augmentation. Journal of the Americal Statistical Association (JASA), 82(398):528–540,
1987.

Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin Markov networks. In Ad-
vances in Neural Information Processing Systems (NIPS), 2003.

Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Mining multi-label data.
Data Mining and Knowledge Discovery Handbook, 2nd ed., pages 667–685, 2010.

David van Dyk and Xiao-Li Meng. The art of data augmentation. Journal of Computational
and Graphical Statistics (JCGS), 10(1):1–50, 2001.

Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

Minjie Xu, Jun Zhu, and Bo Zhang. Bayesian nonparametric maximum margin matrix
factorization for collaborative prediction. In Advances in Neural Information Processing
Systems (NIPS), pages 64–72, 2012.

Minjie Xu, Jun Zhu, and Bo Zhang. Fast max-margin matrix factorization with data
augmentation. In International Conference on Machine Learning (ICML), pages 978–
986, 2013.

Shuanghong Yang, Jiang Bian, and Hongyuan Zha. Hybrid generative/discriminative learn-
ing for automatic image annotation. In Uncertainty in Artificial Intelligence (UAI), pages
683–690, 2010.

Chun-Nam Yu and Thorsten Joachims. Learning structural SVMs with latent variables. In
International Conference on Machine Learning (ICML), pages 1169–1176, 2009.

Jun Zhu. Max-margin nonparametric latent feature models for link prediction. In Interna-
tional Conference on Machine Learning (ICML), pages 719–726, 2012.

Jun Zhu and Eric P. Xing. Conditional topic random fields. In International Conference
on Machine Learning (ICML), pages 1239–1246, 2010.

Jun Zhu, Ning Chen, and Eric P. Xing. Infinite SVM: Dirichlet process mixtures of large-
margin kernel machines. In International Conference on Machine Learning (ICML), pages
617–624, 2011.

Jun Zhu, Amr Ahmed, and Eric. P. Xing. MedLDA: maximum margin supervised topic
models. Journal of Machine Learning Research (JMLR), (13):2237–2278, 2012.

1109

Zhu, Chen, Perkins and Zhang

Jun Zhu, Ning Chen, Hugh Perkins, and Bo Zhang. Gibbs max-margin topic models with
fast inference algorithms. In International Conference on Machine Learning (ICML),
pages 124–132, 2013a.

Jun Zhu, Xun Zheng, Li Zhou, and Bo Zhang. Scalable inference in max-margin topic mod-
els. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD),
pages 964–972, 2013b.

Jun Zhu, Ning Chen, and Eric P. Xing. Bayesian inference with posterior regularization
and applications to infinite latent SVMs. Journal of Machine Learning Research (JMLR,
in press) (Technical Report, arXiv:1210.1766v3), 2014.

1110

Journal of Machine Learning Research 15 (2014) 1111-1133 Submitted 7/12; Revised 12/12; Published 3/14

A Reliable Effective Terascale Linear Learning System

Alekh Agarwal∗ alekha@microsoft.com
Microsoft Research
641 Avenue of the Americas
New York, NY 10011

Olivier Chapelle olivier@chapelle.cc
Criteo
411 High Street
Palo Alto, CA 94301

Miroslav Dud́ık mdudik@microsoft.com

John Langford jcl@microsoft.com

Microsoft Research

641 Avenue of the Americas

New York, NY 10011

Editor: Corinna Cortes

Abstract

We present a system and a set of techniques for learning linear predictors with convex
losses on terascale data sets, with trillions of features,1 billions of training examples and
millions of parameters in an hour using a cluster of 1000 machines. Individually none of
the component techniques are new, but the careful synthesis required to obtain an efficient
implementation is. The result is, up to our knowledge, the most scalable and efficient
linear learning system reported in the literature.2 We describe and thoroughly evaluate
the components of the system, showing the importance of the various design choices.

Keywords: distributed machine learning, Hadoop, AllReduce, repeated online averaging,
distributed L-BFGS

1. Introduction

Distributed machine learning is a research area that has seen a growing body of literature
in recent years. Much work focuses on problems of the form

min
w∈Rd

n∑
i=1

`(w>xi; yi) + λR(w), (1)

where xi is the feature vector of the i-th example, yi is the label, w is the linear predictor,
` is a loss function and R is a regularizer. Most distributed methods for optimizing the
objective (1) exploit its natural decomposability over examples, partitioning the examples
over different nodes in a distributed environment such as a cluster.

∗. This work was done while all authors were part of Yahoo! Research.
1. The number of features here refers to the number of non-zero entries in the data matrix.
2. All the empirical evaluation reported in this work was carried out between May-Oct 2011.

c©2014 Alekh Agarwal, Olivier Chapelle, Miroslav Dud́ık and John Langford.

Agarwal, Chapelle, Dud́ık and Langford

Perhaps the simplest strategy when the number of examples n is too large for a given
learning algorithm is to reduce the data set size by subsampling. However, this strategy
only works if the problem is simple enough or the number of parameters is very small. The
setting of interest here is when a large number of examples is really needed to learn a good
model. Distributed algorithms are a natural choice for such scenarios.

It might be argued that even for these large problems, it is more desirable to explore
multicore solutions developed for single machines with large amounts of fast storage and
memory, rather than a fully distributed algorithm which brings additional complexities due
to the need for communication over a network. Yet, we claim that there are natural reasons
for studying distributed machine learning on a cluster. In many industry-scale applications,
the data sets themselves are collected and stored in a decentralized fashion over a cluster,
typical examples being logs of user clicks or search queries. When the data storage is
distributed, it is much more desirable to also process it in a distributed fashion to avoid
the bottleneck of data transfer to a single powerful server. Second, it is often relatively
easy to get access to a distributed computing platform such as Amazon EC2, as opposed
to procuring a sufficiently powerful server. Finally, the largest problem solvable by a single
machine will always be constrained by the rate at which the hardware improves, which has
been steadily dwarfed by the rate at which our data sizes have been increasing over the
past decade. Overall, we think that there are several very strong reasons to explore the
questions of large-scale learning in cluster environments.

Previous literature on cluster learning is broad. Several authors (Mangasarian, 1995;
McDonald et al., 2010; Zinkevich et al., 2010) have studied approaches that first solve the
learning problem independently on each machine using the portion of the data stored on
that machine, and then average the independent local solutions to obtain the global solution.
Duchi et al. (2012) propose gossip-style message passing algorithms extending the existing
literature on distributed convex optimization (Bertsekas and Tsitsiklis, 1989). Langford
et al. (2009) analyze a delayed version of distributed online learning. Dekel et al. (2012)
consider mini-batch versions of distributed online algorithms which are extended to delay-
based updates in Agarwal and Duchi (2011). A recent article of Boyd et al. (2011) describes
an application of the ADMM technique for distributed learning problems. GraphLab (Low
et al., 2010) is a parallel computation framework on graphs. The closest to our work are
optimization approaches based on centralized algorithms with parallelized gradient compu-
tation (Nash and Sofer, 1989; Teo et al., 2007). To our knowledge, all previous versions
of algorithms based on parallelized gradient computation rely on MPI implementations.3

Finally, the large-scale learning system Sibyl (currently unpublished, but see the talks Chan-
dra et al., 2010; Canini et al., 2012) implements a distributed boosting approach. It can be
used to solve the problems of form (1) at the scales similar to those reported in this paper,
but it runs on a proprietary architecture and many implementation details are missing, so
doing a fair comparison is currently not possible. We attempt to compare the performance
of our algorithm with the published Sibyl performance in Section 3.2.

All of the aforementioned approaches (perhaps with the exception of Sibyl) seem to
leave something to be desired empirically when deployed on large clusters. In particular,
their learning throughput—measured as the input size divided by the wall-clock running

3. See, for example, http://www.mcs.anl.gov/research/projects/mpi/.

1112

http://www.mcs.anl.gov/research/projects/mpi/

A Reliable Effective Terascale Linear Learning System

time of the entire learning algorithm—is smaller than the I/O interface of a single machine
for almost all parallel learning algorithms (Bekkerman et al., 2011, Part III, page 8). The
I/O interface is an upper bound on the speed of the fastest single-machine algorithm since
all single-machine algorithms are limited by the network interface in acquiring data. In
contrast, we were able to achieve a learning throughput of 500M features/s, which is about
a factor of 5 faster than the 1Gb/s network interface of any one node. This learning
throughput was achieved on a cluster of 1000 nodes. Each node accessed its local examples
10 times during the course of the algorithm, so the per-node processing speeds were 5M
features/s. We discuss our throughput results in more detail in Section 3.2, and contrast
them with results reported for Sibyl.

Two difficulties bedevil easy parallel machine learning:

1. Efficient large-scale parallel learning algorithms must occur on a data-centric comput-
ing platform (such as Hadoop) to prevent data transfer overheads. These platforms
typically do not support the full generality of MPI operations.

2. Existing data-centric platforms often lack efficient mechanisms for state synchroniza-
tion and force both refactoring and rewriting of existing learning algorithms.

We effectively deal with both of these issues. Our system is compatible with MapReduce
clusters such as Hadoop (unlike MPI-based systems) and minimal additional programming
effort is required to parallelize existing learning algorithms (unlike MapReduce approaches).
In essence, an existing implementation of a learning algorithm need only insert a few strate-
gic library calls to switch from learning on one machine to learning on a thousand machines.

One of the key components in our system is a communication infrastructure that effi-
ciently accumulates and broadcasts values across all nodes of a computation. It is func-
tionally similar to MPI AllReduce (hence we use the name), but it takes advantage of and
is compatible with Hadoop so that programs are easily moved to data, automatic restarts
on failure provide robustness, and speculative execution speeds up completion. Our opti-
mization algorithm is a hybrid online+batch algorithm with rapid convergence and only
small synchronization overhead, which makes it a particularly good fit for the distributed
environment.

In Section 2 we describe our approach and our communication infrastructure in more
detail. The core of the paper is Section 3 where we conduct many experiments evaluating
our design choices and comparing our approach with existing algorithms. In Section 4 we
provide some theoretical intuition for our design, and contrast our approach with previous
work. We conclude with a discussion in Section 5.

2. Computation and Communication Framework

MapReduce (Dean and Ghemawat, 2008) and its open source implementation Hadoop4 have
become the overwhelmingly favorite platforms for distributed data processing. However, the
abstraction is rather ill-suited for machine learning algorithms as several researchers in the
field have observed (Low et al., 2010; Zaharia et al., 2011), because it does not easily allow
iterative algorithms, such as typical optimization algorithms used to solve the problem (1).

4. See, for example, http://hadoop.apache.org/.

1113

http://hadoop.apache.org/

Agarwal, Chapelle, Dud́ık and Langford

7 5

1

4

9

3

8

7

13

5 3 4

15

3737 37 37

3737

Figure 1: AllReduce operation. Initially, each node holds its own value. Values are passed
up the tree and summed, until the global sum is obtained in the root node (reduce
phase). The global sum is then passed back down to all other nodes (broadcast
phase). At the end, each node contains the global sum.

2.1 Hadoop-compatible AllReduce

AllReduce is a more suitable abstraction for machine learning algorithms. AllReduce is an
operation where every node starts with a number and ends up with the sum of the numbers
across all the nodes (hence the name). A typical implementation imposes a tree structure
on the communicating nodes and proceeds in two phases: numbers are first summed up the
tree (the reduce phase) and then broadcast down to all the nodes (the broadcast phase), see
Figure 1 for a graphical illustration. When doing summing or averaging of a long vector,
such as the weight vector w in the optimization (1), the reduce and broadcast operations
can be pipelined over the vector entries and hence the latency of going up and down the
tree becomes negligible on a typical Hadoop cluster. This is the main optimization we
do within the AllReduce architecture. While other (potentially more efficient or simpler)
architectures for AllReduce are possible, in our experiments in Section 3 we will see that
the time spent in AllReduce operation is negligible compared with the computation time
and stalling time while waiting for other nodes. Therefore, we do not attempt to optimize
the architecture further.

For problems of the form (1), AllReduce provides straightforward parallelization of
gradient-based optimization algorithms such as gradient descent or L-BFGS—gradients are
accumulated locally, and the global gradient is obtained by AllReduce. In general, any
statistical query algorithm (Kearns, 1993) can be parallelized with AllReduce with only a
handful of additional lines of code. This approach also easily implements averaging param-
eters of online learning algorithms.

An implementation of AllReduce is available in the MPI package. However, it is not easy
to run MPI on top of existing Hadoop clusters (Ye et al., 2009). Moreover, MPI implements
little fault tolerance, with the bulk of robustness left to the programmer.

1114

A Reliable Effective Terascale Linear Learning System

To address the reliability issues better, we developed an implementation of AllReduce
that is compatible with Hadoop. Our implementation works as follows. We initialize a
spanning tree server on the gateway node to the Hadoop cluster. We then launch a map-
only (alternatively reduce-only) job where each mapper processes a subset of the data. Each
mapper is supplied with the IP address of the gateway node, to which it connects as the
first step. Once all the mappers are launched and connected to the spanning tree server, it
creates a (nearly balanced) binary tree on these nodes. Each node is given the IP addresses
of its parent and child nodes in the tree, allowing it to establish TCP connections with
them. All the nodes are now ready to pass messages up and down the tree. The actual
communication between the nodes is all implemented directly using C++ sockets and does
not rely on any Hadoop services. Implementation of AllReduce using a single tree is clearly
less desirable than MapReduce in terms of reliability, because if any individual node fails,
the entire computation fails. To deal with this problem, we use a simple trick described
below which makes AllReduce reliable enough to use in practice for computations up to
10K node hours.

2.2 Proposed Algorithm

Our main algorithm is a hybrid online+batch approach. Pure online and pure batch learning
algorithms have some desirable features, on which we build, and some drawbacks, which
we overcome. For instance, an attractive feature of online learning algorithms is that they
optimize the objective to a rough precision quite fast, in just a handful of passes over the
data. The inherent sequential nature of these algorithms, however, makes them tricky to
parallelize and we discuss the drawbacks of some of the attempts at doing so in Section 4.
Batch learning algorithms such as Newton and quasi-Newton methods (e.g., L-BFGS), on
the other hand, are great at optimizing the objective to a high accuracy, once they are in a
good neighborhood of the optimal solution. But the algorithms can be quite slow in reaching
this good neighborhood. Generalization of these approaches to distributed setups is rather
straightforward, only requiring aggregation across nodes after every iteration, as has been
noted in previous research (Teo et al., 2007).

We attempt to reap the benefits and avoid the drawbacks of both above approaches
through our hybrid method. We start with each node making one online pass over its local
data according to adaptive gradient updates (Duchi et al., 2010; McMahan and Streeter,
2010) modified for loss non-linearity (Karampatziakis and Langford, 2011). We notice that
each online pass happens completely asynchronously without any communication between
the nodes, and we can afford to do so since we are only seeking to get into a good neigh-
borhood of the optimal solution rather than recovering it to a high precision at this first
stage. AllReduce is used to average these weights non-uniformly according to locally ac-
cumulated gradient squares. Concretely, node k maintains a local weight vector wk and a
diagonal matrix Gk based on the gradient squares in the adaptive gradient update rule (see
Algorithm 1). We compute the following weighted average over all m nodes

w̄ =

(
m∑
k=1

Gk

)−1(m∑
k=1

Gkwk

)
. (2)

1115

Agarwal, Chapelle, Dud́ık and Langford

This has the effect of weighting each dimension according to how “confident” each node is
in its weight (i.e., more weight is assigned to a given parameter of a given node if that node
has seen more examples with the corresponding feature). We note that this averaging can
indeed be implemented using AllReduce by two calls to the routine since the matrices Gk

are only diagonal.
This solution w̄ is used to initialize L-BFGS (Nocedal, 1980) with the standard Jacobi

preconditioner, with the expectation that the online stage gives us a good warmstart for
L-BFGS. At each iteration, global gradients are obtained by summing up local gradients via
AllReduce, while all the other operations can be done locally at each node. The algorithm
benefits from the fast initial reduction of error provided by an online algorithm, and rapid
convergence in a good neighborhood guaranteed by quasi-Newton algorithms. We again
point out that the number of communication operations is relatively small throughout this
process.

In addition to hybrid strategy, we also evaluate repeated online learning with averaging
using the adaptive updates. In this setting, each node performs an online pass over its data
and then we average the weights according to Equation 2. We average the scaling matrices
similarly

Ḡ =

(
m∑
k=1

Gk

)−1(m∑
k=1

(Gk)2

)
and use this averaged state to start a new online pass over the data. This strategy is similar
to those proposed by McDonald et al. (2010) and Hall et al. (2010) for different online
learning algorithms. We will see in the next section that this strategy can be very effective
at getting a moderately small test error very fast, but its convergence slows down and it
might be too slow at reaching the optimal test error.

All strategies described above share the same processing structure. They carry out
several iterations, each of which can be broken into three phases: (1) Pass through the
entire local portion of the data set and accumulate the result as a vector of size d (i.e., the
same size as the parameter vector). (2) Carry out AllReduce operation on a vector of size d.
(3) Do some additional processing and updating of the parameter vector.

The key point to notice is that in typical applications the local data set will be orders
of magnitude larger than the parameter vector, hence the communication after each pass is
much more compact than transmitting the entire local data set. The second point is that
each iteration is naturally a MapReduce operation. The main reason that we expect to
benefit by AllReduce is because of the iterative nature of these algorithms and the shared
state between iterations.

Our implementation is available as part of the open source project Vowpal Wabbit
(Langford et al., 2007) and is summarized in Algorithm 2. It makes use of stochastic
gradient descent (Algorithm 1) for the initial pass.

2.3 Speculative Execution

Large clusters of machines are typically busy with many jobs which use the cluster unevenly,
resulting in one of a thousand nodes being very slow. To avoid this, Hadoop can specu-
latively execute a job on identical data, using the first job to finish and killing the other
one. In our framework, it can be tricky to handle duplicates once a spanning tree topology

1116

A Reliable Effective Terascale Linear Learning System

Algorithm 1 Stochastic gradient descent algorithm on a single node using adaptive gradient
update (Duchi et al., 2010; McMahan and Streeter, 2010).

Require: Invariance update function s
(see Karampatziakis and Langford, 2011)

w = 0, G = I
for all (x, y) in training set do

g← ∇w `(w
>x; y)

w← w − s(w,x, y)G−1/2g
Gjj ← Gjj + g2j for all j = 1, . . . , d

end for

Algorithm 2 Sketch of the proposed learning architecture
Require: Data split across nodes

for all nodes k do
wk = result of stochastic gradient descent on the data of node k using Algorithm 1.
Compute the weighted average w̄ as in (2) using AllReduce.
Start a preconditioned L-BFGS optimization from w̄.
for t = 1, . . . , T do

Compute gk the (local batch) gradient of examples on node k.
Compute g =

∑m
k=1 gk using AllReduce.

Add the regularization part in the gradient.
Take an L-BFGS step.

end for
end for

is created for AllReduce. For this reason, we delay the initialization of the spanning tree
until each node completes the first pass over the data, building the spanning tree on only
the speculative execution survivors. The net effect of this speculative execution trick is
perhaps another order of magnitude of scalability and reliability in practice. Indeed, we
found the system reliable enough for up to 1000 nodes running failure-free for hundreds of
trials (of typical length up to 2 hours). This level of fault tolerance highlights the benefits
of a Hadoop-compatible implementation of AllReduce. We will show the substantial gains
from speculative execution in mitigating the “slow node” problem in the experiments.

3. Experiments

In this section we will present the empirical evaluation of the system described so far.
We begin by describing the datasets used, before evaluating the various properties of our
framework both from a systems as well as a machine learning perspective. A more theoretical
evaluation of our approach can be found in the next section.

3.1 Data Sets

We evaluated our framework on two datasets. The first dataset is a computational advertis-
ing task, with proprietary data from Yahoo! Inc. The second dataset comes from the task of
recognizing a human acceptor splice site. Both the datasets are large enough to necessitate

1117

Agarwal, Chapelle, Dud́ık and Langford

distributed machine learning, and simple approaches such as subsampling do not work to
obtain a good model with reasonable predictive accuracy as we describe in detail next.

3.1.1 Display Advertising

In online advertising, given a user visiting a publisher page, the problem is to select the best
advertisement for that user. A key element in this matching problem is the click-through
rate (CTR) estimation: what is the probability that a given ad will be clicked on, given some
context (user, page visited)? Indeed, in a cost-per-click (CPC) campaign, the advertiser
only pays when the ad gets clicked, so even modest improvements in predictive accuracy
directly affect revenue.

Training data contains user visits, which either resulted in a click on the ad (positive
examples with yi = 1), or did not result in a click (negative examples with yi = 0). We esti-
mate the click probabilities by logistic regression with L2 regularization. The regularization
coefficient is chosen from a small set to obtain the best test performance. The user visit is
represented by binary indicator features encoding the user, page, ad, as well as conjunctions
of these features. Some of the features include identifiers of the ad, advertiser, publisher
and visited page. These features are hashed (Weinberger et al., 2009) and each training
example ends up being represented as a sparse binary vector of dimension 224 with around
125 non-zero elements. Let us illustrate the construction of a conjunction feature with an
example. Imagine that an ad from etrade was placed on finance.yahoo.com. Let h be
a 24 bit hash of the string “publisher=finance.yahoo.com and advertiser=etrade”.
Then the (publisher, advertiser) conjunction is encoded by setting to 1 the h-th entry of
the feature vector for that example.

Since the data is unbalanced (low CTR) and because of the large number of examples,
we subsample the negative examples resulting in a class ratio of about 2 negatives for 1
positive, and use a large test set drawn from days later than the training set. There are
2.3B examples in the training set. More characteristics of this data set and modeling details
can be found in Chapelle et al. (2013).

3.1.2 Splice Site Recognition

The problem consists of recognizing a human acceptor splice site (Sonnenburg and Franc,
2010). We consider this learning task because this is, as far as we know, the largest public
data set for which subsampling is not an effective learning strategy. Sonnenburg et al. (2007)
introduced the weighted degree kernel to learn over DNA sequences. They also proposed
an SVM training algorithm for that kernel for which learning over 10M sequences took 24
days. Sonnenburg and Franc (2010) proposed an improved training algorithm, in which
the weight vector—in the feature space induced by the kernel—is learned, but the feature
vectors are never explicitly computed. This resulted in a faster training: 3 days with 50M
sequences.

We solve this problem by L2-regularized logistic regression. Again, the regularization
coefficient is chosen from a small set to optimize test set performance. We follow the
same experimental protocol as in Sonnenburg and Franc (2010): we use the same training
and test sets of respectively 50M and 4.6M samples. We also consider the same kernel
of degree d = 20 and hash size γ = 12. The feature space induced by this kernel has

1118

A Reliable Effective Terascale Linear Learning System

1% 10% 100%

auROC 0.8178 0.8301 0.8344
auPRC 0.4505 0.4753 0.4856
NLL 0.2654 0.2582 0.2554

Table 1: Test performance on the display advertising problem as a function of the sub-
sampling rate, according to three metrics: area under ROC curve (auROC), area
under precision/recall curve (auPRC), and negative log likelihood (NLL).

dimensionality 11,725,480. The number of non-zero features per sequence is about 3,300.
Unlike Sonnenburg and Franc (2010), we explicitly compute the feature space representation
of the examples, yielding about 3TB of data. This explicit representation is a disadvantage
we impose on our method to simplify implementation.

3.2 Results

We now present a detailed evaluation of our system on both the above datasets. We begin
by evaluating the performance of simpler heuristics such as subsampling the data for faster
running time, before examining the computational and communication aspects of our system
in detail.

3.2.1 Effect of Subsampling

The easiest way to deal with a very large training set is to reduce it by subsampling as
discussed in the introduction. Sometimes similar test errors can be achieved with smaller
training sets and there is no need for large-scale learning. For splice site recognition, Table
2 of Sonnenburg and Franc (2010) shows that smaller training sets do hurt the area under
the precision/recall curve on the test set.

For display advertising, we subsampled the data at 1% and 10%. The results in Table 1
show that there is a noticeable drop in accuracy after subsampling. Note that even if the
drop does not appear large at a first sight, it can cause a substantial loss of revenue. Thus,
for both data sets, the entire training data set is needed to achieve optimal performances.

The three metrics reported in Table 1 are area under the ROC curve (auROC), area
under the precision/recall curve (auPRC) and negative log-likelihood (NLL). Since auPRC
is the most sensitive metric, we report test results using that metric in the rest of the paper.
This is also the metric used in Sonnenburg and Franc (2010).

3.2.2 Running Time

We ran 5 iterations of L-BFGS on the splice site data with 1000 nodes. On each node, we
recorded for every iteration the time spent in AllReduce and the computing time—defined as
the time not spent in AllReduce. The time spent in AllReduce can further be divided into
stall time—waiting for the other nodes to finish their computation—and communication
time. The communication time can be estimated by taking the minimum value of the
AllReduce times across nodes.

1119

Agarwal, Chapelle, Dud́ık and Langford

5% 50% 95% Max Comm. time

Without spec. execution 29 34 60 758 26
With spec. execution 29 33 49 63 10

Table 2: Distribution of computing times (in seconds) over 1000 nodes with and without
speculative execution. First three columns are quantiles. Times are average per
iteration (excluding the first one) for the splice site recognition problem.

Nodes 100 200 500 1000

Comm time / pass 5 12 9 16
Median comp time / pass 167 105 43 34
Max comp time / pass 462 271 172 95

Wall clock time 3677 2120 938 813

Table 3: Computing times to obtain a fixed test error on the splice site recognition data,
using different numbers of nodes. The first 3 rows are averages per iteration
(excluding the first pass over the data).

The distribution of the computing times is of particular interest because the speed of
our algorithm depends on the slowest node. Statistics are shown in Table 2. It appears
that computing times are concentrated around the median, but there are a few outliers.
Without speculative execution, one single node was about 10 times slower than the other
nodes; this has the catastrophic consequence of slowing down the entire process by a factor
10. The table shows that the use of speculative execution successfully mitigates this issue.

We now study the running time as a function of the number of nodes. For the display
advertising problem, we varied the number of nodes from 10 to 100 and computed the
speed-up factor relative to the run with 10 nodes. In each case, we measured the amount
of time needed to get to a fixed test error. Since there can be significant variations from
one run to the other—mostly because of the cluster utilization—each run was repeated
10 times. Results are reported in Figure 2. We note that speculative execution was not
turned on in this experiment, and we expect better speed-ups with speculative execution. In
particular, we expect that the main reason for the departure from the ideal speed-up curve
is the “slow node” problem (as opposed to the aspects of the AllReduce communication
implementation), which is highlighted also in the next experiment.

Table 3 shows the running times for attaining a fixed test error as a function of the
number of nodes on the splice site recognition problem. Unlike Figure 2, these timing
experiments have not been repeated and thus there is a relatively large uncertainty in their
expected values. It can be seen from Tables 2 and 3 that even with as many as 1000 nodes,
communication is not the bottleneck. One of the main challenges instead is the “slow node”
issue. This is mitigated to some degree by speculative execution, but as the number of nodes
increases, so does the likelihood of hitting slow nodes.

1120

A Reliable Effective Terascale Linear Learning System

10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

6

7

8

9

10

Nodes

S
p
e
e
d
u
p

Figure 2: Speed-up for obtaining a fixed test error, on the display advertising problem,
relative to the run with 10 nodes, as a function of the number of nodes. The
dashed line corresponds to the ideal speed-up, the solid line is the average speed-
up over 10 repetitions, and the bars indicate maximum and minimum values.

0 10 20 30 40 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations

S
u

b
o

p
ti
m

a
lit

y

One online pass

No online pass

Figure 3: Effect of initializing the L-BFGS optimization by an average solution from online
runs on individual nodes. Suboptimality is the difference between the objective
value on the training data and the optimal value obtained by running the algo-
rithm to convergence.

1121

Agarwal, Chapelle, Dud́ık and Langford

3.2.3 Large Experiment and Comparison with Sibyl

We also experimented with an 8 times larger version of the display advertising data (16B
examples). Using 1000 nodes and 10 passes over the data, the training took only 70 min-
utes.5 Since each example is described by 125 non-zero features, the average processing
speed was

16B× 10× 125 features/1000 nodes/70 minutes = 4.7 M features/node/s .

The overall learning throughput was

16B× 125 features/70 minutes = 470 M features/s .

We briefly compare this with a result reported for the distributed boosting system Sibyl
for a run on 970 cores (Canini et al., 2012, slide 24). The run was done over 129.1B exam-
ples, with 54.61 non-zero features per example. The reported processing speed was 2.3M
features/core/s (which is a factor of two slower than our achieved processing speed). The
reported number of iterations was 10–50, which would lead to the final learning throughput
in the range 45–223 M features/s, that is, the result appears to be slower by a factor of
2–10.

3.2.4 Online and Batch Learning

We now investigate the speed of convergence of three different learning strategies: batch,
online and hybrid. We are interested in how fast the algorithms minimize the training
objective as well as the test error.

Figure 3 compares how fast the two learning strategies—batch with and without an
initial online pass—optimize the training objective. It plots the optimality gap, defined as
the difference between the current objective function and the optimal one (i.e., the minimum
value of the objective (1)), as a function of the number iterations. From this figure we can
see that the initial online pass results in a saving of about 10–15 iterations.

Figure 4 shows the test auPRC on both data sets as a function of the number of iterations
for 4 different strategies: only online learning, only L-BFGS learning, and 2 hybrid methods
consisting of 1 or 5 passes of online learning followed by L-BFGS optimization. L-BFGS
with one online pass appears to be the most effective strategy.

For the splice site recognition problem, an initial online pass and 14 L-BFGS iterations
yield an auPRC of 0.581, which is just a bit higher than results of Sonnenburg and Franc
(2010). This was achieved in 1960 seconds using 500 machines, resulting in a 68 speed-up
factor (132,581 seconds on a single machine reported in Table 2 of Sonnenburg and Franc,
2010). This seems rather poor compared with the ideal 500 speed-up factor, but recall that
we used explicit feature representation which creates a significant overhead.

3.3 Comparison with Previous Approaches

In order to better assess the overall system, we next compare its performance with that
of some other published baselines. We start by demonstrating the efficacy of AllReduce

5. As mentioned before, there can be substantial variations in timing between different runs; this one was
done when the cluster was not too occupied.

1122

A Reliable Effective Terascale Linear Learning System

Splice site recognition Display advertising

0 10 20 30 40 50
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Iteration

a
u

P
R

C

Online

L−BFGS w/ 5 online passes
L−BFGS w/ 1 online pass

L−BFGS

0 5 10 15 20

0.466

0.468

0.47

0.472

0.474

0.476

0.478

0.48

0.482

0.484

Iteration

a
u

P
R

C

Online

L−BFGS w/ 5 online passes
L−BFGS w/ 1 online pass

L−BFGS

Figure 4: Test auPRC for 4 different learning strategies. Note that the online and hybrid
curves overlap during the warmstart phase (of either 1 or 5 online passes).

Full size 10% sample

MapReduce 1690 1322
AllReduce 670 59

Table 4: Average training time per iteration of an internal logistic regression implementa-
tion using either MapReduce or AllReduce for gradients aggregation. The data
set is the display advertising one and a subset of it.

compared with MapReduce, before comparing to some other distributed machine learning
algorithms.

3.3.1 AllReduce vs. MapReduce

The standard way of using MapReduce for iterative machine learning algorithms is the
following (Chu et al., 2007): every iteration is a MapReduce job where the mappers com-
pute some local statistics (such as a gradient) and the reducers sum them up. This is
ineffective because each iteration has large overheads (job scheduling, data transfer, data
parsing, etc.). We have an internal implementation of such a MapReduce algorithm. We
updated this code to use AllReduce instead and compared both versions of the code in
Table 4. This table confirms that Hadoop MapReduce has substantial overheads since the
training time is not much affected by the data set size. The speed-up factor of AllReduce
over Hadoop’s MapReduce can become extremely large for smaller data sets, and remains
noticeable even for the largest data sets. It is also noteworthy that all algorithms described
in Chu et al. (2007) can be parallelized with AllReduce, plus further algorithms such as
parameter averaging approaches.

1123

Agarwal, Chapelle, Dud́ık and Langford

Splice site recognition Display advertising

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Effective number of passes over data

a
u
P

R
C

L−BFGS w/ one online pass

Zinkevich et al.

Dekel et al.

0 5 10 15 20 25
0.465

0.47

0.475

0.48

0.485

0.49

Effective number of passes over data

a
u

P
R

C

L−BFGS w/ one online pass

Zinkevich et al.

Figure 5: Test auPRC for different learning strategies as a function of the effective number
of passes over data. In L-BFGS, it corresponds to iterations of the optimization.
In overcomplete SGD with averaging (Zinkevich et al.), it corresponds to the
replication coefficient.

3.3.2 Overcomplete Average

We implemented oversampled stochastic gradient with final averaging (Zinkevich et al.,
2010), and compared its performance to our algorithm. We used stochastic gradient descent
with the learning rate in the t-th iteration as

ηt =
1

L+ γ
√
t
.

We tuned γ and L on a small subset of the data set.

In Figure 5, we see that the oversampled SGD is competitive with our approach on the
display advertising data, but its convergence is much slower on splice site data.

3.3.3 Parallel Online Mini-batch

Dekel et al. (2012) propose to perform online convex optimization using stochastic gradi-
ents accumulated in small mini-batches across all nodes. We implemented a version of their
algorithm using AllReduce. They suggest global minibatch sizes of no more than b ∝

√
n.

On m nodes, each node accumulates gradients from b/m examples, then an AllReduce op-
eration is carried out, yielding the mini-batch gradient, and each node performs a stochastic
gradient update with the learning rate of the form

ηt =
1

L+ γ
√
t/m

.

We tuned L and γ on a smaller data set. In Figure 5, we report the results on splice
site data set, using 500 nodes, and mini-batch size b = 100k. Twenty passes over the
data thus corresponded to 10k updates. Due to the overwhelming communication overhead

1124

A Reliable Effective Terascale Linear Learning System

associated with the updates, the overall running time was 40 hours. In contrast, L-BFGS
took less than an hour to finish 20 passes while obtaining much superior performance. The
difference in the running time between 1h and 40h is solely due to communication. Thus,
in this instance, we can conservatively conclude that the communication overhead of 10k
mini-batch updates is 39 hours.

We should point out that it is definitely possible that the mini-batched SGD would reach
similar accuracy with much smaller mini-batch sizes (for 10k updates theory suggests we
should use mini-batch sizes of at most 10k), however, the 39 hour communication overhead
would remain. Using larger mini-batches, we do expect that the time to reach 20 passes
over data would be smaller (roughly proportional to the number of mini-batch updates),
but according to theory (as well as our preliminary experiments on smaller subsets of splice
site data), we would have inferior accuracy. Because of the prohibitive running time, we
were not able to tune and evaluate this algorithm on display advertising data set.

4. Communication and Computation Complexity

The two key performance characteristics of any distributed algorithm are its communica-
tion and computation complexity. The aim of this section is to discuss the complexity of
our approach and to compare it with previous solutions. We hope to clarify the reasons
underlying our design choices and explain the scalability of our system. We start with a
discussion of computational considerations.

4.1 Computational Complexity of the Hybrid Approach

In this section, we explain the convergence properties of the hybrid approach and compare
it with other optimization strategies. In order to have a clean discussion, we make some
simplifying assumptions. We consider the case of only one online pass at each node. Fur-
thermore, we restrict ourselves to the case of uniform averaging of weights. Similar analysis
does extend to the non-uniform weighting scheme that we use, but the details are technical
and provide no additional intuition. Before we embark on any details, it should be clear
that the hybrid approach is always convergent, owing to the convergence of L-BFGS. All the
online learning step initially does is to provide a good warmstart to L-BFGS. This section
aims to provide theoretical intuition why the gains of such a warmstart can be substantial
in certain problem regimes.

Let ˜̀(w; x, y) = `(w>x; y) + λR(w)/n be the regularized loss function. We analyze a
scaled version of the objective (1):

f(w) =
1

n

n∑
i=1

`(w>xi; yi) +
λ

n
R(w) =

1

n

n∑
i=1

˜̀(w; xi, yi) .

We assume that the cluster is comprised of m nodes, with a total of n data examples
distributed uniformly at random across these nodes. Let us denote the local objective
function at each node as fk:

fk(w) =
m

n

∑
i∈Sk

˜̀(w; xi, yi)

1125

Agarwal, Chapelle, Dud́ık and Langford

where Sk is the set of n/m examples at node k. Note that the global objective f =
(
∑m

k=1 f
k)/m is the average of the local objectives. We observe that owing to our random

data split, we are guaranteed that

E[fk(w)] = E[f(w)] = Ex,y

[
˜̀(w; x, y)

]
for each k, where the expectation is taken over the distribution from which our examples
are drawn. In order to discuss the convergence properties, we need to make a couple of
standard assumptions regarding the functions fk. First, we assume that the functions fk

are differentiable, with Lipschitz-continuous gradients. We also assume that each fk is
strongly convex, at least in a local neighborhood around the optimum. We note that these
assumptions are unavoidable for the convergence of quasi-Newton methods such as L-BFGS.

To understand how many passes over the data are needed for the hybrid approach to
minimize f to a precision ε, we first analyze the online learning pass at each node. In
this pass, we compute a weight vector wk by performing n/m steps of stochastic gradient
descent or some variant thereof (Duchi et al., 2010; Karampatziakis and Langford, 2011).
Since we performed only one pass at each node, the resulting wk at each node approximately
minimizes E[fk] = Ex,y[˜̀] to a precision εk (for the methods we use, we expect εk =
O(
√
m/n)). Let us now denote the uniform average w̄ =

∑m
k=1 wk/m. For this approach,

a direct application of Jensen’s inequality yields

Ex,y

[
˜̀(w̄; x, y)

]
= Ex,y

[
˜̀
(∑m

i=1 wk

m
; x, y

)]
≤ 1

m

m∑
k=1

Ex,y

[
˜̀(wk; x, y)

]
(3)

≤ min
w

Ex,y

[
˜̀(w; x, y)

]
+

1

m

m∑
k=1

εk = min
w

Ex,y

[
˜̀(w; x, y)

]
+O

(√
m

n

)
.

Furthermore, standard sample complexity arguments (see, e.g., Bartlett and Mendelson,
2002; Devroye et al., 1996) allow us to bound the function value f(w) for an arbitrary w as∣∣∣f(w)− Ex,y

[
˜̀(w; x, y)

]∣∣∣ ≤ O(1√
n

)
. (4)

Let w∗ be the minimizer of the training loss function f . Then we can combine the above
inequalities as

f(w̄) ≤ Ex,y

[
˜̀(w̄; x, y)

]
+O(1/

√
n)

≤ min
w

Ex,y

[
˜̀(w; x, y)

]
+O(

√
m/n)

≤ Ex,y

[
˜̀(w∗; x, y)

]
+O(

√
m/n)

≤ f(w∗) +O(
√
m/n)

where the first inequality follows by (4), the second by (3), and the fourth by (4). For the
remainder of the discussion, we denote the overall suboptimality of w̄ relative to w∗ by
ε0 = O(

√
m/n).

1126

A Reliable Effective Terascale Linear Learning System

Switching over to the L-BFGS phase, we assume that we are in the linear convergence
regime of L-BFGS (Liu and Nocedal, 1989). We denote the contraction factor by κ, so that
the number of additional L-BFGS passes over data needed to minimize f to a precision ε is
at most

κ log
ε0
ε
.

Compared to initializing L-BFGS without any warmstart, our hybrid strategy amounts to
overall savings of

κ log
1

ε
−
(

1 + κ log
ε0
ε

)
= κ log

1

ε0
− 1 = O

(κ
2

log
n

m

)
− 1

passes over data. In typical applications, we expect n � m to ensure that computation
amortize the cost of communication. As a result, the improvement due to the warmstart can
be quite substantial just like we observed in our experiments. Furthermore, this part of our
argument is in no way specific to the use of L-BFGS as the batch optimization algorithm.
Similar reasoning holds for any reasonable (quasi)-Newton method.

We could also consider the alternative choice of just using parallel online learning with-
out ever switching to a batch optimization method. The theoretical results in this area,
however, are relatively harder to compare with the hybrid approach. For general online
learning algorithms, previous works study just one local pass of online learning followed by
averaging (McDonald et al., 2010), which typically cannot guarantee an error smaller than
ε0 in our earlier notation. The repeated averaging approach, discussed and analyze for the
specific case of perceptron algorithm in earlier work (McDonald et al., 2010), works well in
our experiments on the computational advertising task but does not have easily available
convergence rates beyond the special case of separable data and the perceptron algorithm.
Nevertheless, one appeal of the hybrid approach is that it is guaranteed to be competitive
with such online approaches, by the mere virtue of the first online phase.

Overall, we see that the hybrid approach will generally be competitive with purely online
or batch approaches in terms of the computational complexity. As a final point, we discuss
two extreme regimes where it can and does offer substantial gains. The first regime is
when the data has a significant noise level. In such a scenario, the level ε of optimization
accuracy desired is typically not too large (intuitive statistical arguments show no reduction
in generalization error for ε � 1/n). Setting ε = 1/n for a clean comparison, we observe
that the total number of passes for the hybrid method is at most

1 +
κ

2
(log(m) + log(n)),

as opposed to κ log(n) for just pure batch optimization. When m� n, this shows that the
online warmstart can cut down the number of passes almost by a factor of 2. We do note
that in such high noise regimes, pure online approaches can often succeed, as we observed
with our advertising data.

The second extreme is when our data is essentially noiseless, so that the desired accuracy
ε is extremely small. In this case, the relative impact of the online warmstart can be less
pronounced (it is certainly strictly better still) over an arbitrary initialization of L-BFGS.
However, as we saw on our splice site recognition data, on this extreme, the online learning
methods will typically struggle since they are usually quite effective in fitting the data to

1127

Agarwal, Chapelle, Dud́ık and Langford

Algorithm Per-node communication cost

Bundle method (Teo et al., 2007) O(dTbundle)
Online with averaging (McDonald et al., 2010; Hall et al., 2010) O(dTonline)
Parallel online (Hsu et al., 2011) O(ns/m + nTonline’)
Overcomplete online with averaging (Zinkevich et al., 2010) O (ns + d)
Distr. minibatch (dense) (Dekel et al., 2012; Agarwal and Duchi, 2011) O (dTminin/b) = O (dTmini

√
n)

Distr. minibatch (sparse) (Dekel et al., 2012; Agarwal and Duchi, 2011) O (bsTminin/b) = O (nsTmini)
Hybrid online+batch O(dThybrid)

Table 5: Communication cost of various learning algorithms. Here n is the number of
examples, s is the number of nonzero features per example, d is the number of
dimensions, T is the number of times the algorithm examines each example, and
b is the minibatch size (in minibatch algorithms).

moderate but not high accuracies (as evident from their 1/ε or 1/ε2 convergence rates).
Overall, we find that even on these two extremes, the hybrid approach is competitive with
the better of its two components.

4.2 Communication Cost Comparison with Previous Approaches

In the previous section we discussed the computational complexity of several techniques with
an identical communication pattern: communication of the entire weight vector once per
pass. In this section we contrast our approach with techniques that use other communication
patterns. We focus mainly on communication cost since the computational cost is typically
the same as for our algorithm, or the communication dominates the computation.

Since modern network switches are quite good at isolating communicating nodes, the
most relevant communication cost is the maximum (over nodes) of the communication cost
of a single node.

Several variables (some of them recalled from the previous section) are important:

1. m the number of nodes.

2. n the total number of examples across all nodes.

3. s the number of nonzero features per example.

4. d the parameter dimension.

5. T the number of passes over the examples.

In the large-scale applications that are subject of this paper, we typically have s� d� n,
where both d and n are large (see Section 3.1).

The way that data is dispersed across a cluster is relevant in much of this discussion
since an algorithm not using the starting format must pay the communication cost of redis-
tributing the data. We assume the data is distributed across the nodes uniformly according
to an example partition, as is common.

The per-node communication cost of the hybrid algorithm is Θ(dThybrid) where Thybrid

is typically about 15 to maximize test accuracy in our experiments. Note that the minimum

1128

A Reliable Effective Terascale Linear Learning System

possible communication cost is Θ(d) if we save the model on a single machine. There is
no communication involved in getting data to workers based on the data format assumed
above. An important point here is that every node has a communication cost functionally
smaller than the size of the data set, because there is no dependence on ns.

Similar to our approach, Teo et al. (2007) propose a parallel batch optimization algo-
rithm (specifically, a bundle method) using the MPI implementation of AllReduce. This
approach arrives at an accurate solution with O(dTbundle) communication per node. Our
approach improves over this in several respects. First, as Figure 4 demonstrates, we ob-
tain a substantial boost thanks to our warmstarting strategy, hence in practice we expect
Tbundle > Thybrid. The second distinction is in the AllReduce implementation. Our im-
plementation is well aligned with Hadoop and takes advantage of speculative execution
to mitigate the slow node problem. On the other hand, MPI assumes full control over the
cluster, which needs to be carefully aligned with Hadoop’s MapReduce scheduling decisions,
and by itself, MPI does not provide robustness to slow nodes.

Batch learning can also be implemented using MapReduce on a Hadoop cluster (Chu
et al., 2007), for example in the Mahout project.6 Elsewhere it has been noted that MapRe-
duce is not well suited for iterative machine learning algorithms (Low et al., 2010; Zaharia
et al., 2011). Evidence of this is provided by the Mahout project itself, as their implementa-
tion of logistic regression is not parallelized. Indeed, we observe substantial speed-ups from
a straightforward substitution of MapReduce by AllReduce on Hadoop. It is also notably
easier to program with AllReduce, as code does not require refactoring.

The remaining approaches are based on online convex optimization. McDonald et al.
(2010) and Hall et al. (2010) study the approach when each node runs an online learning
algorithm on its examples and the results from the individual nodes are averaged. This
simple method is empirically rather effective at creating a decent solution. The commu-
nication cost is structurally similar to our algorithm Θ(dTonline) when Tonline passes are
done. However, as we saw empirically in Figure 4 and also briefly argued theoretically in
Section 4.1, Tonline > Thybrid.

Similarly to these, Zinkevich et al. (2010) create an overcomplete partition of the data
and carry out separate online optimization on each node followed by global averaging. Our
experiments show that this algorithm can have competitive convergence (e.g., on display
advertising data), but on more difficult optimization problems it can be much slower than
the hybrid algorithm we use here (e.g., on splice site recognition data). This approach also
involves deep replication of the data—for example, it may require having 1/4 of all the
examples on each of 100 nodes. This is generally undesirable with large data sets. The per-
node communication cost is Θ(nsTrep/m+ d) where Trep is the level of replication and m is
the number of nodes. Here, the first term comes from the data transfer required for creating
the overcomplete partition whereas the second term comes from parameter averaging. Since
Trep/m is often a constant near 1 (0.25 was observed by Zinkevich et al., 2010, and the theory
predicts only a constant factor improvement), this implies the communication cost is Θ(ns),
the size of the data set.

Other authors have looked into online mini-batch optimization (Dekel et al., 2012; Agar-
wal and Duchi, 2011). The key problem here is the communication cost. The per-node

6. For Mahout, see http://mahout.apache.org/.

1129

Agarwal, Chapelle, Dud́ık and Langford

communication cost is Θ(Tminidn/b) where b is the minibatch size (number of examples
per minibatch summed across all nodes), Tmini is the number of passes over the data, n/b
is the number of minibatch updates per pass and d is the number of parameters. Theory
suggests b ≤

√
n, implying communication costs of Θ(Tminid

√
n). While for small minibatch

sizes Tmini can be quite small (plausibly even smaller than 1), when d is sufficiently large,
this communication cost is prohibitively large. This is the reason for the slow performance
of mini-batched optimization that we observed in our experiments. Reworking these al-
gorithms with sparse parameter updates, the communication cost per update becomes bs
yielding an overall communication cost of Θ(Tminins), which is still several multiples of
the data set size. Empirically, it has also been noted that after optimizing learning rate
parameters, the optimal minibatch size is often 1 (Hsu et al., 2011).

Another category of algorithms is those which use online learning with a feature based
partition of examples (Hsu et al., 2011; Dean et al., 2012). The advantage of this class of
algorithms is that they can scale to a very large number of parameters, more than can be fit
in the memory of a single machine. Several families of algorithms have been tested in Hsu
et al. (2011) including delayed updates, minibatch, second-order minibatch, independent
learning, and backpropagation. The per-node communication costs differ substantially here.
Typical communication costs are Θ(ns/m+nTonline’) where the first term is due to shuffling
from an example-based format, and the second term is for the run of the actual algorithm.
The complexity of our approach is superior to this strategy since n� d.

5. Discussion

We have shown that a new architecture for parallel learning based on a Hadoop-compatible
implementation of AllReduce can yield a combination of accurate prediction and short
training time in an easy programming style. The hybrid algorithm we employ allows us to
benefit from the rapid initial optimization of online algorithms and the high precision of
batch algorithms where the last percent of performance really matters. Our experiments
reveal that each component of our system is critical in driving the performance benefits we
obtain. Specifically, Table 4 and Figure 3 show the performance gains resulting from our use
of AllReduce and the warmstart of the L-BFGS algorithm. The effectiveness of our overall
system, as compared to the previous approaches, is confirmed in Figure 5. Two issues we
do not discuss in this paper are the overheads of data loading and node scheduling within
Hadoop. These issues can indeed affect the performance, but we found that they typically
get amortized since they are one-time overheads in the AllReduce approach as opposed
to per-iteration overheads in MapReduce. Nonetheless, improvements in the scheduling
algorithms can further improve the overall performance of our system.

Our paper carefully considers various design choices affecting the communication and
computation speeds of a large-scale linear learning system, drawing from and building upon
the available techniques in the literature. The resulting system enables the training of
linear predictors on data sets of size unmatched in previous published works. In particular,
the results demonstrate the effectiveness of our system compared to other alternatives in
the literature. We believe that this provides a very strong and natural baseline which we
previously found lacking in the literature on distributed machine learning. The conceptual

1130

A Reliable Effective Terascale Linear Learning System

simplicity of our framework, and the open-source implementation should further help other
researchers in comparing with and building on our system.

References

A. Agarwal and J. Duchi. Distributed delayed stochastic optimization. In Advances in
Neural Information Processing Systems 24. 2011.

P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3:463–482, 2002.

R. Bekkerman, M. Bilenko, and J. Langford. A tutorial on scaling up machine learning.
Technical report, KDD, 2011. URL http://hunch.net/~large_scale_survey/.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, Inc., 1989.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and
Trends in Machine Learning, 3:1–122, 2011.

K. Canini, T. Chandra, E. Ie, J. McFadden, K. Goldman, M. Gunter, J. Harmsen,
K. LeFevre, D. Lepikhin, T. L. Llinares, I. Mukherjee, F. Pereira, J. Redstone, T. Shaked,
and Y. Singer. Sibyl: A system for large scale supervised machine learning. In MLSS Santa
Cruz, 2012. URL http://users.soe.ucsc.edu/~niejiazhong/slides/chandra.pdf.
A short presentation.

T. Chandra, E. Ie, K. Goldman, T. L. Llinares, J. McFadden, F. Pereira, J. Redstone,
T. Shaked, and Y. Singer. Sibyl: a system for large scale machine learning. In LADIS
2010: The 4th ACM SIGOPS/SIGACT Workshop on Large Scale Distributed Systems
and Middleware, 2010. URL http://www.magicbroom.info/Papers/Ladis10.pdf. A
keynote talk.

O. Chapelle, E. Manavoglu, and R. Rosales. Simple and scalable response prediction for
display advertising. Transactions on Intelligent Systems and Technology, 2013. In press.

C.T. Chu, S.K. Kim, Y.A. Lin, Y.Y. Yu, G. Bradski, A.Y. Ng, and K. Olukotun. Map-
reduce for machine learning on multicore. In Advances in Neural Information Processing
Systems 19, volume 19, page 281, 2007.

J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Com-
munications of the ACM, 51:107–113, 2008.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, M. A. Ranzato,
A. Senior, P. Tucker, K. Yang, and A. Ng. Large scale distributed deep networks. In
Advances in Neural Information Processing Systems 25, pages 1232–1240. 2012.

O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online prediction
using mini-batches. Journal of Machine Learning Research, 13:165–202, 2012.

1131

http://hunch.net/~large_scale_survey/
http://users.soe.ucsc.edu/~niejiazhong/slides/chandra.pdf
http://www.magicbroom.info/Papers/Ladis10.pdf

Agarwal, Chapelle, Dud́ık and Langford

L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer, 1996.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2010.

J.C. Duchi, A. Agarwal, and M.J. Wainwright. Dual averaging for distributed optimization:
Convergence analysis and network scaling. Automatic Control, IEEE Transactions on,
57(3):592–606, 2012.

K. Hall, S. Gilpin, and G. Mann. Mapreduce/bigtable for distributed optimization. In
Workshop on Learning on Cores, Clusters, and Clouds, 2010.

D. Hsu, N. Karampatziakis, J. Langford, and A. Smola. Parallel online learning. In Scaling
Up Machine Learning, 2011.

N. Karampatziakis and J. Langford. Online importance weight aware updates. In Uncer-
tainty in Artificial Intelligence, 2011.

M. Kearns. Efficient noise-tolerant learning from statistical queries. In Proceedings of the
Twenty-Fifth Annual ACM Symposium on the Theory of Computing, 1993.

J. Langford, L. Li, and A. Strehl. Vowpal wabbit open source project. Technical report,
Yahoo!, 2007.

J. Langford, A. Smola, and M. Zinkevich. Slow learners are fast. In Advances in Neural
Information Processing Systems 22, 2009.

D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical Programming, 45:503–528, 1989.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. Graphlab:
A new framework for parallel machine learning. In Uncertainty in Artificial Intelligence,
2010.

O. L. Mangasarian. Parallel gradient distribution in unconstrained optimization. SIAM
Journal on Optimization, 33:1916–1925, 1995.

R. McDonald, K. Hall, and G. Mann. Distributed training strategies for the structured
perceptron. In North American Chapter of the Association for Computational Linguistics
(NAACL), 2010.

H. B. McMahan and M. Streeter. Adaptive bound optimization for online convex optimiza-
tion. In Proceedings of the Twenty Third Annual Conference on Computational Learning
Theory, 2010.

S. G. Nash and A. Sofer. Block truncated-newton methods for parallel optimization. Math-
ematical Programming, 45:529–546, 1989.

J. Nocedal. Updating quasi-Newton matrices with limited storage. Math. Comp., 35(151):
773–782, 1980.

1132

A Reliable Effective Terascale Linear Learning System

S. Sonnenburg and V. Franc. COFFIN: a computational framework for linear SVMs. In
International Conference on Machine Learning, 2010.

S. Sonnenburg, G. Rätsch, and K. Rieck. Large scale learning with string kernels. In Large
Scale Kernel Machines, pages 73–103. 2007.

C. Teo, Q. Le, A. Smola, and SVN Vishwanathan. A scalable modular convex solver for
regularized risk minimization. In ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2007.

K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing for
large scale multitask learning. In International Conference on Machine Learning, 2009.

J. Ye, J.-H. Chow, J. Chen, and Z. Zheng. Stochastic gradient boosted distributed deci-
sion trees. In Proceeding of the 18th ACM Conference on Information and Knowledge
Management, 2009.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin, S. Shenker,
and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. Technical Report UCB/EECS-2011-82, EECS Department, University
of California, Berkeley, 2011.

M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient descent. In
Advances in Neural Information Processing Systems 23. 2010.

1133

Journal of Machine Learning Research 15 (2014) 1135-1176 Submitted 10/12; Revised 9/13; Published 3/14

New Learning Methods for Supervised and Unsupervised
Preference Aggregation

Maksims N. Volkovs mvolkovs@cs.toronto.edu

Richard S. Zemel zemel@cs.toronto.edu

University of Toronto

40 St. George Street

Toronto, ON M5S 2E4

Editor: William Cohen

Abstract

In this paper we present a general treatment of the preference aggregation problem, in
which multiple preferences over objects must be combined into a single consensus ranking.
We consider two instances of this problem: unsupervised aggregation where no informa-
tion about a target ranking is available, and supervised aggregation where ground truth
preferences are provided. For each problem class we develop novel learning methods that
are applicable to a wide range of preference types.1 Specifically, for unsupervised aggre-
gation we introduce the Multinomial Preference model (MPM) which uses a multinomial
generative process to model the observed preferences. For the supervised problem we de-
velop a supervised extension for MPM and then propose two fully supervised models. The
first model employs SVD factorization to derive effective item features, transforming the
aggregation problems into a learning-to-rank one. The second model aims to eliminate the
costly SVD factorization and instantiates a probabilistic CRF framework, deriving unary
and pairwise potentials directly from the observed preferences. Using a probabilistic frame-
work allows us to directly optimize the expectation of any target metric, such as NDCG or
ERR. All the proposed models operate on pairwise preferences and can thus be applied to
a wide range of preference types. We empirically validate the models on rank aggregation
and collaborative filtering data sets and demonstrate superior empirical accuracy.

Keywords: preference aggregation, meta-search, learning-to-rank, collaborative filtering

1. Introduction

Many areas of study, such as information retrieval (IR), collaborative filtering, and social
web analysis face the preference aggregation problem, in which multiple preferences over
objects must be combined into a single consensus ranking. Early developments in preference
aggregation and analysis originated in social science (Arrow, 1951) and statistics (Luce,
1959), giving rise to the field of social choice. Research in social choice concentrates on
measuring individual interests, values, and/or welfare as an aggregate towards collective
decision. Common problems explored in this field include vote aggregation in elections and
other domains as well as player/team ranking based on observed game outcomes. Most
of these problems are relatively small in size and can be analyzed thoroughly, resulting
in models that have well-explored properties and theoretical guarantees. These models

1. The code for all models introduced in this paper is available at www.cs.toronto.edu/~mvolkovs.

c©2014 Maksims N. Volkovs and Richard S. Zemel.

www.cs.toronto.edu/~mvolkovs

Volkovs and Zemel

now decide the outcomes of such crucial events as presidential and government elections
as well as legal decisions. However, the theoretical guarantees for many of these models
typically come at the expense of complicated inference and/or strong assumptions about
the preference data (Chevaleyre et al., 2007; Rossi et al., 2011).

The recent explosion of web technologies has generated immense amounts of new pref-
erence data. Several properties of this data make it difficult to apply many of the existing
aggregation models. First, the ease with which people can access and generate content on
the web has resulted in a drastic increase in the quantity of data. For instance, where
before the majority of sports data had on the order of a thousand players that participated
in several tournaments per year, now, online gaming has millions of users that participate
in tens of millions of games daily. Recent statistics on the popular game Halo indicate that
over 2 billion multiplayer games are played annually,2 with hundreds of thousands of games
happening at any given moment. Consequently, while the aggregation problem in online
gaming remains similar to the traditional one in sports—combine preference in the form of
game outcomes to generate reliable estimates of players’ skills—any model developed for
this task now has to be able to process large amounts of data quickly and handle diverse
evidence types ranging from one-on-one games to elimination team tournaments.

Second, the diversity of online applications has led to many new preference types. In
addition to the common direct evidence in the form of votes and ratings we now also have
a variety of indirect evidence, including web page clicks, dwell time (time spent on a page),
and viewing patterns. While these evidence forms do not directly indicate preference, when
aggregated across many users, they have been found to closely correlate with it (Joachims,
2002; Joachims et al., 2007). Methods that mine these preferences are now extensively used
in search engine optimization (Agichtein et al., 2006; Joachims et al., 2007; Guo et al.,
2009) and other domains. Moreover, for some of the new problems the preferences are no
longer generated by people. An example of this is meta-search where an issued query is
sent to several search engines and the (often partial) document rankings returned by them
are aggregated by the meta-search engine to generate more comprehensive ranking results.
In this problem there is no human interaction and all the preferences are generated by the
machines. Consequently social theories on user behavior and models based on these theories
are less applicable here.

Finally, new types of aggregation problems have also recently emerged. In the past the
majority of the aggregation problems were unsupervised, that is, no ground truth prefer-
ence information about the items was available. For these problems the aim is typically to
produce a ranking that satisfies as many of the observed preferences (majority or another
related objective) as possible. Due to the popularity of such problems almost all of the ex-
isting research in preference aggregation has concentrated on the unsupervised aggregation.
However, many of the recent problems are amenable to the supervised setting, as ground
truth preference information is available. The meta-search problem mentioned above is
one example of supervised preference aggregation. Often, to train/evaluate the aggregat-
ing function the documents retrieved by the search engines are given to human annotators
who assign relevance labels to each document. The relevance labels provide ground truth
preference information about the documents, that is, the documents with higher relevance

2. Full article can be found at http://www.pcmag.com/article2/0,2817,2402479,00.asp.

1136

http://www.pcmag.com/article2/0,2817,2402479,00.asp

New Learning Methods for Supervised and Unsupervised Preference Aggregation

label are to be ranked above those with lower one. Another example is crowdsourcing (e.g.,
MechanicalTurk), where tasks often involve assigning ratings to objects or pairs of objects
ranging from images to text. The ratings from several users are then aggregated to produce
a single labeling of the data. To ensure consistency in generated labels a domain expert
typically labels a subset of the data shown to the “crowd”. The labels are then used to
evaluate the quality of annotations submitted by each worker. In these problems the aim is
not to satisfy the majority but rather to learn a mapping from the observed preferences to
the ground truth ones. Consequently, methods that aim to satisfy the majority often lead
to suboptimal results since they lack the “specialization” property: they cannot identify
cases where the majority is wrong and only a small subset of the preferences should be
used. Such a property is impossible to achieve without referring to the ground truth labels.

The scale and variety of the preference data generated by the social and other web
domains discussed above show that the field of preference aggregation is rapidly evolving
and expanding. Almost every user-oriented web application ranging from web shops and
social networks to web search and gaming is now using preference aggregation techniques,
the accuracy of which has a direct and significant impact on the generated revenue and
business decisions. There is thus an evident need to develop effective aggregation methods
that are able to scale to the large web data sets and handle diverse preference types.

As the field has evolved a new trend has recently emerged where machine learning
methods are starting to be used to automatically learn the aggregating models. While
these methods typically lack the theoretical support of the social choice models they often
show excellent empirical performance and are able to handle large and diverse preference
data. These models have now been applied successfully to preference aggregation problems
in collaborative filtering (Gleich and Lim, 2011; Jiang et al., 2011; Guiver and Snelson,
2009), information retrieval (Cormack et al., 2009; Liu et al., 2007b; Chen et al., 2011)
and online gaming (Dangauthier et al., 2007), as well as others. Inspired by these results
the work presented in this paper also takes a machine learning approach and develops
new models for both supervised and unsupervised preference aggregation problems. In the
following sections we describe existing approaches and open challenges for both problems.
We then introduce and empirically validate new models for each problem type.

2. Unsupervised Preference Aggregation

Unsupervised preference aggregation is the problem of combining multiple preferences over
objects into a single consensus ranking when no ground truth preference information is
available. As mentioned above, the majority of research in preference aggregation has
concentrated on this problem and a number of models have been developed. Given the
underlying correspondence between ranking and permutation, considerable work on unsu-
pervised preference aggregation has exploited probabilistic models on permutations, many
of which originate in statistics and psychology. Mallows (Mallows, 1957) and Plackett-Luce
(Plackett, 1975; Luce, 1959) are particularly popular models, each with many extensions
(Guiver and Snelson, 2009; Quin et al., 2010; Lu and Boutilier, 2011). However, research
has largely concentrated on learning a consensus ranking based on a set of observed full,
or partial rankings. These models are thus inadequate for problems where preferences are

1137

Volkovs and Zemel

expressed in other forms, and where inconsistencies exist in the observed preferences, such
as ”a beat b”, ”b beat c”, and ”c beat a”.

In this section we address this problem by developing a flexible probabilistic model over
pairwise comparisons. Pairwise comparisons are the building blocks of almost all forms of
evidence about preference and subsume the most general models of evidence proposed in
literature. Our model can thus be applied to a wide spectrum of preference aggregation
problems and does not impose any restrictions on the type of evidence. The score-based
approach that we adopt allows for rapid learning and inference, which makes the model
applicable to large-scale aggregation problems. We experimentally validate our model on a
rank aggregation and collaborative filtering tasks using Microsoft’s LETOR4.0 (Liu et al.,
2007a) and the MovieLens (Herlocker et al., 1999) data sets.

2.1 Framework

We assume a set of N instances where for every instance n we have a set of Mn items
Xn = {xn1, ..., xnMn} and a set of Ψ experts. Each expert ψ ∈ {1, ...,Ψ} generates a list of
preferences for items in Xn. We assume that the same set of experts generate preferences
for items in each instance. The preferences can be in the form of full or partial rankings,
top-K lists, ratings, relative item comparisons, or combinations of these. All of these forms
can be converted to a set of partial pairwise preferences, which in most cases will be neither
complete nor consistent. We use {xni � xnj} to denote the preference of xni over xnj .
We allow the same pairwise preferences to occur multiple times, and use the pairwise count
matrix Yψ

n (i, j) : Mn×Mn to count the number of times preference {xni � xnj} is produced

by the expert ψ, with Yψ
n (i, j) = 0 if {xni � xnj} is not expressed by ψ.

The most straightforward way to convert rankings into pairwise preferences is through
binary comparisons. Given two rankings rψni and rψnj assigned by ψ to xni and xnj we set

Yψ
n (i, j) = I[rψni < rψnj] where I is an indicator function, similarly Yψ

n (j, i) = I[rψnj < rψni].
This representation, however, completely ignores the strength of preference expressed by
the magnitude of the rankings. For example, the partial ranking {1, 200, 300} will have
the same count matrix as the ranking {1, 2, 3}, but the first ranking expresses significantly
more confidence about the ordering of the items than the second one. To account for this
we instead use Yψ

n (i, j) = (rψnj − r
ψ
ni)I[rψni < rψnj] and Yψ

n (j, i) = (rψni − r
ψ
nj)I[rψnj < rψni].

In this form we assume that ranking {rni = 1, rnj = 200} is equivalent to observing the
pairwise preference {xni � xnj} 199 times, whereas ranking {rni = 1, rnj = 2} is equivalent
to observing {xni � xnj} only once. This method of accounting for preference strength
is not new and the reader can refer to Gleich and Lim (2011) and Jiang et al. (2011) for
more extensive treatment of this and other approaches for converting rankings to pairwise
matrices. We summarize these pairwise preference representations below:

1. Binary Comparison:

Yψ
n (i, j) = I[rψni < rψnj],

2. Rank Difference:

Yψ
n (i, j) = (rψnj − r

ψ
ni)I[rψni < rψnj].

1138

New Learning Methods for Supervised and Unsupervised Preference Aggregation

A ranking of items in Xn can be represented as a permutation of Xn. A permutation π
is a bijection π : {1, ...,Mn} → {1, ...,Mn} mapping each item xni to its rank π(i) = j, and
i = π−1(j). Given the observed (partial) preference instance n consisting of count matrices
Yn = {Y1

n, ...,Y
Ψ
n } the goal is to come up with a single ranking π of items in Xn that

maximally satisfies this instance.

Most preference aggregation problems fit this framework. For instance in meta-search
instances correspond to queries and Xn is the set of documents retrieved for a given query qn.
Each expert ψ represents a search engine which generates either partial or complete ranking
of the documents in Xn. As before we can let Yψ

n (i, j) = (rψnj−r
ψ
ni)I[rψni < rψnj] if documents

xni and xnj are both ranked by the search engine ψ and set Yψ
n (i, j) = 0 otherwise. In

collaborative filtering X is the set of movies/songs/books etc., and an instance of the rank
aggregation problem aims to infer the consensus ranking of movies given the (partial) ratings
of users ψ (Guiver and Snelson, 2009; Gleich and Lim, 2011). The pairwise approach

provides a natural way to model this problem. We can define Yψ(i, j) = (`ψi −`
ψ
j)I[`ψi > `ψj]

where `i and `j are the ratings assigned to movies xni and xnj by user ψ. If ψ did not rate
either xni or xnj we set Yψ(i, j) = 0.

2.2 Previous Work

Relevant previous work in this area can be divided into two categories: permutation based
and score based. In this section we describe both types of models.

2.2.1 Permutation-Based Models

Permutation based models work directly in the permutation space. The most common
and well explored such model is the Mallows model (Mallows, 1957). Mallows defines a
distribution over permutations and is typically parametrized by a central permutation σ
and a dispersion parameter φ ∈ (0, 1]; the probability of a permutation π is given by:

P (π|φ, σ) =
1

Z(φ, σ)
φ−D(π,σ),

where D(π, σ) is a distance between π and σ. For rank aggregation problems inference
in this model amounts to finding the permutation σ that maximizes the likelihood of the
observed rankings. For some distance metrics, such as Kendall’s τ and Spearman’s rank
correlation, the partition function Z(φ, σ) can be found exactly. However, finding the central
permutation σ that maximizes the likelihood is typically very difficult and in many cases is
intractable (Meila et al., 2007).

Recent work extends the Mallows model to define distributions over partial rankings
(Lu and Boutilier, 2011). Under partial rankings the partition function can no longer be
computed exactly, so these authors introduced a new sampling approach to estimate it.
When the number of items is large, however, this sampling approach is typically very slow,
which makes the model impractical for many large scale online problems such as meta-search
where aggregation has to be done very quickly. Furthermore, both the proposed pairwise
model and the sampling approach rely on the assumption that all pairwise preferences are
consistent, which is often violated in real-world preference aggregation problems.

1139

Volkovs and Zemel

A number of other generalizations of the Mallows model such as the Cranking model
(Lebanon and Lafferty, 2002) the Aggregation model (Klementiev et al., 2008), and the
CPS model (Quin et al., 2010). The Cranking model extends the Mallows distribution to
model several diverse preference profiles. Each preference profile i is modeled by its own
central permutation σi and ”importance” θi:

P (π|σ,θ) =
1

Z(σ,θ)
e−

∑
i θiD(π,σi),

where σ = {σi} and θ = {θi} are the profile parameters. The above model can be viewed as
a mixture of Mallows models where each component is parametrized by (σi, θi) pair. Using
this alternative representation the work of Klementiev et al. (2008) further generalizes
the Cranking model to partial top-K lists and derives an Expectation Minimization (EM)
algorithm to learn the parameters θ.

Another recent extension of the Mallows model, the CPS model, defines a sequential
generative process, similar to the Plackett-Luce model described below, which draws the
items without replacement to form a permutation; the probability of a given permutation
π is:

P (π|σ, φ) =
M∏
i=1

exp(−θ
∑

π1:i
D(π1:i, σ))

Z(i, π)
,

where the summation in the numerator is over all permutations π1:i that have the first i
elements fixed to π; Z(i, π)’s are the normalizing constants that ensure that

∑
π P (π|σ, φ) =

1. For several distance metrics such as Spearman’s rank correlation and footrule as well as
Kendall’s τ , the summation

∑
π1:i
D(π1:i, σ) over (M− i)! elements, can be found in O(M2),

allowing the normalizing constants Z(i, π) to be computed in polynomial time. However,
during inference one must still consider nearly all of the M ! possible permutations to find
an optimal π. A greedy approximation avoids this search, which reduces the complexity to
O(M2), but provides no guarantee with respect to the optimal solution.

In general, due to the extremely large search space (typically M ! for M items) and the
discontinuity of functions over permutations, exact inference in permutation-based models is
often intractable. Thus one must resort to approximate inference methods, such as sampling
or greedy approaches, often without guarantees on how close the approximate solution will
be to the target optimal one. As the number of items grows, the cost of finding a good
approximation increases significantly, which makes the majority of these models impractical
for many real world applications where data collections are extremely large. The score-based
approach described next avoids this problem by working with real valued scores instead.

2.2.2 Score-Based Models

In score-based approaches the goal is to learn a set of real valued scores (one per item)
Sn = {sn1, ..., snMn} which are then used to sort the items. Working with scores avoids the
discontinuity problems of the permutation space.

Early score based methods for rank aggregation in meta-search are heuristic based.
For example, BordaCount (Aslam and Montague, 2001), Condorcet (Montague and Aslam,
2002) and median rank aggregation (Fagin et al., 2003) derive the item scores by averaging

1140

New Learning Methods for Supervised and Unsupervised Preference Aggregation

ranks across the experts or counting the number of pairwise wins. In statistics a very
popular pairwise score model is the Bradley-Terry (Bradley and Terry, 1952) model:

P (Yψ
n |Sn) =

∏
i 6=j

(
exp(sni)

exp(sni) + exp(snj)

)Yψ
n (i,j)

,

where exp(sni)
exp(sni)+exp(snj)

can be interpreted as the probability that item xni beats xnj in the

pairwise contest. In logistic form the Bradley-Terry model is very similar to another pop-
ular pairwise model, the Thurstone model (Thurstone, 1927). Extensions of these models
include the Elo Chess rating system (Elo, 1978), adopted by the World Chess Federation
FIDE in 1970, and Microsoft’s TrueSkill (Dangauthier et al., 2007) rating system for player
matching in online games, used extensively in Halo and other games. Furthermore, the
popular supervised learning-to-rank model RankNet (Burges et al., 2005) is also based on
this approach.

The key assumption behind the Bradley-Terry model is that the pairwise probabilities
are completely independent of the items not included in the pair. A problem that arises
from this assumption is that if a given item xni has won all pairwise contests, the likelihood
becomes larger as sni becomes larger. It follows that a maximum likelihood estimate for
sni is ∞ (Mase, 2003). As a consequence the model will always produce a tie amongst
all undefeated items. Often this is an unsatisfactory solution because the contests that
the undefeated items participated in, and their opponents’ strengths, could be significantly
different.

To avoid some of these drawbacks, the Bradley-Terry model was generalized by Plackett
and Luce (Plackett, 1975; Luce, 1959) to a model for permutations:

P (π|Sn) =

Mn∏
i=1

exp(Sn(π−1(i)))∑Mn
j=i exp(Sn(π−1(j)))

,

where Sn(π−1(i)) is the score of the item in position i in π. The generative process behind
the Plackett-Luce model assumes that items are selected sequentially without replacement.
Initially item π−1(1) is selected from the set of Mn items and placed first, then item π−1(2)
is selected from the remaining Mn−1 items and placed second and so on until all Mn items
are placed. Note that here inference can be done quickly by doing simple gradient descent
on scores, which is a clear advantage over most permutation based models. The Plackett-
Luce generalization relaxes the independence assumption of the Bradley-Terry model but
this model is only applicable to consistent full or partial rankings (or consistent pairwise
preferences) which significantly limits its application. Moreover, for 2-item rankings the
Plackett-Luce model reduces to the Bradley-Terry model and thus suffers from the same
infinite score problem. To overcome this problem a Bayesian framework was also recently
introduced for the Plackett-Luce model by placing a Gamma prior on the selection prob-
abilities (Guiver and Snelson, 2009). The authors of that work demonstrated that the
Bayesian approach prevented overfitting and produced aggregate rankings that better fitted
the observed preference data. This improvement however, comes at the cost of significant
computational overhead required during score inference. In this work we show that the

1141

Volkovs and Zemel

model we develop achieves similar improvement over the Plackett-Luce model without the
additional computational overhead and preference type restrictions.

Recently several score based approaches have been developed to model the joint pair-
wise matrix (Gleich and Lim, 2011; Jiang et al., 2011). In these methods the preferences
expressed by each of the experts are combined into a single preference matrix Ytot

n =∑Ψ
ψ=1 Yψ

n , which is then factorized by a low rank factorization such as:

Ytot
n ≈ Sne

T − eSTn .

The resulting scores Sn are then used to rank the items. The main drawback of this approach
is that by combining all preferences into a single Ytot

n the individual expert information
is lost. Consequently outlier experts with preferences substantially deviating from the
consensus can significantly influence both Ytot

n and the resulting scores.

2.3 Multinomial Preference Model (MPM)

In this section we develop a new score based model for pairwise preferences, the Multinomial
Preference Model (MPM) (Volkovs and Zemel, 2012). A key motivating idea behind our
approach is that when absolute preferences such as rankings are converted into pairwise
counts using the rank difference approach described above, we interpret the resulting counts
as conveying two forms of information: a binary preference, simply based on which item is
ranked higher, and a confidence, based on the magnitude of the rank difference. Consider
for example three items x1, x2 and x3 with ranks r1 = 1, r2 = 2 and r3 = 3 respectively.
Figure 1(a) shows the resulting count matrix after these ranks are converted to pairwise
preferences. Item x1 is preferred to both x2 and x3 with Y(1, 2) = r2 − r1 = 1 and
Y(1, 3) = r3 − r1 = 2, x2 is preferred only to x3 with Y(2, 3) = r3 − r2 = 1, and x3 is not
preferred to any item. Note that preference {x1 � x3} where both items are at the extremes
of the ranking has the largest rank difference and consequently the biggest count.

Now consider the second example with partial ranking r1 = 30, r2 = 20 and r3 = 1
yielding the pairwise count matrix shown in Figure 1(b). Comparing this with the previous
example we see that the preference {x3 � x1} with items at the extremes of the ranking
also has the highest count, however in this case we are significantly more certain of it. The
count Y(3, 1) = 29 is considerably higher than the highest count from the previous example,
strongly indicating that x3 should be placed above x1. The two examples demonstrate how
large values of Y(i, j) may be interpreted as providing more evidence to conclude that
{xi � xj} is correct.

In MPM we model the count matrix Yψ
n as an outcome of multiple draws from the joint

consensus distribution Qn over pairwise preferences defined by the scores Sn. For instance
in the second example above after observing Y we can infer that P (x3 � x1) should have
the most mass under Q. We use Bn to denote the random variable distributed as Qn. A
draw from Qn can be represented as a vector bij of length Mn∗(Mn−1) (all possible pairs),
with 1 on the entry corresponding to preference {xni � xnj} and zeros everywhere else, that
is, a one-hot encoding. Given Sn we define the consensus distribution as follows:

Definition 1 The consensus distribution Qn = {P (Bn = bij |Sn)}i 6=j is a collection of

pairwise probabilities P (Bn = bij |Sn), where P (Bn = bij |Sn) =
exp(sni−snj)∑
k 6=l exp(snk−snl) .

1142

New Learning Methods for Supervised and Unsupervised Preference Aggregation

(a) (b)

Figure 1: Figure 1(a) displays the count matrix with the contests won by each of the 3
items x1, x2 and x3 after their ranking {r1 = 1, r2 = 2, r3 = 3} is converted to
pairwise counts using the rank difference method. A count is displayed in each
(xi, xj) entry if ri < rj , and the size of the square represents the count magnitude.
Figure 1(b) shows the same matrix for the ranking {r1 = 30, r2 = 20, r3 = 1}.

Qn defines a multinomial distribution over pairwise preferences. Parametrization through
Sn controls the shape of Qn, lending considerable flexibility in distributions over prefer-
ences, which can be tailored to many different problems. To generate the observed ag-
gregated counts Yψ

n we assume that Tψn independent samples are drawn from Qn where
Tψn =

∑
i 6=j Yψ

n (i, j) so that:

Yψ
n (i, j) =

Tψn∑
t=1

I[Bn = b
(t)
ij],

where I[Bn = b
(t)
ij] is 1 if preference {xni � xnj} was sampled on the t’th draw and 0

otherwise. Under this model the probability of the observed counts is given by:

P (Yψ
n |Sn) =

Tψn !∏
i 6=j Yψ

n (i, j)!

∏
i 6=j

P (Bn = bij |Sn)Y
ψ
n (i,j)

=
Tψn !∏

i 6=j Yψ
n (i, j)!

∏
i 6=j

(
exp(sni − snj)∑
k 6=l exp(snk − snl)

)Yψ
n (i,j)

.

Note that in MPM the pairwise probabilities depend on the entire item set X and the
observed counts matrix is modeled jointly. The magnitude of the score sni is directly related
to the count Yψ

n (i, j). When the scores are fitted via maximum likelihood the gradient of
the log probability with respect to sni is given by:

∂ log(P (Yψ
n |Sn))

∂sni
=

∑
j

Yψ
n (i, j)−

∑
j

Yψ
n (j, i)

− Tψn
(
∂ log(

∑
k 6=l e

snk−snl)

∂sni

)
. (1)

1143

Volkovs and Zemel

(a) (b)

Figure 2: Graphical model representation of the generative process in MPM and its θ ex-
tension for a single instance n. Here Tψn =

∑
i 6=j Yψ

n (i, j) is the total number

of preferences observed for expert ψ and Tn =
∑Ψ

ψ=1 T
ψ
n is the total number of

preferences across all experts for instance n.

Note that when xni is strongly preferred to other items the first term in Equation 1 will be
large leading to an increase in sni. This will in turn raise the probability of preferences where
xni beats the other items. Raising the probability for some preferences must simultaneously
lower it for others since the probabilities always sum to 1. The second term, the derivative
of the partition function, accounts for this. The scores thus compete with each other and
the ones with the most positive/negative evidence get pushed to the extremes. This is
exactly the effect we wanted to achieve because it will allow us to accurately model the
count matrices as illustrated by the toy examples above. In contrast with MPM, in the
Bradley-Terry model there is no joint interaction amongst scores and pairs are modeled
independently so a single preference is sufficient to push the score to infinity.

2.4 Incorporating Prediction Confidence

In the base MPM model it is difficult to judge the model’s confidence for a given score
combination. Aside from the relative score magnitudes, it is hard to measure the uncertainty
associated with the score assigned to each item and the aggregate ranking that the scores
impose. Such a measure can be very useful during inference and can influence the decision
process. For instance, it can be used to further filter and/or reorder the items in the
aggregate ranking. Moreover, for problems where the accuracy is extremely important, the
recommender system can inform the user if the produced ranking has high/low degree of
uncertainty.

To address this problem we introduce a set of variance parameters Γn = {γn1, ..., γnMn},
γni > 0 ∀i. Each γni models the uncertainty associated with the score sni inferred for the
item xni. The consensus distribution now becomes:

P (Bn = bij |Sn,Γn) =
exp((sni − snj)/(γni + γnj))∑
k 6=l exp((snk − snl)/(γnk + γnl))

.

1144

New Learning Methods for Supervised and Unsupervised Preference Aggregation

Note that the probability of xni beating xnj decreases (increases) if the variance for either
xni or xnj increases (decreases). Through Γn we can effectively express the variance over
the preferences for each item xni and translate this variance into uncertainty over pairwise
probabilities. Moreover, measures such as the average variance, γ̄n = 1

Mn

∑M
i=1 γni, can be

used to infer the variance for the entire aggregate ranking produced by the model.

In this setting the γ’s can either be learned in combination with scores via maximum
likelihood or set using some inference procedure. The generative process for MPM with
both Sn and Γn parameters is shown in Figure 2(a).

2.5 Modelling Deviations from the Consensus

The assumption in MPM that the preferences generated by the Ψ experts are independent
and identically distributed is likely to be false in many domains. Often one would expect
to find preferences which either completely or partially deviate from the general consensus.
For example in collaborative filtering most people tend to like popular movies such as Harry
Potter and Forrest Gump, but in almost all cases one can find a number of outlier users who
would give these movies low ratings. Assuming that the preferences of the outliers have
the same distribution as the consensus, as is done in the base MPM model, can skew the
aggregation especially if the outliers are severe.

To introduce the notion of outliers into our model we define an additional set of adherence
parameters Θ = {θ1, ..., θΨ}, θψ ∈ [0, 1]. Here we assume that each expert ψ has its own

distribution over preferences Qψn , whose adherence to the global consensus distribution Qn
(see Definition 1) is described by θψ. Associated with each expert ψ is a random variable

Bψ
n ∼ Qψn , where we define Qψn as:

Qψn = {P (Bψ
n = bij |Sn,Γn, θψ)}i 6=j ,

P (Bψ
n = bij |Sn,Γn, θψ) =

exp(θψ(sni − snj)/(γni + γnj))∑
k 6=l exp(θψ(sni − snj)/(γni + γnj))

.

Note that if θψ = 0, Qψn becomes a uniform distribution indicating that the preferences of
the expert ψ deviate completely from the consensus (is an outlier), and will not be modeled
by it. Values between 0 and 1 indicate different degrees of agreement, with θψ = 1 indicating
complete agreement. Hence, by introducing θψ we make the model robust, allowing it to
control the extent to which each expert’s preferences are modeled by the scores, effectively
eliminating the outliers.

In the generative process we now assume that at each of the Tn =
∑

ψ T
ψ
n draws an expert

ψ is picked at random and a preference is generated from Qψn ; Figure 2(b) demonstrates this
process. Under this process the probability of the observed instance n with count matrices

1145

Volkovs and Zemel

Yn = {Y1
n, ...,Y

Ψ
n } is given by:

P (Yn|Sn,Γn,Θ) =

=

Ψ∏
ψ=1

 Tψn !∏
i 6=j Yψ

n (i, j)!

∏
i 6=j

P (Bψ
n = bij |Sn,Γ, θψ)Y

ψ
n (i,j)

=

Ψ∏
ψ=1

 Tψn !∏
i 6=j Yψ

n (i, j)!

∏
i 6=j

(
exp(θψ(sni − snj)/(γni + γnj))∑
k 6=l exp(θψ(snk − snl)/(γnk + γnl))

)Yψ
n (i,j)

 .
The preferences are modeled by a mixture of Ψ multinomials that share the same score
vector Sn but differ in the adherence parameter θψ. Both Sn and Θ can be efficiently
learned by maximizing the log likelihood, and the consensus ranking can then be obtained
by sorting the scores.

As noted above, in many preference aggregation problems the input typically consists
of several preference instances n, and the goal is to infer a separate set of scores Sn and
variances Γn for each instance n. The log likelihood of the entire corpus under the model
is given by:

L({Yn}|{Sn}, {Γn},Θ) =

= log
N∏
n=1

Ψ∏
ψ=1

 Tψn !∏
i 6=j Yψ

n (i, j)!

∏
i 6=j

P (Bψ
n = bij |Sn,Γ, θψ)Y

ψ
n (i,j)

 .
Here Θ is shared across the instances and the original MPM model is recovered by setting
Θ ≡ 1. When two of the three parameters {Sn,Γn,Θ} are fixed it is not difficult to show
that L is concave with respect to the third parameter. Therefore simple gradient descent
can be used to efficiently find a globally optimal setting. Furthermore, even though joint
optimization is no longer convex, in the experiments we found that by using gradient descent
jointly good local optimum solutions can still be found efficiently.

When training examples are available the inference proceeds as follows: first training
examples are used to set Θ; then keeping Θ fixed the scores and the variances are optimized
on the test examples by maximizing the log likelihood. The advantage of this approach is
that it is conceptually simple and can be applied to most extensions/generalizations of the
model. The disadvantage is that it requires computing parameter gradients for every test
instance which can be computationally intensive. Moreover, due to the non-convexity we
do not have any guarantees on the types of solutions found by this approach since gradient
optimization can converge to any local optimum. These disadvantages however are shared
by most score-based aggregation models. For many of these models (aside from the simple
ones) finding the maximum a posteriori score vectors is intractable so one has to resort
to approximate variational or gradient-based methods that have similar complexities. We
empirically found gradient-based inference to be stable provided that the model parameters
are initialized with small values. Throughout all experiments we used samples from a
Gaussian with mean 0 and standard deviation of 0.01 to initialize the parameters and
found that the difference in results across multiple restarts was negligible.

1146

New Learning Methods for Supervised and Unsupervised Preference Aggregation

2.6 Rank Aggregation Experiments

For rank aggregation problem we use the LETOR (Liu et al., 2007a) benchmark data sets.
These data sets were chosen because they are publicly available, include several baseline
results, and provide evaluation tools to ensure accurate comparison between methods. In
LETOR4.0 there are two rank aggregation data sets, MQ2007-agg and MQ2008-agg.

MQ2007-agg contains 1692 queries with 69,623 documents and MQ2008-agg contains
784 queries and a total of 15,211 documents. Each query contains several lists of partial
rankings of the documents under that query. There are 21 such lists in MQ2007-agg and
25 in MQ2008-agg. These are the outputs of the search engines to which the query was
submitted. In addition, in both data sets, each document is assigned one of three relevance
levels: 2 = highly relevant, 1 = relevant and 0 = irrelevant. Finally, each data set comes
with five precomputed folds with 60/20/20 splits for training/validation/testing. The results
shown for each model are the averages of the test set results for the five folds.

The MQ2007-agg data set is approximately 35% sparse, meaning that for an average
query the partial ranking matrix of documents by search engines will be missing 35% of its
entries. MQ2008-agg is significantly more sparse with the sparsity factor of approximately
65%.

The goal is to use the rank lists to infer an aggregate ranking of the documents for each
query which maximally agrees with the held-out relevance levels. To evaluate this agreement
we use standard information retrieval metrics: Normalized Discounted Cumulative Gain
(N@K) (Jarvelin and Kekalainen, 2000), Precision (P@K) and Mean Average Precision
(MAP) (Baeza-Yates and Ribeiro-Neto, 1999). Given an aggregate ranking π, and relevance
levels Ln, NDCG is defined as:

NDCG(π,Ln)@K =
1

G(Ln,K)

K∑
i=1

2Ln(π−1(i)) − 1

log(1 + i)
,

where Ln(π−1(i)) is the relevance level of the document in position i in π, and G(Ln,K)
is a normalizing constant that ensures that a perfect ordering has an NDCG value of 1.
The normalizing constant allows an NDCG measure averaged over multiple instances with
different numbers of items to be meaningful. Furthermore, K is a truncation constant and
is generally set to a small value to emphasize the utmost importance of getting the top
ranked items correct.

MAP only allows binary (relevant/not relevant) document assignments, and is defined
in terms of average precision (AP):

AP (π,Ln) =

∑Mn
i=1 P@i ∗ Ln(π−1(i))∑Mn

i=1 Ln(π−1(i))
,

where P@i is the precision at i:

P@i =

i∑
j=1

Ln(π−1(j))

i
.

MAP is then computed by averaging AP over all queries. To compute P@k and MAP on
the MQ data sets the relevance levels are binarised with 1 converted to 0 and 2 converted

1147

Volkovs and Zemel

NDCG Precision

N@1 N@2 N@3 N@4 N@5 P@1 P@2 P@3 P@4 P@5 MAP

MQ2008
BordaCount 23.68 28.06 30.80 34.32 37.13 29.72 30.42 29.38 29.75 29.03 39.45
CPS-best 26.52 31.38 34.59 37.63 40.04 31.63 32.27 32.27 31.66 30.64 41.02
SVP 32.49 36.20 38.62 40.17 41.85 38.52 36.42 34.65 32.01 30.23 43.61
Condorcet 35.67 37.39 39.11 40.50 41.59 40.94 37.43 34.73 32.08 29.59 42.63
Bradley-Terry 38.05 39.24 40.77 41.79 42.62 44.77 39.73 36.26 33.19 30.28 44.35
Plackett-Luce 35.20 38.49 39.70 40.49 41.55 41.32 38.96 35.33 32.02 29.62 42.20
θ-MPM 37.07 40.29 41.78 42.76 43.69 43.62 40.94 37.24 33.64 30.81 44.32

MQ2007
BordaCount 19.02 20.14 20.81 21.28 21.88 24.88 25.24 25.69 25.80 25.97 32.52
CPS-best 31.96 33.18 33.86 34.09 34.76 38.65 38.65 38.14 37.19 37.02 40.69
SVP 35.82 35.91 36.53 37.16 37.50 41.61 40.28 39.50 38.88 38.10 42.73
Condorcet 37.31 37.63 38.03 38.37 38.66 43.26 42.14 40.94 39.85 38.75 42.56
Bradley-Terry 39.88 39.86 40.40 40.60 40.91 46.34 44.65 43.48 41.98 40.95 43.98
Plackett-Luce 40.63 40.39 40.26 40.71 40.96 46.93 45.10 43.09 42.32 41.09 43.64
θ-MPM 41.13 41.21 41.09 41.41 41.53 47.35 45.78 44.17 43.01 41.97 44.35

Table 1: MQ2008-agg and MQ2007-agg results; statistically significant results are under-
lined.

to 1. All presented NDCG, Precision and MAP results are averaged across the test queries
and were obtained using the evaluation script available on the LETOR website.3.

To investigate the properties of MPM we conducted extensive experiments with various
versions of the model. Through these experiments we found that the θ version (see Section
2.5) had the best performance; below we refer to this model as θ-MPM. To learn this model
we first used the training data to learn the adherence parameters Θ. Then keeping Θ fixed
we inferred the scores and variances on each test query via maximum likelihood and sorted
the scores to produce a predicted ranking. This is similar to the framework used by the
CPS model (Quin et al., 2010) where the training data is used to estimate the θ parameter.
In all experiments we did not take the variances into account during the sort.

We compare the results of θ-MPM against the best methods currently listed on the
LETOR4.0 website, namely the BordaCount model and the best of the three CPS models
(combination of Mallows and Plackett-Luce models) on each of the MQ data sets. We also
compare with the Condorcet, Bradley-Terry and Plackett-Luce models, as well as the sin-
gular value decomposition based method SVP (Gleich and Lim, 2011). These models cover
most of the primary leading approaches in unsupervised preference aggregation research.
The Bradley-Terry model is fit using the same count matrices Yψ

n that are used for MPM.

For all models we found that 100 steps of gradient descent were enough to obtain the
optimal results. To avoid constrained optimization we reparametrized the variance param-
eters as γni = exp(βni) and optimized βni instead. This reparametrization was done for all
the reported experiments.

3. LETOR data set can be found at http://research.microsoft.com/en-us/um/beijing/projects/

letor/.

1148

http://research.microsoft.com/en-us/um/beijing/projects/letor/
http://research.microsoft.com/en-us/um/beijing/projects/letor/

New Learning Methods for Supervised and Unsupervised Preference Aggregation

N@1 N@2 N@3 N@4 N@5 N@6 N@7 N@8 N@9 N@10

Ratings imputed by PMF
Bradley-Terry 40.09 36.00 35.20 34.96 34.49 34.40 31.63 32.08 32.46 32.35
Plackett-Luce 69.56 54.17 48.97 46.58 44.89 43.44 42.50 41.25 40.64 40.03

Neighbor-based 61.48 49.96 44.66 42.87 40.98 39.74 39.01 37.94 37.94 37.73

MPM 69.15 54.29 49.72 46.98 45.52 44.13 43.25 42.62 42.04 41.57

Ratings imputed by neighbor model
Bradley-Terry 34.66 34.07 34.09 34.11 34.02 34.22 32.73 33.14 33.47 33.48
Plackett-Luce 70.81 56.33 50.97 48.27 46.64 45.17 44.17 43.01 42.23 41.74

PMF 69.17 55.93 50.90 48.22 46.65 45.42 44.58 43.88 43.22 42.72

MPM 71.90 56.34 51.21 48.55 46.73 45.41 44.34 43.58 42.94 42.43

Table 2: NDCG results for the MovieLens data set, for each user the missing ratings
are filled using the probabilistic matrix factorization model (top half), and the
neighbor-based approach (bottom half); statistically significant results are under-
lined.

The results4 for MPM together with the baselines on MQ2008-agg and MQ2007-agg
data sets are shown in the top and bottom halves of Table 1 respectively. For each data
set we conducted a paired T-test between θ-MPM and the best baseline at each of the 5
truncations for NDCG and precision as well as MAP; the statistically significant results at
the 0.05 level are underlined.

From the table we see that the θ-MPM models significantly outperforms the baselines
on the MQ2007-agg data set on both NDCG and MAP metrics. θ-MPM is also the best
model On MQ2008-agg, significantly improving over the baselines on truncations 2-5 for
NDCG and 2,3 for Precision.

2.7 Collaborative Filtering Experiments

For collaborative filtering experiments we used the MovieLens data set,5 a collection of
100,000 ratings (1-5) from 943 users on 1682 movies. This data set was chosen because
it provides demographic information such as age and occupation for each user, as well as
movie information such as genre, title and release year. Each user in this data set rated
at least 20 movies, but the majority of ratings for each movie are missing and the rating
matrix is more than 94% sparse. We formulate the preference aggregation as follows: given
users’ ratings the goal is to come up with a single ranking of the movies that accurately
summarizes the majority of user preferences expressed in the data. This ranking could be
used as an initial recommendation for a new user who has not provided any ratings yet, as
well as in a summary page. Note that the aggregation can be further personalized by only
aggregating over users that share similar demographic and/or other factors with the target
user.

4. All NDCG and precision values in this and other tables were multiplied by 100 to make them more
readable.

5. MovieLens data set can be found at http://www.grouplens.org/node/73.

1149

http://www.grouplens.org/node/73

Volkovs and Zemel

To convert ratings into preferences we can either sort them (resolving ties), to obtain
a partial ranking for each user, or use the pairwise method to obtain the count matrices
Yψ, where Yψ(i, j) = (`ψi − `

ψ
j)I[`ψi > `ψj] if movies xi and xj were rated by user ψ and 0

otherwise. We use the sort method for the permutation-based Plackett-Luce model and use
the rating difference method for the pair-based Bradley-Terry and MPM models.

In collaborative filtering and in most other applications the primary goal of aggregation
is to recommend items to a new or existing user. Items ranked in the top few positions are
of particular interest because they are the ones that will typically be shown to the user.
Intuitively a top ranked item should have ratings from many users (high support) and most
who rated it should prefer it to other items (strong preference). Consequently NDCG is a
good metric to evaluate the rankers for this problem because of its emphasis on the top
ranked items and the truncation level structure. Unlike rank aggregation the ground truth
aggregate ratings are not available for most collaborative filtering data. To get around this
problem we complete the rating matrix by imputing the missing ratings for every user. We
investigate two methods of imputing the ratings: a user independent method, where all
the missing ratings are filled in by the same value, and two user dependent methods. The
first method is neighbor-based and predicts the ratings using the nearest neighbors for a
given user ψ. The second method uses the probabilistic matrix factorization model (PMF)
(Salakhutdinov and Mnih, 2008) to factorize the rating matrix and predict missing entries.
Both are commonly used for CF and have shown good empirical performance on various
CF tasks such as the Netflix challenge. After completing the rating matrix we compute the
NDCG value for every user by sorting the items according to scores:

NDCG(π,Lψ)@K =
1

G(Lψ,K)

K∑
i=1

2L
ψ(π−1(i)) − 1

log(i+ 1)
. (2)

Here π is the aggregated ranking obtained by sorting the items according to scores, and
π−1(i) is the index of the item in position i in π; Lψ is a (completed) vector of ratings for
user ψ. G(Lψ,K) is the normalizing constant and represents the maximum DCG value that
could be obtained for ψ:

G(Lψ,K) =
K∑
i=1

2L
ψ(σ−i(i)) − 1

log(i+ 1)
,

where σ is a permutation of Lψ with the ratings sorted from largest to smallest. In this
form, if an item in position i in π has a rating lower than the rating Lψ(σ−1(i)) of the
i’th highest rated item by user ψ, the corresponding term in the NDCG summation will
decrease exponentially with the difference between Lψ(σ−1(i)) and Lψ(π−1(i)). We use this
metric (averaged across all users) to evaluate the performance of the models.

We compare the results of MPM to the Bradley-Terry and Plackett-Luce models, the
two best baselines on the rank aggregation task. For all models we found that 100 steps of
gradient descent was enough to reach convergence. In addition to rank aggregation, we also
examine CF methods directly to aggregate the items. To avoid biased evaluation in both
cases we use a different CF method to aggregate the items, that is, if ratings are imputed
with PMF (neighbor-based) then the neighbor-based (PMF) model is used to aggregate the
items. We use Borda count to aggregate the items by first sorting the completed rating

1150

New Learning Methods for Supervised and Unsupervised Preference Aggregation

(a) (b) (c)

Figure 3: Plots of NDCG at truncations 1, 5 and 10; in this setting all the missing ratings
were repeatedly imputed by one of the constants shown on the x-axis and the
rankings given by each method were evaluated using NDCG (Equation 2). All
the differences are statistically significant.

vector for each user to get a user-dependent item ranking. The resulting rankings are then
aggregated across all users using the Borda rule. We chose to use Borda count here because
it is a well-explored approach that has stable performance and is commonly applied to social
choice problems such as CF.

The NDCG results from the user dependent rating imputation method are shown in
Table 2. From this table we see that MPM outperforms the best aggregation method,
Plackett-Luce, both when ratings are imputed by the neighbor-based approach (top half
of the table) and PMF (bottom half of the table). We also see that the neighbor-based
CF model performs considerably worse than both MPM and Plackett-Luce while PMF has
competitive performance, outperforming MPM at higher truncations. These results are
consistent with the CF literature where PMF is typically found to perform better since it
can capture more complex correlations that extend beyond simple neighbor relationships.
However, unlike most aggregation methods that only learn one parameter (two for MPM)
per item, in PMF we have to fit a set of parameters for each user and item. This significant
increase in the number of parameters makes optimization more complex as PMF models
are typically highly prone to overfitting. Moreover, it is unclear how learned models should
be used to get the aggregate ranking as they only provide user-dependent rating predic-
tions. This introduces an additional optimization step that needs to be run before ranking
predictions can be made. Overall, for the MovieLens data we found that these models did
not give significant gains while being considerably slower.

The NDCG plots for the user independent rating imputation method are shown in
Figure 3. Here we concentrate on comparison with other aggregation methods and exclude
CF methods for reasons mentioned above. The plots show NDCG at truncations 1, 5 and 10
for the three methods, when each of the values in {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5} was used to fill
the missing ratings. Here, the value 3.5 was chosen as the upper boundary because it is the
average rating for the MovieLens data set. A number of studies have shown that users tend
to rate items that they like so the average of the observed ratings is typically significantly

1151

Volkovs and Zemel

Bradley-Terry #u #won #lost Plackett-Luce #u #won #lost MPM #u #won #lost

Pather Panchali 8 1431 89 Shawshank Red. 283 32592 5943 Star Wars 583 49290 10112
Wallace & Gromit 67 7448 962 Wallace & Gromit 67 7448 962 Raiders of the L. 420 40057 10644
Casablanca 243 26837 4633 Usual Suspects 267 30779 6666 Godfather 413 36531 8040
Close Shave 112 11219 1963 Star Wars 583 49290 10112 Silence of the L. 390 38192 9125
Rear Window 209 22590 4513 Wrong Trousers 118 13531 2291 Shawshank Red. 283 32592 5943
. . .
. . .
. . .
Children of Corn 19 62 3161 Barb Wire 30 462 5507 Cable Guy 106 3469 14377
Lawnmower Man 2 21 129 3868 Robocop 3 11 125 2535 Striptease 67 1347 9909
Free Willy 3 27 171 3912 Gone Fishin’ 11 123 1098 Very Brady 93 3353 12509
Kazaam 10 128 2041 Highlander III 16 881 2826 Jungle2Jungle 132 2375 11086
Best of the Best 3 6 33 1445 Ready to Wear 18 289 3785 Island of Dr. 57 1176 9415

Table 3: Top 5 and bottom 5 movies found by each model. For each movie the table shows
the number of users that rated it (#u) and the total number of pairwise contests
that the movie won (#won) and lost (#lost) across all users.

higher than the average of the unobserved ones (Marlin et al., 2005). From the figure we
see that MPM significantly outperforms both the Bradley-Terry and Plackett-Luce models.
The differences are especially large when low values are imputed for the missing ratings.
This indicates that the Bradley-Terry and Plackett-Luce models place items that were rated
by very few users (low support) at the top of the list. This causes the imputed ratings to
dominate the numerator in the NDCG summation making the results very sensitive to the
magnitude of the imputed rating.

This effect can also be observed from Table 3, which shows the top and bottom 5 movies
generated by each model together with statistics on the number of users that rated each
movie and the number of pairwise contests lost and won by the movie (summed across all

users). For a given user ψ and movie i with rating `ψi we find the number of pairwise wins

by counting the number of pairs (i, j) with `ψi > `ψj ; losses are found in a similar way. From
the table we see that the Bradley-Terry model places the movie Pather Panchali at the top
of the list. This movie is only rated by 8 out of 943 users and even though most users
who rated it preferred it to other movies (#lost is low) there is still very little evidence
that this movie represents the top preference for the majority of users. Due to its pairwise
independence assumption the Bradley-Terry model is always likely to place movies with few
ratings near the top/bottom of the list.

The Plackett-Luce model partially fixes this problem by considering items jointly, and
places the frequently rated movie Shawshank Redemption first. However the model does
not fully eliminate the problem, placing the very infrequently rated Wallace & Gromit (also
ranked second by Bradley-Terry) in the second spot. Part of the reason for this comes from
the fact that Plackett-Luce is a permutation based model and as such cannot model the
strength of preferences, treating the preferences given for example by ratings {5, 2, 1} the
same as {5, 4, 3}.

On the other hand for the Multinomial Preference Model we see that the position of
the item is related to both the number of observed preferences and the strength of those

1152

New Learning Methods for Supervised and Unsupervised Preference Aggregation

(a) (b)

Figure 4: 4(a) shows the number of ratings versus the learned variance γi for each movie
xi. 4(b) shows the rank for each movie obtained after sorting the scores versus
the learned γi.

preference. The top three movies are all rated by more than 400 users and are strongly
preferred by the majority of those users.

A more severe pattern can be observed for the bottom 5 movies. Both Bradley-Terry
and Plackett-Luce place movies rated by fewer than 30 users in the bottom 5 positions,
labeling them the worst movies in the entire data set. This selection has very little evidence
in the data and has a high probability of being wrong if more ratings are collected. For
MPM all of the bottom 5 movies are rated by more than 50 users with 3 out of 5 movies
rated by more than 90 users.

In addition to the retrieval accuracy we investigated the properties of the learned vari-
ance parameters γ. Figure 4(a) shows the learned variances together with the number of
ratings for each movie. Note that the variance is inversely proportional to the number of
ratings, so as the number of ratings increases the model becomes increasingly more certain
in the preferences, decreasing the variance. In Figure 4(b) we plot γ against the aggre-
gate rank for each movie. The general pattern is clear: the variance decreases towards the
extremes of the ranking, indicating that the model is more certain in the movies that are
placed near the top and near the bottom of the aggregate ranking. As shown above, this
is due to the fact that the movies at the extremes of the ranking have many comparisons,
allowing accurate inference of strong negative or positive preferences.

The plot however also shows outliers, which are the movies placed in the middle of the
aggregate ranking with low variance/high confidence. After further inspection we found
that each such movie had many positive as well as negative preferences. Examples of these
include Sabrina (#u:190 #won:10190 #lost:12347), Mrs. Doubtfire (#u:192 #won:13251
#lost:17551) and Ghost (#u:170 #won:11785 #lost:14452). Note that all three movies
were rated by more than 150 users and overall were neither strongly preferred nor strongly

1153

Volkovs and Zemel

disliked. The model thus appropriately placed them in the middle of the ranking with
strong confidence. Moreover, note that it is impossible to express this confidence with scores
alone since all the movies in the middle of the ranking have similar scores. The variances
thus provide additional information about the decisions made by the model during the
aggregation, which could be very useful for post-processing and evaluation.

3. Supervised Preference Aggregation

Research in preference aggregation has largely concentrated on the unsupervised aggregation
problem described above. However, many of the recent aggregation problems are amenable
to supervised learning, as ground truth preference information is available. The meta-search
and crowdsourcing problems are both examples of supervised preference aggregation. Due to
the popularity of these and other supervised problems the supervised aggregation framework
has received a lot of attention recently, with a number of competitions conducted in TREC6

as well as other conferences, and several meta-search data sets(Liu et al., 2007a) have been
released to encourage research in the area. Despite these efforts, to the best of our knowledge
most of the proposed models are still unsupervised and the supervised methods are unable
to fully use the labeled data and optimize the aggregating function for the target metric.
There is thus an evident need to develop an effective supervised aggregation framework.

To address this problem we first develop a supervised extension of the MPM model
introduced in the previous section. We show how the labeled training data can be used to
set the adherence parameters Θ and experimentally verify that this approach improves the
test accuracy of the model.

We then develop a general framework for supervised preference aggregation. Our frame-
work builds on the idea of converting the observed preferences into pairwise matrices de-
scribed in the previous section. We first show how these matrices can be used to derive
effective fixed length item representations that make it possible to apply any learning-to-
rank method to optimize the parameters of the aggregating function for the target IR metric.
We then show how the pairwise matrices can also be employed as potentials in a ranking
Conditional Random Field (CRF), and develop efficient learning and inference procedure
to optimize the CRF for the target IR metric.

We validate all of the introduced models on two supervised rank aggregation data sets
from Microsoft’s LETOR4.0 data collection.

3.1 Framework

As in unsupervised preference aggregation, a typical supervised problem also consists of
training instances where for each instance we are given a set of items. The experts generate
preferences for the items and the preferences can be in the variety of forms ranging from
full/partial rankings and ratings to relative item comparisons and combinations of these.
However, unlike the unsupervised problem, we now also have access to the ground truth
preference information over the items for each instance. The goal is to learn an aggregating
function which maps expert preferences to an aggregate ranking that maximally agrees with
the ground truth preferences.

6. TREC 2013 crowdsourcing track can be found at https://sites.google.com/site/treccrowd/.

1154

https://sites.google.com/site/treccrowd/

New Learning Methods for Supervised and Unsupervised Preference Aggregation

(a) R (b) Y2

Figure 5: (a) An example rank matrix R where 4 documents are ranked by 3 experts. Note
that in meta-search the rank for a given document can be greater than the number
of documents in R. (b) The resulting pairwise matrix Y2 for expert 2 (second
column of R) after the ranks are transformed to pairwise preferences using the
log rank difference method.

In this work we concentrate on the rank aggregation instance of this problem from the
information retrieval domain. However, the framework that we develop is general and can
be applied to any supervised preference aggregation problem in the form defined above.
In information retrieval the instances correspond to queries Q = {q1, ..., qN} and items to
documents Dn = {dn1,, dnMn} where Mn is the number of documents retrieved for qn.
For each query qn the experts’ preferences are summarized in an Mn × Ψ rank matrix Rn

where Rn(i, ψ) denotes the rank assigned to document dni by the expert ψ. Note that the
same Ψ experts rank items for all the queries so Ψ is query independent. Furthermore,
Rn can be sparse, as experts might not assign ranks to every document in Dn; we use
Rn(i, ψ) = 0 to indicate that document dni was not ranked by expert ψ. The sparsity
arises in problems like meta-search where qn is sent to different search engines and each
search engine typically retrieves and ranks only a portion of the documents in Dn. The
ground truth preferences are expressed by the relevance levels Ln = {`n1, ..., `nMn} which
are typically assigned to the documents by human annotators.

In contrast to the learning-to-rank problem where each document is represented by
a fixed length, query dependent, and typically heavily engineered feature vector, in rank
aggregation the rank matrix R is the only information available to train the aggregating
function. Additionally this matrix is typically very sparse. Hence there is no fixed length
document description, as is required by most supervised methods. To overcome this problem
we use the ideas behind the MPM approach and convert the rank matrix into a pairwise
preference matrix. We then show how this conversion can be used to develop an effective
supervised framework for this problem.

3.2 Pairwise Preferences

Given the Mn × Ψ ranking matrix Rn our aim is to convert it into Ψ Mn ×Mn pairwise
matrices Yn = {Y1

n, ...,Y
Ψ
n }, where each Yψ

n expresses the preferences between pairs of
documents based on the expert ψ. In Section 2.1 we considered binary and count-based

1155

Volkovs and Zemel

transformations; here we extend these ideas and consider a general transformation of the
form Yψ

n (i, j) = g(Rn(i, ψ),Rn(j, ψ)). We experiment with three versions for g that were
proposed by Gleich and Lim (2011): Binary Comparison (Equation 1), and normalized and
logarithmic versions of Rank Difference (Equation 2).

3. Normalized Rank Difference

Here the normalized rank difference is used:

Yψ
n (i, j) = I[Rn(i, ψ) < Rn(j, ψ)]

Rn(j, ψ)−Rn(i, ψ)

max(Rn(:, ψ))
.

Normalizing by the maximum rank assigned by the expert ψ (max(Rn(:, ψ))) ensures

that the entries of Yψ
n have comparable ranges across experts.

4. Log Rank Difference

This method uses the normalized log rank difference:

Yψ
n (i, j) = I[Rn(i, ψ) < Rn(j, ψ)]

log(Rn(j, ψ))− log(Rn(i, ψ))

log(max(Rn(:, ψ)))
.

In all cases both Yψ
n (i, j) and Yψ

n (j, i) are set to 0 if either Rn(i, ψ) = 0 or Rn(j, ψ) = 0

(missing ranking). Non-zero entries Yψ
n (i, j) represent the strength of the pairwise prefer-

ence {dni � dnj} expressed by expert ψ. Figure 5 shows an example ranking matrix and
the resulting pairwise matrix after the ranks are transformed to pairwise preferences using
the log rank difference method. Note that preferences in the form of ratings and top-K
lists can easily be converted into Yψ

n using the same transformations. Moreover, if pairwise
preferences are observed, we simply skip the transformation step and fill the entries Yψ

n (i, j)
directly.

As mentioned above, working with pairwise comparisons has a number of advantages,
and models over pairwise preferences have been extensively used in areas such as social
choice (David, 1988), information retrieval (Joachims, 2002; Burges, 2010), and collaborative
filtering (Lu and Boutilier, 2011; Gleich and Lim, 2011). First, pairwise comparisons are
the building blocks of almost all forms of evidence about preference and subsume the most
general models of evidence proposed in literature. A model over pairwise preferences can
thus be readily applied to a wide spectrum of preference aggregation problems and does
not impose any restrictions on the input type. Second, pairwise comparisons are a relative
measure and help reduce the bias from the preference scale. In meta-search for instance,
each of the search engines that receives the query can retrieve diverse lists of documents
significantly varying in size. By converting the rankings into pairwise preferences we reduce
the list size bias emphasizing the importance of the relative position.

3.3 Previous Work

The majority of research on preference aggregation has concentrated on the unsupervised
problem and was covered in detail in Section 2.2. In this section we review the supervised
approaches for preference aggregation.

1156

New Learning Methods for Supervised and Unsupervised Preference Aggregation

In meta-search a heuristic method called Reciprocal Rank Fusion (RRF) (Cormack et al.,
2009) has recently been proposed. RRF uses the rank matrix to derive the document scores:

sni =

Ψ∑
ψ=1

1

α+ Rn(i, ψ)
,

where α is a constant which mitigates the impact of high rankings from outlier experts
and is set by cross validation. Once the scores are computed they are used to sort the
documents. We place this method into the supervised category because of the need to set
the constant α which has a significant effect on ranking accuracy (Cormack et al., 2009).
Despite its simplicity RRF has obtained excellent empirical accuracy; however it also has
some disadvantages. First, RRF relies on complete rankings and it is unclear how to extend
it to problems like meta-search where many rankings are typically missing. Second, this
method is designed specifically for rank aggregation and cannot be applied to other types
of preferences.

A supervised score-based rank aggregation approach based on a Markov Chain was
also recently introduced by Liu et al. (2007b). In this model the authors use the ground
truth preferences to create a pairwise constraint matrix and then learn a scoring function
such that the produced aggregate rankings satisfy as many pairwise constraints as possible.
The main drawbacks of this approach are that it is computationally very intensive, requiring
constrained optimization (semidefinite programming), and it does not incorporate the target
IR metric into the optimization. The pairwise constraint idea was also recently extended
by Chen et al. (2011) to a semi-supervised setting where the ground truth preferences are
available for only a subset of the documents.

Extensive work in the learning-to-rank domain has demonstrated that optimizing the
ranking function for the target metric produces significant gains in test accuracy (Li, 2011).
However, to the best of our knowledge none of the models developed for supervised prefer-
ence aggregation take the target metric into account during the optimization of the aggre-
gating function. The models that we develop in the following sections aim to bridge this
gap.

3.4 Supervised Extension for MPM

Before delving into the new models we first develop a simple supervised extension for the
Multinomial Preference Model introduced above. The MPM can be considered fully un-
supervised, as the adherence parameters Θ, the consensus scores and the variances are
inferred from the observed preferences. This produces a predicted ranking for a given set
of observed preferences by sorting the inferred scores, without ever using any known con-
sensus rankings or relevance labels in the data. In this section we describe an approach to
incorporate this ground truth information into this model.

Each θψ models the adherence of the expert ψ to the consensus. For the labeled train-
ing instances the consensus is explicitly given by the relevance levels Ln. This allows us
to evaluate the adherence of each expert to the consensus exactly by computing the match
between the preferences given by the expert and those expressed by the ground truth rel-
evances. Using this we can set θψ to the average distance between the preferences of the

1157

Volkovs and Zemel

expert ψ and the ground truth labels across the instances:

θψ =
1

N

N∑
n=1

1−D(Ln,Y
ψ
n),

where D is a normalized distance metric between preferences, such as Kendall’s τ . Note
that θψ → 1(→ 0) indicates that the preferences of expert ψ agree with (deviate from) the
ground truth preferences (target consensus) across the training examples.

To apply the model we now (1) use the labeled training instances to find Θ and (2)
keeping Θ fixed infer scores and variances for each test instance by maximizing the likelihood
of the observed preferences.

3.5 Feature-Based Approach

We now introduce the first of the two fully supervised models for preference aggregation.
The main idea behind this approach is to summarize the relative preferences for each doc-
ument across the experts by a fixed length feature vector (Volkovs et al., 2012). This
transforms the preference aggregation problem into a learning-to-rank one, and any of the
standard methods can then be applied to optimize the aggregating function for the tar-
get IR metric such as NDCG. In following section we describe an approach to extract the
document features.

3.5.1 Feature-Based Approach: Feature Extraction

Given the rank matrix Rn and the resulting pairwise matrix Yψ
n for expert ψ (as shown

in Figure 5), our aim is to convert Yψ
n into a fixed length feature vector for each of the

documents in Dn. Singular Value Decomposition (SVD) based approaches for document
summarization such as Latent Semantic Indexing (Deerwester et al., 1990) are known to
produce good descriptors even for sparse term-document matrices. Another advantage of
SVD is that it requires virtually no tuning and can be used to automatically generate the
descriptors once the pairwise matrices are computed. Because of these advantages we chose
to use SVD to extract the features. For a given Mn ×Mn pairwise matrix Yψ

n the rank-p
SVD factorization has the form:

Yψ
n ≈ Uψ

nΣψ
nVψ

n ,

where Uψ
n is an Mn× p matrix, Σψ

n is an p× p diagonal matrix of singular values and Vψ
n is

an Mn×p matrix. The full SVD factorization has p = Mn, however, to reduce the noise and
other undesirable artifacts of the original space most applications that use SVD typically
set p � Mn. Reducing the rank is also an important factor in our approach as pairwise
matrices tend to be very sparse with ranks significantly smaller than Mn.

Given the SVD factorization we use the resulting matrices as features for each document.
It is important to note here that both Uψ

n and Vψ
n contain useful document information since

Yψ
n is a pairwise document by document matrix. To get the features for document dni and

expert ψ we use:
φ(dni,Y

ψ
n) = [Uψ

n(i, :), diag(Σψ
n),Vψ

n (i, :)],

here Uψ
n(i, :) and Vψ

n (i, :) are the i’th rows of Uψ
n and Vψ

n respectively and diag(Σψ
n) is the

main diagonal of Σψ
n represented as a 1 × p vector. Note that the diag(Σψ

n) component is

1158

New Learning Methods for Supervised and Unsupervised Preference Aggregation

independent of i and will be the same for all the documents in Dn. We include the singular
values to preserve as much information from the SVD factorization as possible. The features
φ(dni,Y

ψ
n) summarize the relative preference information for dni expressed by the expert φ.

To get a complete view across the experts we concatenate together the features extracted
for each expert:

φ(dni) = [φ(dni,Y
1
n), ..., φ(dni,Y

Ψ
n)].

Each φ(dni,Y
ψ
n) contains 3p features so the entire representation will have 3Ψp features.

Moreover, note that since the experts and p are fixed across queries this representation
will have the same length for every document in each query. We have thus created a
fixed length feature representation for every document dni, effectively transforming the
aggregation problem into a standard learning-to-rank one. During training our aim is now
to learn a scoring function f : R3Ψp → R which maximizes the target IR metric such as
NDCG. The feature representation allows us to fully use all of the available labeled training
data to optimize the aggregating function for the target metric, which is not possible to do
with the existing aggregation methods.

It is worth mentioning here that the SVD factorization of pairwise matrices has been
used in the context of preference aggregation (see (Gleich and Lim, 2011) for example).
However, previous approaches largely concentrated on applying SVD to fill the missing
entries in the joint pairwise matrix Ytot

n =
∑Ψ

ψ=1 Yψ
n and then use the completed matrix to

infer the aggregate ranking. Our approach on the other hand uses SVD to compress each
pairwise matrix Yψ

n and produce fixed length feature vector for each document.

3.5.2 Feature-Based Approach: Learning and Inference

Given the document features extracted via the SVD approach our goal is to use the labeled
training queries to optimize the parameters of the scoring function for the target IR metric.
The main difference between the introduced feature-based rank aggregation approach and
the typical learning-to-rank setup is the possibility of missing features. When a given
document dni is not ranked by the expert ψ the row Yψ

n (i, :) and column Yψ
n (:, i) will both

be missing (i.e., 0). To account for this we modify the conventional linear scoring function
to include a bias term for each of the Ψ experts:

f(φ(dni),W) =
∑
ψ∈Ψ

wψ · φ(dni,Y
ψ
n) + I[Rn(i, ψ) = 0]bψ, (3)

where W = {wψ, bψ}ψ is the set of free parameters to be learned with each wψ having

the same dimension as φ(dni,Y
ψ
n), and I[] is an indicator function. The bias term bψ

provides a base score for dni if dni is not ranked by expert ψ. The weights wψ control how
much emphasis is given to preferences from expert ψ. It is important to note here that
the scoring function can easily be made non-linear by adding additional hidden layer(s), as
in conventional multilayer neural nets. In the form given by Equation 3 our model has a
total of (3p + 1)Ψ parameters to be learned. We can use any of the developed learning-
to-rank approaches (see Li, 2011 for a detailed description of many popular learning-to-
rank methods) to optimize W; in this work we chose to use the LambdaRank method.
We chose LambdaRank because it has shown excellent empirical performance, for example,
winning the Yahoo! Learning To Rank Challenge (Chapelle et al., 2010). We briefly describe

1159

Volkovs and Zemel

Algorithm 1 Feature-Based Learning Algorithm

Input: {(q1,D1,L1,R1), ..., (qN ,DN ,LN ,RN)}
Parameters: learning rate η
for n = 1 to N do {feature extraction}

from Rn compute Yn = {Y1
n, ...,Y

Ψ
n }

for i = 1 to Mn do
compute features φ(dni) using SVD

end for
end for
initialize weights: W
repeat {scoring function optimization}

for n = 1 to N do
compute λ-gradients: ∇W =

∑
i λni

∂sni
∂W

update weights: W = W − η∇W
end for

until convergence
Output: W

LambdaRank here and refer the reader to Burges et al. (2006) and Burges (2010) for a more
extensive treatment.

LambdaRank learns pairwise preferences over documents with emphasis derived from
the NDCG gain found by swapping the rank position of the documents in any given pair, so
it is a listwise algorithm (in the sense that the cost depends on the sorted list of documents).
Formally, given a pair of documents (dni, dnj) with `ni 6= `nj , the target probability that
dni should be ranked higher than dnj is defined as:

Pnij =

{
1 if `ni > `nj
0 otherwise

.

The model’s probability is then obtained by passing the difference in scores between dni
and dnj through a logistic:

Qnij =
1

1 + exp(−(f(φ(dni),W)− f(φ(dnj),W)))

=
1

1 + exp(−(sni − snj))
.

The aim of learning is to match the two probabilities for every pair of documents with
different labels. To achieve this a cross entropy objective is used:

On = −
∑

`ni>`nj

Pnij log(Qnij).

This objective weights each pair of documents equally thus placing equal importance on
getting the relative order of document correctly both at the top and at the bottom of the
ranking. However, most target evaluation metrics including NDCG are heavily concentrated

1160

New Learning Methods for Supervised and Unsupervised Preference Aggregation

Figure 6: The inference diagram for the feature-based preference aggregation approach.
Given a test query (q,D,R) the inference proceeds in three steps: (1) The ranking
matrix R is converted to a set of pairwise matrices Y = {Y1, ...,YΨ}. (2) SVD
is used to extract document features from each pairwise matrix Yψ. (3) The
learned scoring function is applied to the features to produce the scores for each
document. The scores are then sorted to get the aggregate ranking.

on the top of the ranking. To take this into account the LambdaRank framework uses a
smooth approximation to the gradient of a target evaluation measure with respect to the
score of a document dni, and we refer to this approximation as λ-gradient. The λ-gradient for
NDCG is defined as the derivative of the cross entropy objective weighted by the difference
in NDCG obtained when a pair of documents swap rank positions:

λnij = |∆NDCG@K(sni, snj)|
∂On

∂(sni − snj)
.

Thus, at the beginning of each iteration, the documents are sorted according to their current
scores, and the difference in NDCG is computed for each pair of documents by keeping the
ranks of all of the other documents constant and swapping only the rank positions for that
pair (see Burges et al., 2006 for more details on λ calculation). The λ-gradient for document
dni is computed by summing the λ’s for all pairs of documents (dni, dnj) for query qn:

λni =
∑

j:`nj 6=`ni

λnij .

The |∆NDCG| factor emphasizes those pairs that have the largest impact on NDCG. Note
that the truncation in NDCG is relaxed to the entire document set to maximize the use of
the available training data.

To make the learning algorithm more efficient the document features can be precomputed
a priori and re-used throughout learning. This significantly reduces the computational

1161

Volkovs and Zemel

complexity at the cost of additional storage requirement of O(MnΨp) for each query qn.
The complete stochastic gradient descent learning procedure is summarized in Algorithm
1.

Once the parameters of the scoring function are learned then at test time, given a
new query q with rank matrix R, we (1) convert R into a set of pairwise matrices Y =
{Y1, ...,YΨ}; (2) extract the document features using rank-p SVD; and (3) apply the learned
scoring function to get the score for every document. The scores are then sorted to get the
aggregate ranking. This process is shown in Figure 6.

3.6 CRF Approach

The SVD-based feature approach introduced above is effective at producing compact doc-
ument representation which we experimentally found to work well for this task. These
representations also allow to apply any learning-to-rank approach making it very easy to
incorporate the model into many existing IR frameworks. However, while the SVD model
is robust, it requires applying SVD factorization at test time which can be computation-
ally intensive. Moreover, SVD representation significantly compresses the pairwise matrices
and might throw away useful information potentially affecting performance and making the
model less interpretable. To avoid these disadvantages we develop another fully supervised
model which uses the pairwise matrices directly. As mentioned above, the variable number
of documents per query and absence of the fixed-length document representation make it
difficult to apply the majority of supervised methods to this problem, since they require
fixed-length item representations. CRFs on the other hand are well suited for tasks with
variable input lengths, and have successfully been applied to problems that have this prop-
erty, such as natural language processing (Sha and Pereira, 2003; Roth and Yih, 2005),
computational biology (Sato and Sakakibara, 2005; Liu et al., 2006), and information re-
trieval (Qin et al., 2008; Volkovs and Zemel, 2009). Moreover, CRFs are very flexible and
can be used optimize the parameters of the model for the target metric. For these reasons
we develop a CRF framework for preference aggregation (Volkovs and Zemel, 2013).

3.6.1 CRF Approach: Model

The main idea behind this approach is based on an observation that the pairwise preference
functions defined above naturally translate to pairwise potentials in a CRF model. Using
these function we can evaluate the “compatibility” of any ranking π by comparing the order
induced by the ranking with the pairwise preferences from each expert. This leads to an
energy function:

E(π,Yn; W) =

= − 1

M2
n

Mn∑
i=1

∑Ψ
ψ=1

(
bψϕψ(π−1(i)) + wψpos

∑
j 6=i Y

ψ
n (π−1(i), j)− wψneg

∑
j 6=i Y

ψ
n (j, π−1(i))

)
log(i+ 1)

,
(4)

where Yψ
n (π−1(i), j) is the pairwise preference for the document in position i in π over doc-

ument dnj expressed by expert ψ, and W = {bψ, wψpos, wψneg}Ψψ=1 is the set of free parameters
to be learned.

1162

New Learning Methods for Supervised and Unsupervised Preference Aggregation

This energy function contains a binary unary potential ϕψ(i,Rn) = I[Rn(i, ψ) = 0],
where I[] is an indicator function. This potential is active only when document dni is not
ranked by the expert ψ, in which case bψ provides a base preference score for the item.
The energy also contains pairwise potentials that directly use pairwise matrices Y. Note
that from the definition of Y in Section 3.2 it follows that only one of Yψ

n (π−1(i), j) or

Yψ
n (j, π−1(i)) can be non-zero for any pair of documents. Consequently, if Yψ

n (π−1(i), j)
is on (non-zero) then expert ψ “agrees” with the relative order induced by π (lowering the

energy) and the strength of this agreement is given by wψpos. Similarly, if Yψ
n (j, π−1(i)) is

on then expert ψ “disagrees” with the relative order, and raises the energy. The weights
wψpos and wψneg thus control how much emphasis is given to positive and negative relative
preferences from expert ψ. 1/ log(i + 1) is the rank discount function similar to the one
used in NDCG and other IR metrics, which emphasizes items at the top positions in the
ranking. Finally, normalizing by 1/M2

n ensures that the energy ranges are comparable across
instances with different numbers of items.

The model assigns a probability to every ranking π based on this energy function:

P (π|Yn) =
1

Z(Yn)
exp(−E(π,Yn; W)) Z(Yn) =

∑
π

exp(−E(π,Yn; W)),

where the partition function Z(Yn) sums over all valid rankings π.

It is important to note here that in the proposed model a separate set of weights
{bψ, wψpos, wψneg} is learned for each expert ψ, which allows the model to effectively capture
the correlations between individual expert preferences and the ground truth ones. However,
this framework cannot be applied when the expert identity is unknown or when new experts,
unseen during training, are introduced at test time. This is often the case in domains like
crowdsourcing where the experts must be anonymized due to privacy considerations, and
the number of experts is large so new experts are often introduced at test time. To general-
ize the model to these settings we can simply share the same parameters b, wpos and wneg,
removing the dependence on ψ. The resulting consensus model only takes into account the
net preference across all Ψ experts, ignoring the individual preferences. Though this makes
it possible to apply the model to arbitrary expert sets, this may weaken it since preference
information from individual experts can contain very useful information, especially in cases
where the majority of experts are wrong. When a subset of the experts is known, it is
possible to take an intermediate approach and learn individual weights {bψ, wψpos, wψneg} for
the known experts ψ, and consensus-based weights {b, wpos, wneg} for the unknown experts.
This demonstrates the flexibility of the proposed CRF framework which allows us to effec-
tively learn to aggregate preferences in the settings where both item and expert sets can
vary in length.

3.6.2 CRF Approach: Learning and Inference

The most popular approach to training CRFs is maximum likelihood. However, this ap-
proach does not take the target metric into account and thus might be ineffective at op-
timizing it. Recent work has explored different empirical and theoretical approaches to
incorporate the target metric during CRF training (Volkovs and Zemel, 2009; Gimpel and
Smith, 2010; McAllester and Keshet, 2011) Inspired by this work we follow the approach of

1163

Volkovs and Zemel

Algorithm 2 CRF Learning Algorithm

Input: {(q1,D1,L1,R1), ..., (qN ,DN ,LN ,RN)}
Parameters: learning rate η, cut-off ε
for n = 1 to N do {pairwise matrices}

from Rn compute Yn = {Y1
n, ...,Y

Ψ
n }

end for
initialize weights: W
repeat {CRF optimization}

for n = 1 to N do
if Mn > ε then

downsample documents to get Lnε, Ynε

else
Lnε = Ln and Ynε = Yn

end if
compute exact gradients with {Lnε,Ynε}:

∇W = ∂O(Lnε,Ynε)/∂W
update weights: W = W + η∇W

end for
until convergence
Output: W

Volkovs and Zemel (2009) and use the expected metric as the target objective to maximize:

O(Ln,Yn) =
∑
π

G(π,Ln)P (π|Yn), (5)

where G can be any IR metric such as the NDCG or MAP. Note that even even the cases
where G is non-smooth (e.g., NDCG, MAP) the above objective remains smooth with
respect to W and can be maximized using standard gradient-based procedure. However,
to optimize this objective we need to calculate P (π|Yn) for all Mn! rankings π of the items
in each query qn. This computation quickly becomes intractable since even for Mn = 15
one needs to sum over more than 1012 permutations. Standard MCMC and variational
techniques can be used here to estimate the gradients, however, these methods are typically
too slow to be applied to the IR domain where data sets often contain thousands of queries.

To avoid these problems we use an approach similar to the one suggested by Caetano
et al. (2009) which we empirically found to work well. Every time a query qn is visited and
the number of documents is greater than ε, we randomly select a subset of ε documents
and use the corresponding relevance labels Lnε and pairwise matrices Ynε = {Y1

nε, ...,Y
Ψ
nε}

to compute the gradients for W. Here each pairwise matrix Yψ
nε is a slice of the original

matrix Yψ
n which includes only the selected ε documents. Choosing ε sufficiently small

allows the gradients to be computed exactly by enumerating all possible ε! permutations of
the documents.

Similarly to the feature-based model, this learning procedure can be made more effi-
cient by precomputing both unary and pairwise potentials. This reduces the complexity of
computing the model’s energy from O(M2

nΨ) to O(MnΨ) at the cost of additional storage

1164

New Learning Methods for Supervised and Unsupervised Preference Aggregation

requirement of O(Mn) per query. The complete stochastic gradient descent learning proce-
dure is summarized in Algorithm 2. Note that this algorithm can be used to optimize the
parameters of the CRF for any of the target IR metrics.

Once the CRF is learned then given a new test query (q,D,R), the goal is to predict a
single ranking π for the M documents in D based on the expert preferences R. Fortunately,
once R is converted into Y = {Y1, ...,YΨ} such inference can be done very efficiently in
this CRF. Since 1/ log(i+ 1) is a monotonically decreasing function it is easy to verify that
the ranking with the highest probability is obtained by sorting the items according to their
total “score” given by the potentials:

π̂ = arg min
π

E(π,Y; W) = arg sort([ϑ1, ..., ϑM])

where the scores are:

ϑi = −
Ψ∑
ψ=1

bψϕψ(i) + wψpos
∑
j 6=i

Yψ(i, j)− wψneg
∑
j 6=i

Yψ(j, i)

 .

It is important to note here that this inference procedure only requires computing simple
sums and can thus be done very efficiently . This is a significant advantage over the feature-
based approach which requires SVD factorization to be done for every test query.

3.7 Experiments

For our experiments we use the MQ2007-agg and MQ2008-agg rank aggregation data sets
from the LETOR4.0 (Liu et al., 2007a) collection. Detailed description of the data sets is
given is Section 2.6.

3.7.1 MPM Experiments

In the first set of experiments we compare the performances of the supervised and the
unsupervised versions of the MPM model. Both versions are fit using the pairwise count
matrix described in Section 2.1. Note that this method of converting rankings to pairwise
preferences is very similar to the rank difference method discussed in Section 3.2 with the
only difference being the exclusion of the normalization term max(Rn(:, ψ)). As before
we use 100 steps of the gradient descent to fit the models and reparametrize the variance
parameters as γni = exp(βni) to avoid constrained optimization. The results for the unsu-
pervised (θ-MPM) and the supervised (θsup-MPM) models on both data sets are shown in
Table 4. From the table we see that the supervised version of the MPM model significantly
outperforms the unsupervised one on both data sets. This supports the expected conclusion
that when ground truth preference data is available using it during model training improves
performance.

To further investigate the differences between the two MPM models we plotted the
adherence parameters Θ found by each model. Figure 7 shows the adherence parameters Θ
set based on the labeled training examples, together with the one learned in an unsupervised
fashion by doing gradient descent. From the figure we see many similarities in the two
vectors, indicating that the model is able to capture the notion of ”outliers” which correlates

1165

Volkovs and Zemel

NDCG Precision

N@1 N@2 N@3 N@4 N@5 P@1 P@2 P@3 P@4 P@5 MAP

MQ2008-agg
θ-MPM 37.07 40.29 41.78 42.76 43.69 43.62 40.94 37.24 33.64 30.81 44.32
θsup-MPM 38.17 40.57 42.19 43.07 43.99 44.89 41.13 37.67 33.80 31.17 44.71

MQ2007-agg
θ-MPM 41.13 41.21 41.09 41.41 42.53 47.35 45.78 44.17 43.01 41.97 44.35
θsup-MPM 41.77 41.91 41.92 42.34 42.79 48.35 46.64 44.53 43.52 42.72 45.71

Table 4: MQ2008-agg and MQ2007-agg MPM results; statistically significant results are
underlined.

Figure 7: Top row: normalized Θ, found by the supervised procedure outlined in Section
3.4, for training Fold 1 of MQ2007-agg. Bottom row: learned Θ on the same
Fold. Here white = 1 and black = 0.

closely with the training labels. There are however a number of differences, such as the first
three components being switched from on to off in the learned Θ. In our experiments we
consistently found that setting Θ using the training labels produced better performance.

3.7.2 SVD and CRF Experiments

In the second set of experiments we compare the performance of the SVD-based feature
model trained with LambdaRank (denoted as SVDsup) and the CRF one. For each model
we experimented with binary, rank difference, and log rank difference methods to compute
the pairwise matrices (see Section 3.2) and selected the method that gave the best validation
NDCG@10 results. For the SVD-based model we found through cross-validation that setting
p = 1 (SVD rank) gave the best performance which is expected considering the sparsity
level of the pairwise matrices. The LambdaRank training of the scoring function was run
for 200 iterations with a learning rate of 0.01, and validation NDCG@10 was used to choose
the best model. For the CRF model we used expected NDCG (see Equation 5) as the target
objective and set ε = 6 ensuring that at least one document of every relevance label was
chosen each time.

We compare the results of our model against the unsupervised baselines used in the
MPM experiments (see Section 2.6). We also compare with the established meta-search
standard Reciprocal Rank Fusion (RRF). To the best of our knowledge these models cover
all of the primary leading approaches in the (supervised) rank aggregation research except
for the Markov Chain model (Liu et al., 2007b) discussed above. We were unable to compare
with this method because it is neither publicly available nor listed as one of the baselines
on LETOR, making standardized comparison difficult.

1166

New Learning Methods for Supervised and Unsupervised Preference Aggregation

NDCG Precision

N@1 N@2 N@3 N@4 N@5 P@1 P@2 P@3 P@4 P@5 MAP

MQ2008-agg

BordaCount 23.68 28.06 30.80 34.32 37.13 29.72 30.42 29.38 29.75 29.03 39.45
CPS-best 26.52 31.38 34.59 37.63 40.04 31.63 32.27 32.27 31.66 30.64 41.02
SVP 32.49 36.20 38.62 40.17 41.85 38.52 36.42 34.65 32.01 30.23 43.61
Bradley-Terry 38.05 39.24 40.77 41.79 42.62 44.77 39.73 36.26 33.19 30.28 44.35
Plackett-Luce 35.20 38.49 39.70 40.49 41.55 41.32 38.96 35.33 32.02 29.62 42.20
Condorcet 35.67 37.39 39.11 40.50 41.59 40.94 37.43 34.73 32.08 29.59 42.63
RRF 38.77 40.73 43.48 45.70 47.17 44.89 41.32 38.82 36.51 34.13 47.71

θsup-MPM 38.17 40.57 42.19 43.07 43.99 44.89 41.13 37.67 33.80 31.17 44.71
SVDsup 42.81 44.53 47.02 49.00 50.69 48.85 44.13 41.84 39.09 36.50 50.32
CRF 42.29 44.99 47.54 49.05 51.03 48.67 44.58 42.08 38.75 36.55 50.41

MQ2007-agg

BordaCount 19.02 20.14 20.81 21.28 21.88 24.88 25.24 25.69 25.80 25.97 32.52
CPS-best 31.96 33.18 33.86 34.09 34.76 38.65 38.65 38.14 37.19 37.02 40.69
SVP 35.82 35.91 36.53 37.16 37.50 41.61 40.28 39.50 38.88 38.10 42.73
Bradley-Terry 39.88 39.86 40.40 40.60 40.91 46.34 44.65 43.48 41.98 40.95 43.98
Plackett-Luce 40.63 40.39 40.26 40.71 40.96 46.93 45.10 43.09 42.32 41.09 43.64
Condorcet 37.31 37.63 38.03 38.37 38.66 43.26 42.14 40.94 39.85 38.75 42.56
RRF 41.93 42.66 42.42 42.73 43.13 48.70 47.20 44.84 43.52 42.52 46.72

θsup-MPM 41.77 41.91 41.92 42.34 42.79 48.35 46.64 44.53 43.52 42.72 45.71
SVDsup 46.13 46.76 46.71 46.87 47.28 52.90 51.39 49.33 47.80 46.66 50.05
CRF 46.93 46.81 46.75 46.51 46.93 54.14 51.48 49.12 47.54 46.68 50.39

Table 5: MQ2008-agg and MQ2007-agg results; statistically significant differences between
CRF and SVDsup are underlined. All the differences between both CRF and
SVDsup models and the best baseline are statistically significant.

The NDCG and Precision results for truncations 1-5 as well as MAP results are shown in
Table 5. From the table we see that both SVDsup and CRF model significantly outperform
all the other aggregation methods, improving by as much as 5 NDCG points over the best
baseline on each of the MQ-agg data sets. Moreover, we also see that the CRF model has
very strong performance producing similar results to the best SVDsup model. While both
models use the same pairwise matrices Y, inference in CRF is orders of magnitude faster
than in SVDsup. Finally, we note that the results on the MQ2008-agg data set, which is
more than 65%, sparse demonstrate that both models are robust and generalize well even
in the sparse setting.

To investigate the utility of representing each expert’s preferences with a separate set of
parameters we ran experiments with a combined approach. For each query qn we combined
all pairwise preference matrices into a single matrix Ytot

n =
∑Ψ

ψ=1 Yψ
n and trained the

SVDsup model on the SVD features from Ytot
n only. Note that this model has no information

about the individual expert preferences. We refer to this model as “combined” and compare
it to the full model which uses SVD features from each Yψ

n referred to as “individual”. The
results for the two data sets are shown in Figure 8. From the figure we see that the individual
model significantly outperforms the combined one on both data sets. The performance of

1167

Volkovs and Zemel

(a) NDCG, MQ2008-agg (b) Precision, MQ2008-agg

(c) NDCG, MQ2007-agg (d) Precision, MQ2007-agg

Figure 8: Test NDCG@1-5 and Precision@1-5 results for SVDsup trained on features ex-
tracted from each Yψ

n (individual), versus SVDsup trained on features extracted
only from the joint preference matrix Ytot

n (combined). Results for the CRF
model are similar and are not shown.

the combined model is comparable to the best baseline consensus method, the Reciprocal
Rank Fusion. This is not surprising since Ytot

n summarizes the consensus preference across
the experts, and without access to the individual preferences the ranker can only learn
to follow the consensus. Note however, that the gain from using the individual expert
features is very significant which further supports the conclusion that specialization is very
important for the supervised preference aggregation. To further validate this conclusion
we conducted the same experiment with the CRF model. We removed the expert specific
weights wψ, wψpos and wΨ

neg and learned a single set of parameters W = {b, wpos, wneg} for
all the experts. The results were similar to those in Figure 8 and we observed a significant
drop in both NDCG and Precision accuracies.

Figure 9 further demonstrates the importance of specialization. The figure shows the
expert ranking matrix together with the scores produced by the Reciprocal Rank Fusion
and SVDsup for an example test query from MQ2008-agg. From the ground truth relevance
levels (L) it is seen that only document d6 is relevant to this query. However, from the
ranking matrix we see that the experts express strong net preference for documents d1,
d4, d5 and d8, whereas the preferences for d6 are mixed with many positive and negative
preferences. The Reciprocal Rank Fusion is a consensus-based approach and as such ranks

1168

New Learning Methods for Supervised and Unsupervised Preference Aggregation

Figure 9: The matrix on the left shows the expert ranking matrix R for a test query in Fold 1
of the MQ2008-agg data set. 8 documents {d1, ..., d8} were retrieved for this query
and the normalized expert rankings are represented by white squares. The size
of each square reflects the preference strength, so that large squares correspond
to high rankings (strong preference). Missing rankings are represented by empty
cells. The matrix on the right shows the normalized scores for each document
produced by the Reciprocal Rank Fusion (RF) and the LambdaRank SVDsup
(LR) models, as well as the ground truth relevance levels (L). Note that only d6

is relevant to this query.

documents d1, d4, d5 and d8 above d6 with NDCG@1-4 of 0. Other consensus-based methods
produce similar rankings. SVDsup on the other hand, is able to ignore the consensus and
concentrate on a small subset of the preferences, placing d6 on top and producing a perfect
ranking. Moreover, note that the scores for the other documents produced by the SVDsup
are significantly lower than the score for d6, so the model is confident in this ranking. The
query shown in Figure 9 is an example of a difficult query (often these correspond to long-tail
queries) where the majority of experts generate incorrect preferences. For these queries the
aggregated rankings produced by the consensus-based methods will also be incorrect. Our
supervised approaches are able to fix this problem through specialization. By examining
the queries in both MQ2008-agg and MQ2007-agg we found that both data sets contain a
number of such queries and that both SVDsup and CRF performs significantly better on
those queries than the consensus-based baselines.

3.7.3 Runtime Comparison

In the previous sections we demonstrated that fully supervised models SVDsup and CRF
significantly outperform all baselines on two rank aggregation tasks. We also mentioned
that the CRF model is considerably faster at inference time. In this section we quantify
this difference.

We use test Fold 1 of the MQ2008-agg data set and conduct two sets of experiments.
In the first experiment we repeatedly increase the number of experts. Starting with the

initial expert matrix at iteration 1: R
(1)
n = Rn, we concatenate it with the original matrix

to get an expanded one for iteration 2: R
(2)
n = [R

(1)
n ,Rn]. Thus, after t iterations the

resulting matrix R
(t)
n = [R

(t−1)
n ,Rn] contains Mn rows and t × Ψ columns. Concatenating

1169

Volkovs and Zemel

(a) Expert expansion runtimes (b) Item expansion runtimes

Figure 10: Average per query runtimes (in seconds) for test Fold 1 of the MQ2008-agg.
Figure 10(a) shows runtimes for the expert expansion experiment. Figure 10(b)
shows runtimes for the item expansion experiment.

expert matrices allows us to test the inference procedure of each method on an increasingly
larger data while preserving sparsity. In the second experiment we repeat this procedure
but this time we append the matrices increasing the number of documents. Here, the
ranking matrix at iteration t contains t ×Mn rows and Ψ columns. The first experiment
thus tests for scenarios where the expert set is large (expert expansion), that typically arise
in domains like crowdsourcing. While the the second experiment tests for large item sets
(item expansion) that often arise in domains like meta-search.

Figures 10 and 10(b) show, averaged across queries, runtimes (in seconds) for both
methods at each expansion iteration. Figure 10(a) shows runtimes for the expert expansion
while Figure 10(b) shows runtimes for the item expansion. From the figures we see significant
differences in runtimes between the two methods. The difference is especially large for the
expert expansion (Figure 10(a)) where SVDsup is on average almost 80 times slower than
our CRF method at the tenth iteration. This difference is due to the fact that SVDsup has
to run SVD factorization for every expert. Consequently, the number of SVD factorizations
grows linearly with the number of experts significantly slowing down SVDsup. For the item
expansion (Figure 10(b)) the number of experts stays constant while the dimension of the
preference matrix increases. Since no additional SVD factorizations are required we found
the speed of SVDsup to not increase as significantly as in the first experiment. However,
even in this setting the CRF model is more than 3.5 times faster. From these results we can
conclude that when inference speed is important CRF is a better model choice especially if
the number of experts is large.

3.7.4 Assessing Expert Quality

An additional advantage of using preference matrices directly, as done in CRF, is model
interpretability. By analyzing the learned potential weights we can gain insight into which

1170

New Learning Methods for Supervised and Unsupervised Preference Aggregation

Figure 11: Learned bψ, wψpos and wψneg expert weights for training Fold 1 of MQ2008-agg;
weights for other folds look analogous. White squares represent positive weights
while black squares represent negative ones. The area of each square is propor-
tional to weight magnitude.

experts are useful and how their preferences are combined. Figure 11 shows an example
weight matrix learned by CRF model on the training Fold 1 of MQ2008-agg. Before delving
into the figure we note that negative bψ raises the energy (lowering the probability, see
Equation 4). Hence large negative values indicate that when preference from expert ψ is
missing for a given document it is pushed down in the aggregate ranking, that is, expert ψ is
important for aggregation. Similarly, positive wψpos lower the energy (upping the probability)

while positive wψneg raise the energy. Consequently, when both weights are positive for a

given expert ψ, documents dni strongly preferred by k (i.e.,
∑

j 6=i Y
ψ
n (i, j)�

∑
j 6=i Y

ψ
n (j, i))

get pushed up in the ranking while those not preferred get pushed down.
Taking these relationships into account we see from Figure 11 that preferences from

experts 14, 15, 17, 18 and 21 are good indicators of document relevance. The importance
of these experts is shown by large negative values of bψ. Moreover, large positive values for
both wψpos and wψneg indicate that strong net preference from each of these experts correlates
closely with high relevance.

We also see that some experts are not useful for aggregation. For instance experts 24,
and 25 all have positive bψ’s meaning that when their preferences are absent the rank of
a document actually improves. Each of these experts also has near-zero wψpos and wψneg
indicating that when their preferences are present the model does not use them.

Finally, some experts are used for aggregation even though their preferences correlate
inversely with ground truth. For instance, experts 10, 11 and 12 all have negative wψpos
and wψneg weights indicating that documents strongly preferred by these experts will be
pushed down in the ranking while those strongly opposed will be pushed up. Moreover,
most weights for these experts are large indicating that they play an important role in the
aggregation process. The model thus learned that these experts often give wrong relative
orderings reversing which can still lead to useful predictions. It is worth noting here that
this kind of inverse relationship is impossible to capture with unsupervised methods.

To further validate the utility of analyzing experts through CRF’s parameters we re-
moved experts whose preferences were found not to be useful by the CRF and retrained
the model. Specifically, from Figure 11 we see that experts 13, 20, 24 and 25 are not being
used by the model and when preferences from these experts are missing, the corresponding

1171

Volkovs and Zemel

N@1 N@2 N@3 N@4 N@5

CRF 42.29 44.99 47.54 49.05 51.03
CRF* 42.64 45.07 47.63 49.00 50.90

Table 6: MQ2008-agg NDCG@1-5 results; CRF is trained on the full data, CRF* is trained
on a subset of the data with experts 13, 20, 24 and 25 removed.

document actually gets a boost in ranking. These experts are clearly not useful for ranking
so we removed them and retrained the model on the remaining 21 experts. The results
are shown in Table 6, from the table we see that retrained model CRF* either performs
comparably or outperforms the original model. This further supports the conclusion that
useful insight into expert quality can be gained by analyzing weights learned by the model.
Such analysis can be particularly useful in crowdsourcing and related domains where the
goal is often to identify most accurate/reliable labelers from the crowd.

4. Conclusion and Future Work

In this work we have investigated the preference aggregation problem. The explosion in
online technology has generated an immense amount of preference data and introduced
many new ways to express and mine preferences. As the social web activity continues to
grow effective preference aggregation techniques become increasingly more important as
they have a direct impact on the success or failure of many web applications.

Machine learning has recently become the technique of choice to automatically mine
preferences and learn effective aggregating functions. Building on the success of existing
methods we have investigated both supervised and unsupervised aggregation problems and
introduced new machine learning models for each problem type.

In the unsupervised problem we introduced a new probabilistic model over preferences
based on a multinomial generative process. Preferences over items are expressed through
real valued scores resulting in a convex optimization problem during inference which can
be solved efficiently with standard gradient based techniques. Modeling the general partial
pairwise preferences makes the model applicable to a wide range of preference aggregation
problems. Empirically we have shown that our approach outperforms existing unsupervised
aggregation methods on two unrelated problems: rank aggregation and collaborative filter-
ing. Future work includes in this area includes investigating how the learned variances can
be used to improve the final ranking. Another interesting direction is to explore mixtures
of the MPM distributions where each mixing component is parametrized by its own set of
scores. This idea is similar to the mixture of Mallows models discussed above and could
be employed to learn a model for different user preference types and used for personalized
recommendation.

In the supervised domain we have introduced a supervised extension to the Multinomial
Preference Model as well as two fully supervised preference aggregation models. All of the
presented approaches are based on pairwise preference matrices, and can also be applied to
a variety of problems with different preference types. Both supervised models fully use the

1172

New Learning Methods for Supervised and Unsupervised Preference Aggregation

labeled training data and can optimize the aggregating function for any target IR metric.
The first model allows to apply any learning-to-rank algorithm during optimization and can
thus be easily incorporated into many existing IR frameworks. The second model has a more
involved learning procedure but is significantly faster during inference time and produces
interpretable results. The two models thus offer a trade-off between ease of use and speed
allowing the user to make an appropriate choice based on systems requirements. Future
work in this domain involves applying these models to preference aggregation problems with
other forms of expert and ground truth preferences. We also plan to investigate other ways
of producing effective document representations from full or partial preferences.

Acknowledgments

We would like to thank Craig Boutilier, Hugo Larochelle, and Ruslan Salakhutdinov for
many thoughtful discussions and suggestions. This research was supported by the Cana-
dian Natural Sciences and Engineering Council (NSERC) and the Canadian Institute for
Advanced Research (CIFAR).

References

E. Agichtein, E. Brill, and S. Dumais. Improving Web search ranking by incorporating
user behavior information. In International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2006.

K. J. Arrow. Social Choice and Individual Values. Yale University Press, 1951.

J. A. Aslam and M. Montague. Models for metasearch. In International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2001.

R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison Wesley, 1999.

R. Bradley and M. Terry. Rank analysis of incomplete block designs. I. The method of
paired comparisons. Biometrika, 39, 1952.

C. J. C. Burges. From RankNet to LambdaRank to LambdaMART: An overview. Technical
Report MSR-TR-2010-82, Microsoft Research, 2010.

C. J. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullen-
der. Learning to rank using gradient descent. In International Conference on Machine
Learning, 2005.

C. J. C. Burges, R. Ragno, and Q. V. Le. Learning to rank with nonsmooth cost functions.
In Neural Information Processing Systems, 2006.

T. S. Caetano, L. Cheng, Q. V. Le, and A. J. Smola. Learning graph matching. In Inter-
national Conference on Machine Learning, 2009.

O. Chapelle, Y. Chang, and T.-Y. Liu. The Yahoo! learning to rank challenge, 2010. URL
http://learningtorankchallenge.yahoo.com/.

1173

http://learningtorankchallenge.yahoo.com/

Volkovs and Zemel

S. Chen, F. Wang, Y. Song, and C. Zhang. Semi-supervised ranking aggregation. Informa-
tion Processing and Management, 47, 2011.

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A short introduction to computational
social choice. In International Conference on Current Trends in Theory and Practice of
Computer Science, 2007.

G. V. Cormack, C. L. A. Clarke, and S. Büttcher. Reciprocal rank fusion outperforms con-
dorcet and individual rank learning methods. In International ACM SIGIR Conference
on Research and Development in Information Retrieval, 2009.

P. Dangauthier, R. Herbrich, T. Minka, and T. Graepel. TrueSkill through time: Revisiting
the history of chess. In Neural Information Processing Systems, 2007.

H. A. David. The Method of Paired Comparissons. Hodder Arnold, 1988.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing
by latent semantic analysis. Journal of the American Society for Information Science,
41, 1990.

A. E. Elo. The Rating of Chess Players: Past and Present. Acro Publishing, 1978.

R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search and classification via
rank aggregation. In International Conference on Management of Data, 2003.

K. Gimpel and N. A. Smith. Softmax-margin CRFs: Training log-linear models with
cost functions. In Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2010.

D. F. Gleich and L.-H. Lim. Rank aggregation via nuclear norm minimization. In ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, 2011.

J. Guiver and E. Snelson. Bayesian inference for Plackett-Luce ranking models. In Inter-
national Conference on Machine Learning, 2009.

F. Guo, C. Liu, A. Kannan, T. Minka, M. Taylor, Y.-M. Wang, and C. Faloutsos. Click
chain model in Web search. In International World Wide Web Conference, 2009.

J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for
performing collaborative filtering. In International ACM SIGIR Conference on Research
and Development in Information Retrieval, 1999. URL http://www.grouplens.org/

node/73.

K. Jarvelin and J. Kekalainen. IR evaluation methods for retrieving highly relevant docu-
ments. In International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, 2000.

X. Jiang, L.-H. Lim, Y. Yao, and Y. Ye. Statistical ranking and combinatorial hodge theory.
Mathematical Programming, 127, 2011.

1174

http://www.grouplens.org/node/73
http://www.grouplens.org/node/73

New Learning Methods for Supervised and Unsupervised Preference Aggregation

T. Joachims. Optimizing search engines using clickthrough data. In ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining, 2002.

T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Radlinski, and G. Gay. Evaluating the
accuracy of implicit feedback from clicks and query reformulations in web search. ACM
Transactions on Information Science, 25, 2007.

A. Klementiev, D. Roth, and K. Small. Unsupervised rank aggregation with distance-based
models. In International Conference on Machine Learning, 2008.

G. Lebanon and J. Lafferty. Cranking: Combining rankings using conditional probability
models on permutations. In International Conference on Machine Learning, 2002.

H. Li. Learning to Rank for Information Retrieval and Natural Language Processing. Morgan
Claypool, 2011.

T. Liu, J. Xu, W. Xiong, and H. Li. LETOR: Benchmark dataset for search on learning
to rank for information retrieval. In International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2007a.

Y. Liu, J. Carbonell, P. Weigele, and V. Gopalakrishnan. Protein fold recognition using
segmentation conditional random fields (SCRFs). Computational Biology, 2006.

Y.-T. Liu, T.-Y. Liu, T. Qin, Z.-M. Ma, and H. Li. Supervised rank aggregation. In
International World Wide Web Conference, 2007b.

T. Lu and C. Boutilier. Learning Mallows models with pairwise preferences. In International
Conference on Machine Learning, 2011.

R. D. Luce. Individual Choice Behavior: A Theoretical Analysis. Wiley, 1959.

C. L. Mallows. Non-null ranking models. Biometrika, 44, 1957.

B. M. Marlin, R. S. Zemel, and S. T. Roweis. Unsupervised learning with non-ignorable
missing data. In International Conference on Artificial Intelligence and Statistics, 2005.

D. Mase. A penalized maximum likelihood approach for the ranking of college football
teams independent of victory margins. The American Statistician, 57, 2003.

D. McAllester and J. Keshet. Generalization bounds and consistency for latent structural
probit and ramp loss. In Neural Information Processing Systems, 2011.

M. Meila, K. Phadnis, A. Patterson, and J. Bilmes. Consensus ranking under the exponen-
tial model. In International Conference on Uncertainty in Artificial Intelligence, 2007.

M. Montague and J. A. Aslam. Condorcet fusion for improved retrieval. In International
Conference on Information and Knowledge Management, 2002.

R. Plackett. The analysis of permutations. Applied Statistics, 24, 1975.

T. Qin, T.-Y. Liu, X.-D. Zhang, D.-S. Wang, and H. Li. Global ranking using continuous
conditional random fields. In Neural Information Processing Systems, 2008.

1175

Volkovs and Zemel

T. Quin, X. Geng, and T.-Y. Liu. A new probabilistic model for rank aggregation. In Neural
Information Processing Systems, 2010.

F. Rossi, K. Brent Venable, and T. Walsh. A Short Introduction to Preferences: Between
Artificial Intelligence and Social Choice. Morgan & Claypool Publishers, 2011.

D. Roth and W.-Y. Yih. Integer linear programming inference for conditional random fields.
In International Conference on Machine Learning, 2005.

R. Salakhutdinov and A. Mnih. Restricted boltzmann machines for collaborative filtering.
In Neural Information Processing Systems, 2008.

K. Sato and Y. Sakakibara. RNA secondary structural alignment with conditional random
fields. Bioinformatics, 2005.

F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, 2003.

L. L. Thurstone. The method of paired comparisons for social values. Abnormal and Social
Psychology, 21, 1927.

M. N. Volkovs and R. S. Zemel. BoltzRank: Learning to maximize expected ranking gain.
In International Conference on Machine Learning, 2009.

M. N. Volkovs and R. S. Zemel. A flexible generative model for preference aggregation. In
International World Wide Web Conference, 2012.

M. N. Volkovs and R. S. Zemel. CRF framework for supervised preference aggregation. In
International Conference on Information and Knowledge Management, 2013.

M. N. Volkovs, H. Lorochelle, and R. S. Zemel. Learning to rank by aggregating expert
preferences. In International Conference on Information and Knowledge Management,
2012.

1176

Journal of Machine Learning Research 15 (2014) 1177-1213 Submitted 2/13; Revised 10/13; Published 3/14

Prediction and Clustering in Signed Networks:
A Local to Global Perspective

Kai-Yang Chiang kychiang@cs.utexas.edu
Cho-Jui Hsieh cjhsieh@cs.utexas.edu
Nagarajan Natarajan naga86@cs.utexas.edu
Inderjit S. Dhillon inderjit@cs.utexas.edu
Department of Computer Science
University of Texas at Austin
Austin, TX 78701, USA

Ambuj Tewari tewaria@umich.edu

Department of Statistics, and

Department of Electrical Engineering and Computer Science

University of Michigan

Ann Arbor, MI 48109, USA

Editor: Jure Leskovec

Abstract

The study of social networks is a burgeoning research area. However, most existing work
is on networks that simply encode whether relationships exist or not. In contrast, relation-
ships in signed networks can be positive (“like”, “trust”) or negative (“dislike”, “distrust”).
The theory of social balance shows that signed networks tend to conform to some local pat-
terns that, in turn, induce certain global characteristics. In this paper, we exploit both
local as well as global aspects of social balance theory for two fundamental problems in the
analysis of signed networks: sign prediction and clustering. Local patterns of social balance
have been used in the past for sign prediction. We define more general measures of social
imbalance (MOIs) based on `-cycles in the network and give a simple sign prediction rule.
Interestingly, by examining measures of social imbalance, we show that the classic Katz
measure, which is used widely in unsigned link prediction, also has a balance theoretic inter-
pretation when applied to signed networks. Motivated by the global structure of balanced
networks, we propose an effective low rank modeling approach for both sign prediction
and clustering. We provide theoretical performance guarantees for our low-rank matrix
completion approach via convex relaxations, scale it up to large problem sizes using a ma-
trix factorization based algorithm, and provide extensive experimental validation including
comparisons with local approaches. Our experimental results indicate that, by adopting a
more global viewpoint of social balance, we get significant performance and computational
gains in prediction and clustering tasks on signed networks. Our work therefore highlights
the usefulness of the global aspect of balance theory for the analysis of signed networks.

Keywords: signed networks, sign prediction, balance theory, low rank model, matrix
completion, graph clustering

c©2014 Kai-Yang Chiang and Cho-Jui Hsieh and Nagarajan Natarajan and Inderjit S. Dhillon and Ambuj Tewari.

Chiang, Hsieh, Natarajan, Dhillon and Tewari

1. Introduction

The study of networks is a highly interdisciplinary field that draws ideas and inspiration from
multiple disciplines including biology, computer science, economics, mathematics, physics,
sociology, and statistics. In particular, social network analysis deals with networks that form
between people. With roots in sociology, social network analysis has evolved considerably.
Recently, a major force in its evolution has been the growing importance of online social
networks that were themselves enabled by the Internet and the World Wide Web. A natural
result of the proliferation of online social networks has been the increased involvement in
social network analysis of people from computer science, data mining, information studies,
and machine learning.

Traditionally, online social networks have been represented as graphs, with nodes rep-
resenting entities, and edges representing relationships between entities. However, when a
network has like/dislike, love/hate, respect/disrespect, or trust/distrust relationships, such
a representation is inadequate since it fails to encode the sign of a relationship. Recently,
online networks where two opposite kinds of relationships can occur have become common.
For example, online review websites such as Epinions allow users to either like or dislike
other people’s reviews. Such networks can be modeled as signed networks, where edge
weights can be either greater or less than 0, representing positive or negative relationships
respectively. The development of theory and algorithms for signed networks is an impor-
tant research task that cannot be successfully carried out by merely extending the theory
and algorithms for unsigned networks in a straightforward way. First, many notions and
algorithms for unsigned networks break down when edge weights are allowed to be negative.
Second, there are some interesting theories that are applicable only to signed networks.

Perhaps the most basic theory that is applicable to signed social networks but does not
appear in the study of unsigned networks is that of social balance (Harary, 1953; Cartwright
and Harary, 1956). The theory of social balance states that relationships in friend-enemy
networks tend to follow patterns such as “an enemy of my friend is my enemy” and “an
enemy of my enemy is my friend”. A notion called weak balance (Davis, 1967) further
generalizes social balance by arguing that in many cases an enemy of one’s enemy can indeed
act as an enemy. Both strong and weak balance are defined in terms of local structure at
the level of triangles. Interestingly, the local structure dictated by balance theory also leads
to a special global structure of signed networks. We review the connection between local
and global structure of balance signed networks in Section 2.

Social balance has been shown to be useful for prediction and clustering tasks for signed
networks. For instance, consider the sign prediction problem where the task is to predict
the (unknown) sign of the relationship between two given entities. Ideas derived from
local balance of signed networks can be successfully used to obtain algorithms for sign
prediction (Leskovec et al., 2010a; Chiang et al., 2011). In addition, the clustering problem
of partitioning the nodes of a graph into tightly knit clusters turns out to be intimately
related to weak balance theory. We will see how a clustering into mutually antagonistic
groups naturally emerges from weak balance theory (see Theorem 8 for more details).

The goal of this paper is to develop algorithms for prediction and clustering in signed
networks by adopting the local to global perspective that is already present in the theory
of social balance. What we find particularly interesting is that the local-global interplay

1178

Global Modeling of Signed Networks

that occurs in the theory of social balance also occurs in our algorithms. We hope to
convince the reader that, even though the local and global definitions of social balance
are theoretically equivalent, algorithmic and performance gains occur when a more global
approach in algorithm design is adopted.

We mentioned above that a key challenge in designing algorithms for signed networks is
that the existing algorithms for unsigned networks may not be easily adapted to the signed
case. For example, it has been shown that spectral clustering algorithms for unsigned net-
works cannot, in general, be directly extended to signed networks (Chiang et al., 2012).
However, we do discover interesting connections between methods meant for unsigned net-
works and those meant for signed networks. For instance, in the context of sign prediction,
we see that the Katz measure, which is widely used for unsigned link prediction, actually has
a justification as a sign prediction method in terms of balance theory. Similarly, methods
based on low rank matrix completion can be motivated using the global viewpoint of balance
theory. Thus, we see that existing methods for unsigned network analysis can reappear in
signed network analysis albeit due to different reasons.

Here are the key contributions we make in this paper:

• We provide a local to global perspective of the sign prediction problem, and show that
our global methods are superior on synthetic as well as real-world data sets.

• In particular, we propose sign prediction methods based on local structures (triads and
higher-order cycles) and low-rank modeling. The methods that use local structures
are motivated by a local viewpoint of social balance, whereas the low-rank modeling
approach can be viewed as a global approach motivated by a corresponding global
viewpoint of social balance.

• We show that the Katz measure used for unsigned networks can be interpreted from
a social balance perspective: this immediately yields a sign prediction method.

• We provide theoretical guarantees for sign prediction and signed network clustering
of balanced signed networks, under mild conditions on their structure.

• We provide comprehensive experimental results that establish the superiority of global
methods over local methods studied in the past and other state-of-the-art approaches.

Parts of this paper have appeared previously in Chiang et al. (2011) and Hsieh et al. (2012).
The sign prediction methods based on paths and cycles were first presented in Chiang et al.
(2011), and low-rank modeling in Hsieh et al. (2012). In this paper, we provide a more
detailed and unified treatment of our previous research; in particular, we provide a local-
to-global perspective of the proposed methods, and a much more comprehensive theoretical
and experimental treatment.

The organization of this paper is guided by the local versus global aspects of social
balance theory. We first review some basics of signed networks and balance theory in
Section 2. We recall notions such as (strong) balance and weak balance while emphasizing
the connections between local and global structures of balanced signed networks. We will see
that local balance structure is revealed by triads (triangles) and cycles, while global balance
structure manifests itself as clusterability of the nodes in the network. An understanding

1179

Chiang, Hsieh, Natarajan, Dhillon and Tewari

of the local viewpoint of social balance as well as its global implications are reviewed in
Section 2 to help the reader better appreciate the methods developed in the paper.

We introduce sign prediction methods motivated from the local viewpoint of social
balance in Section 3. In particular, we propose measures of social imbalance (MOIs), and
a simple sign prediction method for a given measure of imbalance. The proposed measures
of imbalance satisfy the property that they are zero if and only if the network is balanced.
While the imbalance measure based on triads has already been studied, the local definition
of social balance based on general cycles can be used to obtain a more general measure of
imbalance. We also propose a simple and efficient relaxation of the proposed measure. We
show the validity of the relaxation in Theorem 10. An infinite-order version of the measure
for sign prediction leads to a familiar proximity measure for (unsigned) networks called the
Katz measure, as stated in Theorem 12. Other than serving to reinterpret the Katz measure
from the perspective of social balance in signed networks, this result is the first connection
that we see between link prediction in unsigned networks and sign prediction in signed
networks. The sign prediction method recently proposed by Leskovec et al. (2010a) was
also motivated by the local definition of social balance. This method, however, is limited
to using triangles in the network. In our experiments, we observe that a variant of their
method that considers higher-order cycles performs better.

In Section 4, we develop a completely global approach based on the global structure
of balanced signed networks. We appeal to the global clusterability of complete weakly
balanced networks (stated in Theorem 8) to develop our global approach. Broadly, we
show that such networks have low rank adjacency matrices, so that we can solve the sign
prediction problem by reducing it to a low rank matrix completion problem. Specifically,
we show that the adjacency matrix of a complete k-weakly balanced network, that can
be partitioned into k > 2 groups such that within-cluster edges are positive and the rest
are negative, has rank k (Theorem 13). The result follows by observing that the column
space of the signed adjacency matrix is spanned by a set of k linearly independent vectors
corresponding to the k groups.

Our approach attempts to fill in the unobserved (missing) edges of a signed network so
that the resulting network is weakly balanced. Our result on the low-rank nature of signed
adjacency matrices allows us to pose the sign prediction problem as a low-matrix completion
problem. The inherent rank constraint in the problem is non-convex. Therefore, we resort
to using multiple approximation strategies for solving the problem. First, we look at a
standard convex relaxation of rank constraint using the trace norm. The approach comes
with recovery guarantees due to Candés and Tao (2009), and it requires the adjacency matrix
to be ν-incoherent (see Definition in (10)). We analytically show that incoherence, in the
case of complete k-weakly balanced signed networks, is directly related to the notion of group
imbalance, which measures how skewed the group sizes are (Theorem 17). We would expect
a large group imbalance to make the recovery of the adjacency matrix harder. We rigorously
show the recovery guarantee in terms of group imbalance for signed networks in Theorem 18.
Unfortunately, solving the aforementioned convex relaxation is computationally prohibitive
in practice. We discuss two approaches for approximately solving the low-rank matrix
completion problem: one based on Singular Value Projection proposed by Jain et al. (2010)
and the other based on matrix factorization, which is both scalable and empirically more
accurate.

1180

Global Modeling of Signed Networks

Furthermore, the low rank modeling approach can also be used for the clustering of a
signed network. Our clustering method proceeds as follows. First, we use a low-rank matrix
completion algorithm on its adjacency matrix. Then we cluster the top-k eigenvectors of
the completed matrix using any feature-based clustering algorithm. By doing so, we show
that under the same assumptions that guarantee the recovery of signed networks, the true
clusters can be identified from the top-k eigenvectors (Theorem 19).

In Section 5, we show some evidence of local and global balance in real networks. Our
experiments on synthetic and real networks show that global methods (based on low rank
models) generally perform better, in terms of accuracy of sign prediction, than local methods
(based on triads and cycles). Finally, we discuss related work in Section 6, and state our
conclusions in Section 7.

2. Signed Networks and Social Balance

In this section, we set up our notation for signed networks, review the basic notions of
balance theory, and describe the two main tasks (sign prediction and clustering) addressed
in this paper.

2.1 Categories of Signed Networks

The most basic kind of a signed network is a homogeneous signed network. Formally, a
homogeneous signed network is represented as a graph with the adjacency matrix A ∈
{−1, 0, 1}n×n, which denotes relationships between entities as follows:

Aij =

1, if i & j have positive relationship,

−1, if i & j have negative relationship,

0, if relationship between i & j is unknown (or missing).

We should note that we treat a zero entry in A as an unknown relationship instead of
no relationship, since we expect any two entities have some (hidden) positive or negative
attitude toward each other even if the relationship itself might not be observed. From an
alternative point of view, we can assume there exists an underlying complete signed network
A?, which contains relationship information between all pairs of entities. However, we only
observe some entries of A?, denoted by Ω. Thus, the partially observed network A can be
represented as:

Aij =

{
A?ij , if (i, j) ∈ Ω,

0, otherwise.

A signed network can also be heterogeneous. In a heterogeneous signed network, there
can be more than one kind of entity, and relationships between two, same or different,
entities can be positive and negative. For example, in the online video sharing website
Youtube, there are two kinds of entities—users and videos, and every user can either like or
dislike a video. Therefore, the Youtube network can be seen as a bipartite signed network,
in which the positive and negative links are between users and videos.

In this paper, we will focus our attention on homogeneous signed networks, that is,
networks where relationships are between the same kind of entities. For heterogeneous

1181

Chiang, Hsieh, Natarajan, Dhillon and Tewari

Balanced triads Unbalanced triads

a
+

b

+
c

+
a
−

b

−
c

+
a
−

b

−
c

−
a
+

b

+
c

−

Table 1: Configurations of balanced and unbalanced triads.

signed networks, it is possible to do some preprocessing to reduce them to homogeneous
networks. For instance, in a Youtube network, we could possibly infer the relationships
between users based on their taste of videos. These preprocessing tasks, however, are not
trivial.

In the remaining part of the paper, we will use the term “network” as an abbreviation
for “signed network”, unless we explicitly specify otherwise. In addition, we will now mainly
focus on undirected signed graphs (i.e., A is symmetric) unless we specify otherwise. For
a directed signed network, a simple but sub-optimal way to apply our methods is by con-
sidering the symmetric network, sign(A + AT). Of course, making the network symmetric
erases edges with conflicting signs between a pair of nodes. It is important to know how
much information is lost in the process. We found that in real networks, the percentage of
conflicting edges is extremely small (see Table 4 in Section 5). The observation suggests
that making the network undirected preserves the sign structure for the most part, and is
sufficient for analysis.

2.2 Social Balance

A key idea behind many methods that estimate a high dimensional complex object from
limited data is the exploitation of structure. In the case of signed networks, researchers have
identified various kinds of non-trivial structure (Harary, 1953; Davis, 1967). In particular,
one influential theory, known as social balance theory, states that relationships between
entities tend to be balanced. Formally, we say a triad (or a triangle) is balanced if it contains
an even number of negative edges. This is in agreement with beliefs such as “a friend of my
friend is more likely to be my friend” and “an enemy of my friend is more likely to be my
enemy”. The configurations of balanced and unbalanced triads are shown in Table 1.

Though social balance specifies the patterns of triads, one can generalize the balance
notion to general `-cycles. An `-cycle is defined as a simple path from some node to itself
with length equal to `. The following definition extends social balance to general `-cycles:

Definition 1 (Balanced `-cycles) An `-cycle is said to be balanced when it contains an
even number of negative edges.

Table 2 shows some instances of balanced and unbalanced cycles based on the above def-
inition. To define balance for general networks, we first define the notion of balance for
complete networks:

Definition 2 (Balanced complete networks) A complete network is said to be balanced
when all triads in the network are balanced.

1182

Global Modeling of Signed Networks

Balanced cycles Unbalanced cycles

a
+
b
−

c
+
d−

a
+
b
−

c
+
d−

e
+

a
+
b

+
c
+
d−

a
+
b
+

c
+
d

+
e

−

Table 2: Some instances of balanced and unbalanced cycles.

Of course, most real networks are not complete. To define balance for general networks,
we adopt the perspective of a missing value estimation problem as follows:

Definition 3 (Balanced networks) A (possibly incomplete) network is said to be bal-
anced when it is possible to assign ±1 signs to all missing entries in the adjacency matrix,
such that the resulting complete network is balanced.

So far, the notion of balance is defined by specifying patterns of local structures in
networks (i.e., the patterns of triads). The following result from balance theory shows that
balanced networks have a global structure.

Theorem 4 (Balance theory, Cartwright and Harary, 1956) A network is balanced
iff either (i) all edges are positive, or (ii) we can divide nodes into two clusters (or groups),
such that all edges within clusters are positive and all edges between clusters are negative.

Now we revisit balanced `-cycles defined at the beginning of this subsection. Under
that definition, we can verify if a network is balanced or not by looking at all cycles in the
network due to the following well-known theorem (whose proof can be found in Easley and
Kleinberg (2010, Chapter 5)).

Theorem 5 A network is balanced iff all its `-cycles are balanced.

One possible weakness of social balance theory is that the defined balance relationships
might be too strict. In particular, researchers have argued that the degree of imbalance in
the triad with two positive edges (the fourth triad in Table 1) is much stronger than that
in the triad with all negative edges (the third triad in Table 1). By allowing triads with all
negative edges, a weaker version of balance notion can be defined (Davis, 1967).

Definition 6 (Weakly balanced complete networks) A complete network is said to
be weakly balanced when all triads in the network are weakly balanced.

Note that `-cycles with an odd number of negative edges are allowed under weak balance.
The definition for general incomplete networks can be obtained by adopting the perspective
of a missing value estimation problem:

Definition 7 (Weakly balanced networks) A (possibly incomplete) network is said to
be weakly balanced when it is possible to obtain a weakly balanced complete network by filling
the missing edges in its adjacency matrix.

1183

Chiang, Hsieh, Natarajan, Dhillon and Tewari

Though the above definitions define weak balance in terms of patterns of local triads,
one can show that weakly balanced networks have a special global structure, analogous to
Theorem 4:

Theorem 8 (Weak balance theory, Davis 1967) A network is weakly balanced iff ei-
ther (i) all of its edges are positive, or (ii) we can divide nodes into k clusters, such that all
the edges within clusters are positive and all the edges between clusters are negative.

Note that when k = 2, this theorem simply reduces to Theorem 4.

At this juncture, it would be helpful to recall that balance and weak balance are more
natural for the analysis of undirected (signed) networks. More recently, Leskovec et al.
(2010b) analyzed directed signed networks using the concept of “status”, that is character-
istic of directed networks. We do not explore the “status structure” of signed networks in
this paper, but the theory seems to be promising and worthy of study in the future.

2.3 Key Problems in Signed Network Analysis

As in classical social network analysis, we are interested in what we can infer given a signed
network topology. In particular, we will focus on two core problems—sign prediction and
clustering.

In the sign prediction problem, we intend to infer the unknown relationship between a
pair of entities i and j based on partial observations of the entire network of relationships.
More specifically, if we assume that we are given a (usually incomplete) network A sampled
from some underlying (complete) network A?, then the sign prediction task is to recover the
sign patterns of one or more edges in A?. This problem bears similarity to the structural
link prediction problem in unsigned networks (Liben-Nowell and Kleinberg, 2007; Menon
and Elkan, 2011). Note that the temporal link prediction problem has also been studied in
the context of an unsigned network evolving in time. The input to the prediction algorithm
then consists of a series of networks (snapshots) instead of a single network. We do not
consider such temporal problems in this paper.

Clustering is another important problem in network analysis. Recall that according
to weak balance theory (Theorem 8), we can find k groups such that they are mutually
antagonistic in a weakly balanced network. Motivated by this, the clustering task in a
signed network is to identify k antagonistic groups in the network, such that most edges
within the same cluster are positive while most edges between different clusters are negative.
Notice that since the (weak) balance notion only applies to signed networks, most traditional
clustering algorithms for unsigned networks cannot be directly applied.

3. Local Methods for Sign Prediction

The definition of structural balance based on triangles is local in nature. A natural approach
for designing sign prediction algorithms proceeds by reasoning locally in terms of unbalanced
triangles, which motivates the following measure of imbalance:

µtri(A) :=
∑

σ̃∈SC3(A)

1 [σ̃ is unbalanced] , (1)

1184

Global Modeling of Signed Networks

where SC3(A) refers to the set of triangles (simple cycles of length-3) in the network A.
In general, we use SC`(A) to denote the set of all simple `-cycles in the network A. A
definition essentially similar to the one above appears in the recent work of van de Rijt
(2011, p. 103) who observes that the equivalence

µtri(A) = 0 iff A is balanced

holds only for complete graphs. For an incomplete graph, imbalance might manifest itself
only if we look at longer simple cycles. Accordingly, we define a higher-order analogue of
(1),

µs`(A) :=
∑̀
i=3

βi
∑

σ̃∈SCi(A)

1 [σ̃ is unbalanced] , (2)

where ` ≥ 3 and βi’s are coefficients weighting the relative contributions of unbalanced
simple cycles of different lengths. If we choose a decaying choice of βi, like βi = βi for some
β ∈ (0, 1), then we can even define an infinite-order version,

µs∞(A) :=
∑
i≥3

βi
∑

σ̃∈SCi(A)

1 [σ̃ is unbalanced] . (3)

It is clear that µs∞(·) is a genuine measure of imbalance in the sense formalized by the
following corollary of Theorem 5.

Corollary 9 Fix an observed graph A. Let βi > 0 be any sequence such that the infinite
sum in (3) is well-defined. Then, µs∞(A) > 0 iff A is unbalanced.

The basic idea of using a measure of imbalance for predicting the sign of a given query
link {i, j}, such that i 6= j and Ai,j = 0, is as follows. Given the observed graph A and
query {i, j}, i 6= j, we construct two graphs: A+(i,j) and A−(i,j). These are obtained from
A by setting Aij and Aji to +1 and −1 respectively. Formally, these two augmented graphs
are defined as:

A+(i,j)
uv =

{
1, if (u, v) = (i, j) or (j, i)

Auv, otherwise.
A−(i,j)
uv =

{
−1, if (u, v) = (i, j) or (j, i)

Auv, otherwise.

Then, given a measure of imbalance, denoted as µ (·), the predicted sign of {i, j} is simply:

sign
(
µ
(
A−(i,j)

)
− µ

(
A+(i,j)

))
. (4)

Note that, to use the above for prediction, we should use a µ (·) for which the quantity
(4) is efficiently computable. The measure of imbalance based on triads µtri(A) and the more
general measure µs∞(A) involve counting simple cycles in a graph. However, enumerating
simple cycles of a graph is NP-hard.1 To get around this computational issue, we slightly
change the definition of µ`(·) to the following.

µ`(A) :=
∑̀
i=3

βi
∑

σ∈Ci(A)

1 [σ is unbalanced] . (5)

1. By straightforward reduction to the Hamiltonian cycle problem (Karp, 1972).

1185

Chiang, Hsieh, Natarajan, Dhillon and Tewari

As before, we allow ` =∞ provided the βi’s decay sufficiently rapidly.

µ∞(A) :=
∑
i≥3

βi
∑

σ∈Ci(A)

1 [σ is unbalanced] . (6)

The only difference between these definitions and (2),(3) is that here we sum over all cycles
(denoted by Ci(A)), not just simple ones. However, we still get a valid notion of imbalance
as stated by the following result.

Theorem 10 Fix an observed graph A. Let βi > 0 be any sequence such that the infinite
sum in (6) is well-defined. Then, µ∞(A) > 0 iff A is unbalanced.

It turns out, somewhat surprisingly, that computing (4) with µ (A) = µtri(A) simply
reduces to computing (i, j) entry in A2. The following key lemma gives an efficient way to
compute (4) with µ (·) = µ`(·) in general. Indeed, it amounts to computing higher powers
of the adjacency matrix.

Lemma 11 Fix A and let i 6= j be such that (i, j) /∈ Ω. Let A+(i,j) and A−(i,j) be the
augmented graphs. Then, for any ` ≥ 3,∑

σ∈C`(A−(i,j))

1 [σ] −
∑

σ∈C`(A+(i,j))

1 [σ] = A`−1
i,j ,

where 1 [σ] is the abbreviation of 1 [σ is unbalanced].

Using Lemma 11, it is easy to see that the prediction (4) using (5) reduces to

sign
(
µ`

(
A−(i,j)

)
− µ`

(
A+(i,j)

))
= sign

(∑̀
t=3

βtA
t−1
i,j

)
,

and the prediction (4) using (6) reduces to

sign
(
µ∞

(
A−(i,j)

)
− µ∞

(
A+(i,j)

))
= sign

∑
`≥3

β`A
`−1
i,j

 . (7)

Lemma 11 is also key to interpreting a classical proximity measure called the Katz mea-
sure in the context of sign prediction, discussed next. Proofs of Theorem 10 and Lemma 11
are presented in Appendix A.

3.1 Katz Measure is Valid for Signed Networks

The classic method of Katz (1953) has been used successfully for unsigned link prediction
(Liben-Nowell and Kleinberg, 2007). Formally, given an unsigned network A with a query
node-pair (i, j), the Katz measure for the link (i, j) is defined as:

Katz(i, j) :=
∞∑
`=2

β`A`ij ,

1186

Global Modeling of Signed Networks

where β > 0 is a constant so that the above infinite sum is well defined (β < 1
‖A‖2 suffices,

where ‖A‖2 is the spectral norm of A).2 Intuitively, the Katz measure sums up all possible
paths between i and j. The number of length ` paths can grow exponentially as ` increases
(for example, there are Ω(n`−1) length ` paths between i and j if the network is complete).
Therefore, the contributions from length ` paths are exponentially damped by the constant
β`. One can also verify the above definition has the following matrix form:

Katz(i, j) = ((I − βA)−1 − I − βA)ij .

A higher Katz score indicates more proximity between nodes i and j, and the link (i, j) is
therefore more likely to exist or to form in the future.

While Katz has been used as an effective proximity measure for link prediction in un-
signed networks, it is not obvious what the signed Katz score corresponds to in signed
networks. Following (7), the connection between Katz measure and µ∞(·) stands out. The
following theorem shows that by considering a sign prediction method based on µ∞(·) we
obtain an interesting interpretation of the Katz measure on a signed network from a balance
theory viewpoint.

Theorem 12 (Balance Theory Interpretation of the Katz Measure) Consider the
sign prediction rule (4) using µ∞(·) in the reduced form (7). In the special case when
β` = β`−1 with β small enough (β < 1/‖A‖2), the rule can be expressed as the Katz
prediction rule for edge sign prediction, in closed form:

sign
((

(I − βA)−1 − I − βA
)
i,j

)
.

Our sign prediction rule for a given measure of imbalance relies on social balance theory
for signed networks. However, real world networks may not conform to the prediction of
balance theory or may do so only to a certain extent. Furthermore, balance theory was
developed for undirected networks and hence methods based on measures of imbalance can
deal only with undirected networks. To partly mitigate the lapse, we can use measures
of imbalance to derive features that can then be fed to a supervised learning algorithm
(like logistic regression) along with the signs of the known edges in the network. When we
learn weights for such features, we are weakening our reliance on social balance theory but
can naturally deal with directed graphs. By using features constructed from higher-order
cycles, we extend the supervised approach used by Leskovec et al. (2010a) that was limited
to learning from triads-based features. While the learning approach itself is straightforward,
construction of higher-order features for directed signed networks requires some attention.
We defer the details to Appendix B. In the experiments (Section 5), we denote the local
method (7) corresponding to the measure of imbalance based on cycles of length ` by MOI-
`. Note that MOI-∞ refers to the signed Katz measure. The supervised learning method

2. Our definition is slightly different from the definition in Liben-Nowell and Kleinberg (2007), where the
summation starts from ` = 1. However, the measures are identical for the purpose of link prediction,
as the prediction needs to be made only when the query nodes i and j have no existing edge, that is,
Aij = 0.

1187

Chiang, Hsieh, Natarajan, Dhillon and Tewari

discussed in Appendix B, where we use logistic regression to train weights for features
constructed from higher-order cycles of length up to `, is referred to as HOC-` in the
experiments.

4. Global Methods: Low Rank Modeling

In Section 3, we have seen how to use `-cycles for sign prediction. We have also seen that
`-cycles play a major role in how balance structure manifests itself locally. By increasing `,
the level at which balance structure is considered becomes less localized. Still, it is natural
to ask whether we can design algorithms for signed networks by directly making use of
their global structure. To be more specific, let us revisit the definition of complete weakly
balanced networks. In general, weak balance can be defined from either a local or a global
point of view. From a local point of view, a given network is weakly balanced if all triads
are weakly balanced, whereas from a global point of view, a network is weakly balanced if
its global structure obeys the clusterability property stated in Theorem 8. Therefore, it is
natural to ask whether we can directly use this global structure for sign prediction. In the
sequel, we show that weakly balanced networks have a “low-rank” structure, so that the
sign prediction problem can be formulated as a low rank matrix completion problem.

We begin by showing that given a complete k-weakly balanced network, its adjacency
matrix A? has rank at most k:

Theorem 13 (Low Rank Structure of Signed Networks) The adjacency matrix A?

of a complete k-weakly balanced network has rank 1 if k ≤ 2, and has rank k for all k > 2.

Proof Since A? is k-weakly balanced, the nodes can be divided into k groups, say

S(1), S(2), . . . , S(k). Suppose group S(i) contains nodes s
(i)
1 , s

(i)
2 , . . . , s

(i)
ni , then the corre-

sponding columns vectors of A? all have the following form (after suitable reordering of
nodes):

bi = [−1 · · · − 1 1 · · · 1︸ ︷︷ ︸
the ith group

−1 · · · − 1]T ,

and so the column space of A? is spanned by {b1, . . . ,bk}.
First consider k ≤ 2, that is, the network is strongly balanced. If k = 1, it is easy to see

that rank(A?) = 1. If k = 2, then b1 = −b2. Therefore, rank(A?) is again 1.

Now consider k > 2. In this case, we argue that rank(A?) exactly equals k by showing
that b1, . . . ,bk are linearly independent. We consider the k× k square matrix M such that
Mij = −1,∀i 6= j and Mii = 1, ∀i. It is obvious that 1 = [1 1 · · · 1]T is an eigenvector of M
with eigenvalue −(k − 2). We can further construct the other k − 1 linearly independent
eigenvectors, each with eigenvalue 2:

e1 − e2, e1 − e3, . . . , e1 − ek,

where ei ∈ Rk is the ith column of the k × k identity matrix. These k − 1 eigenvectors are
clearly linearly independent. Therefore, rank(M) = k.

From the above we can show that rank(A?) = k. Suppose that b1, . . . ,bk are not lin-
early independent, then there exists α1, . . . , αk, with some αi 6= 0, such that

∑k
i=1 αibi = 0.

1188

Global Modeling of Signed Networks

Using this set of α’s, it is easy to see that
∑k

i=1 αiMi = 0 (where Mi is the ith column of
M), but this contradicts the fact that rank(M) = k. Therefore, rank(A?) = k.

1 1 1 −1 −1 −1

1 1 1 −1 −1 −1

1 1 1 −1 −1 −1

−1 −1 −1 1 −1 −1

−1 −1 −1 −1 1 1

−1 −1 −1 −1 1 1

=

−1.045 0.265 −0.402

−1.045 0.265 −0.402

−1.045 0.265 −0.402

0.319 −1.260 −0.830

0.919 0.670 −0.541

0.919 0.670 −0.541

−1.045 0.265 0.402

−1.045 0.265 0.402

−1.045 0.265 0.402

0.319 −1.260 0.830

0.919 0.670 0.541

0.919 0.670 0.541

T

Figure 1: An illustrative example of the low-rank structure of a 3-weakly balanced network.
The network can be represented as a product of two rank-3 matrices, and so the
adjacency matrix has rank no more than 3.

Figure 1 is an example of a complete 3-weakly balanced network. As shown, we see its
adjacency matrix can be expressed as a product of two rank-3 matrices, indicating its rank
is no more than three. In fact, by Theorem 13, we can conclude that its rank is exactly 3.

The above reasoning shows that (adjacency matrices of) complete weakly balanced net-
works have low rank. However, most real networks are not complete graphs. Recall that in
order to define balance on incomplete networks, we try to fill in the unobserved or missing
edges (relationships) so that balance is obtained. Following this desideratum, we can think
of sign prediction in signed networks as a low-rank matrix completion problem. Specifically,
suppose we observe entries (i, j) ∈ Ω of a complete signed network A?. We want to find a
complete matrix by assigning ±1 to every unknown entry, such that the resulting complete
graph is weakly balanced and hence, the completed matrix is low rank. Thus, our missing
value estimation problem can be formulated as:

minimize rank(X)

s.t. Xij = A?ij , ∀ (i, j) ∈ Ω, (8)

Xij ∈ {±1}, ∀ (i, j) /∈ Ω.

Once we obtain the minimizer of (8), which we will denote by X?, we can infer the missing
relationship between i and j by simply looking up the sign of the entryX?

ij . So the question is
whether we can solve (8) efficiently. In general, (8) is known to be NP-hard; however, recent
research has shown the surprising result that under certain conditions, the low-rank matrix
completion problem (8) can be solved by convex optimization to yield a global optimum in
polynomial time (Candés and Recht, 2008). In the following subsections, we identify such
conditions as well as approaches to approximately solve (8) for real-world signed networks.

4.1 Sign Prediction via Convex Relaxation

One possible approximate solution for (8) can be obtained by dropping the discrete con-
straints and replacing rank(X) by the trace norm of X (denoted by ‖X‖∗), which is the

1189

Chiang, Hsieh, Natarajan, Dhillon and Tewari

tightest convex relaxation of rank (Fazel et al., 2001). Thus, a convex relaxation of (8) is:

minimize ‖X‖∗
s.t. Xij = A?ij , ∀ (i, j) ∈ Ω. (9)

It turns out that, under certain conditions, by solving (9) we can recover the exact
missing relationships from the underlying complete signed network. This result is the con-
sequence of recent research (Candés and Recht, 2008; Candés and Tao, 2009) which has
shown that perfect recovery is possible if the observed entries are uniformly sampled and
A? has high incoherence, which may be defined as follows:

Definition 14 (Incoherence) An n×n matrix X with singular value decomposition X =
UΣV T is ν-incoherent if

max
i,j
|Uij | ≤

√
ν√
n

and max
i,j
|Vij | ≤

√
ν√
n
. (10)

Intuitively, higher incoherence (smaller ν) means that large entries of the matrix are
not concentrated in a small part. The following theorem shows that under high incoherence
and uniform sampling, solving (9) exactly recovers A? with high probability.

Theorem 15 (Recovery Condition Candés and Tao, 2009) Let A? be an n× n ma-
trix with rank k, with singular value decomposition A? = UΣV T . In addition, assume A?

is ν-incoherent. Then there exists some constant C, such that if Cν4nk2 log2 n entries are
uniformly sampled, then with probability at least 1−n−3, A? is the unique optimizer of (9).

In particular, if the underlying matrix has bounded rank (i.e., k = O(1)), the number
of sampled entries required for recovery reduces to O(ν4n log2 n).

Based on Theorem 15, we now show that the notion of incoherence can be connected
to the relative sizes of the clusters in signed networks. As a result, by solving (9), we will
show that we can recover the underlying signed network with high probability if there are
no “small” groups. To start, we define the group imbalance of a signed network as follows:

Definition 16 (Group Imbalance) Let A? be the adjacency matrix of a complete k-
weakly balanced network with n nodes, and let n1, . . . , nk be the sizes of the groups. Group
imbalance τ of A? is defined as

τ := max
i=1,...,k

n

ni
.

By definition, k ≤ τ ≤ n. Larger group imbalance τ indicates the presence of a very small
group, which would intuitively make recovery of the underlying network harder (under
uniform sampling). For example, consider an extreme scenario that a k-weakly balanced
network contains n nodes, with two groups that contain only one node each. Then if nodes
n − 1 and n form these singleton groups, the adjacency matrix of this network has group
imbalance τ = n with A?n−1,n−1 = A?n,n = 1 and A?n−1,n = A?n,n−1 = −1. However, without
observing A?n−1,n or A?n,n−1, it is impossible to determine whether the last two nodes are
in the same cluster, or whether each of them belongs to an individual cluster. When n is

1190

Global Modeling of Signed Networks

very large, the probability of observing one of these two entries will be extremely small.
Therefore, under uniform sampling of O(n log2 n) entries, it is unlikely that any matrix
completion algorithm will be able to exactly recover this network.

Motivated by this example, we now analytically show that group imbalance τ determines
the possibility of recovery. We first show the connection between τ and incoherence ν.

Theorem 17 (Incoherence of Signed Networks) Let A? be the adjacency matrix of a
complete k-weakly balanced network with group imbalance τ . Then A? is τ -incoherent.

Proof Recall that incoherence ν is defined as the maximum absolute value in the (nor-
malized) singular vectors of A?, which are identical to its eigenvectors (up to signs), since
A? is symmetric.

Let u be any unit eigenvector of A? (‖u‖2 = 1) with eigenvalue λ. Suppose i and j are
in the same group, then the ith and jth rows of A? are identical, that is, A?i,: = A?j,:. As a

result, the ith and jth elements of all eigenvectors will be identical (since ui = A?i,:u/λ =
A?j,:u/λ = uj). Thus, u has the following form:

u = [α1, α1, . . . , α1︸ ︷︷ ︸
n1

, α2, . . . , α2︸ ︷︷ ︸
n2

, . . . , αk, . . . , αk︸ ︷︷ ︸
nk

]T . (11)

Because ‖u‖2 = 1,
∑k

i=1 niα
2
i = 1, and so niα

2
i ≤ 1, ∀i, which implies |αi| ≤ 1/

√
ni, ∀i.

Thus,

max
i
|ui| = max

i
|αi| ≤ max

i

1
√
ni

= max
i

√
n/ni√
n
≤
√
τ√
n
.

Therefore, A? is τ -incoherent.

Putting together Theorems 15 and 17, we now have the main theorem of this subsection:

Theorem 18 (Recovery Condition for Signed Networks) Suppose we observe edges
Aij, (i, j) ∈ Ω, from an underlying k-weakly balanced signed network A? with n nodes, and
suppose that the following assumptions hold:
A. k is bounded (k = O(1)),
B. the set of observed entries Ω is uniformly sampled, and
C. number of samples is sufficiently large, that is, |Ω| ≥ Cτ4n log2 n, where τ is the group

imbalance of the underlying complete network A?.
Then A? can be perfectly recovered by solving (9), with probability at least 1− n−3.

In particular, if n/ni is upper bounded so that τ is a constant, then we only need O(n log2 n)
observed entries to exactly recover the complete k-weakly balanced network.

4.2 Sign Prediction via Singular Value Projection

Though the convex optimization problem (9) can be solved to yield the global optimum,
the computational cost of solving it might be too prohibitive in practice. Therefore, recent
research provides more efficient algorithms to approximately solve (8) (Cai et al., 2010; Jain

1191

Chiang, Hsieh, Natarajan, Dhillon and Tewari

et al., 2010). In particular, we consider the Singular Value Projection (SVP) algorithm
proposed by Jain et al. (2010) which attempts to solve the low-rank matrix completion
problem in an efficient manner. The SVP algorithm considers a robust formulation of (8)
as follows:

minimize ‖P(X)−A‖2F
s.t. rank(X) ≤ k, (12)

where the projection operator P is defined as:

(P(X))ij =

{
Xij , if (i, j) ∈ Ω

0, otherwise.

Note that the objective (12) recognizes that there might be some violations of weak balance
in the observations A, and minimizes the squared-error instead of trying to enforce exact
equality as in (9). In an attempt to optimize (12), the SVP algorithm iteratively calculates
the gradient descent update X̂(t) of the current solution X(t), and projects X̂(t) onto the
non-convex set of matrices whose rank are at most k using SVD. After the SVP algorithm
terminates and outputs X̄, one can take the sign of each entry of X̄ to obtain an approximate
solution of (8). The SVP procedure for sign prediction is summarized in Algorithm 1.

Algorithm 1: Sign Prediction via Singular Value Projection (SVP)

Input: Adjacency matrix A, rank k, tolerance ε, max iteration tmax, step size η
Output: X̄, the completed low-rank matrix that approximately solves (8)

1. Initialize X(0) ← 0 and t← 0.
2. Do

• X̂(t) ← X(t) − η(P(X(t))−A)
• [Uk,Σk, Vk]← Top k singular vectors and singular values of X̂(t)

• X(t+1) ← UkΣkVk
T

• t← t+ 1
while ‖P(X(t))−A‖2F > ε and t < tmax

3. X̄ ← sign(X(t))

In addition to its efficiency, experimental evidence provided by Jain et al. (2010) suggests
that if observations are uniformly distributed, then all iterates of the SVP algorithm are
ν-incoherent, and if this occurs, then it can be shown that the matrix completion problem
(8) can be exactly solved by SVP. In Section 5, we will see that SVP performs well in
recovering weakly balanced networks.

4.3 Sign Prediction via Matrix Factorization

A limitation of both convex relaxation and SVP is that they require uniform sampling to en-
sure good performance. However, this assumption is violated in most real-life applications,
and so these approaches do not work very well in practice. In addition, both the methods
cannot scale to very large data sets, as they require computation of the SVD. Thus, we use
a gradient based matrix factorization approach as an approximation to the signed network

1192

Global Modeling of Signed Networks

completion problem. In Section 5, we will see that this matrix factorization approach can
boost the accuracy of estimation as well as scale to large real networks.

In the matrix factorization approach, we consider the following problem:

min
W,H∈Rn×k

∑
(i,j)∈Ω

(Aij − (WHT)ij)
2 + λ‖W‖2F + λ‖H‖2F . (13)

Problem (13) is non-convex, and an alternating minimization algorithm is commonly
used to solve it. Recent theoretical results show that the alternating minimization algo-
rithm provably solves (13) under similar conditions as trace-norm minimization (Jain et al.,
2013). The matrix factorization approach is widely used in practical collaborative filtering
applications as its performance is competitive to or better than trace-norm minimization,
while scalability is much better. For example, to solve the Netflix problem, (13) has been
applied with a fair amount of success to factorize data sets with 100 million ratings (Koren
et al., 2009).

Nevertheless, there is an issue when modeling signed networks using (13): the squared
loss in the first term of (13) tends to force entries of WHT to be either +1 or −1. However,
what we care about in this completion task is the consistency between sign((WHT)ij) and
sign(Aij) rather than their difference. For example, (WHT)ij = 10 should have zero loss
when Aij = +1 if only the signs are important.

To resolve this issue, instead of using the squared loss, we use a loss function that only
penalizes the inconsistency in sign. More precisely, objective (13) can be generalized as:

min
W,H∈Rn×k

∑
(i,j)∈Ω

`oss (Aij , (WHT)ij) + λ‖W‖2F + λ‖H‖2F . (14)

In order to penalize inconsistency of sign, we can change the loss function to be the sigmoid
or squared-hinge loss:

`oss sigmoid(x, y) = 1/(1 + exp(xy)),

`oss square-hinge(x, y) = (max(0, 1− xy))2. (15)

In Section 5, we will see that applying sigmoid or squared-hinge loss functions slightly
improves prediction accuracy.

4.4 Time Complexity of Sign Prediction Methods

There are two main optimization techniques for solving (13) for large-scale data: Alternating
Least Squares (ALS) and Stochastic Gradient Descent (SGD) (Koren et al., 2009). ALS
solves the squared loss problem (13) by alternately minimizing W and H. When one of
W or H is fixed, the optimization problem becomes a least squares problem with respect
to the other variable, so that we can use well developed least squares solvers to solve each
subproblem. Given an n × n observed matrix with m observations, it requires O(mk2)
operations to form the Hessian matrices, and O(nk3) operations to solve each least squares
subproblem. Therefore, the time complexity of ALS is O(t1(mk2 + nk3)) where t1 is the
number of iterations.

1193

Chiang, Hsieh, Natarajan, Dhillon and Tewari

HOC LR-ALS LR-SGD

O(2`nm) O(t1(nk3 +mk2)) O(t2km)

Table 3: Time complexity of cycle-based method (HOC) and low rank modeling methods
(LR-ALS, LR-SGD). The HOC time only considers feature computation time. The
time for low rank modeling consists of total model construction time.

However, ALS can only be used when the loss function is the squared loss. To solve the
general form (14) with various loss functions, we use stochastic gradient descent (SGD). In
SGD, for each iteration, we pick an observed entry (i, j) at random, and only update the
ith row wT

i of W and the jth row hTj of H. The update rule for wT
i and hTj is given by:

wT
i ← wT

i − η
(
∂`oss (Aij , (WHT)ij)

∂wT
i

+ λwT
i

)
,

hTj ← hTj − η

(
∂`oss (Aij , (WHT)ij)

∂hTj
+ λhTj

)
,

where η is a small step size. Each SGD update costs O(k) time, and the total cost of
sweeping through all the entries is O(mk). Therefore, the time complexity for SGD is
O(t2mk), where t2 is the number of iterations taken by SGD to converge. Notice that
although the complexity of SGD is linear in k, it usually takes many more iterations to
converge compared with ALS, that is, t2 > t1. For other approaches to solve (14) for large
scale data, please see Yu et al. (2013).

On the other hand, all cycle-based algorithms introduced in Section 3 require time at
least O(nm), because they involve multiplication of m-sparse n× n matrices in model con-
struction. In particular, the time complexity for HOC-` methods is O(2`nm) (see Appendix
B for details), which is much more expensive than both ALS and SGD as shown in Table
3 (note that in real large-scale social networks, m > n� t1, t2, k).

4.5 Clustering Signed Networks

In this section, we see how to take advantage of the low-rank structure of signed networks
to find clusters. Based on weak balance theory, the general goal of clustering for signed
graphs is to find a k-way partition such that most within-group edges are positive and most
between-group edges are negative. One of the state-of-the-art algorithms for clustering
signed networks, proposed by Kunegis et al. (2010), extends spectral clustering by using
the signed Laplacian matrix. Given a partially observed signed network A, the signed
Laplacian L̄ is defined as D̄−A, where D̄ is a diagonal matrix such that D̄ii =

∑
j 6=i |Aij |.

By this definition, the clustering of signed networks can be derived by computing the top k
eigenvectors of L̄, say U ∈ Rn×k, and subsequently running the k-means algorithm on U to
get the clusters. This procedure is analogous to the standard spectral clustering algorithm
on unsigned graphs; the only difference being that the usual graph Laplacian is replaced by
the signed Laplacian.

However, there is no theoretical guarantee that the use of the signed Laplacian can
recover the true groups in a weakly-balanced signed network. To overcome this theoretical

1194

Global Modeling of Signed Networks

Algorithm 2: Clustering with Matrix Completion

Input: Adjacency matrix A, number of clusters k
Output: Cluster indicators

1. X? ← Completion(A) with any matrix completion algorithm.
2. U ← Top k eigenvectors of X?.
3. Run any feature-based clustering algorithm on U .

defect, we now give an algorithm which, under certain conditions, is able to recover the
real structure even with partial observations. The key idea is to first use a low-rank matrix
completion algorithm before performing the clustering. The following theorem shows that
the eigenvectors of the completed matrix possess a desirable property.

Theorem 19 Let Aij, (i, j) ∈ Ω, be entries observed from a complete k-weakly balanced
network A? with n nodes, and assume that the solution of (9) is X? with eigenvectors
U = [u1,u2, · · · ,uk]. If the assumptions in Theorem 18 are all satisfied, then the rows of
U , Ui,: = Uj,: iff i and j are in the same cluster in A?with probability at least 1− n−3.

Proof From Theorem 18, we know the recovered matrix X? will be A? with probability
≥ 1− n−3 if the assumptions hold. Suppose u1, . . . ,uk are the k eigenvectors of X?. From
the proof of Theorem 17, the eigenvectors will have the form in (11), which means that the
ith and jth rows of U , Ui,: = Uj,: if i and j are in the same cluster. Furthermore, when i and
j are in different clusters, A?i,: 6= A?j,:, so Ui,: cannot equal Uj,:. This proves the theorem.

Following this theorem, the true clusters can be identified from the eigenvectors of X?

when the assumptions in Theorem 18 hold. Therefore, perfect clustering is guaranteed in
this scenario.

More generally, we can use any matrix completion method to complete A. For example,
if we take SVP as the matrix completion approach, we can obtain a perfect clustering result
if all iterates of the algorithm are ν-incoherent. Under the latter condition, SVP can recover
A? exactly, so the property of eigenvectors in Theorem 19 can again be used. Our clustering
algorithm that uses matrix completion is summarized in Algorithm 2.

It should not be surprising that our clustering algorithm is superior to (signed) spectral
clustering. In some sense, our approach can be viewed as a spectral method, except that it
first fills in the missing links from the training data by doing matrix completion. This step
is simple yet crucial in signed networks as it overcomes the sparsity of the network. We
will see that our clustering algorithm outperforms the (signed) spectral clustering method
in Section 5.

5. Experimental Results

We now present experimental results for sign prediction and clustering using our proposed
methods. For sign prediction, we show that local methods, such as MOI and HOC (see
Section 3), yield better predictive accuracy when longer cycles are considered. In addition,
if we consider the global low-rank structure of the network, prediction via matrix factoriza-
tion further outperforms local methods in terms of both accuracy and running time. For

1195

Chiang, Hsieh, Natarajan, Dhillon and Tewari

clustering, we show that clustering via low rank model gives us significantly better results
than clustering via signed Laplacian. These results suggest the usefulness of the global
perspective on social balance.

5.1 Description of Data Sets

In our experiments, we consider both synthetic and real-life data sets. To construct syn-
thetic networks, we first consider a complete k-weakly balanced network A?, and sample
entries from A? to form the partially observed network A, with three controlling parameters:
sparsity s, noise level ε and sampling process D. The sparsity s controls the percentage
of edges we sample from A?. The noise level ε specifies the probability that the sign of a
sampled edge is flipped. The sampling process D specifies how the sampled entries are dis-
tributed. In particular, we will focus on two sampling distributions: uniform and power-law
distribution, denoted as Duni and Dpow respectively. Thus, a partially observed network A
can be described as A = A?(s, ε,D).

We also consider three real-life signed networks: Epinions, Slashdot, Wikipedia. Epin-
ions is a consumer review network in which users can either trust or distrust other con-
sumer’s reviews. Slashdot is a discussion web site in which users can recognize others as
friends or foes. Wikipedia is a who-votes-for-whom network in which users can vote for or
against others to be administrators in Wikipedia. These three data sets have previously
been used as benchmarks for sign prediction (Leskovec et al., 2010a; Chiang et al., 2011).
Table 4 shows the statistics of the three networks.

nodes # edges + edges - edges
edges with

conflicting signs

Wikipedia 7,065 103,561 78.8% 21.2% 0.71%
Slashdot 82,144 549,202 77.4% 22.6% 0.64%
Epinions 131,828 840,799 85.0% 15.0% 0.57%

Table 4: Network Statistics

5.2 Evidence of Local and Global Patterns in Real Signed Networks

We have seen that cycles in signed networks exhibit structural balance according to balance
theory, and that we can make use of cycles for predictions (see Section 3). Indeed, cycles
tend to be balanced in real-life networks. In all three real networks we consider, Leskovec
et al. (2010b) found that balanced triads (i.e., 3-cycles) are much more likely to be observed
than unbalanced triads. Our study also shows that the local patterns (i.e., `-cycles) of the
three networks tend to be balanced. For each network A, we consider all patterns of 3-cycles
and 4-cycles in the symmetric network sign(A+AT). For convenience, we use C`i to denote
the ith pattern (of signs) of an `-cycle. The patterns of these cycles are shown in Table 5.
We first calculate the probability that the configuration of a given `-cycle is C`i, denoted
P (C`i). We then randomly shuffle the signs of edges in the network and calculate the same
probability on the shuffled network, which is denoted P0(C`i). Thus P0(C`i) can be viewed
as the (expected) probability that C`i is observed if the signs of edges have no particular

1196

Global Modeling of Signed Networks

Epinions Slashdot Wikipedia
Type of cycle P (C`i) P0(C`i) S(C`i) P (C`i) P0(C`i) S(C`i) P (C`i) P0(C`i) S(C`i)

C31 : + + + 0.8259 0.5754 1107.0 0.7301 0.4502 425.2 0.6996 0.4806 335.4
C33 : + −− 0.0791 0.0706 72.3 0.1364 0.1260 23.5 0.0840 0.1105 -64.7
C41 : + + ++ 0.7538 0.4777 14464.7 0.6723 0.3435 5120.8 0.6080 0.3757 3557.6
C43 : + + −− 0.0911 0.0787 1210.6 0.1127 0.1286 -352.1 0.1007 0.1155 -344.1
C44 : + − +− 0.0065 0.0393 -4418.5 0.0138 0.0645 -1528.0 0.0139 0.0578 -1396.4
C46 : −−−− 0.0103 0.0008 8722.8 0.0263 0.0030 3147.7 0.0054 0.0022 505.4

C32 : + + − 0.0834 0.3493 -1218.4 0.1125 0.4111 -458.7 0.2052 0.3987 -302.5
C34 : −−− 0.0117 0.0047 220.9 0.0211 0.0127 56.9 0.0013 0.0102 8.5
C42 : + + +− 0.1174 0.3875 -14508.8 0.1413 0.4211 -4191.5 0.2473 0.4167 -2548.5
C45 : + −−− 0.0208 0.0160 1017.7 0.0337 0.0392 -212.0 0.0247 0.0320 -309.3

Balanced 3-cycles 0.9050 0.6459 1182.9 0.8665 0.5763 443.9 0.7835 0.5911 299.6
Balanced 4-cycles 0.8617 0.5965 14147.8 0.8250 0.5397 4234.7 0.7280 0.5513 2635.6

Table 5: Statistics of balanced and unbalanced `-cycles, ` = 3, 4 (note that
∑

i P (C`i) =∑
i P0(C`i) = 1). The first 6 cycles in the table are balanced while the last 4

cycles are unbalanced. The last two rows show that overall balanced 3-cycles and
4-cycles are much more than expected.

pattern. With the two probabilities, we calculate the “surprise” of observing C`i as follows:

S(C`i) :=
∆`P (C`i)−∆`P0(C`i)√
∆`P0(C`i)(1− P0(C`i))

,

where ∆` is the number of `-cycles in the network. The above quantity is basically the
number of standard deviations that the observed value of C`i differs from the expected
value of C`i in the shuffled network. See Leskovec et al. (2010b) for more discussion.

Table 5 shows the observed probability, the expected probability, and the surprise value
of each C`i in three networks. Although it is not true that each of the balanced cycles is
much more likely to appear, the last two rows in Table 5 show that differences between
P (C) and P0(C) and the surprise values of overall balanced 3- and 4-cycles are quite large.
This implies that given an arbitrary 3- or 4-cycle in these networks, it is very likely to be
balanced. Overall, we find that local balanced patterns are somewhat significant.

On the other hand, in Section 4, we have seen that low rank structure emerges when
we theoretically examine weakly balanced networks. We now show that real networks tend
to exhibit low-rank structure to a much greater extent compared to random networks.
As a baseline, for each real network we create two corresponding random networks for
comparison: the first one is the (symmetric) ER network generated from the Erdös-Rényi
model (Erdös and Rényi, 1960) that preserves the sparsity and the ratio of positive to
negative edges of the compared real network. The second one is the shuffled network with
the same network structure as the compared real network, except that we randomly shuffle
the signs of edges.

The experiment is conducted as follows. We first derive the low-rank complete matrix
X? by running matrix completion on the observed entries Aij . Then, we look at the relative
error on the observed set Ω:

errΩ =
‖W ◦ (X? −A)‖F

‖A‖F
,

1197

Chiang, Hsieh, Natarajan, Dhillon and Tewari

where Wij = 1 if (i, j) ∈ Ω and Wij = 0 otherwise, and ◦ denotes element-wise multiplica-
tion. Clearly, smaller errΩ indicates better approximation for the observed entries.

In our experiment, we use matrix factorization for matrix completion, with ranks k =
1, 2, 4, 8, 16 and 32. For each network (real networks and their corresponding random net-
works), we complete the network with different k values and compute errΩ. The result is
shown in Figure 2. Compared to the two random networks, the three real-life networks
achieve much smaller errΩ for each small k. This suggests that low-rank matrices provide a
better approximation of the observed entries for real-life networks.

10
0

10
1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Rank

R
e

la
ti

v
e

 e
r
r
o

r
 o

n
 Ω

Real Network

Shuffled Network

ER Network

(a) Epinions

10
0

10
1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Rank

R
e

la
ti

v
e

 e
r
r
o

r
 o

n
 Ω

Real Network

Shuffled Network

ER Network

(b) Slashdot

10
0

10
1

0.5

0.6

0.7

0.8

0.9

1

Rank

R
e

la
ti

v
e

 e
r
r
o

r
 o

n
 Ω

Real Network

Shuffled Network

ER Network

(c) Wikipedia

Figure 2: Relative error on Ω, the observed entries, between adjacency matrix and com-
pleted matrix, for real-life networks versus random networks. Real-life networks
achieve much smaller relative error for every k as compared with random net-
works.

5.3 Sign Prediction

We now compare the performance of our proposed methods for sign prediction. As intro-
duced in Section 3, there are two families of cycle-based methods: one based on measures of
imbalance (MOI), and the other based on the supervised learning using higher order cycles
(HOC). Both families depend on a parameter ` ≥ 3 that denotes the order of the cycles
that the method is based on. For MOI, we consider all ` less than 10 as well as ∞ (recall
that in this case, MOI becomes the Katz measure), and for HOC we consider ` = 3, 4, 5.
Note that the set of features used by HOC-(` + 1) is a strict superset of the features used
by HOC-`.

We also consider two global approaches for low rank matrix completion—Singular Value
Projection and matrix factorization from Sections 4.2 and 4.3 respectively. The SVP ap-
proach (denoted as LR-SVP) is chosen to demonstrate that perfect recovery can be achieved
if the observations are uniformly distributed. For matrix factorization, we consider the ALS
method that solves problem (13), as well as SGD methods that solve the general problem
(14) with sigmoid loss and square-hinge loss, defined in (15). We denote these methods as
LR-ALS, LR-SIG and LR-SH, respectively.

1198

Global Modeling of Signed Networks

5.3.1 Results on Synthetic Data Sets

We first compare all categories of approaches on synthetic data sets. We choose LR-SVP,
LR-ALS, MOI-∞ and HOC-3 as representatives of the two approaches of low rank matrix
completion, MOI-based, and HOC-based methods respectively. We consider the underlying
network A? to be a complete 5-weakly balanced network, where the five clusters have sizes
100, 200, 300, 400 and 500. Instead of observing all of A?, we assume that we only observe a
partial network A using three procedures: uniform sampling, uniform sampling with noise,
and sampling with power-law distribution. For each algorithm, we input the observed entries
as training data and calculate the sign prediction accuracy on the rest of the entries.

Uniform sampling: In this scenario, we generate several observed networks A =
A?(s, 0,Duni). We vary s from 0.001 to 0.1 and plot the prediction accuracy in Figure 3a.
Under this setting, LR-SVP and LR-ALS outperform the cycle-based methods. We observe
that MOI-∞ performs the worst with accuracy only 50%-70%. However, if we repeat the
same experiment substituting A? with A?2, where A?2 is a complete strongly balanced network
whose two groups have size 1000, we observe that MOI and global methods perform alike
as shown in Figure 3b. This is because MOI uses cycle-based measurements to make more
cycles become balanced. This prediction policy is most appropriate when k = 2 (that is,
the underlying network A? has strong balance), but performs poorly when the underlying
network is weakly balanced (i.e., more than two groups). HOC-3 works much better than
MOI-∞ since it learns a classifier from cycle-based features rather than simply making
cycles balanced, but its accuracy drops dramatically when s is less than 0.05. On the other
hand, both LR-SVP and LR-ALS show high accuracy for all s ≥ 0.01. In particular, LR-
SVP can achieve 100% accuracy when s > 0.07, which reconfirms the theoretical recovery
guarantee stated in Theorem 18. Moreover, LR-ALS can also recover the ground truth, an
observation that is consistent with previous results.

Uniform sampling with noise: To make the synthetic data more similar to real data, we
further add noise to the observations. We generate observed networks A = A?(0.1, ε,Duni),
where ε varies from 0.01 to 0.25. The result is shown in Figure 3c. We can see that
global methods are still clearly better than cycle-based methods when noise level is higher.
Moreover, LR-SVP perfectly recovers A? when the noise level ε < 0.05, and LR-ALS also
achieves perfect recovery with a smaller ε.

Sampling with power-law distribution: As Sections 4.1 and 4.2 pointed out, the exact
recovery guarantees of convex relaxation and SVP for matrix completion crucially rely on
the assumption that observed entries are uniformly sampled. However, in most real networks
(for example, Slashdot in Kunegis et al. 2009), the degree distribution of observed entries
follows a power law. Therefore, we examine how the approaches perform on power-law
distributed networks. The power-law distributed networks are generated using the Chung-
Lu-Vu (CLV) model proposed by Chung et al. (2004), which allows one to generate random
graphs with arbitrary expected degree sequence. Similar to the uniform sampling case, we
perform the sign prediction task on A = A?(s, 0,Dpow) varying s from 0.001 to 0.1, and plot
the prediction accuracy in Figure 3d. We can see that MOI-∞ still has poor performance
for weakly balanced graphs. However, unlike the uniform sampling case, LR-SVP has lower
accuracy rate compared to HOC-3 when s < 0.1. On the other hand, LR-ALS still performs
better than all other methods on power-law distributed graphs.

1199

Chiang, Hsieh, Natarajan, Dhillon and Tewari

10
−2

10
−1

0.5

0.6

0.7

0.8

0.9

1

Fraction of observed entries

A
c
c
u

ra
c
y

LR−SVP

LR−ALS

HOC−3

MOI−∞

(a) Uniformly sampled without noise (k =
5)

10
−3

10
−2

10
−1

0.5

0.6

0.7

0.8

0.9

1

Fraction of observed entries

A
c
c
u

ra
c
y

LR−SVP

LR−ALS

MOI−∞

(b) Uniformly sampled without noise on
balanced networks (k = 2)

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.6

0.7

0.8

0.9

1

Fraction of noisy entries

A
c
c
u

ra
c
y

LR−SVP

LR−ALS

HOC−3

MOI−∞

(c) Uniformly sampled with noise (k = 5)

10
−2

10
−1

0.5

0.6

0.7

0.8

0.9

1

Fraction of noisy entries

A
c
c
u

ra
c
y

LR−SVP

LR−ALS

HOC−3

MOI−∞

(d) Power-law distributed networks (k = 5)

Figure 3: Sign prediction accuracy of local and global methods on synthetic data sets. On
(strongly) balanced networks (3b), MOI-∞ is seen to perform as well as low
rank modeling methods (LR-SVP and LR-ALS). However, in weakly balanced
networks, global methods LR-SVP and LR-ALS outperform cycle-based methods
such as MOI-∞ and HOC-3 (supervision on high order cycles). In addition, low
rank modeling with matrix factorization (LR-ALS) is more robust than singular
value projection (LR-SVP) when the observations are sampled from a power-law
distribution.

From results on synthetic data shown in Figure 3, we can conclude that global methods
generally do better than local methods, and the low rank model with matrix factorization
(LR-ALS) performs the best in most cases, even when observed entries are not uniformly
distributed.

5.3.2 Results on Real-life Data Sets

Now we further evaluate our sign prediction methods on three real-life networks. To begin
with, we evaluate and compare MOI methods using a leave-one-out type methodology:

1200

Global Modeling of Signed Networks

0 2 4 6 8
0.5

0.6

0.7

0.8

0.9

1

Embeddedness T

P
re

d
ic

ti
v

e
 A

c
c

u
ra

c
y

MOI−3

MOI−4

MOI−5

MOI−10

(a) Epinions

0 2 4 6 8

0.4

0.5

0.6

0.7

0.8

0.9

1

Embeddedness T

P
re

d
ic

ti
v

e
 A

c
c

u
ra

c
y

MOI−3

MOI−4

MOI−5

MOI−10

(b) Slashdot

0 2 4 6 8
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Embeddedness T

P
re

d
ic

ti
v

e
 A

c
c

u
ra

c
y

MOI−3

MOI−4

MOI−5

MOI−10

(c) Wikipedia

Figure 4: Accuracy of MOI-based methods for cycle lengths ` = 3, 4, 5, 10. These plots show
the accuracy of MOI-` methods for edges with embeddedness at least T for various
thresholds T . We see that the difference in the performance of MOI-3 and higher
order methods is larger for edges with lower embeddedness. We also see that the
improvement obtained by going beyond order 5 is not very significant.

each edge in the network is successively removed and the method tries to predict the sign
of that edge using the rest of the network. Figure 4 shows the accuracy of MOI based
methods. Note that the accuracy is shown for edges with embeddedness under a certain
threshold. First, we see that the accuracy is a non-decreasing function of the embeddedness
threshold. Next, it is clear that higher-order methods perform significantly better than the
MOI-3 (triangle-based) method. Finally, the performance boost is larger for edges with low
embeddedness. This is expected as edges of low embeddedness by definition do not have
many common neighbors for their end-points, and higher-order cycles have relatively better
information for such edges. We also observe from our experiments that beyond ` = 5, the
performance gain is not very significant.

Next, we compare HOC methods with various ` to see how much high order cycles can
benefit us in supervision. We resort to 10-fold cross-validation: we (randomly) created ten
disjoint test folds each consisting of 10% of the total number of edges in the network. For
each test fold, the remaining 90% of the edges serve as the training set. (For a given test fold,
the feature extraction and logistic model training are done on a graph with the test edges
removed, not just the signs.) To evaluate HOC methods, we consider not only prediction
accuracies but also false-positive rates. We report accuracies as well as false-positive rates
by averaging them over the ten folds. As shown in Table 6, in all the data sets, there is a
small improvement in accuracy by using higher order cycles (HOC-5). The false positive
rate, however, reveals a more interesting phenomenon in Figure 5. Indeed, higher order
methods (such as HOC-5) significantly reduce the false positive rate as compared to HOC-
3. However Figure 5 shows that, unlike MOI based methods, edge embeddedness does not
seem to affect the decrease in false positive rate for HOC methods. We see this trend across
all the data sets.

At this point, we see that for cycle-based methods, considering higher order cycles
benefits the accuracy of sign prediction and lowers the false positive rate. Furthermore, the
results are consistent across the three diverse networks. These results confirm the intuition

1201

Chiang, Hsieh, Natarajan, Dhillon and Tewari

0 2 4 6 8

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Embeddedness T

F
a

ls
e

 P
o

s
it

iv
e

 R
a

te

HOC−3

HOC−5

(a) Epinions

0 2 4 6 8
0.1

0.2

0.3

0.4

0.5

0.6

Embeddedness T

F
a

ls
e

 P
o

s
it

iv
e

 R
a

te

HOC−3

HOC−5

(b) Slashdot

0 2 4 6 8
0.4

0.45

0.5

0.55

0.6

0.65

Embeddedness T

F
a

ls
e

 P
o

s
it

iv
e

 R
a

te

HOC−3

HOC−5

(c) Wikipedia

Figure 5: False positive rates of higher order cycle (HOC) Methods for ` = 3, 5. These plots
show the false positive rate of HOC-` methods for edges with embeddedness at
least T for various thresholds T . We see that considering higher order cycles has
the benefit of significantly reducing false-positives while simultaneously achieving
slightly better overall accuracy (refer to Table 6). However, unlike what we see
for MOI methods, the improvement here does not seem to depend strongly on
edge embeddedness. The false positive rates for HOC-4 are very similar to that
of HOC-5 and hence are not shown for clarity.

that getting more global information improves quality of prediction, and motivate us to
consider the global structure of networks.

Now we turn our attention to low rank modeling approaches. We have seen that LR-SVP
does not perform well under power-law distributions of observed relationships in synthetic
networks (see Figure 3d), so we consider the more robust matrix factorization approach
for solving the matrix completion problem, including LR-ALS, LR-SIG and LR-SH, for
experiments on real data sets. Again, we use 10-fold cross validation setting, and report
the average prediction accuracy for each data set in Table 6. From the table, we observe
that global methods clearly outperform cycle-based methods. In particular, we observe that
HOC-5 only improves HOC-3 by less than 1.5%, while global methods consistently improve
the accuracy of HOC-5 by more than 2% over all data sets. In addition, LR-SIG and LR-
SH further improve the accuracy of LR-ALS. This shows that the sigmoid and square-hinge
losses are more suitable for sign prediction, which supports the discussion in Section 4.3.
On real data sets, we do not have prior information about the target rank k. However,
Figure 6 shows that the performance of LR-based methods is not sensitive to k.

In Figure 7, we further select a representative of each category, MOI-10, HOC-5 and
LR-ALS, and show their performances with different levels of edge embeddedness (LR-SIG
and LR-SH perform similar to LR-ALS in all data sets). In addition, we also compare our
methods with the methods A sym exp and A exp proposed by Kunegis et al. (2009), which
predicts the sign of edges using matrix exponential with low rank approximation.34 For
LR-ALS, A sym exp and A exp we choose the rank k = 40.

3. The method A sym exp considers the symmetric matrix A sym = A + AT and its eigen-decomposition
UΣUT , and computes the matrix exponential of A sym with rank-k approximation, Uk exp(Σk)UT

k .
4. They incorrectly refer to A exp as the exponential of A as they in fact compute A exp as Uk exp(Σk)V T

k ,
where UkΣkV

T
k is the best rank-k approximation of A.

1202

Global Modeling of Signed Networks

Epinions Slashdot Wikipedia

MOI-3 0.5539 0.3697 0.7456
MOI-10 0.8497 0.7850 0.8220

HOC-3 0.9014± 0.0013 0.8303± 0.0018 0.8424± 0.0063
HOC-5 0.9080± 0.0012 0.8469± 0.0015 0.8605± 0.0049

LR-ALS 0.9437± 0.0007 0.8774± 0.0018 0.8814± 0.0043
LR-SIG 0.9448± 0.0009 0.8806± 0.0017 0.8839± 0.0049
LR-SH 0.9437± 0.0015 0.8835± 0.0015 0.8810± 0.0042

Table 6: The sign prediction accuracy for cycle-based methods (MOI and HOC) and low
rank modeling methods (LR-ALS, LR-SIG and LR-SH) along with standard de-
viation if the accuracy is averaged by 10-fold cross validation. Note that for MOI
methods we report leave-one-out accuracy. We can see that the low rank modeling
approaches are better than cycle-based methods.

0 50 100 150 200 250 300
0.91

0.92

0.93

0.94

0.95

0.96

rank k

P
re

d
ic

ti
o

n
 A

c
c

u
ra

c
y

LR−ALS

(a) Epinions

0 50 100 150 200 250 300

0.85

0.86

0.87

0.88

0.89

0.9

rank k

P
re

d
ic

ti
o

n
 A

c
c

u
ra

c
y

LR−ALS

(b) Slashdot

0 50 100 150 200 250 300

0.86

0.87

0.88

0.89

0.9

0.91

rank k

P
re

d
ic

ti
o

n
 A

c
c

u
ra

c
y

LR−ALS

(c) Wikipedia

Figure 6: Sign prediction accuracy for low rank modeling with matrix factorization (LR-
ALS) with different ranks. We see that LR-ALS is quite robust to the rank.

From Figure 7 we see that matrix exponential and MOI methods perform alike as one
would expect. HOC learns the weights carefully to determine which configurations of cycles
are more important, and therefore performs better than the former two methods that use
fixed weights. Also, one might expect that cycle-based approaches should perform better on
edges with higher embeddedness because of the relatively richer cycle information available.
However, LR-ALS achieves higher prediction accuracy regardless of the embeddedness. All
the above results show that global methods are more effective than local methods.

5.3.3 Running Time Comparison

As discussed in Section 4.3, low rank modeling with matrix factorization is more efficient
than cycle-based algorithms in terms of time complexity, which we now confirm. The
running times are summarized in Table 7. To show the scalability of matrix factorization
methods, we construct a large-scale data set Cluster10, which contains 1.1 million nodes
and 120 million edges (about 100 times more than Epinions). Cluster10 is constructed by
uniformly sampling edges from a 10-weakly balanced network, in which clusters have sizes

1203

Chiang, Hsieh, Natarajan, Dhillon and Tewari

0 2 4 6 8 10

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Minimum Embeddedness Threshold T

P
re

d
ic

ti
v
e
 A

c
c
u

ra
c
y

LR−ALS

HOC−5

MOI−10

A_exp

(a) Epinions

0 2 4 6 8 10
0.75

0.8

0.85

0.9

0.95

Minimum Embeddedness Threshold T

P
re

d
ic

ti
v
e
 A

c
c
u

ra
c
y

LR−ALS

HOC−5

MOI−10

A_exp

A_sym_exp

(b) Slashdot

0 2 4 6 8 10
0.82

0.84

0.86

0.88

0.9

Minimum Embeddedness Threshold T

P
re

d
ic

ti
v
e
 A

c
c
u

ra
c
y

LR−ALS

HOC−5

MOI−10

A_exp

A_sym_exp

(c) Wikipedia

Figure 7: Sign prediction accuracy of various methods with different levels of embedded-
ness, along with standard deviation if the accuracy is averaged by 10-fold cross
validation. For MOI methods we report leave-one-out accuracy. These plots show
the accuracy for edges with embeddedness at least T . The A sym exp method
in Epinions cannot achieve accuracy 80% for all embeddedness levels so it is not
shown in the plot. We can see that LR-ALS consistently achieves the highest
accuracy for all thresholds T .

HOC-3 HOC-4 HOC-5 LR-ALS LR-SGD

Wikipedia 18.08 74.52 462.92 2.26 2.41
Slashdot 133.4 1,936.0 > 10, 000 17.4 24.7
Epinions 560.64 6,156.8 > 10, 000 28.67 37.2
Cluster10 > 10, 000 > 10, 000 > 10, 000 455.1 1,152

Table 7: Running time (in seconds) for low rank modeling methods (LR-ALS and LR-SGD)
and supervision on high order cycles (HOC) on real data sets and a 1.1 million
node synthetic data Cluster10. We see that LR methods with matrix factorization
are clearly more efficient than cycle-based algorithms.

20000, 40000, . . . , 200000. For matrix factorization approach, we report the time needed
to solve the model by ALS (with square loss) and SGD (with sigmoid and square-hinge
losses). The time LR-SGD is thus the average time to solve LR-SIG and LR-SH models.
For HOC methods the training time is dominated by the feature construction step, thus we
only report the time for computation of features. Therefore, the reported time for HOC is
an underestimate of the time required to construct the HOC model; even then we can see
that the time required by LR-ALS, LR-SIG and LR-SH is much lower than HOC methods.

In conclusion, for the sign prediction problem, the low rank model with matrix factor-
ization is clearly the best method in terms of accuracy and scalability.

5.4 Clustering

We now show that our clustering approach, which completes the low-rank structure of signed
networks before performing clustering, outperforms spectral clustering based on the signed
Laplacian (Kunegis et al., 2010). We conduct experiments on synthetic data generated

1204

Global Modeling of Signed Networks

from weakly balanced networks (note that we do not have ground truth for clustering in
the real-life data sets). We consider a 10-weakly balanced network A? where size of each
group is 100, and sample entries from A? using uniform sampling and uniform sampling
with noise.

To measure the performance of clustering, we calculate the number of edges that satisfy
the ground-truth clustering, which is defined by∑

i,j:si=sj

I(s̄i = s̄j) +
∑

i,j:si 6=sj

I(s̄i 6= s̄j). (16)

where s1, . . . , sn denote the ground-truth clustering assignment for each node, and s̄1, . . . , s̄n
are the clustering results given by the clustering algorithm.

Following the procedure outlined in Section 5.3, in the uniform sampling case, we con-
sider the networks A = A?(s, 0,Duni) with s ∈ [0.01, 0.06], while in sampling with noise case
we consider networks A = A?(0.05, ε,Duni) with ε ∈ [0.01, 0.08]. For each observed network,
we apply Algorithm 2 (see Section 4.5) and clustering via the signed Laplacian, and evaluate
clustering results using (16). The results of these two scenarios are shown in Figure 8. In
both the scenarios, our proposed clustering approach is significantly better than clustering
based on the signed Laplacian, and shows that recovering the low-rank structure of signed
networks leads to improved clustering results.

0.02 0.04 0.06 0.08
0.2

0.4

0.6

0.8

1

fraction of observed entries

fr
a
c
ti

o
n

 o
f

c
o

rr
e
c
t

e
d

g
e
s

LR−SVP

Signed Laplacian

(a) Data without noise

0.02 0.04 0.06 0.08 0.1
0.7

0.75

0.8

0.85

0.9

0.95

1

fraction of noisy observations

fr
a
c
ti

o
n

 o
f

c
o

rr
e
c
t

e
d

g
e
s

LR−SVP

Signed Laplacian

(b) Data with noise

Figure 8: Clustering partially observed synthetic data - clustering with matrix completion
using SVP (LR-SVP) performs significantly better than clustering with the signed
Laplacian.

6. Related Work

Signed networks have been studied since the early 1950s. Harary and Cartwright were the
first to mathematically study structural balance. They defined balanced triads and proved
the global structure of balanced signed networks (Harary, 1953; Cartwright and Harary,
1956). Davis (1967) further generalized the balance notion to weak balance by allowing

1205

Chiang, Hsieh, Natarajan, Dhillon and Tewari

triads with all negative edges, and showed that weakly balanced graphs have the global
structure of mutual antagonistic groups.

Though theoretical studies of signed networks have been conducted for a long time, it
was not until this decade that analysis of real signed networks could be done at a large
scale as large real networks have become more accessible recently. For example, Kunegis
et al. (2009) performed several analysis tasks on Slashdot, and Leskovec et al. (2010a,b)
studied the local and global structure of three real signed networks. They designed several
computational experiments to justify that the structure of these signed networks match
balance theory.

In this paper, we focused on problems in signed networks. However, these problems have
their counterparts in unsigned networks. For instance, structural link prediction in unsigned
networks corresponds to the sign prediction problem. Structural link prediction has been
well explored, and it is usually solved by computing a similarity measure between nodes
(Liben-Nowell and Kleinberg, 2007), such as those proposed by Katz (1953) and Adamic and
Adar (2003). The sign prediction problem, however, was not formally considered until the
work by Guha et al. (2004), in which they develop a trust propagation framework to predict
trust or distrust between entities. More recently, Kunegis et al. (2009, 2010) reconsidered
this problem by using various similarity functions and kernels such as matrix exponential
and signed Laplacian. Leskovec et al. (2010a) proposed a machine learning formulation of
this problem, arguing that learning from only local triangular structure of edges can achieve
reasonable accuracy.

Sign prediction using our global method is closely related to the low-rank matrix com-
pletion problem. In the last five years, there has been substantial research studying exact
recovery conditions for this problem (Candés and Recht, 2008; Candés and Tao, 2009), and
algorithms with theoretical guarantees have also been proposed, such as SVT (Cai et al.,
2010) and SVP (Jain et al., 2010). While the matrix completion problem has been consid-
ered mostly in collaborative filtering, our low rank model arises naturally from the weak
balance of signed networks.

Clustering is another fundamental problem in network analysis. For unsigned networks,
there are several proposed algorithms that have been shown to be effective, such as clustering
via graph Laplacian (Ng et al., 2001), modularity (Newman, 2006) and multilevel approaches
(Dhillon et al., 2007). However, most of these approaches cannot be directly extended to
signed networks since weak balance theory does not apply to unsigned networks. As a result,
researchers have tried to tailor unsigned network clustering algorithms in order to make them
applicable to signed networks. For instance, Doreian and Mrvar (1996) proposed a local
search strategy which is similar to the Kernighan-Lin algorithm (Kernighan and Lin, 1970).
Starting with an initial clustering assignment, it tries to move nodes one by one to get a more
preferable clustering. Yang et al. (2007) proposed an agent-based method which basically
conducts a random walk on the graph. Kunegis et al. (2010) generalized spectral algorithms
to signed networks. They proposed a spectral approach using the signed Laplacian, and
showed that partitioning signed networks into two groups using the signed Laplacian kernel
is analogous to considering ratio cut on unsigned networks. Anchuri and Magdon-Ismail
(2012) proposed hierarchical iterative methods that solve 2-way signed modularity objectives
using spectral relaxation at each hierarchy. Chiang et al. (2012) proposed graph kernels for

1206

Global Modeling of Signed Networks

signed network clustering, and showed that the multilevel framework can be extended to
this problem.

Another line of research related to signed graph clustering problem is correlation clus-
tering. The goal of correlation clustering is the following: given n objects where certain
pairs of objects are labelled as similar and certain pairs as dissimilar, find a clustering that
maximizes the number of similar pairs within clusters, plus the number of dissimilar pairs
between clusters. The problem was first considered by Bansal et al. (2004), who proved
that finding the optimal correlation clustering is NP-hard, and proposed two approximation
algorithms to maximize the number of edges that satisfy “agreement” (a positive within-
cluster edge or a negative between cluster-edge) and to minimize the number of edges that
do not, under the special case that all pairwise label information is given. Bounds for gen-
eral correlation clustering setting have been obtained by Demaine et al. (2006). On the
other hand, some researchers have also considered the correlation clustering problem from
the statistical learning theory viewpoint. For example, Joachims and Hopcroft (2005) give
error bounds for the problem if only partial pairs are observed. Recently, Cesa-Bianchi
et al. (2012) proposed a method for sign prediction by learning a correlation clustering
index. They consider three types of learning models: batch, online and active learning, and
provide theoretical bounds for prediction mistakes under each setting. Though there is no
social balance notion in the correlation clustering problem, it can be viewed as finding a
clustering of signed graph where nodes correspond to objects, and positive/negative edges
correspond to similar/dissimilar pairs. Therefore, our proposed method can also be applied
to the problem of correlation clustering.

7. Conclusions and Future Work

In this paper, we studied the usefulness of social balance in signed networks, with two fun-
damental applications: sign prediction and clustering. Starting from a local view of social
balance, we developed sign prediction methods based on length-` cycles. The predictive ac-
curacies are improved if longer cycles are taken into consideration, suggesting that a broader
view of local patterns helps in sign prediction. We then considered the global perspective on
social balance, and showed that the adjacency matrices of (weakly) balanced networks are
low rank. Based on this observation, we modeled the sign prediction problem as a low-rank
matrix completion problem. We discussed three approaches to matrix completion: convex
relaxation, singular value projection, and matrix factorization. In addition, we applied this
low rank modeling technique to the clustering problem. In experiments, we observe that sign
prediction via matrix factorization not only outperforms local methods (MOI and HOC),
but requires much less running time. Clustering results are also more favorable via the ma-
trix completion approach in comparison with the existing signed Laplacian approach. All
of these results consistently demonstrate the effectiveness of the global viewpoint of social
balance.

For future work, one possible direction is to explore analysis tasks for heterogeneous
signed networks. Since there are different types of entities in heterogeneous networks,
currently there are no clear answers to questions such as: do balance relationships exist on
such networks? How do we quantitatively measure balance if balance patterns exist? How
is balance at a local level related to the global structure? Furthermore, another possible

1207

Chiang, Hsieh, Natarajan, Dhillon and Tewari

direction is to examine other theories for directed signed networks. Leskovec et al. (2010a,b)
has found evidence that status theory holds in real signed networks, but that the patterns
conforming to status theory are quite different from those conforming to balance theory.
Thus, it is natural to ask how to design algorithms by pursuing global patterns conforming
to status theory. These interesting directions are worth exploring in future research.

Acknowledgments

We gratefully acknowledge the support of NSF grants CCF-0916309, CCF-1117055, and
DOD Army grant W911NF-10-1-0529. Most of the contribution of Ambuj Tewari to this
work occurred while he was a postdoctoral fellow at the University of Texas at Austin.

Appendix A. Proofs

Proof of Theorem 10 One direction is trivial. If A is unbalanced then there is an
unbalanced simple cycle. However, any simple cycle is obviously a cycle and hence the sum
in (6) will be strictly positive.

For the other direction, suppose µ∞(A) > 0. This implies there is an unbalanced cycle
σ in the graph. Decompose the unbalanced cycle into finitely many simple cycles. We will
be done if we could show that one of these simple cycles has to be unbalanced. It is easy
to see why this is true: if all of these simple cycles were balanced, they all would have had
an even number of negative edges, but then the total number of negative edges in σ could
not have been odd.

Proof of Lemma 11 Define the sets of `-cycles,

C+
` (i, j) := {σ ∈ C`

(
A+(i,j)

)
: σ includes (i, j)}

C−` (i, j) := {σ ∈ C`
(
A−(i,j)

)
: σ includes (i, j)} ,

that include the edge (i, j). Note that, since A+(i,j) and A−(i,j) only differ in the sign of the
edge (i, j), we have,

C`

(
A+(i,j)

)
\C+

` (i, j) = C`

(
A−(i,j)

)
\C−` (i, j) .

Thus, we have,∑
σ∈C`(A−(i,j))

1 [σ]−
∑

σ∈C`(A+(i,j))

1 [σ]

=
∑

σ∈C−
` (i,j)

1 [σ] +
∑

σ∈C`(A−(i,j))\C−
` (i,j)

1 [σ]−
∑

σ∈C+
` (i,j)

1 [σ]−
∑

σ∈C`(A+(i,j))\C+
` (i,j)

1 [σ]

=
∑

σ∈C−
` (i,j)

1 [σ]−
∑

σ∈C+
` (i,j)

1 [σ] . (17)

Now cycles in C−` (i, j) are in 1-1 correspondence with paths π in P`−1 (i, j) of length `− 1,
in the original graph A, that go from i to j. Moreover, σ ∈ C−` (i, j) is unbalanced iff

1208

Global Modeling of Signed Networks

the corresponding path in P`−1 (i, j) has an even number of −1’s. Similarly, σ ∈ C+
` (i, j)

is unbalanced iff the corresponding path in P`−1 (i, j) has an odd number of −1’s. Thus,
continuing from (17):∑

σ∈C−
` (i,j)

1 [σ]−
∑

σ∈C+
` (i,j)

1 [σ]

=
∑

π∈P`−1(i,j)

1 [π has even no. of −1’s]−
∑

π∈P`−1(i,j)

1 [π has odd no. of −1’s]

=
∑

i1,i2,...,i`−2

Ai,i1 ·Ai1,i2 · . . . ·Ai`−2,j =
(
A`−1

)
i,j

,

where the second equality is true because A only has ±1, 0 entries.

Appendix B. Supervised Higher-Order Cycle (HOC) methods

We begin by describing the approach used by Leskovec et al. (2010a). The features for an
edge are based on the sign configurations of triads it is a part of. Fix an edge e = (i, j).
Consider an arbitrary common neighbor (in an undirected sense) k of i and j. Links between
i and k can be in 4 possible configurations:

i
+→ k i

+← k

i
−→ k i

−← k .

Similarly, there are 4 possible configurations for links between k and j. Thus, we can get
a total of 16 features for the edge e by considering the number of common neighbors k in
each of the 4 × 4 = 16 configurations. Though we draw 4 configurations separately, links
with different directions can simultaneously exist between i and j, possibly with different
sign.

These configurations corresponds to features for a supervised variant of the k-cycle
method for k = 3. Let A+ and A− be the matrices of positive and negative edges such that
A = A+ + A−. In terms of matrix powers, these sixteen features are nothing but the (i, j)
entries in the sixteen matrices:

Ab1 ·Ab2 Ab1 ·
(
Ab2
)T (

Ab1
)T
·Ab2

(
Ab1
)T
·
(
Ab2
)T

, (18)

where b1, b2 ∈ {±}, and (Ab1)T denotes the transpose of Ab1 . Note that we have described
the features of a directed edge e = (i, j).

B.1 Using Higher-order Cycles

A criticism against using only these triangle-based features is that there could be many
people in the social network who do not share friends. In fact, this is the case in most of the
networks used by Leskovec et al. (2010a). The reason their method is able to predict well
on such pairs is that they additionally use seven other “degree-type” features like in-degree

1209

Chiang, Hsieh, Natarajan, Dhillon and Tewari

and out-degree (and their signed variants). Thus, the prediction for an edge with zero
emdeddedness (embeddedness refers to the number of common neighbors of the vertices of
an edge) relies completely on the degree-based features. We can additionally incorporate
features from higher-order cycles. Generalizing the construction (18), we can define 64
fourth-order features (corresponding to 4-cycles in the graph) of an edge (i, j) as the (i, j)
entries in the matrices: (

Ab1
)t1
·
(
Ab2
)t2
·
(
Ab3
)t3

,

where bi ∈ {±} indicates whether we look at the positive or negative part of A and ti ∈
{T, 1} indicates whether or not we transpose it. There are 4 possibilities for each bi, ti pair,
resulting in a total of 4× 4× 4 = 64 possibilities.

By now the reader can guess the construction of features of a general order ` ≥ 3. For
the edge (i, j), they will be the (i, j) entries in the 4`−1 matrices(

Ab1
)t1
·
(
Ab2
)t2

. . . ·
(
Ab`−1

)t`−1

,

with bi ∈ {±}, ti ∈ {T, 1}.
Note that the number of features is exponential in `, and therefore it is not feasible to

obtain features from arbitrarily long cycles. We use ` ≤ 5 for supervised HOC methods in
our experiments that are presented in Section 5.

B.2 Reducing the Number of Features

The number of features can quickly become unmanageable, and computationally infeasible,
as soon as ` is beyond 5. While dimensionality of the feature space may be the primary
concern, the combinatorial nature of the features also raises the following intuitive concern:
the interpretability of features rendered by high-order cycles, say when ` = 6, composed
of different signs and directions, is a challenge. For example, it is intuitively hard to

appreciate the difference between the two walks i
+→ k1

+→ k2
−→ k3

+→ k4
+→ j and

i
+→ k1

+→ k2
−← k3

+→ k4
+→ j.

With this realization, one way to quickly reduce the number of features, yet retain the
information in longer cycles, is to consider the underlying undirected graph, ignoring the
directions. In particular, the `th order features will be from the matrices

Ab1 ·Ab2 . . . ·Abk−1 ,

with bi ∈ {±}. Note that since we are considering the undirected graph, we ensure that
the features are symmetric by summing features of the form Ab1Ab2 and Ab2Ab1 . Thus
the number of `th order features to compute is reduced to O(2`) from O(4`). Though the
number of features is still exponential in `, the construction of features becomes easier for
small values of `.

We note that another way to avoid dealing with too many features is to use a kernel
instead. A kernel computes inner products in feature space without explicitly constructing
the feature map. One can then use off-the-shelf SVM classifiers to perform the classification.
We leave this promising approach of directly defining a kernel on pairs of nodes of a graph
and using it for link prediction to future work.

1210

Global Modeling of Signed Networks

B.3 Classifier

We use a simple logistic regression where the imbalance of an edge is modeled as a linear
combination of the features, which are imbalances in cycles of various lengths and charac-
teristics themselves. Let V be the set of vertices in the network and Φ : V ×V → Rp denote
the feature map. Then,

P (Aij = +1) =
1

1 + exp (−w0 − 〈w,Φ(i, j)〉)
,

using which logistic regression is used to learn w0 and the weight vector w = [w1 · · ·wp]T ∈
Rp. The prediction of any query (i, j) is then given by sign(P (Aij = +1)− 0.5).

References

Lada A. Adamic and Eytan Adar. Friends and neighbors on the web. Social Networks, 25
(3):211–230, 2003.

Pranay Anchuri and Magdon-Ismail. Communities and balance in signed networks: A
spectral approach. In Proceedings of the 2012 International Conference on Advances in
Social Networks Analysis and Mining, pages 235–242, 2012.

Nikihil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning,
56:89–113, 2004.

Jian-Feng Cai, Emmanuel J. Candés, and Zuowei Shen. A singular value thresholding
algorithm for matrix completion. Society for Industrial and Applied Mathematics (SIAM),
20(4):1956–1982, 2010.

Emmanuel J. Candés and Benjamin Recht. Exact matrix completion via convex optimiza-
tion. Foundations of Computational Mathematics, 9:712–772, 2008.

Emmanuel J. Candés and Terence Tao. The power of convex relaxation: Near-optimal
matrix completion. IEEE Transaction of Information Theory, 56(5):2053–2080, 2009.

Dorwin Cartwright and Frank Harary. Structure balance: A generalization of Heider’s
theory. Psychological Review, 63(5):277–293, 1956.

Nicolo Cesa-Bianchi, Claudio Gentile, Fabio Vitale, , and Giovanni Zappella. A correla-
tion clustering approach to link classification in signed networks. In The 25th Annual
Conference on Learning Theory, pages 34.1–34.20, 2012.

Kai-Yang Chiang, Nagarajan Natarajan, Ambuj Tewari, and Inderjit S. Dhillon. Exploiting
longer cycles for link prediction in signed networks. In Proceedings of the 20th ACM
International Conference on Information and Knowledge Management, pages 1157–1162,
2011.

Kai-Yang Chiang, Joyce Whang, and Inderjit S. Dhillon. Scalable clustering of signed
networks using balance normalized cut. In Proceedings of the 21st ACM International
Conference on Information and Knowledge Management, pages 615–624, 2012.

1211

Chiang, Hsieh, Natarajan, Dhillon and Tewari

Fan Chung, Linyuan Lu, and Van Vu. Spectra of random graphs with given expected
degrees. Internet Mathematics, 1:6313–6318, 2004.

James A. Davis. Clustering and structural balance in graphs. Human Relations, 20(2):
181–187, 1967.

Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correlation clustering
in general weighted graphs. Theoretical Computer Science, 361(2-3):172–187, 2006.

Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigen-
vectors: A multilevel approach. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 29(11):1944–1957, 2007.

Patrick Doreian and Andrej Mrvar. A partitioning approach to structural balance. Social
Networks, 18(21):149–168, 1996.

David Easley and Jon Kleinberg. Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. 2010.

Paul Erdös and Alfréd Rényi. On the evolution of random graphs. In Publication of the
Mathematical Institute of the Hungarian Academy of Sciences, pages 17–61, 1960.

Maryam Fazel, Haitham Hindi, and Stephen P. Boyd. A rank minimization heuristic with
application to minimum order system approximation. In American Control Conference,
volume 6, pages 4734–4739, 2001.

Ramanathan V. Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins. Propaga-
tion of trust and distrust. In Proceedings of the 13th International Conference on World
Wide Web, pages 403–412, 2004.

Frank Harary. On the notion of balance of a signed graph. Michigan Mathematical Journal,
2(2):143–146, 1953.

Cho-Jui Hsieh, Kai-Yang Chiang, and Inderjit S. Dhillon. Low rank modeling of signed net-
works. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 507–515, 2012.

Prateek Jain, Reghu Meka, and Inderjit S. Dhillon. Guaranteed rank minimization via
singular value projection. In Advances in Neural Information Processing Systems, pages
934–945, 2010.

Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using
alternating minimization. In Proceedings of the 45th Annual ACM Symposium on Theory
of Computing, pages 665–674, 2013.

Thorsten Joachims and John Hopcroft. Error bounds for correlation clustering. In Proceed-
ings of the 22nd International Conference on Machine Learning, ICML ’05, New York,
NY, USA, 2005. ACM.

Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103, 1972.

1212

Global Modeling of Signed Networks

Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):
39–43, 1953.

Brian W. Kernighan and Shen Lin. An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal, 49(1):291–307, 1970.

Yehuda Koren, Robert M. Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. IEEE Computer, 42:30–37, 2009.

Jérôme Kunegis, Andreas Lommatzsch, and Christian Bauckhage. The slashdot zoo: Mining
a social network with negative edges. In Proceedings of the 18th International Conference
on World Wide Web, pages 741–750, 2009.

Jérôme Kunegis, Stephan Schmidt, Andreas Lommatzsch, Jürgen Lerner, Ernesto W.
DeLuca, and Sahin Albayrak. Spectral analysis of signed graphs for clustering, pre-
diction and visualization. In Proceedings of the SIAM International Conference on Data
Mining, pages 559–570, 2010.

Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive and negative
links in online social networks. In Proceedings of the 19th International Conference on
World Wide Web, pages 641–650, 2010a.

Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed networks in social media. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages
1361–1370, 2010b.

David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks.
Journal of the American Society for Information Science and Technology, 58(7):1019–
1031, 2007.

Aditya Krishna Menon and Charles Elkan. Link prediction via matrix factorization. Pro-
ceedings of the 2011 European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 437–452, 2011.

Mark Newman. Modularity and community structure in networks. Proceedings of the
National Academy of Sciences of USA, 103(23):8577–8582, 2006.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: analysis and an
algorithm. In Advances in Neural Information Processing Systems, pages 849–856. MIT
Press, 2001.

Arnout van de Rijt. The micro-macro link for the theory of structural balance. Journal of
Mathematical Sociology, 35(1):94–113, 2011.

Bo Yang, William Cheung, and Jiming Liu. Community mining from signed social networks.
IEEE Transaction on Knowledge and Data Engineering, 19(10):1333–1348, 2007.

Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit S. Dhillon. Parallel matrix factorization
for recommender systems. Knowledge and Information Systems(KAIS), 2013.

1213

Journal of Machine Learning Research 15 (2014) 1215-1247 Submitted 1/13; Revised 12/13; Published 4/14

Bayesian Nonparametric Comorbidity Analysis of
Psychiatric Disorders

Francisco J. R. Ruiz∗ franrruiz@tsc.uc3m.es
Isabel Valera∗ ivalera@tsc.uc3m.es
Department of Signal Processing and Communications
University Carlos III in Madrid
Avda. de la Universidad, 30
28911 Leganés (Madrid, Spain)

Carlos Blanco cblanco@nyspi.columbia.edu
Department of Psychiatry, New York State Psychiatric Institute
Columbia University
1051 Riverside Drive, Unit #69
New York, NY 10032 (United States of America)

Fernando Perez-Cruz fernando@tsc.uc3m.es

Department of Signal Processing and Communications

University Carlos III in Madrid

Avda. de la Universidad, 30

28911 Leganés (Madrid, Spain)

Editor: Athanasios Kottas

Abstract

The analysis of comorbidity is an open and complex research field in the branch of psy-
chiatry, where clinical experience and several studies suggest that the relation among the
psychiatric disorders may have etiological and treatment implications. In this paper, we
are interested in applying latent feature modeling to find the latent structure behind the
psychiatric disorders that can help to examine and explain the relationships among them.
To this end, we use the large amount of information collected in the National Epidemiologic
Survey on Alcohol and Related Conditions (NESARC) database and propose to model these
data using a nonparametric latent model based on the Indian Buffet Process (IBP). Due
to the discrete nature of the data, we first need to adapt the observation model for discrete
random variables. We propose a generative model in which the observations are drawn from
a multinomial-logit distribution given the IBP matrix. The implementation of an efficient
Gibbs sampler is accomplished using the Laplace approximation, which allows integrating
out the weighting factors of the multinomial-logit likelihood model. We also provide a
variational inference algorithm for this model, which provides a complementary (and less
expensive in terms of computational complexity) alternative to the Gibbs sampler allowing
us to deal with a larger number of data. Finally, we use the model to analyze comorbidity
among the psychiatric disorders diagnosed by experts from the NESARC database.

Keywords: Bayesian nonparametrics, Indian buffet process, categorical observations,
multinomial-logit function, Laplace approximation, variational inference

∗. Both authors contributed equally.

c©2014 Francisco J. R. Ruiz, Isabel Valera, Carlos Blanco and Fernando Perez-Cruz..

Ruiz, Valera, Blanco and Perez-Cruz

1. Introduction

Health care increasingly needs to address the management of individuals with multiple
coexisting diseases, who are now the norm, rather than the exception. In the United
States, about 80% of Medicare spending is devoted to patients with four or more chronic
conditions, with costs growing as the number of chronic conditions increases (Wolff et al.,
2002). This explains the growing interest of researchers in the impact of comorbidity on a
range of outcomes, such as mortality, health-related quality of life, functioning, and quality
of health care. However, attempts to study the impact of comorbidity are complicated by
the lack of consensus about how to define and measure it (Valderas et al., 2009).

Comorbidity becomes particularly relevant in psychiatry, where clinical experience and
several studies suggest that the relation among the psychiatric disorders may have etiologi-
cal and treatment implications. Several studies have focused on the search of the underlying
interrelationships among psychiatric disorders, which can be useful to analyze the structure
of the diagnostic classification system, and guide treatment approaches for each disorder
(Blanco et al., 2013). Krueger (1999) found that 10 psychiatric disorders (available in
the National Comorbidity Survey) can be explained by only two correlated factors, one
corresponding to internalizing disorders and the other to externalizing disorders. The exis-
tence of the internalizing and the externalizing factors was also confirmed by Kotov et al.
(2011). More recently, Blanco et al. (2013) have used factor analysis to find the latent fea-
ture structure under 20 common psychiatric disorders, drawing on data from the National
Epidemiologic Survey on Alcohol and Related Conditions (NESARC). In particular, the
authors found that three correlated factors, one related to externalizing, and the other two
to internalizing disorders, characterized well the underlying structure of these 20 diagnoses.
From a statistical point of view, the main limitation of this study lies on the use of factor
analysis, which assumes that the number of factors is known and that the observations are
Gaussian distributed. However, the latter assumption does not fit the observed data, since
they are discrete in nature.

In order to avoid the model selection step needed to infer the number of factors in
factor analysis, we can resort to Bayesian nonparametric tools, which allow an open-ended
number of degrees of freedom in a model (Jordan, 2010). In this paper, we apply the
Indian Buffet Process (IBP) (Griffiths and Ghahramani, 2011), because it allows us to infer
which latent features influence the observations and how many features there are. We
adapt the observation model for discrete random variables, as the discrete nature of the
data does not allow using the standard Gaussian observation model. There are several
options for modeling discrete outputs given the hidden latent features, like a Dirichlet
distribution or sampling from the features, but we opted for the generative model partially
introduced by Ruiz et al. (2012), in which the observations are drawn from a multinomial-
logit distribution, because it resembles the standard Gaussian observation model, as the
observation probability distribution depends on the IBP matrix weighted by some factors.

The IBP model combined with discrete observations has already been tackled in several
related works. Williamson et al. (2010) propose a model that combines properties from
both the hierarchical Dirichlet process (HDP) and the IBP, called IBP compound Dirichlet
(ICD) process. They apply the ICD to focused topic modeling, where the instances are
documents and the observations are words from a finite vocabulary, and focus on decoupling

1216

Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders

the prevalence of a topic in a document and its prevalence in all documents. Despite the
discrete nature of the observations under this model, these assumptions are not appropriate
for observations such as the set of possible diagnoses or responses to the questions from
the NESARC database, since categorical observations can only take values from a finite
set where elements do not present any particular ordering. Titsias (2007) introduced the
infinite gamma-Poisson process as a prior probability distribution over non-negative integer
valued matrices with a potentially infinite number of columns, and he applied it to topic
modeling of images. In this model, each (discrete) component in the observation vector
of an instance depends only on one of the active latent features of that object, randomly
drawn from a multinomial distribution. Therefore, different components of the observation
vector might be equally distributed. Our model is more flexible in the sense that it allows
different probability distributions for every component in the observation vector, which
is accomplished by weighting differently the latent variables. Furthermore, a preliminary
version of this model has been successfully applied to identify the factors that model the
risk of suicide attempts (Ruiz et al., 2012).

The rest of the paper is organized as follows. In Section 2, we review the IBP model
and the basic Gibbs sampling inference for the IBP, and set the notation used throughout
the paper. In Section 3, we propose the generative model which combines the IBP with
discrete observations generated from a multinomial-logit distribution. In this section, we
focus on the inference based on the Gibbs sampler, where we make use of the Laplace
approximation to integrate out the random weighting factors in the observation model. In
Section 4, we develop a variational inference algorithm that presents lower computational
complexity than the Gibbs sampler. In Section 5, we validate our model on synthetic data
and apply it over the real data extracted from the NESARC database. Finally, Section 6 is
devoted to the conclusions.

2. The Indian Buffet Process

Unsupervised learning aims to recover the latent structure responsible for generating the
observed properties of a set of objects. In latent feature modeling, the properties of each
object can be represented by an unobservable vector of latent features, and the observations
are generated from a distribution determined by those latent feature values. Typically, we
have access to the set of observations and the main goal of latent feature modeling is to
find out the latent variables that represent the data.

The most common nonparametric tool for latent feature modeling is the Indian Buffet
Process (IBP). The IBP places a prior distribution over binary matrices, in which the
number of rows is finite but the number of columns (features) K is potentially unbounded,
that is, K → ∞. This distribution is invariant to the ordering of the features and can be
derived by taking the limit of a properly defined distribution over N ×K binary matrices
as K tends to infinity (Griffiths and Ghahramani, 2011), similarly to the derivation of the
Chinese restaurant process as the limit of a Dirichlet-multinomial model (Aldous, 1985).
However, given a finite number of data points N , it ensures that the number of non-zero
columns, namely, K+, is finite with probability one.

Let Z be a random N ×K binary matrix distributed following an IBP, i.e., Z ∼ IBP(α),
where α is the concentration parameter of the process, which controls the number of non-zero

1217

Ruiz, Valera, Blanco and Perez-Cruz

columns K+. The nth row of Z, denoted by zn•, represents the vector of latent features of the
nth data point, and every entry nk is denoted by znk. Note that each element znk ∈ {0, 1}
indicates whether the kth feature contributes to the nth data point. Since only the K+ non-
zero columns of Z contain the features of interest, and due to the exchangeability property
of the features under the IBP prior, they are usually grouped in the left hand side of the
matrix, as illustrated in Figure 1.

Given a binary latent feature matrix Z, we assume that the N×D observation matrix X,
where the nth row contains a D-dimensional observation vector xn•, is distributed according
to a probability distribution p(X|Z). For instance, in the standard observation model
by Griffiths and Ghahramani (2011), p(X|Z) is a Gaussian probability density function.
Throughout the paper, we denote by x•d the dth column of X, and the elements in X by
xnd.

Z =

2
6664

z11 z12 · · · z1K+
0 0 · · ·

z21 z22 · · · z2K+
0 0 · · ·

...
...

. . .
...

...
...

. . .

zN1 zN2 · · · zNK+
0 0 · · ·

3
7775

K+ non-zero columns

K columns (features)

N
d
a
ta

p
o
in

ts

Figure 1: Illustration of an IBP matrix.

2.1 The Stick-Breaking Construction

The stick-breaking construction of the IBP is an equivalent representation of the IBP prior,
useful for inference algorithms other than Gibbs sampling, such as slice sampling or varia-
tional inference algorithms (Teh et al., 2007; Doshi-Velez et al., 2009).

In this representation, the probability of each latent feature being active is represented
explicitly by a random variable. In particular, the probability of feature znk taking value 1
is denoted by ωk, that is,

znk ∼ Bernouilli(ωk).

Since this probability does not depend on n, the stick-breaking representation explicitly
shows that the ordering of the data does not affect the distribution.

The probabilities ωk are, in turn, generated by first drawing a sequence of independent
random variables v1, v2, . . . from a beta distribution of the form

vk ∼ Beta(α, 1).

Given the sequence of variables v1, v2, . . ., the probability ω1 is assigned to v1, and each
subsequent ωk is obtained as

ωk =
k∏

i=1

vi,

1218

Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders

resulting in a decreasing sequence of probabilities ωk. Specifically, the expected probability
of feature znk being active decreases exponentially with the index k.

This construction can be understood with the stick-breaking process illustrated in Fig-
ure 2. Starting with a stick of length 1, at each iteration k = 1, 2, . . ., a piece is broken off
at a point vk relative to the current length of the stick. The variable ωk corresponds to the
length of the stick just broken off, and the other piece of the stick is discarded.

1

!1 = v1

!2 = !1v2

!3 = !2v3

. . .

k = 1

k = 2

k = 3

Figure 2: Illustration of the stick-breaking construction of the IBP.

2.2 Inference

Markov Chain Monte Carlo (MCMC) methods have been broadly applied to infer the la-
tent structure Z from a given observation matrix X (see, e.g., in Griffiths and Ghahramani
(2011); Williamson et al. (2010); Van Gael et al. (2009); Titsias (2007)), being Gibbs sam-
pling the standard method of choice. This algorithm iteratively samples the value of each
element znk given the remaining variables, that is, it samples from

p(znk = 1|X,Z¬nk) ∝ p(X|Z)p(znk = 1|Z¬nk), (1)

where Z¬nk denotes all the entries of Z other than znk. The conditional distribution p(znk =
1|Z¬nk) can be readily derived from the exchangeable IBP and can be written as

p(znk = 1|Z¬nk) =
m−n,k
N

,

where m−n,k is the number of data points with feature k, not including n, i.e., m−n,k =∑
i 6=n zik. For each data point n, after having sampled all elements znk for the K+ non-

zero columns in Z, the algorithm samples from a distribution (where the prior is a Poisson
distribution with mean α/N) a number of new features necessary to explain that data point.

Although MCMC methods perform exact inference, they typically suffer from high com-
putational complexity. To solve this limitation, variational inference algorithms can be
applied instead at a lower computational cost, at the expense of performing approximate
inference (Jordan et al., 1999). A variational inference algorithm for the IBP under the stan-
dard Gaussian observation model is presented by Doshi-Velez et al. (2009). This algorithm
makes use of the stick breaking construction of the IBP, summarized above.

1219

Ruiz, Valera, Blanco and Perez-Cruz

3. Observation Model

Unlike the standard Gaussian observation model, let us consider discrete observations, that
is, each element xnd ∈ {1, . . . , Rd}, where this finite set contains the indexes to all the
possible values of xnd. For simplicity and without loss of generality, we consider that
Rd = R, but the following results can be readily extended to a different cardinality per
input dimension, as well as mixing continuous variables with discrete variables, since given
the latent feature matrix Z the columns of X are assumed to be independent.

We introduce the K × R matrices Bd and the length-R row vectors bd
0 to model the

probability distribution over X, such that Bd links the latent features with the dth column
of the observation matrix X, denoted by x•d, and bd

0 is included to model the bias term
in the distribution over the data points. This bias term plays the role of a latent variable
that is always active. For a categorical observation space, if we do not have a bias term and
all latent variables are inactive, the model assumes that all the outcomes are independent
and equally likely, which is not a suitable assumption in most cases. In our application, the
bias term is used to model the people that do not suffer from any disorder and it captures
the baseline diagnosis in the general population. Additionally, this bias term simplifies the
inference since the latent features of those subjects that are not diagnosed any disorder do
not need to be sampled.

Hence, we assume that the probability of each element xnd taking value r (r = 1, . . . , R),
denoted by πrnd, is given by the multiple-logistic function, i.e.,

πrnd = p(xnd = r|zn•,Bd,bd
0) =

exp (zn•b
d
•r + bd0r)

R∑

r′=1

exp (zn•b
d
•r′ + bd0r′)

, (2)

where bd
•r denotes the rth column of Bd and bd0r denotes the rth element of vector bd

0. Note
that the matrices Bd are used to weight differently the contribution of each latent feature
to every component d, similarly as in the standard Gaussian observation model in Griffiths
and Ghahramani (2011). We assume that the mixing vectors bd

•r are Gaussian distributed
with zero mean and covariance matrix Σb = σ2BI, and the elements bd0r are also Gaussian
distributed with zero mean and variance σ2B. The corresponding graphical model is shown
in Figure 3.

Z

X
Bd

bd
0

�2
B

d = 1, . . . , D

↵

Figure 3: Graphical probabilistic model of the IBP with discrete observations.

The choice of the observation model in Eq. (2), which combines the multiple-logistic
function with Gaussian parameters, is based on the fact that it induces dependencies among

1220

Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders

the probabilities πrnd that cannot be captured with other distributions, such as the Dirich-
let distribution (Blei and Lafferty, 2007). Furthermore, this multinomial-logistic normal
distribution has been widely used to define probability distributions over discrete random
variables (Williams and Barber, 1998; Blei and Lafferty, 2007).

We consider that elements xnd are independent given the latent feature matrix Z, the
weighting matrices Bd and the weighting vectors bd

0. Then, the likelihood for any matrix
X can be expressed as

p(X|Z,B1, . . . ,BD,b1
0, . . . ,b

D
0) =

N∏

n=1

D∏

d=1

p(xnd|zn•,Bd,bd
0) =

N∏

n=1

D∏

d=1

πxnd
nd . (3)

3.1 Laplace Approximation for Gibbs Sampling Inference

In Section 2, the (heuristic) Gibbs sampling algorithm for posterior inference over the latent
variables of the IBP, detailed in Griffiths and Ghahramani (2011), has been briefly reviewed.
To sample from Eq. (1), we need to integrate out Bd and bd

0 in (3), as sequentially sampling
from the posterior distribution of these variables is intractable, for which an approximation
is required. We rely on the Laplace approximation to integrate out the parameters Bd

and bd
0 for simplicity and ease of implementation. We first consider the finite form of the

proposed model, where K is bounded.
We can simplify the notation in Eqs. 2 and 3 by considering an extended latent feature

matrix Z of size N × (K + 1), in which the elements of the first column are equal to one,
and D extended weighting matrices Bd of size (K + 1) × R, in which the first row equals
the vector bd

0. With these definitions, Eq. (2) can be rewritten as

πrnd = p(xnd = r|zn•,Bd) =
exp (zn•b

d
•r)

R∑

r′=1

exp (zn•b
d
•r′)

.

Unless otherwise specified, we use the simplified notation throughout this section. For this
reason, the index k over the latent variables takes the values in {0, 1, . . . ,K}, with zn0 = 1
for all n.

Recall that our model assumes independence among the observations given the hidden
latent variables. Then, the posterior p(B1, . . . ,BD|X,Z) factorizes as

p(B1, . . . ,BD|X,Z) =
D∏

d=1

p(Bd|x•d,Z) =
D∏

d=1

p(x•d|Bd,Z)p(Bd)

p(x•d|Z)
.

Hence, we only need to deal with each term p(Bd|x•d,Z) individually. The marginal likeli-
hood p(x•d|Z), which we are interested in, can be obtained as

p(x•d|Z) =

∫
p(x•d|Bd,Z)p(Bd)dBd. (4)

Although the prior p(Bd) is Gaussian, due to the non-conjugacy with the likelihood term,
the computation of this integral, as well as the computation of the posterior p(Bd|x•d,Z),
turns out to be intractable.

1221

Ruiz, Valera, Blanco and Perez-Cruz

Following a similar procedure as in Gaussian processes for multiclass classification
(Williams and Barber, 1998), we approximate the posterior p(Bd|x•d,Z) as a Gaussian
distribution using Laplace’s method. In order to obtain the parameters of the Gaussian
distribution, we define f(Bd) as the un-normalized log-posterior of p(Bd|x•d,Z), i.e.,

f(Bd) = log p(x•d|Bd,Z) + log p(Bd). (5)

As proven in Appendix A, the function f(Bd) is a strictly concave function of Bd and
therefore it has a unique maximum, which is reached at Bd

MAP, denoted by the subscript
‘MAP’ (maximum a posteriori) because it coincides with the mean of the Gaussian distri-
bution in the Laplace’s approximation. We resort to Newton’s method to compute Bd

MAP.
We stack the columns of Bd into βd, i.e., βd = Bd(:) for avid Matlab users. The

posterior p(Bd|x•d,Z) can be approximated as

p(βd|x•d,Z) ≈ N
(
βd
∣∣∣βd

MAP, (−∇∇f)|βd
MAP

)
,

where βd
MAP contains all the columns of Bd

MAP stacked into a vector and ∇∇f is the Hessian
of f(βd). Hence, by taking the second-order Taylor series expansion of f(βd) around its
maximum, the computation of the marginal likelihood in (4) results in a Gaussian integral,
whose solution can be expressed as

log p(x•d|Z) ≈ − 1

2σ2B
trace

{
(Bd

MAP)>Bd
MAP

}

− 1

2
log

∣∣∣∣∣IR(K+1) + σ2B

N∑

n=1

(
diag(π̂nd)− (π̂nd)>π̂nd

)
⊗ (z>n•zn•)

∣∣∣∣∣+ log p(x•d|Bd
MAP,Z),

(6)

where π̂nd is the vector πnd =
[
π1nd, π

2
nd, . . . , π

R
nd

]
evaluated at Bd = Bd

MAP, and diag(π̂nd)
is a diagonal matrix with the values of π̂nd as its diagonal elements.

Similarly as in Griffiths and Ghahramani (2011), it is straightforward to prove that the
limit of Eq. (6) is well-defined if Z has an unbounded number of columns, that is, as K →∞.
The resulting expression for the marginal likelihood p(x•d|Z) can be readily obtained from
Eq. (6) by replacing K by K+, Z by the submatrix containing only the non-zero columns
of Z, and Bd

MAP by the submatrix containing the K++1 corresponding rows.

3.2 Speeding Up the Matrix Inversion

In this section, we propose a method that reduces the complexity of computing the inverse
of the Hessian for Newton’s method (as well as its determinant) from O(R3K3

+ +NR2K2
+)

to O(RK3
+ + NR2K2

+), effectively accelerating the inference procedure for large values of
R.

Let us denote with Z the matrix that contains only the K+ + 1 non-zero columns of
the extended full IBP matrix. The inverse of the Hessian for Newton’s method, as well as
its determinant in (6), can be efficiently carried out if we rearrange the inverse of ∇∇f as
follows:

(−∇∇f)−1 =

(
D−

N∑

n=1

vnv>n

)−1
,

1222

Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders

where vn = (πnd)>⊗z>n• and D is a block-diagonal matrix, in which each diagonal submatrix
is given by

Dr =
1

σ2B
IK++1 + Z> diag (πr

•d) Z, (7)

with πr
•d =

[
πr1d, . . . , π

r
Nd

]>
. Since vnv>n is a rank-one matrix, we can apply the Wood-

bury identity (Woodbury, 1949) N times to invert the matrix −∇∇f , similar to the RLS
(Recursive Least Squares) updates (Haykin, 2002). At each iteration n = 1, . . . , N , we
compute

(D(n))−1 =
(
D(n−1) − vnv>n

)−1
= (D(n−1))−1 +

(D(n−1))−1vnv>n (D(n−1))−1

1− v>n (D(n−1))−1vn
. (8)

For the first iteration, we define D(0) as the block-diagonal matrix D, whose inverse
matrix involves computing the R matrix inversions of size (K+ + 1) × (K+ + 1) of the
matrices in (7), which can be efficiently solved applying the Matrix Inversion Lemma. After
N iterations of (8), it turns out that (−∇∇f)−1 = (D(N))−1.

In practice, there is no need to iterate over all observations, since all subjects sharing
the same latent feature vector zn• and observation xnd can be grouped together, therefore
requiring (at most) R2K+ iterations instead of N . In our applications, it provides significant
savings in run-time complexity, since R2K+ � N .

For the determinant in (6), similar recursions can be applied using the Matrix De-
terminant Lemma (Harville, 1997), which states that |D + vu>| = (1 + v>Du)|D|, and
|D(0)| = ∏R

r=1 |Dr|.

4. Variational Inference

Variational inference provides a complementary (and less expensive in terms of computa-
tional complexity) alternative to MCMC methods as a general source of approximation
methods for inference in large-scale statistical models (Jordan et al., 1999). In this section,
we adapt the infinite variational approach for the linear-Gaussian model with respect to
a full IBP prior introduced by Doshi-Velez et al. (2009) to the model proposed in Sec-
tion 3. This approach assumes the (truncated) stick-breaking construction for the IBP in
Section 2.1, which bounds the number of columns of the IBP matrix by a finite (but large
enough) value, K. Then, in the truncated stick-breaking process, ωk =

∏k
i=1 vi for k ≤ K

and zero otherwise.

The hyperparameters of the model are contained in the set H = {α, σ2B} and, similarly,
Ψ = {Z,B1, . . . ,BD,b1

0, . . . ,b
D
0 , v1, . . . , vK} denotes the set of unobserved variables in the

model. Under the truncated stick-breaking construction for the IBP, the joint probability
distribution over all the variables p(Ψ,X|H) can be factorized as

p(Ψ,X|H) =

K∏

k=1

(
p(vk|α)

N∏

n=1

p(znk|{vi}ki=1)

)
D∏

d=1

(
p(bd

0|σ2B)

K∏

k=1

p(bd
k•|σ2B)

)

×
N∏

n=1

D∏

d=1

p(xnd|zn•,Bd,bd
0),

1223

Ruiz, Valera, Blanco and Perez-Cruz

where bd
k• is the kth row of matrix Bd.

We approximate p(Ψ|X,H) with the variational distribution q(Ψ) given by

q(Ψ) =
K∏

k=1

(
q(vk|τk1, τk2)

N∏

n=1

q(znk|νnk)

)
K∏

k=0

R∏

r=1

D∏

d=1

q(bdkr|φdkr, (σdkr)
2
),

where the elements of matrix Bd are denoted by bdkr, and

q(vk|τk1, τk2) = Beta(τk1, τk2),

q(bdkr|φdkr, (σdkr)
2
) = N (φdkr, (σ

d
kr)

2
),

q(znk|νnk) = Bernoulli(νnk).

Inference involves optimizing the variational parameters of q(Ψ) to minimize the Kullback-
Leibler divergence from q(Ψ) to p(Ψ|X,H), i.e., DKL(q||p). This optimization is equivalent
to maximizing a lower bound on the evidence p(X|H), since

log p(X|H) = Eq [log p(Ψ,X|H)] +H[q] +DKL(q||p)
> Eq [log p(Ψ,X|H)] +H[q],

(9)

where Eq[·] denotes the expectation with respect to the distribution q(Ψ), H[q] is the entropy
of distribution q(Ψ) and

Eq [log p(Ψ,X|H)] =

K∑

k=1

Eq [log p(vk|α)] +

D∑

d=1

K∑

k=1

Eq

[
log p(bd

k•|σ2B)
]

+

D∑

d=1

Eq

[
log p(bd

0|σ2B)
]

+

K∑

k=1

N∑

n=1

Eq

[
log p(znk|{vi}ki=1)

]
+

N∑

n=1

D∑

d=1

Eq

[
log p(xnd|zn•,Bd,bd

0)
]
.

(10)

The derivation of the lower bound in (9) is straightforward, with the exception of the terms
Eq

[
log p(znk|{vi}ki=1)

]
and Eq

[
log p(xnd|zn•,Bd,bd

0)
]

in (10), which have no closed-form
solution, so we instead need to bound them. Deriving these bounds leads to a new bound
L(H,Hq), which can be obtained in closed-form, such that log p(X|H) ≥ L(H,Hq), being
Hq the full set of variational parameters. The final expression for L(H,Hq), as well as the
details on the derivation of the bound, are provided in Appendix B.

In order to maximize the lower bound L(H,Hq), we need to optimize with respect to
the value of the variational parameters. To this end, we can iteratively maximize the bound
with respect to each variational parameter by taking the derivative of L(H,Hq) and setting
it to zero. This procedure readily leads to the following fixed-point equations:

1. For the variational Beta distribution q(vk|τk1, τk2),

τk1 = α+
K∑

m=k

(
N∑

n=1

νnm

)
+

K∑

m=k+1

(
N −

N∑

n=1

νnm

)(
m∑

i=k+1

λmi

)
,

τk2 = 1 +
K∑

m=k

(
N −

N∑

n=1

νnm

)
λmk.

1224

Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders

2. For the Bernoulli distribution q(znk|νnk),

νnk =
1

1 + exp(−Ank)
,

where

Ank =
k∑

i=1

[ψ(τi1)− ψ(τi1 + τi2)]−
[

k∑

m=1

λkmψ(τm2) +
k−1∑

m=1

(
k∑

n=m+1

λkn

)
ψ(τm1)

−
k∑

m=1

(
k∑

n=m

λkn

)
ψ(τm1 + τm2)−

k∑

m=1

λkm log(λkm)

]

+
D∑

d=1

(
φdkxnd

− ξnd
R∑

r=1

[
exp

(
φd0r +

1

2
(σd0r)

2

)(
1− exp

(
φdkr +

1

2
(σdkr)

2
))
×

×
∏

k′ 6=k

(
1− νnk′ + νnk′ exp

(
φdk′r +

1

2
(σdk′r)

2
))]

 ,

and ψ(·) stands for the digamma function (Abramowitz and Stegun, 1972, p. 258–259).

3. For the feature assignments, which are Bernoulli distributed given the feature prob-
abilities, we have lower bounded Eq

[
log p(znk|{vi}ki=1)

]
by using the multinomial ap-

proach in Doshi-Velez et al. (2009) (see Appendix B for further details). This approx-
imation introduces the auxiliary multinomial distribution λk = [λk1, . . . , λkk], where
each λki can be updated as

λki ∝ exp

(
ψ(τi2) +

i−1∑

m=1

ψ(τm1)−
i∑

m=1

ψ(τm1 + τm2)

)
,

where the proportionality ensures that λk is a valid distribution.

4. The maximization with respect to the variational parameters φdkr, φ
d
0r, (σdkr)

2
, and

(σd0r)
2 has no analytical solution, and therefore, we need to resort to a numerical

method to find the maximum, such as Newton’s method or conjugate gradient al-
gorithm, for which the first and the second derivatives1 (given in Appendix C) are
required.

5. Finally, we lower bound the likelihood term Eq

[
log p(xnd|zn•,Bd,bd

0)
]

by resorting to a
first-order Taylor series expansion around the auxiliary variables ξ−1nd for n = 1, . . . , N
and d = 1, . . . , D (see Appendix B for further details), which are optimized by the
expression

ξnd =

[
R∑

r=1

exp

(
φd0r +

1

2
(σd0r)

2

) K∏

k=1

(
1− νnk + νnk exp

(
φdkr +

1

2
(σdkr)

2
))]−1

.

1. Note that the second derivatives are strictly negative and, therefore, the maximum with respect to each
parameter is unique.

1225

Ruiz, Valera, Blanco and Perez-Cruz

5. Experiments

In this section, we first use a toy example to show how our model with discrete observations
works and then we turn to two experiments over the NESARC database.

5.1 Inference over Synthetic Images

We generate an illustrative example inspired by the example in Griffiths and Ghahramani
(2011) to show that the proposed model works as expected. We define four base black-and-
white images, shown in Figure 4a, that can be present with probability 0.3, independently
of the others. These base images are combined to create a binary composite image. We also
multiply each white pixel independently with equiprobable binary noise, hence each white
pixel in the composite image can be turned black 50% of the times, while black pixels always
remain black. We generate 200 observations to learn the IBP model (several examples can
be found in Figure 4c). The Gibbs sampler has been initialized with K+ = 2, setting each
znk = 1 with probability 1/2, and setting the hyperparameters to α = 0.5 and σ2B = 1.

After 350 iterations, the Gibbs sampler returns four latent features. Each of the four
features recovers one of the base images with a different ordering, which is inconsequential.
In Figure 4b, we have plotted the posterior probability for each pixel being white, when
only one of the components is active. As expected, the black pixels are known to be black
(almost zero probability of being white) and the white pixels have about a 50/50 chance of
being black or white, due to the multiplicative noise. The Gibbs sampler has used as many
as eleven hidden features, as shown in Figure 4e, but after less than 50 iterations, the first
four features represent the base images and the others just lock on to a noise pattern, which
eventually fades away.

In Figure 4d, we depict the posterior probability of pixels being white for the four
images in Figure 4c, given the inferred latent feature vectors for these observations. Note
that the model behaves as expected and properly captures the generative process, even for
those observations which do not possess any latent features, for which the vectors bd

0 do
not provide significant information about the black-or-white probabilities.

5.2 Comorbidity Analysis of Psychiatric Disorders

In the present study, our objective is to provide an alternative to the factor analysis approach
used by Blanco et al. (2013) with the IBP for discrete observations introduced in the present
paper. We build an unsupervised model taking the 20 disorders used by Blanco et al. (2013)
as input data, drawn from the NESARC data.

The NESARC database was designed to estimate the prevalence of psychiatric disorders,
as well as their associated features and level of disability. The NESARC had two waves
of interviews (first wave in 2001-2002 and second wave in 2004-2005). For the following
experimental results, we only use the data from the first wave, for which 43,093 people were
selected to represent the U.S. population of 18 years of age and older. Through 2,991 entries,
the NESARC collects data on the background of participants, alcohol and other drug use
and use disorders, and other mental disorders. Public use data are currently available for
this wave of data collection.2

2. See http://aspe.hhs.gov/hsp/06/catalog-ai-an-na/nesarc.htm

1226

Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders

(a) (b)

(c) (d)

50 100 150 200 250 300 350
0
2
4
6
8

10
12

Iteration

N
um

be
r o

f f
ea

tu
re

s
(K

+)

(e)

0 50 100 150 200 250 300 350
−5000

−4800

−4600

−4400

−4200

Iteration
lo

g
p(

X|
Z)

(f)

Figure 4: Experimental results of the infinite binary multinomial-logistic model over the
image data set. (a) The four base images used to generate the 200 observations.
(b) Probability of each pixel being white, when a single feature is active (ordered
to match the images on the left), computed using the matrices Bd

MAP. (c) Four
data points generated as described in the text. The numbers above each figure
indicate which features are present in that image. (d) Probabilities of each pixel
being white after 350 iterations of the Gibbs sampler inferred for the four data
points on (c). The numbers above each figure show the inferred value of zn• for
these data points. (e) The number of latent features K+ and (f) the approximate
log of p(X|Z) over the 200 iterations of the Gibbs sampler.

The 20 disorders include substance use disorders (alcohol abuse and dependence, drug
abuse and dependence and nicotine dependence), mood disorders (major depressive disor-
der (MDD), bipolar disorder and dysthymia), anxiety disorders (panic disorder, social anx-
iety disorder (SAD), specific phobia and generalized anxiety disorder (GAD)), pathological
gambling (PG) and seven personality disorders (avoidant, dependent, obsessive-compulsive
(OC), paranoid, schizoid, histrionic and antisocial personality disorders (PDs)).

We run the Gibbs sampler over 3, 500 randomly chosen subjects out of the 43,093 par-
ticipants in the survey, having initialized the sampler with an active feature, i.e., K+ = 1,
having set znk = 1 randomly with probability 0.5, and fixing α = 1 and σ2B = 1. After
convergence, we run an additional Gibbs sampler with 10 iterations for each of the remain-
ing subjects in the database, restricted to their latent features (that is, we fix the latent
features learned for the 3, 500 subjects to sample the feature vector of each subject). Then,
we run additional iterations of the Gibbs sampler over the whole database, finally obtaining
three latent features. In order to speed up the sampling procedure, we do not sample the

1227

Ruiz, Valera, Blanco and Perez-Cruz

10−4

10−3

10−2

10−1

100
P

ro
ba

bi
lit

y

1.
 A

lc
oh

ol
 a

bu
se

2.
 A

lc
oh

ol
 d

ep
en

d.
3.

 D
ru

g
ab

us
e

4.
 D

ru
g

de
pe

nd
.

5.
 N

ic
ot

in
e

de
pe

nd
.

6.
 M

D
D

7.
 B

ip
ol

ar
 d

is
or

de
r

8.
 D

ys
th

ym
ia

9.
 P

an
ic

 d
is

or
de

r
10

. S
A

D
11

. S
pe

ci
fic

 p
ho

bi
a

12
. G

A
D

13
. P

G
14

. A
vo

id
an

t P
D

15
. D

ep
en

de
nt

 P
D

16
. O

C
P

D
17

. P
ar

an
oi

d
P

D
18

. S
ch

iz
oi

d
P

D
19

. H
is

tri
on

ic
 P

D
20

. A
nt

is
oc

ia
l P

D

[000]
[100]
[010]
[001]
Baseline

Figure 5: Probabilities of suffering from the 20 considered disorders. These probabilities
have been obtained using the matrices Bd

MAP, when none or a single latent feature
is active. The legend shows the latent feature vector corresponding to each curve.
The baseline has been obtained taking into account the 43, 093 subjects in the
database.

rows of Z corresponding to those subjects who do not suffer from any of the 20 disorders,
but instead fix these latent features to zero. The idea is that the bd

0 terms must capture
the general population that does not suffer from any psychiatric disorder, and we use the
active components of the matrix Z to characterize the disorders.

To examine the three latent features, we plot in Figure 5 the posterior probability of
having each of the considered disorders, when none or one of the latent features is active.
As expected, for those subjects who do not possess any feature, the probability of having
any of the disorders is below the baseline level (due to the contribution of the vectors
bd
0), defined as the empirical probability in the full sample, that is, taking into account the

43, 093 participants. Feature 1 increases the probability of having all the disorders, and thus
seems to represent a general psychopathology factor, although it may particularly increase
the risk of personality disorders. Feature 2 models substance use disorders and antisocial
personality disorder, consistent with the externalizing factor identified in previous studies
of the structure of psychiatric disorders (Krueger, 1999; Kendler et al., 2003; Vollebergh
et al., 2001; Blanco et al., 2013). Feature 3 models mood or anxiety disorders, and thus
seems to represent the internalizing factor also identified in previous studies.

1228

Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders

Feature vector 1 x x x 1 x x x 1

Empirical Probability 0.0748 0.0330 0.0227

(a)

Feature vector 1 1 x 1 x 1 x 1 1

Empirical Probability 0.0028 0.0012 0.0009

Product Probability 0.0025 0.0017 0.0007

(b)

Table 1: Probabilities of possessing at least (a) one latent feature, or (b) two latent features,
as given in the patterns shown in the heading rows. The symbol ‘x’ denotes either 0
or 1. The ‘empirical probability’ rows contain the probabilities extracted directly
from the inferred IBP matrix Z, while the ‘product probability’ row shows the
product of the corresponding two latent feature probabilities given in (a).

Thus, in accord to previous results from the studies on the latent structure of the
comorbidity of psychiatric disorders, detailed in Section 1, we find that the patterns of
comorbidity of common psychiatric disorders can be well described by a small number of
latent features. In addition, nosologically related disorders, such as social anxiety disorder
and avoidant personality disorder, tend to be modeled by similar features. As found in
previous results (Blanco et al., 2013), no disorder is perfectly aligned along one single latent
feature, therefore suggesting that disorders can develop through multiple etiological paths.
For instance, the risk of nicotine dependence may be particularly high in individuals with
a propensity towards externalization or internalization.

In Table 1a, we first show the empirical probability of possessing each latent feature,
that is, the number of subjects in the database that possess each latent feature divided by
the total number of subjects. We also show in Table 1b the probability of possessing at
least two features as the product of the probabilities in Table 1a (Product Probability),
and also the empirical probability. We include Table 1 to show that the three features are
nearly independent of one another, since the probability of possessing any two particular
features is close to the product of the probabilities of possessing them individually. The
differences in Table 1b are not statistically significant. Then, besides explicitly capturing
the probability of each disorder, our model also provides a way to measure independence
among the latent features. Note that although the proposed model assumes that the latent
features are independent a priori, we could have found that the empirical probability does
not correspond to the product one. Therefore, the independence among the three latent
features follows the model’s assumption and, from a psychiatric perspective, it also shows
that the three factors (internalizing, externalizing and general psychopathology factor) are
independent one another, that is, suffering from one group of disorders does not imply an
increased probability of suffering from any other group of disorders.

Finally, we remark that we have also applied the variational inference algorithm to study
the comorbidity patterns of psychiatric disorders but, since both algorithms (the variational
and the Gibbs sampler) infer the same three latent features, we only plot the results for the

1229

Ruiz, Valera, Blanco and Perez-Cruz

Gibbs sampling algorithm in this section and apply the variational inference algorithm in
next section.

5.3 Comorbidity Analysis of Personality Disorders

In order to identify the seven personality disorders studied in the previous section, psy-
chiatrists have established specific diagnostic criteria for each of them. These criteria cor-
respond to affirmative responses to one or several questions in the NESARC survey and
this correspondence is shown in Appendix D. Then, there exists a set of criteria to iden-
tify if a subject presents any of the following personality disorders: avoidant, dependent,
obsessive-compulsive, paranoid, schizoid, histrionic and antisocial. In the present analysis,
we consider as input data the fulfillment of the 52 criteria (i.e., R = 2) corresponding to
all the disorders for the 43,093 subjects and we apply the variational inference algorithm
truncated to K = 25 features, as detailed in Section 4, to find the latent structure of the
data.

In order to properly initialize the huge amount of variational parameters, we have pre-
viously run six Gibbs samplers over the data but taking only the criteria corresponding to
the avoidant PD and another PD (that is, the seven criteria for the avoidant PD and the
seven for the dependent PD, the criteria for the avoidant PD with the eight for the OCPD,
etc.) for 10, 000 randomly chosen subjects. After running the six Gibbs samplers, we ob-
tain 18 latent features that we group in a unique matrix Z to obtain the weighting matrices
Bd

MAP, which are used to initialize some parameters νnk and φdkr. We do this because the
variational algorithm is sensitive to the starting point and a random initialization would
not produce good solutions.

We run enough iterations of the variational algorithm to ensure convergence of the
variational lower bound (the lower bound at each iteration is shown in Figure 6). We
construct a binary matrix Z by setting each element znk = 1 if νnk > 0.5. We flip (changing
zeros by ones, and vice versa) those features possessed by more than 80% of the subjects,
obtaining only 10 latent features possessed by more than 50 subjects among the 43, 093
in the database and then recomputing the weighting matrices. In Table 2, we show the
probability of occurrence of each feature (top row), as well as the probability of having
active only one single feature (bottom row). We also show the ‘empirical’ and the ‘product’
probabilities of possessing at least two latent features in Table 3, and the probabilities of
possessing at least two features given that one of them is active in Table 4.

Features 1 2 3 4 5 6 7 8 9 10

Total 43.45 19.01 15.28 13.99 11.76 8.97 7.54 6.91 1.86 1.43

Single feature 13.48 3.62 2.22 1.34 2.27 0.49 0.76 1.07 0 0

Table 2: Probabilities (%) of possessing (top row) at least one latent feature, or (bottom
row) a single feature.

In Figure 7, we plot the probability of meeting each criterion in the general population
(dashed line) and the probability of meeting each criterion for those subjects that do not
have any active feature in our model (solid line). There are 15, 185 subjects (35.2% of the

1230

Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders

Features 1 2 3 4 5 6 7 8 9 10

1 9.92 8.96 8.48 5.67 7.22 4.92 3.85 1.46 1.42

2 8.26 4.43 4.54 3.67 1.90 1.43 2.08 0.71 0.21

3 6.64 2.90 3.29 2.18 3.00 2.02 1.58 0.54 0.20

4 6.08 2.66 2.14 2.79 1.91 2.39 1.40 1.25 0.03

5 5.11 2.23 1.80 1.65 1.31 1.35 0.85 0.57 0.00

6 3.90 1.71 1.37 1.26 1.05 1.10 0.80 0.44 0.14

7 3.28 1.43 1.15 1.06 0.89 0.68 0.65 0.28 0.00

8 3.00 1.31 1.06 0.97 0.81 0.62 0.52 0.51 0.07

9 0.81 0.35 0.28 0.26 0.22 0.17 0.14 0.13 0.00

10 0.62 0.27 0.22 0.20 0.17 0.13 0.11 0.10 0.03

Table 3: Probabilities (%) of possessing at least two latent features. The elements above
the diagonal correspond to the ‘empirical probability’, that is, extracted directly
from the inferred IBP matrix Z, and the elements below the diagonal correspond
to the ‘product probability’ of the corresponding two latent feature probabilities
given in the first row of Table 2.

population) which do not present any active feature, and for these people the probability
of meeting any criterion is reduced significantly.

We have found results that are in accordance with previous studies and at the same
time provide new information to understand personality disorders. Out of the 10 features,
6 of them directly describe personality disorders. Feature 1 increases the probability of
fulfilling the criteria for OCPD, Feature 3 increases the probability of fulfilling the criteria
for antisocial, Feature 4 increases the probability of fulfilling the criteria for paranoid,
Feature 5 increases the probability of meeting the criteria for schizoid, Feature 8 increases
the probability of fulfilling the criteria for histrionic and Feature 7 increases the probability
of meeting the criteria for avoidant and dependent. In Figure 8, we plot the probability
ratio between the probability of meeting each criterion when a single feature is active with
respect to the probability of meeting each criterion in the general population (baseline in

0 5 10 15 20 25 30 35 40
−2

−1.5

−1

−0.5 x 106

Iteration

Va
rta

iti
on

al
 lo

w
er

 b
ou

nd

Figure 6: Variational lower bound L(H,Hq) at each iteration.

1231

Ruiz, Valera, Blanco and Perez-Cruz

HHH
HHHk1

k2 1 2 3 4 5 6 7 8 9 10

1 100 22.83 20.63 19.53 13.05 16.62 11.33 8.85 3.37 3.27

2 52.19 100 23.33 23.90 19.32 10.00 7.51 10.95 3.75 1.09

3 58.68 29.03 100 21.54 14.29 19.66 13.25 10.34 3.51 1.29

4 60.63 32.47 23.52 100 19.97 13.65 17.05 10.02 8.92 0.20

5 48.22 31.25 18.57 23.77 100 11.11 11.49 7.24 4.88 0.00

6 80.47 21.18 33.47 21.29 14.56 100 12.23 8.92 4.86 1.53

7 65.26 18.92 26.83 31.63 17.91 14.55 100 8.65 3.66 0.03

8 55.62 30.11 22.86 20.28 12.32 11.58 9.43 100 7.39 1.07

9 78.46 38.23 28.77 67.00 30.76 23.41 14.82 27.40 100 0.12

10 99.19 14.40 13.75 1.94 0.00 9.55 0.16 5.18 0.16 100

Table 4: Probabilities (%) of possessing at least features k1 and k2 given that k1 is active,

i.e.,
(∑N

n=1 znk1znk2

)
/
(∑N

n=1 znk1

)
.

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

Criterion

P
ro

ba
bi

lit
y

Baseline
None

HPD
AvPD

DPD

PPD

SPD

APD
OCPD

Figure 7: Probability of meeting each criterion. The probabilities when no latent feature
is active (solid curve) have been obtained using the matrices Bd

MAP, while the
baseline (dashed curve) has been obtained taking into account the 43, 093 subjects
in the database.
(AvPD=Avoidant PD, DPD=Dependent PD, OCPD=Obsessive-compulsive PD,
PPD=Paranoid PD, SPD=Schizoid PD, HPD=Histrionic PD, APD=Antisocial
PD)

Figure 7). So, if the ratio is above one, it means that the feature increases the probability
of meeting that criterion with respect to the general population. In all these plots, we also
show the probability ratio between not having any active feature and the general population,
which serves as a reference for a low probability of fulfilling a criterion. Note that the scale
on the vertical axis may be different through all the figures for a better display. In Figure 8,
we can see that only the criteria for one of the personality disorders is systematically above
one, when one feature is active, except for Feature 7 that increases the probability for both
avoidant and dependent. In the figure, we can also notice that when one feature is active

1232

Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
0

0.5

1

1.5

2

Criterion

P
ro

b.
 R

at
io

None
F1
F4

AvPD

PPD

SPDOCPD

APD

HPD
DPD

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
0

1

2

3

4

5

Criterion

P
ro

b.
 R

at
io

None
F3
F8

DPD
AvPD OCPD PPD SPD

HPD

APD

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
0

1

2

3

4

Criterion

P
ro

b.
 R

at
io

None
F5
F7

HPD

APD

SPD

OCPD
PPD

AvPD

DPD

Figure 8: Probability ratio of meeting each criterion, with respect to the baseline. These
probabilities have been obtained using the matrices Bd

MAP, when none or a single
feature is active (the legend shows the active latent features).

the probability of the criteria for the other disorders is above the probability for the subjects
that do not have any active feature, although lower than the general population (above the
solid line and below one). It partially shows the comorbidity pattern for each personality
disorder. For example, Feature 1, besides increasing the probability of meeting the criteria
for OCPD, also increases the probability of meeting criterion 3 for schizoid and criterion
1 for histrionic. It is also important to point out that Feature 8 increases significantly the
probability of meeting criteria 1, 2, 4 and 6 for histrionic (and mildly for criterion 7), but
it does not affect criteria 3, 5 and 8, although the probability of meeting these criteria are
increased by Feature 4 (paranoid) and Feature 5 (schizoid). In a way, it indicates that
criteria 3 and 8 are more related to paranoid disorder and criterion 5 to schizoid disorder.

As seen in Figure 9, Features 2 and 6 mainly reduce the probability of meeting the criteria
for dependent PD. Feature 2 also reduces criteria 4-7 for avoidant and mildly increases

1233

Ruiz, Valera, Blanco and Perez-Cruz

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
0

0.5

1

1.5

Criterion

P
ro

b.
 R

at
io

None
F2
F6AvPD

DPD

HPD

APD

OCPD PPD

SPD

Figure 9: Probability ratio of meeting each criterion, with respect to the baseline. These
probabilities have been obtained using the matrices Bd

MAP, when none or a single
feature is active (the legend shows the active latent features).

criterion 1 for OCPD, criterion 6 for schizoid and criteria 5 and 6 for antisocial. Feature
6 also reduces some criteria below the probability for the subjects with no active features.
But for most of the criteria the probability ratio moves between one and the ratio for the
subjects with no active feature. When these features appear by themselves, the subjects
might be similar to the subjects without any active feature, they become relevant when they
appear together with other features. These features are less likely to be isolated features
than the previous ones, as reported in Table 2. For example, Feature 2 appears frequently
with Features 1, 3, 4 and 5, as shown in Table 4, and the probability ratios are plotted
in Figure 10 and compared to the probability ratio when each feature is not accompanied
by Feature 2. We can see that when we add Feature 2 to Feature 1, the comorbidity
pattern changes significantly and it results in subjects with higher probabilities of meeting
the criteria for every other disorder except avoidant and dependent. Additionally, when we
add Feature 2 to Feature 5, we can see that meeting the criteria for schizoid is even more
probable, together with criterion 5 for histrionic.

Either Feature 1 or Features 1 and 3 typically accompany Feature 6, and Feature 6 is
seldom seen by itself (see Tables 2 and 5). In Figure 11, we show the probability ratio
when Feature 1 is active and when Features 1 and 3 are active, as reference, and when we
add Feature 6 to them. Adding Feature 6 mainly reduces the probability of meeting the
criteria for dependent. It is also relevant to point out that Features 1 and 3 increase the
probability of meeting the criteria 5 and 6 for paranoid, while Feature 4 mainly increased
the probability of meeting the criteria 1-4 for paranoid personality disorder, as shown in
Figure 8.

Feature 9 is similar to Feature 7, as it captures an increase in the probability of meeting
the criteria for avoidant and dependent, but it never appears isolated and most times it
appears together with Features 1 and 4.

Feature 10 never appears isolated and it mainly appears only with Feature 1. This
feature by itself only indicates that the probability of all the criteria should be much lower
than the subjects with no active features, except for antisocial, which behaves as the subjects
with no active features. When we add Feature 1 to Feature 10, we get that the probability
of meeting the criteria for OCDP goes to that of the subject with no active features, as can

1234

Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
0

1

2

3

4

Criterion

P
ro

b.
 R

at
io

None
F1
F1 & F2

HPD

OCPD

SPD
APD

AvPD
DPD PPD

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
0

2

4

6

8

10

Criterion

P
ro

b.
 R

at
io

None
F3
F3 & F2 APD

AvPD DPD OCPD
SPD

PPD HPD

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
0

1

2

3

4

Criterion

P
ro

b.
 R

at
io

None
F4
F4 & F2

AvPD DPD
OCPD

PPD

SPD

HPD
APD

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
0

1

2

3

4

Criterion

P
ro

b.
 R

at
io

None
F5
F5 & F2

AvPD DPD PPDOCPD
APD

HPD

SPD

Figure 10: Probability ratio of meeting each criterion, with respect to the baseline. These
probabilities have been obtained using the matrices Bd

MAP, when none, a single
or two features are active (the legend shows the active latent features).

be seen in Figure 12. For us this is a spurious feature that is equivalent to not having any
active feature and that the variational algorithm has not been able to eliminate. This is
always a risk when working with flexible models, like BNP, in which a spurious component

1235

Ruiz, Valera, Blanco and Perez-Cruz

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

Criterion

P
ro

b.
 R

at
io

None
F1
F1 & F6

AvPD DPD

PPD

SPD HPD APD
OCPD

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
0

1

2

3

4

5

6

Criterion

P
ro

b.
 R

at
io

None
F1 & F3
F1, F3 & F6

DPD OCPD PPD
AvPD SPD HPD

APD

Figure 11: Probability ratio of meeting each criterion, with respect to the baseline. These
probabilities have been obtained using the matrices Bd

MAP, when none, a single
or several features are active (the legend shows the active latent features).

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Criterion

P
ro

b.
 R

at
io

None
F1 & F10
F10

OCPD
DPDAvPD

HPD

SPD

PPD

APD

Figure 12: Probability ratio of meeting each criterion, with respect to the baseline. These
probabilities have been obtained using the matrices Bd

MAP, when none, a single
or two features are active (the legend shows the active latent features).

might appear when it should not. These components can be eliminated by common sense
in most cases or by further analysis by experts (psychiatric experts in our case). But it
can also indicate an unknown component that can point towards a new research direction
previously unknown, which is one of the attractive features of using generative models.

Besides the comorbidity patterns shown by the individual features that we have already
reported, we can also see that almost all the features are positively correlated. In Table 3, we

1236

Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
0

2

4

6

8

10

12

Criterion

P
ro

b.
 R

at
io

None
F4
F4 & F7

OCPD APD
HPDSPD

PPDDPD

AvPD

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
0

2

4

6

8

10

12

Criterion

P
ro

b.
 R

at
io

None
F4
F4 & F9

SPD
OCPD

AvPD
DPD

PPD

HPD

APD

Figure 13: Probability ratio of meeting each criterion, with respect to the baseline. These
probabilities have been obtained using the matrices Bd

MAP, when none, a single
or two features are active (the legend shows the active latent features).

show the probability that any two features appear together (upper triangular sub-matrix)
and the joint probability that we should observe if the features were independent (lower
triangular sub-matrix). Ignoring Feature 10, all of the other features are positively corre-
lated, except Features 2 and 7 and Features 8 and 5 that seem uncorrelated (the differences
are not statistically significant). Most of the features are strongly correlated and the dif-
ferences in Table 3 correspond to several standard deviations higher (between 3 and 42)
that we should expect from independent random observations. For example, the correla-
tion between Features 4 and 9 and Features 4 and 7 is quite high and both show subjects
with higher probability of meeting the criteria for avoidant, dependent and paranoid. The
difference between Features 7 and 9 is given by the criteria 1-4 for paranoid PD, that are
significantly increased by Feature 9 and slightly by Feature 7, as it can be seen in Figure 13.
Finally, it is worth mentioning that Feature 4 (paranoid) is the most highly correlated fea-
ture with all the others, so we can say that anyone suffering from paranoid PD has a higher
comorbidity with any other personality disorder.

6. Conclusions

In this paper, we have proposed a new model that combines the IBP with discrete obser-
vations using the multinomial-logit distribution. We have used the Laplace approximation
to integrate out the weighting factors, which allows us to efficiently run the Gibbs sampler.

1237

Ruiz, Valera, Blanco and Perez-Cruz

Occurrences
Features

1 2 3 4 5 6 7 8 9 10

1 15185 0 0 0 0 0 0 0 0 0 0

2 5811 1 0 0 0 0 0 0 0 0 0

3 1561 0 1 0 0 0 0 0 0 0 0

4 1389 1 1 0 0 0 0 0 0 0 0

5 1021 1 0 1 0 0 0 0 0 0 0

6 977 0 0 0 0 1 0 0 0 0 0

7 958 1 0 0 0 0 1 0 0 0 0

8 956 0 0 1 0 0 0 0 0 0 0

9 946 1 0 0 1 0 0 0 0 0 0

10 687 1 0 0 0 1 0 0 0 0 0

11 576 0 0 0 1 0 0 0 0 0 0

12 553 1 0 0 0 0 0 1 0 0 0

13 495 0 1 0 0 1 0 0 0 0 0

14 486 1 0 0 0 0 0 0 1 0 0

15 460 0 0 0 0 0 0 0 1 0 0

16 451 0 1 1 0 0 0 0 0 0 0

17 438 1 0 0 0 0 0 0 0 0 1

18 414 1 0 1 0 0 1 0 0 0 0

19 385 0 1 0 1 0 0 0 0 0 0

20 370 1 1 0 1 0 0 0 0 0 0

Table 5: List of the 20 most common feature patterns.

We have also derived a variational inference algorithm, which allows dealing with larger
databases and provides accurate results.

We have applied our model to the NESARC database to find out the hidden features
that characterize the psychiatric disorders. First, we have used the Gibbs sampler to extract
the latent structure behind 20 of the most common psychiatric disorders. As a result, we
have found that the comorbidity patterns of these psychiatric disorders can be described
by only three latent features, which mainly model the internalizing disorders, the exter-
nalizing disorders, and a general psychopathology factor. Additionally, we have applied
the variational inference algorithm to analyze the relation among the 52 criteria defined by
the psychiatrists to diagnose each of the seven personality disorders (that is, externalizing
disorders). We have obtained that for most of the disorders, a latent feature appears to
model all the criteria that characterize that particular disorder. In this experiment, we have
also seen that avoidant and dependent PDs are jointly modeled by four features, and that
paranoid disorder is the most highly correlated PD with all the others.

1238

Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders

Acknowledgments

Francisco J. R. Ruiz is supported by an FPU fellowship from the Spanish Ministry of Edu-
cation (AP2010-5333), Isabel Valera is supported by the Plan Regional-Programas I+D of
Comunidad de Madrid (AGES-CM S2010/BMD-2422), Fernando Pérez-Cruz has been par-
tially supported by a Salvador de Madariaga grant, and Carlos Blanco acknowledges NIH
grants (DA019606 and DA023200) and the New York State Psychiatric Institute for their
support. The authors also acknowledge the support of Ministerio de Ciencia e Innovación
of Spain (projects DEIPRO TEC2009-14504-C02-00, ALCIT TEC2012-38800-C03-01, and
program Consolider-Ingenio 2010 CSD2008-00010 COMONSENS). This work was also sup-
ported by the European Union 7th Framework Programme through the Marie Curie Initial
Training Network “Machine Learning for Personalized Medicine” MLPM2012, Grant No.
316861.

Appendix A. Laplace Approximation Details

In this section we provide the necessary details for the implementation of the Laplace
approximation proposed in Section 3.1. The expression in (5) can be rewritten as

f(Bd) = trace
{

Md>Bd
}
−

N∑

n=1

log

(
R∑

r=1

exp(zn•b
d
•r)

)

− 1

2σ2B
trace

{
Bd>Bd

}
− R(K + 1)

2
log(2πσ2B),

where (Md)kr counts the number of data points for which xnd = r and znk = 1, namely,
(Md)kr =

∑N
n=1 δ(xnd = r)znk, where δ(·) is the Kronecker delta function. By definition,

(Md)0r =
∑N

n=1 δ(xnd = r).

By defining (ρd)kr =

N∑

n=1

znkπ
r
nd, the gradient of f(Bd) can be derived as

∇f = Md − ρd − 1

σ2B
Bd.

To compute the Hessian, it is easier to define the gradient ∇f as a vector, instead of a
matrix, and hence we stack the columns of Bd into βd, i.e., βd = Bd(:) for avid Matlab users.
The Hessian matrix can now be readily computed taking the derivatives of the gradient,
yielding

∇∇f = − 1

σ2B
IR(K+1) +∇∇ log p(x•d|βd,Z)

= − 1

σ2B
IR(K+1) −

N∑

n=1

(
diag(πnd)− (πnd)>πnd

)
⊗ (z>n•zn•),

where diag(πnd) is a diagonal matrix with the values of the vector πnd =
[
π1nd, π

2
nd, . . . , π

R
nd

]

as its diagonal elements.

1239

Ruiz, Valera, Blanco and Perez-Cruz

Finally, note that, since p(x•d|βd,Z) is a log-concave function of βd (Boyd and Van-
denberghe, 2004, p. 87), −∇∇f is a positive definite matrix, which guarantees that the
maximum of f(βd) is unique.

Appendix B. Lower Bound Derivation

In this section we derive the lower bound L(H,Hq) on the evidence p(X|H). From Eq. (9),

log p(X|H) = Eq [log p(Ψ,X|H)] +H[q] +DKL(q||p)
> Eq [log p(Ψ,X|H)] +H[q].

The expectation Eq [log p(Ψ,X|H)] can be derived as

Eq [log p(Ψ,X|H)] =

K∑

k=1

Eq [log p(vk|α)]︸ ︷︷ ︸
1

+

D∑

d=1

K∑

k=1

Eq

[
log p(bd

k•|σ2B)
]

︸ ︷︷ ︸
2

+

D∑

d=1

Eq

[
log p(bd

0|σ2B)
]

︸ ︷︷ ︸
3

+

K∑

k=1

N∑

n=1

Eq

[
log p(znk|{vi}ki=1)

]

︸ ︷︷ ︸
4

+

N∑

n=1

D∑

d=1

Eq

[
log p(xnd|zn•,Bd,bd

0)
]

︸ ︷︷ ︸
5

,

(11)

where each term can be computed as shown below:

1. For the Beta distribution over vk,

Eq [log p(vk|α)] = log(α) + (α− 1) [ψ(τk1)− ψ(τk1 + τk2)] .

2. For the Gaussian distribution over vectors bd
k•,

Eq

[
log p(bd

k•|σ2B)
]

= −R
2

log(2πσ2B)− 1

2σ2B

(
R∑

r=1

(φdkr)
2 +

R∑

r=1

(σdkr)
2

)
.

3. For the Gaussian distribution over bd
0,

Eq

[
log p(bd

0|σ2B)
]

= −R
2

log(2πσ2B)− 1

2σ2B

(
R∑

r=1

(φd0r)
2 +

R∑

r=1

(σd0r)
2

)
.

4. For the feature assignments, which are Bernoulli distributed given the feature proba-
bilities, we have

Eq

[
log p(znk|{vi}ki=1)

]
=(1− νnk)Eq

[
log

(
1−

k∏

i=1

vi

)]

+ νnk

k∑

i=1

[ψ(τi1)− ψ(τi1 + τi2)] ,

1240

Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders

where the expectation Eq

[
log
(

1−∏k
i=1 vi

)]
has no closed-form solution. We can in-

stead lower bound it by using the multinomial approach (Doshi-Velez et al., 2009). Un-
der this approach, we introduce an auxiliary multinomial distribution λk = [λk1, . . . , λkk]
in the expectation and apply Jensen’s inequality, yielding

Eq

[
log

(
1−

k∏

i=1

vi

)]
≥

k∑

m=1

λkmψ(τm2) +
k−1∑

m=1

(
k∑

n=m+1

λkn

)
ψ(τm1)

−
k∑

m=1

(
k∑

n=m

λkn

)
ψ(τm1 + τm2)−

k∑

m=1

λkm log(λkm),

which holds for any distribution represented by the probabilities λk1, . . . , λkk, for
1 ≤ k ≤ K. Then,

Eq

[
log p(znk|{vi}ki=1)

]
≥ (1− νnk)

[
k∑

m=1

λkmψ(τm2) +
k−1∑

m=1

(
k∑

n=m+1

λkn

)
ψ(τm1)

−
k∑

m=1

(
k∑

n=m

λkn

)
ψ(τm1 + τm2)−

k∑

m=1

λkm log(λkm)

]

+ νnk

k∑

i=1

[ψ(τi1)− ψ(τi1 + τi2)] .

5. For the likelihood term, we can write

Eq

[
log p(xnd|zn•,Bd,bd

0)
]

= φd0xnd
+

K∑

k=1

νnkφ
d
kxnd
−Eq

[
log

(
R∑

r=1

exp(zn•b
d
•r + bd0r)

)]
,

where the logarithm can be upper bounded by its first-order Taylor series expansion
around the auxiliary variable ξ−1nd (for n = 1, . . . , N and d = 1, . . . , D) (Blei and
Lafferty, 2007; Bouchard, 2007), yielding

log

(
R∑

r=1

exp(zn•b
d
•r + bd0r)

)
≤ ξnd

(
R∑

r=1

exp(zn•b
d
•r + bd0r)

)
− log(ξnd)− 1.

The main advantage of this bound lies on the fact that it allows us to compute the
expectation of the bound for the Gaussian distribution, since it involves the moment
generating functions of the distributions q(bd

•r) and q(bd0r). Then, we can lower bound
the likelihood term as

Eq

[
log p(xnd|zn•,Bd,bd

0)
]
≥ φd0xnd

+

K∑

k=1

νnkφ
d
kxnd

+ log(ξnd) + 1

− ξnd
R∑

r=1

[
exp

(
φd0r +

1

2
(σd0r)

2

) K∏

k=1

(
1− νnk + νnk exp

(
φdkr +

1

2
(σdkr)

2
))]

.

1241

Ruiz, Valera, Blanco and Perez-Cruz

Substituting the previous results in (11), we obtain

Eq [log p(Ψ,X|H)] ≥
K∑

k=1

[log(α) + (α− 1) (ψ(τk1)− ψ(τk1 + τk2))]

− R(K + 1)D

2
log(2πσ2B)− 1

2σ2B

K∑

k=0

D∑

d=1

R∑

r=1

(
(φdkr)

2 + (σdkr)
2
)

+
N∑

n=1

K∑

k=1

[
νnk

k∑

i=1

[ψ(τi1)− ψ(τi1 + τi2)]

+(1− νnk)

(
k∑

m=1

λkmψ(τm2) +
k−1∑

m=1

(
k∑

n=m+1

λkn

)
ψ(τm1)

−
k∑

m=1

(
k∑

n=m

λkn

)
ψ(τm1 + τm2)−

k∑

m=1

λkm log(λkm)

)]

+
N∑

n=1

D∑

d=1

[
φd0xnd

+
K∑

k=1

νnkφ
d
kxnd

+ log(ξnd) + 1

−ξnd
R∑

r=1

[
exp

(
φd0r +

1

2
(σd0r)

2

) K∏

k=1

(
1− νnk + νnk exp

(
φdkr +

1

2
(σdkr)

2
))]]

.

Additionally, the entropy of the distribution q(Ψ) is given by

H[q] = Eq [log q(Ψ)]

=

K∑

k=1

Eq [log q(vk|τk1, τk2)] +

D∑

d=1

R∑

r=1

K∑

k=0

Eq

[
log q(bdkr|φdkr, (σdkr)

2
)
]

+

N∑

n=1

K∑

k=1

Eq [log q(znk|νnk)]

=

K∑

k=1

[
log

(
Γ(τk1)Γ(τk2)

Γ(τk1 + τk2)

)
− (τk1 − 1)ψ(τk1)− (τk2 − 1)ψ(τk2) + (τk1 + τk2 − 2)ψ(τk1 + τk2)

]

+
D∑

d=1

R∑

r=1

K∑

k=0

1

2
log(2πe(σdkr)

2
) +

N∑

n=1

K∑

k=1

[−νnk log(νnk)− (1− νnk) log(1− νnk)] .

1242

Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders

Finally, we obtain the lower bound on the evidence p(X|H) as

log p(X|H) ≥ Eq [log p(Ψ,X|H)] +H[q]

≥
K∑

k=1

[log(α) + (α− 1) (ψ(τk1)− ψ(τk1 + τk2))]

− R(K + 1)D

2
log(2πσ2B)− 1

2σ2B

K∑

k=0

D∑

d=1

R∑

r=1

(
(φdkr)

2 + (σdkr)
2
)

+
N∑

n=1

K∑

k=1

[
νnk

k∑

i=1

[ψ(τi1)− ψ(τi1 + τi2)]

+(1− νnk)

(
k∑

m=1

λkmψ(τm2) +
k−1∑

m=1

(
k∑

n=m+1

λkn

)
ψ(τm1)

−
k∑

m=1

(
k∑

n=m

λkn

)
ψ(τm1 + τm2)−

k∑

m=1

λkm log(λkm)

)]

+
N∑

n=1

D∑

d=1

[
φd0xnd

+
K∑

k=1

νnkφ
d
kxnd

+ log(ξnd) + 1

−ξnd
R∑

r=1

[
exp

(
φd0r +

1

2
(σd0r)

2

) K∏

k=1

(
1− νnk + νnk exp

(
φdkr +

1

2
(σdkr)

2
))]]

+
K∑

k=1

[
log

(
Γ(τk1)Γ(τk2)

Γ(τk1 + τk2)

)
− (τk1 − 1)ψ(τk1)− (τk2 − 1)ψ(τk2) + (τk1 + τk2 − 2)ψ(τk1 + τk2)

]

+

D∑

d=1

R∑

r=1

K∑

k=0

1

2
log(2πe(σdkr)

2
) +

N∑

n=1

K∑

k=1

[−νnk log(νnk)− (1− νnk) log(1− νnk)]

= L(H,Hq),

where Hq = {τk1, τk2, λkm, ξnd, νnk, φdkr, φd0r, (σdkr)
2
, (σd0r)

2} (for k = 1, . . . ,K, m = 1, . . . , k,
d = 1, . . . , D, and n = 1, . . . , N) represents the set of the variational parameters.

Appendix C. Derivatives for Newton’s Method

- For the parameters of the Gaussian distribution q(bdkr|φdkr, (σdkr)
2
) for k = 1, . . . ,K,

∂

∂φdkr
L(H,Hq) = − 1

σ2B
φdkr +

N∑

n=1

[
νnkδ(xnd = r)− νnkξnd exp

(
φd0r +

1

2
(σd0r)

2

)
exp

(
φdkr +

1

2
(σdkr)

2
)

×
∏

k′ 6=k

(
1− νnk′ + νnk′ exp

(
φdk′r +

1

2
(σdk′r)

2

))]
.

1243

Ruiz, Valera, Blanco and Perez-Cruz

∂2

∂(φdkr)
2
L(H,Hq) = − 1

σ2B
−

N∑

n=1

[
νnkξnd exp

(
φd0r +

1

2
(σd0r)

2

)
exp

(
φdkr +

1

2
(σdkr)

2
)

×
∏

k′ 6=k

(
1− νnk′ + νnk′ exp

(
φdk′r +

1

2
(σdk′r)

2

))]
.

∂

∂(σdkr)
2L(H,Hq) = − 1

2σ2B
+

1

2
(σdkr)

−2 − 1

2

N∑

n=1

[
νnkξnd exp

(
φd0r +

1

2
(σd0r)

2

)
exp

(
φdkr +

1

2
(σdkr)

2
)

×
∏

k′ 6=k

(
1− νnk′ + νnk′ exp

(
φdk′r +

1

2
(σdk′r)

2

))]
.

∂2

(∂(σdkr)
2
)2
L(H,Hq) = −1

2
(σdkr)

−4 − 1

4

N∑

n=1

[
νnkξnd exp

(
φd0r +

1

2
(σd0r)

2

)
exp

(
φdkr +

1

2
(σdkr)

2
)

×
∏

k′ 6=k

(
1− νnk′ + νnk′ exp

(
φdk′r +

1

2
(σdk′r)

2

))]
.

- For the parameters of the Gaussian distribution q(bd0r|φd0r, (σd0r)2),
∂

∂φd0r
L(H,Hq)

= − 1

σ2B
φd0r +

N∑

n=1

[
δ(xnd = r)− ξnd exp

(
φd0r +

1

2
(σd0r)

2

) K∏

k=1

(
1− νnk + νnk exp

(
φdkr +

1

2
(σdkr)

2
))]

.

∂2

(∂φd0r)
2
L(H,Hq)

= − 1

σ2B
−

N∑

n=1

[
ξnd exp

(
φd0r +

1

2
(σd0r)

2

) K∏

k=1

(
1− νnk + νnk exp

(
φdkr +

1

2
(σdkr)

2
))]

.

∂

∂(σd0r)
2
L(H,Hq)

= − 1

2σ2B
+

1

2
(σd0r)

−2 − 1

2

N∑

n=1

[
ξnd exp

(
φd0r +

1

2
(σd0r)

2

) K∏

k=1

(
1− νnk + νnk exp

(
φdkr +

1

2
(σdkr)

2
))]

.

∂2

(∂(σd0r)
2)2
L(H,Hq)

= −1

2
(σd0r)

−4 − 1

4

N∑

n=1

[
ξnd exp

(
φd0r +

1

2
(σd0r)

2

) K∏

k=1

(
1− νnk + νnk exp

(
φdkr +

1

2
(σdkr)

2
))]

.

1244

Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders

Appendix D. Correspondence Between Criteria and Questions in
NESARC

Question Code Personality disorder and criterion

S10Q1A1-S10Q1B7 Avoidant (1 question for each diagnostic criterion)

S10Q1A8-S10Q1B15 Dependent (1 question for each diagnostic criterion)

S10Q1A16-S10Q1B17 OCPD criterion 1
S10Q1A18-S10Q1B23 OCPD criteria 2-7
S10Q1A24-S10Q1B25 OCPD criterion 8

S10Q1A26-S10Q1B29 Paranoid criteria 1-4
S10Q1A30-S10Q1A31 Paranoid criterion 5
S10Q1A32-S10Q1B33 Paranoid criteria 6-7

S10Q1A45-S10Q1B46 Schizoid criterion 1
S10Q1A47-S10Q1B48 Schizoid criteria 2-3
S10Q1A50-S10Q1B50 Schizoid criterion 4
S10Q1A43-S10Q1B43 Schizoid criterion 5
S10Q1A51-S10Q1B52 Schizoid criterion 6

S10Q1A49-S10Q1B49 or S10Q1A53-S10Q1B53 Schizoid criterion 7

S10Q1A54-S10Q1B54 or S10Q1A56-S10Q1B56 Histrionic criterion 1
S10Q1A58-S10Q1B58 or S10Q1A60-S10Q1B60 Histrionic criterion 2

S10Q1A55-S10Q1B55 Histrionic criterion 3
S10Q1A61-S10Q1B61 Histrionic criterion 4
S10Q1A64-S10Q1B64 Histrionic criterion 5

S10Q1A59-S10Q1B59 or S10Q1A62-S10Q1B62 Histrionic criterion 6
S10Q1A63-S10Q1B63 Histrionic criterion 7
S10Q1A57-S10Q1B57 Histrionic criterion 8

S11Q1A20-S11Q1A25 Antisocial, criterion 1
S11Q1A11- S11Q1A13 Antisocial, criterion 2
S11Q1A8- S11Q1A10 Antisocial, criterion 3
S11Q1A17- S11Q1A18 Antisocial, criterion 4
S11Q1A26- S11Q1A33 Antisocial, criterion 4
S11Q1A14- S11Q1A16 Antisocial, criterion 5

S11Q1A6 and S11Q1A19 Antisocial, criterion 6
S11Q8A-B Antisocial, criterion 7

Table 6: Correspondence between the criteria for each personality disorder and questions
in NESARC.

References

M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Dover Publications, New York, 1972.

D. Aldous. Exchangeability and related topics. In École d’été de Probabilités de Saint-Flour,
XIII—1983, pages 1–198. Springer, Berlin, 1985.

1245

Ruiz, Valera, Blanco and Perez-Cruz

C. Blanco, R. F. Krueger, D. S. Hasin, S. M. Liu, S. Wang, B. T. Kerridge, T. Saha, and
M. Olfson. Mapping common psychiatric disorders: Structure and predictive validity in
the National Epidemiologic Survey on Alcohol and Related Conditions. Journal of the
American Medical Association Psychiatry, 70(2):199–208, 2013.

D. M. Blei and J. D. Lafferty. A correlated topic model of Science. Annals of Applied
Statistics, 1(1):17–35, August 2007.

G. Bouchard. Efficient bounds for the softmax and applications to approximate inference in
hybrid models. Advances in Neural Information Processing Systems (NIPS), Workshop
on Approximate Inference in Hybrid Models, 2007.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, March
2004.

F. Doshi-Velez, K. T. Miller, J. Van Gael, and Y. W. Teh. Variational inference for the
Indian buffet process, 2009.

T. L. Griffiths and Z. Ghahramani. The Indian buffet process: an introduction and review.
Journal of Machine Learning Research, 12:1185–1224, 2011.

D. A. Harville. Matrix Algebra From a Statistician’s Perspective. Springer-Verlag, 1997.

S. Haykin. Adaptive Filter Theory. Prentice Hall, 2002.

M. I. Jordan. Hierarchical models, nested models and completely random measures. In
M.-H. Chen, D. Dey, P. Mueller, D. Sun, and K. Ye, editors, Frontiers of Statistical
Decision Making and Bayesian Analysis: In Honor of James O. Berger. Springer, New
York, (NY), 2010.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational
methods for graphical models. Machine Learning, 37(2):183–233, November 1999.

K. S. Kendler, C. A. Prescott, J. Myers, and M. C. Neale. The structure of genetic and
environmental risk factors for common psychiatric and substance use disorders in men
and women. Archives of General Psychiatry, 60(9):929–937, Sep 2003.

R. Kotov, C. J. Ruggero, R. F. Krueger, D. Watson, Q. Yuan, and M. Zimmerman. New
dimensions in the quantitative classification of mental illness. Archives of General Psy-
chiatry, 68(10):1003–1011, 2011.

R. F. Krueger. The structure of common mental disorders. Archives of General Psychiatry,
56(10):921–926, 1999.

F. J. R. Ruiz, I. Valera, C. Blanco, and F. Perez-Cruz. Bayesian nonparametric modeling
of suicide attempts. Advances in Neural Information Processing Systems (NIPS), 25:
1862–1870, 2012.

Y. W. Teh, D. Görür, and Z. Ghahramani. Stick-breaking construction for the Indian
buffet process. In Proceedings of the International Conference on Artificial Intelligence
and Statistics, volume 11, 2007.

1246

Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders

M. Titsias. The infinite gamma-Poisson feature model. Advances in Neural Information
Processing Systems (NIPS), 19, 2007.

J. M. Valderas, B. Starfield, B. Sibbald, C. Salisbury, and M. Roland. Defining comorbidity:
implications for understanding health and health services. Annals of Family Medicine, 7
(4):357–363, 2009.

J. Van Gael, Y. W. Teh, and Z. Ghahramani. The infinite factorial hidden Markov model.
In Advances in Neural Information Processing Systems (NIPS), volume 21, 2009.

W. A. Vollebergh, J. Ledema, R.V. Bijl, R. de Graaf, F. Smit, and J. Ormel. The structure
and stability of common mental disorders: the NEMESIS study. Archives of General
Psychiatry, 58(6):597–603, Jun 2001.

C. K. I. Williams and D. Barber. Bayesian classification with Gaussian processes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20:1342–1351, 1998.

S. Williamson, C. Wang, K. A. Heller, and D. M. Blei. The IBP compound Dirichlet process
and its application to focused topic modeling. In International Conference on Machine
Learning (ICML), pages 1151–1158, 2010.

J. L. Wolff, B. Starfield, and G. Anderson. Prevalence, expenditures, and complications
of multiple chronic conditions in the elderly. Archives of Internal Medicine, 162(20):
2269–2276, 2002.

M. A. Woodbury. The stability of out-input matrices. Mathematical Reviews, 1949.

1247

Journal of Machine Learning Research 15 (2014) 1249-1280 Submitted 3/13; Revised 10/13; Published 4/14

Robust Near-Separable Nonnegative Matrix Factorization
Using Linear Optimization

Nicolas Gillis∗ nicolas.gillis@umons.ac.be
Department of Mathematics and Operational Research
Faculté Polytechnique, Université de Mons
Rue de Houdain 9, 7000 Mons, Belgium

Robert Luce† luce@math.tu-berlin.de

Institut für Mathematik, MA 3-3

Technische Universität Berlin

Straße des 17. Juni 136 - 10623 Berlin, Germany

Editor: Gert Lanckriet

Abstract

Nonnegative matrix factorization (NMF) has been shown recently to be tractable under
the separability assumption, under which all the columns of the input data matrix be-
long to the convex cone generated by only a few of these columns. Bittorf, Recht, Ré
and Tropp (‘Factoring nonnegative matrices with linear programs’, NIPS 2012) proposed
a linear programming (LP) model, referred to as Hottopixx, which is robust under any
small perturbation of the input matrix. However, Hottopixx has two important drawbacks:
(i) the input matrix has to be normalized, and (ii) the factorization rank has to be known
in advance. In this paper, we generalize Hottopixx in order to resolve these two drawbacks,
that is, we propose a new LP model which does not require normalization and detects
the factorization rank automatically. Moreover, the new LP model is more flexible, sig-
nificantly more tolerant to noise, and can easily be adapted to handle outliers and other
noise models. Finally, we show on several synthetic data sets that it outperforms Hottopixx
while competing favorably with two state-of-the-art methods.

Keywords: nonnegative matrix factorization, separability, linear programming, convex
optimization, robustness to noise, pure-pixel assumption, hyperspectral unmixing

1. Introduction

Nonnegative matrix factorization (NMF) is a powerful dimensionality reduction technique
as it automatically extracts sparse and meaningful features from a set of nonnegative data
vectors: Given n nonnegative m-dimensional vectors gathered in a nonnegative matrix
M ∈ Rm×n+ and a factorization rank r, NMF computes two nonnegative matrices W ∈ Rm×r+

and H ∈ Rr×n+ such that M ≈ WH. In this way, the columns of the matrix W form a
basis for the columns of M since M(:, j) ≈

∑r
k=1W (:, k)H(k, j) for all j. Moreover, the

nonnegativity constraint on the matrices W and H leads these basis elements to represent

∗. This work was carried out when NG was a postdoctoral researcher of the fonds de la recherche scientifique
(F.R.S.-FNRS).

†. RL is supported by Deutsche Forschungsgemeinschaft, Cluster of Excellence “UniCat”.

c©2014 Nicolas Gillis and Robert Luce.

Gillis and Luce

common localized features appearing in the data set as no cancellation can happen in the
reconstruction of the original data. Unfortunately, NMF is NP-hard in general (Vavasis,
2009), and highly ill-posed; see Gillis (2012) and the references therein. However, if the
input data matrix M is r-separable, that is, if it can be written as

M = W [Ir, H
′]Π,

where Ir is the r-by-r identity matrix, H ′ ≥ 0 and Π is a permutation matrix, then the
problem can be solved in polynomial time, even if some noise is added to the separable
matrix M (Arora et al., 2012a). Algebraically, separability means that there exists a rank-r
NMF (W,H) ≥ 0 of M where each column of W is equal to some column of M . Geometri-
cally, r-separability means that the cone generated by the columns of M has r extreme rays
given by the columns of W . Equivalently, if the columns of M are normalized so that their
entries sum to one, r-separability means that the convex hull generated by the columns of
M has r vertices given by the columns of W ; see, e.g., Kumar et al. (2013). The separability
assumption is far from being artificial in several applications:

• In text mining, where each column of M corresponds to a word, separability means
that, for each topic, there exists a word associated only with that topic; see Arora
et al. (2012a,b).

• In hyperspectral imaging, where each column of M equals the spectral signature of a
pixel, separability means that, for each constitutive material (“endmember”) present
in the image, there exists a pixel containing only that material. This assumption is
referred to as the pure-pixel assumption, and is in general satisfied for high-resolution
hyperspectral images; see Bioucas-Dias et al. (2012) and the references therein.

• In blind source separation, where each column of M is a signal measure at a given
point in time, separability means that, for each source, there exists a point in time
where only that source is active; see Chan et al. (2008); Chen et al. (2011) and the
references therein.

Under the separability assumption, NMF reduces to identifying, among the columns of
M , the columns of W allowing to reconstruct all columns of M . In fact, given W , the
matrix H can be obtained by solving a convex optimization problem minH≥0‖M −WH‖.

In this paper, we consider the noisy variant of this problem, referred to as near-separable
NMF :

(Near-Separable NMF) Given a noisy r-separable matrix M̃ = M + N with
M = WH = W [Ir, H

′]Π where W and H ′ are nonnegative matrices, Π is a
permutation matrix and N is the noise, find a set K of r indices such that
M̃(:,K) ≈W .

Several algorithms have been proposed to solve this problem (Arora et al., 2012a,b; Bittorf
et al., 2012; Elhamifar et al., 2012; Esser et al., 2012; Gillis and Vavasis, 2014; Kumar
et al., 2013). In this paper, our focus is on the linear programming (LP) model proposed
by Bittorf et al. (2012) and referred to as Hottopixx. It is described in the next section.

1250

Robust Near-Separable NMF Using Linear Optimization

Remark 1 (Nonnegativity of M̃) In the formulation of near-separable NMF, the input
data matrix M̃ is not necessarily nonnegative since there is no restriction on the noise N .
In fact, we will only need to assume that the noise is bounded, but otherwise it is arbitrary;
see Section 2.

1.1 Notation

Let A ∈ Rm×n be a matrix and x ∈ Rm a vector. We use Matlab-style notation for
indexing, for example, A(i, j) denotes the entry of A in the i-th row and j-th column, while
A(:, j) ∈ Rm denotes the j-th column of A. We use the following notation for various norms:

‖x‖1 =
m∑
i=1

|x(i)|, ‖A‖1 = max
‖x‖1≤1

‖Ax‖1 = max
j
‖A(:, j)‖1,

‖A‖s =

m∑
i=1

n∑
j=1

|A(i, j)|, ‖A‖F =

√√√√ m∑
i=1

n∑
j=1

A(i, j)2.

1.2 Hottopixx, a Linear Programming Model for Near-Separable NMF

A matrix M is r-separable if and only if

M = WH = W [Ir, H
′]Π = [W,WH ′]Π

= [W,WH ′]Π Π−1
(

Ir H ′

0(n−r)×r 0(n−r)×(n−r)

)
Π︸ ︷︷ ︸

X0∈Rn×n
+

= MX0, (1)

for some permutation Π and some matrices W,H ′ ≥ 0. The matrix X0 is a n-by-n non-
negative matrix with (n− r) zero rows such that M = MX0. Assuming the entries of each
column of M sum to one, the entries of each column of W and H ′ have sum to one as well.
Based on these observations, Bittorf et al. (2012) proposed to solve the following optimiza-
tion problem in order to approximately identify the columns of the matrix W among the
columns of the matrix M̃ = M +N where N is the noise with ‖N‖1 ≤ ε :

min
X∈Rn×n

+

pT diag(X)

such that ‖M̃ − M̃X‖1 ≤ 2ε,

tr(X) = r, (2)

X(i, i) ≤ 1 for all i,

X(i, j) ≤ X(i, i) for all i, j,

where p is any n-dimensional vector with distinct entries; see Algorithm 1 (in Bittorf et al.,
2012, the authors use the notation ‖·‖∞,1 for what we denote by ‖·‖1).

Intuitively, the LP model1 (2) assigns a total weight r to the n diagonal entries of
the variable X in such a way that M̃ can be well approximated using nonnegative linear

1. Strictly speaking, (2) is not a linear program but it can be reformulated as one.

1251

Gillis and Luce

Algorithm 1 Hottopixx - Extracting Columns of a Noisy Separable Matrix using Linear
Optimization (Bittorf et al., 2012)

Input: A normalized noisy r-separable matrix M̃ = WH + N ∈ Rm×n+ , the factorization
rank r, the noise level ‖N‖1 ≤ ε and a vector p ∈ Rn with distinct entries.

Output: A matrix W̃ such that W̃ ≈W (up to permutation).

1: Find the optimal solution X∗ of (2).
2: Let K be the index set corresponding to the r largest diagonal entries of X∗.
3: Set W̃ = M̃(:,K).

combinations of columns of M̃ corresponding to positive diagonal entries of X. Moreover,
the weights used in the linear combinations cannot exceed the diagonal entries of X since
X(:, j) ≤ diag(X) for all j. There are several drawbacks in using the LP model (2) in
practice:

1. The factorization rank r has to be chosen in advance. In practice the true factorization
rank is often unknown, and a “good” factorization rank for the application at hand
is typically found by trial and error. Therefore the LP above may have to be resolved
many times.

2. The columns of the input data matrix have to be normalized in order for their entries
to sum to one. This may introduce significant distortions in the data set and lead
to poor performance; see Kumar et al. (2013) where some numerical experiments are
presented.

3. The noise level ‖N‖1 ≤ ε has to be estimated.

4. One has to solve a rather large optimization problem with n2 variables, so that the
model cannot be used directly for huge-scale problems.

It is important to notice that there is no way to getting rid of both drawbacks 2. and 3.
In fact, in the noisy case, the user has to indicate either

• The factorization rank r, and the algorithm should find a subset of r columns of M̃
as close as possible to the columns of W , or

• The noise level ε, and the algorithm should try to find the smallest possible subset of
columns of M̃ allowing to approximate M̃ up to the required accuracy.

1.3 Contribution and Outline of the Paper

In this paper, we generalize Hottopixx in order to resolve drawbacks 1. and 2. above. More
precisely, we propose a new LP model which has the following properties:

• Given the noise level ε, it detects the number r of columns of W automatically; see
Section 2.

• It can be adapted to dealing with outliers; see Section 3.

1252

Robust Near-Separable NMF Using Linear Optimization

• It does not require column normalization; see Section 4.

• It is significantly more tolerant to noise than Hottopixx. In fact, we propose a tight ro-
bustness analysis of the new LP model proving its superiority (see Theorems 2 and 6).
This is illustrated in Section 5 on several synthetic data sets, where the new LP model
is shown to outperform Hottopixx while competing favorably with two state-of-the-
art methods, namely the successive projection algorithm (SPA) (Araújo et al., 2001;
Gillis and Vavasis, 2014) and the fast conical hull algorithm (XRAY) (Kumar et al.,
2013).

The emphasis of our work lies in a thorough theoretical understanding of such LP based
approaches, and the numerical experiments in Section 5 illustrate the proven robustness
properties. An implementation for real-word, large-scale problems is, however, a topic
outside the scope of this work (see Section 6).

2. Detecting the Factorization Rank Automatically

In this section, we analyze the following LP model:

min
X∈Rn×n

+

pT diag(X)

such that ‖M̃ − M̃X‖1 ≤ ρε, (3)

X(i, i) ≤ 1 for all i,

X(i, j) ≤ X(i, i) for all i, j,

where p has positive entries and ρ > 0 is a parameter. We also analyze the corresponding
near-separable NMF algorithm (Algorithm 2) with an emphasis on robustness. The LP

Algorithm 2 Extracting Columns of a Noisy Separable Matrix using Linear Optimization

Input: A normalized noisy r-separable matrix M̃ = WH + N ∈ Rm×n+ , the noise level
‖N‖1 ≤ ε, a parameter ρ > 0 and a vector p ∈ Rn with positive distinct entries.

Output: An m-by-r matrix W̃ such that W̃ ≈W (up to permutation).

1: Compute an optimal solution X∗ of (3).

2: LetK be the index set corresponding to the diagonal entries ofX∗ larger than 1−min(1,ρ)
2 .

3: W̃ = M̃(:,K).

model (3) is exactly the same as (2) except that the constraint tr(X) = r has been removed,
and that there is an additional parameter ρ. Moreover, the vector p ∈ Rn in the objective
function has to be positive, or otherwise any diagonal entry of an optimal solution of (3)
corresponding to a negative entry of p will be equal to one (in fact, this reduces the objective
function the most while minimizing ‖M −MX‖1). A natural value for the parameter ρ is
two, as in the original LP model (2), so that the matrix X0 in Equation (1) identifying the
set of columns of M̃ corresponding to the columns of W is feasible. However, the model (3)
is feasible for any ρ ≥ 0 since the identity matrix of dimension n (that is, X = In) is always

1253

Gillis and Luce

feasible. Hence, it is not clear a priori which value of ρ should be chosen. The reason we
analyze the LP model (3) for different values of ρ is two-fold:

• First, it shows that the LP model (3) is rather flexible as it is not too sensitive to the
right-hand side of the constraint ‖M −MX‖1 ≤ ρε. In other terms, the noise level
does not need to be known precisely for the model to make sense. This is a rather
desirable property as, in practice, the value of ε is typically only known/evaluated
approximately.

• Second, we observed that taking ρ smaller than two gives in average significantly
better results (see Section 5 for the numerical experiments). Our robustness analysis
of Algorithm 2 will suggest that the best choice is to take ρ = 1 (see Remark 5).

In this section, we prove that the LP model (3) allows to identifying approximately the
columns of the matrix W among the columns of the matrix M̃ for any ρ > 0, given that
the noise level ε is sufficiently small (ε will depend on the value ρ); see Theorems 2, 6 and 7.

Before stating the robustness results, let us define the conditioning of a nonnegative
matrix W whose entries of each column sum to one:

κ = min
1≤k≤r

min
x∈Rr−1

+

‖W (:, k)−W (:,K)x‖1, where K = {1, 2, . . . , r}\{k},

and the matrix W is said to be κ-robustly conical. The parameter 0 ≤ κ ≤ 1 tells us how
well the columns of W are spread in the unit simplex. In particular, if κ = 1, then W
contains the identity matrix as a submatrix (all other entries being zeros) while, if κ = 0,
then at least one of the columns of W belongs to the convex cone generated by the others.
Clearly, the better the columns of W are spread across the unit simplex, the less sensitive is
the data to noise. For example, ε < κ

2 is a necessary condition to being able to distinguish
the columns of W (Gillis, 2013).

2.1 Robustness Analysis without Duplicates and Near Duplicates

In this section, we assume that the columns of W are isolated (that is, there is no duplicate
nor near duplicate of the columns of W in the data set) hence more easily identifiable. This
type of margin constraint is typical in machine learning (Bittorf et al., 2012), and is equiv-
alent to bounding the entries of H ′ in the expression M = W [Ir, H

′]Π, see Equation (1).
In fact, for any 1 ≤ k ≤ r and h ∈ Rr+ with maxi h(i) ≤ β ≤ 1, we have that

‖W (:, k)−Wh‖1 = ‖(1− h(k))W (:, k)−W (:,K)h(K)‖1
≥ (1− β) min

y∈Rr−1
+

‖W (:, k)−W (:,K)y‖1

≥ (1− β)κ,

where K = {1, 2, . . . , r}\{k}. Hence maxij H
′
ij ≤ β implies that all data points are at

distance at least (1− β)κ of any column of W . Under this condition, we have the following
robustness result:

1254

Robust Near-Separable NMF Using Linear Optimization

Theorem 2 Suppose M̃ = M + N where the entries of each column of M sum to one,
M = WH admits a rank-r separable factorization of the form (1) with maxij H

′
ij ≤ β ≤ 1

and W κ-robustly conical with κ > 0, and ‖N‖1 ≤ ε. If

ε ≤ κ(1− β) min(1, ρ)

5(ρ+ 2)
,

then Algorithm 2 extracts a matrix W̃ ∈ Rm×r satisfying ‖W − W̃ (:, P)‖1 ≤ ε for some
permutation P .

Proof See Appendix A.

Remark 3 (Noiseless case) When there is no noise (that is, N = 0 and ε = 0), dupli-
cates and near duplicates are allowed in the data set; otherwise ε > 0 implying that β < 1
hence the columns of W are isolated.

Remark 4 (A slightly better bound) The bound on the allowable noise in Theorem 2
can be slightly improved, so that under the same conditions we can allow a noise level of

ε <
κ(1− β) min(1, ρ)

4(ρ+ 2) + κ(1− β) min(1, ρ)
.

However, the scope for substantial improvements is limited, as we will show in Theorem 6.

Remark 5 (Best choice for ρ) Our analysis suggests that the best value for ρ is one. In
fact,

argmaxρ≥0
min(1, ρ)

(ρ+ 2)
= 1.

In this particular case, the upper bound on the noise level to guarantee recovery is given by
ε ≤ κ(1−β)

15 while, for ρ = 2, we have ε ≤ κ(1−β)
20 . The choice ρ = 1 is also optimal in the

same sense for the bound in the previous remark. We will see in Section 5, where we present
some numerical experiments, that choosing ρ = 1 works remarkably better than ρ = 2.

It was proven by Gillis (2013) that, for Algorithm 1 to extract the columns of W under
the same assumptions as in Theorem 2, it is necessary that

ε <
κ(1− β)

(r − 1)(1− β) + 1
for any r ≥ 3 and β < 1,

while it is sufficient that ε ≤ κ(1−β)
9(r+1) . Therefore, if there are no duplicate nor near duplicate

of the columns of W in the data set,

Algorithm 2 is more robust than Hottopixx (Algorithm 1): in fact, unlike Hot-
topixx, its bound on the noise to guarantee recovery (up to the noise level) is
independent of the number of columns of W . Moreover, given the noise level, it
detects the number of columns of W automatically.

1255

Gillis and Luce

The reason for the better performance of Algorithm 2 is the following: for most noisy
r-separable matrices M̃ , there typically exist matrices X ′ satisfying the constraints of (3)
and such that tr(X ′) < r. Therefore, the remaining weight (r − tr(X ′)) will be assigned by
Hottopixx to the diagonal entries of X ′ corresponding to the smallest entries of p, since the
objective is to minimize pT diag(X ′). These entries are unlikely to correspond to columns
of W (in particular, if p in chosen by an adversary). We observed that when the noise level
ε increases, r − tr(X ′) increases as well, hence it becomes likely that some columns of W
will not be identified.

Example 1 Let us consider the following simple instance:

M = Ir︸︷︷︸
=W

[
Ir,

e

r

]
︸ ︷︷ ︸

=H

∈ Rr×(r+1) and N = 0,

where e is the vector of all ones. We have that ||N ||1 = 0 ≤ ε for any ε ≥ 0.

Using p = [1, 2, . . . , r,−1] in the objective function, the Hottopixx LP (2) will try to
put as much weight as possible on the last diagonal entry of X (that is, X(r + 1, r + 1))
which corresponds to the last column of M . Moreover, because W is the identity matrix, no
column of W can be used to reconstruct another column of W (this could only increase the
error) so that Hottopixx has to assign a weight to the first r diagonal entries of X larger
than (1− 2ε) (in order for the constraint ||M −MX||1 ≤ 2ε to be satisfied). The remaining
weight of 2rε (the total weight has to be equal to r) can be assigned to the last column of
M . Hence, for 1 − 2ε < 2rε ⇐⇒ ε > 1

2(r+1) , Hottopixx will fail as it will extract the last
column of M .

Let us consider the new LP model (3) with ρ = 2. For the same reason as above, it
has to assign a weight to the first r diagonal entries of X larger than (1 − 2ε). Because
the cost of the last column of M has to be positive (that is, p(r + 1) > 0), the new LP
model (3) will try to minimize the last diagonal entry of X (that is, X(r+ 1, r+ 1)). Since
M(:, r+ 1) = 1

rWe, X(r+ 1, r+ 1) can be taken equal to zero taking X(1 : r, r+ 1) = 1−2ε
r .

Therefore, for any positive vector p, any r and any ε < 1
2 , the new LP model (3) will identify

correctly all columns of W . (For other values of ρ, this will be true for any ε < 1
ρ .)

This explains why the LP model enforcing the constraint tr(X) = r is less robust, and
why its bound on the noise depends on the factorization rank r. Moreover, the LP (2) is
also much more sensitive to the parameter ε than the model LP (3):

• For ε sufficiently small, it becomes infeasible, while,

• for ε too large, the problem described above is worsened: there are matrices X ′

satisfying the constraints of (3) and such that tr(X ′) � r, hence Hottopixx will
perform rather poorly (especially in the worst-case scenario, that is, if the problem is
set up by an adversary).

To conclude this section, we prove that the bound on the noise level ε to guarantee
the recovery of the columns of W by Algorithm 2 given in Theorem 2 is tight up to some
constant multiplicative factor.

1256

Robust Near-Separable NMF Using Linear Optimization

Theorem 6 For any fixed ρ > 0 and β < 1, the bound on ε in Theorem 2 is tight up to
a multiplicative factor. In fact, under the same assumptions on the input matrix M̃ , it is
necessary that ε < κ(1−β)min(1,ρ)

2ρ for Algorithm 2 to extract a matrix W̃ ∈ Rm×r satisfying

‖W − W̃ (:, P)‖1 ≤ ε for some permutation P .

Proof See Appendix B.

For example, Theorem 6 implies that, for ρ = 1, the bound of Theorem 2 is tight up to a
factor 15

2 .

2.2 Robustness Analysis with Duplicates and Near Duplicates

In case there are duplicates and near duplicates in the data set, it is necessary to apply a
post-processing to the solution of (3). In fact, although we can guarantee that there is a
subset of the columns of M̃ close to each column of W whose sum of the corresponding
diagonal entries of an optimal solution of (3) is large, there is no guarantee that the weight
will be concentrated only in one entry. It is then required to apply some post-processing
based on the distances between the data points to the solution of (3) (instead of simply
picking the r indices corresponding to its largest diagonal entries) in order to obtain a robust
algorithm. In particular, using Algorithm 4 to post-process the solution of (2) leads to a
more robust algorithm than Hottopixx (Gillis, 2013). Note that pre-processing would also
be possible (Esser et al., 2012; Arora et al., 2012a).

Therefore, we propose to post-process an optimal solution of (3) with Algorithm 4; see
Algorithm 3, for which we can prove the following robustness result:

Theorem 7 Let M = WH be an r-separable matrix whose entries of each column sum to
one and of the form (1) with H ≥ 0 and W κ-robustly conical. Let also M̃ = M +N with
‖N‖1 ≤ ε. If

ε <
ωκ

99(r + 1)
,

where ω = mini 6=j‖W (:, i)−W (:, j)‖1, then Algorithm 3 extracts a matrix W̃ such that

‖W − W̃ (:, P)‖1 ≤ 49(r + 1)
ε

κ
+ 2ε, for some permutation P .

Proof See Appendix C (for simplicity, we only consider the case ρ = 2; the proof can be
generalized for other values of ρ > 0 in a similar way as in Theorem 2).

This robustness result follows directly from (Gillis, 2013, Theorem 5), and is the same
as for the algorithm using the optimal solution of (2) post-processed with Algorithm 4.
Hence, in case there are duplicates and near duplicates in the data set, we do not know if
Algorithm 3 is more robust, although we believe the bound for Algorithm 3 can be improved
(in particular, that the dependence in r can be removed), this is a topic for further research.

Remark 8 (Choice of p) Although Theorem 7 requires the entries of the vector p to be
all ones, we recommend to take the entries of p distinct, but close to one. This allows the
LP (3) to discriminate better between the duplicates hence Algorithm 3 does not necessarily
have to enter the post-processing loop. We suggest to use p(i) ∼ 1 + U(−σ, σ) for all i,
where σ � 1 and U(a, b) is the uniform distribution in the interval [a, b].

1257

Gillis and Luce

Algorithm 3 Extracting Columns of a Noisy Separable Matrix using Linear Optimization

Input: A normalized r-separable matrix M̃ = WH +N , and the noise level ‖N‖1 ≤ ε.
Output: An m-by-r matrix W̃ such that W̃ ≈W (up to permutation).

1: Compute the optimal solution X∗ of (3) where p = e is the vector of all ones and ρ = 2.

2: K = post-processing
(
M̃, diag(X∗), ε

)
;

3: W̃ = M̃(:,K);

3. Handling Outliers

Removing the rank constraint has another advantage: it allows to deal with outliers. If
the data set contains outliers, the corresponding diagonal entries of an optimal solution
X∗ of (3) will have to be large (since outliers cannot be approximated well with convex
combinations of points in the data set). However, under some reasonable assumptions,
outliers are useless to approximate data points, hence off-diagonal entries of the rows of
X∗ corresponding to outliers will be small. Therefore, one could discriminate between the
columns of W and the outliers by looking at the off-diagonal entries of X∗. This result is
closely related to the one presented by Gillis and Vavasis, 2014 (Section 3). For simplicity,
we consider in this section only the case where ρ = 2 and assume absence of duplicates and
near-duplicates in the data set; the more general case can be treated in a similar way.

Let the columns of T ∈ Rm×t be t outliers added to the separable matrix W [Ir, H
′]

along with some noise to obtain

M̃ = M +N where M = [W, T]H =
[
W, T, WH ′

] [Ir 0r×t H ′

0t×r It 0t×r

]
Π, (4)

which is a noisy r-separable matrix containing t outliers. We propose Algorithm 5 to
approximately extract the columns of W among the columns of M̃ .

In order for Algorithm 5 to extract the correct set of columns of M̃ , the off-diagonal
entries of the rows corresponding to the columns of T (resp. columns of W) must be small
(resp. large). This can be guaranteed using the following conditions (see also Theorem 9
below):

• The angle between the cone generated by the columns of T and the columns space of
W is positive. More precisely, we will assume that for all 1 ≤ k ≤ t

min
x ∈ Rt+, x(k) = 1,

y ∈ Rr

‖Tx−Wy‖1 ≥ η > 0. (5)

In fact, if a nonnegative linear combination of outliers (that is, Tx with x ≥ 0) belongs
to the column space of W , then some data points can usually be reconstructed using
a non-zero weight for these outliers (it suffices that some data points belong to the
convex hull of some columns of W and that linear combination of outliers).

1258

Robust Near-Separable NMF Using Linear Optimization

Algorithm 4 Post-Processing - Clustering Diagonal Entries of X∗ (Gillis, 2013)

Input: A matrix M̃ ∈ Rm×n, a vector x ∈ Rn+, ε ≥ 0, and possibly a factorization rank r.

Output: A index set K∗ with r indices so that the columns of M̃(:,K∗) are centroids whose
corresponding clusters have large weight (the weights of the data points are given by x).

1: D(i, j) = ‖mi −mj‖1 for 1 ≤ i, j ≤ n;
2: if r is not part of the input then

3: r =
⌈∑

i x(i)
⌉
;

4: else
5: x← r x∑

i x(i)
;

6: end if
7: K = K∗ =

{
k | x(k) > r

r+1

}
and ν = ν∗ = max

(
2ε,min{(i,j)|D(i,j)>0}D(i, j)

)
;

8: while |K| < r and ν < maxi,j D(i, j) do
9: Si = {j | D(i, j) ≤ ν} for 1 ≤ i ≤ n;

10: w(i) =
∑

j∈Si x(j) for 1 ≤ i ≤ n;
11: K = ∅;
12: while max1≤i≤nw(i) > r

r+1 do
13: k = argmaxw(i); K ← K ∪ {k};
14: For all 1 ≤ i ≤ n and j ∈ Sk ∪ Si : w(i)← w(i)− x(j);
15: end while
16: if |K| > |K∗| then
17: K∗ = K; ν = ν∗;
18: end if
19: ν ← 2ν;
20: end while
21: % Safety procedure in case the conditions of Theorem 7 are not satisfied:
22: if |K∗| < r then
23: d = maxi,j D(i, j);
24: Si = {j | D(i, j) ≤ ν∗} for 1 ≤ i ≤ n;
25: w(i) =

∑
j∈Si x(j) for 1 ≤ i ≤ n;

26: K∗ = ∅;
27: while |K∗| < r do
28: k = argmaxw(i); K∗ ← K∗ ∪ {k};
29: For all 1 ≤ i ≤ n, and j ∈ Sk ∪ Si : w(i)← w(i)−

(
d−D(i,j)

d

)0.1
x(j);

30: w(k)← 0;
31: end while
32: end if

• The matrix [W,T] is robustly conical, otherwise some columns of T could be recon-
structed using other columns of T whose corresponding rows could hence have large
off-diagonal entries.

1259

Gillis and Luce

Algorithm 5 Extracting Columns of a Noisy Separable Matrix with Outliers using Linear
Optimization

Input: A normalized noisy r-separable matrix M̃ = [W,T,WH ′]Π + N ∈ Rm×n+ with
outliers, the noise level ‖N‖1 ≤ ε and a vector p ∈ Rn with positive distinct entries and
ρ = 2.

Output: An m-by-r matrix W̃ such that W̃ ≈W (up to permutation).

1: Compute the optimal solution X∗ of (3) where p has distinct positive entries.
2: Let K =

{
1 ≤ k ≤ n | X∗(k, k) ≥ 1

2 and ‖X∗(k, :)‖1 −X∗(k, k) ≥ 1
2

}
.

3: W̃ = M̃(:,K).

• Each column of W is necessary to reconstruct at least one data point, otherwise the
off-diagonal entries of the row of X∗ corresponding to that ‘useless’ column of W will
be small, possibly equal to zero, and it cannot be distinguished from an outlier. More
formally, for all 1 ≤ k ≤ r, there is a least one data point M(:, j) = WH(:, j) 6= W (:, k)
such that

min
x≥0,y≥0

‖M(:, j)− Tx−W (:,K)y‖1 ≥ δ, where K = {1, 2, . . . , r}\{k}. (6)

If Equation (5) holds, this condition is satisfied for example when conv(W) is a simplex
and some points lie inside that simplex (it is actually satisfied if and only if each
column of W define with other columns of W a simplex containing at least one data
point in its interior).

These conditions allow to distinguish the columns of W from the outliers using off-
diagonal entries of an optimal solution X∗ of (3):

Theorem 9 Suppose M̃ = M + N where the entries of each column of M sum to one,
M = [W,T]H has the form (4) with H ≥ 0, maxij H

′
ij ≤ β ≤ 1 and [W,T] κ-robustly

conical, and ‖N‖1 ≤ ε. Suppose also that M , W and T satisfy Equations (5) and (6) for
some η > 0 and δ > 0. If

ε ≤ ν(1− β)

20(n− 1)
where ν = min(κ, η, δ),

then Algorithm 5 extracts a matrix W̃ ∈ Rm×r satisfying ‖W − W̃ (:, P)‖1 ≤ ε for some
permutation P .

Proof See Appendix D.

Unfortunately, the factor 1
n−1 is necessary because a row of X∗ corresponding to an

outlier could potentially be assigned weights proportional to ε for all off-diagonal entries.
For example, if all data points are perturbed in the direction of an outlier, that is, N(:, j) =
ε T (:, k) for all j and for some 1 ≤ k ≤ t, then we could have

∑
j 6=kX(k, j) = (n − 1)O(ε)

hence it is necessary that ε ≤ O(n−1) (although it is not likely to happen in practice). A
simple way to improve the bound is the following:

1260

Robust Near-Separable NMF Using Linear Optimization

• Identify the vertices and outliers using K =
{

1 ≤ k ≤ n | X∗(k, k) ≥ 1
2

}
(this only

requires ε ≤ κ(1−β)
20 , cf. Theorem 2).

• Solve the linear program Z∗ = argminZ≥0‖M −M(:,K)Z‖1.

• Use the sum of the rows of Z∗ (instead of X∗) to identify the columns of W .

Following the same steps as in the proof of Theorem 9, the bound for ε for the corresponding
algorithm becomes ε ≤ ν(1−β)

20(r+t−1) .

Remark 10 (Number of outliers) Algorithm 5 does not require the number of outliers
as an input. Moreover, the number of outliers is not limited hence our result is stronger
than the one of Gillis and Vavasis (2014) where the number of outliers cannot exceed m− r
(because T needs to be full rank, while we only need T to be robustly conical and the cone
generated by its columns define a wide angle with the column space of W).

Remark 11 (Hottopixx and outliers) Replacing the constraint tr(X) = r with tr(X) =
r+ t (r is the number of columns of W and t is the number of outliers) in the LP model (2)
allows to deal with outliers. However, the number of outliers plus the number of columns of
W (that is, r + t) has to be estimated, which is rather impractical.

4. Avoiding Column Normalization

In order to use the LP models (2) and (3), normalization must be enforced which may
introduce significant distortions in the data set and lead to poor performances (Kumar
et al., 2013). If M is r-separable but the entries of each column do not sum to one, we still
have that

M = W [Ir, H
′]Π = [W,WH ′]Π = [W,WH ′]

(
Ir H ′

0(n−r)×r 0(n−r)×(n−r)

)
Π = MX0.

However, the constraints X(i, j) ≤ X(i, i) for all i, j in the LP’s (2) and (3) are not neces-
sarily satisfied by the matrix X0, because the entries of H ′ can be arbitrarily large.

Let us denote M̃o the original unnormalized noisy data matrix, and its normalized
version M̃ , with

M̃(:, j) =
M̃o(:, j)

‖M̃o(:, j)‖1
for all j.

Let us also rewrite the LP (3) in terms of M̃o instead of M̃ using the following change of
variables

Xij =
‖M̃o(:, i)‖1
‖M̃o(:, j)‖1

Yij for all i, j.

Note that Yii = Xii for all i. We have for all j that∥∥∥∥∥M̃(:, j)−
∑
i

M̃(:, i)Xij

∥∥∥∥∥
1

=

∥∥∥∥∥∥ M̃o(:, j)

‖M̃o(:, j)‖1
−
∑
j

M̃o(:, i)

‖M̃o(:, i)‖1
‖M̃o(:, i)‖1
‖M̃o(:, j)‖1

Yij

∥∥∥∥∥∥
1

=
1

‖M̃o(:, j)‖1

∥∥∥∥∥∥M̃o(:, j)−
∑
j

M̃o(:, i)Yij

∥∥∥∥∥∥
1

,

1261

Gillis and Luce

which proves that the following LP

min
Y ∈Y

pT diag(Y) such that ‖M̃o(:, j)− M̃oY (:, j)‖1 ≤ ρε‖M̃o(:, j)‖1 for all j, (7)

where

Y = {Y ∈ Rn×n+ | Y (i, i) ≤ 1 ∀ i, and ‖M̃o(:, i)‖1Y (i, j) ≤ ‖M̃o(:, j)‖1Y (i, i) ∀ i, j},

is equivalent to the LP (3). This shows that the LP (3) looks for an approximation M̃oY of
M̃o with small relative error, which is in general not desirable in practice. For example, a
zero column to which some noise is added will have to be approximated rather well, while it
does not bring any valuable information. Similarly, the columns of M with large norms will
be given relatively less importance while they typically contain a more reliable information
(e.g., in document data sets, they correspond to longer documents).

It is now easy to modify the LP (7) to handle other noise models. For example, if the
noise added to each column of the input data matrix is independent of its norm, then one
should rather use the following LP trying to find an approximation M̃oY of M̃o with small
absolute error :

min
Y ∈Y

pT diag(Y) such that ‖M̃o − M̃oY ‖1 ≤ ρε. (8)

Remark 12 (Other noise models) Considering other noise models depending on the
problem at hand is also possible: one has to replace the constraint ‖M̃o − M̃oY ‖1 ≤ ρε
with another appropriate constraint. For example, using any `q-norm with q ≥ 1 leads to
efficiently solvable convex optimization programs (Glineur and Terlaky, 2004), that is, using

‖M̃o(:, j)− M̃oY (:, j)‖q ≤ ρε, for all j.

Another possibility is to assume that the noise is distributed among all the entries of the

input matrix independently and one could use instead q

√∑
i,j

(
M̃o − M̃oY

)q
ij
≤ ρε, e.g.,

‖M̃o−M̃oY ‖F ≤ ρε for Gaussian noise (where ||.||F is the Frobenius norm of a matrix with
q = 2).

5. Numerical Experiments

In this section, we present some numerical experiments in which we compare our new LP
model (8) with Hottopixx and two other state-of-the-art methods. First we describe a
practical twist to Algorithm 4, which we routinely apply in the experiments to LP-based
solutions.

5.1 Post-Processing of LP solutions

Recall that the LP-based algorithms return a nonnegative matrix X whose diagonal entries
indicate the importance of the corresponding columns of the input data matrix M̃ . As
explained earlier, there are several ways to extract r columns from M̃ using this information,
the simplest being to select the columns corresponding to the r largest diagonal entries of

1262

Robust Near-Separable NMF Using Linear Optimization

X (Bittorf et al., 2012). Another approach is to take into account the distances between the
columns of M̃ and cluster them accordingly; see Algorithm 4. In our experiments we have
not observed that one method dominates the other (although in theory, when the noise level
is sufficiently small, Algorithm 4 is more robust; see Gillis, 2013). Therefore, the strategy
we employ in the experiments below selects the best solution out of the two post-processing
strategies based on the residual error, see Algorithm 6.

Algorithm 6 Hybrid Post-Processing for LP-based Near-Separable NMF Algorithms

Input: A matrix M ∈ Rm×n, a factorization rank r, a noise level ε, and a vector of weight
x ∈ Rn+.

Output: An index set K such that minH≥0‖M −M(:,K)H‖F is small.

1: % Greedy approach
2: K1 is the set of the r largest indices of x;
3: % Clustering using Algorithm 4

4: K2 = Algorithm 4
(
M̃, x, ε, r

)
;

5: % Select the better of the two
6: K = argminR∈{K1,K2}minH≥0‖M −M(:,R)H‖2F ;

5.2 Algorithms

In this section, we compare the following near-separable NMF algorithms:

1. Hottopixx (Bittorf et al., 2012). Given the noise level ‖N‖1 and the factorization
rank r, it computes the optimal solution X∗ of the LP (2) (where the input matrix
M̃ has to be normalized) and returns the indices obtained using Algorithm 6. The
vector p in the objective function was randomly generated using the randn function of
Matlab. The algorithm of Arora et al. (2012a) was shown to perform worse than Hot-
topixx (Bittorf et al., 2012) hence we do not include it here (moreover, it requires an
additional parameter α related to the conditioning of W which is difficult to estimate
in practice).

2. SPA (Araújo et al., 2001). The successive projection algorithm (SPA) extracts recur-
sively r columns of the input normalized matrix M̃ as follows: at each step, it selects
the column with maximum `2 norm, and then projects all the columns of M̃ on the
orthogonal complement of the extracted column. This algorithm was proved to be
robust to noise (Gillis and Vavasis, 2014). (Note that there exist variants where, at
each step, the column is selected according to other criteria, e.g., any `p norm with
1 < p < +∞. This particular version of the algorithm using `2 norm actually dates
back from modified Gram-Schmidt with column pivoting, see Gillis and Vavasis, 2014
and the references therein.) SPA was shown to perform significantly better on several
synthetic data sets than Hottopixx and several state-of-the-art algorithms from the
hyperspectral image community (Gillis and Vavasis, 2014) (these algorithms are based
on the pure-pixel assumption which is equivalent to the separability assumption, see
Introduction).

1263

Gillis and Luce

3. XRAY (Kumar et al., 2013). In Kumar et al. (2013), several fast conical hull algo-
rithms are proposed. We use in this paper the variant referred to as max, because it
performs in average the best on synthetic data sets. Similarly as SPA, it recursively
extracts r columns of the input unnormalized matrix M̃o: at each step, it selects a
column of M̃o corresponding to an extreme ray of the cone generated by the columns
of M̃o, and then projects all the columns of M̃o on the cone generated by the columns
of M̃o extracted so far. XRAY was shown to perform much better than Hottopixx and
similarly as SPA on synthetic data sets (while performing better than both for topic
identification in document data sets as it does not require column normalization).
However, it is not known whether XRAY is robust to noise.

4. LP (8) with ρ = 1, 2. Given the noise level ‖N‖1, it computes the optimal solution
X∗ of the LP (8) and returns the indices obtained with the post-processing described
in Algorithm 6. (Note that we have also tried ρ = 1

2 which performs better than ρ = 2
but slightly worse than ρ = 1 in average hence we do not display these results here.)

Table 1 gives the following information for the different algorithms: computational
cost, memory requirement, parameters and if column normalization of the input matrix is
necessary.

Flops Memory Parameters Normalization

Hottopixx Ω
(
mn2

)
O
(
mn+ n2

)
‖N‖1, r Yes

SPA 2mnr + O
(
mr2

)
O (mn) r Yes

XRAY O (mnr) O (mn) r No

LP (8) Ω
(
mn2

)
O
(
mn+ n2

)
‖N‖1 No

Table 1: Comparison of robust algorithms for near-separable NMF for a dense m-by-n input
matrix.

The LP have been solved using the IBM ILOG CPLEX Optimizer2 on a standard Linux
box. Because of the greater complexity of the LP-based approaches (formulating (2) and
(8) as LP’s requires n2 + mn variables), the size of the input data matrices allowed on a
standard machine is limited, roughly mn2 ∼ 106 (for example, on a two-core machine with
2.99GHz and 2GB of RAM, it already takes about one minute to process a 100-by-100
matrix using CPLEX). In this paper, we mainly focus on the robustness performance of
the different algorithms and first compare them on synthetic data sets. We also compare
them on the popular swimmer data set. Comparison on large-scale real-world data sets
would require dedicated implementations, such as the parallel first-order method proposed
by Bittorf et al. (2012) for the LP (2), and is a topic for further research. The code for all
algorithms is available at https://sites.google.com/site/nicolasgillis/code.

2. The code is available for free for academia at http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer/.

1264

https://sites.google.com/site/nicolasgillis/code
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

Robust Near-Separable NMF Using Linear Optimization

5.3 Synthetic Data Sets

With the algorithms above we have run a benchmark with certain synthetic data sets
particularly suited to investigate the robustness behaviour under influence of noise. In
all experiments the problem dimensions are fixed to m = 50, n = 100 and r = 10. We
conducted our experiments with six different data models. As we will describe next, the
models differ in the way the factor H is constructed and the sparsity of the noise matrix N .
Given a desired noise level ε, the noisy r-separable matrix M̃ = M + N = WH + N is
generated as follows:

The entries of W are drawn uniformly at random from the interval [0, 1] (using Matlab’s
rand function). Then each column of W is normalized so that its entries sum to one.

The first r columns of H are always taken as the identity matrix to satisfy the separa-
bility assumption. The remaining columns of H and the noise matrix N are generated in
two different ways (similar to Gillis and Vavasis, 2014):

1. Dirichlet. The remaining 90 columns of H are generated according to a Dirichlet
distribution whose r parameters are chosen uniformly in [0, 1] (the Dirichlet distribu-
tion generates vectors on the boundary of the unit simplex so that ‖H(:, j)‖1 = 1 for
all j). Each entry of the noise matrix N is generated following the normal distribution
N (0, 1) (using the randn function of Matlab).

2. Middle Points. The r(r−1)
2 = 45 next columns of H resemble all possible equally

weighted convex combinations of pairs from the r leading columns of H. This means
that the corresponding 45 columns of M are the middle points of pairs of columns
of W . The trailing 45 columns of H are generated in the same way as above, using
the Dirichlet distribution. No noise is added to the first r columns of M , that is,
N(:, 1 : r) = 0, while all the other columns are moved toward the exterior of the
convex hull of the columns of W using

N(:, j) = M(:, j)− w̄, for r + 1 ≤ j ≤ n,

where w̄ is the average of the columns of W (geometrically, this is the vertex centroid
of the convex hull of the columns of W).

We combine these two choices for H and N with three options that control the pattern
density of N , thus yielding a total of six different data models:

1. Dense noise. Leave the matrix N untouched.

2. Sparse noise. Apply a mask to N such that roughly 75% of the entries are set to zero
(using the density parameter of Matlab’s sprand function).

3. Pointwise noise. Keep only one randomly picked non-zero entry in each nonzero
column of N .

Finally we scale the resulting matrix N by a scalar such that ‖N‖1 = ε. In order to
avoid a bias towards the natural ordering, the columns of M̃ are permuted at random in a
last step.

1265

Gillis and Luce

5.3.1 Error Measures and Methodology

Let K be the set of indices extracted by an algorithm. In our comparisons, we will use the
following two error measures:

• Index recovery : percentage of correctly extracted indices in K (recall that we know
the indices corresponding to the columns of W).

• `1 residual norm: We measure the relative `1 residual by

1−min
H≥0

‖M̃ − M̃(:,K)H‖s
‖M̃‖s

. (9)

Note that both measures are between zero and one, one being the best possible value, zero
the worst.

The aim of the experiments is to display the robustness of the algorithms from Section 5.2
applied to the data sets described in the previous section under increasing noise levels. For
each data model, we ran all the algorithms on the same randomly generated data on a
predefined range of noise levels ε. For each such noise level, 25 data sets were generated
and the two measures are averaged over this sample for each algorithm.

5.3.2 Results

Figures 1 and 2 display the results for the three experiments of “Dirichlet” and “Middle
Points” types respectively. For comparison purpose, we also display the value of (9) for the
true column indices K of W in M , labeled “true K” in the plots. In all experiments, we
observe that

• The new LP model (8) is significantly more robust to noise than Hottopixx, which
confirms our theoretical results; see Section 2.1.

• The variant of LP (8) with ρ = 2 is less robust than with ρ = 1, as suggested by our
theoretical findings from Section 2.1.

• SPA and XRAY perform, in average, very similarly.

Comparing the three best algorithms (that is, SPA, XRAY and LP (8) with ρ = 1), we have
that

• In case of “dense” noise, they give comparable results; although LP (8) with ρ = 1
performs slightly worse for the “Dirichlet” type, and slightly better for the “Middle
Points” type.

• In case of “sparse” noise, LP (8) with ρ = 1 performs consistently better then SPA
and XRAY: for all noise levels, it identifies correctly more columns of W and the
corresponding NMF’s have smaller `1 residual norms.

• In case of “pointwise” noise, LP (8) with ρ = 1 outperforms SPA and XRAY. In
particular, for high noise level, it is able to extract correctly almost all columns of

1266

Robust Near-Separable NMF Using Linear Optimization

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise level

m
e

a
n

(p
c
t.

 c
o

rr
e

c
tl
y
 e

x
tr

a
c
te

d
 c

o
lu

m
n

s
)

Index recovery (Dirichlet / dense noise)

Hottopixx

SPA

XRAY

LP−rho1

LP−rho2

10
−2

10
−1

10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise level

m
e

a
n

(1
.0

 −
 r

e
l.
 1

−
n

o
rm

 r
e

s
id

u
a

l)

L
1
 residual (Dirichlet / dense noise)

Hottopixx

SPA

XRAY

LP−rho1

LP−rho2

true K

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise level

m
e

a
n

(p
c
t.

 c
o

rr
e

c
tl
y
 e

x
tr

a
c
te

d
 c

o
lu

m
n

s
)

Index recovery (Dirichlet / sparse noise)

Hottopixx

SPA

XRAY

LP−rho1

LP−rho2

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise level

m
e

a
n

(1
.0

 −
 r

e
l.
 1

−
n

o
rm

 r
e

s
id

u
a

l)

L
1
 residual (Dirichlet / sparse noise)

Hottopixx

SPA

XRAY

LP−rho1

LP−rho2

true K

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise level

m
e

a
n

(p
c
t.

 c
o

rr
e

c
tl
y
 e

x
tr

a
c
te

d
 c

o
lu

m
n

s
)

Index recovery (Dirichlet / point−wise noise)

Hottopixx

SPA

XRAY

LP−rho1

LP−rho2

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise level

m
e

a
n

(1
.0

 −
 r

e
l.
 1

−
n

o
rm

 r
e

s
id

u
a

l)

L
1
 residual (Dirichlet / point−wise noise)

Hottopixx

SPA

XRAY

LP−rho1

LP−rho2

true K

Figure 1: Comparison of near-separable NMF algorithms on “Dirichlet” type data sets.
From left to right: index recovery and `1 residual. From top to bottom: dense
noise, sparse noise and pointwise noise.

1267

Gillis and Luce

10
−2

10
−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise level

m
e

a
n

(p
c
t.

 c
o

rr
e

c
tl
y
 e

x
tr

a
c
te

d
 c

o
lu

m
n

s
)

Index recovery (middle points / dense noise)

Hottopixx

SPA

XRAY

LP−rho1

LP−rho2

10
−2

10
−1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

noise level

m
e

a
n

(1
.0

 −
 r

e
l.
 1

−
n

o
rm

 r
e

s
id

u
a

l)

L
1
 residual (middle points / dense noise)

Hottopixx

SPA

XRAY

LP−rho1

LP−rho2

true K

10
−2

10
−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise level

m
e

a
n

(p
c
t.

 c
o

rr
e

c
tl
y
 e

x
tr

a
c
te

d
 c

o
lu

m
n

s
)

Index recovery (middle points / sparse noise)

Hottopixx

SPA

XRAY

LP−rho1

LP−rho2

10
−2

10
−1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

noise level

m
e

a
n

(1
.0

 −
 r

e
l.
 1

−
n

o
rm

 r
e

s
id

u
a

l)

L
1
 residual (middle points / sparse noise)

Hottopixx

SPA

XRAY

LP−rho1

LP−rho2

true K

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise level

m
e

a
n

(p
c
t.

 c
o

rr
e

c
tl
y
 e

x
tr

a
c
te

d
 c

o
lu

m
n

s
)

Index recovery (middle points / point−wise noise)

Hottopixx

SPA

XRAY

LP−rho1

LP−rho2

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise level

m
e

a
n

(1
.0

 −
 r

e
l.
 1

−
n

o
rm

 r
e

s
id

u
a

l)

L
1
 residual (middle points / point−wise noise)

Hottopixx

SPA

XRAY

LP−rho1

LP−rho2

true K

Figure 2: Comparison of near-separable NMF algorithms on “Middle Points” type data
sets. From left to right: index recovery and `1 residual. From top to bottom:
dense noise, sparse noise and pointwise noise.

1268

Robust Near-Separable NMF Using Linear Optimization

D/dense D/sparse D/pw MP/dense MP/sparse MP/pw

Hottopixx 2.5 2.5 3.6 4.4 4.3 4.2
SPA <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

XRAY <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
LP (8), ρ = 1 20.5 34.1 39.0 52.5 88.1 41.4
LP (8), ρ = 2 10.5 12.3 16.0 32.5 56.9 27.4

Table 2: Average computational time in seconds for the different algorithms and data mod-
els. (D stands for Dirichlet, MP for middle points, pw for pointwise.)

W while SPA and XRAY can only extract a few for the “Dirichlet” type (performing
as a guessing algorithm since they extract correctly only r/n = 10% of the columns
of W), or none for the “Middle Points” type.

Note that LP (8) with ρ = 2 also performs consistently better then SPA and XRAY
in case of “pointwise” noise.

Remark 13 For the “Middle Points” experiments and for large noise levels, the middle
points of the columns of W become the vertices of the convex hull of the columns of M̃
(since they are perturbed toward the outside of the convex hull of the columns of W). Hence,
near-separable NMF algorithms should not extract any original column of W . However, the
index measure for LP (8) with ρ = 2 increases for larger noise level (although the `1 residual
measure decreases); see Figure 2. It is difficult to explain this behavior because the noise
level is very high (close to 100%) hence the separability assumption is far from being satisfied
and it is not clear what the LP (8) does.

Table 2 gives the average computational time for a single application of the algorithms
to a data set. As expected, the LP-based methods are significantly slower than SPA and
XRAY; designing faster solvers is definitely an important topic for further research. Note
that the Hottopixx model can be solved about ten times faster on average than the LP
model (8), despite the only essential difference being the trace constraint tr(X) = r. It
is difficult to explain this behaviour as the number of simplex iterations or geometry of
the central path cannot easily be set in relation to the presence or absence of a particular
constraint.

Table 3 displays the index recovery robustness: For each algorithm and data model, the
maximum noise level ‖N‖1 for which the algorithm recovered on average at least 99% of
the indices corresponding to the columns of W . In all cases, the LP (8) with ρ = 1 is on
par or better than all other algorithms.

5.4 Swimmer Data Set

The swimmer data set is a widely used data set for benchmarking NMF algorithms (Donoho
and Stodden, 2003). It consists of 256 binary images (20-by-11 pixels) of a body with four
limbs which can be each in four different positions; see Figure 3. Let M ∈ {0, 1}256×220
correspond to the swimmer data set where each row corresponds to an image, and each

1269

Gillis and Luce

D/dense D/sparse D/pw MP/dense MP/sparse MP/pw

Hottopixx 0.014 0.018 0.016 0.016 0.018 0.015
SPA 0.220 0.154 0.052 0.077 0.071 0.032

XRAY 0.279 0.154 0.052 0.083 0.071 0.032
LP (8), ρ = 1 0.279 0.195 0.197 0.083 0.098 0.178
LP (8), ρ = 2 0.137 0.121 0.141 0.055 0.055 0.075

Table 3: Index recovery robustness: Largest noise level ‖N‖1 for which an algorithm
achieves almost perfect index recovery (that is, at least 99% on average).

Figure 3: Sample images of the swimmer data set.

column to a pixel. The matrix M is 16-separable: up to permutation, M has the following
form

M = W

[
I16, I16, I16,

1

4
E16×14, 016×158

]
,

where Em×n denotes the m-by-n all-one matrix. In fact, all the limbs are disjoint and
contain three pixels (hence each column of W is repeated three times), the body contains
fourteen pixels and the remaining 158 background pixels do not contain any information.

Remark 14 (Uniqueness of H) Note that the weights 1
4E16×14 corresponding to the pix-

els belonging to the body are not unique. The reason is that the matrix W is not full rank
(in fact, rank(W) = 13) implying that the convex hull of the columns of W and the origin
is not a simplex (that is, r+ 1 vertices in dimension r). Therefore, the convex combination
needed to reconstruct a point in the interior of that convex hull is not unique (such as a
pixel belonging to the body in this example); see the discussion in Gillis (2012).

Let us compare the different algorithms on this data set:

• SPA. Because the rank of the input matrix M is equal to thirteen, the residual matrix
becomes equal to zero after thirteen steps and SPA cannot extract more than thirteen
indices hence it fails to decompose M .

• XRAY. At the first step, the criterion used by XRAY to identify an extreme ray of
the convex hull of the columns of M is maximized by all non-zero columns of M hence

1270

Robust Near-Separable NMF Using Linear Optimization

any of them can be extracted. Since there are 48 pixels belonging to a limb and only
14 to the body, XRAY is more likely to extract a pixel on a limb (after which it is
able to correctly decompose M). However, if the first pixel extracted by XRAY is
a pixel of the body then XRAY requires to be run with r = 17 to achieve a perfect
decomposition. Therefore, XRAY succeeds on this example only with probability
48
62 ∼ 77% (given that XRAY picks a column at random among the one maximizing
the criterion). We consider here a run where XRAY failed, otherwise it gives the same
perfect decomposition as the new LP based approaches; see below.

• Hottopixx. With ε = 0 in the Hottopixx LP model (2), the columns of W are
correctly identified and Hottopixx performs perfectly. However, as soon as ε exceeds
approximately 0.03, Hottopixx fails in most cases. In particular, if p is chosen such
that its smallest entry does not correspond to a columns of W , then it always fails
(see also the discussion in Example 1). Even if p is not chosen by an adversary but is
randomly generated, this happens with high probability since most columns of M do
not correspond to a column of W .

• LP (7) with ρ = 1. For ε up to approximately 0.97, the LP model (7) (that is,
the new LP model based on relative error) idenfities correctly the columns of W and
decomposes M perfectly.

• LP (8) with ρ = 1. For ε up to approximately 60, (note that the `1 norm of the
columns of W is equal to 64), the LP model (8) (that is, the new LP model based on
absolute error) identifies correctly the columns of W and decomposes M perfectly.

Figure 4 displays the optimal weights corresponding to the columns of M extracted with
the different algorithms (that is, the rows of the matrix H∗ = argminH≥0 ||M−M(:,K)H||F
where K is the index set extracted by a given algorithm): the error for SPA is 20.8, for
XRAY 12, for Hottopixx 12 and for the new LP models 0. Note that we used ε = 0.1
for Hottopixx and the new LP model (a situation in which Hottopixx fails in most cases;
see the discussion above—for the particular run shown in Figure 4, Hottopixx extracts a
background pixel corresponding to a zero column of M). Note also that we do not display
the result for the LP (8) because it gave an optimal solution similar to that of the LP (7).
Finally, it is interesting to point out that the nonnegative rank of M is equal to 16 hence
the new LP models actually detect the nonnegative rank of M .

6. Conclusion and Further Work

In this paper, we have proposed a new more practical and more robust LP model for near-
separable NMF which competes favorably with two state-of-the-art methods (outperforming
them in some cases). It would be particularly interesting to investigate the following direc-
tions of research:

• Implementation and evaluation of an algorithm to solve (8) for large-sale real-world
problems.

1271

Gillis and Luce

Figure 4: Weights corresponding to the extracted indices by the different algorithms. From
to to bottom: SPA, XRAY, Hottopixx (ε = 0.1) and the new LP model (7)
(ε = 0.1).

• Improvement of the theoretical bound on the noise level for Algorithm 3 to extract the
right set of columns of the input data matrix in case duplicates and near duplicates
are present in the data set (cf. Section 2.2).

• Design of practical and robust near-separable NMF algorithms. For example, would
it be possible to design an algorithm as robust as our LP-based approach but compu-
tationally more effective (e.g., running in O(mnr) operations)?

Acknowledgments

The authors would like to thank the reviewers for their feedback which helped improve the
paper.

Appendix A. Proof of Theorem 2

The next two lemmas are simple generalizations of Lemmas 2 & 3 in Gillis (2013). Given
any feasible solution X of the the linear program (3), the first one shows that the `1 norm
of the error M −MX with respect to the original noiseless data matrix is proportional
to ε, that is, ‖M̃ − M̃X‖1 ≤ O(ε). The second one proves that the diagonal entries of X
corresponding to the columns of W must be larger than 1−O(ε).

Lemma 15 Suppose M̃ = M + N where ‖M(:, j)‖1 = 1 for all j and ‖N‖1 ≤ ε < 1, and
suppose X is a feasible solution of (3). Then,

‖X‖1 ≤ 1 + ε

(
ρ+ 2

1− ε

)
and ‖M −MX‖1 ≤ ε

(
ρ+ 2

1− ε

)
.

1272

Robust Near-Separable NMF Using Linear Optimization

Proof First note that ‖M̃‖1 ≤ ‖M‖1 + ‖N‖1 ≤ 1 + ε and ‖MX‖1 = ‖X‖1. By the
feasibility of X for (3),

ρε ≥ ‖M̃ −M̃X‖1 ≥ ‖M̃X‖1−‖M̃‖1 ≥ ‖MX‖1−‖NX‖1− (1+ ε) ≥ ‖X‖1− ε‖X‖1−1− ε,

hence ‖X‖1 ≤ 1+ε
(
ρ+2
1−ε

)
, implying that ‖NX‖1 ≤ ‖N‖1‖X‖1 ≤ ε

(
1 + (ρ+2)ε

1−ε

)
. Therefore

ρε ≥ ‖M̃ − M̃X‖1 = ‖M +N − (M +N)X‖1 ≥ ‖M −MX‖1 − ε− ε
(

1 +
(ρ+ 2)ε

1− ε

)
,

from which we obtain ‖M −MX‖1 ≤ ε
(
ρ+ 2 + (ρ+2)ε

1−ε

)
= ε

(
ρ+2
1−ε

)

Lemma 16 Let M̃ = M + N where ||M(:, j)||1 = 1 for all j, admits a rank-r separable
factorization WH with W κ-robustly conical and ||N ||1 ≤ ε < 1, and has the form (1) with
maxi,j H

′
ij ≤ β < 1 and W,H ≥ 0. Let also X be any feasible solution of (3), then

X(j, j) ≥ 1− 2ε

κ(1− β)

(
ρ+ 2

1− ε

)
for all j such that M(:, j) = W (:, k) for some 1 ≤ k ≤ r.

Proof The idea of the proof is the following: by assumption, each column of W is isolated
from the convex hull of the other columns of M . Therefore, to being able to approximate
it up to error O(ε), its corresponding diagonal entry must be large enough.

Let K be the set of r indices such that M(:,K) = W . Let also 1 ≤ k ≤ r and denote
j = K(k) so that M(:, j) = W (:, k). By Lemma 15,

||W (:, k)−WHX(:, j)||1 ≤ ε
(
ρ+ 2

1− ε

)
. (10)

Since H(k, j) = 1,

WHX(:, j) = W (:, k)H(k, :)X(:, j) +W (:,R)H(R, :)X(:, j)

= W (:, k)
(
X(j, j) +H(k,J)X(J , j)

)
+W (:,R)y,

where R = {1, 2, . . . , r}\{k}, J = {1, 2, . . . , n}\{j} and y = H(R, :)X(:, j) ≥ 0. We have

η = X(j, j) +H(k,J)X(J , j) ≤ X(j, j) + β

(
1 +

(ρ+ 2)ε

1− ε
−X(j, j)

)
, (11)

since ||H(k,J)||∞ ≤ β and ||X(:, j)||1 ≤ 1 + (ρ+2)ε
1−ε (Lemma 15). Hence

||W (:, k)−WHX(:, j)||1 ≥ (1− η)

∥∥∥∥W (:, k)−W (:,R)
y

1− η

∥∥∥∥
1

≥ (1− η)κ. (12)

1273

Gillis and Luce

Combining Equations (10), (11) and (12), we obtain

1−
(
X(j, j) + β

(
1 +

(ρ+ 2)ε

1− ε
−X(j, j)

))
≤ ε

κ

(
ρ+ 2

1− ε

)
which gives, using the fact that κ, β ≤ 1,

X(j, j) ≥ 1− 2ε

κ(1− β)

(
ρ+ 2

1− ε

)
.

If the diagonal entries corresponding to the columns of W of a feasible solution X of
(3) are large, then the other diagonal entries will be small. In fact, the columns of M are
contained in the convex hull of the columns of W hence can be well approximated with
convex combinations of these columns.

Lemma 17 Let M̃ = M + N where ||M(:, j)||1 = 1 for all j, admits a rank-r separable
factorization WH and ||N ||1 ≤ ε, and has the form (1). Let K be the index set with r
elements such that M(:,K) = W . Let also X∗ be an optimal solution of (3) such that

X∗(k, k) ≥ γ for all k ∈ K, (13)

where 0 ≤ γ ≤ 1. Then,

X∗(j, j) ≤ 1−min
(
γ,
ρ

2

)
for all j /∈ K.

Proof Let X be any feasible solution of (3) satisfying (13), and α = min
(
γ, ρ2

)
. Let us

show that the jth column of X for some j /∈ K can be modified as follows

X(i, j)←

1− α if i = j,
αH(i, j) if i ∈ K,

0 otherwise,

while keeping feasibility. First, αH(i, j) ≤ γ ≤ X(i, i) for all i ∈ K hence the condition
X(i, j) ≤ X(i, i) for all i, j is satisfied while, clearly, 0 ≤ X(i, i) ≤ 1 for all i. It remains
to show that ||M̃(:, j)− M̃X(:, j)||1≤ ρε. By assumption, M(:, j) = WH(:, j) = αWH(:
, j) + (1− α)M(:, j) hence

M̃(:, j) = α (M(:, j) +N(:, j)) + (1− α)M̃(:, j)

= α (WH(:, j) +N(:, j)) + (1− α)M̃(:, j).

This gives

||M̃(:, j)− M̃X(:, j)||1 = α||M(:, j) +N(:, j)− (W +N(:,K))H(:, j)||1 ≤ 2αε ≤ ρε,

since the columns of H sum to one, and ||N ||1 ≤ ε. This result implies that any optimal
solution X∗ satisfying (13) must satisfy X∗(j, j) ≤ 1 − α, otherwise we could replace the

1274

Robust Near-Separable NMF Using Linear Optimization

jth column of X∗ using the construction above and obtain a strictly better solution since
the vector p in the objective function only has positive entries.

We can now combine Lemmas 16 and 17 to prove robustness of Algorithm 2 when there
are no duplicates nor near duplicates of the columns of W in the data set.

Proof [Proof of Theorem 2] Let X be an optimal solution of (3). Let us first consider
the case ε = 0, which is particular because it allows duplicates of the columns of W in the
data set and the value of ρ does not influence the analysis since ρε = 0 for any ρ > 0. Let
denote

Kk = {j | M(:, j) = W (:, k)},
the set of indices whose corresponding column of M is equal to the kth column of W . By
assumption, κ > 0 hence for all 1 ≤ k ≤ r we have W (:, k) /∈ cone(W (:, K̄)) where K̄ =
{1, 2, . . . , r}\{k}. This implies that

∑
j∈Kk

X(j, j) ≥ 1 for all k. Since we are minimizing a
positive linear combination of the diagonal entries of X and assigning a weight of one to each
cluster Kk is feasible (see Equation 1), we have

∑
j∈Kk

X(j, j) = 1. Moreover, assigning all
the weight to the index in Kk with the smallest entry in p minimizes the objective function
(and this index is unique since the entries of p are distinct). Finally, for all 1 ≤ k ≤ r,
there exists a unique j such that M(:, j) = W (:, k) and X(j, j) = 1 which gives the result
for ε = 0.

Otherwise ε > 0 and β < 1, and the result follows from Lemmas 16 and 17: Let K be
the set of r indices such that M(:,K) = W . By Lemma 16, we have

X(k, k) ≥ 1− 2ε

κ(1− β)

(
ρ+ 2

1− ε

)
, for all k ∈ K,

while, by Lemma 17,

X(j, j) ≤ max

(
1− ρ

2
,

2ε

κ(1− β)

(
ρ+ 2

1− ε

))
, for all j /∈ K.

Therefore, if

1− 2ε

κ(1− β)

(
ρ+ 2

1− ε

)
> f ≥ max

(
1− ρ

2
,

2ε

κ(1− β)

(
ρ+ 2

1− ε

))
,

where f = 1 − min(1,ρ)
2 = max

(
1
2 , 1−

ρ
2

)
, then Algorithm 2 extracts the r indices corre-

sponding to the columns of W . The above conditions are satisfied if

2ε

κ(1− β)

(
ρ+ 2

1− ε

)
<
ρ

2
and

2ε

κ(1− β)

(
ρ+ 2

1− ε

)
<

1

2
,

that is, ε
1−ε <

κ(1−β)min(1,ρ)
4(ρ+2) . Taking

ε ≤ κ(1− β) min(1, ρ)

5(ρ+ 2)
<
κ(1− β) min(1, ρ)

ρ+ 2

1− ε
4

gives the results since ε ≤ 1
5(ρ+2) <

1
10 for any ρ > 0 hence 1−ε

4 > 1
5 .

1275

Gillis and Luce

Appendix B. Proof of Theorem 6

Theorem 6 can be proved using a particular construction.
Proof [Proof of Theorem 6] Let us consider

W =

(
κ
2 Ir

(1− κ
2)eTr

)
, H =

(
Ir βIr +

1− β
r − 1

(ere
T
r − Ir)

)
, and N = 0,

where er ∈ Rr is the all-ones vector, 1
r ≤ β < 1 and W is κ-robustly conical with κ > 0

(Gillis, 2013). Define p =
(
Ker
er

)
for some large constant K constant. The matrix

X =

((
1− ρε

κ(1−β)

)
Ir 0

ρε
κ(1−β)Ir Ir

)

is a feasible solution of (3) for any ε ≤ κ(1−β)
ρ . In fact, for all 1 ≤ j ≤ r,

||M(:, j)−MX(:, j)||1 =
ρε

κ(1− β)
||M(:, j)−M(:, j + r)||1 = ρε,

and it can be easily checked that X satisfies the other constraints. By Lemma 7 of Gillis
(2013), for K sufficiently large, any optimal solution X∗ of (3) must satisfy

min
1≤k≤r

X∗(k, k) ≤ max
1≤k≤r

X(k, k) = 1− ρε

κ(1− β)
,

(otherwise pT diag(X∗) > pT diag(X) for K sufficiently large). For the columns of W to be

extracted, one requires X∗(k, k) > 1− min(1,ρ)
2 for all 1 ≤ k ≤ r hence it is necessary that

1− ρε

κ(1− β)
> 1− min(1, ρ)

2
⇐⇒ ε <

κ(1− β)

2

min(1, ρ)

ρ
,

for Algorithm 2 to extract the first r columns of M .

Appendix C. Proof of Theorem 7

Proof [Proof of Theorem 7] The matrix X0 from Equation (1) is a feasible solution of
(3); in fact,

||M̃ − M̃X0||1 = ||M +N − (M +N)X0||1 ≤ ||M −MX0||1 + ||N ||1 + ||NX0||1 ≤ 2ε,

since M = MX0, ||N ||1 ≤ ε and ||NX0||1 ≤ ||N ||1||X0||1 ≤ ε as ||X0||1 = 1. Therefore,
since p = e, any optimal solution X∗ of (3) satisfies

tr(X∗) = pT diag(X∗) ≤ pT diag(X0) = r.

The result then directly follows from Theorem 5 in Gillis (2013). In fact, Algorithm 3 is
exactly the same as Algorithm 3 in Gillis (2013) except that the optimal solution of (3) is
used instead of (2) while Theorem 5 from Gillis (2013) does not need the entries of p to

1276

Robust Near-Separable NMF Using Linear Optimization

be distinct and only the condition tr(X) ≤ r is necessary. Note that Theorem 5 in Gillis
(2013) guarantees that there are r disjoint clusters of columns of M̃ around each column
of W whose weight is strictly larger r

r+1 . Therefore, the total weight is strictly larger than

r− r
r+1 > r−1 while it is at most r (since tr(X∗) ≤ r) implying that r =

⌈∑n
i=1X

∗(i, i)
⌉
.

Appendix D. Proof of Theorem 9

The proof of Theorem 9 works as follows: Let X be a feasible solution of (3). First, we
show that the diagonal entries of X corresponding to the columns of W and T must be
large enough (this follows from Theorem 2). Second, we show that the `1 norm of the rows
of X corresponding to the columns of W (resp. T) must be sufficiently large (resp. low)
because the columns of W (resp. T) must be used (resp. cannot be used) to reconstruct the
other columns of M .

Proof [Proof of Theorem 9] In case β = 1, ε = 0 and the proof is similar to that of
Theorem 2; the only difference is that the condition from Equation (5) has to be used to
show that no weight can be assigned to off-diagonal entries of the rows of an optimal solution
of (3) corresponding to the columns of T . Otherwise β < 1 and there are no duplicate nor
near duplicate of the columns of W in the data set.

Let assume without loss of generality that M̃ has the form

M̃ = [T,W,WH ′] +N,

that is, the first t columns correspond to T and the r next ones to W . Let then X be an
optimal solution of (3).

Since [W,T] is κ-robustly conical, Theorem 2 applies (as if the columns of T were not
outliers) and, for all 1 ≤ k ≤ r + t,

X(k, k) ≥ 1− 8ε

κ(1− β)(1− ε)
≥ 1

2
,

while X(j, j) ≤ 8ε
κ(1−β)(1−ε) ≤

1
2 for all j > r + t, since ε ≤ ν(1−β)

20(n−1) where ν = min(κ, η, δ).
Therefore, only the first r+t indices can potentially be extracted by Algorithm 5. It remains
to bound above (resp. below) the off-diagonal entries of the rows of X corresponding to T
(resp. W).

By Lemma 16 (see also Gillis, 2013, Lemma 2), we have for all 1 ≤ j ≤ n

||M(:, j)−MX(:, j)||1 ≤
4ε

1− ε
and ||X(:, j)||1 ≤ 1 +

4ε

1− ε
.

Using the fact that [W,T] is κ-robustly conical, for all 1 ≤ k ≤ t, we have

||T (:, k)−MX(:, k)||1 ≥ (1−X(k, k)) min
x≥0,y≥0

||T (:, k)− T (:, K̄)x−Wy||1 ≥ (1−X(k, k))κ,

implying that for all 1 ≤ k ≤ t

X(k, k) ≥ 1− 4ε

κ(1− ε)
≥ 1

2
,

1277

Gillis and Luce

since 4
1−ε ≤ 5 because ε ≤ 1

20 . Therefore,∑
j 6=k

X(j, k) ≤ ||X(:, k)||1 −X(k, k) ≤ 4ε

1− ε
+

4ε

κ(1− ε)
≤ 8ε

κ(1− ε)
,

as κ, ε ≤ 1. Let t+ 1 ≤ j ≤ n and 1 ≤ k ≤ t, we have

||M(:, j)−MX(:, j)||1 ≥ min
x

min
y≥0
||T (:, k) + T (:, K̄)y −Wx||1 ≥ ηX(k, j),

see Equation (5), which implies X(k, j) ≤ 4ε
η(1−ε) . Hence, for all 1 ≤ k ≤ t, we have

∑
j 6=k

X(k, j) ≤ (t− 1)
8ε

κ(1− ε)
+ (n− r − t) 4ε

η(1− ε)
≤ 8(n− 1)ε

ν(1− ε)
≤ 1

2
.

since ν = min(κ, η, δ). By assumption, for each t + 1 ≤ k ≤ t + r, there exists some j
satisfying M(:, j) = WH(:, j) 6= W (:, k) and

min
x≥0
||M(:, j)−W (:, K̄)x||1 ≥ δ, where K̄ = {1, 2, . . . , r}\{k},

see Equation (6). For t + r < j ≤ n, we have X(j, j) ≤ 8ε
κ(1−β)(1−ε) . Let us denote

µ = 8(n−r−t)ε
κ(1−β)(1−ε) which is an upper bound for the total weight that can be assigned to the

columns of M different from W and T . Then, using Equation (6), we have

‖M(:, j)−MX(:, j)‖1 ≥ (1− µ) min
y≥0

∥∥∥∥M(:, j)− 1

1− µ
WX(t+ 1:r + t, j)− Ty

∥∥∥∥
1

≥ (1− µ)

(
1− X(k, j)

1− µ

)
δ.

This implies
X(k, j)

1− µ
≥ 1− 4ε

δ(1− µ)(1− ε)
and

X(k, j) ≥ 1− 8(n− r − t)ε
κ(1− β)(1− ε)

− 4ε

δ(1− ε)

≥ 1− 8(n− 1)ε

ν(1− β)(1− ε)
≥ 1

2
,

since β ≤ 1 and ε ≤ ν(1−β)
20(n−1) , and the proof is complete.

References

U.M.C. Araújo, B.T.C. Saldanha, R.K.H. Galvão, T. Yoneyama, H.C. Chame, and
V. Visani. The successive projections algorithm for variable selection in spectroscopic
multicomponent analysis. Chemometrics and Intelligent Laboratory Systems, 57(2):65–
73, 2001.

1278

Robust Near-Separable NMF Using Linear Optimization

S. Arora, R. Ge, R. Kannan, and A. Moitra. Computing a nonnegative matrix factorization
– provably. In Proc. of the 44th Symp. on Theory of Computing, STOC ’12, pages 145–
162, 2012a.

S. Arora, R. Ge, and A. Moitra. Learning topic models - going beyond SVD. In Proc. of the
53rd Annual IEEE Symp. on Foundations of Computer Science, FOCS ’12, pages 1–10,
2012b.

J.M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot.
Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based
approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 5(2):354–379, Apr. 2012.

V. Bittorf, B. Recht, E. Ré, and J.A. Tropp. Factoring nonnegative matrices with linear
programs. In Advances in Neural Information Processing Systems (NIPS ’12), pages
1223–1231, 2012.

T.-H. Chan, W.-K. Ma, C.-Y. Chi, and Y. Wang. A convex analysis framework for blind
separation of non-negative sources. IEEE Trans. on Signal Processing, 56(10):5120–5134,
2008.

L. Chen, P.L. Choyke, T.-H. Chan, C.-Y. Chi, G. Wang, and Y. Wang. Tissue-specific
compartmental analysis for dynamic contrast-enhanced MR imaging of complex tumors.
IEEE Trans. on Medical Imaging, 30(12):2044–2058, 2011.

D. Donoho and V. Stodden. When does non-negative matrix factorization give a cor-
rect decomposition into parts? In Advances in Neural Information Processing Systems
(NIPS ’03), 2003.

E. Elhamifar, G. Sapiro, and R. Vidal. See all by looking at a few: Sparse modeling for find-
ing representative objects. In IEEE Conf. on Computer Vision and Pattern Recognition,
2012.

E. Esser, M. Moller, S. Osher, G. Sapiro, and J. Xin. A convex model for nonnegative
matrix factorization and dimensionality reduction on physical space. IEEE Trans. on
Image Processing, 21(7):3239–3252, 2012.

N. Gillis. Sparse and unique nonnegative matrix factorization through data preprocessing.
Journal of Machine Learning Research, 13(Nov):3349–3386, 2012.

N. Gillis. Robustness analysis of Hottopixx, a linear programming model for factoring
nonnegative matrices. SIAM J. Mat. Anal. Appl., 34(3):1189–1212, 2013.

N. Gillis and S.A. Vavasis. Fast and robust recursive algorithms for separable nonnegative
matrix factorization. IEEE Trans. Pattern Anal. Mach. Intell., 36(4):698–714, 2014.

F. Glineur and T. Terlaky. Conic formulation for lp-norm optimization. Journal of Opti-
mization Theory and Applications, 122(2):285–307, 2004.

1279

Gillis and Luce

A. Kumar, V. Sindhwani, and P. Kambadur. Fast conical hull algorithms for near-separable
non-negative matrix factorization. In Int. Conf. on Machine Learning (ICML ’13), vol-
ume 28, pages 231–239. 2013.

S.A. Vavasis. On the complexity of nonnegative matrix factorization. SIAM J. on Opti-
mization, 20(3):1364–1377, 2009.

1280

Journal of Machine Learning Research 15 (2014) 1281-1316 Submitted 1/13; Revised 1/14; Published 4/14

Follow the Leader If You Can, Hedge If You Must

Steven de Rooij steven.de.rooij@gmail.com
VU University and University of Amsterdam
Science Park 904, P.O. Box 94323, 1090 GH Amsterdam, the Netherlands

Tim van Erven tim@timvanerven.nl
Département de Mathématiques
Université Paris-Sud, 91405 Orsay Cedex, France

Peter D. Grünwald pdg@cwi.nl
Wouter M. Koolen wmkoolen@cwi.nl
Leiden University (Grünwald) and Centrum Wiskunde & Informatica (Grünwald and Koolen)
Science Park 123, P.O. Box 94079, 1090 GB Amsterdam, the Netherlands

Editor: Nicolò Cesa-Bianchi

Abstract
Follow-the-Leader (FTL) is an intuitive sequential prediction strategy that guarantees con-
stant regret in the stochastic setting, but has poor performance for worst-case data. Other
hedging strategies have better worst-case guarantees but may perform much worse than
FTL if the data are not maximally adversarial. We introduce the FlipFlop algorithm,
which is the first method that provably combines the best of both worlds. As a stepping
stone for our analysis, we develop AdaHedge, which is a new way of dynamically tuning
the learning rate in Hedge without using the doubling trick. AdaHedge refines a method
by Cesa-Bianchi, Mansour, and Stoltz (2007), yielding improved worst-case guarantees. By
interleaving AdaHedge and FTL, FlipFlop achieves regret within a constant factor of the
FTL regret, without sacrificing AdaHedge’s worst-case guarantees. AdaHedge and FlipFlop
do not need to know the range of the losses in advance; moreover, unlike earlier methods,
both have the intuitive property that the issued weights are invariant under rescaling and
translation of the losses. The losses are also allowed to be negative, in which case they may
be interpreted as gains.
Keywords: Hedge, learning rate, mixability, online learning, prediction with expert
advice

1. Introduction

We consider sequential prediction in the general framework of Decision Theoretic Online
Learning (DTOL) or the Hedge setting (Freund and Schapire, 1997), which is a variant of
prediction with expert advice (Littlestone and Warmuth, 1994; Vovk, 1998; Cesa-Bianchi
and Lugosi, 2006). Our goal is to develop a sequential prediction algorithm that performs
well not only on adversarial data, which is the scenario most studies worry about, but also
when the data are easy, as is often the case in practice. Specifically, with adversarial data,
the worst-case regret (defined below) for any algorithm is Ω(

√
T), where T is the number

of predictions to be made. Algorithms such as Hedge, which have been designed to achieve
this lower bound, typically continue to suffer regret of order

√
T , even for easy data, where

c©2014 Steven de Rooij, Tim van Erven, Peter D. Grünwald and Wouter M. Koolen.

De Rooij, Van Erven, Grünwald and Koolen

the regret of the more intuitive but less robust Follow-the-Leader (FTL) algorithm (also
defined below) is bounded. Here, we present the first algorithm which, up to constant factors,
provably achieves both the regret lower bound in the worst case, and a regret not exceeding
that of FTL. Below, we first describe the Hedge setting. Then we introduce FTL, discuss
sophisticated versions of Hedge from the literature, and give an overview of the results and
contents of this paper.

1.1 Overview

In the Hedge setting, prediction proceeds in rounds. At the start of each round t = 1, 2, . . .,
a learner has to decide on a weight vector wt = (wt,1, . . . , wt,K) ∈ RK over K “experts”.
Each weight wt,k is required to be nonnegative, and the sum of the weights should be
1. Nature then reveals a K-dimensional vector containing the losses of the experts `t =
(`t,1, . . . , `t,K) ∈ RK . Learner’s loss is the dot product ht = wt ·`t, which can be interpreted
as the expected loss if Learner uses a mixed strategy and chooses expert k with probability
wt,k. We denote aggregates of per-trial quantities by their capital letter, and vectors are
in bold face. Thus, Lt,k = `1,k + . . . + `t,k denotes the cumulative loss of expert k after t
rounds, and Ht = h1 + . . .+ ht is Learner’s cumulative loss (the Hedge loss).

Learner’s performance is evaluated in terms of her regret, which is the difference between
her cumulative loss and the cumulative loss of the best expert:

Rt = Ht − L∗t , where L∗t = min
k
Lt,k.

We will always analyse the regret after an arbitrary number of rounds T . We will omit
the subscript T for aggregate quantities such as L∗T or RT wherever this does not cause
confusion.

A simple and intuitive strategy for the Hedge setting is Follow-the-Leader (FTL), which
puts all weight on the expert(s) with the smallest loss so far. More precisely, we will define
the weights wt for FTL to be uniform on the set of leaders {k | Lt−1,k = L∗t−1}, which is
often just a singleton. FTL works very well in many circumstances, for example in stochastic
scenarios where the losses are independent and identically distributed (i.i.d.). In particular,
the regret for Follow-the-Leader is bounded by the number of times the leader is overtaken
by another expert (Lemma 10), which in the i.i.d. case almost surely happens only a finite
number of times (by the uniform law of large numbers), provided the mean loss of the best
expert is strictly smaller than the mean loss of the other experts. As demonstrated by
the experiments in Section 5, many more sophisticated algorithms can perform significantly
worse than FTL.

The problem with FTL is that it breaks down badly when the data are antagonistic.
For example, if one out of two experts incurs losses 1

2 , 0, 1, 0, . . . while the other incurs
opposite losses 0, 1, 0, 1, . . ., the regret for FTL at time T is about T/2 (this scenario is
further discussed in Section 5.1). This has prompted the development of a multitude of
alternative algorithms that provide better worst-case regret guarantees.

The seminal strategy for the learner is called Hedge (Freund and Schapire, 1997, 1999).
Its performance crucially depends on a parameter η called the learning rate. Hedge can
be interpreted as a generalisation of FTL, which is recovered in the limit for η → ∞. In
many analyses, the learning rate is changed from infinity to a lower value that optimizes

1282

Follow the Leader If You Can, Hedge If You Must

some upper bound on the regret. Doing so requires precognition of the number of rounds
of the game, or of some property of the data such as the eventual loss of the best expert
L∗. Provided that the relevant statistic is monotonically nondecreasing in t (such as L∗t),
a simple way to address this issue is the so-called doubling trick: setting a budget on the
statistic, and restarting the algorithm with a double budget when the budget is depleted
(Cesa-Bianchi and Lugosi, 2006; Cesa-Bianchi et al., 1997; Hazan and Kale, 2008); η can
then be optimised for each individual block in terms of the budget. Better bounds, but
harder analyses, are typically obtained if the learning rate is adjusted each round based on
previous observations, see e.g. (Cesa-Bianchi and Lugosi, 2006; Auer et al., 2002).

The Hedge strategy presented by Cesa-Bianchi, Mansour, and Stoltz (2007) is a so-
phisticated example of such adaptive tuning. The relevant algorithm, which we refer to
as CBMS, is defined in (16) in Section 4.2 of their paper. To discuss its guarantees, we
need the following notation. Let `−t = mink `t,k and `+

t = maxk `t,k denote the smallest
and largest loss in round t, and let L−t = `−1 + . . . + `−t and L+

t = `+
1 + . . . + `+

t denote
the cumulative minimum and maximum loss respectively. Further let st = `+

t − `−t denote
the loss range in trial t and let St = max{s1, . . . , st} denote the largest loss range after t
trials. Then, without prior knowledge of any property of the data, including T , S and L∗,
the CBMS strategy achieves regret bounded by1

RCBMS ≤ 4

√
(L∗ − L−)(L− + ST − L∗)

T
lnK + lower order terms (1)

(Cesa-Bianchi et al., 2007, Corollary 3). Hence, in the worst case L∗ = L−+ ST/2 and the
bound is of order S

√
T , but when the loss of the best expert L∗ ∈ [L−, L−+ ST] is close to

either boundary the guarantees are much stronger.
The contributions of this work are twofold: first, in Section 2, we develop AdaHedge,

which is a refinement of the CBMS strategy. A (very) preliminary version of this strategy
was presented at NIPS (Van Erven et al., 2011). Like CMBS, AdaHedge is completely
parameterless and tunes the learning rate in terms of a direct measure of past performance.
We derive an improved worst-case bound of the following form. Again without any assump-
tions, we have

Rah ≤ 2

√
S

(L∗ − L−)(L+ − L∗)
L+ − L−

lnK + lower order terms (2)

(see Theorem 8). The parabola under the square root is always smaller than or equal to its
CMBS counterpart (since it is nondecreasing in L+ and L+ ≤ L−+ST); it expresses that the
regret is small if L∗ ∈ [L−, L+] is close to either boundary. It is maximized in L∗ at the mid-
point between L− and L+, and in this case we recover the worst-case bound of order S

√
T .

Like (1), the regret bound (2) is “fundamental”, which means that it is invariant under
translation of the losses and proportional to their scale. Moreover, not only AdaHedge’s
regret bound is fundamental: the weights issued by the algorithm are themselves invariant

1. As pointed out by a referee, it is widely known that the leading constant of 4 can be improved to
2
√

2 ≈ 2.83 using techniques by Györfi and Ottucsák (2007) that are essentially equivalent to our
Lemma 2 below; Gerchinovitz (2011, Remark 2.2) reduced it to approximately 2.63. AdaHedge allows a
slight further reduction to 2.

1283

De Rooij, Van Erven, Grünwald and Koolen

under translation and scaling (see Section 4). The CBMS algorithm and AdaHedge are
insensitive to trials in which all experts suffer the same loss, a natural property we call
“timelessness”. An attractive feature of the new bound (2) is that it expresses this property.
A more detailed discussion appears below Theorem 8.

Our second contribution is to develop a second algorithm, called FlipFlop, that retains
the worst-case bound (2) (up to a constant factor), but has even better guarantees for easy
data: its performance is never substantially worse than that of Follow-the-Leader. At first
glance, this may seem trivial to accomplish: simply take both FTL and AdaHedge, and
combine the two by using FTL or Hedge recursively. To see why such approaches do not
work, suppose that FTL achieves regret Rftl, while AdaHedge achieves regret Rah. We
would only be able to prove that the regret of the combined strategy compared to the
best original expert satisfies Rc ≤ min{Rftl,Rah} + Gc, where Gc is the worst-case regret
guarantee for the combination method, e.g. (1). In general, either Rftl or Rah may be close
to zero, while at the same time the regret of the combination method, or at least its bound
Gc, is proportional to

√
T . That is, the overhead of the combination method will dominate

the regret!
The FlipFlop approach we describe in Section 3 circumvents this by alternating between

Following the Leader and using AdaHedge in a carefully specified way. For this strategy we
can guarantee

Rff = O(min{Rftl,Gah}),

where Gah is the regret guarantee for AdaHedge; Theorem 15 provides a precise statement.
Thus, FlipFlop is the first algorithm that provably combines the benefits of Follow-the-
Leader with robust behaviour for antagonistic data.

A key concept in the design and analysis of our algorithms is what we call the mixability
gap, introduced in Section 2.1. This quantity also appears in earlier works, and seems to
be of fundamental importance in both the current Hedge setting as well as in stochastic
settings. We elaborate on this in Section 6.2 where we provide the big picture underlying
this research and we briefly indicate how it relates to practical work such as (Devaine et al.,
2013).

1.2 Related Work

As mentioned, AdaHedge is a refinement of the strategy analysed by Cesa-Bianchi et al.
(2007), which is itself more sophisticated than most earlier approaches, with two notable ex-
ceptions. First, Chaudhuri, Freund, and Hsu (2009) describe a strategy called NormalHedge
that can efficiently compete with the best ε-quantile of experts; their bound is incomparable
with the bounds for CBMS and for AdaHedge. Second, Hazan and Kale (2008) develop
a strategy called Variation MW that has especially low regret when the losses of the best
expert vary little between rounds. They show that the regret of Variation MW is of order√
VARmax

T lnK, where VARmax
T = maxt≤T

∑t
s=1

(
`s,k∗t −

1
tLt,k∗t

)2 with k∗t the best expert
after t rounds. This bound dominates our worst-case result (2) (up to a multiplicative con-
stant). As demonstrated by the experiments in Section 5, their method does not achieve
the benefits of FTL, however. In Section 5 we also discuss the performance of NormalHedge
and Variation MW compared to AdaHedge and FlipFlop.

1284

Follow the Leader If You Can, Hedge If You Must

Other approaches to sequential prediction include Defensive Forecasting (Vovk et al.,
2005), and Following the Perturbed Leader (Kalai and Vempala, 2003). These radically
different approaches also allow competing with the best ε-quantile, as shown by Chernov
and Vovk (2010) and Hutter and Poland (2005); the latter also consider nonuniform weights
on the experts.

The “safe MDL” and “safe Bayesian” algorithms by Grünwald (2011, 2012) share the
present work’s focus on the mixability gap as a crucial part of the analysis, but are concerned
with the stochastic setting where losses are not adversarial but i.i.d. FlipFlop, safe MDL
and safe Bayes can all be interpreted as methods that attempt to choose a learning rate η
that keeps the mixability gap small (or, equivalently, that keeps the Bayesian posterior or
Hedge weights “concentrated”).

1.3 Outline

In the next section we present and analyse AdaHedge and compare its worst-case regret
bound to existing results, in particular the bound for CBMS. Then, in Section 3, we
build on AdaHedge to develop the FlipFlop strategy. The analysis closely parallels that of
AdaHedge, but with extra complications at each of the steps. In Section 4 we show that
both algorithms have the property that their behaviour does not change under translation
and scaling of the losses. We further illustrate the relationship between the learning rate
and the regret, and compare AdaHedge and FlipFlop to existing methods, in experiments
with artificial data in Section 5. Finally, Section 6 contains a discussion, with ambitious
suggestions for future work.

2. AdaHedge

In this section, we present and analyse the AdaHedge strategy. To introduce our notation
and proof strategy, we start with the simplest possible analysis of vanilla Hedge, and then
move on to refine it for AdaHedge.

2.1 Basic Hedge Analysis for Constant Learning Rate

Following Freund and Schapire (1997), we define the Hedge or exponential weights strategy
as the choice of weights

wt,k = w1,ke
−ηLt−1,k

Zt
, (3)

where w1 = (1/K, . . . , 1/K) is the uniform distribution, Zt = w1 · e−ηLt−1 is a normalizing
constant, and η ∈ (0,∞) is a parameter of the algorithm called the learning rate. If η = 1
and one imagines Lt−1,k to be the negative log-likelihood of a sequence of observations, then
wt,k is the Bayesian posterior probability of expert k and Zt is the marginal likelihood of
the observations. Like in Bayesian inference, the weights are updated multiplicatively, i.e.
wt+1,k ∝ wt,ke−η`t,k .

The loss incurred by Hedge in round t is ht = wt · `t, the cumulative Hedge loss is
Ht = h1 + . . . + ht, and our goal is to obtain a good bound on HT . To this end, it turns

1285

De Rooij, Van Erven, Grünwald and Koolen

out to be technically convenient to approximate ht by the mix loss

mt = −1
η

ln(wt · e−η`t), (4)

which accumulates to Mt = m1 + . . . + mt. This approximation is a standard tool in the
literature. For example, the mix loss mt corresponds to the loss of Vovk’s (1998; 2001)
Aggregating Pseudo Algorithm, and tracking the evolution of −mt is a crucial ingredient
in the proof of Theorem 2.2 of Cesa-Bianchi and Lugosi (2006).

The definitions may be extended to η = ∞ by letting η tend to ∞. We then find that
wt becomes a uniform distribution on the set of experts {k | Lt−1,k = L∗t−1} that have
incurred smallest cumulative loss before time t. That is, Hedge with η = ∞ reduces to
Follow-the-Leader, where in case of ties the weights are distributed uniformly. The limiting
value for the mix loss is mt = L∗t − L∗t−1.

In our approximation of the Hedge loss ht by the mix loss mt, we call the approximation
error δt = ht − mt the mixability gap. Bounding this quantity is a standard part of the
analysis of Hedge-type algorithms (see, for example, Lemma 4 of Cesa-Bianchi et al. 2007)
and it also appears to be a fundamental notion in sequential prediction even when only
so-called mixable losses are considered (Grünwald, 2011, 2012); see also Section 6.2. We let
∆t = δ1 + . . .+ δt denote the cumulative mixability gap, so that the regret for Hedge may
be decomposed as

R = H − L∗ = M − L∗ + ∆. (5)

Here M − L∗ may be thought of as the regret under the mix loss and ∆ is the cumulative
approximation error when approximating the Hedge loss by the mix loss. Throughout the
paper, our proof strategy will be to analyse these two contributions to the regret, M − L∗
and ∆, separately.

The following lemma, which is proved in Appendix A, collects a few basic properties of
the mix loss:

Lemma 1 (Mix Loss with Constant Learning Rate) For any learning rate η ∈ (0,∞]

1. `−t ≤ mt ≤ ht ≤ `+
t , so that 0 ≤ δt ≤ st.

2. Cumulative mix loss telescopes: M =

−
1
η ln

(
w1 · e−ηL

)
for η <∞,

L∗ for η =∞.

3. Cumulative mix loss approximates the loss of the best expert: L∗ ≤M ≤ L∗ + lnK
η

.

4. The cumulative mix loss M is nonincreasing in η.

In order to obtain a bound for Hedge, one can use the following well-known bound on
the mixability gap, which is obtained using Hoeffding’s bound on the cumulant generating
function (Cesa-Bianchi and Lugosi, 2006, Lemma A.1):

δt ≤
η

8s
2
t , (6)

1286

Follow the Leader If You Can, Hedge If You Must

from which ∆ ≤ S2Tη/8, where (as in the introduction) St = max{s1, . . . , st} is the max-
imum loss range in the first t rounds. Together with the bound M − L∗ ≤ ln(K)/η from
mix loss property #3 this leads to

R = (M − L∗) + ∆ ≤ lnK
η

+ ηS2T

8 . (7)

The bound is optimized for η =
√

8 ln(K)/(S2T), which equalizes the two terms. This leads
to a bound on the regret of S

√
T ln(K)/2, matching the lower bound on worst-case regret

from the textbook by Cesa-Bianchi and Lugosi (2006, Section 3.7). We can use this tuned
learning rate if the time horizon T is known in advance. To deal with the situation where T
is unknown, either the doubling trick or a time-varying learning rate (see Lemma 2 below)
can be used, at the cost of a worse constant factor in the leading term of the regret bound.

In the remainder of this section, we introduce a completely parameterless algorithm
called AdaHedge. We then refine the steps of the analysis above to obtain a better regret
bound.

2.2 AdaHedge Analysis

In the previous section, we split the regret for Hedge into two parts: M − L∗ and ∆,
and we obtained a bound for both. The learning rate η was then tuned to equalise these
two bounds. The main distinction between AdaHedge and other Hedge approaches is that
AdaHedge does not consider an upper bound on ∆ in order to obtain this balance: instead
it aims to equalize ∆ and ln(K)/η. As the cumulative mixability gap ∆t is nondecreasing in
t (by mix loss property #1) and can be observed on-line, it is possible to adapt the learning
rate directly based on ∆t.

Perhaps the easiest way to achieve this is by using the doubling trick: each subsequent
block uses half the learning rate of the previous block, and a new block is started as soon
as the observed cumulative mixability gap ∆t exceeds the bound on the mix loss ln(K)/η,
which ensures these two quantities are equal at the end of each block. This is the approach
taken in an earlier version of AdaHedge (Van Erven et al., 2011). However, we can achieve
the same goal much more elegantly, by decreasing the learning rate with time according to

ηaht = lnK
∆ah
t−1

(8)

(where ∆ah
0 = 0, so that ηah1 =∞). Note that the AdaHedge learning rate does not involve

the end time T or any other unobserved properties of the data; all subsequent analysis is
therefore valid for all T simultaneously. The definitions (3) and (4) of the weights and the
mix loss are modified to use this new learning rate:

wah
t,k =

wah
1,ke
−ηaht Lt−1,k

wah
1 · e−ηaht Lt−1

and mah
t = − 1

ηaht
ln(wah

t · e−ηaht `t), (9)

with wah
1 = (1/K, . . . , 1/K) uniform. Note that the multiplicative update rule for the

weights no longer applies when the learning rate varies with t; the last three results of
Lemma 1 are also no longer valid. Later we will also consider other algorithms to determine

1287

De Rooij, Van Erven, Grünwald and Koolen

Single round quantities for trial t:
`t Loss vector
`−t = mink `t,k, `+

t = maxk `t,k Min and max loss
st = `+

t − `−t Loss range
walg
t = e−η

alg
t ·Lt−1/

∑
k e
−ηalgt Lt−1,k Weights played

halgt = walg
t · `t Hedge loss

malg
t = − 1

ηalgt

ln
(
walg
t · e−η

alg
t `t

)
Mix loss

δalgt = halgt −m
alg
t Mixability gap

valgt = Var
k∼walg

t
[`t,k] Loss variance

Aggregate quantities after t rounds:
(The final time T is omitted from the subscript where possible, e.g. L∗ = L∗T)
Lt, L−t , L+

t , H
alg
t , Malg

t , ∆alg
t , V alg

t

∑t
τ=1 of `τ , `−τ , `+

τ , halgτ , malg
τ , δalgτ , valgτ

St = max{s1, . . . , st} Maximum loss range
L∗t = mink Lt,k Cumulative loss of the best expert
Ralg
t = Halg

t − L∗t Regret

Algorithms (the “alg” in the superscript above):
(η) Hedge with fixed learning rate η
ah AdaHedge, defined by (8)
ftl Follow-the-Leader (ηftl =∞)
ff FlipFlop, defined by (16)

Table 1: Notation

variable learning rates; to avoid confusion the considered algorithm is always specified in
the superscript in our notation. See Table 1 for reference. From now on, AdaHedge will
be defined as the Hedge algorithm with learning rate defined by (8). For concreteness, a
matlab implementation appears in Figure 1.

Our learning rate is similar to that of Cesa-Bianchi et al. (2007), but it is less pessimistic
as it is based on the mixability gap ∆t itself rather than its bound, and as such may
exploit easy sequences of losses more aggressively. Moreover our tuning of the learning rate
simplifies the analysis, leading to tighter results; the essential new technical ingredients
appear as Lemmas 3, 5 and 7 below.

We analyse the regret for AdaHedge like we did for a fixed learning rate in the previous
section: we again considerMah−L∗ and ∆ah separately. This time, both legs of the analysis
become slightly more involved. Luckily, a good bound can still be obtained with only a small
amount of work. First we show that the mix loss is bounded by the mix loss we would have
incurred if we would have used the final learning rate ηahT all along:

Lemma 2 Let dec be any strategy for choosing the learning rate such that η1 ≥ η2 ≥ . . .
Then the cumulative mix loss for dec does not exceed the cumulative mix loss for the strategy
that uses the last learning rate ηT from the start: Mdec ≤M (ηT).

1288

Follow the Leader If You Can, Hedge If You Must

% Returns the losses of AdaHedge.
% l(t,k) is the loss of expert k at time t
function h = adahedge(l)

[T, K] = size(l);
h = nan(T,1);
L = zeros(1,K);
Delta = 0;

for t = 1:T
eta = log(K)/Delta;
[w, Mprev] = mix(eta, L);
h(t) = w * l(t,:)’;
L = L + l(t,:);
[~, M] = mix(eta, L);
delta = max(0, h(t)-(M-Mprev));
% max clips numeric Jensen violation
Delta = Delta + delta;

end
end

% Returns the posterior weights and mix loss
% for learning rate eta and cumulative loss
% vector L, avoiding numerical instability.
function [w, M] = mix(eta, L)

mn = min(L);
if (eta == Inf) % Limit behaviour: FTL

w = L==mn;
else

w = exp(-eta .* (L-mn));
end
s = sum(w);
w = w / s;
M = mn - log(s/length(L))/eta;

end

Figure 1: Numerically robust matlab implementation of AdaHedge

This lemma was first proved in its current form by Kalnishkan and Vyugin (2005,
Lemma 3), and an essentially equivalent bound was introduced by Györfi and Ottucsák
(2007) in the proof of their Lemma 1. Related techniques for dealing with time-varying
learning rates go back to Auer et al. (2002).
Proof Using mix loss property #4, we have

Mdec
T =

T∑
t=1

mdec
t =

T∑
t=1

(
M

(ηt)
t −M (ηt)

t−1

)
≤

T∑
t=1

(
M

(ηt)
t −M (ηt−1)

t−1

)
= M

(ηT)
T ,

which was to be shown.

We can now show that the two contributions to the regret are still balanced.

Lemma 3 The AdaHedge regret is Rah = Mah − L∗ + ∆ah ≤ 2∆ah.

Proof As δaht ≥ 0 for all t (by mix loss property #1), the cumulative mixability gap
∆ah
t is nondecreasing. Consequently, the AdaHedge learning rate ηaht as defined in (8) is

nonincreasing in t. Thus Lemma 2 applies to Mah; together with mix loss property #3
and (8) this yields

Mah ≤M (ηahT) ≤ L∗ + lnK
ηahT

= L∗ + ∆ah
T−1 ≤ L∗ + ∆ah

T .

Substitution into the trivial decomposition Rah = Mah − L∗ + ∆ah yields the result.

The remaining task is to establish a bound on ∆ah. As before, we start with a bound on
the mixability gap in a single round, but rather than (6), we use Bernstein’s bound on the
mixability gap in a single round to obtain a result that is expressed in terms of the variance
of the losses, vaht = Vark∼wah

t
[`t,k] =

∑
k w

ah
t,k(`t,k − haht)2.

1289

De Rooij, Van Erven, Grünwald and Koolen

Lemma 4 (Bernstein’s Bound) Let ηt = ηalgt ∈ (0,∞) denote the finite learning rate
chosen for round t by any algorithm “alg”. The mixability gap δalgt satisfies

δalgt ≤
g(stηt)
st

valgt , where g(x) = ex − x− 1
x

. (10)

Further, valgt ≤ (`+
t − h

alg
t)(halgt − `−t) ≤ s2

t /4.

Proof This is Bernstein’s bound (Cesa-Bianchi and Lugosi, 2006, Lemma A.5) on the
cumulant generating function, applied to the random variable (`t,k − `−t)/st ∈ [0, 1] with k
distributed according to walg

t .

Bernstein’s bound is more sophisticated than Hoeffding’s bound (6), because it expresses
that the mixability gap δt is small not only when ηt is small, but also when all experts have
approximately the same loss, or when the weights wt are concentrated on a single expert.

The next step is to use Bernstein’s inequality to obtain a bound on the cumulative
mixability gap ∆ah. In the analysis of Cesa-Bianchi et al. (2007) this is achieved by first
applying Bernstein’s bound for each individual round, and then using a telescoping argument
to obtain a bound on the sum. With our learning rate (8) it is convenient to reverse these
steps: we first telescope, which can now be done with equality, and subsequently apply
Bernstein’s inequality in a stricter way.

Lemma 5 AdaHedge’s cumulative mixability gap satisfies(
∆ah)2≤ V ah lnK + (2

3 lnK + 1)S∆ah.

Proof In this proof we will omit the superscript “ah”. Using the definition of the learning
rate (8) and δt ≤ st (from mix loss property #1), we get

∆2 =
T∑
t=1

(
∆2
t −∆2

t−1

)
=
∑
t

(
(∆t−1 + δt)2 −∆2

t−1

)
=
∑
t

(
2δt∆t−1 + δ2

t

)
=
∑
t

(
2δt

lnK
ηt

+ δ2
t

)
≤
∑
t

(
2δt

lnK
ηt

+ stδt

)
≤ 2 lnK

∑
t

δt
ηt

+ S∆.
(11)

The inequalities in this equation replace a δt term by S, which is of no concern: the resulting
term S∆ adds at most 2S to the regret bound. We will now show

δt
ηt
≤ 1

2vt + 1
3stδt. (12)

This supersedes the bound δt/ηt ≤ (e − 2)vt for ηtst ≤ 1 used by Cesa-Bianchi et al.
(2007). Even though at first sight circular, the form (12) has two major advantages. First,
inclusion of the overhead 1

3stδt will only affect smaller order terms of the regret, but admits
a reduction of the leading constant to the optimal factor 1

2 . This gain directly percolates
to our regret bounds below. Second, (12) holds for unbounded ηt, which simplifies tuning
considerably.

1290

Follow the Leader If You Can, Hedge If You Must

First note that (12) is clearly valid if ηt =∞. Assuming that ηt is finite, we can obtain
this result by rewriting Bernstein’s bound (10) as follows:

1
2vt ≥ δt ·

st
2g(stηt)

= δt
ηt
− stf(stηt)δt, where f(x) =

ex − 1
2x

2 − x− 1
xex − x2 − x

.

Remains to show that f(x) ≤ 1/3 for all x ≥ 0. After rearranging, we find this to be the
case if

(3− x)ex ≤ 1
2x

2 + 2x+ 3.

Taylor expansion of the left-hand side around zero reveals that (3 − x)ex = 1
2x

2 + 2x +
3 − 1

6x
3ueu for some 0 ≤ u ≤ x, from which the result follows. The proof is completed by

plugging (12) into (11) and finally relaxing st ≤ S.

Combination of these results yields the following natural regret bound, analogous to
Theorem 5 of Cesa-Bianchi et al. (2007).

Theorem 6 AdaHedge’s regret is bounded by

Rah ≤ 2
√
V ah lnK + S(4

3 lnK + 2).

Proof Lemma 5 is of the form

(∆ah)2 ≤ a+ b∆ah, (13)

with a and b nonnegative numbers. Solving for ∆ah then gives

∆ah ≤ 1
2b+ 1

2

√
b2 + 4a ≤ 1

2b+ 1
2(
√
b2 +

√
4a) =

√
a+ b,

which by Lemma 3 implies that
Rah ≤ 2

√
a+ 2b.

Plugging in the values a = V ah lnK and b = S(2
3 lnK + 1) from Lemma 5 completes the

proof.

This first regret bound for AdaHedge is difficult to interpret, because the cumulative loss
variance V ah depends on the actions of the AdaHedge strategy itself (through the weights
wah
t). Below, we will derive a regret bound for AdaHedge that depends only on the data.

However, AdaHedge has one important property that is captured by this first result that
is no longer expressed by the worst-case bound we will derive below. Namely, if the data
are easy in the sense that there is a clear best expert, say k∗, then the weights played
by AdaHedge will concentrate on that expert. If wah

t,k∗ → 1 as t increases, then the loss
variance must decrease: vaht → 0. Thus, Theorem 6 suggests that the AdaHedge regret may
be bounded if the weights concentrate on the best expert sufficiently quickly. This indeed
turns out to be the case: we can prove that the regret is bounded for the stochastic setting
where the loss vectors `t are independent, and E[Lt,k∗ − Lt,k] = Ω(tβ) for all k 6= k∗ and
any β > 1/2. This is an important feature of AdaHedge when it is used as a stand-alone
algorithm, and Van Erven et al. (2011) provide a proof for the previous version of the

1291

De Rooij, Van Erven, Grünwald and Koolen

strategy. See Section 5.4 for an example of concentration of the AdaHedge weights. Here
we will not pursue this further, because the Follow-the-Leader strategy also incurs bounded
loss in that case; we rather focus attention on how to successfully compete with FTL in
Section 3.

We now proceed to derive a bound that depends only on the data, using an approach
similar to the one taken by Cesa-Bianchi et al. (2007). We first bound the cumulative loss
variance as follows:

Lemma 7 Assume L∗ ≤ H. The cumulative loss variance for AdaHedge satisfies

V ah ≤ S (L+ − L∗)(L∗ − L−)
L+ − L−

+ 2S∆.

In the degenerate case L− = L+ the fraction reads 0/0, but since we then have V ah = 0,
from here on we define the ratio to be zero in that case, which is also its limiting value.
Proof We omit all “ah” superscripts. By Lemma 4 we have vt ≤ (`+

t − ht)(ht − `−t). Now

V =
T∑
t=1

vt ≤
∑
t

(`+
t − ht)(ht − `−t) ≤ S

∑
t

(`+
t − ht)(ht − `−t)

st

= ST
∑
t

1
T

(`+
t − ht)(ht − `−t)

(`+
t − ht) + (ht − `−t) ≤ S

(L+ −H)(H − L−)
L+ − L−

, (14)

where the last inequality is an instance of Jensen’s inequality applied to the function B
defined on the domain x, y ≥ 0 by B(x, y) = xy

x+y for xy > 0 and B(x, y) = 0 for xy = 0
to ensure continuity. To verify that B is jointly concave, we will show that the Hessian is
negative semi-definite on the interior xy > 0. Concavity on the whole domain then follows
from continuity. The Hessian, which turns out to be the rank one matrix

∇2B(x, y) = − 2
(x+ y)3

(
y
−x

)(
y
−x

)ᵀ

,

is negative semi-definite since it is a negative scaling of a positive outer product.
Subsequently using H ≥ L∗ (by assumption) and H ≤ L∗ + 2∆ (by Lemma 3) yields

(L+ −H)(H − L−)
L+ − L−

≤ (L+ − L∗)(L∗ + 2∆− L−)
L+ − L−

≤ (L+ − L∗)(L∗ − L−)
L+ − L−

+ 2∆

as desired.

This can be combined with Lemmas 5 and 3 to obtain our first main result:

Theorem 8 (AdaHedge Worst-Case Regret Bound) AdaHedge’s regret is bounded by

Rah ≤ 2

√
S

(L+ − L∗)(L∗ − L−)
L+ − L−

lnK + S(16
3 lnK + 2). (15)

1292

Follow the Leader If You Can, Hedge If You Must

Proof If Hah < L∗, then Rah < 0 and the result is clearly valid. But if Hah ≥ L∗, we
can bound V ah using Lemma 7 and plug the result into Lemma 5 to get an inequality of
the form (13) with a = S(L+ − L∗)(L∗ − L−)/(L+ − L−) and b = S(8

3 lnK + 1). Following
the steps of the proof of Theorem 6 with these modified values for a and b we arrive at the
desired result.

This bound has several useful properties:

1. It is always smaller than the CBMS bound (1), with a leading constant that has been
reduced from the previously best-known value of 2.63 to 2. To see this, note that (15)
increases to (1) if we replace L+ by the upper bound L−+ST . It can be substantially
stronger than (1) if the range of the losses st is highly variable.

2. The bound is “fundamental”, a concept discussed in detail by Cesa-Bianchi et al.
(2007): it is invariant to translations of the losses and proportional to their scale. It is
therefore valid for arbitrary loss ranges, regardless of sign. In fact, not just the bound,
but AdaHedge itself is fundamental in this sense: see Section 4 for a discussion and
proof.

3. The regret is small when the best expert either has a very low loss, or a very high loss.
The latter is important if the algorithm is to be used for a scenario in which we are
provided with a sequence of gain vectors gt rather than losses: we can transform these
gains into losses using `t = −gt, and then run AdaHedge. The bound then implies
that we incur small regret if the best expert has very small cumulative gain relative
to the minimum gain.

4. The bound is not dependent on the number of trials but only on the losses; it is a
“timeless” bound as discussed below.

2.3 What are Timeless Bounds?

All bounds presented for AdaHedge (and FlipFlop) are “timeless”. We call a regret bound
timeless if it does not change under insertion of additional trials where all experts are
assigned the same loss. Intuitively, the prediction task does not become more difficult if
nature should insert same-loss trials. Since these trials do nothing to differentiate between
the experts, they can safely be ignored by the learner without affecting her regret; in fact,
many Hedge strategies, including Hedge with a fixed learning rate, FTL, AdaHedge and
CBMS already have the property that their future behaviour does not change under such
insertions: they are robust against such time dilation. If any strategy does not have this
property by itself, it can easily be modified to ignore equal-loss trials.

It is easy to imagine practical scenarios where this robustness property would be im-
portant. For example, suppose you hire a number of experts who continually monitor the
assets in your portfolio. Usually they do not recommend any changes, but occasionally,
when they see a rare opportunity or receive subtle warning signs, they may urge you to
trade, resulting in a potentially very large gain or loss. It seems only beneficial to poll
the experts often, and there is no reason why the many resulting equal-loss trials should
complicate the learning task.

1293

De Rooij, Van Erven, Grünwald and Koolen

The oldest bounds for Hedge scale with
√
T or

√
L∗, and are thus not timeless. From

the results above we can obtain fundamental and timeless variants with, for parameterless
algorithms, the best known leading constants (the first item below follows Corollary 1 of
Cesa-Bianchi et al. 2007):

Corollary 9 The AdaHedge regret satisfies the following inequalities:

Rah ≤
√∑T

t=1 s
2
t lnK + S(4

3 lnK + 2) (analogue of traditional T -based bounds),

Rah ≤ 2
√
S(L∗ − L−) lnK + S(16

3 lnK + 2) (analogue of traditional L∗-based bounds),

Rah ≤ 2
√
S(L+ − L∗) lnK + S(16

3 lnK + 2) (symmetric bound, useful for gains).

Proof We could get a bound that depends only on the loss ranges st by substituting the
worst case L∗ = (L+ + L−)/2 into Theorem 8, but a sharper result is obtained by plugging
the inequality vt ≤ s2

t /4 from Lemma 4 directly into Theorem 6. This yields the first item
above. The other two inequalities follow easily from Theorem 8.

In the next section, we show how we can compete with FTL while at the same time
maintaining all these worst-case guarantees up to a constant factor.

3. FlipFlop

AdaHedge balances the cumulative mixability gap ∆ah and the mix loss regret Mah − L∗
by reducing ηaht as necessary. But, as we observed previously, if the data are not hopelessly
adversarial we might not need to worry about the mixability gap: as Lemma 4 expresses,
δaht is also small if the variance vaht of the loss under the weights wah

t,k is small, which is the
case if the weight on the best expert maxk wah

t,k becomes close to one.
AdaHedge is able to exploit such a lucky scenario to an extent: as explained in the

discussion that follows Theorem 6, if the weight of the best expert goes to one quickly,
AdaHedge will have a small cumulative mixability gap, and therefore, by Lemma 3, a small
regret. This happens, for example, in the stochastic setting with independent, identically
distributed losses, when a single expert has the smallest expected loss. Similarly, in the
experiment of Section 5.4, the AdaHedge weights concentrate sufficiently quickly for the
regret to be bounded.

There is the potential for a nasty feedback loop, however. Suppose there are a small
number of difficult early trials, during which the cumulative mixability gap increases rela-
tively quickly. AdaHedge responds by reducing the learning rate (8), with the effect that
the weights on the experts become more uniform. As a consequence, the mixability gap in
future trials may be larger than what it would have been if the learning rate had stayed
high, leading to further unnecessary reductions of the learning rate, and so on. The end
result may be that AdaHedge behaves as if the data are difficult and incurs substantial
regret, even in cases where the regret of Hedge with a fixed high learning rate, or of Follow-
the-Leader, is bounded! Precisely this phenomenon occurs in the experiment in Section 5.2
below: AdaHedge’s regret is close to the worst-case bound, whereas FTL hardly incurs any
regret at all.

1294

Follow the Leader If You Can, Hedge If You Must

It appears, then, that we must either hope that the data are easy enough that we can
make the weights concentrate quickly on a single expert, by not reducing the learning rate
at all; or we fear the worst and reduce the learning rate as much as we need to be able
to provide good guarantees. We cannot really interpolate between these two extremes: an
intermediate learning rate may not yield small regret in favourable cases and may at the
same time destroy any performance guarantees in the worst case.

It is unclear a priori whether we can get away with keeping the learning rate high, or that
it is wiser to play it safe using AdaHedge. The most extreme case of keeping the learning
rate high, is the limit as η tends to ∞, for which Hedge reduces to Follow-the-Leader. In
this section we work out a strategy that combines the advantages of FTL and AdaHedge:
it retains AdaHedge’s worst-case guarantees up to a constant factor, but its regret is also
bounded by a constant times the regret of FTL (Theorem 15). Perhaps surprisingly, this
is not easy to achieve. To see why, imagine a scenario where the average loss of the best
expert is substantial, whereas the regret of either Follow-the-Leader or AdaHedge, is small.
Since our combination has to guarantee a similarly small regret, it has only a very limited
margin for error. We cannot, for example, simply combine the two algorithms by recursively
plugging them into Hedge with a fixed learning rate, or into AdaHedge: the performance
guarantees we have for those methods of combination are too weak. Even if both FTL and
AdaHedge yield small regret on the original problem, choosing the actions of FTL for some
rounds and those of AdaHedge for the other rounds may fail if we do it naively, because the
regret is not necessarily increasing, and we may end up picking each algorithm precisely in
those rounds where the other one is better.

Luckily, alternating between the optimistic FTL strategy and the worst-case-proof Ada-
Hedge does turn out to be possible if we do it in a careful way. In this section we explain
the appropriate strategy, called FlipFlop (superscript: “ff”), and show that it combines the
desirable properties of both FTL and AdaHedge.

3.1 Exploiting Easy Data by Following the Leader

We first investigate the potential benefits of FTL over AdaHedge. Lemma 10 below identifies
the circumstances under which FTL will perform well, which is when the number of leader
changes is small. It also shows that the regret for FTL is equal to its cumulative mixability
gap when FTL is interpreted as a Hedge strategy with infinite learning rate.

Lemma 10 Let ct be an indicator for a leader change at time t: define ct = 1 if there
exists an expert k such that Lt−1,k = L∗t−1 while Lt,k 6= L∗t , and ct = 0 otherwise. Let
Ct = c1 + . . .+ct be the cumulative number of leader changes. Then the FTL regret satisfies

Rftl = ∆(∞) ≤ S C.

Proof We have M (∞) = L∗ by mix loss property #3, and consequently Rftl = ∆(∞) +
M (∞) − L∗ = ∆(∞).

To bound ∆(∞), notice that, for any t such that ct = 0, all leaders remained leaders and
incurred identical loss. It follows that m(∞)

t = L∗t − L∗t−1 = h
(∞)
t and hence δ(∞)

t = 0. By

1295

De Rooij, Van Erven, Grünwald and Koolen

bounding δ(∞)
t ≤ S for all other t we obtain

∆(∞) =
T∑
t=1

δ
(∞)
t =

∑
t : ct=1

δ
(∞)
t ≤

∑
t : ct=1

S = S C,

as required.

We see that the regret for FTL is bounded by the number of leader changes. This
quantity is both fundamental and timeless. It is a natural measure of the difficulty of the
problem, because it remains small whenever a single expert makes the best predictions on
average, even in the scenario described above, in which AdaHedge gets caught in a feedback
loop. One example where FTL outperforms AdaHedge is when the losses for two experts are
(1, 0) on the first round, and keep alternating according to (1, 0), (0, 1), (1, 0), . . . for the
remainder of the rounds. Then the FTL regret is only 1/2, whereas AdaHedge’s performance
is close to the worst-case bound (because its weights wah

t converge to (1/2, 1/2), for which
the bound (6) on the mixability gap is tight). This scenario is illustrated further in the
experiments, Section 5.2.

3.2 FlipFlop

FlipFlop is a Hedge strategy in the sense that it uses exponential weights defined by (9),
but the learning rate ηfft now alternates between infinity, such that the algorithm behaves
like FTL, and the AdaHedge value, which decreases as a function of the mixability gap
accumulated over the rounds where AdaHedge is used. In Definition 11 below, we will
specify the “flip” regime Rt, which is the subset of times {1, . . . , t} where we follow the
leader by using an infinite learning rate, and the “flop” regime Rt = {1, . . . , t} \ Rt, which
is the set of times where the learning rate is determined by AdaHedge (mnemonic: the
position of the bar refers to the value of the learning rate). We accumulate the mixability
gap, the mix loss and the variance for these two regimes separately:

∆t =
∑
τ∈Rt

δffτ ; M t =
∑
τ∈Rt

mff
τ ; (flip)

∆t =
∑
τ∈Rt

δffτ ; M t =
∑
τ∈Rt

mff
τ ; V t =

∑
τ∈Rt

vffτ . (flop)

We also change the learning rate from its definition for AdaHedge in (8) to the following,
which differentiates between the two regimes of the strategy:

ηfft =
{
ηflipt if t ∈ Rt,
ηflopt if t ∈ Rt,

where ηflipt = ηftlt =∞ and ηflopt = lnK
∆t−1

. (16)

Like for AdaHedge, ηflopt = ∞ as long as ∆t−1 = 0, which now happens for all t such that
Rt−1 = ∅. Note that while the learning rates are defined separately for the two regimes,
the exponential weights (9) of the experts are still always determined using the cumulative
losses Lt,k over all rounds. We also point out that, for rounds t ∈ R, the learning rate
ηfft = ηflopt is not equal to ηaht , because it uses ∆t−1 instead of ∆ah

t−1. For this reason, the

1296

Follow the Leader If You Can, Hedge If You Must

% Returns the losses of FlipFlop
% l(t,k) is the loss of expert k at time t; phi > 1 and alpha > 0 are parameters
function h = flipflop(l, alpha, phi)

[T, K] = size(l);
h = nan(T,1);
L = zeros(1,K);
Delta = [0 0];
scale = [phi/alpha alpha];
regime = 1; % 1=FTL, 2=AH

for t = 1:T
if regime==1, eta = Inf; else eta = log(K)/Delta(2); end
[w, Mprev] = mix(eta, L);
h(t) = w * l(t,:)’;
L = L + l(t,:);
[~, M] = mix(eta, L);
delta = max(0, h(t)-(M-Mprev));
Delta(regime) = Delta(regime) + delta;
if Delta(regime) > scale(regime) * Delta(3-regime)

regime = 3-regime;
end

end
end

Figure 2: FlipFlop, with new ingredients in boldface

FlipFlop regret may be either better or worse than the AdaHedge regret; our results below
only preserve the regret bound up to a constant factor. In contrast, we do compete with
the actual regret of FTL.

It remains to define the “flip” regime Rt and the “flop” regime Rt, which we will do by
specifying the times at which to switch from one to the other. FlipFlop starts optimistically,
with an epoch of the “flip” regime, which means it follows the leader, until ∆t becomes too
large compared to ∆t. At that point it switches to an epoch of the “flop” regime, and keeps
using ηflopt until ∆t becomes too large compared to ∆t. Then the process repeats with the
next epochs of the “flip” and “flop” regimes. The regimes are determined as follows:

Definition 11 (FlipFlop’s Regimes) Let ϕ > 1 and α > 0 be parameters of the algo-
rithm (tuned below in Corollary 16). Then

• FlipFlop starts in the “flip” regime.

• If t is the earliest time since the start of a “flip” epoch where ∆t > (ϕ/α)∆t, then the
transition to the subsequent “flop” epoch occurs between rounds t and t + 1. (Recall
that during “flip” epochs ∆t increases in t whereas ∆t is constant.)

• Vice versa, if t is the earliest time since the start of a “flop” epoch where ∆t > α∆t,
then the transition to the subsequent “flip” epoch occurs between rounds t and t+ 1.

This completes the definition of the FlipFlop strategy. See Figure 2 for a matlab imple-
mentation.

The analysis proceeds much like the analysis for AdaHedge. We first show that, analo-
gously to Lemma 3, the FlipFlop regret can be bounded in terms of the cumulative mixa-
bility gap; in fact, we can use the smallest cumulative mixability gap that we encountered

1297

De Rooij, Van Erven, Grünwald and Koolen

in either of the two regimes, at the cost of slightly increased constant factors. This is the
fundamental building block in our FlipFlop analysis. We then proceed to develop analogues
of Lemmas 5 and 7, whose proofs do not have to be changed much to apply to FlipFlop.
Finally, all these results are combined to bound the regret of FlipFlop in Theorem 15, which,
after Theorem 8, is the second main result of this paper.

Lemma 12 (FlipFlop version of Lemma 3) The following two bounds hold simultane-
ously for the regret of the FlipFlop strategy with parameters ϕ > 1 and α > 0:

Rff ≤
(

ϕα

ϕ− 1 + 2α+ 1
)

∆ + S

(
ϕ

ϕ− 1 + 2
)

; (17)

Rff ≤
(

ϕ

ϕ− 1 + ϕ

α
+ 2

)
∆ + S. (18)

Proof The regret can be decomposed as

Rff = Hff − L∗ = ∆ + ∆ +M +M − L∗. (19)

Our first step will be to bound the mix loss M + M in terms of the mix loss Mflop of the
auxiliary strategy that uses ηflopt for all t. As ηflopt is nonincreasing, we can then apply
Lemma 2 and mix loss property #3 to further bound

Mflop ≤M (ηflopT) ≤ L∗ + lnK
ηflop

= L∗ + ∆T−1 ≤ L∗ + ∆. (20)

Let 0 = u1 < u2 < . . . < ub < T denote the times just before the epochs of the “flip”
regime begin, i.e. round ui + 1 is the first round in the i-th “flip” epoch. Similarly let
0 < v1 < . . . < vb ≤ T denote the times just before the epochs of the “flop” regime begin,
where we artificially define vb = T if the algorithm is in the “flip” regime after T rounds.
These definitions ensure that we always have ub < vb ≤ T . For the mix loss in the “flop”
regime we have

M = (Mflop
u2 −M

flop
v1) + (Mflop

u3 −M
flop
v2) + . . .+ (Mflop

ub
−Mflop

vb−1) + (Mflop −Mflop
vb

). (21)

Let us temporarily write ηt = ηflopt to avoid double superscripts. For the “flip” regime, the
properties in Lemma 1, together with the observation that ηflopt does not change during the
“flip” regime, give

M =
b∑
i=1

(
M (∞)
vi
−M (∞)

ui

)
=

b∑
i=1

(
M (∞)
vi
− L∗ui

)
≤

b∑
i=1

(
M

(ηvi)
vi − L∗ui

)

≤
b∑
i=1

(
M

(ηvi)
vi −M (ηvi)

ui + lnK
ηvi

)
=

b∑
i=1

(
Mflop
vi
−Mflop

ui
+ lnK
ηui+1

)

=
(
Mflop
v1 −M

flop
u1

)
+
(
Mflop
v2 −M

flop
u2

)
+ . . .+

(
Mflop
vb
−Mflop

ub

)
+

b∑
i=1

∆ui
. (22)

From the definition of the regime changes (Definition 11), we know the value of ∆ui
very

accurately at the time ui of a change from a “flop” to a “flip” regime:

∆ui
> α∆ui = α∆vi−1 > ϕ∆vi−1 = ϕ∆ui−1 .

1298

Follow the Leader If You Can, Hedge If You Must

By unrolling from low to high i, we see that

b∑
i=1

∆ui
≤

b∑
i=1

ϕ1−i∆ub
≤
∞∑
i=1

ϕ1−i∆ub
= ϕ

ϕ− 1∆ub
.

Adding up (21) and (22), we therefore find that the total mix loss is bounded by

M +M ≤Mflop +
b∑
i=1

∆ui
≤Mflop + ϕ

ϕ− 1∆ub
≤ L∗ +

(
ϕ

ϕ− 1 + 1
)

∆,

where the last inequality uses (20). Combination with (19) yields

Rff ≤
(

ϕ

ϕ− 1 + 2
)

∆ + ∆. (23)

Our next goal is to relate ∆ and ∆: by construction of the regimes, they are always
within a constant factor of each other. First, suppose that after T trials we are in the bth
epoch of the “flip” regime, that is, we will behave like FTL in round T + 1. In this state,
we know from Definition 11 that ∆ is stuck at the value ∆ub

that prompted the start of the
current epoch. As the regime change happened after ub, we have ∆ub

− S ≤ α∆ub
, so that

∆ − S ≤ α∆. At the same time, we know that ∆ is not large enough to trigger the next
regime change. From this we can deduce the following bounds:

1
α

(∆− S) ≤ ∆ ≤ ϕ

α
∆.

On the other hand, if after T rounds we are in the bth epoch of the “flop” regime, then a
similar reasoning yields

α

ϕ
(∆− S) ≤ ∆ ≤ α∆.

In both cases, it follows that

∆ < α∆ + S;

∆ <
ϕ

α
∆ + S.

The two bounds of the lemma are obtained by plugging first one, then the other of these
bounds into (23).

The “flop” cumulative mixability gap ∆ is related, as before, to the variance of the losses.

Lemma 13 (FlipFlop version of Lemma 5) The cumulative mixability gap for the “flop”
regime is bounded by the cumulative variance of the losses for the “flop” regime:

∆2 ≤ V lnK + (2
3 lnK + 1)S∆. (24)

1299

De Rooij, Van Erven, Grünwald and Koolen

Proof The proof is analogous to the proof of Lemma 5, with ∆ instead of ∆ah, V instead
of V ah, and using ηt = ηflopt = ln(K)/∆t−1 instead of ηt = ηaht = ln(K)/∆ah

t−1. Furthermore,
we only need to sum over the rounds R in the “flop” regime, because ∆ does not change
during the “flip” regime.

As it is straight-forward to prove an analogue of Theorem 6 for FlipFlop by solving
the quadratic inequality in (24), we proceed directly towards establishing an analogue of
Theorem 8. The following lemma provides the equivalent of Lemma 7 for FlipFlop. It can
probably be strengthened to improve the lower order terms; we provide the version that is
easiest to prove.

Lemma 14 (FlipFlop version of Lemma 7) Suppose Hff ≥ L∗. The cumulative loss
variance for FlipFlop with parameters ϕ > 1 and α > 0 satisfies

V ≤ S (L+ − L∗)(L∗ − L−)
L+ − L−

+
(

ϕ

ϕ− 1 + ϕ

α
+ 2

)
S∆ + S2.

Proof The sum of variances satisfies

V =
∑
t∈R

vfft ≤
T∑
t=1

vfft ≤ S
(L+ −Hff)(Hff − L−)

L+ − L−
,

where the first inequality simply includes the variances for FTL rounds (which are often all
zero), and the second follows from the same reasoning as employed in (14). Subsequently
using L∗ ≤ Hff (by assumption) and, from Lemma 12, Hff ≤ L∗ + γ, where γ denotes the
right-hand side of the bound (18), we find

V ≤ S (L+ − L∗)(L∗ + γ − L−)
L+ − L−

≤ S (L+ − L∗)(L∗ − L−)
L+ − L−

+ Sγ,

which was to be shown.

Combining Lemmas 12, 13 and 14, we obtain our second main result:

Theorem 15 (FlipFlop Regret Bound) The regret for FlipFlop with doubling parame-
ters ϕ > 1 and α > 0 simultaneously satisfies the two bounds

Rff ≤
(

ϕα

ϕ− 1 + 2α+ 1
)
Rftl + S

(
ϕ

ϕ− 1 + 2
)
,

Rff ≤ c1

√
S

(L+ − L∗)(L∗ − L−)
L+ − L−

lnK + c1S
(
(c1 + 2

3) lnK +
√

lnK + 1
)

+ S,

where c1 = ϕ

ϕ− 1 + ϕ

α
+ 2.

This shows that, up to a multiplicative factor in the regret, FlipFlop is always as good
as the best of Follow-the-Leader and AdaHedge’s bound from Theorem 8. Of course, if

1300

Follow the Leader If You Can, Hedge If You Must

AdaHedge significantly outperforms its bound, it is not guaranteed that FlipFlop will out-
perform the bound in the same way.

In the experiments in Section 5 we demonstrate that the multiplicative factor is not just
an artifact of the analysis, but can actually be observed on simulated data.
Proof From Lemma 10, we know that ∆ ≤ ∆(∞) = Rftl. Substitution in (17) of Lemma 12
yields the first inequality.

For the second inequality, note that L∗ > Hff means the regret is negative, in which
case the result is clearly valid. We may therefore assume w.l.o.g. that L∗ ≤ Hff and apply
Lemma 14. Combination with Lemma 13 yields

∆2 ≤ V lnK + (2
3 lnK + 1)S∆ ≤ S (L+ − L∗)(L∗ − L−)

L+ − L−
lnK + S2 lnK + c2S∆,

where c2 = (c1 + 2
3) lnK + 1. We now solve this quadratic inequality as in (13) and relax it

using
√
a+ b ≤

√
a+
√
b for nonnegative numbers a, b to obtain

∆ ≤

√
S

(L+ − L∗)(L∗ − L−)
L+ − L−

lnK + S2 lnK + c2S

≤

√
S

(L+ − L∗)(L∗ − L−)
L+ − L−

lnK + S
(√

lnK + c2
)
.

In combination with Lemma 12, this yields the second bound of the theorem.

Finally, we propose to select the parameter values that minimize the constant factor in
front of the leading terms of these regret bounds.

Corollary 16 The parameter values ϕ∗ = 2.37 and α∗ = 1.243 approximately minimize
the worst of the two leading factors in the bounds of Theorem 15. The regret for FlipFlop
with these parameters is simultaneously bounded by

Rff ≤ 5.64Rftl + 3.73S,

Rff ≤ 5.64

√
S

(L+ − L∗)(L∗ − L−)
L+ − L−

lnK + S
(
35.53 lnK + 5.64

√
lnK + 6.64

)
.

Proof The leading factors f(ϕ, α) = ϕα
ϕ−1 + 2α + 1 and g(ϕ, α) = ϕ

ϕ−1 + ϕ
α + 2 are

respectively increasing and decreasing in α. They are equalized for α(ϕ) =
(
2ϕ − 1 +√

12ϕ3 − 16ϕ2 + 4ϕ+ 1
)
/(6ϕ− 4). The analytic solution for the minimum of f(ϕ, α(ϕ)) in

ϕ is too long to reproduce here, but it is approximately equal to ϕ∗ = 2.37, at which point
α(ϕ∗) ≈ 1.243.

4. Invariance to Rescaling and Translation

A common simplifying assumption made in the literature is that the losses `t,k are translated
and normalised to take values in the interval [0, 1]. However, doing so requires a priori

1301

De Rooij, Van Erven, Grünwald and Koolen

knowledge of the range of the losses. One would therefore prefer algorithms that do not
require the losses to be normalised. As discussed by Cesa-Bianchi et al. (2007), the regret
bounds for such algorithms should not change when losses are translated (because this does
not change the regret) and should scale by σ when the losses are scaled by a factor σ > 0
(because the regret scales by σ). They call such regret bounds fundamental and show that
most of the methods they introduce satisfy such fundamental bounds.

Here we go even further: it is not just our bounds that are fundamental, but also our
algorithms, which do not change their output weights if the losses are scaled or translated.

Theorem 17 Both AdaHedge and FlipFlop are invariant to translation and rescaling of
the losses. Starting with losses `1, . . . , `T , obtain rescaled, translated losses `′1, . . . , `

′
T by

picking any σ > 0 and arbitrary reals τ1, . . . , τT , and setting `′t,k = σ`t,k+τt for t = 1, . . . , T
and k = 1, . . . ,K. Both AdaHedge and FlipFlop issue the exact same sequence of weights
w′t = wt on `′t as they do on `t.

Proof We annotate any quantity with a prime to denote that it is defined with respect to
the losses `′t. We omit the algorithm name from the superscript. First consider AdaHedge.
We will prove the following relations by induction on t:

∆′t−1 = σ∆t−1; η′t = ηt
σ

; w′t = wt. (25)

For t = 1, these are valid since ∆′0 = σ∆0 = 0, η′1 = η1/σ = ∞, and w′1 = w1 are
uniform. Now assume towards induction that (25) is valid for some t ∈ {1, . . . , T}. We
can then compute the following values from their definition: h′t = w′t · `′t = σht + τt;
m′t = −(1/η′t) ln(w′t · e−η

′
t`
′
t) = σmt + τt; δ′t = h′t − m′t = σ(ht − mt) = σδt. Thus, the

mixability gaps are also related by the scale factor σ. From there we can re-establish the
induction hypothesis for the next round: we have ∆′t = ∆′t−1 + δ′t = σ∆t−1 + σδt = σ∆t,
and η′t+1 = ln(K)/∆′t = ηt+1/σ. For the weights we get w′t+1 ∝ e−η

′
t+1L

′
t = e−(ηt+1/σ)(σLt) ∝

wt+1, which means the two must be equal since both sum to one. Thus the relations of (25)
are also valid for time t+ 1, proving the result for AdaHedge.

For FlipFlop, if we assume regime changes occur at the same times for `′ and `, then
similar reasoning reveals ∆′t = σ∆t; ∆′t = σ∆t, η′

flip
t = ηflipt /σ = ∞, η′flopt = ηflopt /σ, and

w′t = wt. Remains to check that the regime changes do indeed occur at the same times.
Note that in Definition 11, the “flop” regime is started when ∆′t > (ϕ/α)∆′t, which is equiv-
alent to testing ∆t > (ϕ/α)∆t since both sides of the inequality are scaled by σ. Similarly,
the “flip” regime starts when ∆′t > α∆′t, which is equivalent to the test ∆t > α∆t.

5. Experiments

We performed four experiments on artificial data, designed to clarify how the learning rate
determines performance in a variety of Hedge algorithms. These experiments are designed
to illustrate as clearly as possible the intricacies involved in the central question of this
paper: whether to use a high learning rate (by following the leader) or to play it safe by
using a smaller learning rate instead. Rather than mimic real-world data, on which high
learning rates often seem to work well (Devaine et al., 2013), we vary the main factor that

1302

Follow the Leader If You Can, Hedge If You Must

appears to drive the best choice of learning rate: the difference in cumulative loss between
the experts.

We have kept the experiments as simple as possible: the data are deterministic, and
involve two experts. In each case, the data consist of one initial hand-crafted loss vector `1,
followed by a sequence of loss vectors `2, . . ., `T , which are either (0, 1) or (1, 0). For each
experiment ξ ∈ {1, 2, 3, 4}, we want the cumulative loss difference Lt,1 − Lt,2 between the
experts to follow a target fξ(t), which will be a continuous, nondecreasing function of t. As
the losses are binary, we cannot make Lt,1−Lt,2 exactly equal to the target fξ(t), but after
the initial loss `1, we choose every subsequent loss vector such that it brings Lt,1 − Lt,2 as
close as possible to fξ(t). All functions fξ change slowly enough that |Lt,1−Lt,2−fξ(t)| ≤ 1
for all t.

For each experiment, we let the number of trials be T = 1000, and we first plot the regret
R(η) of the Hedge algorithm as a function of the fixed learning rate η. We subsequently
plot the regret Ralg

t as a function of t = 1, . . . , T , for each of the following algorithms “alg”:

1. Follow-the-Leader (Hedge with learning rate ∞)

2. Hedge with fixed learning rate η = 1

3. Hedge with the learning rate that optimizes the worst-case bound (7), which equals
η =

√
8 ln(K)/(S2T) ≈ 0.0745; we will call this algorithm “safe Hedge” for brevity.

4. AdaHedge

5. FlipFlop, with parameters ϕ∗ = 2.37 and α∗ = 1.243 as in Corollary 16

6. Variation MW by Hazan and Kale (2008), using the fixed learning rate that optimises
the bound provided in their Theorem 4

7. NormalHedge, described by Chaudhuri et al. (2009)

Note that the safe Hedge strategy (the third item above) can only be used in practice if
the horizon T is known in advance. Variation MW (the sixth item) additionally requires
precognition of the empirical variance of the sequence of losses of the best expert up until
T (that is, VARmax

T as defined in Section 1.2), which is not available in practice, but which
we are supplying anyway.

We include algorithms 6 and 7 because, as explained in Section 1.2, they are the state
of the art in Hedge-style algorithms. Like AdaHedge, Variation MW is a refinement of
the CBMS strategy described by Cesa-Bianchi et al. (2007). They modify the definition
of the weights in the Hedge algorithm to include second-order terms; the resulting bound
is never more than a constant factor worse than the bounds (1) for CBMS and (15) for
AdaHedge, but for some easy data it can be substantially better. For this reason it is a
natural performance target for AdaHedge.

The bounds for CBMS and AdaHedge are incomparible with the bound for NormalHedge,
being better for some, worse for other data. The reason we include it in the experiments
is because, compared to the other methods, its performance in practice turns out to be ex-
cellent. We do not know whether there are data sequences on which FlipFlop significantly
outperforms NormalHedge, nor whether there is a theoretical reason for this good perfor-
mance, as the NormalHedge bound (Chaudhuri et al., 2009) is not tight for our experiments.

1303

De Rooij, Van Erven, Grünwald and Koolen

To reduce clutter, we omit results for CBMS; its behaviour is very similar to that of
AdaHedge. Below we provide an exact description of each experiment, and discuss the
results.

5.1 Experiment 1. Worst Case for FTL

The experiment is defined by `1 = (1
2 0), and f1(t) = 0. This yields the following losses:(

1/2
0

)
,

(
0
1

)
,

(
1
0

)
,

(
0
1

)
,

(
1
0

)
, . . .

These data are the worst case for FTL: each round, the leader incurs loss one, while each of
the two individual experts only receives a loss once every two rounds. Thus, the FTL regret
increases by one every two rounds and ends up around 500. For any learning rate η, the
weights used by the Hedge algorithm are repeated every two rounds, so the regret Ht − L∗t
increases by the same amount every two rounds: the regret increases linearly in t for every
fixed η that does not vary with t. However, the constant of proportionality can be reduced
greatly by reducing the value of η, as the top graph in Figure 3 shows: for T = 1000,
the regret becomes negligible for any η less than about 0.01. Thus, in this experiment, a
learning algorithm must reduce the learning rate to shield itself from incurring an excessive
overhead.

The bottom graph in Figure 3 shows the expected breakdown of the FTL algorithm;
Hedge with fixed learning rate η = 1 also performs quite badly. When η is reduced to the
value that optimises the worst-case bound, the regret becomes competitive with that of the
other algorithms. Note that Variation MW has the best performance; this is because its
learning rate is tuned in relation to the bound proved in the paper, which has a relatively
large constant in front of the leading term. As a consequence the algorithm always uses a
relatively small learning rate, which turns out to be helpful in this case but harmful in later
experiments.

FlipFlop behaves as theory suggests it should: its regret increases alternately like the
regret of AdaHedge and the regret of FTL. The latter performs horribly, so during those
intervals the regret increases quickly, on the other hand the FTL intervals are relatively
short-lived so in the end they do not harm the regret by more than a constant factor.

The NormalHedge algorithm still has acceptable performance, although its regret is
relatively large in this experiment; we have no explanation for this but in fairness we do
observe good performance of NormalHedge in the other three experiments as well as in
numerous further unreported simulations.

5.2 Experiment 2. Best Case for FTL

The second experiment is defined by `1 = (1, 0) and f2(t) = 3/2. This leads to the sequence
of losses (

1
0

)
,

(
1
0

)
,

(
0
1

)
,

(
1
0

)
,

(
0
1

)
, . . .

in which the loss vectors are alternating for t ≥ 2. These data look very similar to the first
experiment, but as the top graph in Figure 4 illustrates, because of the small changes at

1304

Follow the Leader If You Can, Hedge If You Must

the start of the sequence, it is now viable to reduce the regret by using a very high learning
rate. In particular, since there are no leader changes after the first round, FTL incurs a
regret of only 1/2.

As in the first experiment, the regret increases linearly in t for every fixed η (provided it
is less than ∞); but now the constant of linearity is large only for learning rates close to 1.
Once FlipFlop enters the FTL regime for the second time, it stays there indefinitely, which
results in bounded regret. After this small change in the setup compared to the previous
experiment, NormalHedge also suddenly adapts very well to the data. The behaviour of the
other algorithms is very similar to the first experiment: their regret grows without bound.

5.3 Experiment 3. Weights do not Concentrate in AdaHedge

The third experiment uses `1 = (1, 0), and f3(t) = t0.4. The first few loss vectors are the
same as in the previous experiment, but every now and then there are two loss vectors (1, 0)
in a row, so that the first expert gradually falls behind the second in terms of performance.
By t = T = 1000, the first expert has accumulated 508 loss, while the second expert has
only 492.

For any fixed learning rate η, the weights used by Hedge now concentrate on the second
expert. We know from Lemma 4 that the mixability gap in any round t is bounded by a
constant times the variance of the loss under the weights played by the algorithm; as these
weights concentrate on the second expert, this variance must go to zero. One can show that
this happens quickly enough for the cumulative mixability gap to be bounded for any fixed
η that does not vary with t or depend on T . From (5) we have

R(η) = M − L∗ + ∆(η) ≤ lnK
η

+ bounded = bounded.

So in this scenario, as long as the learning rate is kept fixed, we will eventually learn the
identity of the best expert. However, if the learning rate is very small, this will happen so
slowly that the weights still have not converged by t = 1000. Even worse, the top graph
in Figure 5 shows that for intermediate values of the learning rate, not only do the weights
fail to converge on the second expert sufficiently quickly, but they are sensitive enough to
the alternation of the loss vectors to increase the overhead incurred each round.

For this experiment, it really pays to use a large learning rate rather than a safe small
one. Thus FTL, Hedge with η = 1, FlipFlop and NormalHedge perform excellently, while
safe Hedge, AdaHedge and Variation MW incur a substantial overhead. Extrapolating the
trend in the graph, it appears that the overhead of these algorithms is not bounded. This
is possible because the three algorithms with poor performance use a learning rate that
decreases as a function of t. As a concequence the used learning rate may remain too small
for the weights to concentrate. For the case of AdaHedge, this is an example of the “nasty
feedback loop” described in Section 3.

5.4 Experiment 4. Weights do Concentrate in AdaHedge

The fourth and last experiment uses `1 = (1, 0), and f4(t) = t0.6. The losses are comparable
to those of the third experiment, but the performance gap between the two experts is
somewhat larger. By t = T = 1000, the two experts have loss 532 and 468, respectively. It

1305

De Rooij, Van Erven, Grünwald and Koolen

is now so easy to determine which of the experts is better that the top graph in Figure 6 is
nonincreasing: the larger the learning rate, the better.

The algorithms that managed to keep their regret bounded in the previous experiment
obviously still perform very well, but it is clearly visible that AdaHedge now achieves the
same. As discussed below Theorem 6, this happens because the weight concentrates on
the second expert quickly enough that AdaHedge’s regret is bounded in this setting. The
crucial difference with the previous experiment is that now we have fξ(t) = tβ with β > 1/2.
Thus, while the previous experiment shows that AdaHedge can be tricked into reducing the
learning rate while it would be better not to do so, the present experiment shows that on
the other hand, sometimes AdaHedge does adapt really nicely to easy data, in contrast to
algorithms that are tuned in terms of a worst-case bound.

6. Discussion and Conclusion

The main contributions of this work are twofold. First, we develop a new hedging algorithm
called AdaHedge. The analysis simplifies existing results and we obtain improved bounds
(Theorems 6 and 8). Moreover, AdaHedge is “fundamental” in the sense that its weights
are invariant under translation and scaling of the losses (Section 4) and its bounds are
“timeless” in the sense that they do not degenerate when rounds are inserted in which all
experts incur the same loss. Second, we explain in detail why it is difficult to tune the
learning rate such that good performance is obtained both for easy and for hard data, and
we address the issue by developing the FlipFlop algorithm. FlipFlop never performs much
worse than the Follow-the-Leader strategy, which works very well on easy data (Lemma 10),
but it also retains a worst-case bound similar to the bound for AdaHedge (Theorem 15).
As such, this work may be seen as solving a special case of a more general question: can we
compete with Hedge for any fixed learning rate? We will now briefly discuss this question
and then place our work in a broader context, which provides an ambitious agenda for
future work.

6.1 General Question: Competing with Hedge for any Fixed Learning Rate

Up to multiplicative constants, FlipFlop is at least as good as FTL and as (the bound for)
AdaHedge. These two algorithms represent two extremes of choosing the learning rate ηt
in Hedge: FTL takes ηt = ∞ to exploit easy data, whereas AdaHedge decreases ηt with
t to protect against the worst case. It is now natural to ask whether we can design a
“Universal Hedge” algorithm that can compete with Hedge with any fixed learning rate
η ∈ (0,∞]. That is, for all T , the regret up to time T of Universal Hedge should be within
a constant factor C of the regret incurred by Hedge run with the fixed η̂ that minimizes
the Hedge loss H(η̂). This appears to be a difficult question, and maybe such an algorithm
does not even exist. Yet, even partial results (such as an algorithm that competes with
η ∈ [

√
ln(K)/(S2T),∞] or with a factor C that increases slowly, say, logarithmically, in T)

would already be of significant interest.
In this regard, it is interesting to note that, in practice, the learning rates chosen by

sophisticated versions of Hedge do not always perform very well; higher learning rates often
do better. This is noted by Devaine et al. (2013), who resolve the issue by adapting the
learning rate sequentially in an ad-hoc fashion, which works well in their application, but

1306

Follow the Leader If You Can, Hedge If You Must

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

50

100

150

200

250

300

350

400

450

500

learning rate

re
g

re
t

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

50

time

re
g

re
t

Hedge eta=1FTL

NormalHedge

FlipFlop

AdaHedge

Safe Hedge

Variation MW

Figure 3: Hedge regret for Experiment 1 (FTL worst-case)

1307

De Rooij, Van Erven, Grünwald and Koolen

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

10

20

30

40

50

60

70

80

learning rate

re
g

re
t

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

time

re
g

re
t

Hedge eta=1

AdaHedge

Safe Hedge

Variation MW

NormalHedge, FlipFlop, FTL

Figure 4: Hedge regret for Experiment 2 (FTL best-case)

1308

Follow the Leader If You Can, Hedge If You Must

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

5

10

15

learning rate

re
g

re
t

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

time

re
g

re
t

AdaHedge

Safe Hedge

Variation MW

Hedge eta=1

NormalHedge

FlipFlop, FTL

Figure 5: Hedge regret for Experiment 3 (weights do not concentrate in AdaHedge)

1309

De Rooij, Van Erven, Grünwald and Koolen

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

25

30

35

learning rate

re
g

re
t

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

time

re
g

re
t

NormalHedge, AdaHedge, Hedge eta=1

FlipFlop, FTL

Safe Hedge

Variation MW

Figure 6: Hedge regret for Experiment 4 (weights do concentrate in AdaHedge)

1310

Follow the Leader If You Can, Hedge If You Must

for which they can provide no guarantees. A Universal Hedge algorithm would adapt to the
learning rate that is optimal with hindsight. FlipFlop is a first step in this direction. Indeed,
it already has some of the properties of such an ideal algorithm: under some conditions we
can show that if Hedge achieves bounded regret using any learning rate, then FTL, and
therefore FlipFlop, also achieves bounded regret:

Theorem 18 Fix any η > 0. For K = 2 experts with losses in {0, 1} we have

R(η) is bounded ⇒ Rftl is bounded ⇒ Rff is bounded.

The proof is in Appendix B. While the second implication remains valid for more experts
and other losses, we currently do not know if the first implication continues to hold as well.

6.2 The Big Picture

Broadly speaking, a “learning rate” is any single scalar parameter controlling the rela-
tive weight of the data and a prior regularization term in a learning task. Such learning
rates pop up in batch settings as diverse as L1/L2-regularized regression such as Lasso
and Ridge, standard Bayesian nonparametric and PAC-Bayesian inference (Zhang, 2006;
Audibert, 2004; Catoni, 2007), and—as in this paper—in sequential prediction. All the ap-
plications just mentioned can formally be seen as variants of Bayesian inference: Bayesian
MAP in Lasso and Ridge, randomized drawing from the posterior (“Gibbs sampling”) in
the PAC-Bayesian setting and in the Hedge setting. Moreover, in each of these applications,
selecting the appropriate learning rate is nontrivial: simply adding the learning rate as an-
other parameter and putting a Bayesian prior on it can lead to very bad results (Grünwald
and Langford, 2007). An ideal method for adapting the learning rate would work in all
such applications. In addition to the FlipFlop algorithm described here, we currently have
methods that are guaranteed to work for several PAC-Bayesian style stochastic settings
(Grünwald, 2011, 2012). It is encouraging that all these methods are based on the same,
apparently fundamental, quantity, the mixability gap as defined before Lemma 1: they all
employ different techniques to ensure a learning rate under which the posterior is concen-
trated and hence the mixability gap is small. This gives some hope that the approach can
be taken even further. To give but one example, the “Safe Bayesian” method of Grün-
wald (2012) uses essentially the same technique as Devaine et al. (2013), with an additional
online-to-batch conversion step. Grünwald (2012) proves that this approach adapts to the
optimal learning rate in an i.i.d. stochastic setting with arbitrary (countably or uncount-
ably infinite) sets of “experts” (predictors); in contrast, AdaHedge and FlipFlop in the form
presented in this paper are suitable for a worst-case setting with a finite set of experts. This
raises, of course, the question of whether either the Safe Bayesian method can be extended
to the worst-case setting (which would imply formal guarantees for the method of Devaine
et al. 2013), or the FlipFlop algorithm can be extended to the setting with infinitely many
experts.

Thus, we have two major, interrelated questions for future work: first, as explained in
Section 6.1, we would like to be able to compete with all η in some set that contains a whole
range rather than just two values. Second, we would like to compete with the best η in a
setting with a countably infinite or even uncountable number of experts equipped with an
arbitrary prior distribution.

1311

De Rooij, Van Erven, Grünwald and Koolen

A third question for future work is whether our methods can be extended beyond the
standard worst-case Hedge setting and the stochastic i.i.d. setting. A particularly intriguing
(and, as initial research suggests, nontrivial) question is whether AdaHedge and FlipFlop
can be adapted to settings with limited feedback such as the adversarial bandit setting
(Cesa-Bianchi and Lugosi, 2006). We would also like to extend our approach to the Hedge-
based strategies for combinatorial decision domains like Component Hedge by Koolen et al.
(2010), and for matrix-valued predictions like those by Tsuda et al. (2005).

Acknowledgments

We would like to thank Wojciech Kotłowski, Gilles Stoltz and two anonymous referees for
critical feedback. This work was supported in part by the IST Programme of the European
Community, under the PASCAL Network of Excellence, IST-2002-506778 and by NWO
Rubicon grants 680-50-1010 and 680-50-1112.

Appendix A. Proof of Lemma 1

The result for η =∞ follows from η <∞ as a limiting case, so we may assume without loss
of generality that η < ∞. Then mt ≤ ht is obtained by using Jensen’s inequality to move
the logarithm inside the expectation, and mt ≥ `−t and ht ≤ `+

t follow by bounding all losses
by their minimal and maximal values, respectively. The next two items are analogues of
similar basic results in Bayesian probability. Item 2 generalizes the chain rule of probability
Pr(x1, . . . , xT) =

∏T
t=1 Pr(xt | x1, . . . , xt−1):

M = −1
η

ln
T∏
t=1

w1 · e−ηLt

w1 · e−ηLt−1
= −1

η
ln(w1 · e−ηL).

For the third item, use item 2 to write

M = −1
η

ln
(∑

k

w1,ke
−ηLT,k

)
.

The lower bound is obtained by bounding all LT,k from below by L∗; for the upper bound
we drop all terms in the sum except for the term corresponding to the best expert and use
w1,k = 1/K.

For the last item, let 0 < η < γ be any two learning rates. Then Jensen’s inequality
gives

−1
η

lnw1 · e−ηL = −1
η

lnw1 ·
(
e−γL

)η/γ
≥ −1

η
ln
(
w1 · e−γL

)η/γ
= −1

γ
lnw1 · e−γL.

This completes the proof.

Appendix B. Proof of Theorem 18

The second implication follows from Theorem 15, so we only need to prove the first impli-
cation. To this end, consider any infinite sequence of losses on which FTL has unbounded
regret. We will argue that Hedge with fixed η must have unbounded regret as well.

1312

Follow the Leader If You Can, Hedge If You Must

Our argument is based on finding an infinite subsequence of the losses on which (a) the
regret for Hedge with fixed η is at most as large as on the original sequence of losses; and
(b) the regret for Hedge is infinite.

To construct this subsequence, first remove all trials t such that `t,1 = `t,2 (that is,
both experts suffer the same loss), as these trials do not change the regret of either FTL or
Hedge, nor their behaviour on any of the other rounds.

Next, we will selectively remove certain local extrema. We call a pair of two consecutive
trials (t, t + 1) a local extremum if the losses in these trials are opposite: either `t = (0, 1)
and `t+1 = (1, 0) or vice versa. Removing any local extremum will only decrease the regret
for Hedge, as may be seen as follows.

We observe that removing a local extremum will not change the cumulative losses of the
experts or the behaviour of Hedge on other rounds, so it suffices to consider only the regret
incurred on rounds t and t+ 1 themselves. By symmetry it is further sufficient to consider
the case that `t = (0, 1) and `t+1 = (1, 0). Then, over trials t and t + 1, the individual
experts both suffer loss 1, and for Hedge the loss is ht + ht+1 = wt · `t + wt+1 · `t+1 =
wt,2 + wt+1,1. Now, since the loss received by expert 1 in round t was less than that of
expert 2, some weight shifts to the first expert: we must have wt+1,1 > wt,1. Substitution
gives ht + ht+1 > wt,1 + wt,2 = 1. Thus, Hedge suffers more loss in these two rounds than
whichever expert turns out to be best in hindsight, and it follows that removing trials t and
t+ 1 will only decrease its regret (by an amount that depends only on η).

We proceed to select the local extrema to remove. To this end, let dt = Lt,2 − Lt,1
denote the difference in cumulative loss between the experts after t trials, and observe that
removal of a local extremum at (t, t+ 1) will simply remove the elements dt and dt+1 from
the sequence d1, d2, . . . while leaving the other elements of the sequence unchanged. We will
remove local extrema in a way that leads to an infinite subsequence of losses such that

d1, d2, d3, d4, d5, . . . = ±1, 0,±1, 0,±1, . . . (26)

In this subsequence, every two consecutive trials still constitute a local extremum, on which
Hedge incurs a certain fixed positive regret. Consequently, the Hedge regret Rt grows
linearly in t and is therefore unbounded.

If the losses already satisfy (26), we are done. If not, then observe that there can only be
a leader change at time t+ 1 in the sense of Lemma 10 when dt = 0. Since the FTL regret
is bounded by the number of leader changes (Lemma 10), and since FTL was assumed to
have infinite regret, there must therefore be an infinite number of trials t such that dt = 0.
We will remove local extrema in a way that preserves this property. In addition, we must
have |dt+1−dt| = 1 for all t, because dt+1 = dt would imply that `t+1,1 = `t+1,2 and we have
already removed such trials. This second property is automatically preserved regardless of
which trials we remove.

If the losses do not yet satisfy (26), there must be a first trial u with |du| ≥ 2. Since there
are infinitely many t with dt = 0, there must then also be a first trial w > u with dw = 0.
Now choose any v ∈ [u,w) so that |dv| = maxt∈[u,w] |dt| maximizes the discrepancy between
the cumulative losses of the experts. Since v attains the maximum and |dt+1 − dt| = 1
for all t as mentioned above, we have |dv+1| = |dv| − 1, so that (v, v + 1) must be a local
extremum, and this is the local extremum we remove. Since |dv| ≥ |du| ≥ 2, we also have
|dv+1| ≥ 1, so that this does not remove any of the trials in which dt = 0. Repetition of this

1313

De Rooij, Van Erven, Grünwald and Koolen

process will eventually lead to v = u, so that trial u is removed. Given any T , the process
may therefore be repeated until |dt| ≤ 1 for all t ≤ T . As |dt+1 − dt| = 1 for all t, we then
match (26) for the first T trials. Hence by letting T go to infinity we obtain the desired
result.

References

Jean-Yves Audibert. PAC-Bayesian statistical learning theory. PhD thesis, Université Paris
VI, 2004.

Peter Auer, Nicolò Cesa-Bianchi, and Claudio Gentile. Adaptive and self-confident on-line
learning algorithms. Journal of Computer and System Sciences, 64:48–75, 2002.

Olivier Catoni. PAC-Bayesian Supervised Classification. Lecture Notes-Monograph Series.
IMS, 2007.

Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge Uni-
versity Press, 2006.

Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire,
and Manfred K. Warmuth. How to use expert advice. Journal of the ACM, 44(3):427–485,
1997.

Nicolò Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order bounds for
prediction with expert advice. Machine Learning, 66(2/3):321–352, 2007.

Kamalika Chaudhuri, Yoav Freund, and Daniel Hsu. A parameter-free hedging algorithm.
In Advances in Neural Information Processing Systems 22 (NIPS 2009), pages 297–305,
2009.

Alexey V. Chernov and Vladimir Vovk. Prediction with advice of unknown number of
experts. In Peter Grünwald and Peter Spirtes, editors, UAI, pages 117–125. AUAI Press,
2010.

Marie Devaine, Pierre Gaillard, Yannig Goude, and Gilles Stoltz. Forecasting electricity
consumption by aggregating specialized experts; a review of the sequential aggregation of
specialized experts, with an application to Slovakian and French country-wide one-day-
ahead (half-)hourly predictions. Machine Learning, 90(2):231–260, February 2013.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55:119–139,
1997.

Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative weights.
Games and Economic Behavior, 29:79–103, 1999.

Sébastien Gerchinovitz. Prédiction de suites individuelles et cadre statistique clas-
sique: étude de quelques liens autour de la régression parcimonieuse et des techniques
d’agrégation. PhD thesis, Université Paris-Sud, 2011.

1314

Follow the Leader If You Can, Hedge If You Must

Peter Grünwald. Safe learning: bridging the gap between Bayes, MDL and statistical learn-
ing theory via empirical convexity. In Proceedings of the 24th International Conference
on Learning Theory (COLT 2011), pages 551–573, 2011.

Peter Grünwald. The safe Bayesian: learning the learning rate via the mixability gap. In
Proceedings of the 23rd International Conference on Algorithmic Learning Theory (ALT
2012), 2012.

Peter Grünwald and John Langford. Suboptimal behavior of Bayes and MDL in clas-
sification under misspecification. Machine Learning, 66(2-3):119–149, 2007. DOI
10.1007/s10994-007-0716-7.

László Györfi and György Ottucsák. Sequential prediction of unbounded stationary time
series. IEEE Transactions on Information Theory, 53(5):1866–1872, 2007.

Elad Hazan and Satyen Kale. Extracting certainty from uncertainty: Regret bounded by
variation in costs. In Proceedings of the 21st Annual Conference on Learning Theory
(COLT), pages 57–67, 2008.

Marcus Hutter and Jan Poland. Adaptive online prediction by following the perturbed
leader. Journal of Machine Learning Research, 6:639–660, 2005.

Adam Kalai and Santosh Vempala. Efficient algorithms for online decision. In Proceedings
of the 16st Annual Conference on Learning Theory (COLT), pages 506–521, 2003.

Yuri Kalnishkan and Michael V. Vyugin. The weak aggregating algorithm and weak mixa-
bility. In Proceedings of the 18th Annual Conference on Learning Theory (COLT), pages
188–203, 2005.

Wouter M. Koolen, Manfred K. Warmuth, and Jyrki Kivinen. Hedging structured concepts.
In A.T. Kalai and M. Mohri, editors, Proceedings of the 23rd Annual Conference on
Learning Theory (COLT 2010), pages 93–105, 2010.

Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information
and Computation, 108(2):212–261, 1994.

Koji Tsuda, Gunnar Rätsch, and Manfred K. Warmuth. Matrix exponentiated gradient
updates for on-line learning and Bregman projection. Journal of Machine Learning Re-
search, 6:995–1018, 2005.

Tim van Erven, Peter Grünwald, Wouter M. Koolen, and Steven de Rooij. Adaptive hedge.
In Advances in Neural Information Processing Systems 24 (NIPS 2011), pages 1656–1664,
2011.

Vladimir Vovk. A game of prediction with expert advice. Journal of Computer and System
Sciences, 56(2):153–173, 1998.

Vladimir Vovk. Competitive on-line statistics. International Statistical Review, 69(2):213–
248, 2001.

1315

De Rooij, Van Erven, Grünwald and Koolen

Vladimir Vovk, Akimichi Takemura, and Glenn Shafer. Defensive forecasting. In Proceedings
of AISTATS 2005, 2005. Archive version available at http://www.vovk.net/df.

Tong Zhang. Information theoretical upper and lower bounds for statistical estimation.
IEEE Transactions on Information Theory, 52(4):1307–1321, 2006.

1316

http://www.vovk.net/df

Journal of Machine Learning Research 14 (2014) 1317-1350 Submitted 6/13; Published 4/14

Structured Prediction via Output Space Search

Janardhan Rao Doppa doppa@eecs.oregonstate.edu

Alan Fern afern@eecs.oregonstate.edu

Prasad Tadepalli tadepall@eecs.oregonstate.edu

School of EECS, Oregon State University

Corvallis, OR 97331-5501, USA

Editor: S.V.N. Vishwanathan

Abstract

We consider a framework for structured prediction based on search in the space of complete
structured outputs. Given a structured input, an output is produced by running a time-
bounded search procedure guided by a learned cost function, and then returning the least
cost output uncovered during the search. This framework can be instantiated for a wide
range of search spaces and search procedures, and easily incorporates arbitrary structured-
prediction loss functions. In this paper, we make two main technical contributions. First,
we describe a novel approach to automatically defining an effective search space over struc-
tured outputs, which is able to leverage the availability of powerful classification learning
algorithms. In particular, we define the limited-discrepancy search space and relate the
quality of that space to the quality of learned classifiers. We also define a sparse version
of the search space to improve the efficiency of our overall approach. Second, we give a
generic cost function learning approach that is applicable to a wide range of search pro-
cedures. The key idea is to learn a cost function that attempts to mimic the behavior of
conducting searches guided by the true loss function. Our experiments on six benchmark
domains show that a small amount of search in limited discrepancy search space is often
sufficient for significantly improving on state-of-the-art structured-prediction performance.
We also demonstrate significant speed improvements for our approach using sparse search
spaces with little or no loss in accuracy.

Keywords: structured prediction, state space search, imitation learning, cost function

1. Introduction

Research in machine learning has progressed from studying isolated classification tasks to
the study of tasks such as information extraction and scene understanding where the inputs
and outputs are structured objects. The general field of structured prediction deals with
these kind of structured tasks where the goal is to learn a predictor that must produce
a complex structured output given a complex structured input. A prototypical example
is Part-of-Speech (POS) tagging, where the structured input is a sequence of words and
structured output corresponds to the POS tags for those words. Another example is that
of image scene labeling, where the structured input is an image and the structured output
is a semantic labeling of the image regions.

A typical approach to structured prediction is to learn a cost function C(x,y) for scoring
a potential structured output y given a structured input x. Given such a cost function and

c©2014 Janardhan Rao Doppa, Alan Fern and Prasad Tadepalli.

Doppa, Fern and Tadepalli

a new input x, the output computation then involves solving the so-called Argmin problem:

ŷ = arg min
y
C(x,y).

For example, approaches such as Conditional Random Fields (CRFs) (Lafferty et al., 2001),
Max-Margin Markov Networks (Taskar et al., 2003) and Structured SVMs (Tsochantaridis
et al., 2004) represent the cost function as a linear model over template features of both
x and y. Unfortunately exactly solving the Argmin problem is often intractable and effi-
cient solutions exist only in limited cases such as when the dependency structure among
features forms a tree. In such cases, one might simplify the features to allow for tractable
inference, which can be detrimental to prediction accuracy. Alternatively, a heuristic op-
timization method can be used such as loopy belief propagation or variational inference.
While such methods have shown some success in practice, it can be difficult to characterize
their solutions and to predict when they are likely to work well for a new problem.

In this paper, we study a new search-based approach to structured prediction based on
search in the space of complete outputs. The approach involves first defining a combinatorial
search space over complete structured outputs that allows for traversal of the output space.
Next, given a structured input, a state-based search strategy (e.g., best-first or greedy
search), guided by a learned cost function, is used to explore the space of outputs for a
specified time bound. The least cost output uncovered by the search is then returned as the
prediction. This approach is motivated by our observation that for a variety of structured
prediction problems, if we use the true loss function of the structured prediction problem
to guide the search (even non-decomposable losses), then high-quality outputs are found
very quickly. This suggests that similar performance might be achieved if we could learn
an appropriate cost function to guide search in place of the true loss function.

A potential advantage of our search-based approach, compared to most structured-
prediction approaches (see Section 6), is that it scales gracefully with the complexity of the
cost function dependency structure. In particular, the search procedure only needs to be
able to efficiently evaluate the cost function at specific input-output pairs, which is generally
straightforward even when the corresponding Argmin problem is intractable. Thus, we are
free to increase the complexity of the cost function without considering its impact on the
inference complexity. Another potential benefit of our approach is that since the search
is over complete outputs, our inference is inherently an anytime procedure, meaning that
it can be stopped at any time and return the best output discovered so far. This has the
flexibility of allowing for the use of more or less inference time for computing outputs as
dictated by the application, with the idea that more inference time may sometimes allow
for higher quality outputs.

The effectiveness of our approach for a particular problem depends critically on: 1) The
identification of an effective combination of search space and search strategy over structured
outputs, and 2) Our ability to learn a cost function for effectively guiding the search for
high quality outputs. The main contribution of our work is to provide generic solutions to
these two issues and to demonstrate their empirical effectiveness.

First, we describe the limited-discrepancy search space, as a generic search space over
complete outputs that can be customized to a particular problem by leveraging the power of
(non-structured) classification learning algorithms. We show that the quality of this search

1318

Structured Prediction via Output Space Search

space is directly related to the error of the learned classifiers and can be quite favorable
compared to more naive search space definitions. We also define a sparse version of the
search space to improve the efficiency of our approach. The sparse search spaces tries to
reduce the branching factor while not hurting the quality of the search space too much.

Our second contribution is to describe a generic cost function learning algorithm that
can be instantiated for a wide class of “ranking-based search strategies.” The key idea is
to learn a cost function that allows for imitating the search behavior of the algorithm when
guided by the true loss function. We give a PAC bound for the approach in the realizable
setting, showing a polynomial sample complexity for doing approximately as well as when
guiding search with the true loss function.

Finally, we provide experimental results for our approach on a number of benchmark
problems and show that even when using a relatively small amount of search, the perfor-
mance is comparable or better than the state-of-the-art in structured prediction. We also
demonstrate significant speed improvements of our approach when used with sparse search
spaces.

The remainder of the paper is organized as follows. In Section 2, we introduce our
problem setup and give a high-level overview of our framework. In Section 3, we define two
search spaces over complete outputs in terms of a recurrent classifier, relate their quality to
the accuracy of the classifier, and then, define sparse search spaces to improve the efficiency
of our approach. We describe our cost function learning approach in Section 4. Section 5
presents our experimental results and finally Sections 6 and 7 discuss related work and
future directions.

2. Problem Setup

A structured prediction problem specifies a space of structured inputs X , a space of struc-
tured outputs Y, and a non-negative loss function L : X ×Y×Y 7→ <+ such that L(x, y′, y)
is the loss associated with labeling a particular input x by output y′ when the true output
is y. We are provided with a training set of input-output pairs {(x1, y1), . . . , (xN , yN)},
drawn from an unknown target distribution, where yi is the true output for input xi. The
goal is to return a function/predictor from structured inputs to outputs whose predicted
outputs have low expected loss with respect to the distribution. Since our algorithms will
be learning cost functions over input-output pairs we assume the availability of a feature
function Φ : X × Y 7→ <n that computes an n dimensional feature vector for any pair.
Intuitively these features should provide some measure of compatibility between (parts of)
the structured input and output.

We consider a framework for structured prediction based on state-based search in the
space of complete structured outputs. The states of the search space are pairs of inputs
and outputs (x, y), representing the possibility of predicting y as the output for x. A search
space over those states is specified by two functions: 1) An initial state function I such that
I(x) returns an initial search state for any input x, and 2) A successor function S such that
for any search state (x, y), S((x, y)) returns a set of successor states {(x, y1), . . . , (x, yk)},
noting that each successor must involve the same input x as the parent. Section 3 will
describe our approach for automatically defining and learning search spaces.

1319

Doppa, Fern and Tadepalli

Figure 1: A high level overview of our output space search framework. Given a structured
input x, we first instantiate a search space over complete outputs. Each search
node in this space consists of a complete input-output pair. Next, we run a search
procedure A (e.g., greedy search) guided by the cost function C for a time bound
τ . The highlighted nodes correspond to the search trajectory traversed by the
search procedure, in this case greedy search. We return the least cost output ŷ
that is uncovered during the search as the prediction for x.

In order to predict outputs, our framework requires two elements in addition to the
search space. First, we require a cost function C that returns a numeric cost for any input-
output pair (i.e., search state). Second, we require a search procedure A (e.g., greedy
search or beam search) for traversing search spaces, possibly guided by the cost function.
Given these elements, an input x, and a prediction time bound τ we compute an output by
executing the search procedure A starting in the initial state I(x) and guided by the cost
function until the time bound is exceeded. We then return the output ŷ corresponding to
the least cost state that was uncovered during the search as the prediction for x. Figure 1
gives a high-level overview of our search-based framework for structured prediction.

The effectiveness of our search-based framework depends critically on the quality of the
search space and the cost function. Ideally we would like the search space to be organized
such that high quality outputs are as close as possible to the initial state, which allows the

1320

Structured Prediction via Output Space Search

search procedure to uncover those outputs more easily. In addition, it is critical that the
cost function is able to correctly score the generated outputs according to their true losses
and also to provide effective guidance to the chosen search procedure. A key contribution
of this work is to propose supervised learning mechanisms for producing both high-quality
search spaces and cost functions, which are described in the next two sections respectively.

3. Search Spaces Over Complete Outputs

In this section we describe two search spaces over structured outputs: 1) The Flipbit space,
a simple but sometimes effective baseline, and 2) The limited-discrepancy search (LDS)
space, which is intended to improve on the baseline. The key trainable element of each
search space is a recurrent classifier, which once trained will fully define each space. Thus,
we start this section by describing recurrent classifiers and how they are learned. Next we
describe how the learned recurrent classifier is used to define each of the search spaces by
defining the initial state and the successor function.

3.1 Recurrent Classifiers

A recurrent classifier h constructs structured outputs based on a series of discrete decisions.
This is formalized for a given structured-prediction problem by defining an appropriate
primitive search space over the possible sequences of decisions. It is important to keep in
mind the distinctions between primitive search spaces, which are used by recurrent classi-
fiers, and the search spaces over complete outputs (e.g., flipbit and LDS) upon which our
overall framework is built. A primitive search space is a 5-tuple 〈I, A, s, f, T 〉, where I is
a function that maps an input x to an initial search node, A is a finite set of actions (or
operators), s is the successor function that maps any search node and action to a successor
search node, f is a feature function from search nodes to real-valued feature vectors, and
T is the terminal state predicate that maps search nodes to {1, 0} indicating whether the
node is a terminal or not. Each terminal node in the search space corresponds to a com-
plete structured output, while non-terminal nodes correspond to partial structured outputs.
Thus, the decision process for constructing an output corresponds to selecting a sequence of
actions leading from the initial node to a terminal. A recurrent classifier is a function that
maps nodes of the primitive search space to actions, where typically the mapping is defined
in terms of a feature function f(n) that returns a feature vector for any search node. Thus,
given a recurrent classifier, we can produce an output for x by starting at the initial node
of the primitive space and following its decisions until reaching a terminal state.

As an example, for sequence labeling problems, the initial state for a given input se-
quence x is a node containing x with no labeled elements. The actions correspond to the
selection of individual labels, and the successor function adds the selected label in the next
position. Terminal nodes correspond to fully labeled sequences and the feature function
computes a feature vector based on the input and previously assigned labels. Figure 2
provides an illustration of the primitive search space for a simple handwriting recognition
problem. Each search state is a pair (x, y′) where x is the structured input (binary image
of the handwritten word) and y′ is a partial labeling of the word. The arcs in this space
correspond to search steps that label the characters in the input image in a left-to-right
order by extending y′ in all possible ways by one element. The terminal states or leaves of

1321

Doppa, Fern and Tadepalli

Figure 2: An example primitive search space for the handwriting recognition problem. Arcs
represent labeling actions. Solid arcs correspond to the labeling actions taken by
the recurrent classifier (optimal classifier in this case).

this space correspond to complete labelings of input x. The terminal state corresponding to
the correct output y is labeled as goal state. Highlighted nodes correspond to the trajectory
of the optimal recurrent classifier (i.e., a classifier that chooses correct action at every state
leading to the goal state).

The most basic approach to learning a recurrent classifier is via exact imitation of the
trajectory followed by the optimal classifier. For this, we assume that for any training input-
output pair (x, y) we can efficiently find an action sequence, or solution path, for producing
y from x. For example, the sequence of highlighted states in Figure 2 correspond to such a
solution path. The exact imitation approach learns a classifier by creating a classification
training example for each node n on the solution path of a structured example with feature
vector f(n) and label equal to the action followed by the path at n. Our experiments will use
recurrent classifiers trained via exact imitation (see Algorithm 1), but more sophisticated
methods such as Searn (Hal Daumé III et al., 2009) or DAgger (Ross et al., 2011) could
also be used.

1322

Structured Prediction via Output Space Search

Figure 3: An example Flipbit search space for the handwriting recognition problem

Algorithm 1 Recurrent Classifier Learning via Exact Imitation

Input: D = Training examples
Output: h, the recurrent classifier

1: Initialize the set of classification examples L = ∅
2: for each training example (x, y = y1y2 · · · yT) ∈ D do
3: for each search step t = 1 to T do
4: Compute features fn for search node n = (x, y1 · · · yt−1)
5: Add classification example (fn, yt) to L
6: end for
7: end for
8: h =Classifier-Learner(L) // learn classifier from all the classification examples
9: return learned classifier h

3.2 Flipbit Search Space

The Flipbit search space is a simple baseline space over complete outputs that uses a given
recurrent classifier h for bootstrapping the search. Each search state is represented by a
sequence of actions in the primitive space ending in a terminal node representing a complete
output. The initial search state corresponds to the actions selected by the classifier, so that
I(x) is equal to (x, h(x)), where h(x) is the complete output generated by the recurrent

1323

Doppa, Fern and Tadepalli

classifier. The search steps generated by the successor function can change the value of one
action at any sequence position of the parent state. In a sequence labeling problem, this
corresponds to initializing to the recurrent classifier output and then searching over flips of
individual labels. The flipbit space is often used by local search techniques (without the
classifier initialization) and is similar to the search space underlying Gibbs Sampling.

Figure 3 provides an illustration of the flipbit search space via the same handwriting
recognition example that was used earlier. Each search state consists of a complete input-
output pair and the complete output at every state differs from that of its parent by exactly
one label. The highlighted state corresponds to the one with true output y at the smallest
depth, which is equal to the number of errors in the output produced by the recurrent
classifier.

3.3 Limited-Discrepancy Search Space (LDS)

Notice that the Flipbit space only uses the recurrent classifier when initializing the search.
The motivation behind the Limited Discrepancy Search (LDS) space is to more aggressively
exploit the recurrent classifier in order to improve the search space quality. LDS was
originally introduced in the context of problem solving using heuristic search (Harvey and
Ginsberg, 1995). To put LDS in context, we will describe it in terms of using a classifier
for structured prediction given a primitive search space. If the learned classifier is accurate,
then the number of incorrect action selections will be relatively small. However, even a
small number of errors can propagate and cause poor outputs. The key idea behind LDS is
to realize that if the classifier response was corrected at the small number of critical errors,
then a much better output would be produced. LDS conducts a (shallow) search in the
space of possible corrections in the hope of finding a solution better than the original.

More formally, given a recurrent classifier h and its selected action sequence of length T ,
a discrepancy is a pair (i, a) where i ∈ {1, . . . , T} is the index of a decision step and a ∈ A
is an action, which generally is different from the choice of the classifier at step i. For any
set of discrepancies D we let h[D] be a new classifier that selects actions identically to h,
except that it returns action a at decision step i if (i, a) ∈ D. Thus, the discrepancies in D
can be viewed as overriding the preferred choice of h at particular decision steps, possibly
correcting errors, or introducing new errors. For a structured input x, we will let h[D](x)
denote the output returned by h[D] for the search space conditioned on x. At one extreme,
when D is empty, h[D](x) simply corresponds to the output produced by the recurrent
classifier. At the other extreme, when D specifies an action at each step, h[D](x) is not
influenced by h at all and is completely specified by the discrepancy set. In practice, when
h is reasonably accurate, we will be primarily interested in small discrepancy sets relative to
the size of the decision sequence. In particular, if the error rate of the classifier on individual
decisions is small, then the number of corrections needed to produce a correct output will
be correspondingly small. The problem is that we do not know where the corrections should
be made, and thus LDS conducts a search over the discrepancy sets, usually from small to
large sets.

Consider the handwriting recognition example in Figure 4. The actual output produced
by the classifier for the input image is praual, that is, output produced by introducing
zero discrepancies (see Figure 4(a)). If we introduce one discrepancy at the first position

1324

Structured Prediction via Output Space Search

(a)

(b)

Figure 4: Illustration of Limited Discrepancy Search: (a) Trajectory of the recurrent clas-
sifier with no discrepancies. Arcs with ‘X’ mark indicate incorrect actions chosen
by the classifier. (b) Trajectory of the recurrent classifier with a correction (dis-
crepancy) at the first error. A single correction allows the classifier to correct all
the remaining errors.

1325

Doppa, Fern and Tadepalli

Figure 5: An example Limited Discrepancy Search (LDS) space for the handwriting recog-
nition problem

(1, s) and run the classifier for the remaining labeling, we get struct which corrects all the
remaining mistakes (see Figure 4(b)). By introducing this single correction, the classifier
automatically corrected a number of other previous mistakes, which had been introduced
due to propagation of the first error. Thus only one discrepancy was required to produce
the correct output even though the original output contained many more errors.

Given a recurrent classifier h, we define the corresponding limited-discrepancy search
space over complete outputs Sh as follows. Each search state in the space is represented as
(x,D) where x is a structured input and D is a discrepancy set. We view a state (x,D)
as equivalent to the input-output state (x, h[D](x)). The initial state function I simply
returns (x, ∅) which corresponds to the original output of the recurrent classifier. The
successor function S for a state (x,D) returns the set of states of the form (x,D′), where
D′ is the same as D, but with an additional discrepancy. In this way, a path through the
LDS search space starts at the output generated by the recurrent classifier and traverses a
sequence of outputs that differ from the original by some number of discrepancies. Given a
reasonably accurate h, we expect that high-quality outputs will be generated at relatively
shallow depths of this search space and hence will be generated quickly.

Figure 5 illustrates1 the limited-discrepancy search space. Each state consists of the
input x, a discrepancy set D and the output produced by running the classifier with the
specified discrepancy set, that is, h[D](x). The root node has an empty discrepancy set.
Nodes at level one contain discrepancy sets of size one and nodes at level two contain

1. It may not be clear from this example, but we allow over-riding the discrepancies to provide the oppor-
tunity to recover from the search errors.

1326

Structured Prediction via Output Space Search

discrepancy sets of size two, and so on. The highlighted state corresponds to the smallest
depth state containing the true output.

3.4 Search Space Quality

Recall that in our experiments we train recurrent classifiers via exact imitation, which is
an extremely simple approach compared to more elaborate methods such as Searn. We
now show the desirable property that the “exact imitation accuracy” optimized by that
approach is directly related to the “quality” of the LDS search space, where quality relates
the expected amount of search needed to uncover the target output. More formally, given an
input-output pair (x, y) we define the LDS target depth for an example (x, y) and recurrent
classifier h to be the minimum depth of a state in the LDS space corresponding to y. Given
a distribution over input-output pairs we let d(h) denote the expected LDS target depth
of a classifier h. Intuitively, the depth of a state in a search space is highly related to the
amount of search time required to uncover the node (exponentially related for exhaustive
search, and at least linearly related for more greedy search). Thus, we will use d(h) as a
measure of the quality of the LDS space. We now relate d(h) to the classifier error rate.

For simplicity, assume that all decision sequences for the structured-prediction problem
have a fixed length T and consider an input-output pair (x, y), which has a corresponding
sequence of actions that generates y. Given a classifier h, we define its exact imitation
error on (x, y) to be e/T where e is the number of mistakes h makes at nodes along the
action sequence of (x, y) (i.e., how often does it disagree with the optimal classifier along
the path of the optimal classifier). Further, given a distribution over input-output pairs, we
let εei(h) denote the expected exact imitation error with respect to examples drawn from
the distribution. Note that the exact imitation training approach aims to learn a classifier
that minimizes εei(h). Also, let εr(h) denote the expected recurrent error of h, which is
the expectation over randomly drawn (x, y) of the Hamming distance between the action
sequence produced by h when applied to x and the true action sequence for (x, y). The
error εr(h) is the actual measure of performance of h when applied to structured prediction.
Recall that due to error propagation it is possible that εr(h) can be much worse than εei(h),
by as much as a factor of T (e.g., see Ross et al., 2011). The following proposition shows
that d(h) is related to εei(h) rather than the potentially much larger εr(h).

Proposition 1 For any classifier h and distribution over structured input-outputs, d(h) =
Tεei(h).

Proof For any example (x, y) the depth of y in Sh is equal to the number of imitation
errors made by h on (x, y). To see this, simply create a discrepancy set D that contains a
discrepancy at the position of each imitation error that corrects the error. This set is at a
depth equal to the number of imitation errors and the classifier h[D] will exactly produce
the action sequence that corresponds to y. The result follows by noting that the expected
number of imitation errors is equal to Tεei(h).

It is illustrative to compare this result with the Flipbit space. Let d′(h) be the expected
target depth in the Flipbit space of a randomly drawn (x, y). It is easy to see that d′(h) =
Tεr(h) since each search step can only correct a single error and the expected number of

1327

Doppa, Fern and Tadepalli

errors of the action sequence at the initial node is Tεr(h). Since in practice and in theory
εr(h) can be substantially larger than εei(h) (by as much as a factor of T), this shows that
the LDS space will often be superior to the baseline Flipbit space in terms of the expected
target depth. For example, the target depth of the example LDS space in Figure 5 is one
and is much smaller than the target depth of the example flipbit space in Figure 3, which is
equal to five. Since this depth relates to the difficulty of search and cost-function learning,
we can expect the LDS space to be advantageous when εr(h) is larger than εei(h). In our
experiments, we will see that this is indeed the case.

3.5 Sparse Search Spaces

In this section, we first discuss some of the scalability issues that arise in our framework
due to the use of LDS and Flipbit spaces as defined above. Next, we describe how to define
sparse versions of these search spaces to improve the efficiency of our approach.

In our search-based framework, the most computationally demanding part is the gen-
eration of candidate states during the search process. Given a parent state, the number of
successor states for both the LDS and flipbit spaces is equal to T · (L − 1) where T is the
size of the structured output and L is the number of primitive action choices (the number of
labels for sequence labeling problems). When T and/or L is large the time required for this
expansion and computing the feature vector for each successor can be non-trivial. While we
cannot control T , since that is dictated by the size of the input, we can consider reducing
the effective size of L via pruning. Intuitively, for many sequence positions of a structured
output, there will often be labels that can be easily determined to be bad by looking at
the confidence of the recurrent classifier. By explicitly pruning those labels from consider-
ation we can arrive at a sparse successor set that requires significantly less computation to
generate.

More formally, our approach for defining a sparse successor function assumes that the
recurrent classifier used to define the LDS and flipbit spaces produces confidence scores,
rather than just simple classifications. This allows us to provide a ranking of the potential
actions, or labels, at each position of the structured output. Using this ranking information
it is straightforward to define sparse versions of the LDS and flipbit successor function by
only considering successors corresponding to the top k labels at each sequence position. For
the flipbit space this means that successors correspond to any way of changing the choice
of the recurrent classifier at a sequence position to one of the top k labels at that position.
For the LDS space, this means that we only consider introducing discrepancies at position
i involving the top k labels at position i. In this way, the number of successors of a state
in either space will be T · k rather than T · (L − 1). Therefore, these sparse search spaces
will lead to significant speed improvements for problems with large L (e.g., POS tagging,
Handwriting recognition, and Phoneme prediction).

The potential disadvantage of using a small value of k is that accuracy could be hurt
if good solution paths are pruned away due to inaccuracy of the classifier’s confidence
estimates. Thus, k provides a way to trade-off prediction speed versus accuracy. As we
will show later in the experiments, we are generally able to find values of k that lead to
significant speedups with little loss in accuracy.

1328

Structured Prediction via Output Space Search

4. Cost Function Learning

In this section, we describe a generic framework for cost function learning that is applicable
for a wide range of search spaces and search strategies. This approach is motivated by our
empirical observation that for a variety of structured prediction problems, we can uncover
high quality outputs if we guide the output-space search using the true loss function as
an oracle cost function to guide the search (close to zero error with both LDS and Flipbit
spaces). Since the loss function depends on correct target output y∗, which is unknown
at test time, we aim to learn a cost function that mimics this oracle search behavior on
the training data without requiring knowledge of y∗. With an appropriate choice of hy-
pothesis space of cost functions, good performance on the training data translates to good
performance on the test data.

4.1 Cost Function Learning via Imitation Learning

Recall that in our output space search framework, the role of the cost function C is to eval-
uate the complete outputs that are uncovered by the search procedure. These evaluations
may be used internally by the search procedure as a type of heuristic guidance and also used
when the time bound is reached to return the least cost output that has been uncovered as
the prediction. Based on our empirical observations, it is very often the case that the true
loss function serves these roles very effectively, which might suggest a goal of learning a cost
function that is approximately equal to the true loss function L over all possible outputs.
However, this objective will often be impractical and fortunately is unnecessary. In partic-
ular, the learned cost function need not approximate the true loss function uniformly over
the output space, but only needs to make the decisions that are sufficient for leading the
time-bounded search to behave as if it were using the true loss function. Often this allows
for a much less constrained learning problem, for example, C may only need to preserve the
rankings among certain outputs, rather than exactly matching the values of L. The key
idea behind our cost learning approach is to learn such a sufficient C. The main assumptions
made by this approach are: 1) the true loss function can provide effective guidance to the
search procedure by making a series of ranking decisions, and 2) we can learn to imitate
those ranking decisions sufficiently well.

Our goal now is to learn a cost function that causes the search to behave as if it were
using loss function L for guiding the search and selecting the final output. We propose
to formulate and solve this problem in the framework of imitation learning. In traditional
imitation learning, the goal of the learner is to learn to imitate the behavior of an expert
performing a sequential-decision making task in a way that generalizes to similar tasks or
situations. Typically this is done by collecting a set of trajectories of the expert’s behavior
on a set of training tasks. Then supervised learning is used to find a policy that can
replicate the decisions made on those trajectories. Often the supervised learning problem
corresponds to learning a classifier or policy from states to actions and off-the-shelf tools
can be used.

In our cost function learning problem, the expert corresponds to the search procedure
A using the loss function L for a search time bound τmax. The behavior that we would like
to imitate is the internal behavior of this search procedure, which consists of all decisions
made during the search including the final decision of which output to return. Thus, the

1329

Doppa, Fern and Tadepalli

goal of cost function learning is to learn the weights of C so that this behavior is replicated
when it is used by the search procedure in place of L. We propose to achieve this goal
by directly monitoring the expert search process on all of the structured training examples
and generating the set of constraints on L that were responsible for the observed decisions.
Then we attempt to learn a C that satisfies the constraints using an optimization procedure.

Algorithm 2 Cost Function Learning via Exact Imitation

Input: D = Training examples, (I, S) = Search space definition, L = Loss function, A =
Rank-based search procedure, τmax = search time bound
Output: C, the cost function

1: Initialize the set of ranking examples R = ∅
2: for each training example (x, y∗) ∈ D do
3: s0 = I(x) // initial state of the search tree
4: M0 = {s0} // set of open nodes in the internal memory of the search procedure
5: ybest =OutputOf(s0) // best loss output so far
6: for each search step t = 1 to τmax do
7: Select the state(s) to expand: Nt =Select(A, L,Mt−1)
8: Expand every state s ∈ Nt using the successor function S: Ct =Expand(Nt, S)
9: Prune states and update the internal memory state of the search procedure:

Mt =Prune(A, L,Mt−1 ∪ Ct \Nt)
10: Update the best loss output ybest // track the best output
11: Generate ranking examples Rt to imitate this search step
12: Add ranking examples Rt to R: R = R∪Rt // aggregation of training data
13: end for
14: end for
15: C =Rank-Learner(R) // learn cost function from all the ranking examples
16: return learned cost function C

Algorithm 2 describes our generic approach for cost function learning via exact imitation
of searches conducted by the loss function. It is applicable to a wide-range of search spaces,
search procedures and loss functions. The learning algorithm takes as input: 1) D =
{(x, y∗)}, set of training examples for a structured prediction problem (e.g., handwriting
recognition); 2) So = (I, S), definition of a search space over complete outputs (e.g., LDS
space), where I is the initial state function and S is the successor function; 3) L, a task
loss function defined over complete outputs (e.g., hamming loss); 4) A, a rank-based search
procedure (e.g., greedy search); 5) τmax, the search time bound (e.g., number of search
steps).

First, it runs the search procedure A with the given loss function L, in the search space
So instantiated for every training example (x, y∗), upto the maximum time bound τmax
(steps 3-10), and generates a set of pair-wise ranking examples that need to be satisfied to
be able to imitate the search behavior with loss function (step 11). Second, the aggregate set
of ranking examples collected over all the training examples is then given to a rank-learning
algorithm (e.g., Perceptron or SVM-Rank) to learn the weights of the cost function (step
15).

1330

Structured Prediction via Output Space Search

The algorithmic description assumes a best-first search procedure with some level of
pruning (e.g., greedy search and best-first beam search). These search procedures typically
involve three key steps: 1) Selection, 2) Expansion and 3) Pruning. During selection, the
search procedure selects one or more2 open nodes from its internal memory for expansion
(step 7), and expands all the selected nodes to generate the candidate set (step 8). It retains
only a subset of all the open nodes after expansion in its internal memory and prunes away
all the remaining ones (step 9). For example, greedy search maintains only the best node
and best-first beam search with beam width b retains the best b nodes.

The most important step in our cost function learning algorithm is the generation of
ranking examples to imitate the search procedure (step 11). In what follows, we first for-
malize ranking-based search that allows us to specify what these pairwise ranking examples
are and then, give a generic description of “sufficient” pair-wise decisions to imitate the
search, and illustrate them for greedy search and best-first beam search through a simple
example.

4.2 Ranking-based Search

We now precisely define the notion of “guiding the search” with a loss function. If the loss
function can be invoked arbitrarily by the search procedure, for example, evaluating and
comparing arbitrary expressions involving the cost, then matching its performance would
require the cost function to approximate it arbitrarily closely, which is quite demanding in
most cases. Hence, we restrict ourselves to ranking-based search defined as follows.

Let P be an anytime search procedure that takes an input x ∈ X , calls a cost function C
over the pairs from X × Y some number of times and outputs a structured output ybest ∈ Y.
We say that P is a ranking-based search procedure if the results of calls to C are only used
to compare the relative values for different pairs (x, y) and (x, y′) with a fixed tie breaker.
Each such comparison with tie-breaking is called a ranking decision and is characterized by
the tuple (x, y, y′, d), where d is a binary decision that indicates y is a better output than
y′ for input x. When requested, it returns the best output ybest encountered thus far as
evaluated by the cost function.

Note that the above constraints prohibit the search procedure from being sensitive to
the absolute values of the cost function for particular search states (x, y) pairs, and only
consider their relative values. Many typical search strategies such as greedy search, best-first
search, and beam search satisfy this property.

A run of a ranking-based search is a sequence x,m1, o1, . . . ,mn, on, y, where x is the
input to the predictor, y is the output, and mi is the internal memory state of the predictor
just before the ith call to the ranking function. oi is the ith ranking decision (x, yi, y

′
i, di).

Given a hypothesis space H of cost functions, the cost function learning works as follows.
It runs the search procedure P on each training example (x, y∗) for a maximum search
time bound of τmax substituting the loss function L(x, y, y∗) for the cost function C(x, y).
For each run, it records the set of all ranking decisions (x, yi, y

′
i, di). The set of all ranking

decisions from all the runs is given as input to a binary classifier, which finds a cost function
C ∈ H, consistent with the set of all such ranking decisions.

2. Breadth-first beam search expands all nodes in the beam.

1331

Doppa, Fern and Tadepalli

The ranking-based search can be viewed as a Markov Decision Process (MDP), where
the internal states of the search procedure correspond to the states of the MDP, and the
ranking decision is an action. The following theorem can be proved by adapting the proof
of Fern et al. (2006) with minor changes, for example, no discounting, and two actions, and
applies to stochastic as well as deterministic search procedures.

Theorem 2 Let H be a finite class of ranking functions. For any target ranking function
r ∈ H, and any set of m = 1

ε ln |H|δ independent runs of a rank-based search procedure P
guided by r drawn from a target distribution over inputs, there is a 1 − δ probability that
every r̂ ∈ H that is consistent with the runs satisfies L(r̂) ≤ L(r) + 2εLmax, where Lmax is
the maximum possible loss of any output and L(t) is the expected loss of running the search
procedure P with the ranking function t ∈ H.

Although the theoretical result assumes that the target cost function h is in the hypoth-
esis space, in practice this is not guaranteed as the set of generated constraints might be
quite large and diverse. To help reduce the complexity of the learning problem, in practice
we only learn from a smaller set of pair-wise ranking decisions that are sufficient (see below)
to preserve the best output that is encountered during search at any time step.

4.3 Sufficient Pairwise Decisions

Above we noted that we only need to collect and learn to imitate the “sufficient” pairwise
decisions encountered during search. We say that a set of constraints is sufficient for a struc-
tured training example (x, y∗), if any cost function that is consistent with the constraints
causes the search to follow the same trajectory (sequence of states) and retains the best
loss output that is encountered during search so far for input x. The precise specification of
these constraints depends on the actual search procedure that is being used. For rank-based
search procedures, the sufficient constraints can be categorized into three types:

1. Selection constraints, which ensure that the search node(s) from the internal memory
state that will be expanded in the next search step is (are) ranked better than all
other nodes.

2. Pruning constraints, which ensure that the internal memory state (set of search nodes)
of the search procedure is preserved at every search step. More specifically, these
constraints involve ranking every search node in the internal memory state better
(lower C-value) than those that are pruned.

3. Anytime constraints, which ensure that the search node corresponding to the best loss
output that is encountered during search so far is ranked better than every other node
that is uncovered by the search procedure.

Below, we will illustrate these constraints concretely for greedy search and best-first
beam search noting that similar formulations for other rank-based search procedures is
straightforward.

Greedy Search: This is the most basic rank-based search procedure. For a given input
x, it traverses the search space by selecting the next state as the successor of the current

1332

Structured Prediction via Output Space Search

Figure 6: An example search tree that illustrates greedy search with loss function. Each
node represents a complete input-output pair and can be evaluated using the loss
function. The highlighted nodes correspond to the trajectory of greedy search
guided by the loss function.

state that looks best according to the cost function C (loss function L during training). In
particular, if si is the search state at step i, greedy search selects si+1 = argmins∈S(si)C(s),
where s0 = I(x). In greedy search, the internal memory state of the search procedure at
step i consists of only the best open (unexpanded) node si. Additionally, it keeps track of
the best node sbesti uncovered so far as evaluated by the cost function.

Let (x, yi) correspond to the input-output pair associated3 with state si. Since greedy
search maintains only a single open node si in its internal memory at every search step i,
there are no selection constraints. Let Ci+1 be the candidate set after expanding state si,
that is, Ci+1 = S(si). Let si+1 be the best node in the candidate set Ci+1 as evaluated by
the loss function, that is, si+1 = argmins∈Ci+1L(s). As greedy search prunes all the nodes
in the candidate set other than si+1, pruning constraints need to ensure that si+1 is ranked
better than all the other nodes in Ci+1. Therefore, we include one ranking constraint for
every node (x, y) ∈ Ci+1 \ (x, yi+1) such that C(x, yi+1) < C(x, y). As part of the anytime
constraints, we introduce a constraint between (x, ybesti) and (x, yi+1) according to their
losses. For example, if L(x, yi+1, y

∗) < L(x, ybesti , y∗), we introduce a ranking constraint
such that C(x, yi+1) < C(x, ybesti) and vice versa.

We will now illustrate these ranking constraints through an example. Figure 6 shows
an example search tree of depth two with associated losses for every search node. The
highlighted nodes correspond to the trajectory of greedy search with loss function that our
learner has to imitate. At first search step, {C(3) < C(2), C(3) < C(4)}, and {C(3) < C(1)}
are the pruning and anytime constraints respectively. Similarly, {C(10) < C(8), C(10) < C(9)},
and {C(3) < C(10)} form the pruning and anytime constraints at second search step. There-

3. We use input-output pair (x, yi) and state si inter-changeably for the sake of brevity.

1333

Doppa, Fern and Tadepalli

fore, the aggregate set of constraints needed to imitate the greedy search behavior shown
in Figure 6 are:
{C(3) < C(2), C(3) < C(4), C(3) < C(1), C(10) < C(8), C(10) < C(9), C(3) < C(10)}.

Best-first Beam Search: This is a more sophisticated search procedure compared to
greedy search. Best-first beam search maintains a set of b open nodes Bi in its internal
memory at every search step i, where b is the beam width. Greedy search is a special case
of beam search, where beam width b equals 1. For a given input x, it traverses the search
space by expanding the best node si in the current beam Bi (i.e., si = argmins∈BiC(s))
and computes the next beam Bi+1 by retaining the best b open nodes after expanding si,
where B0 = {I(x)}.

Best-first beam search selects the best node si at every search step i from its beam Bi
for expansion, that is, si = argmins∈BiL(s). Therefore, selection constraints need to ensure
that si is ranked better than all the other nodes in beam Bi. Therefore, we include one
ranking constraint for every node (x, y) ∈ Bi \ (x, yi) such that C(x, yi) < C(x, y). Let Ci+1

be the candidate set after expanding state si, that is, Ci+1 = S(si)∪Bi \ si and let Bi+1 be
the best b nodes in the candidate set according to the loss function. As best-first beam search
prunes all the nodes in the candidate set other than those in Bi+1, pruning constraints need
to ensure that every node in Bi+1 is ranked better than every node in Ci+1\Bi+1. Therefore,
we generate one ranking example for every pair of nodes ((x, yb) , (x, y)) ∈ Bi+1 × Ci+1 \
Bi+1, requiring that C(x, yb) < C(x, y). Similar to greedy search, as part of the anytime
constraints, we introduce a ranking constraint between (x, ybesti) and (x, yi+1) according to
their losses.

We will now illustrate the above ranking constraints for best-first beam search through
the example search tree in Figure 6. Let us consider best-first beam search with beam width
b = 2 and let (B0, B1, B2) correspond to the beam trajectory of search with loss function
that needs to be imitated by our learner, where B0 = {1}, B1 = {3, 4} and B2 = {4, 10}.
At first search step, there are no selection constraints as B0 contains only a single node, and
{C(3) < C(2), C(4) < C(2)} and {C(3) < C(1)} are the pruning and anytime constraints re-
spectively. Similarly, {C(3) < C(4)}, {C(4) < C(8), C(4) < C(9), C(10) < C(8), C(10) < C(9)}
and {C(3) < C(10)} form the selection, pruning and anytime constraints at second search
step.

The only thing that remains to be explained in Algorithm 2 is, how to learn a cost
function C from the aggregate set of ranking examples R (step 15). Below we describe this
rank learning procedure.

4.4 Rank Learner

We can use any off-the-shelf rank-learning algorithm (e.g., Perceptron, SVM-Rank) as our
base learner to learn the cost function from the set of ranking examples R. In our specific
implementation we employed the online Passive-Aggressive (PA) algorithm (Crammer et al.,
2006) as our base learner.4 Training was conducted for 50 iterations in all of our experiments.

4. In the conference version of this paper, we employed the perceptron learner and followed a training
approach that slightly differs from Algorithm 2. Specifically, the ranking examples for exact imitation
were generated until reaching y∗, the correct output, and after that we only generate training examples
to rank y∗ higher than the best cost open node(s) as evaluated by the current cost function and continue
the search guided by the cost function. This particular training approach may be beneficial (results in

1334

Structured Prediction via Output Space Search

PA is an online large-margin algorithm, which makes several passes over the training
examples R, and updates the weights whenever it encounters a ranking error. Recall that
each ranking example in R is of the form C(x, y1) < C(x, y2), where x is a structured
input with target output y∗, y1 and y2 are potential outputs for x such that L(x, y1, y

∗) <
L(x, y2, y

∗). Let ∆ > 0 be the difference between the losses of the two outputs involved
in a ranking example. We experimented with PA variants that use margin scaling (margin
scaled by ∆) and slack scaling (errors weighted by ∆) (Tsochantaridis et al., 2005). Since
margin scaling performed slightly better than slack scaling, we report the results of the PA
variant that employs margin scaling. Below we give the full details of the margin scaling
update.

Let wt be the current weights of the cost function. If there is a ranking error, that is,
wt · Φ(x, y2) − wt · Φ(x, y1) <

√
∆, the new weights wt+1 that corrects the error can be

obtained using the following equation.5

wt+1 = wt + τt(Φ(x, y2)− Φ(x, y1))

where the learning rate τt is given by

τt =
wt · Φ(x, y1)− wt · Φ(x, y2) +

√
∆

‖Φ(x, y2)− Φ(x, y1)‖2
.

This specific update has been previously used for cost-sensitive multiclass classification
(Crammer et al., 2006) (See Equation 51) and for structured output problems (Keshet et al.,
2005) (See Equation 7).

4.5 Summary of Overall Training Approach

Our search-based framework thus consists of two main learning components: 1) the search
space learner, and 2) the cost function learner. We train them sequentially. First, we train
the recurrent classifier as described in Section 3.1, which is used to define either the LDS or
flipbit search spaces (see Section 3). Second, we train the cost function C to score the outputs
for a given combination of search space over complete outputs So and a search procedure A
as described in Algorithm 2. More specifically, for every training example (x, y∗), we run the
search procedure A on the search space So instantiated for input x, using the loss function L
for the specified time bound τ , and generate imitation training data (ranking examples) for
the cost function learning (see Section 4.3). We give the aggregate set of imitation training
data to a rank learner to train the cost function C as described in Section 4.4.

the conference paper are slightly better than those presented in this article and in practice, breaking
ties via cost function is better than employing a random tie-breaker), but it is computationally very
expensive (requires the ranking examples to be generated on-the-fly during each iteration of online
training). However, this training methodology can be both beneficial and practical when applied on
sparse search spaces.

5. Crammer et al. (2006) prove bounds on the cumulative squared loss and therefore, they employ this
particular margin constraint with

√
∆.

1335

Doppa, Fern and Tadepalli

5. Empirical Results

In this section we empirically investigate our approach along several dimensions and compare
it against the state-of-the-art in structured prediction.

5.1 Experimental Setup

We evaluate our approach on the following six structured prediction problems including five
benchmark sequence labeling problems and a 2D image labeling problem.

• Handwriting Recognition (HW). The input is a sequence of binary-segmented
handwritten letters and the output is the corresponding character sequence [a− z]+.
This data set contains roughly 6600 examples divided into 10 folds (Taskar et al.,
2003). We consider two different variants of this task as in Hal Daumé III et al.
(2009). For the HW-Small version of the problem,, we employ one fold for training
and the remaining 9 folds for testing, and vice-versa in HW-Large.

• NETtalk Stress. This is a text-to-speech mapping problem, where the task is to
assign one of the 5 stress labels to each letter of a word (Sejnowski and Rosenberg,
1987). There are 1000 training words and 1000 test words in the standard data set.
We use a sliding window of size 3 for observational features.

• NETtalk Phoneme. This is similar to NETtalk Stress except that the task is to
assign one of the 51 phoneme labels to each letter of a word.

• Chunking. The goal in this task is to syntactically chunk English sentences into
meaningful segments. We consider the full syntactic chunking task and use the data
set from the CONLL 2000 shared task,6 which consists of 8936 sentences of training
data and 2012 sentences of test data.

• POS tagging. We consider the tagging problem for the English language, where the
goal is to assign the part-of-speech tag to each word in a sentence. The standard data
from Wall Street Journal (WSJ) corpus7 was used in our experiments.

• Scene labeling. This data set contains 700 images of outdoor scenes (Vogel and
Schiele, 2007). Each image is divided into patches by placing a regular grid of size
10×10 over the entire image, where each patch takes one of the 9 semantic labels (sky,
water, grass, trunks, foliage, field, rocks, flowers, sand). Simple appearance features
including color, texture and position are used to represent each patch. Training was
performed with 600 images, and the remaining 100 images were used for testing.

We used F1 loss as the loss function for the chunking task and employed Hamming loss for
all other tasks.

For all sequence labeling problems, the recurrent classifier labels a sequence using a
left-to-right ordering and for scene labeling uses an ordering of top-left to right-bottom in
a row-wise raster form. To train the recurrent classifiers, the output label of the previous

6. CONLL task can be found at http://www.cnts.ua.ac.be/conll2000/chunking/.
7. WSJ corpus can be found at http://www.cis.upenn.edu/~treebank/.

1336

http://www.cnts.ua.ac.be/conll2000/chunking/
http://www.cis.upenn.edu/~treebank/

Structured Prediction via Output Space Search

token is used as a feature to predict the label of the current token for all sequence labeling
problems with the exception of chunking and POS tagging, where labels of the two previous
tokens were used. For scene labeling, the labels of neighborhood (top and left) patches were
used. In all our experiments, we train the recurrent classifier using exact imitation (see
Section 3) with the Perceptron algorithm for 100 iterations with a learning rate of 1.

Unless otherwise indicated, the cost functions learned over input-output pairs are sec-
ond order, meaning that they have features over neighboring label pairs and triples along
with features of the structured input. For the scene labeling task, we consider pairs and
triples along both horizontal and vertical directions. We trained the cost function via exact
imitation as described in Section 4 using 50 iterations of Passive-Aggressive training.

5.2 Comparison to State-of-the-Art

We experimented with several instantiations of our framework. First, we consider our
framework using a greedy search procedure for both the LDS and flipbit spaces, denoted
by LDS-Greedy and FB-Greedy. Unless otherwise noted, in both training and testing,
the greedy search was run for a number of steps equal to the length of the sequence.
Using longer runs did not impact results significantly. Second, we performed experiments
with best-first beam search for different beam widths and search steps, but we didn’t see
significant improvements over the results with greedy search. Therefore, we do not report
these results. Third, to see the impact of adding additional search at test time to a greedily
trained cost function, we also used the cost function learned by LDS-Greedy and FB-
Greedy in the context of a best-first beam search (beam width = 100) at test time in
both the LDS and flipbit spaces, denoted by LDS-BST(greedy) and FB-BST(greedy).
We also report the performance of using our trained recurrent classifier (Recurrent) to
make predictions, which is equivalent to performing no search since both search spaces are
initialized to the recurrent classifier output. Finally, we also report the exact imitation
accuracy (100 ∗ (1 − εei)), which as described earlier (see Section 3) is the accuracy being
directly optimized by the recurrent classifier and is related to the structure of the flipbit
and LDS spaces.

We compare our results with other structured prediction algorithms including CRFs
(Lafferty et al., 2001), SVM-Struct (Tsochantaridis et al., 2004), SEARN (Hal Daumé
III et al., 2009) and CASCADES (Weiss and Taskar, 2010). For these algorithms, we
report the best published results whenever available. In the remaining cases, we used pub-
licly available code or our own implementation to generate those results. Ten percent of
the training data was used to tune the hyper-parameters. CRFs were trained using SGD.8

SVMhmm was used to train SVM-Struct and the value of the parameter C was chosen
from

{
10−4, 10−3, · · · , 103, 104

}
based on the validation set. Cascades were trained using

the implementation9 provided by the authors, which can be used for sequence labeling
problems with Hamming loss. We present two different results for Cascades: 1) Cas-
cades(2012) employs the version of the code at the original time this work was done, 2)
Cascades(updated) employs the most recent updated10 version of the Cascades training

8. SGD code can be found at http://leon.bottou.org/projects/sgd.
9. Cascades code can be found at http://code.google.com/p/structured-cascades/.

10. Most recent based on personal communication with the author.

1337

http://leon.bottou.org/projects/sgd
http://code.google.com/p/structured-cascades/

Doppa, Fern and Tadepalli

Algorithms Data Sets
HW-Small HW-Large Stress Phoneme Chunk POS Scene labeling

a. Comparison to state-of-the-art
100 ∗ (1− εei) 73.9 83.99 77.97 77.09 88.84 92.5 78.61
Recurrent 65.67 74.87 72.82 73.58 88.51 92.15 56.64

LDS-Greedy 82.59 92.59 78.85 79.09 94.62 96.93 72.95
FB-Greedy 80.3 89.38 77.93 78.43 93.96 96.87 67.67

CRF 80.03 86.89 78.52 78.91 94.77 96.84 -
SVM-Struct 80.36 87.51 77.99 78.3 93.64 96.81 -

Searn 82.12B 90.58B 76.15 77.26 94.44B 95.83 62.31
Cascades(2012) 69.62 87.95 77.18 69.77 - 96.82 -

Cascades(updated) 86.98 96.78 79.59 82.44 - 96.82 -

b. Results with Additional Search
LDS-BST(greedy) 83.81+ 93.17+ 78.76 78.87 94.63 96.95 74.12+

FB-BST(greedy) 81.19+ 90.21+ 77.61 78.32 93.98 96.91 69.23+

c. Results with DAgger
LDS-Greedy 83.62+ 93.24+ 79.81+ 79.97+ 94.61 96.91 74.27+

FB-Greedy 81.28+ 90.45+ 78.96+ 79.23+ 93.94 96.89 69.63+

d. Results with Third-Order Features
LDS-Greedy 85.85+ 95.08+ 80.21+ 81.61+ 94.63 96.97 74.71+

FB-Greedy 83.18+ 92.66+ 79.23+ 80.65+ 94.17+ 96.94 69.81+

Cascades(2012) 81.87+ 93.76+ 73.48 68.98 - 96.84 -
Cascades(updated) 89.18+ 97.84+ 80.49+ 82.59+ - 96.84 -

Table 1: Prediction accuracy results of different structured prediction algorithms and vari-
ations of our framework. A + indicates that the particular variation being consid-
ered resulted in improvement.

code, which significantly improves on the Cascades(2012). For Searn we report the best
published results with a linear classifier (i.e., linear SVMs instead of Perceptron) as indi-
cated by B in the table and otherwise ran our own implementation of Searn with optimal
approximation as described in Hal Daumé III et al. (2009) and optimized the interpolation
parameter β over the validation set. Note that we do not compare our results to SampleR-
ank due to the fact that its performance is highly dependent on the hand-designed proposal
distribution, which varies from one domain to another.

Table 1a shows the prediction accuracies of different algorithms (‘-’ indicates that we
were not able to generate results for those cases as the software package was not directly
applicable). Across all benchmarks we see that the most basic instantiations of our frame-
work, LDS-Greedy and FB-Greedy, produce results that are comparable or significantly
better than all the other methods excluding11 Cascades(updated). This is particularly
interesting, since these results are achieved using a relatively small amount of search and
the simplest search method, and results tend to be the same or better for our other instan-
tiations. A likely reason that we are outperforming CRFs and SVM-Struct is that we use

11. A followup work (Doppa et al., 2014) that employs two distinct functions for guiding the search
and scoring the candidate outputs generated during search performs comparably or better than Cas-
cades(updated) across all benchmarks.

1338

Structured Prediction via Output Space Search

second-order features while those approaches use first-order features, since exact inference
with higher order features is too costly, especially during training. As stated earlier, one
of the advantages of our approach is that we can use higher-order features with negligible
overhead.

Finally, the improvement in the scene labeling domain is the most significant, where
Searn achieves an accuracy of 62.31 versus 72.95 for LDS-Greedy. In this domain, most
prior work has considered the simpler task of classifying entire images into one of a set
of discrete classes, but to the best of our knowledge no one has considered a structured
prediction approach for patch classification. The only reported result for patch classification
that we are aware of Vogel and Schiele (2007) obtains an accuracy of 71.7 (versus our
best performance of 74.27) with non-linear SVMs trained i.i.d. on patches using more
sophisticated features than ours.

5.3 Framework Variations

Adding More Search. Table 1b shows that LDS-BST(greedy) and FB-BST(greedy) are gen-
erally the same or better than LDS-Greedy and FB-Greedy, with the biggest improvements
in handwriting recognition task and the challenging scene labeling (‘+’ indicates improve-
ment). Results improve from 82.59 to 83.81 in HW-Small, from 92.59 to 93.17 in HW-Large
and from 72.95 to 74.12 in the scene labeling task. This shows that it can be an effective
strategy to train using greedy search and then insert that cost function into a more elab-
orate search at test time for further improvement. As noted earlier, in the domains we
considered, training with a more sophisticated search procedure like beam search did not
improve results over greedy search. This demonstrates the efficiency of our search spaces
and can be considered as a positive result.

Exact Imitation vs. DAgger. Our experiments show that the simple exact imitation
approach for cost function training performs extremely well on our problems. However,
cost functions trained via exact imitation can be prone to error propagation (Kääriäinen,
2006; Ross and Bagnell, 2010). It is interesting to consider whether addressing this issue
might improve results further. Therefore, we experimented with DAgger (Ross et al.,
2011), a more advanced imitation training regime that addresses error propagation through
on-line training and expert demonstrations. At a high-level, DAgger learns on-line from
an aggregate data set collected over several iterations. The first iteration corresponds to
the data produced by exact imitation of the expert. Further iterations correspond to the
actions suggested by the expert on trajectories produced by a mixture of the learned policy
from the previous iteration and the expert policy. This allows DAgger to learn from states
visited by its possibly erroneous learned policy and correct its mistakes using expert input.
In our adaptation, the “learned policy” corresponds to the decisions made by the greedy
search guided by the cost function as the heuristic, and the “expert policy” corresponds
to the decisions made by greedy search guided by the loss function. Ross et al. (2011)
show that during the iterations of DAgger just using the learned policy without mixing
the expert policy performs very well across diverse domains. Therefore, we use the same
setting in our DAgger experiments.

We picked the best cost function based on a validation set after 5 iterations of DAgger,
noting that no noticeable improvement was observed after 5 iterations. Table 1c shows the

1339

Doppa, Fern and Tadepalli

results of LDS-Greedy and FB-Greedy obtained by training with DAgger. We see that
there are some improvements over the cost function trained with exact imitation, although
the improvements are quite small (‘+’ indicates improvement). As we will show later, we
get much more positive results for DAgger in the context of pruned search spaces.

Higher-Order Features. One of the advantages of our framework compared to other
approaches for structured prediction is the ability to use more expressive feature spaces
with negligible computational overhead. Table 1d shows results using third-order features
(compared to second-order results in Table 1a) for LDS-Greedy, FB-Greedy and Cascades.12

Note that it is not practical to run the other methods (e.g., CRFs and SVM-Struct) us-
ing third-order features due to the substantial increase in inference time. The results of
LDS-Greedy and FB-Greedy with third-order features improve over the corresponding re-
sults with second-order features across the board (‘+’ indicates improvement). Finally, we
note that while Cascades(updated) is able to improve performance by using third-order
features, the improvement is negligible for phoneme prediction.

LDS space vs. Flipbit space. We see that generally the instances of our method that
use the LDS space outperform the corresponding instances that use the Flipbit space.
Interestingly, if there is a large difference between the exact imitation accuracy 1− εei and
the recurrent classifier accuracy (e.g., Handwriting and Scene labeling), then the LDS space
is significantly better than the flip-bit space. This is particularly true in our most complex
problem of scene labeling where this difference is quite large, as is the gap between LDS
and Flipbit. These results show the benefit of using the LDS space and empirically confirm
our observations in Section 3 that the quality of the LDS and Flipbit spaces are related to
the exact imitation and recurrent error rates respectively.

5.4 Results with Sparse Search Spaces

Recall that sparse search spaces are parameterized by k, the sparsity parameter (see Sec-
tion 3.5). Small values of k lead to proportionately smaller branching factors for search. We
perform experiments for different values of k to evaluate the effectiveness of sparse search
spaces (i.e., LDS-k and FB-k). For example, LDS-2 and FB-2 correspond to the config-
urations where k equals 2. We only report the results for k = 2 and k = 4 noting that
we didn’t see major improvements for larger values of k. For all these experiments, we run
greedy search for a number of steps equal to the length of the sequence during both training
and testing. For greedy search, the computation time can be expected to be linearly related
to k since the main computational bottleneck is the generation of T · k successors for each
node encountered during the search.

Results of Cost Function Trained on Complete Search Spaces. Table 2b gives the results
of using a cost function trained on a complete (non-sparse) search space (as in the previous
experiments) to make predictions via the pruned spaces. As we can see, the gap between
the results of LDS-2 and FB-2 and the corresponding results obtained using complete search
space (see Table 2a) is very small. This means that we get huge speed improvements during
testing with only a small loss in accuracy (more details on speedup below). The accuracy
loss reduces with less sparse search spaces (LDS-4 and FB-4), but comes at the expense of
more computation time.

12. Cascades code can be found at http://code.google.com/p/structured-cascades/.

1340

http://code.google.com/p/structured-cascades/

Structured Prediction via Output Space Search

Algorithms Data Sets

HW-Small HW-Large Stress Phoneme Chunk POS Scene labeling

a. Accuracy results of training and testing on complete search space

LDS 82.59 92.59 78.85 79.09 94.62 96.93 72.95

FB 80.3 89.38 77.93 78.43 93.96 96.87 67.67

b. Accuracy results of cost function trained on complete search space

LDS-2 81.02 91.38 78.62 79.79 93.95 96.13 69.87

FB-2 79.47 86.95 77.82 79.23 93.18 96.08 65.43

LDS-4 82.55 92.45 78.85 79.97 94.55 96.77 72.11

FB-4 80.43 88.40 77.93 79.23 94.23 96.81 66.98

c. Accuracy results of cost function trained on sparse search space via Exact Imitation

LDS-2 80.17 90.43 78.72 78.90 94.08 96.29 68.62

FB-2 78.95 87.61 77.57 78.80 94.11 96.45 63.45

LDS-4 83.12 92.84 78.85 79.46 94.55 96.51 70.69

FB-4 80.80 90.04 77.93 79.59 94.39 96.57 65.67

d. Accuracy results of cost function trained on sparse search space via DAgger

LDS-2 82.54 92.14 79.27 80.57 94.27 96.38 71.56

FB-2 80.73 89.65 78.94 80.48 94.32 96.55 66.78

LDS-4 85.53 94.14 79.81 81.23 94.58 96.85 73.61

FB-4 82.87 91.75 78.96 81.26 94.56 96.89 68.71

e. Timing results (avg. time per greedy search step in milli seconds)

LDS 40.0 40.0 1.0 23.0 421.0 695.0 2660.0

FB 20.0 19.0 1.0 10.0 134.0 170.0 1740.0

LDS-2 3.0 3.8 0.7 1.0 70.0 65.0 580.0

FB-2 2.0 2.0 0.6 0.7 27.0 17.0 350.0

LDS-4 7.0 7.2 1.3 2.0 160.0 140.0 1350.0

FB-4 3.6 3.6 1.2 1.3 60.0 35.0 790.0

Table 2: Prediction accuracy and timing results for greedy search comparing sparse and
complete search spaces.

Results of Cost Function Trained on Sparse Search Spaces. It is natural to expect that
performance on sparse search spaces might improve if the cost function is trained using
the same sparse search space. Further, since conducting searches in the sparse spaces is
computationally cheaper, learning directly in sparse spaces can be much more efficient.
Table 2c shows the results of training the cost function on the sparse search spaces using
exact imitation. As we can see, accuracies of LDS-2 and FB-2 slightly degrade compared to
the corresponding results in Table 2b, but the results of LDS-4 and FB-4 equal or slightly
improve in almost all cases except for scene labeling. These results show that we get speed
improvements during both training and testing with little loss in accuracy.

Contrary to expectation, the above results show that when using the LDS-2 and FB-
2 spaces, training directly on those spaces was often slightly worse than training on the
complete spaces. One hypothesis for this observation is that the number and variation of

1341

Doppa, Fern and Tadepalli

states encountered during training by the exact imitation approach is much less for sparser
spaces. This can possibly hurt robustness of the learned cost function. This suggests that
a more sophisticated approach such as DAgger might be more effective since it effectively
generates a wider diversity of states during training.

Table 2d shows the results of training with DAgger, which confirm the above hypoth-
esis. First, DAgger significantly improves over the results obtained with exact imitation
(see Table 2c) across the board. Second, the results of training (via DAgger) and testing
on sparse search spaces are better than the results of training on complete search spaces
and testing on sparse search spaces (see Table 2b). This agrees with the intuition that
training on the search space used for testing should be superior to training on a different
search space. Third, the results of LDS-4 and FB-4 with DAgger are significantly better
than the results obtained by training and testing on complete search spaces (see Table 2a).
This indicates that training on sparse search spaces via DAgger is very effective and gives
us speed improvement with no loss in accuracy and sometimes improves accuracy compared
to the complete spaces.

Inference Time and Anytime Performance. Table 2e shows the timing results (avg. time
per greedy search step in secs.) of our approach during testing using sparse (LDS-k and
FB-k) and complete search spaces (LDS and FB). As we can see, we get speed improvement
by a factor of ten (roughly) with sparse search spaces. Note that the speedup will generally
be larger for problems with larger numbers of labels L, since the number of successors
decreases from T · (L − 1) to T · k. We would like to point out that sparse search spaces
will also improve the training time of our approach (fewer ranking examples in step 11 of
Algorithm 2), and can be advantageous13 compared to standard approaches including CRFs
and SVM-Struct. Further, we compare the anytime curves of configurations of our approach
with sparse and complete search spaces, which show the accuracy achieved by a method
versus an inference time bound at prediction time. Figure 7 shows the anytime curves for
all the problems except stress prediction, where there is hardly any difference due to the
small label set size (5 labels). Note that all these results are for training with DAgger.

From the anytime curves, it is clear that the configurations with sparse search spaces
have a much better anytime profile compared to the ones with complete search spaces.
LDS-2 and FB-2 reach the respective accuracies of LDS and FB very quickly in all the cases
except for POS and Scene labeling, where there is a small loss in accuracy. However, LDS-4
and FB-4 recover the accuracy losses in those two cases. These results demonstrate that
sparse search spaces would be highly effective in those situations, where there is a need to
make anytime predictions.

Comparing the anytime curves of LDS and FB, we can see that LDS is comparable or
better than FB in all cases other than Chunking and POS.14 This is especially true for
the handwriting recognition and scene labeling problems. In the anytime curves for scene
labeling task, we can see that LDS is dominant and improves accuracy much more quickly
than FB. For example, a 10 second time bound for LDS achieves the same accuracy as FB
using 70 seconds. This shows the benefit of using the LDS space. In the case of Chunking
and POS, there is almost no difference between the accuracy of the recurrent classifier and

13. It is hard to do a fair comparison of wall clock times due to differences in implementations.
14. The experimental setup only differs in the search space (LDS or FB) employed during training and

testing.

1342

Structured Prediction via Output Space Search

Figure 7: Anytime curves for greedy search comparing sparse and complete search spaces.

exact imitation accuracy (see Table 1a), so LDS does not provide any extra benefit over
FB. Recall that there is significant additional overhead for successor generation for LDS
compared to flipbit. To generate each successor, LDS must evaluate the recurrent classifier
at sequence positions after discrepancies are introduced. On the other hand, the flipbit
space need not evaluate the recurrent classifier during successor generation, but only uses
the recurrent classifier to generate the initial state. In Chunking and POS, the additional
overhead of the LDS search does not payoff in improved accuracy and the anytime curve of

1343

Doppa, Fern and Tadepalli

flipbit is accordingly better. All these findings are true for the sparser versions of LDS and
FB as well.

6. Comparison to Related Work

As described earlier, the majority of structured prediction work has focused on the use of
exact (when possible) or approximate inference techniques, such as loopy belief propagation
and relaxation methods, for computing outputs. Learning then is focused on tuning the cost
function parameters in order to optimize various objective functions, which differ among
learning algorithms (Lafferty et al., 2001; Taskar et al., 2003; Tsochantaridis et al., 2004;
McAllester et al., 2010). There are also approximate cost function learning approaches
that do not employ any inference routine during training. For example, piece-wise training
(Sutton and McCallum, 2009), Decomposed Learning (Samdani and Roth, 2012) and its
special case pseudo-max training (Sontag et al., 2010) fall under this category. These
training approaches are very efficient, but they still need an inference algorithm to make
predictions during testing. In these cases, one could employ the Constrained Conditional
Models (CCM) framework (Chang et al., 2012) with some declarative (global) constraints
to make predictions using the learned cost function. The CCM framework relies on the
Integer Linear Programming (ILP) inference method (Roth and tau Yih, 2005). More
recent work has attempted to integrate (approximate) inference and cost function learning
in a principled manner (Meshi et al., 2010; Stoyanov et al., 2011; Hazan and Urtasun, 2012;
Domke, 2013). Researchers have also worked on using higher-order features for CRFs in the
context of sequence labeling under the pattern sparsity assumption (Ye et al., 2009; Qian
et al., 2009). However, these approaches are not applicable for the graphical models where
the sparsity assumption does not hold.

An alternative approach to addressing inference complexity is cascade training (Felzen-
szwalb and McAllester, 2007; Weiss and Taskar, 2010; Weiss et al., 2010), where efficient
inference is achieved by performing multiple runs of inference from a coarse level to a fine
level of abstraction. While such approaches have shown good success, they place some
restrictions on the form of the cost functions to facilitate “cascading.” Another potential
drawback of cascades and most other approaches is that they either ignore the loss function
of a problem (e.g., by assuming Hamming loss) or require that the loss function be decom-
posable in a way that supports “loss augmented inference”. Our approach is sensitive to
the loss function and makes minimal assumptions about it, requiring only that we have a
blackbox that can evaluate it for any potential output.

Our approach is partly inspired by the alternative framework of classifier-based struc-
tured prediction. These algorithms avoid directly solving the Argmin problem by assuming
that structured outputs can be generated by making a series of discrete decisions. The
approach then attempts to learn a recurrent classifier that given an input x is iteratively
applied in order to generate the series of decisions for producing the target output y∗. Simple
training methods (e.g., Dietterich et al., 1995) have shown good success and there are some
positive theoretical guarantees (Syed and Schapire, 2010; Ross and Bagnell, 2010). However,
recurrent classifiers can be prone to error propagation (Kääriäinen, 2006; Ross and Bagnell,
2010). Recent work, for example, Searn (Hal Daumé III et al., 2009), SMiLe (Ross and
Bagnell, 2010), and DAgger (Ross et al., 2011), attempts to address this issue using more

1344

Structured Prediction via Output Space Search

sophisticated training techniques and have shown state-of-the-art structured-prediction re-
sults. However, all these approaches use classifiers to produce structured outputs through
a single sequence of greedy decisions. Unfortunately, in many problems, some decisions are
difficult to predict by a greedy classifier, but are crucial for good performance.

In contrast, our approach leverages recurrent classifiers to define good quality search
spaces over complete outputs, which allows decision making by comparing multiple complete
outputs and choosing the best. There are also non-greedy methods that learn a scoring
function to search in the space of partial structured outputs (Hal Daumé III and Marcu,
2005; Daumé III, 2006; Xu et al., 2009; Huang et al., 2012; Yu et al., 2013). All these
methods perform online training, and differ only in the way search errors are defined and
how the weights are updated when errors occur. Unfortunately, training the scoring function
can be difficult because it is hard to evaluate states with partial outputs and the theoretical
guarantees of the learned scoring function (e.g., convergence and generalization results) rely
on very strong assumptions (Xu et al., 2009).

A closely related framework to ours is the SampleRank framework (Wick et al., 2011)
for structured prediction, which also learns a cost function for guiding search in the space
of complete outputs. While it shares with our work the idea of explicit search in the output
space, there are some significant differences. The SampleRank framework is mainly focused
on Monte-Carlo search, and the underlying flipbit search space, whereas our approach can
be instantiated for a wide range of search spaces (e.g., LDS space that leverages powerful
recurrent classifiers) and rank-based search algorithms (e.g., greedy search, beam search and
best-first search). We believe that this flexibility is important since it is well-understood
in the search literature that the best search space formulation and the most appropriate
search algorithm change from problem to problem. In addition, the SampleRank frame-
work is highly dependent on a hand-designed “proposal distribution” for guiding the search
or effectively defining the search space. In contrast, we describe a generic approach for
constructing search spaces that is shown to be effective across a variety of domains.

Our approach is also related to Re-Ranking (Collins, 2002), which uses a generative
model to propose a k-best list of outputs, which are then ranked by a separate ranking
function. In contrast, rather than restricting to a generative model for producing poten-
tial outputs, our approach leverages generic search over efficient search spaces guided by
a learned cost function that has minimal representational restrictions, and employs the
same cost function to rank the candidate outputs. Recent work on generating multiple
diverse solutions in a probabilistic framework can be considered as another way of produc-
ing candidate outputs. A representative set of approaches in this line of work are diverse
M-best (Batra et al., 2012), M-best modes (Park and Ramanan, 2011; Chen et al., 2013)
and Determinantal Point Processes (Kulesza and Taskar, 2012).

The general area of local search techniques applied to combinatorial optimization prob-
lems is very much relevant to our work. For example, STAGE (Boyan and Moore, 2000)
learns an evaluation function over the states to improve the performance of search, where
the value of a state corresponds to the performance of a local search algorithm starting from
that state, and Zhang and Dietterich (1995) uses Reinforcement Learning (RL) methods
to learn heuristics for job shop scheduling with the goal of minimizing the duration of the
schedule. For combinatorial optimization problems, the cost function to be optimized is

1345

Doppa, Fern and Tadepalli

known a priori, where as such a function is not given for structured prediction problems.
Therefore, our approach learns a cost function to score the structured outputs.

7. Summary and Future Work

We studied a general framework for structured prediction based on search in the space of
complete outputs.We showed how powerful classifiers can be leveraged to define an effective
search space over complete outputs, and gave a generic cost function learning approach
to score the outputs for any given combination of search space and search strategy. Our
experimental results showed that a very small amount of search is needed to improve upon
the state-of-the-art performance, validating the effectiveness of our framework. We also
addressed some of the scalability issues via a simple pruning strategy that creates sparse
search spaces that are more efficient to search in.

In a follow-up work, we introduce a more general framework called HC-Search that
employs two distinct functions for guiding the search and scoring the candidate outputs
generated during search (Doppa et al., 2013, 2014). HC-Search further improves upon the
results in the current paper on most benchmark tasks, and performs comparably or better
than Cascades. Future work includes applying this framework to more challenging problems
in natural language processing and computer vision (e.g., Coreference resolution, tracking
players in sports videos, and object detection in biological images (Lam et al., 2013)),
studying principled ways of using domain knowledge (e.g., nearly sound constraints) for
pruning, and exploring algorithms to train for anytime performance by trading off speed
and accuracy as part of the learning objective (Grubb and Bagnell, 2012; Xu et al., 2012).

Acknowledgments

The authors would like to thank the anonymous reviewers for their feedback. The first au-
thor would also like to thank Tom Dietterich for his encouragement and support throughout
this work. This work was supported in part by NSF grants IIS 1219258, IIS 1018490 and in
part by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Re-
search Laboratory (AFRL) under Contract No. FA8750-13-2-0033. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the NSF, the DARPA, the Air Force Research
Laboratory (AFRL), or the US government. Some of the material in this article was first
published at ICML-2012 (Doppa et al., 2012).

References

Dhruv Batra, Payman Yadollahpour, Abner Guzmán-Rivera, and Gregory Shakhnarovich.
Diverse m-best solutions in Markov random fields. In Proceedings of European Conference
on Computer Vision (ECCV), pages 1–16, 2012.

Justin A. Boyan and Andrew W. Moore. Learning evaluation functions to improve op-
timization by local search. Journal of Machine Learning Research (JMLR), 1:77–112,
2000.

1346

Structured Prediction via Output Space Search

Ming-Wei Chang, Lev-Arie Ratinov, and Dan Roth. Structured learning with constrained
conditional models. Machine Learning Journal (MLJ), 88(3):399–431, 2012.

Chao Chen, Vladimir Kolmogorov, Yan Zhu, Dimitris Metaxas, and Christoph H. Lam-
pert. Computing the M most probable modes of a graphical model. In Proceedings of
International Conference on Artificial Intelligence and Statistics (AISTATS), 2013.

Michael Collins. Ranking algorithms for named entity extraction: Boosting and the voted
perceptron. In Proceedings of Association of Computational Linguistics (ACL) Confer-
ence, 2002.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. Online
passive-aggressive algorithms. Journal of Machine Learning Research (JMLR), 7:551–585,
2006.

Hal Daumé III. Practical Structured Learning Techniques for Natural Language Processing.
PhD thesis, University of Southern California, Los Angeles, CA, 2006.

Thomas G. Dietterich, Hermann Hild, and Ghulum Bakiri. A comparison of ID3 and
backpropagation for English text-to-speech mapping. Machine Learning Journal (MLJ),
18(1):51–80, 1995.

Justin Domke. Structured learning via logistic regression. In Advances in Neural Informa-
tion Processing Systems (NIPS), pages 647–655, 2013.

Janardhan Rao Doppa, Alan Fern, and Prasad Tadepalli. Output space search for structured
prediction. In Proceedings of International Conference on Machine Learning (ICML),
2012.

Janardhan Rao Doppa, Alan Fern, and Prasad Tadepalli. HC-Search: Learning heuristics
and cost functions for structured prediction. In Proceedings of AAAI Conference on
Artificial Intelligence (AAAI), 2013.

Janardhan Rao Doppa, Alan Fern, and Prasad Tadepalli. HC-Search: A learning framework
for search-based structured prediction. To appear in Journal of Artificial Intelligence
Research (JAIR), 2014.

Pedro F. Felzenszwalb and David A. McAllester. The generalized A* architecture. Journal
of Artificial Intelligence Research (JAIR), 29:153–190, 2007.

Alan Fern, Sung Wook Yoon, and Robert Givan. Approximate policy iteration with a
policy language bias: Solving relational Markov decision processes. Journal of Artificial
Intelligence Research (JAIR), 25:75–118, 2006.

Alexander Grubb and Drew Bagnell. Speedboost: Anytime prediction with uniform near-
optimality. Journal of Machine Learning Research - Proceedings Track, 22:458–466, 2012.

Hal Daumé III and Daniel Marcu. Learning as search optimization: Approximate large
margin methods for structured prediction. In Proceedings of International Conference on
Machine Learning (ICML), 2005.

1347

Doppa, Fern and Tadepalli

Hal Daumé III, John Langford, and Daniel Marcu. Search-based structured prediction.
Machine Learning Journal (MLJ), 75(3):297–325, 2009.

William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In Proceedings
of International Joint Conference on Artificial Intelligence (IJCAI), pages 607–615, 1995.

Tamir Hazan and Raquel Urtasun. Efficient learning of structured predictors in general
graphical models. CoRR, abs/1210.2346, 2012.

Liang Huang, Suphan Fayong, and Yang Guo. Structured perceptron with inexact search. In
Proceedings of Human Language Technology Conference of the North American Chapter
of the Association of Computational Linguistics (HLT-NAACL), pages 142–151, 2012.

Matti Kääriäinen. Lower bounds for reductions. In Atomic Learning Workshop, 2006.

Joseph Keshet, Shai Shalev-Shwartz, Yoram Singer, and Dan Chazan. Phoneme alignment
based on discriminative learning. In Proceedings of Annual Conference of the Interna-
tional Speech Communication Association (Interspeech), pages 2961–2964, 2005.

Alex Kulesza and Ben Taskar. Determinantal point processes for machine learning. Foun-
dations and Trends in Machine Learning, 5(2-3):123–286, 2012.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In Proceedings of International
Conference on Machine Learning (ICML), pages 282–289, 2001.

Michael Lam, Janardhan Rao Doppa, Xu Hu, Sinisa Todorovic, Thomas Dietterich, Abigail
Reft, and Marymegan Daly. Learning to detect basal tubules of nematocysts in SEM im-
ages. In Proceedings of ICCV Workshop on Computer Vision for Accelerated Biosciences
(CVAB). IEEE, 2013.

David A. McAllester, Tamir Hazan, and Joseph Keshet. Direct loss minimization for struc-
tured prediction. In Advances in Neural Information Processing Systems (NIPS), pages
1594–1602, 2010.

Ofer Meshi, David Sontag, Tommi Jaakkola, and Amir Globerson. Learning efficiently with
approximate inference via dual losses. In Proceedings of International Conference on
Machine Learning (ICML), pages 783–790, 2010.

Dennis Park and Deva Ramanan. N-best maximal decoders for part models. In Proccedings
of IEEE International Conference on Computer Vision (ICCV), pages 2627–2634, 2011.

Xian Qian, Xiaoqian Jiang, Qi Zhang, Xuanjing Huang, and Lide Wu. Sparse higher order
conditional random fields for improved sequence labeling. In Proceedings of International
Conference on Machine Learning (ICML), 2009.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. Journal of
Machine Learning Research - Proceedings Track, 9:661–668, 2010.

1348

Structured Prediction via Output Space Search

Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. A reduction of imitation learning
and structured prediction to no-regret online learning. Journal of Machine Learning
Research - Proceedings Track, 15:627–635, 2011.

Dan Roth and Wen tau Yih. Integer linear programming inference for conditional random
fields. In Proceedings of International Conference on Machine Learning (ICML), pages
736–743, 2005.

Rajhans Samdani and Dan Roth. Efficient decomposed learning for structured prediction.
In Proceedings of International Conference on Machine Learning (ICML), 2012.

Terrence J. Sejnowski and Charles R. Rosenberg. Parallel networks that learn to pronounce
English text. Complex Systems, 1:145–168, 1987.

David Sontag, Ofer Meshi, Tommi Jaakkola, and Amir Globerson. More data means less
inference: A pseudo-max approach to structured learning. In Advances in Neural Infor-
mation Processing Systems (NIPS), pages 2181–2189, 2010.

Veselin Stoyanov, Alexander Ropson, and Jason Eisner. Empirical risk minimization of
graphical model parameters given approximate inference, decoding, and model struc-
ture. In Proceedings of International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 725–733, 2011.

Charles A. Sutton and Andrew McCallum. Piecewise training for structured prediction.
Machine Learning Journal (MLJ), 77(2-3):165–194, 2009.

Umar Syed and Rob Schapire. A reduction from apprenticeship learning to classification.
In Advances in Neural Information Processing Systems (NIPS), pages 2253–2261, 2010.

Benjamin Taskar, Carlos Guestrin, and Daphne Koller. Max-margin Markov networks. In
Advances in Neural Information Processing Systems (NIPS), 2003.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support
vector machine learning for interdependent and structured output spaces. In Proceedings
of International Conference on Machine Learning (ICML), 2004.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun. Large
margin methods for structured and interdependent output variables. Journal of Machine
Learning Research (JMLR), 6:1453–1484, 2005.

Julia Vogel and Bernt Schiele. Semantic modeling of natural scenes for content-based image
retrieval. International Journal of Computer Vision (IJCV), 72(2):133–157, 2007.

David Weiss and Benjamin Taskar. Structured prediction cascades. Journal of Machine
Learning Research - Proceedings Track, 9:916–923, 2010.

David Weiss, Ben Sapp, and Ben Taskar. Sidestepping intractable inference with structured
ensemble cascades. In Advances in Neural Information Processing Systems (NIPS), pages
2415–2423, 2010.

1349

Doppa, Fern and Tadepalli

Michael L. Wick, Khashayar Rohanimanesh, Kedar Bellare, Aron Culotta, and Andrew
McCallum. Samplerank: Training factor graphs with atomic gradients. In Proceedings of
International Conference on Machine Learning (ICML), 2011.

Yuehua Xu, Alan Fern, and Sung Wook Yoon. Learning linear ranking functions for beam
search with application to planning. Journal of Machine Learning Research (JMLR), 10:
1571–1610, 2009.

Zhixiang Xu, Kilian Weinberger, and Olivier Chapelle. The greedy miser: Learning un-
der test-time budgets. In Proceedings of International Conference on Machine Learning
(ICML), 2012.

Nan Ye, Wee Sun Lee, Hai Leong Chieu, and Dan Wu. Conditional random fields with
high-order features for sequence labeling. In Advances in Neural Information Processing
Systems (NIPS), pages 2196–2204, 2009.

Heng Yu, Liang Huang, Haitao Mi, and Kai Zhao. Max-violation perceptron and forced
decoding for scalable MT training. In Proceedings of Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1112–1123, 2013.

Wei Zhang and Thomas G. Dietterich. A reinforcement learning approach to job-shop
scheduling. In Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI), pages 1114–1120, 1995.

1350

Journal of Machine Learning Research 15 (2014) 1351-1369 Submitted 7/13; Revised 11/13; Published 4/14

Fully Simplified Multivariate Normal Updates in
Non-Conjugate Variational Message Passing

Matt P. Wand matt.wand@uts.edu.au

School of Mathematical Sciences

University of Technology, Sydney

P.O. Box 123, Broadway NSW 2007, Australia

Editor: David M. Blei

Abstract

Fully simplified expressions for Multivariate Normal updates in non-conjugate variational
message passing approximate inference schemes are obtained. The simplicity of these ex-
pressions means that the updates can be achieved very efficiently. Since the Multivariate
Normal family is the most common for approximating the joint posterior density function of
a continuous parameter vector, these fully simplified updates are of great practical benefit.

Keywords: Bayesian computing, graphical models, matrix differential calculus, mean
field variational Bayes, variational approximation

1. Introduction

Recently Knowles and Minka (2011) proposed a prescription for handling non-conjugate
exponential family factors in variational message passing approximate inference schemes.
Dubbed non-conjugate variational message passing, it widens the scope of tractable models
for variational message passing and mean field variational Bayes in general. For a given
exponential family factor, the non-conjugate variational message passing updates depend
on the inverse covariance matrix of the natural statistic and derivatives of the non-entropy
component of the Kullback-Leibler divergence.

The Multivariate Normal distribution is the most common multivariate exponential
family distribution and a prime candidate for approximating the joint posterior density
function of a continuous parameter vector, such as a set of regression coefficients. Knowles
and Minka (2011) provide formulae for Univariate Normal updates, which correspond to
less accurate diagonal covariance matrix approximations to joint posterior density functions.
However, when combined with the derived variable infrastructure described Appendix A of
Minka and Winn (2008), the Univariate Normal updates in Knowles and Minka (2011) are
able to produce full covariance matrix Multivariate Normal approximations for regression
models. This fact is utilized by the Infer.NET computational framework (Minka et al., 2013),
although the mathematical description of the updates is somewhat verbose. This aspect
hinders extension to more complicated models, including those not supported by Infer.NET.

Recently, Tan and Nott (2013) utilized non-conjugate variational message passing for
approximate Bayesian inference in hierarchical generalized linear mixed models. Their nu-
merical studies showed that their variational algorithms can achieve high levels of accuracy.

c©2014 Matt P. Wand.

Wand

This accuracy is partly due to their use of Multivariate Normal, rather than Univariate
Normal, factors.

This article’s main contribution is full simplification of the inverse covariance matrix
of the natural statistic and then to show that the updates admit a particularly simple
form in terms of derivatives with respect to the common Multivariate Normal parameters,
that is, the mean and covariance matrix. When combined with an additional novel matrix
result, this article’s second theorem, non-conjugate mean field variational Bayes algorithms
involving Multivariate Normal updates are straightforward to derive and implement. This
explicitness allows much easier accommodation of Multivariate Normal posterior density
functions within the non-conjugate variational message passing framework. Algorithm 3 of
Tan and Nott (2013) relies on Theorems 1 and 2, presented in Section 4. This leads to
considerable computational efficiency for the methodology in Tan and Nott (2013).

Non-conjugate variational message passing (Knowles and Minka, 2011) is one of several
recent contributions aimed at widening the set of models that can be handled via the mean
field variational Bayes paradigm. Others include Braun and McAuliffe (2010), Wand et al.
(2011) and Wang and Blei (2013).

Section 2 lays out notation needed for the main theorems, which are presented in Section
4. The utility of these theorems is then illustrated in Section 5 for a Bayesian Poisson mixed
model and a heteroscedastic additive model. A series of appendices contains proofs of the
theorems and other mathematical details.

2. Notation

The main results makes ample use of the matrix differential calculus technology of Magnus
and Neudecker (1999). Therefore, I mainly adhere to their notation.

2.1 The vec, vech and Duplication Matrix Notations

If A is a d × d matrix then vec(A) denotes the d2 × 1 vector obtained by stacking the
columns of A underneath each other in order from left to right. Also, vech(A) denotes the
1
2 d(d+1)×1 vector obtained from vec(A) by eliminating each of the above-diagonal entries
of A. For example,

vec

([
5 2
9 4

])
=

5
9
2
4

 while vech

([
5 2
9 4

])
=

 5
9
4

 .
If A is a symmetric, but otherwise arbitrary d × d matrix, then vech(A) contains each of
the distinct entries of A whereas vec(A) repeats the off-diagonal entries. It follows that
there is a unique d2 × 1

2d(d+ 1) matrix Dd of zeros and ones such that

Dd vech(A) = vec(A) for A = AT

and is called the duplication matrix of order d. The Moore-Penrose inverse of Dd is

D+
d ≡ (DT

d Dd)
−1DT

d .

1352

Multivariate Normal Non-Conjugate Variational Bayes

Note that

D+
d vec(A) = vech(A) for A = AT .

The simplest non-trivial examples of Dd and D+
d are

D2 =

1 0 0
0 1 0
0 1 0
0 0 1

 and D+
2 =

 1 0 0 0
0 1

2
1
2 0

0 0 0 1

 .
Note that, for general d, Dd can be obtained via the duplication.matrix() function
in the package matrixcalc (Novomestky, 2008) within the R computing environment (R
Development Core Team, 2013).

If a is a d2 × 1 vector then vec−1(a) is defined to be the d × d matrix formed from
listing the entries of a in a column-wise fashion in order from left to right. Note that vec−1

is the usual function inverse when the domain of vec is restricted to square matrices. In
particular,

vec−1(vec(A)) = A for d× d matrices A

and

vec(vec−1(a)) = a for d2 × 1 vectors a.

There are numerous identities involving vec, vech, Dd and D+
d , and some of these are

given in Chapter 3 of Magnus and Neudecker (1999). One that is relevant to the current
article is:

Lemma 1 If A is a symmetric d× d matrix then

vec(A) = D+T
d DT

d vec(A).

2.2 The diagonal and diag Notations

If A is a d × d matrix then diagonal(A) denotes the d × 1 vector containing the diagonal
entries of A. If a is a d× 1 vector then diag(a) is the d× d matrix with the entries of a on
the diagonal and all other entries equal to zero. For example,

diagonal

 8 1 −7
3 6 24
−4 11 −9

 =

 8
6
−9

 and diag

 −4
7

31

 =

 −4 0 0
0 7 0
0 0 31

 .
2.3 Derivative Vector and Hessian Matrix Notation

Let f be a Rp-valued function with argument x ∈ Rd. The derivative vector of f with
respect to x, Dx f , is the p× d matrix whose (i, j) entry is

∂fi(x)

∂xj
.

1353

Wand

where fi(x) is the ith entry of f(x) and xj is the jth entry of x. For example

D[
x1
x2

]
[

tan(x1 + 7x2)

3x41(8 + 9x32)

]
=

[
∂
∂x1
{tan(x1 + 7x2)} ∂

∂x2
{tan(x1 + 7x2)}

∂
∂x1
{3x41(8 + 9x32)} ∂

∂x2
{3x41(8 + 9x32)}

]

=

[
sec2(x1 + 7x2) 7 sec2(x1 + 7x2)

12x31(8 + 9x32) 81x41x
2
2

]
.

In the case p = 1, the Hessian matrix of f with respect to x, Hx f , is the d× d matrix

Hx f = Dx{(Dxf)T }.

3. Non-Conjugate Variational Message Passing

Non-conjugate variational message passing (Knowles and Minka, 2011) is an extension of
mean field variational Bayes (e.g. Wainwright and Jordan, 2008) where, due to difficulties
arising from non-conjugacy, one or more density functions is forced to have a particular
exponential family distribution.

Consider a hierarchical Bayesian model with data vector y and parameter vectors θ and
φ. Mean field variational Bayes approximates the joint posterior density function p(θ,φ|y)
by

qθ1(θ1) · · · qθM (θM) qφ(φ), (1)

where {θ1, . . . ,θM} is a partition of θ and each subscripted q is an unrestricted density
function. The solutions satisfy

q∗θi(θi) ∝ exp[Eq(−θi){log p (θi|y,θ\θi,φ)}], 1 ≤ i ≤M,

q∗φ(φ) ∝ exp[Eq(−φ){log p (φ|y,θ)}],

where θ\θi means θ with θi excluded and Eq(−θi) denotes expectation with respect to the
q-densities of all parameters except θi. A similar definition applies to Eq(−φ).

In the event that Eq(−φ){log p (φ|y,θ)} is intractable, non-conjugate variational mes-
sage passing offers a way out by replacing (1) with

qθ1(θ1) · · · qθM (θM) qφ(φ;η),

where qφ(φ;η) is an exponential family density function with natural parameter vector η
and natural statistic T (φ). Then, with backing from Theorem 1 of Knowles and Minka
(2011), the optimal densities q∗(θ1), . . . , q

∗(θM) and q∗(φ;η) may be found using

q∗θi(θi) ∝ exp[Eq(−θi){log p(θi|y,θ\θi,φ)}], 1 ≤ i ≤M,

η ← [var{T (φ)}]−1 [Dη Eq(θ,φ){log p(y,θ,φ)}]T .
(2)

Here and elsewhere var(v) denotes the covariance matrix of a random vector v. As pointed
out in Knowles and Minka (2011), the graphical structure of the hierarchical Bayesian model
can be used to provide a simpler expression for Dη Eq(θ,φ){log p(y,θ,φ)} that only depends
on factors of p(y,θ,φ) involving φ.

1354

Multivariate Normal Non-Conjugate Variational Bayes

3.1 Multivariate Normal Factor

Now consider the special case where q(φ;η) corresponds to a d-dimensional Multivariate
Normal density function. Then the natural statistic (defined in Section 4) is

T (φ) ≡
[

φ

vech(φφT)

]
.

Since T (φ) has d+ d(d+ 1)/2 entries, the number of entries in var{T (φ)} is quartic in d.
Consequently, for large d, the η update in (2) is numerically challenging if done directly.
In Section 4 I present theoretical results that allow explicit updating without the need for
inversion of var{T (φ)}. I also present results in terms of the common Multivariate Normal
parametrization, involving mean vectors and covariance matrices.

4. Main Results

Consider a generic Multivariate Normal d× 1 random vector x

x ∼ N(µ,Σ). (3)

Then the density function of x is

p(x) = (2π)−d/2|Σ|−1/2 exp{−1
2(x− µ)TΣ−1(x− µ)}

= exp{T (x)Tη −A(η)− d
2 log(2π)}.

Here

T (x) ≡
[

x
vech(xxT)

]
, η ≡

[
η1
η2

]
≡
[

Σ−1µ

−1
2D

T
d vec(Σ−1)

]
(4)

defines the natural statistic and natural parameter pairing and

A(η) = −1
4 η

T
1

{
vec−1(D+T

d η2)
}−1

η1 − 1
2 log

∣∣− 2 vec−1(D+T
d η2)

∣∣
is the log-partition function.

Note that the inverse of the natural parameter transformation is
µ =

Σ =

−1
2

{
vec−1(D+T

d η2)
}−1

η1

−1
2

{
vec−1(D+T

d η2)
}−1 (5)

and can be derived from (4) using Lemma 1.

Theorem 1 Consider the d × 1 random vector x ∼ N(µ,Σ) with natural statistic vector
T (x) and natural parameter vector η given by (4) and define

U ≡
{
Dη

[
µ

vec(Σ)

]}T
, V ≡ var{T (x)} = HηA(η),

1355

Wand

M ≡ 2D+
d (µ⊗ Id) and S ≡ 2D+

d (Σ⊗Σ)D+T
d .

Then

(a) U =

[
Σ 0

MΣ SDT
d

]
,

(b) S−1 = 1
2D

T
d (Σ−1 ⊗Σ−1)Dd,

(c) V =

[
Σ ΣMT

MΣ S +MΣMT

]
,

(d) V −1 =

[
Σ−1 +MTS−1M −MTS−1

−S−1M S−1

]
,

(e) V −1U =

[
I −MTDT

d

0 DT
d

]
and

(f) V −1U

[
g

vec(G)

]
=

[
g − 2Gµ

DT
d vec(G)

]
for every d× 1 vector g and symmetric d× d matrix G.

Appendix A contains a proof of Theorem 1.

Let s be a smooth function of η, the natural parameter vector in a Multivariate Normal
factor, and consider an iterative scheme with updates of the form

η ← V −1(Dη s)
T . (6)

Note that the update in (2) is a special case of (6) with s(η) = Dη Eq(θ,φ){log p(y,θ,η)}.
By the chain rule of matrix differential calculus (Theorem 8, Chapter 5, of Magnus and
Neudecker, 1999)

V −1
(Dη s)T = V −1

[{
D[

µ
vec(Σ)

] s
} {

Dη

[
µ

vec(Σ)

]}]T

= V −1U

[
(Dµ s)

T

(Dvec(Σ) s)
T

]
.

Let (µold,Σold) and (µnew,Σnew), respectively, denote the old and new values of (µ,Σ)
in the updating scheme (6). Then, it follows from Theorem 1(f) that

Σ−1newµnew =
[
(Dµ s)

T − 2 vec−1
(
(Dvec(Σ) s)

T
)
µ
]
µ=µold,Σ=Σold

and DT
d vec(−1

2Σ−1new) =
[
DT
d (Dvec(Σ) s)

T
]
µ=µold,Σ=Σold

.

1356

Multivariate Normal Non-Conjugate Variational Bayes

The mean and covariance parameter updates are therefore given by

Σnew = {−2 vec−1({[Dvec(Σ) s]µ=µold,Σ=Σold
}T)}−1

and µnew = µold + Σnew([Dµ s]µ=µold,Σ=Σold
)T .

It follows that (6) is equivalent to the updates: Σ←

µ←

{
− 2vec−1((Dvec(Σ) s)

T)
}−1

µ+ Σ (Dµ s)
T .

(7)

The simplified form of V −1U in Theorem 1 can be explained via the inverse relationship
that exists between V = HηA(η) and the derivative of the mean parameter vector E{T (x)}
with respect to the natural parameter vector η. This relationship is pointed out in Section
4.1 of Hensman et al. (2012). Note that my U involves the derivative of [µT vec(Σ)T]T ,
rather than E{T (x)}, with respect to η in the chain rule. This corresponds to differentiation
of s with respect to the more convenient vec(Σ).

The update for Σ, given at (7), involves vec−1((Dvec(Σ) s)
T). Simplification of this ex-

pression for regression models is aided by:

Theorem 2 Let A be an n × d matrix, B be a d × d matrix and b be an n × 1 vector.
Define

Q(A) ≡ (A⊗ 1T)� (1T ⊗A)

where 1 is the d× 1 vector with all entries equal to 1. Then

(a) diagonal (ABAT) = Q(A) vec(B)

and

(b) vec (ATdiag(b)A) = Q(A)T b.

See Appendix B for a proof of Theorem 2.
The following section illustrates the usefulness of Theorems 1 and 2 for assembling non-

conjugate variational message passing algorithms involving Multivariate Normal factors.

5. Illustrations

We now provide illustrations of non-conjugate variational message passing that use Multi-
variate Normal updates. The first Illustration involves a Poisson mixed model and simulated
data. We show, in detail, how Theorems 1 and 2 lead to a simple variational algorithm
for such models. The second illustration involves heteroscedastic additive model analy-
sis of data from an air pollution study, using non-conjugate variational message passing
methodology with Multivariate Normal factors, recently developed by Menictas and Wand
(2014).

1357

Wand

5.1 Poisson Mixed Model

Consider the single variance component Poisson mixed model:

yi |β,u independently distributed as Poisson[exp{(X β +Z u)i}], 1 ≤ i ≤ n,

u |σ2 ∼ N(0, σ2 IK), σ ∼ Half-Cauchy(A) and β ∼ N(0, σ2βIp),
(8)

where X is a n× p fixed effects design matrix, Z is a n×K random effects design matrix
and σ ∼ Half-Cauchy(A) means that

p(σ) =
2

πA{1 + (σ/A)2}
, σ > 0.

Note that, courtesy of Result 5 of Wand et al. (2011), one can replace σ ∼ Half-Cauchy(A)
by the more convenient auxiliary variable representation

σ2| a ∼ Inverse-Gamma(12 , 1/a), a ∼ Inverse-Gamma(12 , 1/A
2),

where v ∼ Inverse-Gamma(A,B) means that

p(v) =
BA

Γ(A)
v−A−1 exp(−B/v), v > 0.

Consider the mean field approximation

p(σ2, a,β,u, |y) ≈ q(σ2) q(a) q(β,u;µq(β,u),Σq(β,u)) (9)

where

q(β,u;µq(β,u),Σq(β,u)) is the N(µq(β,u),Σq(β,u)) density function.

Then application of (2) leads to the optimal q-densities for σ2 and a being such that

q∗(σ2) is an Inverse-Gamma(12(K + 1), Bq(σ2)) density function

and q∗(a) is an Inverse-Gamma(1, Bq(a)) density function

for rate parameters Bq(σ2) and Bq(a). Let

µq(1/σ2) = Eq(σ2)(1/σ
2) = 1

2(K + 1)/Bq(σ2)

and µq(1/a) be defined similarly. Also let µq(u) and Σq(u) be mean vector and covariance
matrix of q∗(u). Lastly, let

C = [X Z].

Algorithm 1 provides explicit forms of the updates required to obtain the optimal parameters
of q∗(β,u), q∗(a) and q∗(σ2).

The derivation of Algorithm 1 is given in Appendix C. The approximate marginal log-
likelihood admits the explicit expression:

1358

Multivariate Normal Non-Conjugate Variational Bayes

1.1 1.2 1.3 1.4

0
2

4
6

accuracy of q∗(β0)
ap

pr
ox

. p
os

te
rio

r 96%
accuracy

var. approx.
MCMC

0.34 0.36 0.38 0.40 0.42 0.44

0
5

10
20

accuracy of q∗(β1)

ap
pr

ox
. p

os
te

rio
r 97%

accuracy

0.2 0.3 0.4 0.5

0
2

4
6

8

accuracy of q∗(σ2)

ap
pr

ox
. p

os
te

rio
r 92%

accuracy

●●

●

β0 β1 σ2

88
92

96
ac

cu
ra

cy

Figure 1: Upper panels and lower left panel: approximate posterior density functions for β0,
β1 and σ2 based on the variational approximation scheme described by Algorithm
1 and MCMC, for the first replication of the simulation study described in the
text. Accuracy values, according to (11), with the exact posterior density function
replaced by the MCMC-based posterior density function are also given. Lower
right panel: Side-by-side boxplots of all 1000 accuracy values obtained for each
parameter in the simulation study.

log p(y; q) = 1
2(K + p) + log Γ(12(K + 1))− log(π)− log(A)− 1T log(y!)− 1

2p log(σ2β)

+yTCµq(β,u) − 1T exp
{
Cµq(β,u) + 1

2diagonal(CΣq(β,u)C
T)
}

− 1
2σ2
β
{‖µq(β)‖2 + tr(Σq(β))}+ 1

2 log |Σq(β,u)|

−1
2(K + 1) log

(
1
2{‖µq(u)‖

2 + tr(Σq(u))}+ µq(1/a)

)
− log(µq(1/σ2) +A−2) + µq(1/σ2)µq(1/a).

It is noteworthy that the variational message passing algorithm with derived variables,
as described in Appendix A of Minka and Winn (2008), leads to an alternative to Algorithm
1 that requires only Univariate Normal updates corresponding to (7) of Knowles and Minka
(2011). Such an approach is used in the Infer.NET computational framework (Minka et al.,
2013). However, this alternative version is not as succinct as Algorithm 1. The simplified
version that arises from Theorems 1 and 2 allows easier extension to more complicated
models.

1359

Wand

Initialize: µq(1/σ2) > 0, µq(β,u) a (p + K) × 1 vector and Σq(β,u) a (p + K) × (p + K)
positive definite matrix.
Cycle:

wq(β,u) ← exp
{
Cµq(β,u) + 1

2diagonal(CΣq(β,u)C
T)
}

Σq(β,u) ←
(
CTdiag{wq(β,u)}C +

[
σ−2β Ip 0

0 µq(1/σ2)IK

])−1

µq(β,u) ← µq(β,u) + Σq(β,u)

{
CT (y −wq(β,u))−

[
σ−2β Ip 0

0 µq(1/σ2)IK

]
µq(β,u)

}

µq(1/σ2) ←
K + 1

2µq(1/a) + ‖µq(u)‖2 + tr(Σq(u))
; µq(1/a) ← 1/(µq(1/σ2) +A−2).

until the absolute change in p(y; q) is negligible.

Algorithm 1: Iterative scheme for determination of the optimal parameters in q∗(β,u),
q∗(σ2) and q∗(a) for the posterior density function approximation (9).

I replicated 1000 data-sets corresponding to the simulation setting

yij |Ui ∼ Poisson (exp(β0 + β1 xij + Ui)) , Ui|σ2 ∼ N(0, σ2),

1 ≤ i ≤ m, 1 ≤ j ≤ n,
σ2|a ∼ Inverse-Gamma(12 , 1/a), a ∼ Inverse-Gamma(12 , A

−2), β ∼ N(0, σ2β I)

(10)

The hyperparameters were set at σβ = A = 105 and the sample sizes were m = 100, n = 10.
Note that (10) is a special case of (8) with Z = Im ⊗ 1n, where 1n is the n× 1 vector with
all entries equal to one.

For each data-set I obtained approximate posterior density functions for β0, β1 and σ2

using both Algorithm 1 and Markov chain Monte Carlo (MCMC). For MCMC I used the
package BRugs (Ligges et al., 2012) within the R computing environment (R Development
Core Team, 2013) with a burnin of size 5000 followed by the generation of 5000 samples,
with a thinning factor of 5. This resulted in MCMC samples of size 1000 being retained
for inference. The iterations in Algorithm 1 were terminated when the relative change in
log p(y; q) fell below 10−4.

Figure 1 displays side-by-side boxplots of accuracy scores defined by

accuracy(q∗) = 100

(
1− 1

2

∫ ∞
−∞

∣∣ q∗(θ)− p(θ|y)
∣∣ dθ)%. (11)

for a generic parameter θ, and with p(θ|y) replaced by a kernel density estimate based on
the MCMC sample. The boxplots show that the majority of accuracy scores exceed 95%,
and that they rarely drop below 90%.

1360

Multivariate Normal Non-Conjugate Variational Bayes

Figure 1 allows visual assessment of the variational approximate posterior density func-
tions against the MCMC-based benchmark for a single replication of the simulation study.
The accuracy is seen to be excellent for β0 and β1 and very good for σ2.

As discussed in Knowles and Minka (2011), convergence of non-conjugate variational
message passing is not guaranteed. In the simulation study the algorithm converged in all
replications regardless of starting values, but in about 2% of the cases this required some
adjustment to avoid inverting a singular matrix in the Σq(β,u) update during the early
iterations. The adjustment involves adding εI to the matrix requiring inversion, with ε > 0
chosen so that the condition number stayed below 1016. In almost all cases, this adjustment
was only necessary for the first few iterations.

In this section we have shown that non-conjugate variational message passing leads to an
attractive variational inference algorithm for Poisson mixed models. Since the exponential
moments of Multivariate Normal random vectors are available in closed form, no quadrature
is required in the Poisson case. Other generalized linear mixed models, such as logistic
mixed models, require quadrature. The logistic analogue of (8) is such that only univariate
quadrature is required. Details are given in Appendix B of Tan and Nott (2013).

5.2 Heteroscedastic Additive Model

This illustration involves analysis of data from the Californian air pollution study described
in Breiman and Friedman (1985). The response variable is

y = ozone concentration (ppm) at Sandburg Air Force Base

and three predictors variables are

x1 = pressure gradient (mm Hg) from Los Angeles International Airport

to Daggett, California,

x2 = inversion base height (feet)

and x3 = inversion base temperature (degrees Fahrenheit).

The data comprises 345 measurements on each of these 4 variables. Let (xi1, xi3, xi3, yi),
1 ≤ i ≤ 345 denote the full regression data set.

We entertained the heteroscedastic additive model

yi ∼ N
(
β0 + f1(x1i) + f2(x2i) + f3(x3i), exp

(
γ0 + h1(x1i) + h2(x2i) + h3(x3i)

))
, (12)

for 1 ≤ i ≤ 345. Here fj and gj , j = 1, 2, 3, and smooth but otherwise arbitrary functions.
Bayesian mixed model-based penalized splines (e.g. Ruppert et al., 2003) were used to model
the smooth functions as follows:

fj(x) = βj x+

Kj∑
k=1

ujk zjk(x), ujk iid N(0, σ2uj)

and hj(x) = γj x+

Kj∑
k=1

vjk zjk(x), vjk iid N(0, σ2vj).

(13)

1361

Wand

0 1000 2000 3000 4000 5000

0
5

10
15

20
25

30

contribution to mean

inversion base height

var. approx.
MCMC

−50 0 50 100

0
5

10
15

20
25

30

contribution to mean

Daggett pressure gradient

30 40 50 60 70 80 90

0
5

10
15

20
25

30

contribution to mean

inversion base temperature

0 1000 2000 3000 4000 5000

0
5

10
15

contribution to standard deviation

inversion base height

−50 0 50 100

0
5

10
15

contribution to standard deviation

Daggett pressure gradient

30 40 50 60 70 80 90

0
5

10
15

contribution to standard deviation

inversion base temperature

Figure 2: Upper panels: approximate pointwise posterior means and 95% credible sets for
the mean function contributions f1, f2 and f3 according to the heteroscedastic
additive model (12). Vertical alignment of the estimated functions is described
in the text. Lower panels: approximate pointwise posterior means and 95% cred-
ible sets for the standard deviation function contributions exp(h2/2), exp(h2/2)
and exp(h3/2). Approximate Bayesian inference is based on both non-conjugate
variational message passing and MCMC.

where iid stands for ‘independently and identically distributed as’. The {zjk : 1 ≤ k ≤ Kj},
j = 1, 2, 3, are spline bases of sizes Kj respectively. My default for the zjk are suitably
transformed cubic O’Sullivan splines, as described in Section 4 of Wand and Ormerod
(2008). The priors on the regression coefficients and standard deviation parameters are

βj iid N(0, σ2β), γj iid N(0, σ2γ), σuj iid Half-Cauchy(Au), σvj iid Half-Cauchy(Av). (14)

The regression data replaced by standardized versions and the hyperparameters were set
to be σβ = σγ = Au = Av = 105, corresponding to non-informativity. The results were
transformed to the original units after fitting. The basis function sizes were all fixed at
K1 = K2 = K3 = 18.

The Bayesian model given by (12), (13) and (14) admits a closed form non-conjugate
variational message passing algorithm, with the regression coefficients for the full mean
and variance functions each being Multivariate Normal. Details are given in Menictas and
Wand (2014). Figure 2 shows the estimated mean function (fj) contributions, and the stan-
dard deviation function (exp(hj/2)) contributions based on both variational approximation

1362

Multivariate Normal Non-Conjugate Variational Bayes

and MCMC. The MCMC inference was carried out in the same fashion as for the illustra-
tion described in Section 5.1. The abbreviated names inversion base height, Daggett
pressure gradient and inversion base temperature are used for x1, x2 and x3. The
estimated f1 display is vertically aligned to match the response data by evaluating the esti-
mate of f2 at x2 and estimate of f3 at x3, where x2 and x3 are the sample means of the x2i
and x3i, respectively. Analogous alignment strategies were used for the f2 and f3 displays.

Figure 2 shows that there is excellent agreement between non-conjugate variational
message passing, with Multivariate Normal coefficient vectors, and MCMC. The former
approach is considerably faster. The heteroscedasticity is seen to be relatively mild for
inversion base height and Daggett pressure gradient. However, there is pronounced
heteroscedasticity in inversion base temperature that is captured by model (12).

Acknowledgments

This research was partially supported by Australian Research Council Discovery Project
DP110100061. The author is grateful to Cathy Lee, Jan Luts, Marianne Menictas, Tom
Minka, David Nott and Linda Tan for their comments.

Appendix A: Proof of Theorem 1

Proof of (a)

For the upper-left block of U note that µ = Ση1 and so dη1
µ = Σ dη1. Theorem 6 of

Magnus and Neudecker (1999) leads to Dη1
µ = Σ. The lower-right block of U involves the

relation Σ = −1
2{vec−1(D+T

d η2)}−1 given in (5). Then Rule 3.3.5 in Wand (2002) and the
identity

vec(ABC) = (CT ⊗A) vec(B) (15)

leads to
dη2

vec(Σ) = 2 vec(Σ{vec−1(D+T
d dη2)}Σ) = 2(Σ⊗Σ)D+T

d dη2.

Hence, making use of Theorem 13 (b), Chapter 3, of Magnus and Neudecker (1999),

Dη2
vec(Σ) = 2(Σ⊗Σ)D+T

d = 2DdD
+
d (Σ⊗Σ)D+T

d = DdS = (SDT
d)T .

The expression for the lower-left block of U follows from

dη2
µ = 2Σ{vec−1(D+T

d dη2)}Ση1 = 2 vec(Σ{vec−1(D+T
d dη2)}µ) = 2(µT ⊗Σ)D+T

d dη2

where Rule 3.3.5 in Wand (2002) and (15) have been used again. This gives

Dη2
µ = 2(µT ⊗Σ)D+T

d = {2D+
d (µ⊗Σ)}T = {2D+

d (µ⊗ Id)(1⊗Σ)}T = (MΣ)T .

For the upper-left block note that, from (5), dη1
vec(Σ) = 0 dη1

and so Dη1
vec(Σ) = 0.

Proof of (b)

This is an immediate consequence of Theorem 13(d), Chapter 3, of Magnus and Neudecker
(1999).

1363

Wand

Proof of (c)

The upper-left block is var(x) = Σ. The lower-right block is

var{vech(xxT)} = D+
d var{vec(x1xT)}D+T

d = D+
d var(vec(x⊗ xT))D+T

d

= D+
d (Id2 +Kd)(Σ⊗Σ + Σ⊗ µµT + µµT ⊗Σ)D+T

d

where (15) and Theorem 4.3 (iv) of Magnus and Neudecker (1979) has been used. Here
Kd denotes the commutation matrix of order d, defined by Kd(A⊗B) = (B ⊗A)Kd for
arbitrary d × d matrices A and B. Noting the identity 1

2D
+
d (Id2 +Kd) = D+

d , which is
an immediate consequence of (15) in Chapter 3 of Magnus and Neudecker (1999), one then
gets

var{vech(xxT)} = S + 2D+
d (Σ⊗ µµT + µµT ⊗Σ)D+T

d .

Theorem 12(a), Chapter 3, of Magnus and Neudecker (1999) states that KdDd = Dd,
which implies that

D+
d = {(KdDd)

TKdDd}−1DT
dK

T
d = (DT

dK
T
dKdDd)

−1DT
dKd = D+

dKd. (16)

Here I have used KT = K−1d = Kd as stated in (2) of Chapter 3 of Magnus and Neudecker
(1999). The identity D+

d = D+
dKd leads to

D+
d (Σ⊗µµT)D+T

d = D+
dKd(Σ⊗µµT)D+T

d = D+
d (µµT⊗Σ)KT

dD
+T
d = D+

d (µµT⊗Σ)D+T
d

leading to var{vech(xxT)} = S + 4D+
d (µµT ⊗Σ)D+T

d . Since

(µµT ⊗Σ) = (µ⊗Σ)(µT ⊗ Id) = (µ⊗ Id)(1⊗Σ)(µT ⊗ Id) = (µ⊗ Id)Σ(µ⊗ Id)T .

I conclude that
var{vech(xxT)} = S +MΣMT .

The (i, j) entry of the lower-left block is

cov(vech(xxT)i, xj) = cov({D+
d vec(xxT)}i, xj) =

d2∑
k=1

(D+
d)ik cov(vec(xxT)k, xj). (17)

Let bxc denote the largest integer less than or equal to x. Then using one of the fundamental
identities for generalized cumulants given on page 58 of McCullagh (1987),

cov(vec(xxT)k, xj) = cov(xk−db(k−1)/dc xb(k−1)/dc+1 , xj)

= µk−db(k−1)/dcΣb(k−1)/dc+1,j + µb(k−1)/dc+1Σk−db(k−1)/dc,j

= (Σ⊗ µ)kj + (µ⊗Σ)kj .

Combining this with (17), the lower-left block equals D+
d (Σ ⊗ µ + µ ⊗Σ). But, courtesy

of (16), this equals

D+
d (µ⊗Σ) +D+

dKd(Σ⊗ µ) = 2D+
d (µ⊗Σ) = MΣ.

1364

Multivariate Normal Non-Conjugate Variational Bayes

Proof of (d)

It is straightforward to verify that[
Σ ΣMT

MΣ S +MΣMT

] [
Σ−1 +MTS−1M −MTS−1

−S−1M S−1

]
= Id+d(d+1)/2.

The stated expression for V −1 immediately follows.

Proof of (e)

V −1U =

[
Σ−1 +MTS−1M −MTS−1

−S−1M S−1

] [
Σ 0

MΣ SDT
d

]
=

[
I −MTDT

d

0 DT
d

]
.

Proof of (f)

First note that

V −1U

[
g

vec(G)

]
=

[
I −MTDT

d

0 DT
d

] [
g

vec(G)

]
=

[
g −MTDT

d vec(G)

DT
d vec(G)

]
.

With the help of Lemma 1 and (15) one then has

MTDT
d vec(G) = 2(µT ⊗ Id)D+T

d DT
d vec(G) = 2(µT ⊗ Id) vec(G) = 2Gµ

and the stated result is obtained.

Appendix B: Proof of Theorem 2

Proof of (a)

Let Aij and Bij , respectively, denote the (i, j) entry of A and B. Then a listing of the
entries of Q(A) reveals that its entry is (i, j) is

Q(A)ij = Ai,b(j−1)/dc+1Ai,j−db(j−1)/dc, 1 ≤ i ≤ n, 1 ≤ j ≤ d2. (18)

Similarly, the ith entry of vec(B) is

vec(B)j = Bj−db(j−1)/dc,b(j−1)/dc+1, 1 ≤ j ≤ d2. (19)

Hence

{Q(A) vec(B)}i =

d2∑
j=1

Ai,b(j−1)/dc+1Ai,j−db(j−1)/dcBj−db(j−1)/dc,b(j−1)/dc+1

=

 d∑
j=1

+

2d∑
j=d+1

+ . . .+

d2∑
j=(d−1) d+1

Ai,b(j−1)/dc+1Ai,j−db(j−1)/dc

×Bj−db(j−1)/dc,b(j−1)/dc+1

=

d∑
j=1

Ai1AijB1j +

d∑
j=1

Ai2AijB2j + . . .+

d∑
j=1

AidAijBdj

=
d∑
j=1

d∑
j′=1

AijAij′Bjj′ = diagonal(ABAT)i

1365

Wand

and the result follows immediately.

Proof of (b)

Letting bi denote the ith entry of b and making use of (18) one has

{Q(A)T b}j =
n∑
i=1

{Q(A)T }ji bi =
n∑
i=1

Q(A)ij bi

=
n∑
i=1

biAi,b(j−1)/dc+1Ai,j−db(j−1)/dc.

Application of (19) to ATdiag(b)A gives

vec(ATdiag(b)A)j = (ATdiag(b)A)j−db(j−1)/dc, b(j−1)/dc+1

=
n∑
i=1

bi(A
T)j−db(j−1)/dc,iAi,b(j−1)/dc+1

=
n∑
i=1

biAi,b(j−1)/dc+1Ai,j−db(j−1)/dc = {Q(A)T b}j

which proves equality between Q(A)T b and vec(ATdiag(b)A).

Appendix C: Derivation of Algorithm 1

Derivation of q∗(σ2)

log q∗(σ2) = Eq{log p(σ2|rest)}+ const

= {−1
2(K + 1)− 1} log(σ2)− {12Eq‖u‖

2 + µq(1/a)}/σ2 + const.

where ‘const’ denotes terms not involving σ2. Using

Eq‖u‖2 = ‖µq(u)‖2 + tr(Σq(µ))

I then get q∗(σ2) ∼ Inverse-Gamma(12(K + 1), Bq(σ2)) where

Bq(σ2) = 1
2{‖µq(u)‖

2 + tr(Σq(µ))}+ µq(1/a).

Derivation of q∗(a)

log q∗(a) = Eq{log p(a|rest)}+ const

= (−1− 1) log(a)− (µq(1/σ2) +A−2)/a+ const.

This gives q∗(a) ∼ Inverse-Gamma(1, Bq(a)) where

Bq(a) = µq(1/σ2) +A−2.

1366

Multivariate Normal Non-Conjugate Variational Bayes

Derivation of the (µq(β,u),Σq(β,u)) Updates

Note that

Eq{log p(y,β,u, σ2, a)} = Eq{log p(y|β,u) + log p(β,u|σ2) + log p(σ2|a) + log p(a)}
= S + terms not involving µq(β,u) or Σq(β,u)

where
S ≡ S(µq(β,u),Σq(β,u)) ≡ Eq{log p(y|β,u) + log p(β,u|σ2)}.

Then

S = yTCµq(β,u) − 1T exp
{
Cµq(β,u) + 1

2diagonal(CΣq(β,u)C
T)
}

−1
2tr

([
σ−2β Ip 0

0 µq(1/σ2)IK

]
{µq(β,u)µTq(β,u) + Σq(β,u)}

)
−1

2(p+K) log(2π)− 1
2 p log(σ2β)− 1

2 KEq{log(σ2)} − 1T log(y!)

and so

dµq(β,u)
S = yTC dµq(β,u)

−1Tdiag[exp{Cµq(β,u) + 1
2diagonal(CΣq(β,u)C

T)}]C dµq(β,u)

−µTq(β,u)
[
σ−2β Ip 0

0 µq(1/σ2)IK

]
dµq(β,u)

=
([
y − exp{Cµq(β,u) + 1

2diagonal(CΣq(β,u)C
T)}
]T
C

−µTq(β,u)
[
σ−2β Ip 0

0 µq(1/σ2)IK

])
dµq(β,u).

Thus, by Theorem 6, Chapter 5, of Magnus and Neudecker (1999),

{Dµq(β,u)
S}T = CT

[
y − exp{Cµq(β,u) + 1

2diagonal(CΣq(β,u)C
T)}
]

−
[
σ−2β Ip 0

0 µq(1/σ2)IK

]
µq(β,u).

Next, using Theorem 2 of Section 4 and Rule 3.3.2 of Wand (2002),

dvec(Σq(β,u)) S = −1Tdiag[exp{Cµq(β,u) + 1
2diagonal(CΣq(β,u)C

T)}]12Q(C) dvec(Σq(β,u))

−1
2vec

([
σ−2β Ip 0

0 µq(1/σ2)IK

])T
d vec(Σq(β,u))

=
(
− 1

2 exp{Cµq(β,u) + 1
2diagonal(CΣq(β,u)C

T)}TQ(C)

−1
2vec

([
σ−2β Ip 0

0 µq(1/σ2)IK

])T)
d vec(Σq(β,u)

= −1
2vec

(
CTdiag[exp{Cµq(β,u) + 1

2diagonal(CΣq(β,u)C
T)}]C

+

[
σ−2β Ip 0

0 µq(1/σ2)IK

])T
d vec(Σq(β,u))

1367

Wand

and so

vec−1
(

(Dvec(Σq(β,u)) S)T
)

= −1
2

(
CTdiag[exp{Cµq(β,u) + 1

2diagonal(CΣq(β,u)C
T)}]C

+

[
σ−2β Ip 0

0 µq(1/σ2)IK

])
.

References

M. Braun and J. McAuliffe. Variational inference for large-scale models of discrete choice.
Journal of the American Statistical Association, 105:324–335, 2010.

L. Breiman and J. Friedman. Estimating optimal transformations for multiple regression
and correlation (with discussion). Journal of the American Statistical Association, 80:
580–619, 1985.

J. Hensman, M. Rattray, and N. D. Lawrence. Fast variational inference in the conjugate
exponential family. In P. Bartlett, F.C.N. Pereira, C.J.C. Burges, L. Bottou, and K.Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 2897–
2905, 2012.

D. A. Knowles and T. P. Minka. Non-conjugate message passing for multinomial and binary
regression. In J. Shawe-Taylor, R.S. Zamel, P. Bartlett, F. Pereira, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems 24, pages 1701–1709, 2011.

U. Ligges, S. Sturtz, A. Gelman, G. Gorjanc, and C. Jackson. BRugs. Fully-interactive R
interface to the OpenBUGS software for Bayesian analysis using MCMC sampling, 2012.
URL http://cran.r-project.org. R package version 0.8-0.

J. R. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in Statistics
and Econometrics, Revised Edition. Wiley, Chichester UK, 1999.

J.R. Magnus and H. Neudecker. The commutation matrix: some properties and applica-
tions. The Annals of Statistics, 7:381–394, 1979.

P. McCullagh. Tensor Methods in Statistics. Chapman and Hall, London, 1987.

M. Menictas and M. P. Wand. Variational inference for heteroscedastic semiparametric
regression. 2014. Unpublished manuscript.

T. Minka and J. Winn. Gates: A graphical notation for mixture models. Microsoft Research
Technical Report Series, MSR-TR-2008-185:1–16, 2008.

T. Minka, J. Winn, J. Guiver, and D. Knowles. Infer.NET 2.5, 2013. URL http://

research.microsoft.com/infernet. Microsoft Research Cambridge.

F. Novomestky. matrixcalc. A collection of functions to support matrix differential calculus
as presented in Magnus and Neudecker (1999), 2008. URL http://cran.r-project.org.
R package version 1.0-1.

1368

http://cran.r-project.org
http://research.microsoft.com/infernet
http://research.microsoft.com/infernet
http://cran.r-project.org

Multivariate Normal Non-Conjugate Variational Bayes

R Development Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2013. URL http:

//www.R-project.org/. ISBN 3-900051-07-0.

D. Ruppert, M. P. Wand, and R. J. Carroll. Semiparametric Regression. Cambridge Uni-
versity Press, New York, 2003.

L. S. L. Tan and D. J. Nott. Variational inference for generalized linear mixed models using
partially noncentered parametrizations. Statistical Science, 28:168–188, 2013.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational
inference. Foundation and Trends in Machine Learning, 1:1–305, 2008.

M. P. Wand. Vector differential calculus in statistics. The American Statistician, 56:55–62,
2002.

M. P. Wand and J. T. Ormerod. On semiparametric regression with O’Sullivan penalized
splines. Australian and New Zealand Journal of Statistics, 50:179–198, 2008.

M. P. Wand, J. T. Ormerod, S. A. Padoan, and R. Frühwirth. Mean field variational Bayes
for elaborate distributions. Bayesian Analysis, 6(4):847–900, 2011.

C. Wang and D. M. Blei. Variational inference in nonconjugate models. Journal of Machine
Learning Research, 14:1005–1031, 2013.

1369

http://www.R-project.org/
http://www.R-project.org/

	Introduction
	Notation and Main Ingredients
	Path Estimation
	How Different are PMAP and MAP Inferences and How Much Room is in between the Two?
	Further Motivation

	Further Notation and Organization of the Rest of the Paper
	Contributions of the Paper

	Risk-Based Path Inference
	Standard Path Inferences Re-Examined
	Generalizations
	Admissible PMAP and Posterior Viterbi Decoders
	Beyond PVD and A priori Admissible PMAP

	Combined Risks
	The k-Block Posterior-Viterbi Decoding
	Experiments
	Performance Measures and Their Estimation
	Comparison of the Accuracy of the Viterbi and PMAP Decoders
	The Risk of the Viterbi, PMAP and Other Decoders
	Summary of the Experiments

	Algorithmic Approaches
	The Hybrid Decoder Based on the Transformations (51) Does Not Work in Practice Except with Trivial Examples
	The Hybrid Decoder (49) is Invariant to Rescaling of the Power-Transformed (45) Forward and Backward Variables (;), (;).
	Rescaling of the Forward and Backward Variables (;) and (;) Defined by (51) Alters the Hybrid Decoder (49).

	Asymptotic Risks
	Discussion
	An Example of an Inadmissible Path of Positive Prior Probability
	Proof of Remark 3
	Supplementary Results on the Trade-Off between 1 and Risks in Problem (18), and between R1 and Risks in Problem (26).
	Pseudo-Code for Computing the Hybrid Decoders (49) Using the Power-Transform with Scaling (52), (53).
	Further Details of the Experiments from Section 5
	Introduction
	Related Work
	Dual Optimization
	Primal Optimization

	Analysis of AESVM
	Definition of the Representative Set
	Properties of AESVM

	Computation of the Representative Set
	First Level of Segregation
	Second Level of Segregation
	Computation of the Approximate Extreme Points
	Combining All the Methods to Compute X*

	Experiments
	Data Sets
	Evaluation of DeriveRS
	Comparison of AESVM to SVM Solvers
	Comparison to CVM, BVM, LASVM and LIBSVM
	Comparison to SVMperf
	Comparison to RfeatSVM

	Performance with the Polynomial Kernel

	Discussion
	Introduction
	Competition
	Data
	Challenge
	Evaluation
	Website and Leaderboard

	First Winner's Entry
	Preprocessing and Feature Extraction
	Method
	Result and Discussion
	Spatial and Temporal Patterns
	Performance
	Other Potentials
	Recommendations

	Second Winner's Entry
	Preprocessing and Feature Extraction
	Attribute: clicktime
	Attribute: numericip
	Attribute: deviceua
	Other Attributes

	Method
	Base Classifier
	Resampling
	Ensemble Learning

	Results and Discussion
	Effect of Resampling
	Two- vs. Three-Class Task
	Performance

	Third Winner's Entry
	Preprocessing and Feature Extraction
	Click Statistics by Publisher
	Click Statistics by numericip
	Click Statistics by deviceua
	Click Statistics by campaignid
	Click Statistics by numericip+deviceua

	Method
	Classification Algorithms
	Blending

	Results and Discussion
	Performance
	Important Features

	Runner-up's Entry
	Preprocessing and Feature Extraction
	Click Profiles
	Long Click Profile
	Short Click Profile
	Clicks Coming from the Same URL
	Redflag

	Method
	Results and Discussion
	Performance
	Remarks

	Organizer's Entry
	Preprocessing and Feature Extraction
	Method
	Classification Algorithms
	Feature Elimination

	Results and Discussion
	Performance
	Feature Ranking
	Model Simplification

	Conclusion
	Methods Employed
	What We Have Learned
	Research Outlook

	Introduction
	Software Description
	Implementation
	Tools

	Benchmark Results
	Conclusions
	Introduction
	Overview of the Junction Tree Framework
	Advantages of Using Junction Trees
	Related Work
	Paper Organization

	Preliminaries
	Graph Theoretic Concepts
	Undirected Graphical Models
	Undirected Graphical Model Section (UGMS)
	Junction Trees
	Overview of Region Graphs
	Applying UGMS to Region Graphs

	UGMS Using Junction Trees: A General Framework
	Description of Framework
	Computational Complexity
	Advantages of using Junction Trees and Region Graphs

	PC-Algorithm for UGMS
	Theoretical Analysis of Junction Tree based PC
	Assumptions
	Theoretical Result and Analysis

	Numerical Simulations
	Results on Synthetic Graphs
	Analysis of Stock Returns Data
	Analysis of Gene Expression Data

	Summary and Future Work
	Marginal Graph
	Examples of UGMS Algorithms
	Graphical Lasso (gLasso)
	Neighborhood Selection (nLasso)
	Proof of Proposition 8
	Analysis of the PC-Algorithm in Algorithm 4
	Proof of Theorem 9

	Introduction
	Related Work

	Definitions and Notation
	On the Form of Axioms
	Axioms for Graph Clustering Quality Functions
	Locality
	Relation to Resolution-Limit-Free Quality Functions

	Continuity
	Summary of Axioms

	Modularity
	Adaptive Scale Modularity
	Relation to Other Quality Functions
	Parameter Dependence Analysis

	Conclusion and Open Questions
	Proof of Theorem 1 (Modularity is Rich)
	Proof of Theorem 5 (Adaptive Scale Modularity is Rich)
	Proof of Theorem 6 (Adaptive Scale Modularity is Monotonic)
	Introduction
	Problem Statement
	Estimators Considered
	Bayesian Model for Sparse Estimation
	Penalized ARD (PARD)
	Group Lasso (GLasso) and Multiple Kernel Learning (MKL)

	Comparing PARD And GLasso (MKL): Motivating Examples
	Sparsity vs. Shrinkage: A Simple Experiment
	Monte Carlo Studies
	Concluding Remarks

	Mean Squared Error Properties of PARD and GLasso (MKL)
	Properties Using ``Orthogonal'' Regressors
	Asymptotic Properties Using General Regressors
	Marginal Likelihood and Weighted MSE: Perturbation Analysis
	Concluding Remarks and Connections to Subsection 4.2

	Conclusions
	Proofs
	Proof of Proposition 9
	Proof of Proposition 10
	Proof of Proposition 12
	 Proof of Lemma 13:
	Preliminary Lemmas
	Proof of Theorem 14

	Introduction
	Reinforcement Learning and Bayesian Optimization
	Policy Search Using Bayesian Optimization
	Measure of Improvement
	Objective Function Model
	Bayesian Optimization for RL

	Incorporating Trajectory Information into Bayesian Optimization for RL
	Model-Free RL via Bayesian Optimization: A Behavior-Based Kernel (BBK)
	Estimation of the Kernel Function Values
	Model-Based RL via Bayesian Optimization

	Experiment Results
	Experiment Setup
	Mountain Car Task
	Acrobot Task
	Cart-pole Task
	3-Link Planar Arm Domain
	Bicycle Balancing

	Related Work
	Conclusions
	Introduction
	Library Overview
	Availability and Requirements
	Introduction
	Background and Problem Formulation
	Non-parametric Regression and Kernel Classes
	Gradient Update Equation
	Overfitting and Early Stopping

	Main Results and Consequences
	Stopping Rules and General Error Bounds
	Remarks

	Consequences for Specific Kernel Classes
	Kernels with Polynomial Eigendecay
	Finite Rank Kernels

	Comparison with Other Stopping Rules
	Hold-out Method
	SURE Method
	Oracle Method

	Connections to Kernel Ridge Regression

	Proofs
	Proof of Theorem 1
	Bounding the Squared Bias
	Controlling the Variance

	Proof of Theorem 2
	Proof of Corollaries
	Proof of Corollary 4
	Proof of Corollary 3

	Proof of Proposition 5

	Discussion
	Derivation of Gradient Descent Updates
	Auxiliary Lemmas for Theorem 1
	Proof of Lemma 6
	Proof of Lemma 8

	Auxiliary Results for Proposition 5
	Proof of Lemma 12
	Proof of Lemma 13

	Properties of the Empirical Rademacher Complexity
	Auxiliary Results for Theorem 2
	Proof of Lemma 9
	Bounding At
	Bounding Bt

	Proof of Lemma 11

	Introduction
	Previous Work
	Non-ML Algorithms

	Local And Global Bounds On Semi-Supervised Divergences
	Notation And Conditions
	Divergences

	Standard ML Semi-Supervised Learning Expressed As A Divergence
	Bounding D(to.P(X,Y),)to. With D(to.P(X,Z),)to.
	Global Bounds
	Summary

	Unbiased Generative Semi-Supervised Learning
	Estimator Variance

	Empirical Demonstration
	Conclusions
	Supplementary Results Of Unbiased Semi-Supervised Training
	Mean Errors And Negative Log Likelihood
	Proportion In Which Performance Improves

	Introduction
	Background on High-Dimensional GGM Estimation
	The Graphical Lasso for Estimating a Single GGM
	The Joint Graphical Lasso for Estimating Multiple GGMs

	Node-Based Joint Graphical Lasso
	Why is Node-Based Learning Challenging?
	Row-Column Overlap Norm
	Node-Based Approaches for Learning GGMs
	Perturbed-node Joint Graphical Lasso
	Co-hub Node Joint Graphical Lasso

	Algorithms
	The ADMM Approach
	ADMM Algorithms for PNJGL and CNJGL
	ADMM Algorithm for PNJGL
	ADMM Algorithm for CNJGL
	Numerical Issues and Run-Time of the ADMM Algorithms
	Convergence of the ADMM Algorithm

	Algorithm-Independent Computational Speed-Ups
	Conditions for PNJGL Formulation to Have Block-Diagonal Solutions
	Conditions for CNJGL Formulation to Have Block-Diagonal Solutions
	General Sufficient Conditions
	Evaluation of Speed-Ups on Synthetic Data

	Simulation Study
	Data Generation
	Data Generation for Erdos-Renyi Network
	Data Generation for Scale-free Network
	Data Generation for Community Network

	Results

	Real Data Analysis
	Gene Expression Data
	University Webpage Data

	Discussion
	Dual Characterization of RCON
	Proof of Theorem 4
	Proof of Theorem 7
	Proof of Theorem 10
	Connection Between RCON and Obozinski-11
	Derivation of Updates for ADMM Algorithms
	Updates for ADMM Algorithm for PNJGL
	1 Update
	Z1 Update
	V Update

	Updates for ADMM Algorithm for CNJGL

	Additional Simulation Results
	Introduction and Parametric Simplex Method
	Application to Sparse Precision Matrix Estimation
	Performance Benchmark
	Summary and Acknowledgements
	Introduction
	A Family of Online Learning Algorithms for Linear Classification
	The Software Package
	Practical Usage
	Documentation and Design

	Conclusion
	Introduction
	Markov Networks
	Representation
	Inference
	Weight Learning

	Structure Learning in Markov Networks
	Decision Tree Structure Learning (DTSL)
	Learning Trees
	Generating Features
	Asymptotic Complexity

	Decision Tree Bottom-Up Learning (DT-BLM)
	Combining DTSL and L1 (DT+L1)
	Empirical Evaluation
	Methodology
	Data Sets
	Feature Generation Methods
	Accuracy
	Learning Time
	Discussion

	Conclusions and Future Work
	Introduction
	Optimal Transport Between Histograms
	The Intuition behind Optimal Transport
	The Ingredients of Discrete Optimal Transport
	Objective: Semimetric and Metric Matrices
	Feasible Set: Transport Polytopes

	Optimal Transport Distances
	Extensions of Optimal Transport Distances
	Relationship with Other Distances
	Computing Optimal Transport Distances

	Properties of the Optimal Transport Distance Seen As a Function of M
	Concavity and Piecewise-linearity
	Differentiability

	Learning Ground Metrics as an Optimization Problem
	Training Set: Histograms and Side Information
	Feasible Set of Metrics
	A Local Criterion to Select the Ground Metric

	Approximate Minimization of Ck
	Subdifferentiability of Ck
	Local Linearization of the Concave Part of Ck
	Initial Points
	The Total Variation Distance as an Optimal Transport Distance
	Linear Approximations to Ck and Independence Tables

	Related Work
	Metrics on the Probability Simplex
	Mahalanobis Metric Learning
	Metric Learning in the Probability Simplex

	Experiments
	Implementation Notes
	Distances Used in this Benchmark
	Mahalanobis Distances
	Optimal Transport Distances with Ground Metric Learning

	Binary Classification
	Experimental Setting
	Results

	Multiclass Classification
	Experimental Setting
	Results

	Conclusion and Future Work
	
	Introduction
	Modeling Low-Rank Graphs Dynamics with Autoregressive Features
	Working Assumptions
	An Autoregressive Linear Model for Graph Features
	Simultaneous Prediction and Estimation through Regularized Optimization
	An Overview of Main Results

	Oracle Inequalities
	A General Oracle Inequality
	Restricted Eigenvalue Condition and Fast Oracle Inequalities
	Probabilistic Versions

	Algorithms and Data Modeling
	Incremental Proximal-Gradient Algorithm for Minimizing L
	A Generative Model for Graphs with Linearly Autoregressive Features
	Beyond the First-Order Autoregressive Model

	Empirical Evaluation
	Experiments with Synthetic Data
	Experiments with Real Data: Predicting Sales Volumes
	Discussion

	Conclusion
	Proofs of the Main Results
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Corollary 4
	Concentration Inequalities for the Noise Processes

	Introduction
	Stochastic Approximation for Generalized Linear Models
	Assumptions
	Running-time Complexity

	Related Work
	Non-strongly-convex Functions
	Strongly-convex Functions
	Adaptivity to Unknown Constants

	Non-Strongly Convex Analysis
	Existing Results
	Higher-Order and Tail Bound
	Convergence of Gradients

	Self-Concordance Analysis for Strongly-Convex Problems
	Conclusion
	Probability Lemmas
	Self-Concordance Properties
	Proof of Lemma 9

	Proof of Proposition 3
	Bounding Martingales
	Almost Sure Bound
	Derivation of p-th Order Recursion
	Proof by Induction
	Alternative Proof Using Burkholder-Rosenthal-Pinelis Inequality
	BRP Inequality
	Proof of Proposition 3 (With Slightly Worse Constants)

	Alternative Proof Using Freedman's Inequality
	Freedman's Inequality and Extensions
	Proof of Proposition 5 (With Slightly Worse Constants and Scalings)

	Proof of Proposition 7
	Bound on 1n k=1n f'(k-1)
	Using Self-Concordance

	Results for Small p
	Proof of Proposition 10
	Tail Bound for "026B30D f'(n)"026B30D
	Bounding the Function Values
	Bound on Iterates

	Introduction
	Random Intersection Trees
	Computational Complexity
	The Influence of Sparsity on Computational Complexity
	Independent Noise Variables

	Early Stopping Using Min-Wise Hashing
	Numerical Examples
	Tic-Tac-Toe Endgame Prediction
	Reuters RCV1 Text Classification

	Discussion
	
	Introduction
	Background
	Propofol-Induced Hypnosis
	Depth of Hypnosis Measurement
	Electroencephalogram (EEG)
	Bispectral Analysis of the EEG
	The Bispectral Index of the EEG (BIS)

	Motivation for Good Control of Hypnosis
	Challenges to Optimal Control of Hypnosis
	Conventional Control
	Reinforcement Learning

	Methods
	The Clinical-Grade RL Agent
	Agent Architecture
	Agent Percepts
	Agent Actions
	Reinforcements

	Agent Training
	Modeling Propofol Effect
	Knowledge Representation
	Learning Algorithm
	Control Policy Identification
	Training

	In silico Control Policy Evaluation
	Pharmacokinetic Variation
	Pharmacodynamic Variation

	Assessment of Agent Performance
	Evaluation Population
	Maintenance Interval Identification
	Performance Metrics
	Acceptance Criteria
	Simulation Results
	Clinical Application of RL Control
	Performance Analysis

	Results
	Volunteers
	Target 40 Maintenance Control Metrics
	Target 60 Maintenance Control Metrics
	Aggregate Maintenance Control Metrics
	Target Transition Metrics

	Discussion
	Clinically-acceptable Performance
	Patient-specific Hypnosis
	Limitations
	Future Directions
	Improvements

	Conclusion
	Introduction
	The Hidden Markov (Mixture) Model
	Clustering Hidden Markov Models
	Formulation
	Notation

	Variational HEM Algorithm
	Lower Bound to an Expected Log-likelihood
	Variational Lower Bound

	Variational E-Step
	Variational Distributions
	Lower Bound
	Summary Statistics

	M-Step

	Applications and Related Work
	Applications of the VHEM-H3M Algorithm
	Related Work

	Clustering Experiments
	Clustering Methods
	Hierarchical Motion Clustering
	Data Sets and Setup
	Results on the MoCap Data Set
	Results on the Vicon Physical Action Data Set

	Clustering Synthetic Data
	Data Set and Setup
	Results

	Density Estimation Experiments
	Music Annotation and Retrieval
	Music Data Set
	Music Annotation Models
	Performance Metrics
	Results

	On-Line Hand-Writing Data Classification and Retrieval
	Data Set
	Classification Models and Setup
	Results

	Robustness of VHEM-H3M to Number and Length of Virtual Samples

	Conclusion
	Derivation of the Lower Bounds
	Lower Bound on EM(b)i [logp(Yi|M(r))]
	Lower Bound on EM(b)i[logp(y|M(r)j)]
	Lower Bound on EM(b)i, [logp(y|M(r)j,)]

	Derivation of the E-Step
	Derivation of the M-Step
	HMMs Mixture Weights
	Initial State Probabilities
	State Transition Probabilities
	Emission Probability Density Functions

	Useful Optimization Problems
	
	

	Clustering Synthetic Data where the Clustering Model Does Not Match the ``True'' Model
	Introduction
	Previous Work
	This Work
	Exact Recovery and Conditions for Exact Recovery by GMS
	Recent Subsequent Work
	Structure of This Paper

	Exact and Near Subspace Recovery by GMS
	Problem Formulation
	Common Difficulties with Subspace Recovery
	Conditions for Handling the Three Enemies
	Exact Recovery Under Combinatorial Conditions
	Weaker Alternatives of Conditions (6) and (7)

	Uniqueness of the Minimizer
	Exact Recovery under Probabilistic Models
	Cases with Spherically Symmetric Distributions of Outliers
	A Special Case with Asymmetric Outliers

	Near Subspace Recovery for Noisy Samples
	Near Subspace Recovery for Regularized Minimization

	Understanding Our M Estimator: Interpretation and Formal Similarities with Other M Estimators
	Formal Similarity with the Common M-estimator for Robust Covariance Estimation
	Problems with Exact Recovery by the Common M-estimator

	Formal Similarity with Tyler's M-Estimator
	Interpretation of as Robust Inverse Covariance Estimator

	IRLS Algorithms for Minimizing (4)
	Heuristic Proposal for Two IRLS Algorithms
	Theory: Convergence Analysis of the IRLS Algorithms
	The Practical Choices for the IRLS Algorithm
	Complexity of Algorithm 2

	Subspace Recovery in Practice
	Subspace Recovery without Knowledge of d
	Subspace Recovery with Knowledge of d
	The EGMS Algorithm

	Computational Complexity of GMS and EGMS

	Numerical Experiments
	Model for Synthetic Data
	Demonstration of Practical Solutions of §5.1 and §5.2
	Demonstration of Dimension Estimation
	The Effect of the Regularization Parameter
	Information Obtained from Eigenvectors
	Detailed Comparison with Other Algorithms for Synthetic Data
	Yale Face data
	Video Surveillance

	Proofs of Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Verification of (10) and (11) as Sufficient Conditions and (12) and (13) as Necessary Ones
	Proof of Lemma 3
	Proof of Theorem 4
	Proof of the Extension of Theorem 4 to the Asymmetric Case

	Proof of Theorem 5
	Proof of the Extension of Theorem 5 to the Asymmetric Case

	Proof of Theorem 6
	Implication of Theorem 6 to Dimension Estimation
	Improved Bounds in a Restricted Setting

	Proof of Proposition 7
	Proof of Theorem 8
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Theorem 11
	Proof of Theorem 12
	Proof of Theorem 13

	Conclusion
	Introduction
	Notation and Background on Markov Decision Processes
	Problem Statement: Efficient Value Function Estimation

	Overview of Temporal-Difference Methods
	Objective Functions
	Fixpoint Discussion

	Algorithm Design
	Gradient-Based Approaches
	Least-Squares Approaches
	Probabilistic Models

	Feature Handling
	Automatic Feature Generation
	Feature Selection by Regularization

	Important Extensions
	Eligibility Traces
	Generalization to Off-Policy Learning by Importance Reweighting

	Comparison of Temporal-Difference Methods
	Benchmarks
	Boyan's Chain (Benchmark 1)
	Baird's Star Example (Benchmark 2)
	Randomly Sampled MDP (Benchmarks 3 and 4)
	Linearized Cart-Pole-Balancing (Benchmarks 5- 8)
	Linearized 20-link Balancing (Benchmark 11 and 12)
	Cart-Pole Swing-up (Benchmarks 9 and 10)
	Hyper-Parameter Optimization
	Normalization of Features

	Insights on the Algorithms-Defining Cost Functions
	Double Sampling vs. Eligibility Traces
	MSPBE vs. MSE Performance

	Results on Gradient-based Methods
	Constant vs. Decreasing Learning Rates
	Influence of Hyper-Parameters

	Results on Least-Squares Methods
	Alternative Regularization Approaches
	Dependency on Hyper-Parameters

	Conclusion and Outlook
	Conclusion
	Outlook

	Derivation of Least-Squares Temporal-Difference Learning
	Parametric GPTD Whitening Transformation
	Algorithms
	Introduction
	Definitions, Notations, and Core Results
	The Disagreement Coefficient
	Smooth Relative Regret Approximations (SRRA)

	Constant Uniform Disagreement Coefficient Implies Efficient SRRAs
	The Construction

	Application #1: Learning to Rank from Pairwise Preferences (LRPP)
	Problem Definition
	The Weakness of Using Disagreement Coefficient Arguments
	Better SRRA for LRPP

	Application #2: Clustering with Side Information
	Problem Definition
	The Ineffectiveness of Using Disagreement Coefficient Arguments
	Better SRRA for Semi-Supervised k-Clustering

	Additional Results and Practical Considerations
	LRPP over Linearly Induced Permutations in Constant Dimensional Feature Space
	Bounding the VC Dimension and Disagreement Coefficient
	An Algorithm for Constructing the Disagreement Region

	Convex Relaxations
	Discussion

	Conclusions and Future Work
	Introduction
	Slow Feature Analysis
	The Optimization Problem
	The SFA Algorithm

	Theoretical Foundations
	SFA With Unrestricted Function Spaces
	Conceptual Consequences of an Unrestricted Function Space
	Earlier Results for SFA with an Unrestricted Function Space

	Factorization Of The Optimal Functions
	The First Harmonic Is A Monotonic Function Of The Source
	Gaussian Sources
	Uniformly Distributed Sources
	Summary: Results Of The Theory

	An Algorithm For Nonlinear Blind Source Separation
	The xSFA Algorithm
	Simulations
	Sources
	Nonlinear Mixtures
	Simulation Parameters
	Performance Measure
	Simulation Results

	Practical Limitations
	Limited Sampling Time
	Sampling Rate
	Density Of Eigenvalues
	Function Space
	Summary

	Relation To Other Nonlinear BSS Algorithms
	Discussion
	Proof Of Theorem 1
	Proof That K Is Diagonal
	Introduction
	Continuous Black-Box Optimization
	The NES Family
	Paper Outline

	Search Gradients
	Search Gradient for Gaussian Distributions
	Limitations of Plain Search Gradients
	Using the Natural Gradient

	Performance and Robustness Techniques
	Fitness Shaping
	Adaptation Sampling
	Rotationally Symmetric Distributions
	Local ``Natural'' Coordinates
	Sampling from Radial Distributions

	Techniques for Multinormal Distributions
	Beyond Multinormal Distributions

	Connection to CMA-ES
	Experiments
	Experimental Setup and Hyperparameters
	Black-box Optimization Benchmarks
	Separable NES for Neuroevolution

	Discussion and Conclusion
	Introduction
	Algorithms for High-order Dependencies
	High-order Semi-CRFs
	Notations
	Training
	Partition Function
	Expected Feature Sum

	Decoding
	Time Complexity

	Experiments
	Experiments with High-order CRFs
	Synthetic Data Generated Using kth-order Markov Model
	Handwriting Recognition

	Experiments with High-order Semi-CRFs
	Relation Argument Detection
	Punctuation Prediction
	Bibliography Extraction

	Discussions

	Related Work
	Conclusion
	Correctness of the Forward and Backward Algorithms
	Proof of Lemma 1
	Proof of Lemma 2
	Correctness of the Forward Algorithm
	Correctness of the Backward Algorithm
	Correctness of the Marginal Computation

	An Example for the Algorithms
	Introduction
	Notation and Symbols

	Outline of Proposed Algorithm and Comparison with Existing Algorithms
	Preliminaries
	Outline of Proposed Algorithm
	Related Work
	Comparison with Existing Algorithm

	Review of Formulation and Algorithm for MVEE Computation
	Description and Analysis of the Algorithm
	Correctness for a Separable Matrix
	Robustness for a Noisy Separable Matrix

	Implementation in Practice
	Cutting Plane Strategy for Solving Q

	Experiments
	Synthetic Data
	Application to Document Clustering

	Concluding Remarks
	Introduction
	Joint DP Mixture Model
	Random Partition and Inference
	Covariate-dependent Urn Scheme and Prediction

	Joint EDP Mixture Model
	Random Partition and Inference
	Covariate-dependent Urn Scheme and Prediction

	Computations
	Simulated Example
	Alzheimer's Disease Study
	Discussion
	Computations
	Simulation Study
	Alzheimer's Disease Study
	Introduction
	Related Work
	MedLDA
	MedLDA: A Regularized Bayesian Model
	Existing Iterative Algorithms

	Gibbs MedLDA
	Learning with an Expected Margin Loss
	Formulation with Data Augmentation
	Inference with Collapsed Gibbs Sampling
	Prediction

	Extensions to Regression and Multi-task Learning
	Gibbs MedLDA Regression Model
	The Models with Data Augmentation
	A Collapsed Gibbs Sampling Algorithm

	Multi-task Gibbs MedLDA
	The Model with Data Augmentation
	A Collapsed Gibbs Sampling Algorithm

	Experiments
	Binary Classification
	Regression
	Multi-class Classification
	Multiple One-vs-All Classifiers
	Multi-class Classification as a Multi-task Learning Problem

	Multi-label Classification
	Sensitivity Analysis
	Burn-in Steps
	Dirichlet Prior
	Loss Penalty
	The Number of Testing Samples

	Topic Representations

	Conclusions and Discussions
	Introduction
	Computation and Communication Framework
	Hadoop-compatible AllReduce
	Proposed Algorithm
	Speculative Execution

	Experiments
	Data Sets
	Display Advertising
	Splice Site Recognition

	Results
	Effect of Subsampling
	Running Time
	Large Experiment and Comparison with Sibyl
	Online and Batch Learning

	Comparison with Previous Approaches
	AllReduce vs. MapReduce
	Overcomplete Average
	Parallel Online Mini-batch

	Communication and Computation Complexity
	Computational Complexity of the Hybrid Approach
	Communication Cost Comparison with Previous Approaches

	Discussion
	Introduction
	Unsupervised Preference Aggregation
	Framework
	Previous Work
	Permutation-Based Models
	Score-Based Models

	Multinomial Preference Model (MPM)
	Incorporating Prediction Confidence
	Modelling Deviations from the Consensus
	Rank Aggregation Experiments
	Collaborative Filtering Experiments

	Supervised Preference Aggregation
	Framework
	Pairwise Preferences
	Previous Work
	Supervised Extension for MPM
	Feature-Based Approach
	Feature-Based Approach: Feature Extraction
	Feature-Based Approach: Learning and Inference

	CRF Approach
	CRF Approach: Model
	CRF Approach: Learning and Inference

	Experiments
	MPM Experiments
	SVD and CRF Experiments
	Runtime Comparison
	Assessing Expert Quality

	Conclusion and Future Work
	Introduction
	Signed Networks and Social Balance
	Categories of Signed Networks
	Social Balance
	Key Problems in Signed Network Analysis

	Local Methods for Sign Prediction
	Katz Measure is Valid for Signed Networks

	Global Methods: Low Rank Modeling
	Sign Prediction via Convex Relaxation
	Sign Prediction via Singular Value Projection
	Sign Prediction via Matrix Factorization
	Time Complexity of Sign Prediction Methods
	Clustering Signed Networks

	Experimental Results
	Description of Data Sets
	Evidence of Local and Global Patterns in Real Signed Networks
	Sign Prediction
	Results on Synthetic Data Sets
	Results on Real-life Data Sets
	Running Time Comparison

	Clustering

	Related Work
	Conclusions and Future Work
	Proofs
	Supervised Higher-Order Cycle (HOC) methods
	Using Higher-order Cycles
	Reducing the Number of Features
	Classifier

	Introduction
	The Indian Buffet Process
	The Stick-Breaking Construction
	Inference

	Observation Model
	Laplace Approximation for Gibbs Sampling Inference
	Speeding Up the Matrix Inversion

	Variational Inference
	Experiments
	Inference over Synthetic Images
	Comorbidity Analysis of Psychiatric Disorders
	Comorbidity Analysis of Personality Disorders

	Conclusions
	Laplace Approximation Details
	Lower Bound Derivation
	Derivatives for Newton's Method
	Correspondence Between Criteria and Questions in NESARC
	Introduction
	Notation
	Hottopixx, a Linear Programming Model for Near-Separable NMF
	Contribution and Outline of the Paper

	Detecting the Factorization Rank Automatically
	Robustness Analysis without Duplicates and Near Duplicates
	Robustness Analysis with Duplicates and Near Duplicates

	Handling Outliers
	Avoiding Column Normalization
	Numerical Experiments
	Post-Processing of LP solutions
	Algorithms
	Synthetic Data Sets
	Error Measures and Methodology
	Results

	Swimmer Data Set

	Conclusion and Further Work
	Proof of Theorem 2
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 9
	Introduction
	Overview
	Related Work
	Outline

	AdaHedge
	Basic Hedge Analysis for Constant Learning Rate
	AdaHedge Analysis
	What are Timeless Bounds?

	FlipFlop
	Exploiting Easy Data by Following the Leader
	FlipFlop

	Invariance to Rescaling and Translation
	Experiments
	Experiment 1. Worst Case for FTL
	Experiment 2. Best Case for FTL
	Experiment 3. Weights do not Concentrate in AdaHedge
	Experiment 4. Weights do Concentrate in AdaHedge

	Discussion and Conclusion
	General Question: Competing with Hedge for any Fixed Learning Rate
	The Big Picture

	Proof of Lemma 1
	Proof of Theorem 18
	Introduction
	Problem Setup
	Search Spaces Over Complete Outputs
	Recurrent Classifiers
	Flipbit Search Space
	Limited-Discrepancy Search Space (LDS)
	Search Space Quality
	Sparse Search Spaces

	Cost Function Learning
	Cost Function Learning via Imitation Learning
	Ranking-based Search
	Sufficient Pairwise Decisions
	Rank Learner
	Summary of Overall Training Approach

	Empirical Results
	Experimental Setup
	Comparison to State-of-the-Art
	Framework Variations
	Results with Sparse Search Spaces

	Comparison to Related Work
	Summary and Future Work
	Introduction
	Notation
	The vec, vech and Duplication Matrix Notations
	The diagonal and diag Notations
	Derivative Vector and Hessian Matrix Notation

	Non-Conjugate Variational Message Passing
	Multivariate Normal Factor

	Main Results
	Illustrations
	Poisson Mixed Model
	Heteroscedastic Additive Model

